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Abstract
The European emission standard is an EU directive which describes what emission
limits car manufactures are required to meet. In order to meet these requirements
car manufacturers use different techniques and components. In a modern diesel
automobile a Diesel Particulate Filter (DPF) is used to gather soot from the ex-
hausts. As soot accumulates in the DPF, the back pressure increases and the
capability to hold more soot decreases. Therefore the DPF continuously needs to
get rid of the stored soot. The soot is removed through a process called regener-
ation. In order to optimize when to perform regeneration, it is vital to know the
amount of soot in the filter.

A method for estimating the soot mass in a DPF using a radio frequency-based
sensor has been developed. The sensor that has been studied is the Accusolve soot
sensor from General Electric. A parameter study has been performed to evaluate
the parameters that affects the sensor’s output. Parameters that have been stud-
ied include positioning of the sensor, temperature in the DPF, flow rate through
the DPF and distribution of soot in the DPF. Different models for estimation of
soot mass in the DPF has been developed and analyzed.

An uncertainty caused by removing the coaxial cable connectors when weighing
the DPF has been identified and methods for minimizing this uncertainty has been
presented. Results show that the sensor output is sensitive to temperature, soot
distribution and position, and also show some sensitivity to the flow rate. An
ARX model, with only one state, is proposed to estimate the soot mass in the
DPF, since it gives the best prediction of soot mass and showed good resistance
to bias errors and noise in all the input signals.
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Glossary

S11 The reversed input reflection coefficient, denotes
the relation between input and output voltage
for the first antenna.

S21 The forward gain from the transmitter antenna
to the receiver antenna.

Downstream When a location is referred to as being down-
stream from a component, it means that it is
on the side of the component which is furthest
away from the engine when following the ex-
haust flow.

Isokinetic sampling A method for collecting airborne particulate
matter in a flow. By leading some of the
main flow into a separate collector-channel while
making sure both the main- and the collector-
channel has the same flow velocity.

Regeneration Regeneration is the process where soot is oxi-
dized into CO2. There are two different kinds
of regeneration; Active regeneration with oxy-
gen - which is performed by heating the soot
to more than 550◦C and Passive regeneration
with NO2 - which occurs at lower temperatures
(above 200◦C).

Upstream The opposite of downstream.
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Acronyms

DOC Diesel Oxidation Catalyst

DPF Diesel Particulate Filter

MW Microwave

OBD On Board Diagnostics

PM Particulate Matter

RF Radio Frequency
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Chapter 1

Introduction

The European emission standard is an EU directive which describes what emis-
sion limits car manufactures are required to meet. The current legislation called
Euro 5 (valid from 2009), limits the emission of Particulate Matter (PM) to
5 mg/km, which is a decrease by 80% compared to the previous Euro 4, see [1].
PM consists mainly of soot particles from incomplete combustion but contains also
inorganic ash forming compounds such as Ca, Zn, P and sulfates [3, 12].

The main technology used for achieving reduced PM emissions is the Diesel Par-
ticulate Filter (DPF), which is also the technology assumed for PM filtering when
the emission limits where set for Euro 5, see [2]. There is a lot of different types of
diesel particle filters on the market, the most commonly used is the ceramic wall
flow filter.

This thesis focuses on a ceramic wall flow filter used in a Volvo diesel car in 2011.
Figure 1.1 shows a simple schematic of some of the main components between the
engine and the DPF. When the exhausts pass the DPF, most of the PM is getting
trapped inside the DPF (up to 99%). As the soot accumulates inside the DPF,
the back-pressure rises and the capability to hold more soot decreases. Therefore
the DPF continuously needs to get rid of the stored soot. Soot is removed through
oxidation, which is also referred to as regeneration. Regeneration turns soot into
CO2.

There are two types of regeneration; passive and active regeneration. Passive
regeneration starts at a lower temperature (≈ 200◦C) than active regeneration
(≈ 550◦C). The passive regeneration requires NO2 and the rate of passive regen-
eration can be increased by increasing the amount of NO2 in the DPF. To increase
the amount of NO2, a Diesel Oxidation Catalyst (DOC) is placed upstream from
the DPF, see Figure 1.1. The main purpose of the DOC is however to oxidize HC
and CO. In the DOC, NO is oxidized into NO2 as the exhausts passes. Active re-
generation, which is soot oxidation by O2, requires that the temperature increases
to above 550◦C. This is done by late injection of fuel in the cylinders. The soot
load increases faster than passive regeneration can handle. Thus, active regener-

5



6 Introduction

ation is needed about every 1000 km. Active regeneration is desired only at an
appropriate soot load. If the soot load is too low when using active regeneration,
the result will be unnecessary fuel consumption and increased emissions of CO2.
On the other hand, if performed at a too high soot load, the temperature required
to burn out the soot may crack or even melt the filter, see [12].

Δp

DPF

Engine

DOC

Turbo

Figure 1.1. A schematic view of how the exhausts travel from the engine to the Diesel
Particulate Filter (DPF). In this figure the Diesel Oxidation Catalyst (DOC) is closely
coupled with the DPF, in other configurations they may be separated. A pressure sensor
measures the pressure drop ∆p over the DPF. The pressure drop is then used together
with the internal models to estimate the soot load during operation.

1.1 Problem formulation
Since regeneration is a critical phase, knowing when to regenerate is a key fac-
tor for minimizing fuel consumption and maximizing life-time of the components.
Today, control algorithms, regulating when to regenerate, are based on knowing
the accumulated soot mass trapped inside the DPF at a given time. Currently,
Volvo uses on-line models in combination with a pressure sensor that measure the
pressure difference between upstream and downstream of the DPF to estimate the
soot load. These estimation models need calibration when used in a new setup.
To be able to calibrate the models, the soot load of the DPF must be known while
tuning the parameters. The pressure drop measured in the differential pressure
sensor is a function of exhaust flow rate, soot characteristics and packaging, see
[27]. It is difficult to know the soot distribution in the filter and therefore the mass
estimation based on the differential pressure sensor can be less accurate for cer-
tain types of driving cycles. Today, the DPF is removed and weighed to measure
the soot load. This is a very time consuming job and therefore Volvo is looking
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at a solution using the ”Accusolve advanced diesel particulate filter soot sensor”
from GE, henceforth referred to only as the soot sensor, see [5]. The soot sensor
should be able to indirect measure the soot load by measuring the attenuation
of radio waves at resonance frequencies. After recording of data, the soot load
should be estimated. If the soot sensor gives a reliable measurement of the soot
load, it will save a lot of time in the process of calibration of the models. Improved
accuracy in the models could also lead to improved emissions and/or reduced fuel
consumption.

1.2 Goals
The goal in this thesis is to evaluate the soot sensor and to develop a model for
soot estimation. The purpose of the sensor is to measure the mass of the trapped
soot in the DPF rather than estimating it when the vehicle is used in field tests.
This information can then be used to calibrate the internal models, preparing the
car for production. The goals can be summarized in the following bullets:

• A soot estimation method based on the soot sensor [5] shall be developed.

• The performance of the developed method compared to weighed soot load
shall be evaluated.

• A parameter study is to be performed, taking into account some of the
parameters that may affect the measurement of the sensor. The parameters
involved are: temperature, flow rate, soot characteristics and positioning of
the sensors.

• A sensitivity analysis shall be performed with respect to the parameters
above, to evaluate the measurement method.

• Given the developed method and performed analyses, a recommendation
on how to use the developed method to minimize uncertainties is to be
suggested.

1.3 Approach
The approach can be divided into three parts; First, planning and performing of
a series of tests to gather data, followed by analysis of the data. Finally a method
for the usage of the sensor will be developed.

1.3.1 General approach
Based on previous research in the field of mass detection using RF/MW-sensors,
two main approaches was tested. The theory behind the first approach is to simply
see how the attenuation of RF waves are influenced by the amount of soot load,
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then mathematically describe the correlation. To measure the degree of attenua-
tion, the forward gain S21 was measured for some different frequencies.

The second approach is based on the research of resonance frequencies. In this
approach, the DPF is seen as a perfectly conducting metal cavity resonator. As
soot accumulates in the filter, the dielectric properties of the filter is affected, see
[13]. The resonance frequency fr of a cavity resonator is shifted depending on the
dielectric and conducting properties of the housing and its contents. Research has
shown that these shifts can be used as a correlation for computing the load, see
[13, 23]. The second approach uses the forward gain S21 and uses the changes in
the gain at certain frequencies, which is a sign of resonance.

1.3.2 Planning and performing the tests
For each test, a test plan was made and followed during the test. The first test
was a simple setup of the sensors without any other engine components involved
to make sure all signals that where needed could be read correctly. This was just
to investigate how the sensor works and to setup the measurement system.

The second test was performed in a test rig and engine parameters where changed
during the test. Different driving scenarios was tested to evaluate if different soot
load distributions would result in the same measurement values. The test plan for
the second test included the engine operating points for the test and a list of data
that should be collected during the test.

When the second test had been evaluated, the third test was planned based on the
outcome of the second test. The test plan for the third test contained the same
parts as the second test. The third test was performed to collect data used for
estimation of the models. For all tests, except the first one, the DPF was weighed
before and during the test. During the tests the DPF was removed and weighed
for validation. Data collection of engine parameters was made with the software
applications Inca. Data was evaluated and analyzed using Matlab.

