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Abstract

A driving cycle is a velocity profile over time. Driving cycles can be used for
environmental classification of cars and to evaluate vehicle performance. The
benefit by using stochastic driving cycles instead of predefined driving cycles, i.e.
the New European Driving Cycle, is for instance that the risk of cycle beating is
reduced. Different methods to generate stochastic driving cycles based on real-
world data have been used around the world, but the representativeness of the
generated driving cycles has been difficult to ensure.

The possibility to generate stochastic driving cycles that captures specific fea-
tures from a set of real-world driving cycles is studied. Data from more than
500 real-world trips has been processed and categorized. The driving cycles are
merged into several transition probability matrices (tpms), where each element
corresponds to a specific state defined by its velocity and acceleration. The tpms
are used with Markov chain theory to generate stochastic driving cycles. The driv-
ing cycles are validated using percentile limits on a set of characteristic variables,
that are obtained from statistical analysis of real-world driving cycles.

The distribution of the generated driving cycles is investigated and compared to
real-world driving cycles distribution. The generated driving cycles proves to
represent the original set of real-world driving cycles in terms of key variables
determined through statistical analysis.

Four different methods are used to determine which statistical variables that de-
scribes the features of the provided driving cycles. Two of the methods uses
regression analysis. Hierarchical clustering of statistical variables is proposed as
a third alternative, and the last method combines the cluster analysis with the
regression analysis.

The entire process is automated and a graphical user interface is developed in
Matlab to facilitate the use of the software.
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Sammanfattning

En körcykel är en beskriving av hur hastigheten för ett fordon ändras under en
körning. Körcykler används bland annat till att miljöklassa bilar och för att ut-
värdera fordonsprestanda. Olika metoder för att generera stokastiska körcykler
baserade på verklig data har använts runt om i världen, men det har varit svårt
att efterlikna naturliga körcykler.

Möjligheten att generera stokastiska körcykler som representerar en uppsättning
naturliga körcykler studeras. Data från över 500 körcykler bearbetas och katego-
riseras. Dessa används för att skapa överergångsmatriser där varje element mot-
svarar ett visst tillstånd, med hastighet och acceleration som tillståndsvariabler.
Matrisen tillsammans med teorin om Markovkedjor används för att generera sto-
kastiska körcykler. De genererade körcyklerna valideras med hjälp percentilgrän-
ser för ett antal karaktäristiska variabler som beräknats för de naturliga körcyk-
lerna.

Hastighets- och accelerationsfördelningen hos de genererade körcyklerna stude-
ras och jämförs med de naturliga körcyklerna för att säkerställa att de är repre-
sentativa. Statistiska egenskaper jämfördes och de genererade körcyklerna visade
sig likna den ursprungliga uppsättningen körcykler.

Fyra olika metoder används för att bestämma vilka statistiska variabler som be-
skriver de naturliga körcyklerna. Två av metoderna använder regressionsanalys.
Hierarkisk klustring av statistiska variabler föreslås som ett tredje alternativ. Den
sista metoden kombinerar klusteranalysen med regressionsanalysen.

Hela processen är automatiserad och ett grafiskt användargränssnitt har utveck-
lats i Matlab för att underlätta användningen av programmet.
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Notation

Nomenclature

a Acceleration
ares Acceleration resolution
Af Vehicle frontal area
Cd Aerodynamic drag coefficient
Cr Rolling resistance coefficient
d Driving distance
mv Vehicle mass
Ts Sample time
v Velocity
vpos Mean positive velocity
vres Velocity resolution

Abbreviations

fpc First principal component
gui Graphical user interface
lasso Least absolute shrinkage and selection operator
mtf Mean tractive force
NaN Not a number
nedc New European Driving Cycle
pca Principal component analysis
safd Speed-acceleration frequency distribution
tpm Transition probability matrix
udds Urban Dynamometer Driving Schedule
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1
Introduction

There are multiple predefined driving cycles used for environmental classifica-
tion of vehicles and in the vehicle product development process in the world
today. Two well known examples are the New European Driving Cycle (nedc),
seen in Figure 1.1, and the Urban Dynamometer Driving Schedule (udds). De-
velopment of some driving cycles are summarized in André [1996].
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Figure 1.1: The New European Driving Cycle (nedc).

However, a problem when testing vehicles with predefined driving cycles is that
the risk for cycle beating is increased. This means that vehicle parameters affect-
ing emissions and fuel consumption can be optimized for a specific cycle [Kåge-
son, 1998, Schwarzer et al., 2010]. But there are no guarantee that the vehicle
will perform in the same way when driven in real-world traffic. A natural driv-
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4 1 Introduction

ing cycle is usually more aggressive than the standardized cycles [Fellah et al.,
2009]. It is therefore necessary to test vehicles with natural diving cycles in order
to obtain more relevant results. An example of a real-world driving cycle is seen
in Figure 1.2, where it is clear that the acceleration varies more than in Figure 1.1.

The risk for cycle beating is significantly decreased when vehicles are tested
against several different driving cycles. However, obtaining driving cycles through
measurements can be costly, and there is much to gain if they can be generated
automatically.
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Figure 1.2: Example of a natural driving cycle.

A common method for construction of driving cycles is to randomly append driv-
ing segments, where a segment is a driving sequence between two stops [André,
1996]. Lin and Niemeier [2002] describes the method as a combination of ’mi-
crotrips’. A problem when randomly appending microtrips is that no consider-
ation for differentiation in modal events (e.g. cruise, idle, acceleration and de-
celeration) within a segment is made [Lin and Niemeier, 2002]. Furthermore, the
method has problems achieving the desired driving cycle duration [André, 1996].

Lin and Niemeier [2002] used a stochastic process to assemble small snippets of
data until certain statistical criteria were met. Snippets are based on which modal
event they belong to and is extracted from the measured driving cycles. The main
difference between snippets and segments is that a snippet is not constrained
to be a driving segment between two stops. However, due to the size of these
snippets, it is still difficult to achieve the desired driving distance and at the
same time obtain driving cycles that are representative for natural driving [Lee
and Filipi, 2011].

Another way would be to assemble single velocity and acceleration states instead
of entire snippets. One option is to generate driving cycles by using Markov
chains, as described in Lee and Filipi [2011]. This includes extracting information
from a database of real-world traffic, analyzing the data and to generate driving
cycles from a stochastic process.
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The objective of this thesis is to use the Markov chain approach when applicable
and at the same time propose improvements to the algorithm.

1.1 Problem formulation

This thesis addresses the problem of synthesizing driving cycles that are repre-
sentative for real-word driving cycles. All important characteristic features from
a specific type of driving shall be captured in a single stochastic driving cycle.
This means that the specific features must be determined, and that the generated
driving cycles must be validated.

Since the process is composed of many complex steps, which can be performed
in many ways, it is thus desirable to automate the process as much as possible in
order to obtain a structured method.

1.2 Limitations

Since the measured driving data can be formatted differently in different stud-
ies, it is not possible to write software that handles every type of data. This is
solved by defining a specification on how input data has to be formatted. The
specification can be seen in Section 3.2.

Some of the statistical analysis rely on that a sufficiently large amount of real-
world driving cycles are available. Most of the driving cycles available have either
a very short driving distance or a low average speed. For this reason, it is hard
to assure validity in driving cycles generated from categories with a long driving
distance, or a high average speed.

1.3 Approach

As described above, this thesis is based on the work by Lee and Filipi [2011]. The
proposed method is used as a foundation and certain parts are developed even
further.

An important part of the thesis is to study what describes a representative natural
driving cycle. It is investigated through statistical analysis and the results are
used to validate generated driving cycles.

The methods are implemented in Matlab and an accompanying graphical user
interface (gui) is developed.

1.4 Thesis contributions

Unlike previous work in the field, this thesis propose to use a unique set of vali-
dation variables for each categorization set of real-world driving cycles in order
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to ensure the representativeness of the synthesized driving cycles. The character-
istics of a driving cycle depends on the type of driving and the validation must
therefore be different.

Another contribution is the proposed cluster analysis method to determine what
represents a set of driving cycles. It uses principal component analysis to calcu-
late the similarities between the statistical variables in each category and deter-
mines a subset from 27 proposed characteristics, depending on the real-world
driving cycles. Unlike the regression analysis method proposed by Lee and Filipi
[2011], the cluster analysis is well suited to be automated.

1.5 Thesis outline

Chapter 2 describes the theory used for the analysis and generation of driving
cycles. The methods used to analyze provided data are described in Chapter 3.
Chapter 4 contains descriptions on how driving cycles are generated and the val-
idation of those. The results are presented in Chapter 5. The last part, Chapter 6,
contains discussion of the results and Chapter 7 presents the conclusions.



2
Theory

Different methods to determine representative variables for sets of real-world
driving cycles is presented. The described methods are based on linear regression
analysis and hierarchical clustering of variables. The Markov chain theory to
generate new driving cycles is presented in Section 2.4.

2.1 Multiple linear regression

Assume that a response variable y is observed n times together with a set of ex-
planatory variables [x1, x2, . . . , xj , . . . , xm], e.g. calculated for n real-world driv-
ing cycles. (The explanatory variables are also referred to as regressors.) The
objective of a regression analysis is to explain as much of the variation in the
response variable as possible using linear combinations of the explanatory vari-
ables, namely estimate the coefficients in the linear model

y = β1 + β2x1 + β3x2 + ... + βm+1xm + ε, (2.1)

where ε is a random normally distributed stochastic variable. The estimated
model can be used to predict future values of the response variable. The set
of optimal equation coefficients β̂ = [β̂1, β̂2, . . . .β̂m+1] are estimated as

β̂ = arg min
{
Qols(β)

}
= arg min

 n∑
i=1

(yi − β1 − β2x1,i − ... − βm+1xm,i)
2

 . (2.2)

7



8 2 Theory

The coefficients are optimal in the sense that they minimize the squared model
residuals ε = [ε1, ε2, . . . , εn]T , as shown in [Enqvist, 2007, p. 21].

