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Abstract

The thesis delves into the area of troubleshooting procedures, an interesting area
for industry. Many products in industry tend to be complex, which in turn makes
troubleshooting procedures trickier. A fast and efficient repair process is often
desired, since customers want the product to be repaired as fast as possible.

The purpose of a troubleshooting procedure is to find a fault in a broken product,
and to choose proper repair actions in a workshop. Such a procedure can be
simplified by diagnosis tools, for example software programs that make fault
conclusions based on fault codes. These tools can make such conclusions with
the help of algorithms, i.e. fault tracing algorithms.

Before a product release, it is hard to specify all faults and connections in the sys-
tem. New unknown fault cases are likely to arise after release, and somehow this
need to be taken into account in the troubleshooting scenario. The troubleshoot-
ing procedure can be made more robust, if new data could be easily incorporated
in the current structure. This work seek to answer how new data can be incorpo-
rated in trouble shooting procedures.

A good and reliable fault tracing algorithm is essential in the process of finding
faults and repair actions, which is the reason behind the focus of this thesis. The
presented problem asks how a fault can be identified from fault codes and symp-
toms, in order to recommend suitable repair actions. Therefore, the problem is
divided into two parts, finding the fault and recommending repair actions. In
the first part, three candidate algorithms for finding the faults are investigated,
namely Bayesian networks, neural networks, and a method called matrix correla-
tion inspired from latent semantic indexing. The investigation is done by training
each algorithm with data, and evaluating the results. The second part consists of
one method proposal for repair action recommendations and one example. The
theoretical investigation is based on the Servo unit steering (SUS), which reside
in the IPS system of Volvo Penta.

The primary contribution of the thesis is the evaluation of three different al-
gorithms and a proposal of one strategy to recommend suitable repair actions.
In this study Bayesian networks are found to conform well with the desired at-
tributes, which in turn lead to the conclusion that Bayesian networks is well
suited for this problem.
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1
Introduction

1.1 Background

Products such as boats, cars, and trucks are expected to be operational for a long
period, due to their long life span. A long period of usage often causes wearing
of the components, which could lead to faulty components that need to be re-
paired. The troubleshooting procedures of such products can be challenging due
to their complexity. Products like these are therefore likely to end up in a work-
shop sooner or later. When this occurs, the repair process should go as smoothly
as possible, by finding faults and suitable repair actions without too many iter-
ations. This procedure can be made more efficient by a fault tracing algorithm,
which refer to an algorithm that point out the most probable fault and suggest
suitable repair actions. The trouble shooting procedure could become less time
consuming and fewer spare parts might need to be replaced. In this way the right
conclusion could be reached faster. Time and material savings can therefore be
achieved by improving diagnosis tools, that aid mechanics by specifying likely
faults and suitable repair action recommendations. The focus of this thesis is to
investigate fault tracing algorithms.

The thesis is performed at Diadrom with Volvo Penta as Partner. Diadrom spe-
cializes in diagnostics and high technology products. Volvo Penta is a supplier of
engines and propulsion systems in the marine and industrial area.

The system focused on in the thesis is the Servo Unit Steering (SUS), which is a
part of the Volvo Penta propulsion system for boats (IPS). The SUS is located in
the upper gear of the IPS system, i.e the modern inboard system, see Figure 1.1.
The SUS consists of control units and one electric motor. SUS units control the
propellers in a way that makes lateral steering in a boat possible by using a joy-
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2 1 Introduction

stick.

Today a repair manual exists to aid mechanics in troubleshooting scenarios, re-
garding the IPS system. The repair manual contain all relations between faults,
faults codes, symptoms, and repair actions. In total there are 15 faults, 30 fault
codes, and around 23 symptoms. Repair actions in the repair manual are rep-
resented as lists which specify suitable actions. Each list specify suitable repair
actions for a certain combination of fault codes and faults. The repair manual
is sufficient in certain cases where the problem is easily identified. If the repair
manual does not point out a specific fault during a troubleshooting scenario, the
identification of a fault and the choice of a repair action rely mostly on the expe-
rience of the mechanic. It is hard to cover all possible troubleshooting scenarios
before a product release. Therefore, much manual labour is required to update
the repair manual when new fault scenarios arise. The data from new fault sce-
narios can be used as training data for the algorithms in order to reflect new
dependencies. The manual labour of updating the algorithm would presumably
decrease, due to the feedback of data. In other words the algorithm would be
responsible for identifying patterns in a data set in order to update itself.

Figure 1.1: The IPS system, in which the black arrow and rectangle indicate where
the SUS unit resides.
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1.2 Diagnostic Process Example

A faulty boat system produces fault codes that are downloaded to a diagnosis tool
on workshop arrival. The tool also receives inputs such as observed symptoms
from the mechanic or the user, for example strange engine sounds, engine start
up failure, and steering problems. A troubleshooting algorithm assesses informa-
tion in order to reach a conclusion of which fault is present, and to recommend
suitable repair actions. The diagnosis tool will then display a list of suitable re-
pair actions that are likely to fix the problem. Note that observations from the
mechanic can be used as feedback to the troubleshooting procedure to further iso-
late the faulty component. Figure 1.2 shows one possible scenario at a workshop
with a faulty product.

Figure 1.2: Example process for finding fault and suitable repair actions.

1.3 Problem Formulation

Fault tracing/troubleshooting in this concept aims at finding the faulty components
and suitable repair actions. Operating profile includes usage e.g mileage, product
location in the world and so on. See Figure 1.3 for a clearer view of the problem.
A fault code is a code that signals for a certain error and a symptom describes a
certain behaviour of the system.

The fault model in Figure 1.3 is based on the repair manual [Penta, 2006]. The
repair manual describes connections between fault codes, symptoms, faults and
repair actions. Note that the repair manual contains ideal cases constructed by
experts that do not always represent reality in a good way. The repair manual
is used by reading fault codes from the system, and by identifying cases that are
similar in the repair manual.

The goal here is to investigate diagnostic algorithms that can be of assistance
to a mechanic during troubleshooting. Another desired outcome is to see how
different fault cases from workshops can update model dependencies in order
to improve the troubleshooting algorithms, for example between fault codes and
faults. A fault case can include fault codes, symptoms and faults. Fault case data
can be used as feedback data, to update dependencies between, e.g., symptoms
and faults, both manually and automatically. For example, a new set of fault



4 1 Introduction

cases, which indicates a stronger connection between one fault code and a fault,
should update the connection between these.

The research question that reflect these desires is stated below:

How can fault tracing be implemented with use of system data, e.g. fault codes, ob-
served symptoms, and operating profile to recommend and rank suitable repair actions?

Problem outline
The problem will be divided into two parts, and the focus of both is to study and
evaluate different methods.

• The first part: The first part involves investigating algorithms that can find
the most likely fault in a troubleshooting scenario, which is done in a case
study.

• The second part: The second part covers how to find suitable repair actions.

In Figure 1.3, the fault model represents how all the components of the model
relate to each other. The fault tracing algorithm represents how a fault is chosen.
The outputs from the algorithm are faults and a set of recommended repair ac-
tions. The feedback loop demonstrates how data from repair cases can be used to
update the model to reflect new situations, for example, successful repair actions
and fault identifications.

Input and output in Figure 1.3:
Input: Observed symptoms, fault codes and operating profile.
Output: Fault and a ranked list of suitable repair actions. The list does not repre-
sent a sequence of repair actions that should be performed.

Figure 1.3: A flowchart of the troubleshooting procedure representing the problem
formulation.
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The SUS unit is one component in a bigger system and faults in other components
might affect it. The problem in the case study (Chapter 4) is narrowed down
to only the SUS, and external effects from other components are not taken into
account. This problem is considered to some extent in Chapter 5.

1.4 Related Research

Similar problems have been considered before in areas like automotive industry.
In the case of automotive industry, the dissertation [Pernestål, 2009] addresses
ways to do troubleshooting, making repair action and repair strategy choices
through Bayesian networks. The paper [Warnquist, 2011], addresses a way to
do off-board diagnosis with the goal of suggesting repair actions as in the pre-
viously mentioned case. These two papers deal with troubleshooting through
non stationary Dynamic Bayesian Networks (nsDBN). In short nsBDN are event
driven and consist of different epochs in regard to the actions performed. In con-
trast to this an ordinary Bayesian network is static, since the network structure
do not change. Other works that concentrate on a similar topic regarding repair
strategies are [Heckerman et al., 1995] and [Langseth and Jensen, 2003].

A research article [Yingping Huang and Zhang, 2014], handles troubleshooting
with Bayesian networks and multicriteria decision analysis (MCDA). By combin-
ing these methods, the paper incorporates for example cost and repair times val-
ues into the process of making a repair action decision. More accurately the task
of the Bayesian network is to supply fault probabilities, while the MCDA method
choose a repair action.

In the paper [Shatnawi and Al-khassaweneh, 2014], an extended neural network
(ENN) is used for classification of faults from all features in the troubleshooting
procedure of an internal combustion engine. Neural network implementations
also exist within the area of medicine, for example, a breast cancer classifica-
tion problem [Azar and El-Said, 2012]. Three classification algorithms were com-
pared to each other, and one of them was probabilistic neural networks (PNN).

The paper [Li and Han, 2013], studies comparison of vectors with similarity mea-
sures, and the focus lies on the cosine similarity measure. A number of different
similarity measures are presented and evaluated.

1.5 Method

The work during this thesis is divided into three main parts: gathering informa-
tion, choosing candidates, and evaluating methods. The reason behind this is to
get a structured thesis procedure. Information gathering was needed in order
to get a good understanding of the area and to learn new theory. The choice of
methods are based on the gathered information, and the purpose of the tests is
to find the most suitable method for the problem. In more detail the steps can be
divided into the following structure:
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• Literature study

– The literature study involves finding similar works in regard to the
research question, for theory and inspiration. This step also includes
learning the basic theory behind the methods that where considered
as candidates for the case study. In order to assess how well they suit
the problem.

• Interviews with SUS experts. The interview occasions:

– Discussion of possible solution methods with two diagnosis experts at
Diadrom.

– Discussion of problem and data with diagnosis and after market em-
ployees at Volvo Penta.

– One product quality employee at Volvo Penta describing relations in
more complicated cases.

– A product specific interview about data with two employees at Aros, a
key supplier of the motor components.

• Acquiring data

– Familiarization with repair manual

• Choosing methods

• Simulation of data

– Generation of data for the case study.

• Case study, i.e. testing the methods

• Further Analysis of chosen method

• Suggestion of possible implementation strategy

1.6 Outline

In Chapter 2, the system and available data is presented. In Chapter 3, candidate
methods are explained briefly. A case study consisting of all methods is presented
in Chapter 4, where the results are discussed in order to choose one method for
further analysis in Chapter 5. Finally the conclusion and future work, in the same
area, is discussed in Chapter 6.



2
System

2.1 Description

The IPS system from Volvo Penta includes a distributed system, which consists of
small electronic nodes. These nodes are called: PCU (Power control unit), SHCU
(Steering helm control unit), and SUS (Servo steering unit), see Figure 2.1. All
these components work together in the system, and because of this a fault in
one component could cause false faults in the other components. These relations
makes them closely related in a fault tracing scenario. As mentioned before, the
focus here is on the SUS unit.

2.2 Data Definitions

The repair manual[Penta, 2006] presents a couple of data definitions that follow
below:

• Malfunction: Describes a system failure.

• Symptom: Describes behavior of the system.

• Fault code: Is a code that signals for a certain fault, which can consist of fault
mode identifier (FMI), parameter identification description (PID), subsys-
tem identification description (SID), and message identification description
(MID).

– FMI: Indicate type of fault

7



8 2 System

Figure 2.1: The whole system and all the components [Penta, 2006]. The location of
the SUS unit is shown by the black dashed rectangles.

– PID and PPID (proprietary PID): Points out the parameter to which the
fault code relates to.

– SID and SSID (proprietary SID): Points out the component to which the
fault code relates to.

– MID: Designates the control unit that sends the fault code, i.e SUS,
PCU or SCHU.