1.4 Methods for measuring soot load
Measuring the soot inside the DPF is not easy, and thus there has been different
methods developed for soot estimation.

Measuring the soot concentration in the exhaust flow is a well-tested approach, see
[10, 19, 15]. This kind of measurement can be accomplished by placing a sensor
downstream the DPF with two electrodes; one is energized while the other is not.
Initially the resistance between the electrodes is assumed to be very high, but as
soot start to build up between them the resistance decreases. This approach is
often used to gather knowledge about the state of the DPF when applied in On
Board Diagnosis (OBD) or to monitor emissions directly in the exhaust. There are
uncertainties whether the measurements are accurate enough for other applications
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than OBD, considering that it does not measure the soot load in the actual filter.

Another approach is to extract a sample of the raw exhaust from the engine and
run it through a smaller sample filter, see [9]. This method is intended for isokinetic
sampling during steady state operation and can be a good way to gather knowledge
about the soot accumulation at those conditions.

In order to get more information about the soot distribution in the filter a method
with an infrared camera has been tested in [20]. The camera records the soot
distribution during regeneration on the filter mainly for the purpose of optimizing
the geometry of the filter for a more even distribution of soot inside the filter. In
theory, this method could also be used to measure the soot mass in the DPF, but
since regeneration is needed for the camera measurements, an extensive number
of regenerations will be needed to gather enough data to be able to calibrate the
models.

An interesting approach, that could be an alternative to the one studied here, is
to measure the resistance directly over a few channels in the filter. An increase in
soot load will result in a resistance decrease, see [14]. With this method, a number
of electrode pairs are placed along the sides of the filter from inlet to outlet. This
method can not only measure the soot load but also the distribution of the soot
inside the filter. The down side of this method, is that assumptions has to be
made regarding the amount and distribution of soot between two electrode pairs.

The approach studied here is to measure the soot load with a radio frequency
based sensor. As the DPF is loaded with soot the permittivity and conductivity
of the filter change. This should be observable via resonance frequency shifts or
via changes in the attenuation of the radio waves, see [13]. This approach has also
been used to control the active regeneration of a DPF in city buses, see [28]. The
correlation between the soot load and the radio frequency signal has been shown
to be close to affine when measurements where performed at approximately the
same temperature, see [24].

1.5 Other applications where electromagnetic
wave sensors are used

Radio frequency-based sensors have a wide range of use for detecting presence
of a specific substance. When used inside a large enough cylindrical metal con-
tainer, the container acts as a cavity resonator, guiding the electromagnetic waves
and thus for certain frequencies creating standing waves that easily can be mea-
sured. At different frequencies, RF absorbability differs for different substances.
By choosing a frequency which responds only to an interesting substance, elec-
tromagnetic waves may pass through other materials unaffected, making them
literally ”invisible” to the RF sensor. By observing the electrical permittivity, a
direct measurement of the corresponding substance can be made.
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The amount of oxygen loading in a three-way catalyst have been successfully mea-
sured by using the absolute value of the reflection coefficient S11 for detection of
resonance frequencies and then observing how the resonance frequencies shift with
increased loading [21, 22].

Using the same basic concept, NH3 (Ammonia) loading in an SCR catalyst have
been analyzed using microwaves. The result was that by choosing an appropriate
frequency the cross-sensitivity towards water was almost reduced completely. Re-
productivity and measurements where satisfying using only one probe, see [23].

Research has shown that this method can be used not only in the automotive
sector, but also in other fields such as in the biological sector, where microwave
sensors have been used to measure total mass and moist content inside a single
soybean, see [16].



Chapter 2

Theory

In this chapter some of the theory used in this report is presented. The theory
described here involves general information about the Accusolve soot sensor, a
brief introduction to the scattering matrix as well as the theory for the estimation
methods which will be used later in this report.

2.1 Accusolve soot sensor
The Accusolve soot sensor from General Electric is based on radio wave technology.
The dielectric properties of soot differ from that of the filter material and the
ash in the filter. By measuring the attenuation of the RF signal within the DPF
canister the soot load should be detectable. In Figure 2.1, a schematic overview
of the sensor setup is shown. Note that the temperature (3) in the figure is not
included in a production car, but is used to compare the difference in temperature
upstream and downstream of the DPF. The transmitting antenna is positioned
upstream from the DPF and the receiving antenna is positioned downstream from
the DPF. Both antennas are connected to the soot sensors micro controller that
calculates the forward gain S21. The operating frequency of the sensor ranges from
2.1 Ghz to 2.2 Ghz. The forward gain is calculated at discrete frequencies with
steps of 0.5 Mhz. In Figure 2.2 an example of the sensor output is shown.

The sensor provides both serial data and CAN bus data. For this project only the
serial data will be used, the CAN bus data is used for GE’s soot mass algorithm
that is not in use. The serial data from the sensor include an array of forward
gains for each discrete frequency step as well as standard deviation, max and min
values of the noise and the average gain for all the discrete frequencies.

11
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Figure 2.1. Schematic system setup. (1) DPF, (2) DOC, (3) Temperature sensor,
(4) Temperature sensor, (5) Lambda sensor, (6) RF transmitter, (7) RF reciever,
(8) Soot sensor micro controller, (9) ETAS 690 communication unit for the car ECU.
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Figure 2.2. A single output from the soot sensor. The output is the forward gain for
200 discrete frequencies ranging from 2.1 GHz to 2.2 GHz.
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2.2 The Scattering matrix
For more than 60 years, the scattering matrix and its parameters have been used
for characterization, modeling and analysis by the microwave community, see [11].
It is a very wide subject and in this section, a brief summary of the key features
needed to define the scattering matrix is presented. When using an arbitrary num-
ber of antennas in a system, the system is referred to as a multi-port or N-port,
where N is the number of antennas used. A port with a transreceiver antenna can
both induce and receive waves. In this thesis, the focus is on a 2-port system with
two transreceiver antennas.

If the transverse wave direction through a waveguide is defined as the z-axis, the
transverse components of the total fields E and H in a uniform waveguide, prop-
agating a single mode, can be derived from Maxwell’s equations and expressed
according to [8] as

Et = c+e
−γzet + c−e

+γzet ≡
v(z)
v0

et (2.1)

and
Ht = c+e

−γzht − c−e+γzht ≡
i(z)
i0

ht (2.2)

where v and i are called the waveguide voltage and waveguide current. The normal-
izing parameters v0 and i0 have the units voltage and current respectively, and
are introduced to maintain appropriate units for the fields Ht, Et,ht and et. γ
is the modal propagation constant and is defined as a complex number γ ≡ α+jβ.

The forward and backward waveguide voltage can be expressed as v+(z) = c+v0e
−γz

and v−(z) = c+v0e
−γz respectively. Similarly i+(z) = c+i0e

−γz and i−(z) =
c+i0e

−γz are introduced and referred to as forward and backward waveguide cur-
rent, see [8].

How radio frequency energy propagates between multiple ports can be
described as

b̄ = S · ā (2.3)
Where S denotes the scattering matrix and the vectors ā and b̄ are the forward
and backward voltage respectively, i.e. a ≡ v+ and b ≡ v−, see [8].

For example, if two antennas are used, (2.3) is given by(
b1
b2

)
=
(
S11 S12
S21 S22

)(
a1
a2

)
(2.4)

A scattering parameter Sij in the scattering matrix describes the relation between
the waveguide voltage from port i to port j, both in aspect of amplitude and
phase. Each scattering parameter Sij can be determined by

Sij = bi
aj

∣∣∣∣
ak=0,k 6=j

(2.5)
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when all ports except aj are terminated with matched loads, meaning only port j
induces waves, see [11]. When talking about the gain, only the amplitude of Sij
is considered, not its phase.

The output from GE’s RF soot sensor is the forward gain S21 converted to dB,
for a set of pre-defined discrete frequencies.

2.3 Model estimation using linear least squares
A least squares formulation of an estimation problem is used to make a regressive
fit based on minimizing the squared residual r(n) = y(n)− f(u(n), A) where y(n)
is the measured output signal, f(u(n), A) is the function which is to be fitted to
the data and each element of the row-vector U are the measured input signals and
A are the unknown parameters. The optimal solution to the least squares problem
is the value of A that minimizes S in

S = ||Y − UA||2 =
k∑

n=1

(
y(n)− f(u(n), A)

)2
(2.6)

where

Y =

 y(n)
...

y(n+ k − 1)

 U =

 u1(n) . . . ui(n)
...

. . .
...

u1(n+ k − 1) . . . ui(n+ k − 1)

 A =

a1
...
ai


and k is the number of measurements and i is the number of input signals, see [7].

By using an linear function f(U,A), thus describing the output y(n) as

ŷ(n) = f(U,A) = a1u1(n) + a2u2(n) + · · ·+ anun(n) (2.7)
the solution A which minimizes (2.6) can be computed explicitly as

A∗ = (UTU)−1UTY (2.8)

The solution to (2.8) can then be used in (2.7) for the estimation. UA∗ is the best
linear predictor of Y according to the least squares method, see [7].