The solution is found by taking the partial derivatives of Qols,
∂Qols
∂βk

, for k =
1, 2, . . . , m + 1. By setting each partial derivative equal to zero, a linear equation
system is formed with the unknown parameters β. Overall, the system contains
m + 1 equations and m + 1 unknown variables and can be written on the matrix
form

Y = Xβ + ε. (2.3)

The estimated coefficients, β̂, can be derived as

β̂ =
(
XTX

)−1
XTY, (2.4)

if det(XTX) , 0 and the matrices Y, β, ε and X are defined as

Y =


y1
y2
...
yn

 , β =


β1
β2
...

βm+1

 , ε =


ε1
ε2
...
εn

 , (2.5)

X =


1 x1,1 x2,1 . . . xm.1
1 x1,2 x2,2 . . . xm,2
...

...
...

. . .
...

1 x1,n x2,n . . . xm,n

 . (2.6)

If the estimated residuals,

ε̂ = Y − Xβ̂, (2.7)

are independent identically distributed (i.i.d.) random variables, ε̂ ∼ N (0, σ2In),
then the regression model predicts the response variable. The estimated coeffi-
cients β̂ are in that case normally distributed as well, β̂ ∼ N (β, σ2(XTX)−1).

2.1.1 T-test

A T -test can be performed in order to determine whether an explanatory variable
actually contributes to the estimation of the response variable. The standard
error of the regression, s2 is calculated as

s2 =
ε̂T ε̂

n −m − 1
∼ σ2

n −m − 1
χ2(n −m − 1), (2.8)
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and since s2 is a sum of the independent squared normally distributed random
variables ε̂i , it is χ2-distributed. The distribution relationship can be written as

ε̂T ε̂
σ2 ∼ χ

2(n −m − 1). (2.9)

The estimated standard error of the regression is used to estimate the standard
error for each model coefficient βj . The formula is given by

σ̂βj =
√
s2 (XTX)−1

jj , (2.10)

where (XTX)−1
jj refers to the j:th element on the diagonal of the covariance matrix,

(XTX)−1.

If a coefficient βj = 0, the fraction between the estimated coefficient and the
coefficient standard error, also called the coefficient t-value, is T -distributed with
n −m − 1 degrees of freedom. This can be seen by rearranging the terms as

tβj =
β̂j
σ̂βj

=

[(
XTX

)−1
XTY

]
j√

ε̂T ε̂
n−m−1 (XTX)−1

jj

∼ N(0, 1)√
χ2(n−m−1)

(n−m−1)

= T (n −m − 1) . (2.11)

The result is a fraction between a normal distribution and the square root of a
χ2-distribution divided by its degrees of freedom. This is the definition of a T -
distribution [Blom et al., 2005, p. 293]. Generally, the T -distribution origins from
the normal distribution and as the degrees of freedom grows towards infinity, the
T -distribution approaches the N (0, 1)-distribution as illustrated in Figure 2.1.
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Figure 2.1: Probability density function for T-distributions with various de-
grees of freedom compared to the N (0, 1)-distribution.
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The T -distribution is useful to determine whether a regression coefficient βj = 0,
in other words, whether the explanatory variable xj−1 affects the response vari-
able at all [Enqvist, 2007, pp. 27–32]. The coefficient p-value

pβj = P
(
|t| ≥ |tβj |

∣∣∣∣ βj = 0
)
, (2.12)

is a measure of how far out in the T -distribution the coefficient t-value lies.

For instance, if pβj = 0.049, it is possible to state that βj , 0 at a confidence level
of 95 %. Figure 2.2 shows the 95th percentile for the T (5)-distribution. If the
t-value is above ≈ 2, the p-value is lower than 0.1 (since the distribution is sym-
metric) and it is possible to state that the coefficient is non-zero at a confidence
level of 90 %.
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Figure 2.2: Cumulative distribution function and probability density func-
tion for a T-distribution with 5 degrees of freedom. The 95th percentile is
dashed in both plots.

It is important to remember that these conclusions are only valid under the as-
sumption that the residuals are normally distributed. Otherwise, the t- and p-
values gives no information about the coefficients βj since the coefficient standard
errors will not be T -distributed.

However, if the residuals are normally distributed, a T -test can be used to reduce
the number of explanatory variables by removing the variable most likely to have
a coefficient equal to zero. This can be done by removing the variable with the
largest p-value and perform the least squares regression with the remaining vari-
ables as proposed by Lee and Filipi [2011].

2.1.2 Measure of regression fit

The R2-statistic is a measure of how well the estimated regression equation fits
the observed data. The value represents how much of the variations in the re-
sponse variable y, that can be explained by the regression model [Renaud and
Victoria-Feser, 2010].
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The formula is given by

R2 =
Qregr
Qtot

=
∑n
i=1 (ŷi − ȳ)2∑n
i=1 (yi − ȳ)2 = 1 −

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2 = 1 − Qres

Qtot
, (2.13)

where ȳ is the mean value of the observed response variable and ŷi is the response
variable derived from the estimated model. Qtot is the total amount of variations
in the observed response variable, Qregr is the variations accounted for by the
regression model, and Qres describes the variations that the model is unable to
capture.

If R2 is large (& 0.9), the regression model with the estimated coefficients βj ex-
plains most of the variations in the response variable and the equation shows a
good fit to the observed data.

R2 is useful when a stepwise regression is performed. A limit can be set and
the removal of explanatory variables can be stopped when the model no longer
shows a large enough fit (when R2 becomes smaller than a predefined limit).

A property of R2 is that it always grows if more explanatory variables are added to
the model. This fact in combination with a small sample size can cause overfitting
of the data, and more variables than necessary can be included in the model. This
can however be compensated for by using

R2
adj = 1 − (1 − R2)

n − 1
n −m − 1

, (2.14)

where n is the sample size and m is the number of explanatory variables in the
model equation (not counting the constant term) [Harrell, 2001, p. 91].
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Figure 2.3: Regression analysis statistics for different number of regressors.
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The R2
adj-statistic compensates for the number of explanatory variables in the

equation and unlike the R2-statistic, it can decrease if too many variables are
included in the model. Figure 2.3 shows both the statistics from a regression
analysis containing n = 132 samples and different number of explanatory vari-
ables.

2.1.3 LASSO regression

In order to obtain a regression model with fewer explanatory variables than the
ordinary least squares method described above, it is possible to add an extra
constraint to the minimization problem. The objective with the least absolute
shrinkage and selection operator method (lasso) is to reduce the number of ex-
planatory variables while at the same time obtain a model that can predict the
response variable. These specific properties are obtained by penalizing the non-
zero model coefficients βj by using a regularization parameter λ and the L1-norm
of the model coefficients [Tibshirani, 1996]

β̂ = argmin


n∑
i=1

(yi − β1 − β2x1,i − ... − βm+1xm,i)
2 + λ

m+1∑
j=2

|βj |

 . (2.15)

Solving (2.15) leads to more coefficients, βj , being zero than in the ordinary least
squares case. The larger the regularization parameter λ is set, the more coeffi-
cients will be equal to zero in the final model.

Since the lasso regression already has the property of not including unneces-
sary variables, the regression fit can be measured using the ordinary R2-statistic
instead of the adjusted one mentioned above.

2.2 Hierarchical clustering of variables

In order to reduce the number of variables that describes a set of data, a hierar-
chical clustering method can be used to group closely related variables together.
The concept of hierarchical clustering is well described by Everitt et al. [2011]
and is illustrated in Figure 2.4.

There are many different methods to determine how closely related two variables
are, e.g. correlation or euclidean distance. The distance between two clusters can
also be defined in many ways, i.e. the average distance between the variables in
the two clusters or simply the closest distance from a variable in the first cluster
to a variable in the second cluster [Everitt et al., 2011]. In this thesis, the distance
between two clusters (or variables) i and j is defined as

di,j = 1 − P C1, (2.16)

where P C1 is the amount of within cluster variations accounted for by the first
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Figure 2.4: Hierarchical agglomerative clustering procedure.

principal component (fpc). The fpc is obtained from a principal component
analysis (pca) on the variables in the combined cluster (see Section 2.2.1).

The clustering method used in this thesis is an agglomerative clustering method,
meaning that all variables are assigned to an initial cluster. The clusters are
grouped together as long as the distance between them falls below a predefined
limit.

2.2.1 Principal component analysis

Principal component analysis (pca) is a method to determine how orthogonal a
set of variables are. By changing the base from the original variables to an orthog-
onal base consisting of principal components, it is possible to see in how many
dimensions the variables actually varies, and especially, how one-dimensional
the variations are. For further information about the concept and a complete
theory, see Jolliffe [2002].

Assume that m variables have been observed n times. The variables then forms a
matrix X where each row corresponds to a variable, where mean values of each
variable is removed and each variable is scaled with its standard deviation. By
performing a singular value decomposition of X as described by Jolliffe [2002, pp.
44–46], three new matrices are obtained. In other words, X is factorized as
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Xmxn =


x1
...

xm

 = UmxmΣmxnVT
nxn, (2.17)

where U is a unitary matrix with columns forming an orthonormal basis for X.
The amount of variance explained by the principal components P Ci can be de-
rived from the singular values σi in the diagonal matrix Σ using

P Ci =
σ2
i∑m

j=1 σ
2
j

. (2.18)

Specially, P C1 is the amount of variance explained by the fpc and is a measure
of the linearity in the set.

Figure 2.5 illustrates the procedure with two variables. The left picture shows
mean positive acceleration and acceleration standard deviation derived from 447
driving cycles. The variables are correlated and by performing a pca, it is possi-
ble to see that the fpc explains 96 % of the total variations in the original vari-
ables. The figure to the right shows the variables in the principal component
base.
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Figure 2.5: Two-dimensional principal component base change. (The length
of the direction lines is not proportional to the amount of variance explained
by the principal components.)
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2.3 Mean tractive force

A measure of how a driving cycle affects the vehicle is the mean tractive force
(mtf). The use of the mtf as representative response was proposed by Lee and
Filipi [2011] (also called specific energy at wheels), and the definition given here
can be found in Guzzella and Sciarretta [2007].

