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Abstract
The continuous challenge to decrease emissions, sensor costs and fuel consumption
in diesel engines is battled in this thesis. To reach higher goals in engine efficiency
and environmental sustainability the prediction of engine states is essential due to
their importance in engine control and diagnosis. Model output will be improved
with help from sensors, advanced mathematics and non linear Kalman filtering.
The task consist of constructing non linear Kalman Filters and to adaptively weight
measurements against model output to increase estimation accuracy. This thesis
shows an approach of how to improve estimates by nonlinear Kalman filtering and
how to achieve additional information that can be used to acquire better accuracy
when a sensor fails or to replace existing sensors. The best performing Kalman
filter shows a decrease of the Root Mean Square Error of 75% in comparison to
model output.

Sammanfattning
Minskning av utsläpp och sensorkostnader samt låg bränsleförbrukning i tunga
dieselmotorer behandlas i denna avhandling. För att nå högre mål i motoreffek-
tivitet och hållbar utveckling är estimering av motorns tillstånd avgörande då
det spelar en väsentlig roll vid motorstyrning och diagnos. En modells utsignaler
kommer att förbättras med hjälp av sensorer, avancerad matematik och Kalman-
filtrering. Uppgiften består av att konstruera ickelinjära Kalmanfilter och adaptivt
vikta mätningar mot modellens utsignaler för att öka estimeringsnoggrannheten.
Denna avhandling visar på hur man kan förbättra modellbaserade estimeringar
med hjälp av Kalmanfiltrering och hur man kan erhålla ytterliggare information
för att öka precisionen då en sensor går sönder eller ersätta existerande sen-
sorer. Det bäst presterande filtret ger en minskning av kvadratroten ur medelk-
vadratavvikelsen (RMSE) på 75 % i jämförelse med modellens utsignaler.
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Chapter 1

Introduction

The development in the heavy truck industry is driven by emission legislators
and the customer’s demand on low fuel consumption. The control and diagnostic
systems are fundamental in reducing emissions and constructing efficient engines.
In order to successfully control engines and to maintain reliable diagnosis systems,
accurate information of the engine states is essential. To reach the emission limits
with low fuel consumption, concepts like Exhaust Gas Recirculation (EGR) and
Variable Geometry Turbines (VGT) are introduced, [15]. By increasing the intake
manifold EGR fraction Xegr, NOx emissions are reduced and by maintaining a
high enough oxygen/fuel ratio λ, smoke generation is avoided. Xegr and λ are thus
often used as performance variables when minimizing engine emissions. Estimates
can be obtained using sensors inside the engine that measure the engine states, or
from engine models. The sensor costs for purchase, installation and repair become
important as the quantity of sold engines increase. With model based estimates,
sensors can be replaced or their accuracy increased through the given additional
information. Therefore the attention on model based estimation increase.

1.1 Purpose and Goal

To construct a general engine model that fulfils the need of rigorous state es-
timations, is difficult if not even unattainable. The purpose of this work is to
investigate to what extent, the model based estimates in an engine, can be im-
proved with help from sensors, advanced mathematics, regular non-linear Kalman
filtering and adaptive non-linear Kalman filtering. The goal is to obtain accurate
estimates of λ and Xegr. A DAE based Extended Kalman Filter (EKF) will be
compared to an ODE based Unscented Kalman Filter (UKF). An adaptation of
the best performing filter will be made in an attempt to further improve the esti-
mates. The adaptation will be made with help from information of the model and
measurement accuracy during different control signal intervals. This information
is used while adapting the covariance matrices of model and measurement noise.
The possibility of replacing sensors with the estimates from the Kalman filtered
estimates will also be investigated.
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4 Introduction

1.2 Problem Statement
To improve model based estimates, different problems must be dealt with. To
improve the estimation accuracy, Kalman filtering is used. This leads to the prob-
lem of how to implement and tune the filters. The filters are tuned by weighting
measurements against model based estimates, this is done by assigning the mea-
surement noise and state prediction noise certain covariances, R and Q. It must be
investigated in which operating points the model gives inaccurate state estimates.
How the R and Q should be adapted for these operating points to further improve
the estimates is the next problem. The number of operating points is large so
they need to be divided into appropriate subsets of operating points. One subset
is supposed to correspond to one covariance setting, which is the topic of Chapter
7. The Problem statement can be clarified in the following sub problems:

1. How should the filters be implemented?

2. What weighting should be chosen for the Kalman filters? i.e. ordinary
Kalman tuning without any kind of adaptation (choose R and Q matrices).

3. What subsets of operating points should be chosen? i.e. what operating
points show similar behaviour for the estimates and can therefore be grouped
in the same subset.

4. What should the adaptive weighting (R(t) and Q(t)) be for the different
subsets?

5. The implementation of the UKF and EKF should be robust, what can be
made to increase the stability of the systems?



Chapter 2

Earlier Work

A brief description of earlier work will be presented in this Chapter, such as the
engine model and efforts to improve it.

2.1 Model of Diesel Engine

The studied model is a six cylinder diesel engine model with intake throttle, VGT
and EGR, made by Johan Wahlström and presented in [18].

2.1.1 Short description:

The engine model is a mean value model, from actuator input to system output,
with the objective to describe the dynamics of the intercooler pressure, manifold
pressures, turbocharger and EGR. An illustration of the model can be viewed in
Figure 2.1.
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Figure 2.1. Schematic of the diesel engine model [18] with intake manifold throttle,
EGR, and VGT, showing model states (pim, pem, pic, ωt, and Tem), control inputs (uegr,
uvgt, uδ, and uth), parametrization input (ne), and flows between the different compo-
nents (Wc, Wth, Wegr, Wei, Weo, and Wt). Rectangles with rounded corners represent
control volumes.

2.1.2 The model in state space form:

The model has the following states: intercooler, intake manifold and exhaust man-
ifold pressures (pic, pim, pem), oxygen mass fraction in the intake and exhaust
manifold (XOim, XOem), exhaust manifold temperature (Tem) and turbocharger
speed (ωt). That is,

x = (pic, pim, pem, Tem, XOim, XOem, ωt)T , (2.1)
ẋ = f(x, u, ne), (2.2)

where ne is a parametrization input and u is the actuator position vector. In
Equation 2.3 ẋ is presented followed by a measurement presentation in 2.4.



2.1 Model of Diesel Engine 7

ṗim = fpim

(
pim, pem, pic, Tem, uδ, uegr, uth, ne

)
ṗem = fpem

(
pim, pem, ωt, Tem, uδ, uegr, uvgt, ne

)
ṗic = fpic

(
pim, pic, ωt, uth

)
ω̇t = fωt

(
pem, pic, ωt, Tem, uvgt

)
Ṫem = fTem

(
pim, pem, ωt, Tem, uδ, uegr, uvgt, ne

)
ẊOem = fXOem

(
pem, ωt, Tem, uegr, uvgt,

)
ẊOim = fXOem

(
pim, ωt, Tem, uegr, uvgt,

)
(2.3)

y1 = pim (2.4a)
y2 = pem (2.4b)
y3 = pic (2.4c)
y4 = ωt (2.4d)
y5 = Wc

(
pic, ωt

)
(2.4e)

Appendix B contains a summary of the model equations while a complete
description is found in [18].