2.3.1 L1-Norm regularization
To reduce complexity of the predictor estimated above, a method called the L1-
Norm Regularization (lasso function) can be used to determine which signals that
have the most influence on the output signal, see [26]. The lasso function can
be described as an extension of the least squares problem, with a penelty λ for
using a parameter ai 6= 0, see (2.9). By increasing λ, dominant correlations can
be identified. The lasso function can be described as

min
A
||Y − UA||2 + λ|A|. (2.9)
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2.4 Linear black box models
A model is an attempt to reproduce a prediction of the output signal y as a func-
tion of the input signals u. A black box model has no physical interpretation but
rather replicates the behavior seen in measured data. A black box model can be
produced in multiple ways; by fitting data to a linear or nonlinear model, like
ARX, NARX, ARMAX, OE, BJ or using spectral analysis, see [17]. When cre-
ating a black box model, some of the gathered data is used for estimation, while
the unused data is used for validation of the model. In this section some of the
most common linear black box models are described. The choice of only focusing
on linear models to estimate soot mass is based on previous research where the
relation between forward gain and soot have shown linear behavior, see [28].
In Figure 2.3, a graphical representation of the black-box model structures can be
seen. In the following section a short description of each model is presented. More
about the model structures can be read in [18].

Figure 2.3. Model structures used for developing linear black-box models

An ARX (Auto Regressive eXternal input) model is a simple model where the
white noise e, is modeled a transfer function with the same denominator as the
the system dynamics.

An ARMAX (Auto Regressive Moving Average eXternal input) model gives more
freedom to the model than an ARX model by using an extra transfer function
numerator to describe the dynamics of the white noise e in the system.

An OE (Output Error) model assumes that that the model can be described as if
the white noise e is added directly to the output value.

A BJ (Box Jenkins) model is most general and offers the most freedom of the four
models described but is also the hardest to estimate. The model uses a separate
transfer function with both a numerator and a denominator to describe the influ-
ence from the white noise e.
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Chapter 3

Experiments

Two series of experiments were constructed and performed. The first series was
performed in a car and the second in a test cell. The experiments in the car
were performed to evaluate the sensors ability to detect soot. The experiments
performed in the test cell were made to evaluate the sensor’s dependence of tem-
perature, soot load, flow rate, sensor position and soot distribution.

3.1 Sensor measurement system
The antennas were mounted in the mounting holes welded on the DPF and con-
nected to the sensor box. The sensor box’s serial output cable were connected to
a laptop via an RS-232 to USB converter. Recording and decoding of data was
done by a script in Microsoft Excel.

3.2 Measuring soot mass
All weight measurements were made with a hot DPF (temperature over 100◦C
in the filter). This was made to prevent water from condensing in the filter and
therefore increasing the weight of the DPF.

3.3 Initial experiments in car
A real field test for highway driving was performed to investigate the detectability
of soot. A 2.0 liter, automatic transmission, front wheel drive Volvo XC70 was
used. No weighing of the DPF was performed during this test. Instead the simu-
lated soot mass was used as a reference for detecting increased soot load.

High soot build up in the DPF can be achieved by running the engine at low
engine speeds with high loads, see [25]. During the highway cycle the torque was
demanded in a transient way by requesting maximum torque with the acceleration
pedal for about one to two seconds, then letting go for approximately 3 seconds,

17
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making sure the car maintained the same speed and were held at a low engine
speed. These were factors that kept the soot build up at a high rate. In Figure 3.1
the soot sensor output can be seen for the highway drive cycle for approximately
40 minutes, where dark curves are early measurements and bright are late mea-
surements. Figure 3.1 shows that different frequencies behave differently during
soot build up. Although, the average gain of all frequencies decreases during soot
build up.

In the figure, it can also be seen that the approach of using the resonance peak
shift can not be used. At low soot load, a peak can be seen at 2.13Gzh in the
output signal, which could be a result of resonance. However as the soot load
increases the peak disappears.

Figure 3.1. Soot sensor output when driving in an urban area with an automatic
transmission Volvo XC70 2.0 liter diesel car for approximately 40 minutes. The car was
driven at highest gear. The lowest engine speed allowed, without letting the transmission
shifting down, was used to produce as much soot as possible. Dark curves are early mea-
surements and bright are late measurements. The figure shows that different frequencies
behave differently during soot build up. Although, the average gain of all frequencies
decreases during soot build up.
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3.4 Engine and test cell specifications
The engine used in the test cell is a 2.0 liter diesel engine with automatic trans-
mission. Specifications of the motor can be seen in Table 3.1. The test cell was
equipped with a dynamometer to control the load on the engine.

INCA was used to monitor the engine parameters and to control the ECU. The

Engine Specifications
Cylinders 5 [-]

Bore 81 [mm]
Stroke 77 [mm]

Power Output 120 [kW]
Max. Torque 400 [Nm]

Table 3.1. Specifications for the engine used in the test cell

ECU controls when to trigger regeneration and which operation mode the engine
is currently in. By modifying these triggers, or by manually setting operation
modes, unwanted regenerations could be prevented or forced at any time.

3.5 Test cell experiments
Two different configurations for the antenna positions were used in the experiment
to evaluate positioning of the antennas, see Figure 3.2. The sensor response were
studied for several different engine operating points. To build up soot at a rel-
atively high speed, a cycle with five different engine operating points was used.
Each operating point runs for one minute and then switches to the next and the
cycle runs repeatedly. Engine operating points for the soot build up cycle are
shown in Table 3.2.

Operating points for soot build up cycle
Engine speed [rpm] Velocity [km/h] Throttle [%]

1 2100 120.5 18.0
2 1500 86.0 13.0
3 1900 107.0 13.5
4 1300 72.0 16.5
5 2000 113.5 16.0

Table 3.2. Engine operating points for soot build up cycle. Each operating point runs
for one minute and then changes to the next.
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Both
Configurations

Configuration 1

Configuration 2

Figure 3.2. The two different configurations used in the sensor positioning experiment.
The dashed line indicates where the gap between the DPF and the DOC is located.

To test the flow rate dependency of the RF-measurements, another cycle with five
operating points was used, each point ran for five minutes. Each point had the
same temperature at the inlet of the DPF in steady state but with different flow
rates, see Table 3.3. For the temperature dependency test, a similar cycle with six
different operating points were used, each point ran for ten minutes. All points
had the same flow rate but with varying temperatures, see Table 3.4.

Operating points flow dependency experiment
Eng. spd [rpm] Velocity [km/h] Throttle [%] Temp. [◦C] Flow [m3/h]

1 1750 100.0 12.2 305 125
2 2150 120.0 14.2 305 160
3 2300 130.0 16.0 305 180
4 1400 80.0 11.5 305 100
5 2450 140.0 17.3 305 225

Table 3.3. Engine operating points for flow rate dependency experiment. The temper-
ature is measured in the exhaust flow at the inlet of the DPF and the flow rate is the
calculated flow rate through the DPF.

The soot distribution dependency experiment was performed in two ways. In the
first test, a full DPF is regenerated to about half the soot load. Then the soot
build up cycle is continued until the DPF is full again. The DPF is weighed pe-
riodically and data from the sensor is recorded throughout the experiment. The
second test was performed using a recording of an actual taxi trip in Stockholm,
which includes many starts and stop of the engine. The experiment started with
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an empty DPF and ran until the DPF was almost full. These two experiments
were expected to result in different soot distributions due to differences in flow
rate through the DPF and temperature in the DPF and are thus compared, to
evaluate the effect of soot distribution.

Operating points temperature dependency experiment
Eng. spd [rpm] Velocity [km/h] Throttle [%] Temp. [◦C] Flow [m3/h]

1 2200 125.0 10.0 210 120
2 1200 66.0 13.5 360 120
3 1400 80.0 12.5 340 120
4 1600 90.0 12.0 320 120
5 1800 100.0 11.5 295 120
6 2100 120.0 11.0 245 120

Table 3.4. Engine operating points for temperature dependency experiment. The tem-
perature is measured in the exhaust flow at the inlet of the DPF and the flow rate is the
calculated flow rate through the DPF.

Regenerations were performed at 2800 rpm and 16% throttle. This point is suitable
for regeneration since it has a high flow rate which helps the hot exhausts to spread
faster throughout the filter. At this point, lambda has a relatively high value and
therefore the exhausts contain a lot of oxygen which speeds up the regeneration
process.





Chapter 4

Experiment analysis and
soot mass estimation

In this chapter the results from the performed experiments are presented and an-
alyzed. The chapter contains the results from experiments, where the parameters;
sensor position, soot load, temperature, flow rate and soot distribution are ana-
lyzed. A soot-estimation model described by (2.7) was developed, this model is
henceforth referred to as the average gain-model, where A was estimated using
least squares. Four soot-estimation models where also developed based on the
black-box models in section 2.4.

4.1 Results from experiments
In this section the results from the experiments in the test cell will be presented
as well as an analysis of the results. The sensor output is compared directly to the
weighed soot load as well as other parameters that could affect the output from
the sensor. The other parameters include temperature at inlet of the DPF, flow
rate through the DPF and position of the antennas.

4.1.1 Position
The purpose of this experiment is to evaluate which position for the antennas that
is the most suitable. The positioning of the antennas affects the base forward gain
when the DPF contains no soot. A low damping for an empty filter is desirable as
the soot sensor will be better at detecting changes in soot load at stronger signals
according to [4]. In Figure 4.1 the average gain from the sensor output with con-
figuration one and two is shown. Figure 3.2 shows the positions of the antennas
for the two different configurations.