The mtf is defined as the mean positive force at the wheels necessary for a ve-
hicle to follow the driving cycle. This means that only time instances when the
powertrain provides power to the vehicle (i ∈ trac) are taken into account. The
definition of mtf is given by

Ftrac =
1
xtot

∫
i∈trac

F(t) · v(t)dt, (2.19)

where F(t) is the sum of all forces acting at the wheels, v(t) is the velocity and xtot
is the driving cycle distance. The contributions to F(t) are modeled and (2.19) is
rewritten as

Ftrac = Ftrac,a + Ftrac,r + Ftrac,m (2.20)

where Ftrac,a, Ftrac,r and Ftrac,m are the mtf values of aerodynamic, rolling re-
sistance and acceleration resistance forces acting at the wheels. Forces on the
wheels caused by road gradient are neglected when the power demand is calcu-
lated. They are each modeled as

Ftrac,a =
1
xtot

·
1
2

· ρa ·Af ·Cd ·
∑
i∈trac

v3
i · Ts (2.21)

Ftrac,r =
1
xtot

·mv ·Af · g ·Cr ·
∑
i∈trac

vi · Ts (2.22)

Ftrac,m =
1
xtot

·mv ·
∑
i∈trac

ai · vi · Ts, (2.23)

where Af is the vehicle frontal area, ρa is the air density and Cd is the drag coef-
ficient. Furthermore, mv is the vehicle mass, g is the gravitational constant, Cr is
the rolling resistance coefficient, and Ts is the time between velocity samples.

Only samples where the vehicle operates in traction mode (F(t) > 0) are consid-
ered when the mtf is calculated. Another way to determine if the vehicle is in
traction mode is to calculate the coasting velocity
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vc(t) =
β

α
· tan

{
arctan

(
α
β

· vc(0)
)
− α · β · t

}
(2.24)

where α and β are defined as

α =

√
1

2 ·mv
· ρa ·Af · cd (2.25)

β =
√
g · cr . (2.26)

[Guzzella and Sciarretta, 2007]. If a velocity sample vi in the driving cycle is
higher than the coasting velocity vc(Ts), determined by using vc(0) = vi−1 and
t = Ts in (2.24), the vehicle is operating in traction mode in the interval between
the samples i − 1 and i.

Figure 2.6 illustrates which intervals that are considered in the calculation of the
mtf. The white areas indicates that the vehicle operates in braking mode, and
therefore does not provide any traction force.
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Figure 2.6: Coasting velocities and traction mode illustration.

2.4 Markov chain

Markov chain is a mathematical theory used to model a random process. The
process is based on the Markov property that the next state, Xn+1, depends en-
tirely on the current state, Xn, and not any preceding or following states [Gubner,
2006],

P (Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x | Xn = xn) . (2.27)
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The probabilities of reaching a specific state at the next time instance varies de-
pending on the current state. The states, xi does not necessarily have to be one-
dimensional. In this thesis, each state is defined by a two-dimensional vector
[v, a], and each combination of the discrete variables v and a corresponds to a
specific state, xi .

The Markov chain used in this thesis is considered stationary since all probabil-
ities are time homogeneous [Gubner, 2006, p. 480]. It is possible to write the
one-step transition probability from state xi to state xj as

pij = P
(
Xn+1 = xj | Xn = xi

)
. (2.28)

All one-step state probabilities can be arranged in a matrix, called the transition
probability matrix (tpm), where each element contains the probabilities for every
other state to be the next in the chain. One important note is that all probabilities
for leaving a state (including the probability of staying in the same state) must
sum up to one. This is mathematically described as

∑
j

pij =
∑
j

P
(
Xn+1 = xj | Xn = xi

)
= 1, ∀i. (2.29)





3
Data Analysis

The following chapter describes how real-world data is processed and analyzed
to later be used in the generation of transition probability matrices (tpms).

3.1 Preprocessing

All driving data used to generate new stochastic driving cycles are provided by
Volvo Cars in Gothenburg. A total of nine vehicles have logged speed and torque
for several weeks during the summer of 2012.
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Figure 3.1: Example of non-natural driving cycles.
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However, only three of the vehicles are assumed to have been driven in normal
traffic conditions. The data from the remaining vehicles contains driving pat-
terns with tendencies to be measured on a test track. Repetitive patterns were
frequently occurring as can be seen in Figure 3.1.

Since the available data have been logged for entire weeks, as can be seen in
Figure 3.2a, there is a need to split each week of data into multiple driving cycles.
Each vehicle logged speed and torque while the engine was running. Figure 3.2b
shows the velocity profile from one of the measured driving cycles.
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(a) Data from a week.
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(b) Zoomed in view of a driving cycle.

Figure 3.2: Examples of given real-world data.

In Figure 3.2b, it is also possible to see the idle periods at the beginning and
end of each driving cycle. These extra measurements do not describe the driving
cycle when the vehicle is active and are therefore removed.

There are also some driving cycles that have unusually long idle periods. This
was initially considered to be stops due to traffic lights. But when the duration of
the idle periods were studied further, it was clear that a few of the stops could not
have come from such scenarios. Figure 3.3 shows a driving cycle that has an idle
time for approximately eight minutes between two non-zero velocity intervals.
Such a scenario is considered to occur when the vehicle is left running while the
driver is away, doing something else. All such events are therefore divided into
two separate driving cycles if the stoppage time is longer than 3 minutes.

Some of the available driving cycles did not start and end with a zero velocity
measurement. This is considered to be some kind of fault in the data logging pro-
cess. However, most of these driving cycles have otherwise good measurements
so instead of discarding multiple driving cycles, they are trimmed until they start
and end with a zero velocity sample.
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Figure 3.3: Approximately eight minutes pause in the middle of a driving
cycle.

3.2 Data input specification

A specification for how all input data must be constructed is defined. Each driv-
ing cycle has to be a Matlab structure with fields according to Table 3.1. Further-
more, the structures has to be chained together in an array.

Table 3.1: Data input specification.

Field Type Explanation Unit

velocity Vector Sampled velocity [km/h]

Ts Scalar Sample time [s]

carCharacteristics Structure (optional) See Table B.2. -

The field carCharacteristics in Table 3.1 is an optional structure, that is
mainly used when calculating the response variable in the regression analysis.
Default values are used when the field does not exist in the input data. The spec-
ifications for carCharacteristics are given in Table 3.2, as well as default
values for each parameter. Furthermore, all input driving cycles must have iden-
tical sample times.

It is recommended to use a sample time of 1 sample per second or faster. If a
longer sample time is used, there is a risk of losing information about the changes
in the driving cycles. If a shorter sample time is used, it will increase the com-
plexity of the driving cycles and will not, in most cases, give any additional infor-
mation. It will also result in a slower generation process since more samples has
to be generated to achieve the desired driving cycle duration.
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Table 3.2: carCharacteristics input specification.

Field Type Explanation Default value Unit

mv Scalar Vehicle mass 1600 [kg]

Cd Scalar Aerodynamic drag coefficient 0.4 [-]

Cr Scalar Rolling resistance coefficient 0.013 [-]

Af Scalar Vehicle frontal area 2.15 [m2]

3.3 Data processing

All incoming data go through a processing stage according to

1. Calculate acceleration.

2. Averaging velocity.

3. Discretize data.

4. Extract statistical variables.

The following sections will explain each step further. Step 1 and 2 are calculated
as in [Guzzella and Sciarretta, 2007, pp.23–24]. Step 3 and 4 are done as in [Lee
and Filipi, 2011].

3.3.1 Accleration

The acceleration is approximated by calculating the velocity change in each inter-
val

a(t) = āi =
vi − vi−1

3.6 · Ts
∀t ∈ [ti−1, ti) . (3.1)

3.3.2 Velocity

The average velocity between measurements is calculated as

v(t) = v̄i =
vi + vi−1

2
∀t ∈ [ti−1, ti) . (3.2)

The velocity and acceleration measurements are defined in the same time inter-
vals, which is important for upcoming calculations.

3.3.3 Discretization

To be able to generate a useful tpm, described in Section 4.1, there is a need to
discretize all measurements. Averaged velocities and accelerations are therefore
rounded to the closest neighboring discretization step as
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v̄di ∈ {0, vres, 2vres, . . .} (3.3)

ādi ∈ {. . . , −ares, 0, ares, 2ares, . . .} , (3.4)

where the default values for the discretization resolution is shown in Table 3.3.

Table 3.3: Default resolution steps for discretization.

Type Variable Stepsize
Velocity vres 1.0 km/h
Accleration ares 0.2 m/s2

3.3.4 Statistical analysis

One of the most important steps in the initial processing is the statistical analysis.
The values extracted here are later used for data filtering (Section 3.4), represen-
tative variable analysis (Section 3.6), and validation (Section 4.3) among others.
The variables extracted are presented in Table 3.6 and in Appendix A.

3.4 Data filtering

All real-world driving cycles are by this point processed and they have statistical
properties available for further study. A couple of filtering criteria are defined to
remove unwanted driving cycles. Data is filtered based on the following aspects

• Mean positive velocity.

• Driving time with positive velocity.

All driving cycles with a mean positive velocity below 10 km/h are removed since
they are not considered natural. An example of such a driving cycle can be seen
in Figure 3.4.

Driving cycles that have a non-zero velocity for shorter than 60 seconds are also
removed. As can be seen in Figure 3.5, the driving time for the entire driving
cycle is close to two minutes but the amount of time where the vehicle is driving
with a positive velocity is below the limit, and the cycle is therefore removed.
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Figure 3.4: Driving cycle with a mean positive velocity below 10 km/h.
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Figure 3.5: Driving cycle with short timespan at positive velocity.

3.5 Data categorization

A driving cycle can be categorized into different types, e.g. by distinguishing
between driving cycles that are measured while driving in the city and driving
cycles measured on the freeway. Since given data have a wide spread of driving
types, it is possible to split the set of driving cycles into more specific categories.
Categories used in this thesis are based on those defined by Lee and Filipi [2011]
and can be seen in Table 3.4 and Table 3.5.