2.1.3 Model Evaluation:

The model has been validated against measurements from the World Harmonized
Transient Cycle (WHTC), [14]. During the engine simulation of the WHTC, EGR
is not active. In Figure 2.2, one can observe a simulation based on data with
active EGR and the result differ from the measurements. Opened V GT , fast
changes in throttle position and high amount of injected fuel affect the predictions
negative. This indicates that the model predicts the states poorly during these
circumstances. The weaknesses of the model will be explained more thorough in
Chapter 5.
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Figure 2.2. Plots of the model based estimates of pressures and turbine speed.

2.2 EKF of ODE and DAE models
Efforts have been made to improve the model based estimates and to decrease
the computational complexity of the EKF. In Höckerdal et al. [8], the Ordinary
Differential Equation (ODE) of the model is compared to the ODE transformed
into a Differential Algebraic Equation (DAE). Both model outputs are filtered
with the Extended Kalman Filter (EKF) and the DAE model is shown to give
better estimation performance with less computational effort. The DAE model is
also shown to be more robust than the ODE model, hence the DAE model is used
in this thesis.



Chapter 3

Methods and stability: EKF
vs UKF

In this chapter the theory behind efforts to improve the model based estimates is
explained. The implementations of the EKF and UKF are presented as well as
different discretisation methods used in the implementations.

3.1 EKF
The Kalman Filter was first presented by Rudolf E. Kalman in 1960 [11]. The
purpose of the Kalman Filter is to minimize the covariance of the estimation
error. The Kalman Filter was originally developed for linear models, but later
developed to also be suitable for non linear models. The Extended Kalman Filter
(EKF) is the most used filter for non linear models and is used in various fields,
e.g. for chemical engineering processes, see [12]. A thorough presentation of the
Kalman Filter and nonlinear extensions can be found in [16]. An overview of the
EKF is shown in Figure 3.1.

3.1.1 EKF Theory
In the Extended Kalman Filter a linearisation of the non-linear model is made
around the best state estimate available, i.e. the latest estimate, the Kalman
equations are then applied to compute a new estimate. The differential equations
are, for this implementation, solved numerically by using the Classical Runge
Kutta, Backward Euler or Forward Euler method. The EKF use noise covariance
matrices R and Q as a priority between trusting the model and the measurements.
The EKF is presented more detailed in [6, 16].

EKF of DAE

In Höckerdal et al. [8] the ODE engine model is transformed into a DAE model.
This is done by approximating the pressure change over the intercooler as constant.

9
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Figure 3.1. EKF overview.

This results in a DAE model where the pressure in the intercooler pic is an algebraic
variable. The DAE is solved according to the description in Becerra et al. [17],
which is similar to an EKF algorithm of an ODE with an additional update for the
intercooler pressure pic. Due to the computational and stability benefits shown
in höckerdal et al. [8] the DAE model is used in this thesis. The DAE model is
described in the following way,

ẋ = f(x, z, u, ne),
0 = g(x, z, u, ne),
y = h(x, z, u),

where x and z are the differential and algebraic variables. Since only the dynamic
states are included in the EKF calculations the estimation quality of the algebraic
states is not used while calculating the Kalman gain. This is solved by differentiat-
ing the linearized algebraic subsystem and including them in the EKF algorithm,
see [12] and Equations 3.1 and 3.2.

ẋ = Atx+Btz
0 = Ctx+Dtz

⇒ ẋ = Atx+Btz,
ż = −D−1

t Ctẋ,
(3.1)

where (
At Bt
Ct Dt

)
=

(
δf
δx

δf
δz

δg
δx

δg
δz

)
. (3.2)

The algorithm for EKF based on DAE is shown in Algorithm 1 and in [8]. It uses
the Forward Euler method to discretize the model, see Equation 3.3. The method
is explained in Section 3.3.1.
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Algorithm 1: EKF Algorithm of DAE

1. Initiate the filter by approximating the following:

x̂0|−1 = x0 and P0|−1 = P0,

where x0 is the initial state estimate and P0 the covariance matrix of x0.
Let t = 0.

2. Measurement Update:

x̂t|t = x̂t|t−1 + K̄t(yt − h(x̂t|t−1),
0 = g(x̂t|t, ẑt|t, ut|t, ne) ⇒ ẑt|t,

Pt|t = (I −KtHt)Pt|t−1,

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1,

where the implication arrow indicates that ẑt|t has been obtained by
solving the equation g = 0 and H is the gradient hx(x̂t|t−1) (numerically
computed).

3. Time Update:

x̂t+1|t = x̂t|t + Tsf(x̂t|t, ẑt|t, ut|t) (3.3)
0 = g(x̂t|t, ẑt|t, ut|t, ne) ⇒ ẑt+1|t

P̄t+1|t = Āt|tPt|tĀ
T
t|t + Ḡt|tQ̄tḠ

T
t|t,

where
Āt|t = I + Ts

(
At|t Bt|t

D−1
t|t Ct|tAt|t D−1

t|t Ct|tBt|t

)
,

Ts denotes the discretization step length, and

Ḡt|t =
(

I
−D−1

t|t Ct|t

)
4. Let t := t+ 1 and repeat from 2.



12 Methods and stability: EKF vs UKF

3.2 Unscented Kalman Filter
The UKF was introduced by Julier et al. in [9] year 1995 in an attempt to improve
Kalman filtering for non linear models. Several papers have presented results where
UKF outperforms EKF e.g [3] and [2].

3.2.1 Differences between UKF and EKF
The EKF is based on linearisation of nonlinear systems and might perform poorly
for highly nonlinear systems. The EKF also has to compute Gradients (Jacobian
matrices), that may lead to heavy computations and numerical inaccuracy. In the
UKF no gradients are required and therefore some of the EKF’s disadvantages are
avoided. The UKF propagate the noise through the actual nonlinear functions (see
Unscented Transform in Section 3.2.2) and avoids the flaws of linear approxima-
tion. These benefits of the UKF encouraged an investigation of the UKF’s ability
to improve the state estimates compared to the EKF.

3.2.2 Unscented Transform
The fundamental idea of the UKF is to use a set of carefully chosen points (sigma
points) to describe the estimation error statistics and propagate them through the
nonlinear functions. This is done to capture the effect of model nonlinearities on
the estimation error statistics during estimation. This transform of the distribution
is called the Unscented Transform. A description of the selection of sigma points
and the unscented transform of a distribution x follows, see Equations 3.4 to 3.9.

Distribution of x: x(i) ∼ N(µx, P ), i = 1, ..., N. (3.4)
Select sigma points: x(0) = µx, x(±i) = µx ±

√
nx + λukfσiui.(3.5)

Singular Value Decomposition (SVD) of the covariance matrix P , see [7], is used
to calculate ui and σi.

P = UΣUT =
nx∑
i=1

σ2
i uiu

T
i . (3.6)

The sigma points are mapped through the non-linear system yi = g(xi) and the
resulting mean and covariance can be calculated with:

ŷ =
nx∑

i=−nx

ω(i)y(i), (3.7)

Py =
nx∑

i=−nx

ω(i)(y(i) − ŷ)(y(i) − ŷ)T

+ (1− α2 + β)(y(0) − ŷ)(y(0) − ŷ)T , (3.8)

where ω(i) are weights and can be chosen in various ways, for instance:

ω(0) = λukf

nx + λukf
, ω(±i) = 1

2(nx + λukf ) . (3.9)
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Figure 3.2. Mean and Covariance estimation for EKF (linearisation) and UKF (Un-
scented Transform), picture is from [13]

Figure 3.2 show how the sigma points are mapped through the non-linear system
g(x) and comparing its estimation of state statistics with a linearised estimation
of state statistics and with the actual state statistics. The parameters in Table
3.1, first presented by Wan et al. [1], are used in the UKF, where α is the primary
scaling factor for the distance between the sigma points and x(0), and β a distri-
bution compensation taking care of higher order statistic effects. Other choices of
parameters are presented in [10].