As shown in Figure 4.1, the forward gain is generally higher for the first configura-
tion than for the second one. This is desired for the best possible output from the
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sensor system, see [5]. Therefore the configuration used will henceforth be the first
configuration where the antennas are positioned on opposite sides of the DPF, see
Figure 3.2.
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Figure 4.1. Average gain from the sensor as a function of time with antennas mounted
in configuration one and two.

4.1.2 Soot load
Here, the results from the soot load dependency test are shown. In Figure 4.2,
the sensor output as a function of time and the weighed soot load as a function of
time are shown. Figure 4.2 shows an example of the soot build up.

As can be seen in Figure 4.2 the average gain decreases when the soot load in-
creases. The soot load in Figure 4.2 is plotted negatively for easier comparison
with the average gain. A soot load between 0 and 20 gram corresponds to a change
in average gain from -20 dB to -32 dB. Note that the average gain of the soot sensor
flattens out with increasing soot mass.
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Figure 4.2. Average gain from the sensor as a function of time and weighed soot load as
a function of time. The weighed soot load in the plot is curve-fitted to the measurement
points using a quadratic function, this will be discussed later in section 4.2.1. After the
weighing at 11000 seconds, the sensor malfunctioned and a part of the measurements
have therefore been cropped to exclude the faulty data.

4.1.3 Temperature
The temperature of the antennas is a parameter that could affect the measurement
signal according to [24] and this parameter will therefore be studied. There is no
temperature sensor at the antenna, thus the temperature sensor upstream of the
DPF is used as an approximation of the temperature, see element 4 in Figure 2.1.
The temperature sensor is also placed in the exhaust flow but more centered than
the RF-antennas.

In Figure 4.3, the temperature and the average gain as a function of time is shown.
The average gain in Figure 4.3 is detrended using Matlab’s command detrend.
The command detrend estimates and removes the linear trend in the data.

In Figure 4.3, it is shown that the measurements of the average gain are clearly
correlated with the temperature measurements. The temperature in Figure 4.3
is plotted negatively for easier comparison with the average gain. An increase
in temperature lowers the average gain of the soot sensor. When temperature
changes from 220◦C to 380◦C the average gain changes about 4 dB. The results
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here shows that when trying to estimate soot mass, the effect of the temperature
must be taken into consideration.
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Figure 4.3. Average gain from the sensor as a function of time and temperature at inlet
of DPF as a function of time.

4.1.4 Flow rate
The flow rate through the DPF is analyzed in this section. There is no sensor
measuring the flow rate through the DPF but there is a calculated flow rate avail-
able. The computed flow rate value depends on the engine speed, the flow rate of
air into the cylinders and the flow rate of fuel into the cylinders. In Figure 4.4,
the flow rate through the DPF, as a function of time, and the average gain as a
function of time are shown. The average gain in Figure 4.4 is detrended using
Matlab’s command detrend.
In Figure 4.4, it is shown that the average gain is somehow dependent of the flow
rate through the DPF, when the flow rate changes the average gain also change
slightly. Comparing Figure 4.4 and Figure 4.3 shows that a change in temperature
affects the sensor output more than a change in flow rate.
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Figure 4.4. Average gain from the sensor and computed flow rate as a function of time.

4.1.5 Soot distribution
The soot distribution in the filter is a parameter that could affect the measurement
signal, for example, if soot is distributed in the filter in such a way that the RF
waves pass through a lot of soot, the forward gain will be dampened more than if
the soot is distributed in such a way that the RF waves pass through less soot. In
Figure 4.5, results from the soot distribution experiment are shown.

The average gain for measured soot of 14 to 18 grams is expected to be the same in
the lower and upper plot if the sensor was not dependent of the soot distribution in
the filter. The difference of distribution in the filter in the two plots in Figure 4.5
is hard to know in detail. One hypothesis is that in the lower plot, which is
regenerated to about a half full DPF, more soot is burned out in the center of
the filter and therefore the forward gain is higher since most of the radio waves
travels through the center of the DPF. The rate of which the average gain changes
in this interval is also higher in the lower plot in Figure 4.5. The difference could
be explained with the DPF being more burned out in the center because of higher
temperature there, thus more soot will pass through and get caught there.
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Figure 4.5. Data from the soot distribution dependency test. The upper plot shows
the average gain when the DPF is regenerated to zero before gathering of data and the
measured soot load. The lower plot shows the average gain when the DPF is regenerated
to 14 gram before gathering of data and the measured soot load. Two markers are placed
in the upper plot, these mark the same soot range as the lower plot. The results show
that unknown soot distribution can not be detected by the soot sensor.

4.1.6 Frequency window analysis

The soot sensor output contains the forward gain for 200 discrete frequencies. In
Figure 3.1, where the forward gain is plotted against the frequency spectrum it is
shown that it is possible that looking at just a window of frequencies could give a
better estimation of the soot load than looking at the average gain.

The purpose here is to analyze which frequencies in the soot sensor output that
may contain the most relevant information. Some frequencies may be sensitive to
soot while others may be more dependent on temperature. Therefore the frequency
operating range were split into smaller intervals, i.e., ”windows”. The mean value
of the forward gain for each window is then used as input signals to the L1-norm
regularization method described in section 2.3.1. The window size can be chosen
arbitrary, but choosing a too small window will result in more signal variance;
choosing a too wide window on the other hand may dampen the effect of the fre-
quencies which contain useful information. The window size were chosen to 10
frequencies, to balance uncertainty in the data and loss of information.
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In the sections below, analysis for the average gain and the temperature are pre-
sented. This was made as a first step to evaluate if the L1-norm regularization
method would select the same windows for different measurements series. The for-
ward gain and the temperature have shown to have more influence than the flow
for soot mass estimation, and was therefore evaluated as a first step. The second
step would have been to also analyze the flow in a similar way. But since the
outcome of the average gain and temperature analysis shows that neither window
is better for soot estimation, no further analysis was performed.

The L1-Norm Regularization method, is used to penalize the windows that are
not good enough for describing the output and calculate which windows is best
for describing the selected output.

Gain window

In this section two series of measurements of soot build up where initial soot mass
is 0 gram are analyzed using the L1-norm regularization method. To detect any
non-linear behavior, the following inputs to the lasso function where also added
as their respective squared values; the average gain for each window, the inlet
temperature of the DPF, the flow through the DPF and the average gain for the
entire frequency spectrum. The lambda parameter for the lasso function in (2.9)
is varied to the point where the most dominant of the windows where selected.

In Figure 4.6 the result from the L1-Norm Regularization method when applied
to the first series of measurements is shown and the result from the lasso function
when applied to the second series of measurements is shown in Figure 4.7.

As seen in the parameter window for each series of measurements, the L1-Norm
Regularization method does not choose the same windows for the two measure-
ment series. This behavior is also repeated as lambda is varied in the L1-Norm
Regularization method. This means that for estimating soot load there is not a
set of windows that is better then any other for both sets of measurements. The
conclusion of this is to use the average gain for the entire frequency spectra for
determining soot load.
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Figure 4.6. The result from the L1-norm regularization method applied to the first
series of measurements. Each bar represent a window, windows 21-40 is the average gain
squared and window number 41 and 42 is temperature and flow respectively.
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Figure 4.7. The result from the L1-norm regularization method applied to the second
series of measurements. Each bar represent a window, windows 21-40 is the average gain
squared and window number 41 and 42 is temperature and flow respectively.
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Temperature window

Here, a comparison between two series of measurements with respect to the re-
lationship between temperature and average gain is made. Both series of mea-
surement in this analysis have their frequency spectrum divided into 20 smaller
windows as for the previous analysis. Inputs to the L1-norm regularization method
are the average gain for each window and the output is the temperature at the
inlet of the DPF. The lambda parameter for the lasso function is varied to the
point where the most dominant of the windows were selected.

In Figure 4.8 and Figure 4.9, the result from the L1-norm regularization method
when applied to the first and second series of measurements are shown. Com-
paring Figures 4.8 and Figure 4.9 shows that the L1-norm regularization method
chooses different windows for different series of measurement. This result does
repeat itself when lambda is varied and therefore it is concluded that there is not
a set of windows for the average gain that is better then any other to describe the
temperature dependency.
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Figure 4.8. The result from the L1-norm regularization method applied to the first
series of measurements, each bar represent a window. The temperature can be best
described by windows 1 and 12 according to the L1-norm regularization method.
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Figure 4.9. The result from the L1-norm regularization method applied to the second
series of measurements, each bar represent a window. The temperature can be best
described by windows 18 and 20 according to the L1-norm regularization method.
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4.2 Modeling
In this section, the results from the performed experiments that are used to esti-
mate a model for estimating the soot load as a function of average gain from the
sensor, temperature upstream from the DPF and flow rate through the DPF are
presented. The developed models estimated include the average gain-model and
linear black-box models.

4.2.1 Pre-processing of measured data
As part of the pre-processing of the measured data, the weighed soot mass was
curve-fitted using either an affine or quadratic function to better describe the soot
build up process. The soot build up shows an affine behavior when the soot load
is low. As the soot load increases, the rate of which the soot mass is accumu-
lated in the DPF decreases and the behavior is better described by a quadratic
function. Each of the measurement series which were collected at low soot loads,
where approximated using a linear function, which best described their behavior.
The measurement series which where either long enough for the soot load to start
decaying, or showed decaying behavior (high soot loads) where instead curve-fitted
using a quadratic function.