As can be seen in the third column in the tables (number of cycles), there are
only three categories that have a substantial amount of data. Most effort is there-
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Table 3.4: Categories based on mean positive velocity.

Category Limits [km/h] # Cycles

Urban 0 < v̄pos ≤ 40 328

Mixed 40 < v̄pos ≤ 72 133

Freeway 72 < v̄pos < ∞ 5

Table 3.5: Categories based on driving distance.

Category Limits [km] # Cycles

Short 0 < d ≤ 14 409

Medium 14 < d ≤ 32 42

Long 32 < d < ∞ 15

fore focused on these categories since the other ones do not have enough driving
cycles to perform a proper statistical analysis.

3.6 Representative variables

Four different methods are implemented that determines a set of representative
variables for a set of driving cycles, i.e. driving cycles from a specific category.
Each one of the methods is tested on the driving cycles that are categorized as
short, urban and mixed. Each method generates a subset of the statistical vari-
ables listed in Table 3.6, that may be considered sufficient to describe the char-
acteristics of a driving cycle from the given category. The variables selected are
later used to evaluate the representativeness of generated driving cycles.

3.6.1 Iterative regression analysis

The first implemented method is the iterative regression analysis proposed by
Lee and Filipi [2011]. The objective is to single out the variables among the 27
proposed ones that explains the response variable, mean tractive force (mtf), de-
scribed in Section 2.3. Unlike the method used by Lee and Filipi [2011], the
implementation in this thesis is completely automated.

At first, the mutual correlation between the 27 explanatory variable candidates
are examined. This leads to the removal of several variables that shows a strong
correlation with another variable/variables. Each of the candidate explanatory
variables are compared to the other ones in terms of linear correlation. The linear
correlation coefficient between two explanatory variables, Xi = [xi,1, ..., xi,n] and
Xj = [xj,1, ..., xj,n] observed together for n driving cycles is defined as
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ri,j =
cov(Xi ,Xj )

σi · σj
=

∑N
k=1(xi,k − xi)(xj,k − xj )√∑N

k=1(xi,k − xi)2
√∑N

k=1(xj,k − xj )2
, (3.5)

where xi and xj are the observed variable means [Blom et al., 2005].

If two variables show a strong linear correlation, |ri,j | > 0.75, one of them is re-
moved. The variable with the largest individual correlation with the response
variable, mtf, is kept for the regression analysis as an explanatory variable.

The limit, |ri,j | > 0.75, is selected based on visual examinations of the relation-
ships. Figure 3.6 shows two examples of the correlation between candidate ex-
planatory variables. In both cases, the mutual correlation exceeds the limit and
one of the variables is removed.
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Figure 3.6: Mutual correlation between explanatory variable candidates.

A test where exponential correlations were taken into account was also performed.
The test gave almost identical results as the linear correlation tests. A decision
was therefore made to only use the linear correlations when determining the ini-
tial explanatory variables.

When the mutual correlation between the variables has been examined, a step-
wise regression analysis is performed in order to determine the smallest set of
variables that can be used to explain the driving cycles mtf.

An initial model is estimated using all the remaining variables. In order to further
reduce the number of variables in the model, a T-test for each model coefficient is
performed. The variable corresponding to the model coefficient with the largest
p-value, pβj , is removed from the set of explanatory variables. The procedure is
repeated and an explanatory variable is removed in each step until the model no
longer satisfies the adjusted R-square limit, R2

adj > 0.9.

The variable removed in the last step is returned to the model when the regres-
sion fit falls below the limit. The remaining variables are selected as representa-
tive for the driving cycles used in the analysis.
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Table 3.6: Driving cycle characteristics.

Category # Explanatory variable Unit

1 Mean positive velocity [km/h]
2 Mean velocity [km/h]

Velocity 3 Maximum velocity [km/h]
4 95th percentile maximum velocity [km/h]
5 Standard deviation of velocity [km/h]

6 Mean positive acceleration [m/s2]
7 Mean negative acceleration [m/s2]
8 Positive acceleration time [s]
9 Negative acceleration time [s]

10 95th percentile maximum acceleration [m/s2]
11 95th percentile minimum acceleration [m/s2]

Acceleration 12 Maximum acceleration [m/s2]
13 Minimum acceleration [m/s2]
14 Standard deviation of acceleration [m/s2]
15 Percentage of driving time under [%]

positive acceleration
16 Percentage of driving time under [%]

negative acceleration

Distance and 17 Driving distance [km]
time 18 Driving time [s]

19 Idle time [s]
20 Percentage of idle time [%]
21 Cruise time [s]
22 Percentage of cruise time [%]

Driving 23 Number of stops [-]
characteristics 24 Number of stops per km [ /km]

25 Mean specific power [W/km]
26 Maximum specific power [W/km]
27 Minimum specific power [W/km]
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3.6.2 LASSO regression

To avoid unnecessary number of explanatory variables, another method based on
regularized least-squares regression is implemented, namely the lasso method
described in Section 2.1.3. The minimization problem solved to estimate the
model coefficients for different λ is given by

β̂ = arg min


n∑
i=1

(Y − Xβ)2 + λ
m+1∑
j=2

|βj |

 . (3.6)

The minimization problem is essentially the same as in the linear stepwise regres-
sion. The only difference is that the L1-norm of the coefficient vector is included
with the regularization coefficient λ.

Since a large λ-value results in many model coefficients βj being zero, the coef-
ficient value is lowered until the limit R2 > 0.9 is fulfilled. In order to avoid an
unnecessary high number of representative variables, the lowering of λ also stops
if the number of non-zero βj becomes larger than ten.

3.6.3 Hierarchical clustering of variables

A variable clustering method is implemented to determine a minimal subset of
representative variables from the 27 variables listed in Table 3.6. The theory of
clustering variables can be found in Section 2.2.

Unlike the iterative regression method, mtf is not used as a representative re-
sponse. Instead, the implemented clustering method intends to explain the vari-
ations in all statistical variables.

Mean values are removed from each variable since it is the variation in the vari-
ables that is to be investigated. They are also scaled with their standard devia-
tions to avoid that high-valued variables affect the result more than low-valued
ones. For example, maximum velocity is normally much larger than number of
stops.

The clustering procedure starts with each statistical variable in a separate cluster.
At each iteration, the clusters closest to each other are combined as long as the
distance between them is small enough.

The implemented distance measure between clusters makes use of the principal
component analysis (pca), described in Section 2.2.1. The distance between two
clusters i and j, di,j is obtained from a pca on the variables in the combined
cluster.

An upper triangular distance matrix D is calculated at each iteration before com-
bining the closest clusters. D have the form
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D =


0 d1,2 · · · d1,n−1 d1,n
0 0 · · · d2,n−1 d2,n
...

...
. . .

...
...

0 0 · · · 0 dn−1,n
0 0 · · · 0 0


, (3.7)

where n is the number of clusters at the current iteration. The two clusters cor-
responding to the smallest non-zero value in D are combined in the subsequent
step.

When the smallest non-zero value in the distance matrix no longer falls below
the limit

di,j = 1 − P C1,ij < 0.25, (3.8)

the grouping stops and the final clusters are determined by the set of clusters at
that point. The limit used is determined through several tests and visual exami-
nation of the clusters obtained in different categories.

Figure 3.7 illustrates the procedure of clustering variables for the driving cycles
in the category short. The statistical variables are listed on the x-axis and the
distance between the combined clusters are shown on the y-axis. The dotted line
corresponds to the limit after which no more clusters are combined. (Due to the
fact that the combined cluster variables no longer shows the one-dimensional
behavior that is required in order to group them together.)
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Figure 3.7: Resulting dendrogram from the clustering of the variables in the
category short.

When the final clusters have been determined, one variable from each cluster is
selected as the cluster representative and as a final representative variable in the
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validation of the generated driving cycles. The chosen variable from each cluster
is the one with the largest distance to its closest neighboring cluster. The proce-
dure to select a cluster representative is described in Figure 3.8 and explained
further below.

The decrease in variations explained by the fpc when a variable, v, is added to a
cluster, c, is calculated as

∆P Cv,c1 = P Cc1 − P C
v,c
1 , (3.9)

where P Cc1 is the variance explained by the fpc in cluster c, and P Cv,c1 is the
variance explained by the fpc when the variable v is added to the cluster.

Assume that there are k final clusters with various number of variables in them.
Each variable i ∈ [1, 2, . . . , mj ] in cluster j ∈ [1, 2, . . . , k] is assigned a value si , that
is the smallest fpc-decrease when the variable is added to another cluster

si = min
{
∆P C i,c1 : c ∈ [1, 2, . . . , k], c , j

}
. (3.10)

Every variable in the cluster is compared to all other clusters and the variable
selected as representative for cluster j, is the one with the largest si , determined
by

i = arg max
i

{
si : i ∈ [1, 2, . . . , mj ]

}
. (3.11)

Figure 3.8: Procedure to choose a cluster representative in each final cluster.
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3.6.4 Combined regression and clustering

A fourth method is implemented to avoid the use of the response variable mtf
when determining the initial variables for the stepwise regression analysis. Un-
like the iterative regression analysis method, the procedure intends to remove
correlated variables by using cluster analysis and then determine the final repre-
sentative variables by using the method described in Section 3.6.1.

Instead of using the limit on P C1 from Section 3.6.3, a lower one is used, namely
that P C1 in each cluster must exceed 0.9.

The resulting clusters obtained from the analysis in the category short can be seen
in Figure 3.9. A total of 16 clusters, for which one representative is chosen using
the same method as in Section 3.6.3, are nominated as explanatory variables for
the regression analysis.
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Figure 3.9: Clustering dendrogram from the combined regression and clus-
tering analysis.





4
Driving Cycle Generation

Generation of driving cycles includes the process of generating both transition
probability matrices (tpms), described in Section 4.1, as well as driving cycles,
described in Section 4.2. Section 4.3 goes into details on how the driving cycle
validation works. The chapter also contains specifications on how data is speci-
fied within Matlab.