Table 3.1. UKF Parameters

Parameter value
α 10−3

β 2
λukf α2nx − nx√

nx + λukf 10−3√nx



14 Methods and stability: EKF vs UKF

Algorithm 2: UKF Algorithm

1. Initiate the states and the state covariance with initial condition:

x̂0|−1 = x0 and P0|−1 = P0,

where x0 is the initial state estimate and P0 the covariance matrix of x0.
Let t = 0.

2. Choose N sigma points (χiet) for the augmented state vector:

χet =
(
xt
et

)
∼ N

((
x̂t|t−1

0

)
,

(
Pt|t−1 0

0 Rt

))
.

N = 2nχet + 1, where nχet is the order of the augmented state vector χiet
and et measurement noise.

3. Measurement update:

x̂t|t = x̂t|t−1 + P xyt|t−1P
−yy
t|t−1(yt − ŷt),

Pt|t = Pt|t−1 − P xyt|t−1P
−yy
t|t−1P

xyT
t|t−1,

where

y
(i)
t = g(x(i)

t|t−1, e
(i)
t ),

ŷt =
N∑
i=0

ω
(i)
m,ty

(i)
t ,

P yyt|t−1 =
N∑
i=0

ω
(i)
c,t(y

(i)
t − ŷt)(y

(i)
t − ŷt)T +

+(1− α2 + β)(y(0) − ŷ)(y(0) − ŷ)T ,

P xyt|t−1 =
N∑
i=0

ω
(i)
c,t(x

(i)
t|t−1 − x̂t|t−1)(y(i)

t − ŷt)T .

4. Choose N sigma points(χiwt) for the augmented state vector:

χwt =
(

xt
wt

)
∼ N

((
x̂t|t
0

)
,

(
Pt|t 0
0 Qt

))
.

N = 2nχwt + 1, where nχwt is the order of the augmented state vector χiwtt
and wt process noise.

5. Time update:

x̂t|t−1 =
N∑
i=0

ω
(i)
t x

(i)
t|t−1,

Pt+1|t =
N∑
i=0

ω
(i)
t (x(i)

t|t−1 − x̂t|t−1)(x(i)
t|t−1 − x̂t|t−1)T ,
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where

x
(i)
t|t−1 = f(x(i)

t−1|t−1, w
(i)
t ). (3.10)

6. Let t = t+ 1 and repeat from 2.

3.3 Discretistaion Methods
Three different discretisation methods will be evaluated in this thesis. The disc-
tretisation is used when the state x̂t+1|t is predicted, i.e. in Equation 3.3 and 3.10.
The Forward Euler (FE) method and Backward Euler (BE) method are treated
in Höckerdal et al. [8]. The third alternative investigated is the classical Runge
Kutta (RK) method.

3.3.1 Forward Euler
The Forward Euler method is simple, explicit and easy to implement. It uses the
current estimate x̂t|t, its derivative f(x̂t|t, u, ne) and the step length 4T to predict
the next estimate, see Equation 3.11. The stability of the FE method might be
lost if the step length is too large.

ẋ = f(x̂t|t, u, ne) ≈
x̂t+1|t − x̂t|t
4T

⇒ x̂t+1|t ≈ x̂t|t +4Tf(x̂t|t, u, ne). (3.11)

3.3.2 Backward Euler
The Backward Euler method is, unlike the FE method, implicit. It is stable also
for larger step lengths but is computationally more demanding since a number of
iterations must executed to obtain the solution. An expression of the BE method
is shown in Equation 3.12.

ẋ = f(x̂t+1|t, u, ne) ≈
x̂t+1|t − x̂t|t
4T

⇒ x̂t+1|t ≈ x̂t|t +4Tf(x̂t+1|t, u, ne). (3.12)

3.3.3 classical Runge Kutta
Due to the slow execution of the BE method and less stable FE method, the
Runge Kutta (RK) method is investigated. With the RK method, the inverse
matrix calculation of the BE method is avoided and the result corresponds to a
higher order Taylor expansion than in the FE method. The Runge Kutta method
was developed by M.W. Kutta and C.Runge around 1900 and is presented in
Algorithm 3.
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Algorithm 3: Runge Kutta Algorithm
1. Consider the ordinary differential equation f and the initial state x0:

ẋ = f(t, x)
x(0) = x0,

2. Use a weighted average of approximated values of f(t, x) at different times:

tn+1 = tn + h

xn+1 = xn + (1/6)(k1 + 2k2 + 2k3 + k4),

where,

k1 = hf(tn, x),
k2 = hf(tn + h/2, x+ k1/2),
k3 = hf(tn + h/2, x+ k2/2),
k4 = hf(tn + h, x+ k3).

3.4 Model and Filter stability
The EKF and especially the UKF are not very robust in their original implemen-
tations. The model suffer from big differences in fast and slow dynamics which can
make the system diverge in some operating points. This has been compensated for
in the DAE model by approximating the fast dynamics (intercooler pressure) with
instantaneous relations [8]. This remodelling has made the model more robust
but with the result of less accurate state estimates during changes in the throttle
control signal. This is because changes in throttle position will create, for the
DAE model, a direct air mass flow change into the intercooler with a subsequent
pressure change over the intercooler. The turbine speed sensor can not detect
turbine rotational speed under 2094 rad/sec, i.e. the sensor reading is 0 for speeds
below 2094 rad/s. This drop can cause the filters to diverge. A way to avoid
these divergences is to exclusively trust the model when the turbine rotational
speed is below 2094 rad/sec. Finally the covariance matrices should be symmetric
but because of numerical inaccuracy some matrix elements can differ a bit which
can cause instability. In order to ensure symmetric covariance matrices and make
the system more stable non symmetric covariance matrices are eliminated by the
operation: P = P+PT

2 .



Chapter 4

Validation Methods

The validations of the efforts to improve the model based estimates, is explained
in this chapter. Different validation measures and validation quantities will be
presented and discussed. The validation data comes from an inline 6 cylinder
engine with EGR, VGT and intake throttle. The data is from a drive during
the winter tests in Arjeplog 2011. The following control signals: Engine speed,
Injected fuel, EGR, Intake Throttle and VGT are used for all validations and are
plotted in Figure 4.1.

4.1 Bus validation

The engine model in [18] is adjusted for a diesel engine for trucks. The only vehicle
with the right set-up of logged signals (control signals and sensor data) with the
right engine that could be found in Scanias data bank, was a bus. The bus engine
is the same as the modelled engine but with the difference of a bigger control
volume for the intake manifold on the bus. This has been compensated for in the
model by increasing Vim from 0.0351 m3 to 0.042 m3, see Appendix B.

4.2 Validation Measures

Two different validation measures will be used, Root Mean Square Error (RMSE)
and estimation error histograms, where the latter is used as an estimate of the
estimation error statistics.