In addition to the curve-fitting of the weighed mass, the raw data from the mea-
surements where pre-processed before being used for estimating the models. The
pre-processing of data can be divided into three parts, see [17]:

• Removal of outliers (bad measurements) and unwanted peaks.

• Removal of high frequency disturbances above the frequencies of interest.

• Removal of drifts and offsets.
The frequencies of interest for the soot build up are very low. Therefore
no high-pass filtering in order to remove low frequencies was made on the
collected data. This step can be skipped and instead letting the noise model
take care of these possible low frequency disturbances, see [17].

Removal of outliers

In Figure 4.10, measured data is plotted as soot mass versus average gain to see
which measurements that contain similar data and could be used for model es-
timation, and to detect outliers. The measurements are concentrated in a band
running from -20 dB to -30 dB as soot builds up from 0 to 30 grams. The hori-
zontal lines (marked in the figure) which goes down to -80 dB in forward gain are
measurements when the engine has stopped and the coaxial cables were removed
before stopping the measurement.
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The measurements were trimmed so the faulty data (outliers), when the cables
were removed, are excluded. Regenerations were also removed. The result can be
seen in Figure 4.11, where the measurements also have been low-pass filtered using
the method described in the next section.
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Figure 4.10. Soot mass in grams plotted against average forward gain in dB for the
first position. The data is concentrated in a vertical slanted band. The horizontal lines,
marked with arrows, are faulty data from when the engine is stopped and the coaxial
cables were removed before the measurement was stopped.

Removal of high frequency disturbances

After removing outliers, the measured data was filtered using a 5th order butter-
worth low-pass filter with a cut-off frequency of 0.005 rad/s. Filter orders between
1 and 7 were tested, where an order of 5 seemed to improve estimations the most.
The filtering was made to remove frequencies above those of interest, see [18].
The chosen cut-off frequency gives a period time of 1257 seconds which is much
shorter than needed for a single-run measurement. Shorter series of measurements
tended to show an incorrect period time because of the shifts in gain caused by
temperature when resuming an experiment. Therefore the cut-off frequency was
chosen to ensure that changes in the start or final forward gain value before and
after filtering was unaffected for all measured series. The filtered data can be seen
in Figure 4.11.
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Figure 4.11. Mass in grams plotted against average forward gain in dB. The aver-
age forward gain is filtered using a 5th order butterworth low-pass filter with a cutoff
frequency of 0.005 rad/s.

Estimation and validation split-up

The pre-processed data was split into two datasets. The first dataset was used
for estimation and the second for validation. The estimation data consisted of a
series of shorter measurements with varying soot ranges. The validation data was
a soot build up from 3 to 30 grams measured over two days which gave the DPF
time to cool off during the night.

4.2.2 Estimated soot gain model using least squares
The average gain-model was developed with the least squares algorithm, see section
2.3. When estimating the average gain-model using least squares, all estimation
data available was used for estimating A in (2.8). Different time delays for the
model were evaluated. The results show that even when including the latest 100
measurements, e.g. Gain(t), . . . , Gain(t − 100), the estimated model was almost
exclusively based on the single latest measurement. Only a minor increase in
prediction performance was achieved by using past measurements to estimate soot
mass. Therefore, only the latest measured signal was used as a parameter for
estimation.
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The parameters used for estimation of the soot weight in equation (2.6) are

Y =

 y(n)
...

y(n+ k − 1)



U =

 Gain(n) Gain(n)2 Gain(n)−1 Temp(n) Flow(n)
...

...
...

...
...

Gain(n+ k − 1) . . . . . . . . . F low(n+ k − 1)


where y(n) is the weighed soot load, Gain(n) is the average forward gain S21 from
the sensor, Temp(n) is the temperature at the inlet of the DPF, Flow(n) is the
flow rate through the DPF and k is the number of measurements. The terms
Gain(n)2 and Gain(n)−1 where included to capture possible non-linear relations
between soot load and gain. The results however show that the estimation of
the average gain-model use little or none of these available non-linear signals, see
Figures 4.6-4.7. Similarly, non-linear flow and temperature where evaluated as
inputs for estimation, with the same results. Therefore the average gain-model
will not use the non-linear input signals for estimation.

In Figure 4.12 the result from the analysis with the least squares algorithm is
shown. In the figure, it is shown that the model for estimation of the soot load
can not really capture the characteristics of the curve for the weighed soot which
is undesirable.
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Figure 4.12. Results from evaluating a average gain-model. The top part of the figure
shows the estimated, measured and simulated weight. The bottom part of the figure
shows the error between estimated and measured soot load in the average gain-model
and the internal model. The internal model is the model that is currently used in Volvo
cars for estimating soot load. The model can not really capture the characteristics of
of the curve for the weighed soot mass, but gives a better estimation than the internal
model for any soot mass above 25 grams.

4.2.3 Linear black-box models

Four soot-estimation models based on the black-box models in section 2.4 were
designed from the estimation data to fit the measured soot mass. This was done
using Matlab’s System Identification toolbox, see [6]. For each model esti-
mation, the initial states where chosen as zero. When evaluating different types of
estimated models, results have shown that selecting the parameter focus to ’simu-
lation’ in the toolbox, generally results in models which better predict soot mass.
Therefore, this have been used for all estimated models.

Inputs to the models were forward gain, upstream temperature, flow and output
was measured soot. The estimation data consisted of multiple series of shorter
measurement with varying soot ranges and the validation data of a longer mea-
surement series ranging from 2 to 30 grams soot load.
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Choosing the model order

When choosing the order of the models it was taken into account that the confi-
dence intervals for the poles and zeros should not overlap each other. The criteria
that each pole/zero Z should fulfill |Z| ≤ 1 was also kept to prevent the solution
from being unstable. For the BJ model flow as an input had to be excluded to
create a stable model. The result from the best models when simulating the val-
idation data can be seen in the plots in Figure 4.13. In the figure, the following
model parameters where used to obtain the best fit of the simulated mass to the
measured mass.
ARX: na = 2, nb = [1 1 1] and nk = [1 1 1].
ARMAX: na = 2, nb = [2 2 2], nc = 1 and nk = [1 1 1].
OE: nb = [2 2 2], nf = [1 1 1] and nk = [1 1 1]
BJ: nb = [1 1 0], nc = 2, nd = 2, nf = [1 1 1] and nk = [1 1 1]
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Figure 4.13. Simulated and measured output from the best black-box models. In the
figure, the fit of the simulated mass to the measured mass are 91.52%, 80.45%, 95.48%
and 81.93% for the ARX, ARMAX, OE and BJ models respectively. The OE has the
highest fit and thus is the model which describe the system dynamics best.
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As can be seen in Figure 4.13 the OE model yield the best fit around 95% to the
measured soot mass. The high fit means that the models describe the true system
dynamics well. When computing the fits above, both input and output data was
used to compute the initial states for each model to get the best possible fit. This
is however not possible when the real mass is unknown, therefore two ways of
choosing the initial states are described next.

Choosing initial states x0

The lack of physical interpretation of the states in the models creates a problem
when simulating without knowing the real soot mass since the initial states x0 can
not be computed for the models. According to [17] this is a known problem when
there is no information about the model at time −∞ < t < 0.

One approach is to set all initial states to zero, see [17]. The model which yield
the best prediction when simulating were the OE model. A Simulation for the OE
model with all initial states x0 set to zero can be seen in Figure 4.14. The fit is
not as satisfying as when x0 is estimated but the model still predicts the output
quite well. The highest prediction error is about 5 grams.
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Figure 4.14. The upper plot shows simulated and measured output from the OE model
on validation data with all initial states x0 set to zero. The prediction is not as good as
when estimating the initial values from the measured mass. In the lower plot show the
absolute error of the simulation compared to the real measured soot mass. As can be
seen in the figure the prediction is better when the soot load is high.
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Reducing the number of model states

An alternative approach would be to chose models with only one state. All of the
previously described black-box models can be described in state space form as

ẋ = Ax+BU

y = Cx+DU (4.1)

where x are the states, U are the input signals, y is the model output andA,B,C,D
are matrices defining the relationships.

If the C matrix equals 1 and the D matrix equals 0 for a model with only one
state, this state could be interpreted as the soot mass state. This would allow
the model to start simulation from any initial soot mass, but at the cost of lower
degrees of freedom for the models and therefore also the ability to capture the true
dynamics of the system.

A reduced ARX model was developed with only one state for comparison. The fit
for the reduced ARX model with estimated initial state can be seen in Figure 4.15
and the simulated output when setting the state to the real initial soot mass can
be seen in Figure 4.16.

The results when simulating shows that the reduced ARX model with its initial
state set to the true soot mass, shows better prediction in soot mass than the other
models with multiple states, when all initial states are set to zero. Even though
the OE model had the best fit and showed a good prediction when simulating, the
reduced ARX model still show less error in prediction since the initial state can
be set to the true mass.
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Figure 4.15. Simulated and measured output from the reduced ARX model with only
one state. The parameters chosen as na = 1 nb = [1 1 1] and nk = [1 1 1]. The fit of the
simulated mass to the measured mass is 84.62%
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Figure 4.16. The upper plot shows the simulated and measured output from the reduced
ARX model on validation data with only one initial state, mass, set to the real initial soot
mass 2 grams. The lower plot shows the absolute error of the simulation compared to
the real measured soot mass. The reduced ARX model yields less error in the beginning,
but deviates more at higher soot loads compared to the OE model with initial states set
to zero.