Fault codes are set by the system while symptoms are observed by the mechanic
or the user. An example of a symptom is a boat that cannot be steered properly.
Example 2.1 show how a combination of fault codes and one observed symptom
are used to find the fault according to the repair manual. The repair manual
states the connections between malfunctions, fault codes, and symptoms but do
not evaluate their strength.

Example 2.1

The Tables 2.2, 2.3, and 2.4 state all relations between faults, fault codes, and
symptoms. The crosses in the tables represent connections between faults (rows)
and fault codes or symptoms (columns). These tables can be used in a fault case
scenario to deduce which fault is likely to be present.
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Consider a case there the fault codes MID250, FMI0, P SID3, and symptom S11
are active. The MID250 code indicates that the SUS unit has sent the fault codes
FMI0 and P SID3. Table 2.2 shows that FMI0 is connected to M11 and M13. Ta-
ble 2.3 shows that P SID3 is connected to M13. Table2.4 shows that S11 is con-
nected to M10, M11, and M13. The fault that has most in common with the fault
codes and the symptom in this case is M13. Therefore the conclusion is that the
fault M13 (servo motor fault) is likely to be present.

Note that the tables represent connections stated in the repair manual.

2.3 Available Data

In this section, all available data to the troubleshooting algorithm will be pre-
sented. However, all data here have not been used in this thesis. The reason for
is that much data exists in the form of work cards, i.e usage, location, mileage,
configuration, and so on. The data on the work cards cannot be easily accessed,
and it is not tractable to extract all of this information, since it would have been
very time consuming. Another reason is that some of the data became available
very late in the thesis work, which made it harder to incorporate in the study. The
list below presents all data types briefly. The data with the available tags is easy
to access while the data without is stored on work cards.

Vehicle data

• Fault codes (available)

• Symptoms (available)

• Repair Actions (available)

• Connections between fault codes, symptoms and repair actions (available)

• Product configuration

• Location, where in the world the product is used

• How long has the product been in use

• Product usage, for example easy or hard

• Earlier service and reparations

• Reparation and service manuals

Feedback data

• Feedback data refer to data that can update the fault model of the system.
Feedback data consists of one or many fault cases, which contain fault codes,
symptoms, and repair actions.

Data like symptoms, FMI’s, SID’s and PID’s are binary. In other words, they are
either present or not. Data such as mileage are not binary. This presents a more
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complex problem, since both binary and continuous data could be in the same
model. This is due to the fact that continuous data can be harder to interpret
compared discrete data.

A set of defined malfunctions (faults), FMI’s, and symptoms exist in the repair
manual [Penta, 2006]. See Table 2.1 for FMI definitions. See Tables 2.2, 2.3, and
2.4 for malfunction definitions and their connections to FMI’s, SID’s, PID’s, and
symptoms. Note that a malfunction might be present even if all fault codes con-
nected to it are not active. Table 2.4 shows symptoms for all malfunctions that
have such. There are lists of repair actions corresponding to one FMI and one
malfunction in the repair manual [Penta, 2006]. The SUS has approximately 40
repair actions in the repair manual. An example of a repair action list is:

Servo Motor faulty and FMI0 is active

1. Check if other error codes exist, that imply error in electrical system

2. Check battery connection

3. Measure battery voltage

4. Check power cable connection between SUS and engine

5. Measure the voltage on B+ and B– on the SUS

Table 2.1: FMI definitions
FMI Display text
0 “Value too high”
1 “Value too low”
2 “Faulty data”
3 “Electrical fault”
4 “Electrical fault”
5 “Electrical fault”
6 “Electrical fault”
7 “Mechanical fault”
8 “Mechanical or electrical fault”
9 “Communication fault”
10 “Mechanical or electrical fault”
11 “Unknown fault”
12 “Component fault”
13 “Faulty calibration”
14 “Unknown fault”
15 “Unknown fault”
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Table 2.2: Dependencies between malfunctions and the FMI fault codes.

Table 2.3: Dependencies between malfunctions and the SID and PID fault codes.

Table 2.4: Possible symptoms related to different malfunctions





3
Theory

3.1 Troubleshooting/Fault Tracing Algorithms

The first thing that shall be considered here is the desired functionality of the
algorithms. Note that the task for these algorithms is to find the most likely
fault, i.e the first part of the problem, see Chapter 1. One desired attribute of the
algorithms is the ability to update connections between faults, fault codes, and
symptoms, if new data is available. This could for example, result in stronger con-
nections or new ones. It is also important that the complexity of the algorithms
is within a reasonable scope. In cases where computational power is limited this
could be of great importance. If the basic idea of the algorithms is simple to
grasp, it is likely to simplify usage. Classification problems, in the area of ma-
chine learning, fit well with these attributes.

There are many algorithms and ideas that are applicable to this problem. A
Bayesian network can model dependencies and point out the fault if a fault case
is given. The modelling of a Bayesian network [Jensen and Nielsen, 2007] can
be done entirely from the repair manual. There are other methods that fit the
problem as well, namely neural networks [Russell and Norvig, 2003], and one
approach developed in this thesis called matrix correlation approach, which is
similar to latent semantic indexing [Manning et al., 2008]. In this chapter, the
theory behind all three candidates will be explained briefly.

3.2 Matrix Correlation Approach

The matrix correlation approach is inspired from latent semantic indexing [Man-
ning et al., 2008] and similarity measures [Li and Han, 2013]. It is based on

13



14 3 Theory

the fact that the relationships between malfunctions, symptoms and FMI’s can
be modelled by a matrix. Assume that the Tables 2.2, 2.3, and 2.4 in Chapter 2
are a big matrix with only zeros and ones. The zeros represent that there is no
connection between a column and a row entry, while ones represent the opposite.
If all the ones were replaced by a number that stated the strength of correlation
between fault codes or symptoms and malfunctions, see Table 3.1 for an example.
A matrix of correlation values would be obtained. A fault case vector consisting
of zeros and ones to denote inactive and active fault codes and symptoms, can
then be used to decide which malfunction is present, by taking for example the
scalar product between the vector and each row in the matrix, see Example 3.1.
The result is a vector where each value represent one malfunction, and the val-
ues represent a similarity measure that state how strongly each fault is connected
to the fault case. The matrix containing all correlation values is denoted correla-
tion matrix. Scalar product similarity measures will give crude correlation values
since large values in the correlation matrix have great impact on the results, but
the they are easy to interpret. The correlation matrix can be constructed by count-
ing all occurrences of all fault codes and symptoms in regard to all malfunctions,
i.e. correlation values. Note that the correlation matrix could be constructed by
choosing the correlation values instead of learning them from a data set.

Table 3.1: Example of a table with relations between malfunctions (Mi ), FMI’s, SID’s,
and PID’s.

FMI1 FMI2 FMI3 SID1 SID2 SID3
M1 0 2 1 1 0 0
M2 3 0 1 0 1 0
M3 2 1 0 0 0 1

Example 3.1
The fault codes in this example are FMI1, FMI2, FMI3, SID1, SID2, and SID3,

see Table 3.1. The correlation matrix is specified in Table 3.1. A fault case vector
contains zeros and ones, that represent active and inactive fault codes respec-
tively. If a fault case vector, like

(
0 1 1 0 1 0

)
is obtained, the correlation

matrix and the fault case vector can be used to deduce the fault by a similar-
ity measure. The similarity measure can be obtained by calculating the scalar
product between the fault case vector and each row in the matrix. The matrix
(Table 3.1) will be denoted R, a matrix row i will be written as Ri , and the fault
code vector is denoted F. Each value in the matrix R is a measure stating how
closely related the column entry is to the row entry. The calculations with the
scalar product as similarity measure is shown below:
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Fault case:

F =
(
0 1 1 0 1 0

)
Matrix rows:

R1 =
(
0 2 1 1 0 0

)
R1 =

(
3 0 1 0 1 0

)
R1 =

(
2 1 0 0 0 1

)
Correlation = R1 · F = 3

Correlation = R2 · F = 2

Correlation = R3 · F = 1

The best match for the fault case vector, can be found by comparing the values by
size, i.e a larger value indicate a stronger connection.

In this example, the scalar product is used as a similarity measure to simplify the
process. There are many other similarity measures like the cosine similarity, see
equation (3.1). This similarity measure will be used in the case study. The reason
behind this is illustrated in Example 3.2.

cos(θ) =
a · b
|a||b|

(3.1)

Example 3.2
The vectors a, b, and c are used to demonstrate the difference between cosine

similarity and the scalar product. The vectors a and b are similar, with the excep-
tion of one large value, 1000. If similarity measures, between these vectors and c,
are calculated. The difference between scalar product and cosine similarity can
be seen in the results, i.e. the range of the results.



16 3 Theory

Vectors:

a =
(
1 0 6 1000 0

)
b =

(
1 0 6 10 0

)
c =

(
1 0 0 1 0

)
Scalar products:

a · cT = 1001

b · cT = 11

Cosine similarities:

a · cT

|a||c|
= 0.7078

b · cT

|b||c|
= 0.6621

The scalar product can lead to similarity values in many different sizes, and one
value from the scalar product can dominate the result. This in turn, makes it
harder for the method to recognize patterns. Cosine similarity amends this, and
will give results in the same range.

3.3 Bayesian Networks

Bayesian networks represent a way to do probabilistic reasoning. Imagine a net-
work of nodes with links. All nodes could for example represent events with
states, for example true or false. These nodes are connected through links that
make them dependent on each other. Each node is assigned with probability val-
ues that indicate how likely one state is to happen given the states of the parent
nodes. A state for one or more nodes may be known in one situation, i.e evidence.
The network can then be used to calculate new probabilities (posterior probabili-
ties) for all the other nodes, i.e interference. The general idea behind Bayesian net-
works is to construct a graph that represents conditional probabilities between
different nodes with states. This graph represents the full joint probability distri-
bution.

A Bayesian network can be defined as follows [Jensen and Nielsen, 2007]:

• A set of random variables (stochastic variables) and directed links between
the variables.

• The variables can be either continuous or discrete.

• If there is a link from X1 to X2, X1 is the parent of X2. The network contains
no cyclic connections and hence is a directed acyclic graph (DAG). Each
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node Xi has a conditional probability distribution P (Xi |Parents(Xi)), that
describes the parents influence.

The most common type of Bayesian networks are called causal models. This
means that links only are drawn between the nodes X and Y , if X can cause Y to
enter a certain state. A causal network is built by considering cause and effect.

Example 3.3
Consider a small example with the nodes memory, bus and program. If memory
or the bus is broken, it will affect the program. This can be seen from the links be-
tween memory (M), bus (B) and program (P r). The probabilities P (M) and P (B)
represent the probability that the component is faulty. The conditional probabil-
ity P (P r |M, B) states how likely the program is to be non functional depending
on the states of M and B.

P r

M B

M B P (P r |M, B)
t t 0.99
f t 0.7
t f 0.4
f f 0.05

P (B)
0.1

P (M)
0.15

Figure 3.1: Example of Bayesian network with three nodes, M (memory), B (Bus)
and Pr(program). All values in the CPT’s denote the probability of being true. The
abbreviation for true and false are t and f.

The probabilities P (P r,M, B), in Table 3.2, are obtained by the following product
rule, i.e:

P (P r,M, B) = P (P r |M, B)P (M |B)P (B) = P (P r |M, B)P (M)P (B)

In which the equality P (M |B) = P (M), has been used since the variables M and
B are independent because of d-separation, see [Jensen and Nielsen, 2007]. The
tables in Figure 3.1 represent conditional probability distributions (CPD). The
CPD becomes a conditional probability table (CPT) because all variables are dis-
crete. Nodes with this kind of CPT’s are often denoted as general type. The full
joint probability distribution can also be represented as a table, see Table 3.2.