17
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Figure 4.1. Plots of the control signals during the evaluation interval 1800-1900 s.

4.2.1 Root Mean Square Error

The Root Mean Square Error (RMSE) is the square root of the variance of the
error, see [5]. It indicates how close the estimated values are to the measured
values. Since the RMSE is the square root of the variance, it can be interpreted
as the standard deviation of what the observer can not describe. Errors will be
presented in plots and analysed by studying the RMSE, calculation of RMSE is
defined by Equation 4.1.

√√√√ N∑
n=1

(yest(n)− ymeas(n))2

N
, (4.1)

where N is the number of samples, ymeas the sensor measurements and yest the
estimates.
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4.2.2 Estimation Error Histogram

The histogram of the estimation errors will be analysed in order to investigate the
statistics of the estimation error (yest(n)− ymeas(n)).

4.3 Validation Quantities

The Kalman filtered estimates will be validated against three different sensors, air
mass flow Wc, air to fuel ratio λ, and EGR-fraction. The sensor for the air mass
flow before the compressor Wc is considered the most accurate sensor and will
therefore be used as the main validator. When an estimate is validated against a
sensor the sensor data is not utilised in the calculations of the estimate, i.e. the
sensor is not utilised for feedback in the EKF/UKF implementation.

4.3.1 λ (Air to Fuel Ratio)

The air to fuel ratio is defined by: λ = (A/F )
(A/F )s where A is the air mass flow into

the engine, F the fuel mass flow into the engine and (A/F )s the stoichiometric
air to fuel ratio which for diesel is 14.6. The ideal dataset to validate the estimate
of λ against, would be λ from raw-sensor data of airmass flow (A) together with
the given control input fuel mass flow and the stoichiometric air-to-fuel ratio.
Unfortunately such data is seldom measured or logged due to the difficulties in
measuring the airmass flow accurately. Instead the estimated λ will be validated
against a partly modelled λ, described in Appendix B. Since high λ (λ ' 2) does
not lead to critical levels of smoke, it is more important to achieve good estimates
when λ is low and the risk of smoke generation increase. When validating the
estimates of λ the RMSE of λ−1 is used to better capture the errors of small λ,
where the λ−1 estimates higher than 0.5 are of most interest. λ−1 is also know as
the equivalence ratio φ and is shown in Figure 4.2.

4.3.2 EGR-fraction

EGR is a way to reduce NOx by recirculating exhaust gas back into the engine
cylinders. NOx is created when oxygen and nitrogen reacts in the combustion
chamber under high pressure and temperature. The exhaust gas will, when recir-
culated, act as an inert gas, (non-reactive gas), during the combustion and lower
the combustion temperature, this makes it possible to reduce the NOx substan-
tially. A validation of EGR-fraction is done to see if the estimates can keep a good
level when tuning the Wc estimate. Scanias virtual sensor of EGR-fraction from
the validation data is presented in Figure 4.2 and the calculations of the estimated
EGR in Appendix B.
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Figure 4.2. Plots of measured λ−1 and EGR-fraction

4.3.3 Air mass flow
Since the λ and EGR-fraction estimates are validated against virtual sensors, which
are partly modelled, the validations are actually comparisons between different
models. Another validation is therefore justified. Wc is the air mass flow before
the compressor and is used to calculate the air mass flow into the engine (Wei),
which is used in calculations of λ and EGR- fraction, see Equation 4.2 and Equation
4.3. Since Wc is closely connected to λ and EGR-fraction and raw Wc sensor data
is available, a validation between the estimated Wc and the measured Wc gives a
better grading of the estimates. A plot of the measured Wc from the validation
data can be seen in Figure 4.3

λ = WeiXOim

Wf (AF )sXOc

, (4.2)

xegr = Wegr

Wei
, (4.3)

For a full description of Equations 4.2 and 4.3 see Appendix B.
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Figure 4.3. Plot of measured Wc.





Chapter 5

Model weaknesses

The Model output are analysed in this chapter as well as EKF estimates where
the covariance of the measurement errors are set to values close to zero, i.e. a
simulation with a high feedback gain from the measurements of pic, pim, pem
and ωt. The estimates from this EKF will be referred to as the high gain EKF
estimates. An evaluation of the model output along with the high gain EKF
estimates is presented in this Chapter using the validation methods in Chapter 4.
The evaluation is performed with the intention to illuminate the weaknesses of the
model and of completely trusting the measurements (high gain EKF) in order to
show the necessity of Kalman filtering.

5.1 Model output of pic, pim, pem and ωt

If simulating the model without taking feedback from measured signals into consid-
eration, the estimates are poor. Estimates for pic, pim, pem and ωt are compared
to the corresponding measurements, see Figure 5.1. The estimates are only fairly
good for short intervals, e.g. 1830-1835 s and around 1857 s, during these in-
tervals EGR is low (uegr . 20%), the throttle is wide open (uegr = 100%), the
injected fuel is low (δ . 75mg/str) and the VGT is closed or partially opened
(uV GT . 50%). The model has a hard time describing the dynamics of the system
when the control signals are not in the mentioned intervals.

23
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Figure 5.1. Plots of the model output of pressures and turbine speed.
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Figure 5.2. Plots of model output of air mass flow Wc.

5.2 Model output of Wc

The Wc estimates are just as the other state estimates overall poor and only close
to the measurements during short intervals, see Figure 5.2. The RMSE of Wc is
shown in Table 5.1 and will later in this chapter be compared to RMSE for the
Kalman filtered estimates of Wc.

5.3 Histogram of model output, Wc, estimation
error

The histogram forWc error in Figure 5.3 show that the two highest bars are placed
in the negative error interval. This indicate that the estimates of Wc are often
too big compared to the measurement. Since no clear Gaussian appearance are
displayed its not just measurement noise that produce the errors but model errors
contribute as well.
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Table 5.1. RMSE of the model output

Error type Simulation of model
RMSE for Wc 0.0347
RMSE for λ−1 0.0981
RMSE for EGR 0.0914
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Figure 5.3. Histogram of Wc-error calculated from model output.
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Figure 5.4. Plots of model output of λ−1 and EGR-fraction.

5.4 Model output of λ−1 and EGR- fraction

Since the state estimates are poor the λ−1 and EGR fraction end up with similar
results because they are dependent of the states. The results are illustrated in
Figure 5.4 and Table 5.1.
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Figure 5.5. Plots of the high gain EKF estimates of pressures and turbine speed.