Chapter 5

Model evaluation

In this chapter, a sensitivity analysis of the estimated models is performed. Also,
other factors which could affect the performance of the soot estimation are dis-
cussed.

5.1 Sensitivity analysis

A sensitivity analysis is performed for each of the four black-box models in section
4.2.3 and the average gain-model in section 4.2.2. The analysis is performed by
first adding a bias error and then Gaussian noise to each of the input signal, one
signal at a time and then analyze the effects on the estimated soot mass. As
bias error the following values were used for each input; gain +2 dB, temperature
+20 ◦C and flow +20 m3/h. The relative errors in Figures 5.1-5.3 and Figures
A.1-A.5 in Appendix A are computed as

Relative Error = 100 · (PNF − PBE)/PNF (5.1)

where PNF is the prediction without error and PBE is the prediction with a bias
error.

It is highly desirable that the chosen model has the ability to suppress the effect
from bias errors in the input signals, especially the forward gain. All the models
estimates the soot mass mainly based on the forward gain signal, and uses up-
stream temperature and flow to improve the estimation further. The model of
choice should have a relative error which decreases, or at least settles with in-
creased soot mass, to prevent the simulated soot mass from drifting away to far
from the ’true prediction’. A relative error which settles at a certain value can be
back-traced to a specific uncertainty; a certain percentage of the output error can
be described with an absolute bias error in the input signal.

43
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5.1.1 Average gain-model
The average gain-model output was computed with a Matlab script using matrices
multiplication. A bias error was then added to the three input signals one at a
time and the results can be seen in Figures 5.1-5.3. The average gain-model is
very sensitive to changes in the average gain signal while it is not that sensitive
to an error in the flow or temperature measurements. The high sensitivity to bias
error in the forward gain signal is undesirable as described in previous section.
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Figure 5.1. The effects on the average gain-model when a bias error of 2 dB is added to
the gain input signal. The upper plot shows the estimated soot load with and without a
bias error as well as the measured soot weight. The lower plot shows the relative error.
The high sensitivity to bias error in the forward gain signal is undesirable
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Figure 5.2. The effects on the average gain-model when a bias error of 20 ◦C is added
to the temperature input signal. The upper figure shows the estimated soot load with
and without a bias error as well as the measured soot weight. The lower figure shows the
relative error. The sensitivity to temperature is low which is desirable.
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Figure 5.3. The effects on the average gain-model when a bias error of 20 m3/h is added
to the flow rate input signal. The upper figure shows the estimated soot load with and
without a bias error as well as the measured soot weight. The lower figure shows the
relative error. The sensitivity to flow is low which is desirable.
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5.1.2 Black-box models
A Simulink model was constructed for simulating and adding bias errors and
noise to the input signals for the black-box models. The Simulink model can be
seen in Figure 5.4.

In the following subsections, the result on how the output signal is affected when
introducing a bias error on each of the input signals for each black-box model is
presented. For the forward gain measurements, a bias error of 2 dB was added.
For temperature and flow measurements bias errors of 20 ◦C and 20 m3/h was
added. A summary of the results from the bias error simulation can be seen in
Table 5.1. The simulation output when introducing the bias errors to the input
signals can be seen in Appendix A, Figures A.1-A.5. Three of these models are
also shown in Figures 5.5-5.7.

Validation data

d_bu{1}

Input
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To Workspace

simout

Temp Error

Simulated without
errors

Simulated with vs
without errors

Simulated vs
Measured

Model
with errors

idss(Mdl)
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Gaussian Noise
Generator

Gaussian

Gain Error

Flow Error

Error of simulation vs
measured

Error of Simulated with vs
without errors

Constant1

0

Constant

20

Figure 5.4. A Simulink model for simulating the linear black-box models. Noise and
bias errors can be added to each input signal.

ARX-model

The ARX model is quite sensitive to changes in both gain, flow and temperature.
The relative error increases with soot load. An increase in the relative error is
undesirable since observations have shown that the coaxial connectors are a great
uncertainty affecting the gain signal. The prediction from the ARX model for the
bias errors can be seen in Figure 5.5.

Reduced ARX-model

The reduced ARX model is not as sensitive to a bias error as the regular ARX.
The relative errors are small and settles with increased soot. The prediction from
the reduced ARX model for the bias error can be seen in Figure 5.6.
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ARMAX-model

The ARMAX model shows a highly undesired response to bias errors in gain, flow
and temperature measurements. The relative error when introducing a bias offset
seem to deviate from the ’true prediction’ somewhat exponentially with increasing
soot mass. The soot prediction is still stable though but is drifting away from
the ’true prediction’. The prediction from the ARMAX model for the bias error
is shown in Figure A.3. The relative error increases with higher soot mass for all
bias error in the input signals. This can also be seen in the simulation plot where
the estimations with errors deviates from the estimations without errors.

OE-model

The OE model is mostly sensitive to bias errors in temperature. The relative error
settles for all inputs with a bias error. The prediction from the OE model for the
bias error is shown in Figure 5.7.

BJ-model

The BJ model shows a decaying relative error for a bias offset in gain, which is
highly desirable. The relative error settles with increased soot mass. Since the
flow input had to be excluded as an input to generate a stable model, the flow
dependence is zero. The prediction from the BJ model for the bias error is shown
in Figure A.5.
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Table 5.1. Summary of the bias offset sensitivity.

Model Relative error Relative error at 30g

ARX
Gain Increasing 20%

Temperature Increasing 32%
Flow Increasing -17%

Reduced ARX
Gain Stabilizing -1.7%

Temperature Stabilizing 3.4%
Flow Stabilizing 1.5%

ARMAX
Gain Increasing -27%

Temperature Increasing -28%
Flow Increasing 22%

OE
Gain Decreasing -7%

Temperature Decreasing -4.8%
Flow Increasing 7.5%

BJ
Gain Stabilizing -0.75%

Temperature Stabilizing 5.2%
Flow Stabilizing 0%

The table shows the relative error behavior when introducing a bias error on the
input signals; 2 dB added to the gain, 20 ◦C added to the temperature and 20 m3/h
added to the flow. The first column is the model and the second is the input signal
to which the bias error is added. The third column is how the relative error behaves
as soot load is increasing. The last column shows the relative error at 30 grams
soot load.
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Figure 5.5. The effect on the ARX model when a bias error of 2 dB on the gain, 20 ◦C
on the temperature and 20 m3/h on the flow are added to the input signals, one at a
time. Each row corresponds to a bias error for gain, temp and flow respectively. The
left column is prediction with and without error compared to the weighed mass. The
right column is the relative error for the prediction with the bias error compared to the
prediction without error. The relative error increases with increased soot mass for all
bias errors in the input signals.
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Figure 5.6. The effect on the reduced ARX model (only one state) when a bias error
of 2 dB on the gain, 20 ◦C on the temperature and 20 m3/h on the flow are added to
the input signals, one at a time. Each row corresponds to a bias error for gain, temp
and flow respectively. The left column is prediction with and without error compared to
the weighed mass. The right column is the relative error for the prediction with the bias
error compared to the prediction without error. The relative error stabilizes for all bias
errors on the input signals.
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Figure 5.7. The effect on the OE model when a bias error of 2 dB on the gain, 20 ◦C
on the temperature and 20 m3/h on the flow are added to the input signals, one at a
time. Each row corresponds to a bias error for gain, temp and flow respectively. The
left column is prediction with and without error compared to the weighed mass. The
right column is the relative error for the prediction with the bias error compared to the
prediction without error. The relative error decreases with increased soot mass for bias
errors in gain and temperature but increases for a bias error in the flow.
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To evaluate how sensitive the models are to disturbances in the input signals, the
models were simulated by adding an additive Gaussian noise to each of the input
signals respectively. The noise had a mean value of zero and a variance of 10. The
output from simulating without disturbances was subtracted from the simulation
with noise, thus only showing the influence in the output signal caused by the
noise. The resulting output from the models are shown in Figures A.6 - A.10. For
comparison the results from the reduced ARX and the OE model can be seen in
Figures 5.8-5.9. The variance for the noise is much higher than expected for the
forward gain in the true system but still shows the gain factor of the noise from
input to output.
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Figure 5.8. The effect on the output for the reduced ARX model when Gaussian
noise, with mean value zero and variance 10, is added to each of the three input signals;
gain, upstream temperature and flow, one at a time. In the figure the output from the
simulation without noise is subtracted from the output from simulation with noise, thus
only the output from the noise is shown. Top left: input noise, top right: noise added to
the gain signal, bottom left: noise added to the temperature signal, bottom right: noise
added to the flow signal.
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Figure 5.9. The effect on the output for the OE model when Gaussian noise, with mean
value zero and variance 10, is added to each of the three input signals; gain, upstream
temperature and flow, one at a time. In the figure the output from the simulation
without noise is subtracted from the output from simulation with noise, thus only the
output from the noise is shown. Top left: input noise, top right: noise added to the gain
signal, bottom left: noise added to the temperature signal, bottom right: noise added to
the flow signal.

Both the ARX and ARMAX model show strong sensitivity to bias errors in all
input signals, which is highly undesirable. It can be seen in Figure 5.6 that the
reduced ARX model is not nearly as sensitive to bias errors as the regular ARX
model, see Figure 5.5 for comparison.