One attribute of Bayesian networks is the way they express the full joint proba-
bility distribution as many small distributions, for example CPT’s. Together all
these distributions represent the full joint probability function, because of the
chain rule for Bayesian networks, see equation (3.2) [Jensen and Nielsen, 2007].
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P (X1, X2, ..., Xn) =
n∏
i=1

P (Xi |parents(Xi)) (3.2)

Table 3.2: Full joint probability distribution
M B P r P (P r,M, B)
t t t 0.0148
t t f 0.00015
t f t 0.054
t f f 0.081
f t t 0.0595
f t f 0.0255
f f t 0.0383
f f f 0.7268

3.3.1 Evidence

A Bayesian network consists of nodes with different states. If the state of one
node is known, for example a faulty component, the state of that node can be
set. In other words evidence is given to the Bayesian network. By using the new
knowledge, new probability values for the other nodes can be calculated, see
Section 3.3.3. Evidence, therefore, makes the Bayesian network re-evaluate the
situation, and this is how known states are set in the fault tracing problem.

3.3.2 Noisy Or

Noisy-or is a node type that can be used to simplify a network [Jensen and Nielsen,
2007]. If a cause is present but the effect does not trigger, the effect has been
inhibited, e.g. P (X = f alse|Y = true). Consider the network below, Figure 3.2:

E

C1
...

Cn

Figure 3.2: Example of Bayesian network with effect E and Causes Ci .

By specifying all the probabilities describing if one effect is being inhibited in re-
spect to all causes, all necessary probabilities can be acquired. Some assumptions
have to be made in order for this to be true:

• All variables are binary.
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• All the causes Ci are independent of each other.

• P (E = true|C1 = f alse, . . . , Cn = f alse) = 0

A probability called leak or background probability often exists in noisy-or mod-
els, which represents activation due to external circumstances. This is often
needed due to the last assumption.

The variable qi represents the chance of an effect being inhibited in regard to a
certain cause. If the causes C1 and C2 are active the probability for E = true is:

P (E = true|C1 = true, C2 = true, C3 = f alse, . . . , Cn = f alse) =

1 − P (E = f alse|C1 = true, C2 = true, C3 = f alse, . . . , Cn = f alse) =

1 − q1 ∗ q2

Noisy-max [Jensen and Nielsen, 2007] is a generalized version of noisy-or that
can handle variables that have more than two states.

3.3.3 Interference Methods

Interference in a Bayesian network is the calculation of the posterior probabilities
given some evidence, E [Russell and Norvig, 2003]. One way to do this is to use
the chain rule. Interference will find the posterior probability P (Q|E), where Q
is the query variables, and the Bayesian network consists of variables X. The
hidden variables that are not written in the query will be denoted H . Note that
X = Q ∪ E ∪ H .

One way to do interference would be to just marginalize the hidden variables H
out of the full joint probability distribution, see equation (3.3). Another way to
express this is to say that the hidden variables are removed from the full join
probability distribution. The α in the equation represents a normalization con-
stant.

P (Q|E) = α
∑
H

P (Q, E, H) (3.3)

This interference method is not a good solution for large networks, due to the
fact that a full joint distribution will have many probability values. In the case of
boolean variables, the number of entries will be 2n, which becomes very large if
the network is big.

Another approach is to use the variable elimination algorithm [Russell and Norvig,
2003]. The network in Figure 3.3 will be used to demonstrate the algorithm.

If we have evidence E = {A = true, B = true} and want to calculate P (D |A =
true, B = true), which we will denote as P (D |a, b). The nested summation using
the chain rule is:
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A B

C

D E

Figure 3.3: Example of Bayesian network with effect E and causes Ci .

P (D |a, b) = αP (D)
∑
E

P (E)
∑
C

P (C|D, E)P (a|C)P (b|C) (3.4)

Each term in the equation (3.4) will correspond to one factor. A factor can be
viewed as a CPT, see for example Table 3.3. The equation gives us the factors,
f1(D), f2(E), f3(C, D, E), f4(C), and F5(C). Notice that a and b are left out in
the last two factors, because they are fixed in the query. Two operations will be
used during the calculations, namely pointwise product and summation of factors.
Pointwise product of factors is a union and if there exists one value in each factor
corresponding to the same entry, the values are multiplied. Summing is the same
as marginalizing, which means that a set of variables are summed out of the
probability distribution. One example of this procedure can be seen in Table 3.4,
where one variable has been summed out from Table 3.3. See [Russell and Norvig,
2003] for more information. In the end, the following expression with factors is
evaluated from right to left:

P (D |a, b) = αf1(D) ×
∑
E

f2(E) ×
∑
C

f3(C, D, E) × f4(C) × f5(C)

Table 3.3: Example of one factor
C D E f (C, D, E)
T T T p1
T T F p2
T F T p3
T F F p4
F T T p5
F T F p6
F F T p7
F F F p8



3.3 Bayesian Networks 21

Table 3.4: D has been marginalized out from the probability distribution in Table 3.3
C E f (C, E)
T T p1 + p3
T F p2 + p4
F T p5 + p7
F F p6 + p8

The basic outline of the variable elimination algorithm:

• for each variable in network (note that variable order only matters in regard
to complexity).

1. Create and store factor.

2. If the variable is hidden use summation to sum out the variable.

• Do pointwise product on all the factors.

• Normalize result.

If a Bayesian network is large and more complicated than the example, variable
elimination can have exponential time and space complexity [Russell and Norvig,
2003]. Another type of algorithms that can be used to reduce time complexity are
clustering algorithms. The network in the Figure 3.3 is a multiple connected net-
work, see node C. The underlying idea in clustering is to create single connected
network by combining nodes, for example one step is to combine D and E.

Approximate interference can be utilized if the networks are large and compli-
cated. These methods often involve sampling the states from the prior probabili-
ties in the network [Russell and Norvig, 2003]. The samples are used in calcula-
tions of the posterior probabilities.

3.3.4 Learning Parameters

One way to handle the learning problem is to use maximum likelihood estimation.
The method is based on finding the parameters that maximize the maximum like-
lihood estimate. Maximum likelihood estimates for CPT’s in Bayesian networks
can be calculated by counting the number of occurrences for cases bound to the
CPT’s. For example a maximum likelihood estimate is obtained by dividing the
number of occurrences for a specific case by total number of cases. The maximum
likelihood of P (x| . . . ) is for example calculated by:

θ̂ =
N (x, . . . )
N (. . . )

N (x, . . . ) = number of cases where x is present

N (. . . ) = total number of cases with variables ...
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If a data set contained a variable with zero occurrences, the corresponding param-
eter would receive the value zero. In other words the probability is zero. Consider
a data set with a number of faults and fault codes. If one fault never occurs in the
set, the maximum likelihood estimate for the faults CPT’s are zero. This could be
problem if a small data set is used.

Bayesian estimate is another way to learn parameters that handle this problem.
The method is based on the fact that prior probabilities must be chosen before
the estimation based on new data. The idea is to update the posterior probabil-
ities based on the prior probabilities. The variable x symbolizes an event in the
network and θ denotes the parameters, in other words, probabilities. The new
probability fn is calculated by using θ, P (x) and the prior probability f ,

fn(θ) =
P (x|θ)f (θ)

P (x)

If a data set is incomplete, certain values are missing. This is a problem in the
methods above, since these incomplete cases need to be removed. For example if
one fault has a value that is always missing, the final data set would not represent
the fault in a good way. There is another more advanced method compared to the
ones above, called EM-algorithm that can handle incomplete data. To compen-
sate for incomplete data, the algorithm uses known probabilities in estimation
purpose, and then moves on to finding a new Bayesian estimate. See [Jensen and
Nielsen, 2007], for more information regarding the EM-algorithm.

3.4 Neural Networks

A neural network consists of nodes and links, see Figure 3.4 and the idea behind
this is to imitate how the brain works [Russell and Norvig, 2003]. The figure
represents a feed-forward network, where all links point in the same direction,
i.e. the network becomes a directed acyclic graph. Feed forward networks often
consist of building blocks in the form of layers. The layers that are not input and
output are called hidden layers. To each link, a weight value is attached, which
determines how much the output value from one node will affect the next. All
nodes with the exception of the input nodes are bound to one activation function,
which is a function of the sum of all products between inputs and weights. A
neural network need to learn the values for all weight values from data. When
weights values have been calculated input can be propagated forward in the net-
work. This is done by using the weight values and the activation functions con-
nected to links and nodes respectively. Basically nodes in one layer send their
results to the nodes in the next layer. These nodes evaluate the results for the
previous layer by using weights and activation functions. The output from the
current layer is sent to the next. This procedure continues until the last layer is
reached. This is how output is obtained. To summarize, input values need to be
propagated forward to calculate output, i.e. forward propagation [Ng, 2014]. See
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Example 3.4. Input and output can be either continuous or discrete.

x1

x0

x2

a
(2)
1

a
(2)
0

a
(2)
2

a
(2)
3

a
(3)
1

a
(3)
0

a
(3)
2

a
(3)
3

y1

y2

Figure 3.4: Example of neural network.

The input nodes in Figure 3.4 are x1 and x2, while the output nodes are y1 and y2.
All a nodes reside in the hidden layers. The task for all hidden layer and output

nodes are to evaluate the results from the previous nodes. The nodes x0, a(2)
0 , and

a
(3)
0 are bias values that usually are set to one.

Semantics of the neural network:

• The indexes i and j symbolize nodes and layers. In some cases like Θi,j , i
and j will symbolize matrix indexes.

• To each link in the network one weight is attached, all the weights are stored

in the matrix Θ(j). Θ
(1)
1,0 is the weight connected the link between node x1

and a(2)
1 , so Θ(j) represents the weights between layer j and j + 1.

• Each node (a(j)
i ) is connected to one activation function (g(...)) which deter-

mine the output from the node. A(j) is a vector that contains all a(j)
i nodes

in the layer j. See equation below:

in(j) = Θ(j)A(j)

A(j+1) = g(in(j))

There are many different activation functions that determine the characteristics
of the network. A commonly used soft threshold is the sigmoid function [Ng,
2014], see Figure 3.5.
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g(z) =
1

1 + e−z
(3.5)

Figure 3.5: Sigmoid Function, g(z)

Example 3.4
If the inputs x1, x2 are known, the neural network (Figure 3.4) output is calcu-

lated by forward propagation as shown below. The output from hidden layer one

(layer two) is a(2)
1 , a(2)

2 , and a(2)
3 . The output from hidden layer one is then handled

by hidden layer two (layer three). There the output is a(3)
1 , a(3)

2 , and a(3)
3 . Finally

these results are handled by the output nodes which give y1 and y2.

a
(2)
1 = g(Θ(1)

1,0x0 + Θ
(1)
1,1x1 + Θ

(1)
1,2x2)

a
(2)
2 = g(Θ(1)

2,0x0 + Θ
(1)
2,1 ∗ x1 + Θ

(1)
2,2x2)

a
(2)
3 = g(Θ(1)

3,0x0 + Θ
(1)
3,1x1 + Θ

(1)
3,2x2)

a
(3)
1 = g(Θ(2)

1,0a
(2)
0 + Θ

(2)
1,1a

(2)
1 + Θ

(2)
1,2a

(2)
2 + Θ

(2)
1,3a

(2)
3 )

a
(3)
2 = g(Θ(2)

2,0a
(2)
0 + Θ

(2)
2,1a

(2)
1 + Θ

(2)
2,2a

(2)
2 + Θ

(2)
2,3a

(2)
3 )

a
(3)
3 = g(Θ(2)

3,0a
(2)
0 + Θ

(2)
3,1a

(2)
1 + Θ

(2)
3,2a

(2)
2 + Θ

(2)
3,3a

(2)
3 )

y1 = g(Θ(3)
1,0a

(3)
0 + Θ

(3)
1,1a

(3)
1 + Θ

(3)
1,2a

(3)
2 + Θ

(3)
1,3a

(3)
3 )

y2 = g(Θ(3)
2,0a

(3)
0 + Θ

(3)
2,1a

(3)
1 + Θ

(3)
2,2a

(3)
2 + Θ

(3)
2,3a

(3)
3 )
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3.4.1 Learning

In this section, layer will be denoted l and i, j will denote row and column in a
matrix respectively.

If a neural network has been designed, the next step is to calculate all the weights.
This can be done through an algorithm called back propagation and an error opti-
mization function (minimizing error). A prerequisite is to choose a cost function
[Ng, 2014], as in equation (3.6). The cost function is used to calculate how good
the current weight values are. Some derivative of this function point to a better
set of weight values. The idea is to use this derivative to obtain optimal weight
values. Note that this is a very brief explanation. There are many things that need
to be taken into account during calculations as the one described above.