5.5 High gain EKF estimates of pic, pim, pem and
ωt.

Since measurements are highly prioritised here the estimates that correspond to
the measured signals will be almost identical to the measured signals. This is also
the case here and can be seen in Figure 5.5. The only time an estimate clearly
deviates from its measured signal is for the ωt around 1830 s. This is because the
sensor can not measure signals under 2094 rad/sec, this was described in Section
3.4.
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Figure 5.6. Plots of high gain EKF estimates of air mass flow Wc

5.6 High gain EKF estimates of Wc

Figure 5.6 and Table 5.2 show that the Wc estimates suffer considerably when
trusting the measurements completely. The estimate of Wc is actually worse than
the model estimates. Since the estimates in Section 5.5 follow the measurements
well, the modelled transition from those states to Wc are not particularly good.
Around 1830 s the Wc estimates are improved during a short interval, this is
because the turbine speed is below 2094 rad/sec see Figure 5.5 and as explained
in Section 3.4 trusting the model is chosen here due to stability issues. The fact
that when trusting the model gives better estimates of Wc than when trusting the
measurements at least for this short interval is interesting and will be used when
tuning EKF/UKF later on. Around 1803 s and 1855 s fast throttle closing and
opening occurs, see Figure 4.1, which result in improved high gain EKF estimates
ofWc during the closing but when the throttle opens it exaggerates theWc estimate
and the offset proceeds.
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Figure 5.7. Histogram of Wc error calculated from high gain EKF estimates

5.7 Histogram of high gain EKF, Wc, estimation
error

The histogram of theWc error based on measured pim, pem, pic and ωt shows a left
shifted and close to gaussian distribution, see Figure 5.7. This can be explained by
the measurements ability to capture the dynamics and the offset shown in Figure
5.6.

5.8 High gain EKF estimates of λ−1 and EGR-
fraction

Despite that the Wc estimate is worse than the model output of Wc, both the
λ−1 and EGR-fraction estimates are improved compared to the model output, see
Figure 5.8 and Table 5.2. This indicate that the model does a better job describing
the transition from the measured states to λ−1 and EGR- fraction than it did for
the Wc, which is of interest when adapting the EKF in Section 7.3.
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Table 5.2. RMSE of the high gain EKF estimates

Error type Simulation of model
RMSE for Wc 0.0739
RMSE for λ−1 0.0361
RMSE for EGR 0.0652
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Figure 5.8. Plots of high gain EKF estimates of λ−1 and EGR-fraction.
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5.9 Necessity of Kalman filtering
From this section it is established that the model output and the high gain EKF
estimates are individually unable to describe the air mass flow before the compres-
sorWc. In Section 6 it is shown that together these two can improve the estimates
significantly through Kalman filtering. Results from this chapter also reveal when
the model and high gain EKF estimates are weak and therefore give input of how
to adapt the filters in different operating points and how to divide these operating
points into certain subsets, more about this in Chapter 7.



Chapter 6

Results: EKF vs UKF

The result from weighting the model output and system measurements through
Kalman filtering will be reviewed in this chapter. EKF and UKF have different
qualities and it will be determined which filter that can improve the estimates the
most. Important factors in this filter comparison are accuracy in estimating Wc,
computational complexity and robustness. The filters are tuned to give as good
Wc estimates as possible but results for the other estimates are also of interest and
therefore also presented in this Section.

6.1 EKF vs UKF: estimates of pic, pim, pem and ωt

When using the EKF and UKF, feedback from measurements of pic, pim, pem, ωt
have been utilised as for the EKF in Section 5. The estimates from both EKF and
UKF are close to the measurements but small offsets are allowed to improve the
Wc estimates. Results of the EKF estimates are shown in Figure 6.1 and of the
UKF estimates in Figure 6.2.

6.2 EKF vs UKF: stability and computational com-
plexity

Table 6.1 shows that the EKF is more than twice as fast as the UKF when using the
RK discretisation. This is because the UKF has to propagate all its sigma points
through f(x, u, ne) in order to predict the states via the discretisation method
(see Equation 3.13 in Chapter 3), which means that the UKF has to do as many
predictions as it has sigma points in every time step, i.e. 4 ∗ nx + 1 evaluations of
f(x, u, ne). The EKF only has to do one prediction in every time step but have
on the other hand demanding Jacobian calculations, requires 2 ∗ nx evaluations
of f(x, u, ne). That the EKF is faster than the UKF is based on the amount of
evaluations of f(x, u, ne) that has to be done, where the UKF has to do approx-
imately twice as many as the EKF. The EKF manage to keep stability for larger
time steps than the UKF see Table 6.1, this most likely originates from the fact

33
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Figure 6.1. Plots of the pressure and turbine speed estimates from EKF.
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Figure 6.2. Plots of the pressure and turbine speed estimates from UKF.
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Table 6.1. The upper test quantity is simulation time for interval 1800-1900 s with a
sampling time of 0.01 s and the lower test quantity is sampling time when instability
occurs for EKF and UKF using RK discretisation

Test quantity EKF UKF
Simulation time [s] 113.4 245.3

Instability sampling time [s] 0.030 0.012

Table 6.2. RMSE of Wc, λ−1 and EGR-fraction for EKF and UKF

Error type EKF UKF
RMSE for Wc 0.0110 0.0117
RMSE for λ−1 0.0279 0.0348
RMSE for EGR 0.0380 0.0489

that the UKF uses the ODE model and the EKF uses the DAE model see 2.2.
The presented results show that the EKF not only is faster, it is also more robust
and therefore preferable during these circumstances.

6.3 EKF vs UKF: Wc estimates

The Wc estimates for the UKF and EKF are shown in Figure 6.3. The estimates
are similar but the UKF usually estimate the peaks too high and the EKF a bit
too low. Overall the EKF is closer to the measured Wc which also is revealed by
the RMSE for the estimates illustrated in Table 6.2. If comparing the estimates
from EKF and UKF with the earlier presented estimates from Section 5 a clear
improvement for both EKF and UKF is seen. The two histograms in Figures
6.4 and 6.5 show more Gaussian characteristics than the earlier histograms in
Figures 5.3 and 5.7. The histograms are also located around the ”zero” interval
which demonstrate that the EKF and UKF provide estimates of Wc closer to the
measured values and with a lower variance of the estimation error. The EKF have
more errors in the negative error interval and the UKF have more errors in the
positive error interval which indicate that the EKFs overall estimates are a bit to
low and that the UKFs estimates are a bit to high.
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Figure 6.3. Plots of air mass flow Wc estimates from EKF and UKF.
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Figure 6.4. Histogram of Wc-error from EKF.
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Figure 6.5. Histogram of Wc-error from UKF.
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6.4 EKF vs UKF: Results for λ−1 and EGR frac-
tion

For the λ−1 and EGR fraction estimates the UKF and EKF show similar results
but the EKF is slightly better, compare Figure 6.7 with Figure 6.6 and see Ta-
ble 6.2. Once again both UKF and EKF can display better estimates than the
estimates presented in Section 5.
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Figure 6.6. Plots of λ−1 and EGR-fraction estimates from EKF.
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Figure 6.7. Plots of λ−1, EGR-fraction estimates from UKF.

6.5 Kalman choise for adaptation
This chapter has revealed that the EKF is more appropriate for our model in
almost every aspect, it is faster, gives better Wc estimates and is more stable
than the UKF. The fact that the EKF is faster makes the tuning and adaptation
easier since long simulation times are avoided. The stability issue is also of high
importance for adaptation since changes of the noise covariances during simulation
can make the estimates change quickly and therefore increase the risk of divergence.
These reasons make the EKF preferable for adaptation and is therefore chosen to
be augmented with an operating point dependent model and measurement noise,
in Chapter 7.





Chapter 7

Adaptation of EKF

An adaptive filter can be obtained by choosing adaptive covariance matrices Q(t)
and R(t) for the process and measurement noises w and e. Depending on the
operating point, different R(t) and Q(t) are chosen that better describe the model
and measurement quality under certain conditions. The relation between R(t) and
Q(t) determines whether the measured signals or the model, should be trusted.
By choosing the diagonal elements small for R(t), i.e. small noise variances for the
measured signals, the measured signals are considered accurate, while choosing
them big implies the opposite. For Q(t) the same reasoning is applied but for the
model. Dividing all possible operating points to some subsets are necessary to
make the adaptations possible.