The reduced ARX, OE, and the BJ model show less influence from bias errors. Of
these models, the BJ model shows the least sensitivity to bias errors in the gain
signal and relatively low sensitivity to bias errors in temperature. The OE model
has higher sensitivity to bias errors compared to both the BJ and the reduced
ARX model. The reduced ARX model is not very sensitive to bias errors and
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shows low relative errors for all signals.

All models show high suppressing properties towards noise in the input signals.
Only low frequency disturbances passes through most of the models and the influ-
ence on the soot estimation for these frequencies are negligible. One observation
is that the OE model does not yield as good noise suppressing for the gain as the
other models.

The OE model dampens the input noise amplitude by a factor 10. The soot pre-
diction error for the OE model, caused by noise in the forward gain signal, will
therefore have an amplitude of 10% of the input noise amplitude. Considering
that the true system has not shown nearly as high noise variance for the forward
gain, this is still a good suppression of noise. By computing the variance for two
consecutive measurement series from the soot sensor, it shows a variance of ap-
proximately 0.75. This means that the prediction error caused by the true noise
will be approximately ±0.075 grams.

5.2 Factors disturbing estimation
When gathering data measurements from the system, there is a number off differ-
ent uncertainties for each measured signal. Removing and attaching sensors when
weighing also affect the sensor output. In this section some relevant factors will
be discussed.

5.2.1 Forward gain
The soot sensor’s antennas and its coaxial cable connectors have been shown to
have a relatively large impact on the measured signal when disconnected and
reconnected again. The initial measurements on the DPF disconnected to the
car showed an offset in gain up to 1.6 dB, see Figure 5.10. Up to 2.5 dB offset
has been seen in measured data, see Figure 5.11. The forward gain ranges from
approximately -20 dB for no soot load to -30 dB for 30 grams of soot load, so an
offset of 2.5 dB is quite large in comparison to the operating range which is only
four times as wide.
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Figure 5.10. The offset for the forward gain for an empty filter caused by removing and
reconnecting the coaxial cables and antennas. Each horizontal line is a measure and prior
to each measure the coaxial cables where removed and reattached again. The highest
and lowest damping differs about 1.6 dB for the empty filter.
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5.2.2 Weighing of soot mass
The scale used for weighing the soot mass had an accuracy of 0.1 gram for masses
up to 3 kg and an accuracy of 1 gram for masses between 3 kg and 20 kg. The
method of choice for measuring the soot mass was differential weighing of the whole
DPF. An empty DPF with no soot weighs 8102 grams, therefore the accuracy of the
scale is whole grams only. A measured soot mass can therefore differ ±0.5 grams
from the true value. A reference weight of 8210 grams was weighed before each
measurement to ensure the validity for each weighing (i.e. making sure the scale
does not drift).

5.2.3 Temperature
The measured temperature used in the estimations is the temperature upstream
of the DPF, see element 4 in Figure 2.1. The position of the temperature sensor
is not exactly the same as the RF-antenna and therefore the temperature of the
soot sensor may differ a bit from that of the temperature sensor.

5.2.4 Flow rate
The flow rate through the DPF used in the models is a computed value based on
the engine speed and flow rate of air and fuel into the cylinder. The uncertainties
in the computed flow rate is unknown but it is used for calibration of other models
in the system.

5.2.5 Soot accumulating on the antenna
Heavy soot accumulation on the upstream sensor has been observed. How this
affects the measurements is unknown but it could be an explanation to why the
average gain is so high after a regeneration to half full DPF, see Figure 4.5.



Chapter 6

Method for soot estimation

In this chapter the developed method for soot estimation is presented. The choice
of model, how to minimize the uncertainties when collecting data for estimation,
how to minimize errors in the prediction as well as advantages and drawbacks with
the developed method will be discussed.

6.1 Choice of model structure
Each of the evaluated models structures in section 4.2 have different advantages
and disadvantages when compared to each other. The average gain-model is the
only model which has the ability to start the estimation from an unknown soot
mass. The soot prediction from this model however is not as good as the black-box
models when the soot load is higher than 20 grams.

For the linear black-box models, the OE and reduced ARX models have the best
soot mass prediction with an absolute error of ±4 grams when used for soot loads
from 0 to 30 grams. When taking into account the sensitivity analysis, see section
5.1, the reduced ARX model is to prefer. The reduced ARX model is not as
sensitive to bias errors compared to the OE model and better at suppressing noise
in the measured input signals. Therefore, the proposed model for estimating soot
mass is a reduced ARX model.

Since the reduced ARX model only has one state which could be interpreted as
the soot mass, the simulation may start from any known soot mass by setting the
initial state to the known mass. If the soot mass is unknown the DPF needs to be
regenerated to zero before use. If there is a need to estimate the soot load at an
unknown mass, use the average gain-model to get a rough estimate.

The reduced ARX model gives the best prediction for this particular DPF. If the
soot sensor is to be used with another type of DPF (i.e. different shape, filter
substrate), any of the other model structures may yield better soot prediction and
must therefore be evaluated.
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6.2 Collecting the estimation data
Good estimation data is a key factor when estimating a model. The estimation
data should consist of different driving cycles, making sure as much information
as possible of the soot sensor’s dynamics is present in the estimation data. Both
slow and faster soot build up cycles should be included in the estimation data.
Soot sensor output, flow rate through the DPF and temperature upstream of the
DPF should be logged. Weighings of the DPF should be made, which are later
used as the output when estimating the models.

The driving cycles should be designed to include changes in the flow and the
temperature which corresponds to their respective operating range in a car.

Regenerations should be performed for a longer time than nominal, thus making
sure the soot mass is close to zero. Automatic regeneration in a car is stopped when
the internal model reaches below a certain threshold. When collecting estimation
data, the regeneration should be forced for a longer time to make sure as much
soot as possible is burnt out.

6.2.1 Minimizing uncertainty during soot mass estimation
The coaxial cables have shown to be the biggest uncertainty when removed and
reconnected, see section 5.2.1. When collecting the estimation data, focus should
lie on minimizing the uncertainty from the cable connectors. Minimizing this
uncertainty can be achieved in two ways, either by using a reference level or by
weighing the complete soot sensor apparatus, which are both described next.

Adjusting measurements to a reference level

By setting a reference level for the forward gain in an empty filter, gathered data
can be adjusted manually to compensate for offsets in the forward gain caused by
removing and reattaching the cables. For each measurement starting from zero,
the forward gain should be adjusted to the set reference level. During the soot
build up process, weighing of the filter may cause an offset in the forward gain
caused by the cables. Any offsets should be adjusted manually to fit the global
curve trend defined by the first measurement.

In Figure 6.1, an example is shown where the upper plot shows a typical behavior
for two sequent measurements with a weighing in between them. At the beginning
of the second measurement the temperature reduction (caused by DPF cooling
when weighing) cause an increase in forward gain which decays after approxi-
mately 2500 seconds. Note that the measurements in the figures are fictional and
the time is not that of the true system. The second measurement is however still
offset by approximately 2 dB compared to what would be expected when looking
at the trend of the first measurement. In the lower plot in the same figure, the
second measurement has been manually adjusted to a trend, defined by looking at
the first measurement. The trend can be estimated and following measurements
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can be adjusted to the trend using, e.g., least squares described in section 2.3.
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Figure 6.1. The upper plot shows simulated data representing a typical behavior when
weighing between two measurements. In the lower plot the second measurement has been
adjusted to the trend line of the first measurement.

The approach of using a reference level and adjusting other measurements to fit a
trend, can be difficult to use if the trend is hard to identify. However is has been
observed in the measurements that a trend usually can be identified for some of
the longer measurements. In Figure 5.11, a trend can easily be seen for the first
two measurements. In the figure, the increase in forward gain, caused by the lower
temperature after weighing, has been removed in the pre-treatment of the data,
see section 4.2.1. The third measurement is too short to be properly fitted to the
previous data due to Excel communication problem.

Weighing the complete sensor apparatus

An alternative way to minimize the uncertainty caused by the cables, is to include
the sensor cables and sensor control box when weighing the DPF. By not removing
the cable connectors, the offset in forward gain caused by the cables will be elimi-
nated. When the sensor is installed in a car this is a complicated task, considering
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that the cables are usually passed through the insulation of the car door to be able
to use the computer in the coupe. Weighing of the complete apparatus is more
usable in a test cell where the sensor and the sensor box is well exposed and can
be removed easily.

6.3 Estimating of the model
When the estimation data has been gathered, and the uncertainty caused by the
coaxial cables has been minimized, the data may be pre-processed in order to
achieve a better model estimation, see section 4.2.1. A reduced ARX model can
be estimated using e.g. System Identification Toolbox, which is a separate
toolbox for Matlab. When estimating the model, temperature, flow and the
average forward gain are used as inputs and the weighed soot is used as the output
signal.

6.4 Minimizing error in prediction
When using the developed reduced ARX model for estimating the soot load, it is
important to keep in mind that it is only valid for the soot range in which the
model is estimated for. If the model is estimated with estimation data between 0
and 25 grams, the model can not be guaranteed to work above 25 grams of soot
load. As can be read in section 4.1.5, soot distribution is a limitation when using
the sensor. Partial regenerations should therefore be avoided to receive a better
prediction.

It can be difficult to know the exact soot mass in the DPF when starting a new
experiment, and since the initial soot mass must be known in order to use the
reduced ARX model it is recommended to force a full regeneration of the DPF
using the same method as when collecting the estimation data, thus making sure
the soot mass is close to zero.