4.1 TPM construction

As described in Section 2.4, the tpm matrix contains probabilities to transition
from one state to another state. Each state is defined by the state variables, veloc-
ity and acceleration. To increase the readability, the tpm is constructed as a large
matrix containing smaller sub-matrices, as can be seen in Figure 4.1. Each state
corresponds to a specific element in the tpm, that contains a smaller matrix with
the transition probabilities.

The size of the large matrix is determined by the maximum velocity and the ab-
solute maximum acceleration combined with the resolutions for velocity and ac-
celeration. The number of rows, nr , and columns, nc, are calculated as

nr = 2 ·
|a|max
ares

+ 1 (4.1)

nc =
vmax
vres

+ 1. (4.2)

For example, if the maximum velocity is 180 km/h, and the resolution is 1 km/h,

33
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Figure 4.1: Example of a tpm.

there will be 181 columns. If the absolute maximum acceleration is 8.2 m/s2, and
the resolution is 0.2 m/s2, there will be 83 rows in the tpm. The first column in
the matrix corresponds to zero velocity and the middle row to zero acceleration.

When the size of the large matrix is defined, it is possible to generate the sub-
matrices. This is done by stepping through each input driving cycle and saving
each state transition in the correct sub-matrix. A new row is added to the sub-
matrix for each time a state is visited, changing the size of the sub-matrix.

When all driving cycles have been sorted into the tpm, there is a need to sort and
summarize the sub-matrices. A value of how many times a unique transition has
occurred is calculated and the transition probabilities are derived. Example of
the final representation of the tpm can be seen in Figure 4.1.

4.1.1 TPM specification

The tpm is constructed as a Matlab structure, since there is a need to store dif-
ferent kinds of data within it. Instead of sending several individual variables
between functions, it is possible to just send one structure with all information
that is needed. It will also make it easier to store several different settings for the
driving cycle generation which will make it possible to reuse the same generated
tpm in the future. The specification on how a tpm is configured can be seen in
Table 4.1.
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Table 4.1: tpm specification.

Field Explanation

matrix The generated probability matrix

velRes Velocity resolution

accRes Acceleration resolution

Ts Sample time

nrOfCycles Number of cycles the tpm is based on

variableIntervals Validation intervals

statMatrix Cycle statistics matrix

repVariables Structure with representative variables

analysisInfo Information from the data analysis

4.2 Driving cycle construction

When a tpm has been created, it is possible to start generating driving cycles. The
process starts by calculating the desired driving cycle duration. This is done by
calculating the median for all driving cycles that the tpm is based on. This is the
driving duration that the process aims for, but it is not the definite duration of
the finished driving cycle.

The process, described in Figure 4.2, starts in the idle state (zero velocity and
acceleration). The first transition is leaving the idle state and the driving cycle
is then built up through random state transitions in the tpm, based on the tran-
sition probabilities. Each sub-matrix contains all state transitions available with
corresponding probabilities. Two examples of how the sub-matrices are built can
be seen in Figure 4.1. The iterative process continues until the desired duration
is exceeded at the same time as the end state has a velocity equal to zero.

There is also a desire to have only one zero velocity state at the end of each driving
cycle,

v(tend) = 0 (4.3)

v(tend − 1) , 0, (4.4)

which is obtained by removing all but one zero velocity state from the end. How-
ever, this trimming is very rare since it only occurs when the velocity is zero in
an interval before and up to the desired duration.

Finally, the driving cycle goes through the validation process described in the
next section. If the driving cycle is deemed valid, it is presented to the user. If it
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Figure 4.2: The driving cycle generation process.

is considered invalid, it is discarded, and a new driving cycle is generated. This
continues until a valid driving cycle is found.

4.2.1 Driving cycle specification

The final generated driving cycle is a Matlab structure configured as in Table 4.2.
The fields velocity and acceleration corresponds to the velocity and ac-
celeration profiles obtained from the Markov process. The driving time can be
found in the field duration and Ts is the sample time.

The field characteristics is a structure that contains values for all statistical
variables, described in Appendix A. The last field, TPMname, contains a string
with the name of the tpm used to create the driving cycle.

4.3 Validation

Since the generated driving cycles are created from a Markov process, there is
no guarantee that they will be good representatives for the chosen data set. It is
therefore necessary to validate each generated driving cycle. The validation is per-
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Table 4.2: Driving cycle specification.

Field Explanation Unit

velocity Velocity vector [km/h]

acceleration Acceleration vector [m/s2]

duration Cycle duration [s]

Ts Sample time [s]

characteristics Cycle statistics -

TPMname Name of TPM used -

formed using the representative variables obtained from the analysis described
in Section 3.6.

Initially, the validation method used the average values for all statistical variables
derived from the driving cycles in the tpm. These values were compared to the
same variables for the generated driving cycles, and the deviation was calculated
in percent. However, this method has several problems,

• Variables with a large value get a big validation range.

• Variables with a low value get a small validation range. This could result in
validation limits, for which it is impossible to generate an approved driving
cycle.

• The variables natural deviations was not taken into consideration.

The percentage validation method was for these reasons replaced with a new type
of validation, based on percentiles.
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Figure 4.3: Histogram for a statistical variable with median and 25 % limit
presented.
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As an example, the 10th percentile is the value for which 10 % of all the observa-
tions falls below. The median value is by that logic found at the 50th percentile.
A range is then constructed using this knowledge. If a validation should be done
with a 20 % limit, then this is converted to a range from the 40th percentile to the
60th percentile. Another example can be seen in Figure 4.3, where a generated
driving cycle is approved if it obtains a value between the validation limits.

Using percentiles solved the problems that occurred with percentage validation.
All variables are allowed to be within an interval for which it is possible to ap-
prove the generated driving cycles. Variables that have a large variance in the
measured driving cycles are also allowed a larger variance in the generated driv-
ing cycles. The opposite is true for the variables with narrow distributions.



5
Results

The main results from the process of generating stochastic driving cycles by using
the described methods can be summarized in two groups.

First, some of the generated driving cycles are presented and their speed-acceleration
frequency distribution (safd) is compared to the safd of the real-world driving
cycles, in order to ensure their representativeness.

Second, results from the four proposed methods to determine representative vari-
ables to a set of real-world driving cycles (see Section 3.6) are presented in Sec-
tion 5.2. The results from the validation of the generated driving cycles are pre-
sented in Section 5.3.

5.1 Generated driving cycles

The software, described in Appendix B, can output a valid driving cycle. An
example can be seen in Figure 5.1, where the driving cycle has been constructed
from the tpm produced from the driving cycles with a driving distance shorter
than 14 km, as described in Section 3.5.

It is possible to see some similarities when generating several driving cycles from
the same category. They have roughly the same duration and many of the statis-
tical variables are in the same range, even those that the driving cycle was not
validated against. This is because some of the statistical variables are related,
described further in Section 5.2.

As previously mentioned in Section 3.5, only some of the categories have enough
measured driving cycles to generate a tpm that does not have traces of separate
driving cycles. When generating a driving cycle with those tpms, it is often pos-

39
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Figure 5.1: Generated driving cycle from the category short.

sible to see identical snippets compared to the measured driving cycles. This is
due to the fact that some states in the tpm have only one transition available, and
that the Markov chain will continue on the same path until the process arrives at
a state that has multiple state transitions.

The generated tpms in the categories short, urban and mixed contains a large num-
ber of real-world driving cycles. Examples of generated driving cycles in those
categories can be seen in Figures 5.1 - 5.3.
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Figure 5.2: Generated driving cycle from the category urban.

It is possible to generate driving cycles from the other categories (median, long
and freeway), but since the analysis is affected by the small data sets, there is no
guarantee that the generated driving cycles are representative for their respective
category.
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Figure 5.3: Generated driving cycle from the category mixed.

5.1.1 Distribution of generated driving cycles

When generating driving cycles, there is a desire that the output should have the
same speed-acceleration frequency distribution (safd) as the input data. A test is
performed, where one million driving cycles from the category short is generated
and the safd is compared to the safd of the used tpm. The deviation from the
tpm is calculated as

Deviation = 100 ·
safd Generated − safd tpm

safd tpm
,

and the generation process is valid if the deviation is close to zero for all states.

The result of the safd deviation test is presented in Figure 5.4. The negative
peak at the idle state (zero velocity and acceleration) origins from the restriction
on the first transition when a new driving cycle is generated. The first transition
has to leave the idle state. This causes the probability of the idle state to decrease
in comparison with the safd of the tpm.

Because the deviation for the idle state has such a large negative value, it will
increase the deviation for all other states a couple of percent. The result in Fig-
ure 5.4 can be compared to the test when no edge trimming of the generated
driving cycles is performed, seen in Figure 5.5. When running the ’no-trimming’
test, there is no large deviation for the idle state, and all other state deviations are
close to zero.

The second thing to notice is that the deviation is very small, where velocities and
accelerations are low. At the same time, the deviation is larger at the edges of the
figure. In the tpm for the category short, there is a high frequency of low velocity
and acceleration states, while samples with high velocities and accelerations are
less common.
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Figure 5.4: safd deviations from the TPM distribution for 1 million gener-
ated driving cycles in the category short.
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Figure 5.5: safd deviations from the TPM distribution for 1 million gen-
erated driving cycles in the category short without trimming zero velocity
measurement from the edges.
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States in the middle of the safd are more frequent when multiple driving cycles
are generated. The deviations will therefore converge towards zero faster than
the deviations for the states with high values of either acceleration or velocity. If
more driving cycles were generated, around one billion, there would be close to
zero deviation at the edges as well.

The fact that the safd of the generated driving cycles differ slightly from the tpm
distribution might cause the generated driving cycles to differ from the expected.
This is however handled in the validation process where the non-representative
driving cycles are rejected.

5.2 Selected validation variables

The subsets of variables selected by the four proposed methods, applied to the
driving cycles categorized as short, urban and mixed, can be seen in Table 5.1.
Since some of the variables are highly correlated, the results can be misleading.
One of two correlated variables can be selected by one of the methods, whereas
the other variable can be selected by another method. Since the two variables are
correlated, it can be seen as that the same feature has been selected rather than
two different variables.