7.1 Procedure
The use of EGR, VGT, injected fuel and Throttle has major impact on the model
output and performance, therefore different combinations of these control signals
have been chosen as subsets. Some control signals (VGT and EGR) are divided
into two or even three subsets since the accuracy of the model output and high gain
EKF estimates highly depend on the level of these control signals. The subsets
are prioritised according to the order in Table 7.1, i.e. if two subsets are active,
the one with the highest priority will be used. The subsets have been assigned
their priority with consideration of the influence they have on the Wc estimates.
The subsets are established through observing control signal intervals where the
model output and/or high gain EKF estimates are poor, and trying to find control
signal similarities during these intervals. In Figure 7.1 the control signals during
a fast throttle opening is presented. In Figure 7.2 it is observed that high gain
EKF estimates and model output diverge, a fast throttle opening is therefore an
appropriate subset.
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Figure 7.1. Plots of control signals during a fast throttle opening between 1651.5 s and
1652 s
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The following subsets are used for the adaptive filtration.

Throttled subset Fast throttle opening (Throttle control signal derivative is
larger than 100, uth(t)−uth(t−1)

Ts
> 100).

High Fuel subset A lot of fuel is injected (Injected fuel is larger than 150 [mg/str],
δ > 150 [mg/str]).

EGR subset EGR is active but not too high (EGR- control signal: 75 % ≥ uegr>
7 %).

High EGR subset EGR is active and high (EGR- control signal is: 95 % ≥
uegr> 75 %).

Top EGR subset EGR is active and very high (EGR- control signal is: uegr >
95 %).

VGT subset VGT is partially opened (VGT- control signal is: 50 ≥ uvgt > 1
%).

High VGT subset VGT is opened (VGT- control signal is: uvgt > 50 %).

”Normal” subset None of the other subsets are active.

When the subsets are established, the next task is to choose proper R(t) and Q(t)
for these subsets. As mentioned earlier Figure 7.2 shows a throttle subset, the
throttle is opened fast, and as the plot illustrated the model output of Wc capture
the changes better than the high gain EKF estimates which exaggerate the change
in Wc. Hence a larger trust in the model is chosen during this subset, see R1 and
Q1. The state that is closest connected Wc is ωt which can be seen in Equation
7.1, and more detailed in Appendix B. It is therefore important to find good noise
variances for the measurement and state prediction of ωt and the tuning of ωt:s
noise variances has been highly valued. An example is if the ωt estimate is close
to the measured signal during the EGR subsets then the Wc estimate is poor. Not
trusting the measured ωt signal during EGR subsets is thus chosen.

Wc = pambπR
3
cωtΦc

(RaTamb)
(7.1)

Ways of determining suitable R(t) and Q(t) by observing model output and high
gain EKF estimates are not always possible so a lot of theR(t) andQ(t) covariances
are determined through trial and error. The adaptation covariances for different
subsets are presented in Table 7.1 and the complete covariances are presented in
Appendix A.



7.2 Smooth Transition 47

Table 7.1. Adaption settings

Subset R- settings Q-settings Priority
Throttled R1 Q1 1
High Fuel R2 Q2 2
Top EGR R3 Q3 3
High EGR R4 Q4 4

EGR R5 Q5 5
High VGT R6 Q6 6

VGT R7 Q7 7
Normal R8 Q8 8

7.2 Smooth Transition

Hard transitions between subsets can cause unwanted jumps in the state estimates.
A smoother transition between subsets has therefore been developed by making an
interpolation between the current noise covariances Rt and Qt and the requested
noise covariances Rrequested and Qrequested. Figure 7.3 show the difference between
using smooth transitions and not. Clear differences are seen around 1857[s] and
1858[s] where the smoother transition give a more desirable result. Algorithm 4
shows how a smooth transition is performed, one iteration is performed each time
sample and the iterations will continue until a new subset of operating points is
reached.
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Algorithm 4: Smoothing Algorithm

1. If a transition between two subsets of operating points is made, set

QRequested = QNewSubset,

RRequested = RNewSubset.

2. Calculate the difference between the present covariance matrices and the
requested ones.

4Qt = Qrequested −Qt−1,

4Rt = Rrequested −Rt−1.

3. Update the covariance matrices.

Qt = Qt−1 + 4Q
Sfactor

,

Rt = Rt−1 + 4R
Sfactor

,

where Qt and Rt are the covariances used by the Kalman filter and the
Sfactor is the smoothing factor, set to 15 for this implementation, that will
cause a smooth transition to the new covariance matrices.

4. Let t := t+ 1 and if entering a new subset repeat from 1 else repeat from 2.
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Figure 7.3. Plots of Wc estimates with and without smooth transition.

7.3 Results: Adaptive EKF

The efforts to improve the EKF by using adaptive covariances for measurement
and model noise are presented in this section. A comparison to the regular EKF
will be shown including improvements and error analysis.

7.3.1 Adaptive EKF estimates of pic, pim, pem and ωt

The results of the measurable state estimates from the adaptive EKF are illustrated
in Figure 7.4. The estimates are similar to the ones from the EKF in Figure 6.1
but with the difference that the turbine speed (ωt) differ from the measured signal
more clearly for some intervals. During these intervals a lot of EGR is used, see
control signals in Figure 4.1. A turbine speed estimate (ωt) close to the measured
signal during a lot of EGR tends to give bad air mass flow estimates (Wc). The
Adaptive EKF compensate for high EGR by not trusting the measured turbine
speed in these intervals, hence the inadequacy in turbine speed estimates.
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Figure 7.4. Plots of the pressures and engine speed from Adaptiv EKF.

7.3.2 Adaptive EKF estimates of Wc

By judging from Figure 7.5 and Table 7.2 the Adaptiv EKF manage to estimate
Wc better than the EKF. If comparing the Adaptive EKF and the EKF, a decrease
with approximately 23 % in RMSE is shown while using the Classical Runge Kutta
method. The adaptive EKF gets its biggest benefits during high fuel injections
which can be seen around the three highest peaks in Figure 7.5 compared to the
corresponding peaks in Figure 6.3. The reason for this distinction is that the
”regular” EKF has to prioritise the most common subsets of operating points in
order to get as good overall estimates as possible. The Adaptive EKF on the other
hand does not have that limitation and can adapt for the not so common subsets
of operating points.
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Table 7.2. RMSE comparison of EKF and Adaptive EKF.

Model Model output High gain EKF EKF Adaptiv EKF
RMSE for Wc 0.0347 0.0739 0.0110 0.0085
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Figure 7.5. Plots of air mass flow from EKF and Adaptiv EKF.

7.3.3 Histogram of Wc estimation error

The error for estimated Wc is illustrated in a histogram in Figure 7.6. A clear
peak is located around the zero error interval with about evenly high bars next
to it, which point out a low error for Wc whitout offsets and an improvement in
comparison to the estimation error of the regular EKF.
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Table 7.3. RMSE of λ−1 and EGR-fraction from Adaptive EKF

Error type Model output High gain EKF EKF Adaptive EKF
RMSE for λ−1 0.0981 0.0361 0.0279 0.0381
RMSE for EGR 0.0914 0.0652 0.0380 0.0403
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Figure 7.6. Histogram of Wc-error from adaptive EKF.