When using the model on a cold DPF, the engine must reach its operating tem-
perature before the prediction can be considered valid due to the temperature
dependence of the sensor.

The problem with the coaxial cables offset previously described will not affect the
soot prediction when using the model since the cables are not removed except
when weighing, which is not done when the model is in use.



Chapter 7

Conclusions

In this chapter the conclusions drawn from the performed work are presented.
This chapter also contains future work.

7.1 Conclusion
A method for soot estimation using General Electric’s Accusolve soot sensor that
is based on radio frequency technology has been developed. Series of measure-
ments have been performed in both a test cell and a Volvo passenger car. These
measurements have been used to estimate and validate a model using the devel-
oped method.

Parameters that have been shown to affect the measurements are: temperature in
the DPF, flow rate through the DPF, positioning of the antennas and distribution
of soot in the filter. The temperature and flow rate can be used as inputs to the
model and therefore be compensated for to improve the estimation.

The linear black box models show better stability and less absolute error in pre-
diction compared to the average gain-model. All linear black box models except
the reduced ARX model requires that the initial soot mass is zero to be able to
make a good prediction. The reduced ARX model may start from any known soot
mass but does not describe the system dynamics as well as the other linear black
box models. The OE model describes the system dynamics best, but due to the
lack of physical interpretation the initial states can not be estimated good enough
to make use of the good system description, see section 4.2.3. The average gain-
model is unaffected by the starting conditions and therefore the model may be
used as a rough estimate at unknown initial soot masses.

Based on the analyses, the conclusion is that the model of choice should be the
reduced ARX, which show good resistance to bias error as well as to suppressing
noise in the input signals. The absolute prediction error for the reduced ARX is
less than 4 grams when used for soot prediction from 0 to 30 grams.
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The coaxial cables have shown large uncertainties concerning the forward gain;
when removed and reconnected again the gain may be offset, see section 5.2.1.
This uncertainty can be minimized using one of the two methods described in
section 6.2.1.

7.2 Future work
In this section some suggestions of future work which would improve the developed
models even further are proposed.

Regeneration model

To further improve the usability of the developed method for soot estimation
described in Chapter 6, it may be possible to include regenerations in the current
model, or by developing a separate model which handles regenerations only. Not
enough data was collected to generate a regeneration model in thesis. Developing
a model including regenerations will require that a wider range of temperatures is
used for estimating the model.

Observations have shown that during regeneration the soot distribution differs
from that of regular soot build up, therefore a more extended series of tests must
be performed for regeneration to be able to evaluate the possibility to create a
model for regenerations.

Soot distribution

The soot sensor’s dependency of soot distribution is something that needs to be
investigated further. This thesis only covers two different types of distributions
and there is currently no method for measuring the soot distribution in the filter
at Volvo today. It would be of interest to combine the soot sensor with a system
or method for measuring the soot distribution in the filter.

Coaxial cables

During the work the coaxial cable connectors were the main problem when de-
veloping a model to estimate soot mass. The sensor output may have an offset
when the cables are removed and connected again compared to the measurements
before. If the current sensor is to be used for soot estimation, the recommenda-
tion is to test if it is possible to weigh the DPF without disconnecting the coaxial
cables, the GE sensor apparatus will then need to be weighed since the coaxial
cables are attached to the sensor micro controller. This will probably solve the
problem when developing a model but will still be a problem since a new model
needs to be developed each time the sensors are disconnected or replaced when
used in another car.



Appendix A

Simulation outputs

In this appendix the figures from the sensitivity analysis in section 5.1 are pre-
sented. The figures include results from the bias and noise error analysis for the
linear black box models.

63



64 Simulation outputs

0 1 2 3 4 5

x 10
4

0

10

20

30

Simulated and measured soot mass (With gain bias error)

Time [s]

S
oo

t m
as

s 
[g

]

 

 

Measured soot
Simulated without error
Simulated with error

0 5 10 15 20 25 30
10

15

20

25
Relative error (With gain bias error)

Soot mass [g]

R
el

at
iv

e 
er

ro
r 

[%
]

0 1 2 3 4 5

x 10
4

0

10

20

30

Simulated and measured soot mass (With temperature bias error)

Time [s]

S
oo

t m
as

s 
[g

]

 

 

Measured soot
Simulated without error
Simulated with error

0 5 10 15 20 25 30
15

20

25

30

35
Relative error (With temperature bias error)

Soot mass [g]

R
el

at
iv

e 
er

ro
r 

[%
]

0 1 2 3 4 5

x 10
4

0

10

20

30

Simulated and measured soot mass (With flow bias error)

Time [s]

S
oo

t m
as

s 
[g

]

 

 

Measured soot
Simulated without error
Simulated with error

0 5 10 15 20 25 30
−18

−16

−14

−12

−10

−8
Relative error (With flow bias error)

Soot mass [g]

R
el

at
iv

e 
er

ro
r 

[%
]

Figure A.1. The effect on the ARX model with a bias error of 2 dB on the gain,
20 ◦C on the temperature and 20 m3/h on the flow input signals, one at a time. Each
row corresponds to a bias error for gain, temp and flow respectively. The left column
is prediction with and without error compared to the weighted mass. The right column
is the relative error for the prediction with the bias error compared to the prediction
without error. The relative error increases with increased soot mass for all bias errors in
the input signals.
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Figure A.2. The effect on the reduced ARX model (only one state) with a bias error
of 2 dB on the gain, 20 ◦C on the temperature and 20 m3/h on the flow input signals,
one at a time. Each row corresponds to a bias error for gain, temp and flow respectively.
The left column is prediction with and without error compared to the weighted mass.
The right column is the relative error for the prediction with the bias error compared to
the prediction without error. The relative error stabilizes for all bias errors on the input
signals.
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Figure A.3. The effect on the ARMAX model with a bias error of 2 dB on the gain,
20 ◦C on the temperature and 20 m3/h on the flow input signals, one at a time. Each
row corresponds to a bias error for gain, temp and flow respectively. The left column
is prediction with and without error compared to the weighted mass. The right column
is the relative error for the prediction with the bias error compared to the prediction
without error. The relative error increases with increased soot mass for all bias errors in
the input signals.
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Figure A.4. The effect on the OE model with a bias error of 2 dB on the gain, 20 ◦C
on the temperature and 20 m3/h on the flow input signals, one at a time. Each row
corresponds to a bias error for gain, temp and flow respectively. The left column is
prediction with and without error compared to the weighted mass. The right column
is the relative error for the prediction with the bias error compared to the prediction
without error. The relative error decreases with increased soot mass for bias errors in
gain and temperature but increases for a bias error in the flow.
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Figure A.5. The effect on the BJ model with a bias error of 2 dB on the gain, 20 ◦C
on the temperature and 20 m3/h on the flow input signals, one at a time. Each row
corresponds to a bias error for gain, temp and flow respectively. The left column is
prediction with and without error compared to the weighted mass. The right column
is the relative error for the prediction with the bias error compared to the prediction
without error. The relative error for a bias error in gain decreases towards zero with
increased soot mass while a bias error in temperature stabilizes. Flow is excluded as an
input signal to keep the model stable.
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Figure A.6. The effect on the output for the ARX model when Gaussian noise, with
mean value zero and variance 10, is added to each of the three input signals; gain, up-
stream temperature and flow, one at a time. In the figure the output from the simulation
without noise is subtracted from the output from simulation with noise, thus only the
output from the noise is shown. Top left: input noise, top right: noise added to the gain
signal, bottom left: noise added to the temperature signal, bottom right: noise added to
the flow signal.
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Figure A.7. The effect on the output for the reduced ARX model when Gaussian
noise, with mean value zero and variance 10, is added to each of the three input signals;
gain, upstream temperature and flow, one at a time. In the figure the output from the
simulation without noise is subtracted from the output from simulation with noise, thus
only the output from the noise is shown. Top left: input noise, top right: noise added to
the gain signal, bottom left: noise added to the temperature signal, bottom right: noise
added to the flow signal.
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Figure A.8. The effect on the output for the ARMAX model when Gaussian noise,
with mean value zero and variance 10, is added to each of the three input signals; gain,
upstream temperature and flow, one at a time. In the figure the output from the simu-
lation without noise is subtracted from the output from simulation with noise, thus only
the output from the noise is shown. Top left: input noise, top right: noise added to
the gain signal, bottom left: noise added to the temperature signal, bottom right: noise
added to the flow signal.
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Figure A.9. The effect on the output for the OE model when Gaussian noise, with mean
value zero and variance 10, is added to each of the three input signals; gain, upstream
temperature and flow, one at a time. In the figure the output from the simulation
without noise is subtracted from the output from simulation with noise, thus only the
output from the noise is shown. Top left: input noise, top right: noise added to the gain
signal, bottom left: noise added to the temperature signal, bottom right: noise added to
the flow signal.
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Figure A.10. The effect on the output for the BJ model when Gaussian noise, with mean
value zero and variance 10, is added to each of the three input signals; gain, upstream
temperature and flow, one at a time. In the figure the output from the simulation
without noise is subtracted from the output from simulation with noise, thus only the
output from the noise is shown. Top left: input noise, top right: noise added to the gain
signal, bottom left: noise added to the temperature signal, bottom right: noise added to
the flow signal.
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