By grouping variables that are linearly correlated to each other with an absolute
Pearson correlation coefficient,

|ri,j | =
∣∣∣∣∣∣cov(Xi,Xj)

σiσj

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑N
k=1(xi,k − xi)(xj,k − xj )√∑N

k=1(xi,k − xi)2
√∑N

k=1(xj,k − xj )2

∣∣∣∣∣∣∣∣∣ , (5.1)

larger than 0.9, the table can be reduced in size. The variables correlated above
|ri,j | = 0.9 are listed in Table 5.2. When three variables are listed in one group,
all within group correlations |ri,j | exceeds 0.9. The revised table, Table 5.3, shows
the number of selected variables in each group of correlated variables. (An X in
the table indicates that only one variable in the group is selected.)

At least one variable from Group 2 is selected by all methods in all categories,
except by the cluster analysis in the categories short and urban. The cluster anal-
ysis selects the variable number of stops per kilometer instead of a variable from
Group 2. Number of stops per kilometer is selected because it is clustered to-
gether with all the five velocity related variables and is used as cluster represen-
tative.

The percentage of time in cruise mode and the variables related to the variations
in the acceleration are also frequently selected as representative in various cate-
gories. This indicates that the acceleration standard deviation and the mean accel-
erations captures some important property of driving cycles. They are all related
to the aggressiveness of the driving cycle.
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Table 5.1: Representative variables selected by four different methods.
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Mean pos. vel. X X 1
Mean vel. X 1
Max. vel. X X X X X X X X 2
95 % max. vel. X X 2
Vel. STD X X 2

Mean pos. acc. X X X X 3
Mean neg. acc. X X X X X X X X X X 4
Pos. acc. time X 5
Neg. acc. time X 5
95 % pos. acc. X X X X X -
95 % neg. acc. 4
Max. acc. X X X X -
Min. acc. X X X X -
Acc. STD X X X 3
% time pos. acc. X X -
% time neg. acc. X X X X X -

Driving dist. 6
Driving time 5

Idle time X X X X -
% idle time X -
Cruise time X X 6
% cruise time X X X X X X X -
Nr. of stops X -
Nr. of stops /km X X X X X X -
Mean s.p. X X X X X -
Maximum s.p. -
Minimum s.p. X X X X X -
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Table 5.2: Variables grouped together due to strong correlation.

Variable group Variable 1 Variable 2 Variable 3
1 Mean pos. vel. Mean vel. -
2 Max. vel. 95 % max. vel. Vel. STD
3 Mean pos. acc. Acc. STD -
4 Mean neg. acc. 95 % neg. acc. -
5 Pos. acc. time Neg. acc. time Driving time
6 Driving dist. Cruise time -

Table 5.3: Representative variables selected by four different methods. Cor-
related variables have been grouped together.

Short Urban Mixed

R
eg

re
ss

io
n

C
lu

st
er

in
g

C
om

bi
ne

d

L
A

SS
O

R
eg

re
ss

io
n

C
lu

st
er

in
g

C
om

bi
ne

d

L
A

SS
O

R
eg

re
ss

io
n

C
lu

st
er

in
g

C
om

bi
ne

d

L
A

SS
O ∑

Group 1 (2) X X X 3

Group 2 (3) X X X X X X X X X 3 12

Group 3 (2) 2 X 2 2 7

Group 4 (2) X X X X X X X X X X 10

Group 5 (3) 2 2

95 % pos. acc. X X X X X 5

Max. acc. X X X X 4

Min. acc. X X X X 4

% time pos. acc. X X 2

% time neg. acc. X X X X X 5

Group 6 (2) X X 2

Idle time X X X X 4

% idle time X 1

% cruise time X X X X X X X 7

# stops X 1

# stops per km. X X X X X X 6

Mean s.p. X X X X X 5

Maximum s.p. 0

Minimum s.p. X X X X X 5∑
4 8 4 6 14 8 8 13 2 9 2 7
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The number of representative variables selected by different methods applied in
different categories varies widely. It is only the number of variables selected by
the cluster analysis that remains stable between the categories. There are nine
variables selected in the mixed category and eight in the short and urban cate-
gories. The additional variable in the mixed category can be interpreted as a result
of the restrictions on the velocity and distance in the urban and short categories.

5.2.1 Regression analysis results

The estimated regression model shows a large fit to the data in all categories.
Figure 5.6 shows the calculated mtf compared to the predicted mtf calculated
with the estimated model in the category short. Only four representative variables
are selected, and the model fit exceeds the limit set on the R2

adj-statistic.
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Figure 5.6: Predicted mtf plotted against calculated mtf for the driving
cycles categorized as short.

The estimated models in the other categories shows similar fits, but the number
of variables included in the final models differs. The urban category requires 14
variables to meet the requirements, whereas the mixed category only requires two.
This is further discussed in the next chapter.

5.2.2 Cluster analysis results

Table 5.3 shows the resulting variables selected from the cluster analysis. The
process of clustering the statistical variables in the three categories urban, mixed
and short are illustrated in Figures 5.7-5.9. Each figure has the variables listed on
the x-axis and the distance between the clusters grouped together on the y-axis.
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Figure 5.7: Resulting dendrogram from the cluster analysis in the category
containing urban driving cycles.
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Figure 5.8: Resulting dendrogram from the cluster analysis in the category
containing mixed driving cycles.
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Figure 5.9: Resulting dendrogram from the cluster analysis in the category
containing short driving cycles.

The final clusters obtained from the analysis in the short driving cycle category
can be seen in Figure 5.9. A total of eight clusters are determined and the vari-
ables in each cluster represents a specific feature in the set of real-world driving
cycles. The clusters are composed as follows (from left to right in Figure 5.9):

1. Time-related variables such as idle time and positive acceleration time.

2. Cruise time related variables (21 and 22).

3. All variables related to driving cycle velocity.

4. The variable mean specific power (25).

5. Variables related to the amount of time spent in various driving modes,
namely idle, acceleration and deceleration.

6. Variables related to the aggressiveness of the driving cycle, i.e. mean positive
acceleration and acceleration standard deviation.

7. Variables related to maximum acceleration. (Maximum acceleration and
maximum specific power.)

8. Variables related to maximum retardation. (Minimum acceleration and min-
imum specific power.)

The only difference between the final clusters in the short and urban categories
is that the variable cruise time moves from the second cluster to the first. The
variable cruise time is highly related to the percentage of cruise time in the short
category since the length of the driving cycles are restricted. The length of the
driving cycles varies more in the category urban, causing cruise time to move to
the time-related variables cluster.
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5.2.3 Combined regression and cluster analysis results

The variables selected by the combined cluster and regression analysis are similar
to the variables selected by the regression analysis method. The categories con-
taining short and urban driving cycles obtains fewer representative variables from
the combined analysis than from the regression analysis, indicating that the re-
moval of variables due to mutual correlation do not have the expected effect. This
is discussed further in Chapter 6.

5.2.4 LASSO results

It can be seen in Table 5.3 that the lasso method tends to select variables that
are highly correlated to each other. For example, all three variables in Group 2
(maximum velocity, 95 % maximum velocity and velocity standard deviation) are
selected in the category mixed. This can be explained by the fact that no variables
are removed from the set of possible explanatory variables due to correlation
before the regression model is estimated. An lasso method where some of the
27 initial variables are removed in advance might solve the problem.

5.3 Validation

The validation data for the driving cycle in Figure 5.1 can be seen in Figure 5.10.
The figure shows the deviations from the tpm medians for all the statistical vari-
ables. The horizontal lines represent the limits set, and the stems with a big-
ger marker represent the variables that the driving cycle is validated against. A
driving cycle is approved if all the validation variables obtains values within the
bounds.
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Figure 5.10: Deviations from the category median values for the driving cy-
cle in Figure 5.1.

The number of iterations needed to generate a valid driving cycle varies and
mainly depends on the number of representative variables used in the valida-
tion, but also on which variables that are used. The average number of iterations
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for each method of determining representative variables in multiple categories
are shown in Table 5.4.

Table 5.4: Number of iterations needed to approve a generated driving cycle,
based on an average over 10 generations.

Iterations

Number of
representative

variables

Sh
or

t

Regression 25 4

Clustering 3800 8

Combined 25 4

LASSO 100 6

U
rb

an

Regression 27000 14

Clustering 4000 8

Combined 300 8

LASSO 4100 13

M
ix

ed

Regression 10 2

Clustering 8000 9

Combined 5 2

LASSO 75 7

The reason for the amount of iterations necessary to get a valid driving cycle can
be seen in Figure 5.11. A driving cycle is valid when it has a statistical value
within the dotted lines, and since some of the variables have a large deviation
from their median values, they will not be approved easily.
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Figure 5.11: Statistical deviations during a generation with 20 000 iterations.
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Discussion

The objective with this thesis was to generate stochastic driving cycles from a
Markov process. The desired result was to generate driving cycles that resembles
real-world driving in terms of statistical criteria.

The statistical variables calculated for the driving cycles are to some extent af-
fected by the discretization. However, since they are derived from the discretized
real-world driving cycles, they are still valid for comparison with the generated
driving cycles. One way to motivate the discretization could be to argue that the
vehicles which the driving cycles are applied to will erase the effects, and that
they will instead resemble the original real-world driving cycles.

The discretization also affects the generation of the tpms. If for instance a veloc-
ity v = 0.4 km/h, is measured together with the acceleration, a = −0.15 m/s2, the
resulting discrete state is [v, a] = [0,−0.2], if the default discretization steps are
used. It might seen odd that the vehicle can stand still while having a negative
acceleration when the vehicle is assumed to never have a negative velocity. How-
ever, the resulting velocity profile in the generated driving cycles are not affected.
It is however clear that further studies needs to be performed in order to identify
the impact of the discretization.