J(Θ) = − 1
m

m∑
n=1

K∑
k=1

y
(n)
k log(g(x(n))k) + (1 − y(n)

k )log(1 − g(x(n))k) +
λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

Θ
(l)
(i,j)

(3.6)

m = number of entries in the training set

K = number of output nodes

sl = number of nodes in layer l, without the bias node

In order to use an error minimizing method like gradient decent or the inbuilt
fminunc in Matlab, the partial derivatives need to be calculated:

δ

δΘ
(l)
i,j

J(Θ)

This can be done through back propagation. The error in the output nodes needs
to be propagated backwards. The idea is that all nodes in the previous layer
contribute to the error in the current node. The equation (3.7) can be used to
propagate the error backwards, where the dot represent pointwise product, [Ng,
2014].

δl = Θ(l)δ(l+1) · g ′(Θ(l)A(l)) (3.7)

The errors are not the goal of back propagation. It is one necessary step in order
to calculate the partial derivatives ( δ

δΘ
(l)
i,j

) of all weights.

Back propagation algorithm outline [Ng, 2014]:

• set all ∆(l)
i,j := 0
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• For training all examples (X1, Y1), ..., (Xn, Yn) do

– Set A(1) = X

– Do forward propagation

– Calculate δ(L) = Y − A(k) (k = output layer).

– Compute δ(l) = Θ(l)δ(l+1) · g ′(Θ(j)Al) for δ(L−1), δ(L−2),..., δ(2)

– ∆
(l)
i,j := ∆

(l)
i,j + a(l)

j δ
l+1
i

• D
(l)
i,j := 1

m (∆(l)
i,j + λΘ(l)

i,j ) if j , 0

• D
(l)
i,j := 1

m∆
(l)
i,j if j = 0

The regularisation term λ is not applied to the bias values, i.e. the case j = 0. It
is possible to show Di,j is equal to the partial derivatives [Ng, 2014].

δ

δΘ
(l)
i,j

= Di,j

The last step is to use an error optimization method that uses the partial deriva-
tives like fminunc. This method is rather slow and a function called fmincg [Ng,
2014] has been used instead.
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Analysis

4.1 Case Study

The methods Bayesian network, matrix correlation approach, and neural network
will be evaluated through five data sets that have been generated for this purpose.
Chapter 2 presented available data, and the difficulties of acquiring real data sets.
In short the real data was inaccessible, due to the amount of time it would take
to construct real data sets. This difficulty leads to the solution of generating data
sets in order evaluate the chosen methods. Advantages and disadvantages of each
method will be discussed. In the end, one method is chosen for further analysis.

The case study will be performed on the SUS unit, see Chapter 2 for faults, fault
codes, and symptoms. The SUS is considered independent in the case study,
which means that it is not affected by faults in other components. It is important
to point out that this assumption does not reflect reality in a good way. Even with
this disadvantage, the modelling will suffice to show strengths and weaknesses
of the methods.

The single fault assumption is made, which means that it is assumed that only
one fault can be present at a time. This assumption is made to give the methods
a common evaluation base and a reasonable scope. Therefore, this assumption
is reasonable, because the primary goal is to compare the methods. The assump-
tion is necessary for the neural network, because the training set only consists of
single faults. In order to be able to recognize these cases a neural network would
need an extended data set with multiple faults. The Bayesian network and matrix
correlation approach do not suffer in this way. In short, a scenario with multiple
faults is likely to lead to posterior probabilities and similarity measures in the
same range for the active faults.

27
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4.1.1 Input and Output

The same input and output is used for all the methods. The input fault codes for
the methods are FMI , P ID, and SID. In total 15 FMI codes, 15 SID and P ID
codes, and 16 symptoms (denoted S) exist. The input fault codes and symptoms
are represented by a vector, where each instance is either zero or one, which
means active or not active. In this evaluation the assumption that the fault codes,
symptoms, and malfunctions are either active or not is made, and thus they can
be represented by zeros and ones. The number of malfunctions (M) are 15, which
are represented by a vector in the same way as the input. See Example 4.1.

• Input: vector, dimension R
46×1 (46 fault codes and symptoms)

• Output: vector, dimension R
15×1 (15 malfunctions)

Example 4.1

One example of input and output vectors is presented below. The zeros denote
inactive, while ones denote active.

input =
[
0 0 1 0 . . . 0 1

]
output =

[
1 0 0 . . . 0 1 0

]T

4.1.2 Generation of Data

Five data sets are generated through the ideal connections that can be seen in
the Tables 2.1, 2.2 and 2.3 in Chapter 2. Each generation is done by evaluating
probability values which will lead to different data sets each generation. These
probability values are changed in certain data set generations in order to reflect
different situations. By generating data sets this way irregularity in the real world
is taken into account. Data set 1 is intended for learning parameters in the algo-
rithms, while the other are validation sets. The validation sets reflect different
situations. Data set 2 is generated the same way as data set 1, because the genera-
tion process will give a slightly different set. This is done to test the algorithms in
a similar situation. In practise false alarms and changed dependencies between
components might occur. Data sets 3 and 4 are generated to reflect this fact. Data
set 5 contains all possible cases, which makes it possible to find weaknesses for
certain test cases. See Table 4.1 for all data sets and their sizes.

The method behind the generation of data sets 1, 2, 3, and 4 are based on proba-
bilities, that specify how likely fault codes and symptoms are to occur in regard to
a certain malfunction. The probabilities for all fault codes and symptoms can be
represented as the tables in Chapter 2, describing the ideal relationship between
malfunctions, fault codes, and symptoms. All slots in the tables are replaced



4.1 Case Study 29

by probability values, see Tables 4.2, 4.3, and 4.4. The probability values rep-
resent how strongly the different fault codes, symptoms, and malfunctions are
connected to each other. These values were arbitrarily chosen with the considera-
tion that they should be reasonable. Reasonable means that dependencies given
by the repair manual should have probability values large enough to represent
them. The false alarm rates were chosen to be rather small in the training set,
so they would not be overrepresented. In order to test how the methods handle
changed dependencies validation set 3 and 4 contain different probabilities for
false alarms and dependencies respectively. In Table 4.1 the sizes of the data sets
vary. This is due to the fact that the generation process in some cases result in
entries with no active fault codes, symptoms, or faults at all. These cases are re-
moved from the data sets, and therefore the size vary. The generation process for
all data sets, except data set 5, follows below:

Data generation with probabilities:

1. Set n = size of data set

2. Create empty input and output matrices, input and output

3. For each entry in n

(a) Choose one malfunction from the uniform distribution

(b) Get the corresponding fault codes and symptoms, c

(c) For each entry in c

i. Use the corresponding probability value to randomize the activity,
either 0 or 1

ii. Assign the outcome to the result, x

(d) Set malfunction in result, y

(e) If input has at least one active fault code or symptom, save the results
x and y in input and output

The generation process of data set 5 is different because this set contains all pos-
sible cases. In other words all combinations of malfunctions, fault codes, and
symptoms that are possible are represented in data set 5. The generation proce-
dure follow below:

Data generation of all cases:

• The matrix ideal, contain all ideal connections between malfunctions, fault
codes, and symptoms

• For each malfunction, m

1. Find all indexes i in ideal that are connected to m

2. Find all combinations c of the entries in i

3. For each entry in c
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(a) Set all malfunctions in output y that are consistent with the com-
bination

(b) Set input x to the combination

4. Save result x and y

Table 4.1: Data set description and size
Data set Description No. of fault

cases
1 training set 9943
2 validation set (generated the same way as the training set) 9936
3 validation set (higher false alarm rate) 9984
4 validation set (changed dependencies) 9984
5 validation set (all possible combinations) 1669

See Chapter A for implementation of data generation in Matlab.

4.1.3 Training Data Set

The probability values used for generation (Section 4.1.2) of the training set are
shown in the Tables 4.2, 4.3 and 4.4. Note that false alarms are included as well,
but the rate for false alarms is low.

Table 4.2: Probabilities for FMI fault codes during data generation
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Table 4.3: Probabilities for PID and SID fault codes during data generation

Table 4.4: Probabilities for symptoms during data generation

4.1.4 Validation Data Sets

The validation sets are generated by using the generation procedures presented
in 4.1.2. A short summary of all the data sets can be seen below:

• Second data set: generated the same way as the training set

• Third data set: higher false alarm rate

• Fourth data set: changed probabilities for fault codes and symptoms

• Fifth data set: all possible cases

Data sets 3 and 4 are generated in the same manner as the training set, but differs
due to different probabilities for fault codes and symptoms. See Chapter A for
probability values that are used during the generation of data set 3 and 4.

Data set 5 contains all possible combinations of malfunctions, fault codes, and
symptoms. Cases that are not likely in reality are therefore included, for example
when almost all fault codes and symptoms fail to activate.
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There is one big difference between the fifth data set and the others. The fifth
data set contain multiple faults as long as the consistency of the active fault
codes and symptoms are preserved. The other sets only contain one active
fault in each case. All methods should perform well on the fifth data set, because
a high error rate imply that the methods have problems with some combinations.

4.1.5 Validation method

All methods are validated by the validation sets and a few selected cases from
the repair manual. These specific fault cases are considered in order to analyse
the behavior of the methods more closely. Table 4.5 shows the selected cases and
brief explanations of each one. Ideal cases simply state dependencies exactly as
the repair manual presents them. Therefore ideal cases correspond to a case there
all fault codes, and symptoms that are sensitive to one malfunction are active.
The specific cases have been constructed manually by setting zeros and ones in
the input vector. Note that the input vector contains ones and zeros, which means
active and not active.

Table 4.5: Selected validation cases
Case Description
Ideal case All the ideal connections shown in

Tables 2.2, 2.3, 2.4 in Chapter 2
Single FMI’s The input is each FMI code individually
Specific fault case 1 Active: FMI1 and FMI2
Specific fault case 2 Active: FMI4 and FMI11
Specific fault case 3 Active: FMI7 and S11
Specific fault case 4 Active: FMI7, S11, and P SID3

The tables in the validation sections will contain boxes highlighted grey and
black. A grey box signifies that a malfunction is sensitive to either a single fault
code or symptom, and combinations of these. A black box denotes a malfunction
that have most in common with the given input. Table 4.6 show one example
of one table with three different inputs, F1, F2, and F1 & F2. The grey boxes in
the first two columns represent the malfunctions that are connected to the fault
codes. Both fault codes in the last input have M3 in common, which is the reason
behind the black box in the table.

Table 4.6: Example of a table with results between malfunctions and fault codes with
highlighted boxes.

The validation performance values, presented as percentage, are calculated by
using a data set as input. The results are compared to the data set output, and
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from this a value of correctness in percentage is obtained. This correctness value
is obtained by dividing the total number of correct outputs by the total number
of outputs. See Chapter A for validation code.

Real data specified according to the repair manual could resemble the data sets
1, 2, 3, and 4. These data sets have all been generated with uncertainty in mind,
which reflects reality in many ways. This makes the results from the case study
credible.

4.1.6 Matrix Correlation Approach

The correlation matrix is created by counting each occurrence of fault codes and
symptoms relative to all malfunctions. The correlation numbers are all divided
by the total number of data entries. This is done to get an easier representation in
the range zero to one. Cosine similarity [Li and Han, 2013] is used as similarity
measure, and the reason is stated in Chapter 3.

No negative values exist in the correlation matrix, which means that the similarity
measure will be in the range zero to one. Cosine similarity compensates for the
fact that certain entries in the correlation matrix might be large, see Example 3.2.

Validation of Matrix Correlation

The highlighted boxes in Tables 4.7, 4.8, and 4.9 are explained in Section 4.1.5.
Similarity measures state how much a fault case resemble the training set for each
malfunction. Note that this is not a perfect measure of similarity, see Chapter 3.
The resulting malfunction in all fault cases is the one with highest similarity
measure in each column.