7.3.4 Adaptive EKF estimates of λ−1 and EGR fraction

The EKF is adapted to trust the model in some operating points to be able to
improve the estimates of Wc. Unfortunately this result in worse estimates for λ−1

and EGR- fraction, since the model fail in describing those. To see the differences
between EKF and Adaptive EKF, see Table 7.3 and compare Figure 7.7 with
Figure 6.6.
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Figure 7.7. Plots of λ−1 and EGR-fraction estimates from Adaptive EKF.





Chapter 8

Conclusions and Future
Research

8.1 Conclusions
Estimates from a diesel engine model with intake throttle, VGT and EGR are
improved with help from Kalman filtering, sensors and advanced mathematics.
The improvements are made to investigate the possibility of replacing existing
sensors to cut cost or to acquire additional information for state accuracy. The
improved estimates for the air to fuel ratio λ, Exhaust Gas Recirculation (EGR-
fraction) and air mass flow before the compressor Wc are compared to existing
sensors. The Wc-sensor is considered most accurate and used for validation. A
comparison between the EKF and UKF is made and the UKF is unable to match
the results of the EKF. The EKF is improved further to an Adaptive Extended
Kalman Filter which is proven to give better results than the regular EKF. The
Wc sensor can be replaced by the Adaptive Extended Kalman Filter estimates
with a Root Mean Square Error (RMSE) of 0.0085 kg/s. The Wc estimates are
used when estimating λ and EGR-fraction which result in a RMSE of 0.0403 for
the EGR-fraction and 0.0381 for λ−1, (λ−1 is used to capture the more important
errors when λ is less than 2). The estimates can also be used as a replacement in
case of sensor failure.

8.2 Future Research
Both the ODE and the DAE engine model have advantages, the ODE describe the
dynamics of the intercooler pressure better especially during throttle changes and
the DAE tends to give a more robust system while using it in a Kalman Filter. A
Kalman Filter that switches between these models would therefore be interesting.
A risk is that when switching between models the state estimates might jump
which will be a challenge to avoid.
If having knowledge about the sensors that are used a tuning based on that knowl-

55



56 Conclusions and Future Research

edge can be used for the R covariance matrix (covariance for measurement noise).
If also knowing how the accuracy of the sensors change over time an adaptation
of the R matrix can be used to be able too maintain good estimates although the
sensor data fail in accuracy. Another aspect could be if the diagnosis system in
the engine gave input to the Kalman Filter so it could adapt its R and Q matrices
dependant of that information.
Research have been done to implement a hybrid Kalman Filter consisting of UKF
and EKF [4] called UEKF. The effort is made too reduce the long simulation
times for the UKF but still maintain some of the good qualities from the UKF.
The UEKF use the regular measurement update from the EKF, i.e. it estimates
mean and covariances of the states just as the EKF does during measurement
update. In the time update however the UEKF use the Unscented Transform and
predict the new states just as the UKF does. The covariance is predicted by using
linearisation (from EKF) on all sigma points (from UKF) and then calculating a
mean value of those. Trying this UEKF for the engine model used in this report
could be an interesting investigation.
EKF based on the DAE model has shown improvements to the EKF based on the
ODE model, see Section 2.2. Implementing an UKF based on that DAE model
instead of the ODE model, that is used in this report, would therefore be an
interesting continuation.
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Appendix A

Covariance Matrices

The adapted R and Q matrices are: R1,...,R8 and Q1,...,Q8

R1 = 107 ∗


0.00001 0 0 0

0 0.00001 0 0
0 0 1 0
0 0 0 0.01

 (A.1)

Q1 = 10−7∗


0.00001 0 0 0 0 0

0 0.000000000001 0 0 0 0
0 0 0.000000000001 0 0 0
0 0 0 0.0000000001 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.1


(A.2)

R2 = 108 ∗


0.000001 0 0 0

0 0.000001 0 0
0 0 0.00000001 0
0 0 0 1

 (A.3)

Q2 =


0.0000005 0 0 0 0 0

0 0.00000000000005 0 0 0 0
0 0 0.00000000000005 0 0 0
0 0 0 0.00125 0 0
0 0 0 0 0.005 0
0 0 0 0 0 0.005


(A.4)
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R3 = 105 ∗


0.0010 0 0 0

0 0.0010 0 0
0 0 0.000007 0
0 0 0 1

 (A.5)

Q3 =


0.000001 0 0 0 0 0

0 0.0000000000001 0 0 0 0
0 0 0.0000000000001 0 0 0
0 0 0 0.0025 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01


(A.6)

R4 = 108 ∗


0.000001 0 0 0

0 0.000001 0 0
0 0 0.00000001 0
0 0 0 1

 (A.7)

Q4 =


0.000001 0 0 0 0 0

0 0.0000000000001 0 0 0 0
0 0 0.0000000000001 0 0 0
0 0 0 0.0025 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01


(A.8)

R5 = 108 ∗


0.000001 0 0 0

0 0.000001 0 0
0 0 0.000001 0
0 0 0 1

 (A.9)

Q5 =


0.000001 0 0 0 0 0

0 0.0000000000001 0 0 0 0
0 0 0.0000000000001 0 0 0
0 0 0 0.005 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01


(A.10)
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R6 = 109 ∗


0.0000001 0 0 0

0 0.0000001 0 0
0 0 0.0000000001 0
0 0 0 1

 (A.11)

Q6 =


0.0000001 0 0 0 0 0

0 0.0000000000001 0 0 0 0
0 0 0.0000000000001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.0001


(A.12)

R7 = 109 ∗


0.0000001 0 0 0

0 0.0000001 0 0
0 0 0.0000000001 0
0 0 0 1

 (A.13)

Q7 =


0.0000001 0 0 0 0 0

0 0.0000000000001 0 0 0 0
0 0 0.0000000000001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.0001


(A.14)

R8 = 105 ∗


0.001 0 0 0

0 0.001 0 0
0 0 0.00001 0
0 0 0 1

 (A.15)

Q8 =


0.000001 0 0 0 0 0

0 0.0000000000001 0 0 0 0
0 0 0.0000000000001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01


(A.16)



62 Covariance Matrices

Q and R matrices for UKF.