The speed-acceleration frequency distribution shows that the generated cycles
have almost to the same distribution as the safd from the tpm. The main dif-
ferences are visible in the idle state. The large deviation is due to the removal
of superfluous zero velocity states at the beginning and end of the driving cycles.
Even though this removal of states changes the safd for the generated driving
cycles, it is still reasonable since they do not add any relevant information to the
driving cycle.
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Lin and Niemeier [2002] also performed a safd test on their generated driving
cycles. However, they compared the differences while this thesis concentrates
on the deviations, defined in Section 5.1.1. Analyzing the deviations will give a
better representation over the entire distribution since high values on speed and
acceleration have a low frequency and the difference will be close to zero in com-
parison even though the values differ. Low values for velocity and acceleration
have a higher frequency and the difference can be visible even though the devia-
tion is relatively small. For these reasons, it is better to analyze the deviations.

One strength with the method of determining representative variables presented
in this thesis compared to Lee and Filipi [2011] is that it uses an automatic process
and finds a set of representative variables for each category. In [Lee and Filipi,
2011], they analyzed all available driving cycles and used the result regardless
of the type of driving cycles. Different categories usually have different kinds of
driving cycles and needs separate sets of representative variables to be described
properly.

The implemented software performs an automated stepwise regression analysis,
and the number of variables selected as representative differs a lot between cate-
gories as stated in the previous chapter. The reason can be seen in Figure 6.1. The
models estimated from the categories short, urban and mixed shows similar devel-
opment of the R2

adj-statistic when the number of explanatory variables decreases.
The hard limit forces the number of variables to 14 in the category urban, even
though the R2

adj-statistic is very close to the limit when only four explanatory
variables are used.
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Figure 6.1: Adjusted R2-statistic for estimated regression models with vari-
ous number of regressors.
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The reason for why the regression model estimated in the category mixed shows a
larger fit than the models in the other categories might depend on which variables
that are removed in advance due to mutual correlation. It might also depend
on some of the difficulties listed below. Further studying of the phenomena is
needed in order to determine the cause of the results.

Some other difficulties when automating the regression analysis process are:

• No coefficients are added back into the regression equation once they have
been removed. This can be a problem since the t-value for a coefficient
depends on the regression model and can vary between iterations.

• The amount of observations needed to ensure that no over-fitting is made
is approximately 10 to 20 times the number of explanatory variables used
in the regression equation. This means that the number of driving cycles
needed to perform a regression analysis is at least n = 100, assuming that
at least 10 explanatory variables are selected at the first iteration step.

• Two explanatory variables might not show a linear correlation, but some of
them might be related in other ways. It can be exponential relationships, or
relations where one variable can be derived from several others. These sce-
narios will not result in a situation where variables are removed, and that
might lead to a situation where the assumption of independent explanatory
variables do not hold.

• The fact that the explanatory variables are ranked according to their indi-
vidual correlation with the response variable might lead to the selection of
the wrong set of explanatory variables. A variable that together with an-
other one explains a lot of the response can be omitted because it can not
explain the response good enough on its own.

The use of mtf as a representative response in the automated regression analysis
may result in some difficulties explaining certain features of the driving cycles.
The contributions to the mtf are only calculated from traction mode samples,
which means that information from the braking and idle parts of a driving cycles
are not accounted for. These modes are increasingly important when designing
electrical vehicles. For example, electrical vehicles generates energy from the
braking power which is not accounted for while calculating the mtf, but highly
affects the needed power. However, the application implemented in this thesis
considers general driving cycles and do not study the differences between vehi-
cles operating in them.

Lee and Filipi [2011] used a regression analysis method to determine representa-
tive variables for driving cycles in general, which became the starting point for
this thesis as well. However, it has been shown that regression analysis does not
always work as expected. When comparing the different methods, it is clear that
cluster analysis provides a more easily interpreted set of representative variables
for a specific set of driving cycles. It gave a similar amount of representative vari-
ables for each category, and the variables that got clustered seemed reasonable.
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Cluster analysis also avoids the problems that occur when the mtf is used as a
representative response, since the clustering explains the variations in a specific
set of driving cycles rather than the mtf.

6.1 Future work

Some of the improvements and extensions to the software that could be of interest
are listed below.

1. First principal component - The selection of a cluster representative can be
performed in many ways. A pca method is used here, which selects one
variable from each cluster. Another, perhaps better way, would be to use
the fpc to define a statistic (linear combination of all the variables in the
cluster) in each cluster that captures the most of the within cluster varia-
tions.

2. User defined car parameters - When developing cars, there is a desire to
calculate or simulate how much emissions the vehicle will emit. Make it
possible for the user to enter car specific parameters such as

• Vehicle mass.

• Frontal area.

• Aerodynamic coefficients.

When car parameters are set and a model for emissions has been imple-
mented into the software, it will be possible to calculate the emissions over
several driving cycles of the same type. Since the cycles are stochastically
generated they will differ enough to avoid cycle beating when optimizing
parameters.

3. Connection to Simulink model - A common way to simulate vehicles is by
using a Simulink model. By connecting the cycle generation software to a
vehicle model, it will be possible to analyze the performance of the modeled
vehicle.

4. Generating cycles based on speed limits - Another way to categorize data
is based on speed limits. For Sweden, the driving will be categorized into
bins of 30 km/h, 40 km/h, 50 km/h, ... , and 120 km/h. When generating a
driving cycle, it should be possible to either

• Set a complete route: 50 km/h for 8.3 km followed by 70 km/h for 1.2
km and so on.

• Set a route ratio: 25% of the route is in 50 km/h, 30% is in 70 km/h,
and drive for a total of 40 km.

This includes collecting new data where the driving location is known, ex-
tracting data about speed limits from a database and categorize all mea-
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surements depending on speed limits. Example of such database is NVDB
[Trafikverket, 2012].

If the second method of generating driving cycles is used, there is also a
need to calculate the probabilities to switch between different speed limits.

5. A validation if the driving cycle is realistic - The implemented validation
process checks if the statistical values of the driving cycle is valid, and ap-
proves it if everything checks out. But there is no check if the generated
driving cycles are realistic.

• Can a vehicle go from a cold start to this velocity in that time.

• Is it reasonable for a cycle to have that many stops in such a short of a
timespan.





7
Conclusion

An application has been developed in Matlab that can be used to generate stochas-
tic driving cycles based on a given set of real-word driving cycles. The generated
driving cycles resembles real-world driving cycles in terms of safd and selected
statistical properties.

Markov chain theory is used to randomly select state transitions in the velocity
profile to ensure the randomness of the generated driving cycles, and minimizing
the risk of cycle beating.

The representativeness of the generated driving cycles can be investigated us-
ing either regression analysis or hierarchical cluster analysis. A set of statistical
variables that have to coincide with the generated driving cycle values are deter-
mined. The former method, suggested by Lee and Filipi [2011], proved to be
difficult to automate and the assumption that the same statistical variables can
be used to represent all types of driving cycles proved to be wrong. The variables
describing a set of driving cycles are highly dependent on the driving conditions
in the driving cycle, i.e. amount of traffic or the type of road.

Overall, the most important conclusions can be stated as

• A Markov process can be used to ensure the randomness of the generated
driving cycles.

• The characteristics of a driving cycle varies between types of driving and
the validation must therefore be specific for each driving category.

• The proposed hierarchical cluster analysis can be used to determine a set of
variables sufficient to represent a specific set of driving cycles.
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A
Driving Cycle Characteristics

The following appendix describes the 27 statistical variables that were proposed
by Lee and Filipi [2011] as possible explanatory variables in a regression model.
How the variables are defined and calculated are described in detail. The vari-
ables have been categorized as velocity, acceleration, distance and time related
variables as well as variables depending on driving characteristics. The equation
numbers correspond to the numbers mentioned in Table 3.6, which also lists the
variable units.

Each variable is calculated using the averaged and discretized driving cycles ve-
locity, vi , and acceleration, ai , defined in the time intervals between the original
velocity samples (i ∈ [1, 2, . . . , N ] when the number of samples in the measured
velocity equals N +1). The velocity unit is km/h and the acceleration unit is m/s2.
Furthermore, the sample time, Ts, is assumed to be constant through the entire
driving cycle.

A.1 Velocity

A total of five variables related to the driving cycle velocity are defined. First,
there are two mean velocity statistics. The first one, mean positive velocity is
defined as

vpos =
1

Nvpos

∑
i:vi>0

vi , (A.1)

where Nvpos is the number of samples with a positive velocity (vi > 0) in the
driving cycle.
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The second one, mean velocity, which also includes zero velocity samples, is
calculated as

v =
1
N

N∑
i=1

vi , (A.2)

where N is the total number of samples in the cycle.

Two statistics depends on the driving cycles high velocity samples, namely maxi-
mum velocity and 95th percentile maximum velocity. The former is defined as
the maximum sample velocity, vmax = max{v1, v2, ..., vn}. The latter is the value
for which 95 % of the sampled velocities are lower.

The last velocity related statistic is the standard deviation of velocity, defined as

σv =

√√√
1

N − 1

N∑
i=1

(vi − v)2, (A.5)

where v is the cycle mean velocity. (The standard deviation is defined using the
N − 1 denominator in order to obtain a mean real estimation.)

A.2 Acceleration

Eleven variables related to the driving cycle acceleration are defined. Mean posi-
tive acceleration and mean negative acceleration are defined as

apos =
1

Napos

∑
i:ai>0

ai (A.6)

aneg =
1

Naneg

∑
i:ai<0

ai , (A.7)

where Napos and Naneg are the number of positive and negative acceleration sam-
ples, respectively. The acceleration periods, positive acceleration time and neg-
ative acceleration time can also be derived using Napos , Naneg and Ts as

tapos = NaposTs (A.8)

taneg = NanegTs. (A.9)
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There are four cycle statistics related to the extremes of the acceleration. The first
pair, 95th percentile maximum acceleration and 95th percentile minimum ac-
celeration are the 95th and 5th percentiles in the acceleration samples distribu-
tion.