Table 4.7 shows the results for all the ideal cases, see Section 4.1.5 for explana-
tion. All the values in the highlighted diagonal are considerably larger compared
to the other values in each column, which shows that the matrix correlation ap-
proach can identify the correct fault. All case numbers correspond to the same
malfunction number, e.g. case 1 and malfunction 1. All numbers are larger than
zero in Table 4.7 due to the false alarms in the training set. This is realistic since
real data is very likely to contain incorrect instances. Note that the individual
fault codes in Table 4.8 are investigated in order to analyse behavior in some ba-
sic cases. First of all one observation is that all large values reside in the grey
boxes. The correlation matrix learned from data set 1, therefore reflect the de-
pendencies in Table 4.2. This table indicate how cosine similarity work. The
fault code FMI0 have correlation values 0.0508 and 0.0506 in regard to M11 and
M13. Note that the correlation values are in the same range but the results in
column one in Table 4.2 does not follow suite. This is due to the cosine similarity.
Basically the cosine similarity scales down the result for M13 more. This is due
to the fact that malfunction M13 is sensitive to more fault codes and symptoms.

Table 4.9 reflects some interesting fault cases and their results. Columns one to
three demonstrates similarity measures for fault cases with two fault codes. This
is done to analyse how similarity measures reflect the dependencies shown by
the grey and black boxes for fault case with multiple fault codes or symptoms.
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Table 4.7: The results for the ideal cases. The black boxes represent rows and
columns that are right according to the ideal connections.

Table 4.8: The results for each FMI. The grey boxes represent rows and columns that
are correct according to the ideal connections. FMI 8 is never active in the SUS.

The last column demonstrate a case there one more fault code is know compared
to column three. The results are consistent with the highlighted boxes, but the
results from the case FMI7, S11, and P SID3 are far from perfect. The similarity
measures for M10 and M13 are close to each other. P SID3 specifically points out
M13, so this result is not desired.

The calculation of the performance results in Table 4.10 are explained in Sec-
tion 4.1.5. The MC approach manages to get good results in Table 4.10 for all
data sets, but the result for the third and fifth data set is bit off compared to the
others. The errors are due to the fact that the cosine similarity in some cases fail
to give the correct result, see Example 4.2.

Example 4.2
The numbers in the vectors inputi and corr irow represent the column indexes of

non-zero values of fault codes or symptoms in the input vector and correlation
matrix rows. The input vector has size R

46×1 while the correlation matrix has the
size R

15×46. Each row in the correlation matrix correspond to one malfunction.
The interesting rows in the correlation matrix are row 11 and 13, i.e. corr11 and
corr13. Note that the indexes in row corr13 of the correlation matrix has more in
common with the input indexes. The correlation values are not shown here, but
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Table 4.9: Results for a few combinations of fault codes and symptoms. See Sec-
tion 4.1.5 for an explanation of the highlighted boxes.

Table 4.10: Matrix correlation approach results from all data sets (MC).
MC

Second data set 98.51%
Third data set 94.89%
Fourth data set 98.13%
Fifth data set 96.17%

the values in row 13 are considerably larger compared to those in row 11. The
right answer is malfunction 13 but due to the cosine similarity the MC approach
give malfunction 11 as the result.

Indexes in input represent active fault codes and symptoms:

inputi =
(
1 2 5 8 41

)
Indexes in the matrix rows represent if a fault are connected to a fault code or symptom:

corr i11 =
(
1 2 26 41

)
corr i13 =

(
1 2 4 5 6 7 8 11 28 41

)

The calculations of the cosine similarity for malfunction 11 and 13 is shown be-
low:
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Malfunction 11:

corr11 · input = 0.0265

|corr11||input| = 0.0362
corr11 · input
|corr11||input|

= 0.7317

Malfunction 13:

corr13 · input = 1.5626

|corr13||input| = 2.2059
corr11 · input
|corr13||input|

= 0.7084

The cosine similarity for malfunction 11 and 13 are 0.7317 respectively 0.7084.
The norm of the two products in the second case will basically scale down the
result too much and thus the cosine similarity will yield the wrong answer.

Example 4.2 applies to false alarms too, because the cosine similarity can scale up
patterns that should not be that significant. The errors in the fifth set generally
resemble Example 4.2.

4.1.7 Bayesian Networks

The Bayesian network has been constructed from the connections given by the
repair manual, see Tables 2.2, 2.3, and 2.4. Note that all connections in a Bayesian
network are drawn during the manual construction, compared to the data driven
methods. Therefore it is not possible to get results that are not consistent with
the repair manual. The Figure 4.1 show the Bayesian network used during the
case study.

The Bayesian networks has been built and tested in the program GeNIe and with
the C++ library SMILE [gen, 2014]. The interference algorithm that has been
used is the clustering algorithm. The learning part of the parameters has been
learned though the EM-algorithm. The EM-algorithm is basically the same as
Bayesian estimation when the data set is complete, see Chapter 3. The node type
is Noisy-or in the network with arbitrarily chosen CPT’s, but of general type when
parameters are learned. The learning algorithm could not be used with Noisy-or
nodes. This does not pose as a problem, since GeNIe can convert Noisy-or nodes
to general nodes.

Validation of Arbitrarily Chosen CPT’s

The CPT’s of the Bayesian network need conditional probability values. These
values can be based on either expert knowledge or data sets. The probabilities
representing the chance that a fault occur have been chosen to be rather small,
since faults should not occur to frequently. The conditional probabilities have



4.1 Case Study 37

Figure 4.1: Bayesian network constructed from repair manual.

higher values, because malfunctions should activate fault codes and symptoms
most of the time, but fail to do so at a lower frequency. This will incorporate
uncertainty into the model.

The highlighted boxes in Tables 4.11, 4.12, and 4.13 are explained in Section 4.1.5.
The resulting malfunction in all fault cases is the one with highest posterior prob-
ability in each column.

Table 4.11 shows the result for the ideal cases. The diagonal that corresponds to
the correct malfunctions, holds the highest values, so the method can handle the
ideal cases. The results in Table 4.12 behave as expected, since the large values
are in the highlighted areas.

Table 4.11: The results for the ideal cases. The black boxes represent rows and
columns that are right according to the ideal connections.

The Bayesian network manages to recognize patterns in Table 4.13, since all the
black boxes have significantly higher values. Note that FMI1 and FMI2 have no
malfunction in common, and therefore all highlighted boxes are grey.

Table 4.14 shows results for all validation sets. The calculation of the perfor-
mance results is explained in Section 4.1.5. Errors in the table are generally
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Table 4.12: The results for each FMI. The grey boxes represent rows and columns
that are correct according to the ideal connections. FMI 8 is never active in the SUS.

Table 4.13: Results for a few combinations of fault codes and symptoms. See Sec-
tion 4.1.5 for an explanation of the highlighted boxes.

caused by the range interval of the calculated posterior probabilities after inter-
ference is done. When errors occur these values tend to be in the same range. All
P ID and SID codes have a strong connection to their respective malfunction in
the Bayesian network, shown in Table 4.1. If a false alarm trigger one of these,
there is a big risk that the connected malfunction gets the highest posterior prob-
ability value. This happens in many of the error cases. However some errors are
caused by combinations of fault codes and symptoms that do not form a specific
pattern, which tend to result in posterior probability values in the same range.
Both error cases can be derived from the result by the third data set, which has
a higher rate for false alarms. A higher rate for false alarms will result in more
cases that correspond to the described error cases , i.e. the reason behind the
result 84.08%. The Bayesian network scores 100% on the fifth data set. The rea-
son behind this result is that the output in the fifth data set contain multiple
faults. This is not the case in the other data sets where only one fault can be ac-
tive. This further supports the conclusion that the probabilities tend to be in the
same range. The Bayesian network is really sensitive to false alarms regarding
P ID and SID, these seem to be a bit more frequent in data set 2 compared to
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data set 4. Data set 4 gives a better result compared to data set 2, and the reason
behind this is simply that data set 4 contains the same false alarm rates as data
set 2. The conclusion is that the difference in the results depend on the random
generation of the two data sets and the structure of the model. The similarity
of the result from data set 2 and 4 show that the Bayesian network can handle
changed dependencies.

Table 4.14: The results from all validation sets on the Bayesian network with arbitrar-
ily chosen CPT’s. See Section 4.1.5 for more info about validation values.

BN result
Second data set 92.88%
Third data set 84.08%
Fourth data set 93.33%
Fifth data set 100%

Validation of CPT’s Learned from Training Set

The Bayesian network can learn parameters (CPT’s) from a data set. This is done
with the data set 1 in the program GeNIe. The initial parameters in the Bayesian
network are the ones used in the previous section. The EM-algorithm is used for
learning the parameters, and the confidence value indicates the reliability of the
current parameters. If a high value is used, the changes in the parameters will be
very small, therefore a rather small confidence value of 1 is used. This is done for
demonstration purposes only. In reality it would depend on the credibility of the
current parameters. Tables 4.15, 4.16, and 4.17 show the results for certain cases.
All previously mentioned explanations of the highlighted boxes in the tables in
Section 4.1.5 apply here as well. Table 4.17 shows that the learning procedure
has changed the strength of the connections between patterns and malfunctions.

Table 4.15: The results for the ideal cases. The grey boxes represent rows and
columns that are right according to the ideal connections.

See Table 4.18 for results from all validation sets on the Bayesian network trained
by the training set. The calculation of the performance results is explained in
Section 4.1.5. The results resemble the results from the Bayesian network with
arbitrarily chosen CPT’s, and the reason behind the errors are the same.
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Table 4.16: The results for each FMI. The grey boxes represent rows and columns
that are right according to the ideal connections. FMI 8 is never active in the SUS.

Table 4.17: Results for a few combinations of fault codes and symptoms. See Sec-
tion 4.1.5 for an explanation of the highlighted boxes.

Table 4.18: The results from all validation sets on the Bayesian network (parameters
learned by training set). See Section 4.1.5 for more info about validation values.

BN result
Second data set 92.24%
Third data set 82.38%
Fourth data set 93.41%
Fifth data set 100%

4.1.8 Neural Networks

The neural network will learn connections from the training set. The network
that is used here consist of 46 input nodes, one hidden layer with 50 nodes, and
one output layer with 15 nodes. All the parameters in the network has to be
learned. This is done through back-propagation and minimizing the error in
all nodes [Ng, 2014]. See Matlab code for neural network implementation in
Chapter A.
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Validation of Neural Network

The cost in each iteration is lowered until it converges, see Figure 4.2.

Figure 4.2: Cost value of cost function in every iteration

The highlighted boxes in Tables 4.19, 4.20, and 4.21 are explained in Section 4.1.5.
The resulting malfunction in all fault cases is the one with highest value in each
column.

The ideal cases in Table 4.19 are free from problems, since the diagonal that rep-
resents the right answers contains the largest values. The results in Table 4.20 are
correct, but the values in the highlighted boxes differ greatly compared to each
other. This is not a desired behavior, because the highlighted boxes points out
malfunctions that the FMI’s should be sensitive to. Table 4.21 show some bad
results for the neural network. The boxes highlighted black should contain high
values, since the patterns of fault codes and symptoms point to them specifically,
see Tables 4.2, 4.3, and 4.4. For example FMI7, S11, and P SID3 relate to M13.
FMI4 and FMI11 should produce high values for both malfunction M6 and M7,
but the neural network does this only for malfunction M6. FMI7 and symptom
S11 should produce high values for malfunction M10 and M13, but the neural net-
work does this only for malfunction M10. The last case consisting of FMI7, S11,
and P SID3 should produce the result M13, the result is instead M10.

Table 4.22 shows the results for all validation sets. The calculation of the results
is explained in Section 4.1.5. The major drawback is the result from the fifth
data set, which only is 83.82%. The neural network fails to make correct fault
isolation based on data set 5, even if this set contains multiple faults as long as
consistency of the repair manual is preserved. One explanation to this behavior
is that the fifth data set contains cases that are not likely to occur in the training
set, for example cases with single FMI codes or there all possible fault codes and
symptoms are active. Further analysis shows that most errors happen when 2 to
6 fault codes and symptoms are active at the same time. The conclusion from
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Table 4.19: The results for the ideal cases. The black boxes represent rows and
columns that are correct according to the ideal connections.