R =


100 0 0 0
0 100 0 0
0 0 1 0
0 0 0 100

 (A.17)

Q =



0.000001 0 0 0 0 0 0
0 0.0000000000001 0 0 0 0 0
0 0 0.0000000000001 0 0 0 0
0 0 0 0.001 0 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.01


(A.18)
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Model

Manifolds
Intake manifold

d

dt
pim =Ra Tim

Vim
(Wth +Wegr −Wei)

Exhaust manifold
d

dt
pem =Re Tem

Vem
(Weo −Wegr −Wt) + pem

Tem

d

dt
Tem

d

dt
Tem = Re Tem

pem Vem cve

(
(Weo −Wegr −Wt) cve(Tem,in − Tem)+

Re(Tem,in (Weo −Wegr −Wt)− Tem (−Weo +Wegr +Wt))
)

Intercooler
d

dt
pic =Ra Tim

Vic
(Wc −Wth)

xegr = Wegr

Wth +Wegr

Intake manifold
d

dt
XOim = Ra Tim

pim Vim

(
(XOc −XOim) max(Wth, 0) + (XOem −XOim) max(Wegr, 0)

−XOim max(−Wei, 0)
)

Exhaust manifold
d

dt
XOem = Re Tem

pem Vem

(
(XOe −XOem) max(Weo, 0) + (XOim −XOem) max(−Wegr, 0)

−XOem max(−Wt, 0)
)
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Intake Throttle

Wth = pic Ψth(Πth)Ath,maxfth(uth)√
TimRa

Ψth(Πth) =


Ψ∗th(Πth) if Πth ≤ Πth,lin

Ψ∗th(Πth,lin) 1−Πth
1−Πth,lin

if Πth,lin < Πth

Ψ∗th(Πth) =
√

2 γth
γth − 1

(
Π2/γth
th −Π1+1/γth

th

)

Πth =



(
2

γth+1

) γth
γth−1 if pim

pic
<
(

2
γth+1

) γth
γth−1

pim
pic

if
(

2
γth+1

) γth
γth−1 ≤ pim

pic
≤ 1

1 if 1 < pim
pic

fth(uth) = bth1(1− cos(min(ath1 uth + ath2, π))) + bth2

Cylinder

Cylinder Flow

Wei = ηvol pim ne Vd
120Ra Tim

ηvol = cvol1
rc −

(
pem
pim

)1/γe

rc − 1 + cvol2W
2
f + cvol3Wf + cvol4

Wf = 10−6

120 uδ ne ncyl

Weo = Wf +Wei

λ = WeiXOim

Wf (O/F)sXOc
,

where XOc is the constant oxygen concentration in air, i.e. 23%.

XOe = WeiXOim −Wf (O/F)s
Weo
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Exhaust Manifold Temperature
Cylinder out temperature

Te = Tim + qHV fTe(Wf, ne)
cpeWeo

fTe(Wf, ne) =fTeWf(Wf) · fTene(ne)
fTeWf(Wf) =cfTeWf1W

3
f,norm + cfTeWf2W

2
f,norm + cfTeWf3Wf,norm + cfTeWf4

fTene(ne) =cfTene1 n2
e,norm + cfTene2 ne,norm + 1

Wf,norm = Wf · 100, ne,norm = ne
1000

Heat losses in the exhaust pipe

Tem,in = Tamb + (Te − Tamb) e−
htot π dpipe lpipe npipe

Weo cpe

EGR-Valve

Wegr =


Aegr pem Ψegr( pim

pem )√
Tem Re

if pem ≥ pim

−
Aegr pim Ψegr

(
pem
pim

)
√
Tegr,cool Ra

if pem < pim

Ψegr(Πegr) = 1−
(

1−Πegrlim(Πegr)
1−Πegropt

− 1
)2

Πegrlim(Πegr) =

 Πegropt if Πegr < Πegropt

Πegr if Πegr ≥ Πegropt

Aegr = Aegrmax fegr(uegr)

fegr(uegr) = begr1(1− cos(min(aegr1uegr + aegr2, π)))− begr1(1− cos(min(aegr2, π)))

Turbocharger

Turbo Inertia
d

dt
ωt = Pt ηm − Pc

Jt ωt
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Turbine Efficiency

Pt ηm = ηtm Pt,s = ηtmWt cpe Tem

(
1−Π1−1/γe

t

)
ηtm = ηtm,BSR(BSR) · ηtm,ωt(ωt) · ηtm,uvgt(uvgt)
ηtm,BSR(BSR) = 1− bBSR (BSR2 −BSR2

opt)2

BSR = Rt ωt√
2 cpe Tem

(
1−Π1−1/γe

t

)
ηtm,ωt(ωt) =

 1− bωt1 ωt if ωt ≤ ωt,lim

1− bωt1 ωt,lim − bωt2(ωt − ωt,lim) if ωt > ωt,lim

ηtm,uvgt(uvgt) = bvgt1 u
3
vgt + bvgt2 u

2
vgt + bvgt3 uvgt + bvgt4

Πt = pt
pem

Turbine Mass-Flow

Wt = Avgtmax pem fΠt(Πt)fωt(ωt,corr) fvgt(uvgt)√
TemRe

fΠt(Πt) =
√

1−ΠKt
t

fωt(ωt,corr) = 1− cωt (ωt,corr − ωt,corropt)2

ωt,corr = ωt

100
√
Tem

fvgt(uvgt) = cf2 + cf1

√√√√max
(

0, 1−
(
uvgt − cvgt2

cvgt1

)2
)

Compressor Efficiency

Pc = Pc,s
ηc

= Wc cpa Tamb

ηc

(
Π1−1/γa
c − 1

)
Πc = pic

pamb

ηc(Wc,corr,Πc) = ηc,W(Wc,corr,Πc) · ηc,Π(Πc)
ηc,W(Wc,corr,Πc) = 1− aW3(Wc,corr − (aW1 + aW2 Πc))2

ηc,Π(Πc) =

 aΠ1 Π2
c + aΠ2 Πc + aΠ3 if Πc < Πc,lim

aΠ4 Π2
c + aΠ5 Πc + aΠ6 if Πc ≥ Πc,lim

aΠ6 = Π2
c,lim(aΠ1 − aΠ4) + Πc,lim(aΠ2 − aΠ5) + aΠ3

Wc,corr =
Wc
√

(Tamb/Tref)
(pamb/pref)
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Compressor Mass-Flow

Wc = pamb π R
3
c ωt

Ra Tamb
Φc

Ψc =
2 cpa Tamb

(
Π1−1/γa
c − 1

)
R2
c ω

2
t

Φc = kc1 − kc3 Ψc

kc2 −Ψc

kci = kci1 (min(Ma,Mamax))2 + kci2 min(Ma,Mamax) + kci3, i = 1, . . . , 3

Ma = Rc ωt√
γaRa Tamb
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Table B.1. Symbols used in the plant model.

Symbol Description Unit
A Area m2

BSR Blade speed ratio –
cp Spec. heat capacity, constant pressure J/(kg·K)
cv Spec. heat capacity, constant volume J/(kg·K)
J Inertia kg· m2

ncyl Number of cylinders –
ne Rotational engine speed rpm
p Pressure Pa
P Power W
qHV Heating value of fuel J/kg
rc Compression ratio –
R Gas constant J/(kg·K)
R Radius m
T Temperature K
uegr EGR control signal† %
uth Throttle control signal† %
uvgt VGT control signal† %
uδ Injected amount of fuel mg/cycle
V Volume m3

W Mass flow kg/s
γ Specific heat capacity ratio –
η Efficiency –
Π Pressure quotient –
ρ Density kg/m3

Φc Volumetric flow coefficient –
Ψc Energy transfer coefficient –
ω Rotational speed rad/s
† 0 – closed, 100 – open



69

Table B.2. Indices used in the
plant model.

Index Description
a air
amb ambient
c compressor
d displaced
e exhaust
egr EGR
ei engine cylinder in
em exhaust manifold
eo engine cylinder out
ic intercooler
f fuel
im intake manifold
t turbine
th throttle
vgt VGT
vol volumetric
δ fuel injection

Table B.3. States, inputs, and
outputs of the plant model.

States Inputs Outputs
pim uδ pim
pem uth pem
pic uegr pic
ωt uvgt ωt
Tem ne Wc