The second pair is maximum acceleration and minimum acceleration and they
are defined as amax = max{a1, a2, ..., aN } and amin = min{a1, a2, ..., aN }, respec-
tively. The standard deviation of acceleration is calculated for all accelerations
(including both positive and negative values) and is defined as

σa =

√√√
1

N − 1

N∑
i=1

(ai − a)2, (A.14)

where a is the mean cycle acceleration. In order to obtain a mean real estimation
of the standard deviation, it is defined using the denominator N − 1.

The last two acceleration related variables are percentage of driving time under
positive acceleration and percentage of driving time under negative accelera-
tion and they are calculated as

pctapos =
Napos
N

(A.15)

pctaneg =
Naneg
N

, (A.16)

where Napos and Naneg are the same as in (A.6) and (A.7).

A.3 Driving distance and time

Two variables depend on the driving cycle distance and duration. The first one is
the total distance driven in the cycle, denoted driving distance and the second
one is the cycle duration, denoted driving time. The variables are calculated as

d =
Ts

3600
·
N∑
i=1

vi (A.17)

tdrive = N · Ts. (A.18)
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A.4 Driving characteristics

The vehicle is assumed to operate in idle mode when the cycle velocity vi = 0,
and the first two variables associated with driving characteristics are idle time
and percentage of idle time, defined as

tidle = N0 · Ts (A.19)

pcttidle =
N0

N
, (A.20)

where N0 is the number of samples with a velocity vi = 0. An alternative defini-
tion could be to include the condition that also the acceleration ai = 0, but that
would only increase the complexity and serves no purpose.

The second pair consists of cruise time and percentage of cruise time. According
to [Shahidinejad et al., 2010, pp.3712] a sample i is defined as cruise if the veloc-
ity vi > 5 m/s and the acceleration |ai | < 0.1 m/s2. The definition used in this
thesis is the same and the variables are derived in a similar way as the variables
associated with the time spent in idle mode. The variables are defined as

tcruise = Nc · Ts (A.21)

pcttcruise =
Nc
N
, (A.22)

where Nc is the number of samples with an acceleration |ai | < 0.1 m/s2 and a
velocity vi > 5 m/s.

Two variables are related to the frequency of idle periods in the driving cycles,
number of stops and number of stops per kilometer. The former one is the
total number of idle periods in a driving cycle, calculated as

Nstops =
N∑
i=2

ci , ci =
{

1, if vi−1 , 0, vi = 0
0, otherwise. (A.23)

The latter one is defined as the total number of stops divided by the total cycle
distance, namely

Nstops/km =
Nstops
d

. (A.24)
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The last three statistical variables are all derived from the specific power, defined
as SPi = 2 vi

3.6ai W/kg. The mean specific power,

SP =
1
N

N∑
i=1

SPi , (A.25)

is the average specific power over the entire cycle. Maximum specific power and
minimum specific power,

SPmax = max{SP1, SP2, ..., SPN } (A.26)

SPmin = min{SP1, SP2, ..., SPN }, (A.27)

are the individual sample maximum and minimum.





B
User Manual

How to use the application, Driving Cycle Generation v. 1.0, is described here in
detail. The software can generate stochastic driving cycles based on a provided
set of real-world data. The data provided to the program must be configured as
described in Section B.1.

The software is completely controlled from within a graphical user interface
(gui) described in Section B.2. How the data is converted to a transition probabil-
ity matrix (tpm) and used to generate driving cycles are described in Section B.3.

There is also a short troubleshooting guide in Section B.4 in case any errors occur.
The software was created and tested in Matlab R2011b and above and require the
statistics toolbox to function.

B.1 Data input specifications

A correctly formatted data file will be a *.mat file containing an array of struc-
tures configured as in Table B.1. Each structure has to contain a single driving
cycle.

Table B.1: Data input specification

Field Type Explanation Unit

velocity Vector Sampled velocity [km/h]

Ts Scalar Sample time [s]

carCharacteristics Structure (optional) See Table B.2. -
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The field carCharacteristics is an optional structure configured as in Ta-
ble B.2. There is no requirement to attach this field since default values exist,
although the result of the regression analysis will be improved if this is correctly
defined. See Section B.3.3 for more information about analysis methods. Exam-
ple B.1 shows an example of a correctly formatted set of input driving cycles.

Table B.2: carCharacteristics input specification

Field Type Explanation Default value Unit

mv Scalar Vehicle mass 1600 [kg]

Cd Scalar Aerodynamic drag coefficient 0.4 [-]

Cr Scalar Rolling resistance coefficient 0.013 [-]

Af Scalar Vehicle frontal area 2.15 [m2]

B.1 Example
The input data should be combined in a structure array where each element is a
driving cycle. The input here consists of 123 driving cycles.

>> inputData

inputData =

1x123 struct array with fields:
velocity
Ts
carCharacteristics

The last field is optional but if defined, it should be formatted as follows.

>> inputData(3).carCharacteristics

ans =

mv: 1600
Cd: 0.4000
Cr: 0.0130
Af: 2.1500

B.2 Graphical user interface

The developed gui can be seen in Figure B.1. By using the interface, it is possible
to change settings and analyze the result in a more convenient way than using
the available Matlab commands.



B.3 How to use the software 69

It is also a practical way to visually examine the generated driving cycles and its
characteristics before exporting them for further use. The review of the generated
driving cycles is easily done by pressing a couple of buttons in the gui.

Figure B.1: Graphical user interface (gui).

The information panel to the left gives a quick overview of the software and
which steps to take. It is however recommended to read this manual before start-
ing to generate driving cycles.

B.3 How to use the software

The gui functions are described here, and the process of generating driving cycles
is illustrated.

B.3.1 Use an existing TPM

By pressing the drop-down menu (1), pointed out in Figure B.2, a list of already
existing tpms is presented. When a new tpm is saved, it will show up here the
next time an existing tpm is to be chosen.

Even though the tpms are already generated and can instantly be used in the
generation of a new driving cycle, there are still some settings available.

As shown in Figure B.2, there is a setting for the percentile limit (2) that affect
the validation of the generated driving cycles. There is also a setting that lets the
user define which set of representative variables to use when the generated cycles
are validated (3). Both these settings can be found in the Other-tab.
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Figure B.2: Use existing tpm to generate driving cycles.

B.3.2 Create a new TPM

When creating a new tpm, there are several fields that can be changed to cus-
tomize the resulting driving cycles, pointed out in Figure B.3. To generate a new
tpm, select the option Create new..., in the drop-down menu described above.

The most important step is to give the software some data to work with. By
pressing the Open button (1), a window will be presented where you need to
find a data file formatted as described in Section B.1.

When input data has been defined, it is possible to set some categorization lim-
its. This is done by checking the box for Driving Distance and/or Mean Positive
Velocity (2) and enter the variable range in the fields below. All input driving
cycles will be used if no categorization limits are set. For example, if a categoriza-
tion limit on the driving distance is entered as in Figure B.3, only the provided
driving cycles with a distance lower than 14 km will be used to create the tpm.

Everything is now set to generate a new tpm and driving cycle, but if there is
a need to change the resolution for the data discretization, it is possible in the
Other-tab as seen in Figure B.3 (3).

There are also settings for changing the validation limits (4) and for which valida-
tion method to use (5), described in Section B.3.3. However, all methods and all
limits will be calculated so that it is possible to reuse the same tpm with several
different settings in the future.

When the prefered settings have been entered, it is possible to enter how many
driving cycles to generate and pressing the Generate cycle button (6). The tpm
will be created as a part of the process.
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Figure B.3: Create a new transition probability matrix (tpm).

B.3.3 Choose method of determining representative variables

There are four methods for determining representative variables

• Regression analysis

• Cluster analysis

• Combo analysis (Cluster + Regression)

• LASSO analysis

Different methods will give different representative variables and will affect both
number of iterations and the distinguishing features of the generated driving
cycle.

The user can also define their own variables using the Important variables tab,
see Figure B.4. The variables selected will be used in the validation and it does
not matter which method for determining representative variables is selected.

B.3.4 Analyze generated driving cycles

When a driving cycle has been generated, it is possible to look at different aspects
of the generation process, as shown in Figure B.5.
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Figure B.4: User defined validation activated.

Figure B.5: gui view after the generation of five driving cycles.
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There are five buttons at the top of the gui

• Velocity (1) - Driving cycle velocity profile (default view).

• Acceleration (2) - Acceleration values from the Markov chain.

• Regression results (3) - Results from the regression analysis.

• Clustering results (4) - Results from the clustering process

• Statistical deviations (5) - Deviations from the 50th percentile over all iter-
ations.

The graph will update according to which mode is selected.

And if multiple driving cycles are generated, there are buttons to look at the other
driving cycles (6). Regression results and clustering results are the same for all
generated driving cycles since they are related to the tpm and not the driving
cycles.

The button Characteristics (7), opens a new window that shows deviations for all
the 27 variables and their validation limits, see Figure B.6.

Figure B.6: Characteristics for the generated driving cycle.

B.3.5 Save a generated TPM

When the process of generating a new tpm is finished, it will be possible to save
it for later use by pressing the Save TPM button (8), seen in Figure B.5. When
asked to, enter a name for the generated tpm and press OK.
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B.3.6 Export generated driving cycles

When all desired driving cycles are generated, it is possible to export to the cur-
rent workspace by pressing the Export cycles button (9), seen in figure Figure B.5.
The exported driving cycles can then be accessed as in example B.2.

B.2 Example
The output in Matlabs command window after a generation of five driving cycles

>> ExportedCycles

ExportedCycles =

1x5 struct array with fields:
velocity
acceleration
duration
Ts
characteristics
TPMname

B.4 Troubleshooting

Here are some common errors listed together with possible solutions.

Q: It seems to generate forever

Sometimes there will be a combination of representative variables that are ex-
tremely hard or even close to impossible to finish with the current selected val-
idation limit. The only option is to open the Matlab window and press Ctrl+C
followed by a restart of the gui. Try again with different settings when the gui
has reloaded.

Q: I get multiple warnings during the regression analysis

This is because there are very few driving cycles in use. It will still be possible
to generate a tpm and driving cycles with these settings but it is still strongly
recommended to change your categorization limits or add more data since the
representative variables may not be accurate.
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