Table 4.20: The results for each FMI. The grey boxes represent rows and columns
that are correct according to the ideal connections. FMI 8 is never active in the SUS.

Table 4.21: Results for a few combinations of fault codes and symptoms. See Sec-
tion 4.1.5 for an explanation of the highlighted boxes.

this behavior is that the neural network fails to recognize certain patterns. The
neural network results generated by the fifth data set has a consistency to the
repair manual of 98, 80%, which is calculated by comparing the results with the
relations specified in Chapter 2. This means that the neural network in some in-
stances of the fifth data set, makes an incorrect choice between the valid faults,
specified by the fault case. The problem in other words is that the neural net-
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work fails to recognize the patterns and instead chooses a suboptimal solution.
Note that consistency to the model in this context, means that the results can be
derived from at least one of the fault codes or symptoms in the input.

Table 4.22: The results from all validation sets on the Neural Network (NN ). See
Section 4.1.5 for more info about validation values.

NN result
Second data set 98.68%
Third data set 94.81%
Fourth data set 98.28%
Fifth data set 83.82%

4.2 Training Set Size

The size of the training set can affect the performances of all methods. Tables 4.23,
4.24, and 4.25 show the validation results for the methods trained by three data
sets with different sizes. The calculation of the performance results is explained
in Section 4.1.5. The data sets are generated by the same probabilities as data set
1 (training set), see Tables 4.2, 4.3, and 4.4. The only difference between them is
the size, and the data sets have sizes of approximately 1000, 500, and 100 entries.
The data sets will not have sizes of exactly 1000, 500, and 100 entries, because
the generation procedure sometimes generate empty fault cases. That are not
included in the data sets. This was discussed in Section 4.1.2.

The results in Table 4.23 indicate that the matrix correlation method is stable for
data sets of different sizes, because the difference between the results for each
validation set is small.

Table 4.23: Table showing validation results for matrix correlation approach trained
by data sets with different sizes (MCsize).

MC1000 MC500 MC100
Second data set 98.56% 97.77% 97.37%
Third data set 95.09% 94.58% 93.97%
Fourth data set 98.29% 97.48% 97.84%
Fifth data set 96.11% 95.03% 94.55%

Table 4.24 shows validation results for the Bayesian network trained by data sets
of different sizes. All validation tests indicate that the characteristics of the re-
sults are roughly the same for all data set sizes.

Table 4.25 shows the validation scores for the neural network. Stable results
are obtained if the neural network is trained by the sets with size 1000 and 500,
which is not the case with the data set of size 100. The validation result for the
neural network trained by the small data set gets lower scores compared to the
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Table 4.24: Table showing validation results for Bayesian network trained by data
sets with different sizes (BNsize).

BN1000 BN500 BN100
Second data set 92.33% 93.59% 92.00%
Third data set 81.52% 82.00% 78.76%
Fourth data set 93.52% 93.56% 92.78%
Fifth data set 100.00% 100.00% 99.88%

other tests. The neural network is more sensitive to small data sets compared to
the other methods according to the results.

Table 4.25: Table showing validation results for neural network trained by data sets
with different sizes (NNsize).

NN1000 NN500 NN100
Second data set 98.54% 97.59% 87.48%
Third data set 95.26% 94.66% 83.71%
Fourth data set 98.09% 96.76% 86.47%
Fifth data set 82.68% 80.65% 59.44%

4.3 Advantages and Disadvantages

In Table 4.26 advantages and disadvantages for all methods are shown. The co-
sine similarity did complicate the interpretation of the similarity measure in the
matrix correlation method. These difficulties were discussed in Section 4.1.6. The
matrix correlation approach is not considered to be intuitive due to the cosine
similarity.

If a training set gives the algorithm undesired attributes, it would be an advan-
tage to able to change the parameters in the model manually. In the Bayesian
network and matrix correlation approach this can be done easily and the out-
come of the changes is clear. The neural network offers no simple solution to this
in the model. Neural networks are closely related to data in the learning process
and a changed parameter shatter the result obtained by minimizing the error.

If the methods are considered, as they are in the case study, only the neural net-
work and the matrix correlation approach can learn new relationships from data.
This is not entirely true because it is possible to build a Bayesian networks from
data [Jensen and Nielsen, 2007], but this will not be included in the case study.

Continuous variables can only be handled as they are in the Bayesian network
and neural network [Russell and Norvig, 2003]. Many existing tools for Bayesian
networks do not support the use of continuous variables, e.g. Genie. Since the
neural network is purely data driven, a continuous variable could be used as
it is. The matrix correlation approach cannot handle continuous input except in
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certain special cases. A continuous variable with a high value would always result
in a high correlation. Some faults could, for example, be sensitive to lower values
and therefore the best option in regard to the matrix correlation approach is to
discretize the continuous variable. Discretizing is a valid option in all methods.

All methods have different prerequisites in order for the model construction to
work. The Bayesian network, in the case study, needs expert knowledge in the
form of model connections and probability estimation. If data is available, the
probabilities can be calculated instead. The correlation matrix, in the matrix
correlation approach, can be constructed either through data or by an expert.
The neural network is dependent on data. The Bayesian network and the matrix
correlation approach have an advantage, in this aspect, compared to the neural
network, since they do not require data.

Table 4.26: Table showing advantages and disadvantages for the different methods
Bayesian net-
work

Neural network Matrix correla-
tion approach

Intuitive Yes No No (due to co-
sine similarity)

Adjusting parame-
ters manually

Yes No Yes

Learn new relation-
ships between pa-
rameters

Yes Yes Yes

Continuous param-
eters without dis-
cretizing

Yes Yes No

Prerequisites
needed

Expert
knowledge
of system or
data

Data Data or expert
knowledge

Table 4.27 shows performance values of the different methods in regard to all
validation sets. The calculation of the performance results is explained in Sec-
tion 4.1.5. These numbers have been discussed in the sections above.

Table 4.27: Results for different data sets on the methods matrix correlation (MC),
Bayesian network with arbitrarily chosen CPT’s (BN1), Bayesian network with
trained parameters (BN2) and the neural network (NN ).

MC BN1 BN2 NN
Second data set 98.51% 92.88% 92.24% 98.68%
Third data set 94.89% 84.08% 82.38% 94.81%
Fourth data set 98.13% 93.33% 93.41% 98.28%
Fifth data set 96.17% 100% 100% 83.82%
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The matrix correlation method had some problems with the cosine similarity
measure, i.e. it can produce similar values for patterns that should not be sim-
ilar, see Section 4.1.6. This leads to similarity measures that are in a very close
range, which makes it harder separate them.

The neural network performance on all data sets except the fifth is good, see
Section 4.1.8. The conclusion from the bad performance on the fifth data set
is that the neural network have problems with certain patterns, i.e. it fails to
recognize them.

The Bayesian networks has 100% accuracy when it comes to the fifth data set. The
results with the second and fourth are good, but the third set gives bad results
compared to the other methods. The reason is that the posterior probabilities
for faults tend to get in the same range when no specific pattern is presented or
certain false alarms are present, see Section 4.1.7. In the third set with more false
alarms, this scenario is more likely to occur in regard to the other data sets. This
weakness depend mostly on the structure of the model and the chosen false alarm
rates.

4.4 Evaluation and Conclusion

The neural network, in this case study has shown some negative attributes regard-
ing pattern recognition, and the good attributes cannot make up for this. The
neural network can be tuned to get better results by for example changing the
number of layers, and type activation functions. The thesis does not include any
investigation of different neural network models. A few alternatives were tested
during the construction of the network, but nothing extensive. This method will
not be considered to be a candidate any more, but have the previous remarks in
mind.

The matrix correlation method performed well in the case study, but cosine sim-
ilarity values are not that easy to interpret compared to probabilities. Cosine
similarity generates similarity values in the same range for cases that should not
be close to each other, even in cases with a specific pattern. The conclusion of this
is that the cosine similarity does not behave as desired in certain cases. Another
similarity measure could probably remove this trait from the matrix correlation
approach.

The Bayesian network has produced decent results in the case study, but not as
good as the matrix correlation approach. The Bayesian network has the advan-
tage of being easy to interpret and it recognises specific patterns without prob-
lems. The main drawback is the results from the data set with high false alarms,
which depended on the attribute of producing posterior probabilities for faults
in the same range. This can be turned into a strength, by presenting a list of pos-
sible faults instead of a single fault. It is not possible for the Bayesian network to
produce results that are not consistent with the ideal connections, since it is built
on these.
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The method that will be used for implementation and further analysis is Bayesian
networks, because the other methods had some issues that could not be ignored,
like cosine similarity and pattern recognition. The intuitiveness of Bayesian net-
works and the results (posterior probabilities), compared to the other methods,
play a major role in this decision.

4.5 Advantages of Methods Compared to Repair
Manual

The repair manual offers all the relationships on paper. Certain cases could point
out multiple faults and it might be hard to decide which of them is the best choice.
All these methods will give a measure for each malfunction in a certain case, for
example probabilities in the Bayesian network.

It also simplifies fault tracing because the methods will give results as long as in-
put is provided, e.g fault codes and symptoms. In other words you could say that
some of the work is transferred from the mechanic to the method. It is common
that many new fault cases arise a while after a product release. If these new cases
can be incorporated easily through learning or manually into the model new fault
connections would be easier to identify.
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Further Study and Implementation

Description

5.1 Improvements to Suggested Method

The Bayesian network used in the case study could be improved in many ways.
This part handle some possible elaborations on this topic.

5.1.1 Incorporate Dependencies to Other Components

The case study models take only the SUS unit into account. There are many ways
to incorporate dependencies to other components. The existing model could be
expanded in order to include dependencies to other components. This can be
done by adding new nodes to the model. If data exists, the CPT’s of the nodes
can be learned. Otherwise they have to be instantiated by an expert. A more ad-
vanced and trickier approach would be to to learn the network from data [Jensen
and Nielsen, 2007].

Another approach is to use the repair action set up that will be presented in
Section 5.2. Repair actions lists are linked to specific faults, and the current fault
is determined by the Bayesian network. These lists will be rearranged according
to number of successful repair actions, cost, and repair time. The idea is to add
repair actions to these lists that are linked to other components. This method will
separate the Bayesian network model from external dependencies. If a fault case
generally depends on a fault in another component, the idea is to add one repair
action in the list that reflect this.

5.1.2 Adjusting Parameters to New Data

Parameter learning in Bayesian networks have been demonstrated in the case
study in Chapter 4. The training set for the Bayesian network consisted of roughly
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10000 entries, which implies that learning works for large data sets.

The case study left one Question unanswered. Namely how parameters change
when new data is used to retrain the Bayesian network. In this section gener-
ated data with a few modifications is used to demonstrate this. The training sets
are generated by changing the probabilities in the generation procedure, see Ta-
ble 5.1. The data sets that are used to retrain the Bayesian network are generated
in different sizes of 100, 500 and 1000 entries. This is done to decide how well
the Bayesian network changes depending on training set size.

Table 5.1: Changed probabilities for FMI fault codes during data generation, high-
lighted in grey.

The learning algorithm used in this section is the previously used EM-algorithm.
The confidence value indicate how much the current parameters are to be trusted.
A confidence value of 1 is used, which basically means that the current values
should not be trusted. Tables 5.2, and 5.3 contain the old and new conditional
probabilities before and after the Bayesian network has been retrained. Most of
the values in the probability tables change as expected, except for the cases there
both M11 and M13 are true simultaneously. The reason behind this, is that the
generated data sets do not contain any cases where both faults are present at
once. Therefore the probability is not updated. The generated data set contains
all combinations of fault codes and faults except from the previously mentioned
one. All cases with only one active fault change, and this is due to the changes in
Table 5.1. The changes imply that FMI0 will occur more frequently withM13 and
FMI1 with M11, due to a higher probability value in the generation procedure.
The Tables 5.2 and 5.3 reflect this too. The conditional probability value has
decreased in row three, there FMI0 and M11 are active. The opposite happened
in row five there FMI0 and M13 are active.

5.2 Repair Action Decision

The lists of repair actions that are available should be updated in regard to suc-
cessful and failed repair actions. This will be done by defining two values, cost
and repair time for each repair action. Equations that generate repair values, can
be be constructed in many ways. Repair values denote how suitable repair actions
are based on these parameters. The following equations below have different de-
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Table 5.2: Conditional probabilities in different Bayesian networks. In the base net-
work no additional data has been considered, while the other represent cases where
the base network has been updated using the a new data set, with size of 1000 entries.

M11 M13 FMI0 Pbase(FMI0, M11, M13) P1000(FMI0, M11, M13)
T T T 0.9633 0.9633
T T F 0.0367 0.0367
T F T 0.7537 0.2336
T F F 0.2463 0.7664
F T T 0.7532 0.9094
F T F 0.2468 0.0906
F F T 0.0024 0.0024
F F F 0.9976 0.9976

Tables where the probabilities of the base network has been updated using the new
data sets, with sizes of 500 and 100 entries.

M11 M13 FMI0 P500(FMI0, M11, M13) P100(FMI0, M11, M13)
T T T 0.9633 0.9633
T T F 0.0367 0.0367
T F T 0.1938 0.2923
T F F 0.8062 0.7077
F T T 0.9045 0.9589
F T F 0.0955 0.0411
F F T 0.0023 0.0000
F F F 0.9977 1.0000

sign aspects in mind. The first one guarantees that high values are assigned to
expensive actions regarding cost and repair time. The second one is easier to tune
due to weighting values that indicate how important the parameters are.

First repair value equation:

repair value = (
Number of succesful outcomes

Total number of outcomes
)−1 ∗ C ∗ T (5.1)

there C > 1 and T > 1

Second repair value equation:

repair value = w1 ∗ (
Number of succesful outcomes

Total number of outcomes
)−1 + w2 ∗ C + w3 ∗ T (5.2)

where 0 < C ≤ 1 and 0 < T ≤ 1

wi = weighting value indicating importance of value

C = cost

T = repair time

The second approach is inspired from the paper [Yingping Huang and Zhang,
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Table 5.3: Conditional probabilities in different Bayesian networks. In the base net-
work no additional data has been considered, while the other represent cases where
the base network has been updated using the a new data set, with size of 1000 entries.

M11 M13 FMI1 Pbase(FMI1, M11, M13) P1000(FMI1, M11, M13)
T T T 0.9863 0.9863
T T F 0.0137 0.0676
T F T 0.8597 0.9324
T F F 0.1403 0.0676
F T T 0.9192 0.5490
F T F 0.0808 0.4510
F F T 0.0109 0.0107
F F F 0.9891 0.9893

Tables where the probabilities of the base network has been updated using the new
data sets, with sizes of 500 and 100 entries.

M11 M13 FMI1 P500(FMI1, M11, M13) P100(FMI1, M11, M13)
T T T 0.9863 0.9863
T T F 0.0137 0.0137
T F T 0.9464 0.8100
T F F 0.0535 0.1900
F T T 0.5564 0.6532
F T F 0.4436 0.3468
F F T 0.0024 0.0001
F F F 0.9976 0.9998

2014], see Chapter 1.

The repair manual contain lists of repair actions connected to one fault and fault
code. The concept is that the fault tracing method first finds the most likely fault,
and after that a repair list is chosen. The repair actions in the list are compared
to each other by their repair value, then the repair action with the lowest value is
chosen.

The repair action strategy is simple and was chosen due to the fact that the repair
manual contains lists of repair actions. No data regarding how the system would
respond to all actions existed in a simple context, and to collect this information
is out of scope for the thesis.

5.2.1 Repair Action Decision Demonstration

A case study is used to demonstrate the calculation of repair action values. In the
example FMI0 is active, and the fault tracing method has pointed out that the
Servo Motor is faulty. Both repair value equations are demonstrated in order to
show how they behave differently. The repair list is shown below:

Servo Motor faulty and FMI0 is active
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1. Check if other error codes exist, that imply error in electrical system (R1)

2. Check battery connection (R2)

3. Measure battery voltage (R3)

4. Check power cable connection between SUS and engine (R4)

5. Measure the voltage on B+ and B– on the SUS (R5)

6. Change Servo motor (R6)

Note that the last action does not exist in the repair manual. It has been added to
demonstrate an expensive action. Let all repair actions be denoted Ri according
to the order in the list. The actions have their cost (Ci) and repair time (Ti) values
listed below. Note that both repair action equations have a set of different test
parameters because they are designed in different ways.

For first repair action value equation (5.1):

C1 = 1, T1 = 25

C2 = 1, T2 = 20

C3 = 1, T3 = 15

C4 = 1, T4 = 20

C5 = 1, T5 = 25

C6 = 50, T6 = 50

For second repair action value equation (5.2):

C1 = 0.1, T1 = 0.25

C2 = 0.1, T2 = 0.20

C3 = 0.1, T3 = 0.15

C4 = 0.1, T4 = 0.20

C5 = 0.1, T5 = 0.25

C6 = 0.5, T6 = 0.50

The Table 5.4 show the total number of actions and the number of successful
actions.

Table 5.4: Table of an example with total number of actions and successful actions
Total number of actions Successful actions
100 60
90 80
80 50
50 45
30 26
20 19
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The Tables 5.5 and 5.6 show the results for the first equation (5.1) and second
equation (5.2) respectively. The repair actions are ranked according to the low-
est value in both tables, in ascending order. The last action which recommends
change of component gets a high value with equation (5.1), since changing compo-
nents should be the last resort. The ranking between the other actions in Table 5.5
are in a close range to each other, and will mostly be dependent on the number
of successful actions. The results from equation (5.2) depend much on the choice
of weight values. The repair values in this test end up in a similar range, see
Table 5.6. Equation (5.1) represents a simple strategy that will make sure expen-
sive actions do not climb up the list. This is due to the fact that the inverse of
the probability of successful repair will always be greater than one. The values
of cost and repair time will decide if the repair action value is large or small. It
is, for example, impossible for R6 to climb in ranking if the values of cost and
repair time are not changed. The second repair value, equation (5.2) calculates
the repair value by a summation of products between the attributes and weights.
The weights symbolize the importance of each attribute. The second repair value
equation offers more freedom compared to the first, since it is easier to tune the
behavior with the weighting parameters. Both methods are shown to demon-
strate that simple updating equations can be shaped in many different ways to
suit different needs. The results in Tables 5.5 and 5.6 can not be judged as good
or bad without a goal for the repair action strategy. If the goal is to guarantee that
expensive actions are always in the bottom of the list, equation (5.1) is a suitable
choice. One problem with equation (5.1) is that it can produce numbers in a big
range, see for example R6 in Table 5.5. Note that this goal could be achieved in a
similar fashion by equation (5.2) by setting the weight value for the cost to a high
value. Equation (5.2) has a big advantage compared to equation (5.1), because it
is easier to tune.

Table 5.5: Results for repair action values for the first equation (5.1)
Repair actions Result
R1 33.3
R2 22.5
R3 24.0
R4 27.8
R5 28.8
R6 5631.6

5.3 Implementation Description

The program GeNIe [gen, 2014] was used during the case study in order to evalu-
ate the performed of the Bayesian network. GeNIe is a graphical interface for the
C++ library, SMILE. In a real application the SMILE library could be used as a
platform for all the calculations. The C++ library could be used with for example
QT, if a C++ implementation is desired. A SMILE wrapper exists for .Net, which
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Table 5.6: Results for repair action values for the second equation (5.1) with w1 = 1.5,
w2 = 2, and w3 = 0.5.

Repair actions Result
R1 2.8250
R2 1.9875
R3 2.6750
R4 1.9667
R5 2.0558
R6 2.8289

could be an alternative to the previous proposal.

Figure 5.1 shows one possible way to implement the fault tracing scenarios dis-
cussed in this thesis. The Bayesian network box involves setting evidence in the
network according to the fault case, for example FMI0 = true. Then evidence
has been set the posterior probabilities are calculated, which are the new proba-
bilities related to the evidence. One strategy for choosing fault is to simply take
the one with the highest probability, and then the corresponding repair list is
forwarded to the mechanic. The mechanic need to give the system feedback on
successful or unsuccessful repair actions. All the fault cases are then stored in a
database in order to update the system. A validation step can prevent that bad
data updates the system. This is the reason behind the box representing expert
approval, in Figure 5.1.
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Figure 5.1: Implementation flowchart



6
Conclusions and Future Work

6.1 Conclusion

The problem that this study strives to address is how different algorithms per-
form in a troubleshooting scenario for the SUS unit, i.e., identifying faults and
propose suitable repair actions. A major focus is placed on learning dependency
structures from data, in other words, the strength of the connections between
faults, fault codes, and symptoms. This is done in order to reflect the fact that
real data might be scarce at release of a product, but the quantity of data is likely
to increase over time.

There are many algorithms that are applicable to the problem of identifying
faults based on fault codes and symptoms. The three candidates that were com-
pared to each other, in this thesis, are Bayesian networks, neural networks, and
the matrix correlation approach. Each method has it is own way of tackling the
problem. All methods can be purely data driven, but only the neural network
and the matrix correlation approach are used in this way. The Bayesian network
is built from known dependencies between faults, fault codes, and symptoms.
The Bayesian network model consists of probability values that need to be initi-
ated from either data or expert knowledge. The study takes both these strategies
into account.

No real data could be used in this study, because the conversion of the real data
to usable data sets was out of scope for this thesis. Five sets were generated to
evaluate all algorithms. There is one data set for training, while the others were
created for validation purposes. The data sets where generated from the depen-
dencies between faults, fault codes, and symptoms given in the repair manual
[Penta, 2006]. The generation process was built on probabilities, that stated how
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likely it is that fault codes and symptoms are active in regard to all faults. This
generation procedure gives data sets that are more realistic compared to the ideal
cases in the repair manual.

Further analysis of the chosen algorithms indicated that all of them have strengths
and drawbacks. The results from the validation sets showed that the matrix cor-
relation approach had the best performance. The chosen test cases revealed prob-
lems with the neural network and matrix correlation approach, namely pattern
recognition and cosine similarity measures. In the aspect of training set size, all
methods have basically the same characteristics after being trained by the differ-
ent data set sizes, except the neural network. The matrix correlation approach
performed well in most tests, but has one issue that could not be discarded, i.e.
cosine similarity. The cosine similarity has an undesired behavior in certain sit-
uations, i.e. the range of the similarity measures. This is the foremost argument
against the matrix correlation method. The main reason behind the exclusion of
the neural network is due to the problems with pattern recognition. Bayesian
networks are rather easy to construct and can be adapted to suit many different
situations. In general it suits the problem well. Bayesian networks can be quite
advanced when it comes to different ways to implement interference and to learn
parameters, but the modelling and the results are intuitive. These facts are some
of the reasons behind the decision to deem the Bayesian network as the most ap-
propriate method for the presented problem. The Bayesian network has flaws as
well, for example the results on the validation sets that did not match the matrix
correlation approach. The Bayesian network produced less ideal results for the
data set with high false alarm rate, and the reason behind this was the model and
data structure. It is important to note that this is not a general trait for Bayesian
networks. The other algorithms cannot be entirely ruled out, because a valid
statement concluding which algorithm is best, requires a more extensive study of
all the algorithms.

Another topic addressed is how well the Bayesian network can adapt to new data
sets that contain different dependencies, for example a weaker connection be-
tween a symptom and a fault in comparison to the original training set. The trust
measure that the EM-algorithm uses to train the Bayesian network is a big advan-
tage. In reality data sets can be of different quality, and the Bayesian network
can adapt do this due to the trust measure. The results from this investigation
showed that the Bayesian network managed to reflect the changes in the new data
sets, with different data set sizes.

The task for the Bayesian network is to point out the most probable fault. After
that the next step is to recommend a repair action. In the repair manual repair
actions are given as lists connected to fault codes and faults. These lists could be
made more accurate by allowing a updating equation to reorganize them based
on for example successful repair actions, cost, and repair time. Two proposals for
updating equations are presented, but the conclusion is that such equations can
be tailored to suit the desires in different situations. The proposed fault tracing
algorithm can adapt to new data, which will make new knowledge available to
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all users.

The two primary contributions of the thesis is a conceptual idea of how fault trac-
ing can be implemented, and a demonstration through Matlab and the program
GeNIe to show all results. Volvo Penta will get insight into how data should be
structured, in order to simplify usage of data in fault tracing scenarios. The meth-
ods investigated are applicable in other similar areas, which makes it interesting
from other point of views as well. For example one could construct a Bayesian
network for many possible scenarios.

6.2 Future Work

The study has only scratched the surface of a complicated and advanced topic. All
the methods that were compared have been utilized in their basic form, which
means there is much more that can be uncovered by delving deeper into each
method. Note that a further investigation of all methods could result in a differ-
ent ranking between the presented methods. A list of possible elaboration topics
are listed in below:

Investigating other similarity measures for the matrix correlation
approach

The matrix correlation method was promising, but was dropped due to the fact
that the cosine similarity measure presented some issues. There are many simi-
larity measures and the possibility that another choice suits the problem better is
high. Therefore one elaboration in the future is to investigate the matrix correla-
tion based on LSI further, and especially similarity measures.

Building Bayesian networks from data

The Bayesian network has one disadvantage, the way it is presented in the thesis,
it must be built on dependencies that are known. There are ways to construct
Bayesian networks from data [Jensen and Nielsen, 2007]. By using this knowl-
edge, it would be possible to learn new connections solely based on data, which
is a big advantage if the models are complicated.

How well all methods handle continuous input

The case study merely pointed out if continuous variables could be included in
the model or not. This is an interesting topic, because many data sources such
as mileage is represented by continuous data. Future work could consist of trials
that included tests with both discrete and continuous data.

Study different neural network models

The neural network model in the case study has not undergone any extensive
testing to find the optimal parameters, for example number of hidden layers,
number of nodes and so on. Neural network models can exist in many different
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shapes, and this can have a great impact on performance. This could therefore be
an interesting topic to investigate further.

Investigate how well each method can handle multiple faults

Multiple faults is something that the case study did not take into account. In
reality this could happen and to reflect that, the model should be able to handle
both single and multiple faults. Models always strive to reflect reality as good as
possible, and therefore this topic is interesting for future work on all the methods.

Develop a more sophisticated repair action decision strategy

The suggested ranking methods of repair actions in the implementation section
is simple. There are much theory on decision making [Russell and Norvig, 2003]
that could be included in the troubleshooting process to generate a more sophis-
ticated repair action decision method.

Use more data

In Chapter 2 available data was listed, but all of it was not used. A more accurate
model of reality could be obtained if the available data was incorporated into the
algorithms. The algorithms could for example find out if a product is likely to be
worn out with the help of product usage and mileage. However the data need to
be analysed and rewritten into a form that the algorithms can use.
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A.1 Data Generation

A.1.1 Probability Values

All the Tables in this section contain probability values used for data generation.

Table A.1: Probabilities for FMI fault codes during data generation of data set 3
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Table A.2: Probabilities for PID and SID fault codes during data generation of data
set 3

Table A.3: Probabilities for symptoms during data generation of data set 4

Table A.4: Probabilities for FMI fault codes during data generation of data set 4
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Table A.5: Probabilities for PID and SID fault codes during data generation of data
set 4

Table A.6: Probabilities for symptoms during data generation of data set 4

A.1.2 Data Generation Code

%% Cases
clc
clear
%%

load('Input_ideal.mat');
load('Output_ideal.mat');

IN_ideal = Input_ideal;
IN_ext = Input_ideal;
targets_ext = Output;

%% All combinations
numCases = 1;

for i = 1:15 % malfunction 1-15
IN_row = IN_ideal(i,:);
index = find(IN_row);
l = length(index);
numCases = 1;

for j = 1:l % all fault codes belonging to malfunction i
indexes = combnk(index, j);
for k = 1:size(indexes,1)
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index_row = indexes(k,:);
%numCases = randi(10,1,1);
[IN_ext, targets_ext] = addCases(IN_ideal, IN_ext,...

targets_ext, numCases,...
index_row);

end
end

end

Input = IN_ext(16:end, :);
Output = targets_ext(16:end, :);

%% False alarms data

clear; clc;

load('prop_dataSet5.mat');
mat = prop_dataSet5;

num_cases = 10000;

Input = [];
Output = [];

for i = 1:num_cases

% create empty case
case_malfunc = zeros(1,46);
out = zeros(1,15);

% choose malfunction randomly
malfunc = randi([1 15],1,1);

% pick out the fault codes belonging to the malfunction
row_fc = mat(malfunc,:);

% choose which fault codes to put in case, by the probabilities in
% row_fc
for j = 1:size(mat,2)

% fault codes/symptom equal to zero or one?
x = sum(rand >= cumsum([1 - row_fc(j), row_fc(j)]));
case_malfunc(j) = x;

end

% Set values
sum_row = sum(case_malfunc);
out(malfunc) = 1;

if(sum_row > 0)
Input = [Input; case_malfunc];
Output = [Output; out];

end
end

function [ IN_ext targets_ext ] = addCases( IN_ideal, IN, targets, numCases, in dexes)
%ADDCASE
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IN_ext = IN;
targets_ext = targets;

input_t = zeros(1,size(IN,2));
targets_t = ones(1,15);

for i = 1:length(indexes)
[row, col] = find(IN_ideal(:,indexes(i)));
targets_index = zeros(1,15);
targets_index(row) = 1;
targets_t = targets_index & targets_t;

end

input_t(indexes) = 1;

for k = 1:numCases
IN_ext = [IN_ext; input_t];
targets_ext = [targets_ext; targets_t];

end

end

A.2 Matrix Correlation Approach

A.2.1 Create Correlation Matrix

function [ corrMatrix ] = createDependMatrix( Input, Output)
%CREATEDEPENDMATRIX

m = size(Output, 2);
n = size(Input, 2);

corrMatrix = zeros(m,n);

for k = 1:size(Input, 1);
% find which indexes in Output are != 0
index_output = find(Output(k, :));
% find which indexes in Input are != 0
index_input = find(Input(k,:));

% add +1 to row i and col j in corrMatrix
for i = 1:length(index_output)

for j = 1:length(index_input)
corrMatrix(index_output(i), index_input(j)) = corrMatrix(index_output(i), index_input(j)) + 1;

end
end

end

corrMatrix = corrMatrix/size(Input,1);

end
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A.2.2 Correlation

function [ corr1, corr2] = Correlation( m, faultcase )
%CORRELATION Summary of this function goes here
% Detailed explanation goes here

corr1 = [];
corr2 = [];

n_m = size(m,2);
n_p = length(faultcase);

if(n_m == n_p)
for i = 1:size(m,1)

corr1 = [corr1; (m(i,:)*faultcase')/(norm(faultcase)*norm(m(i,:)'))];
corr2 = [corr2; m(i,:)*faultcase'];

end
else

disp('Wrong size of input vector');
end

end

A.2.3 Validation

function [ rel, faulty_indexes ] = correctness( Res, Input, Input_ideal )
%CORRECTNESS

corr = 0;
faulty_indexes = [];

for i = 1:size(Input,1)

faultcodes = find(Input(i,:));
malfunctions = Input_ideal(:, faultcodes);
[I,J]= find(malfunctions);
if(sum(Res(i) == I))

corr = corr + 1;
else

faulty_indexes = [faulty_indexes; i];
end

end

rel = corr/size(Input,1);

end

A.3 Bayesian Network

A.3.1 Validation
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#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include "..\..\..\..\Diadrom\SMILE\smile.h"

using namespace std;

// Load data
void loadInputOutput( string file, vector<vector<int>> &input, vector<

vector<int>> &output, vector<string> &fc_sym, int num_fc_sym)
{

// read from cases from file

// input file stream
ifstream txt_file;
// open file, only reading is permitted
txt_file.open(file, ios::in);

stringstream stream;
string line;
vector<int> row_input;
vector<int> row_output;

if(txt_file.is_open())
{

cout << "loading file..." << endl;

// handle first line
getline(txt_file, line);
stream << line;
while(!stream.eof())
{

string x;
stream >> x;
fc_sym.push_back(x);

}

// get line
while(getline(txt_file, line))
{

// clear string stream and put the string line there
stream.clear();
stream << line;
// clear vectors
row_input.clear();
row_output.clear();

// counter variable
int i = 1;

// go though string stream and handle each int
while(!stream.eof())
{

int n;
stream >> n;

if(i <= num_fc_sym)
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row_input.push_back(n);
else if(i > num_fc_sym)

row_output.push_back(n);

i += 1;
}

// save result vector
input.push_back(row_input);
output.push_back(row_output);

}
}
else
{

cout << "could not open file" << endl;
}

txt_file.close();
cout << "finished" << endl;

}

// Set evidence, input is 1x46 with active and non-active fault codes (i.e
0 or 1) vector and fc_sym are a 1x46 vector with all the names

void setEvidence( vector<int> input, vector<string> fc_sym, DSL_network &
net)

{
for(size_t i = 0; i < input.size(); ++i)
{

if(input[i] == 1)
{

const char* symbol = fc_sym[i].c_str();
int handle = net.FindNode(symbol);

net.GetNode(handle)->Value()->SetEvidence(0);
//cout << "true: " << fc_sym[i] << endl;

}
}

}

// Do interference on the network
void interference( DSL_network &net)
{

// use clustering algorithm
net.SetDefaultBNAlgorithm(DSL_ALG_BN_LAURITZEN);
// Update
net.UpdateBeliefs();

}

void printResult( DSL_network &net, vector<string> &faults)
{

DSL_sysCoordinates theCoordinates;

// 46 is the number of fault codes + symptoms
for( size_t i = 46; i < faults.size(); ++i)
{

const char* symbol = faults[i].c_str();
int handle = net.FindNode(symbol);
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theCoordinates.LinkTo(*net.GetNode(handle)->Value());
theCoordinates[0] = 0; // index of true
theCoordinates.GoToCurrentPosition();
double P_res = theCoordinates.UncheckedValue();
cout << faults[i] << ": " << P_res << endl;

}
}

int getResult( DSL_network &net, vector<string> &faults)
{

DSL_sysCoordinates theCoordinates;
int res = 0;
double P_res_old = 0;

// 46 is the number of fault codes + symptoms
for(size_t i = 46; i < faults.size(); ++i)
{

// Set evidence
const char* symbol = faults[i].c_str();
int handle = net.FindNode(symbol);

theCoordinates.LinkTo(*net.GetNode(handle)->Value());
theCoordinates[0] = 0; // index of true
theCoordinates.GoToCurrentPosition();
double P_res = theCoordinates.UncheckedValue();

// check if result (res) should be replaced
if(P_res > P_res_old)
{

P_res_old = P_res;
res = i - 45;

}
}

return res;
}

// Validation, result from network, output from the data set
float matchResult( vector<int> result, vector<vector<int>> output)
{

int corr = 0;

if(result.size() == output.size())
{

for(size_t i = 0; i < result.size(); ++i)
{

if(output[0].size() == output[i].size())
{

for(size_t j = 0; j < output[0].size(); ++j)
{

if(output[i][j] == 1)
{

if((j + 1) == result[i])
corr += 1;

}
}

}
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else
cout << "wrong size, output" << endl;

}
}
else

cout << "wrong size, result vector" << endl;

float rel = (float)corr/(float)result.size();

return rel;
}

template <class T>
void printVector(vector<T> x)
{

for(size_t i = 0; i < x.size(); ++i)
{

cout << x[i] << " ";
}

cout << endl;
}

int main()
{

DSL_network theNet;

//theNet.ReadFile( "Bayesian_network_SUS_learn_parameters.xdsl");
theNet.ReadFile( "Bayesian_network_SUS_prob.xdsl");

vector<vector<int>> input;
vector<vector<int>> output;
vector<string> fc_sym;
// inOutProb: contains the cases generated from probabilties
// inOutExt: contains all possilbe cases
loadInputOutput( "inOutProb.txt", input, output, fc_sym, 46);

vector<int> result;

// For validation in Matlab
//ofstream outTest;
//outTest.open("outTest.txt");

cout << "Validation..." << endl;
for(size_t i = 0; i < input.size(); ++i)
{

setEvidence( input[i], fc_sym, theNet);
interference( theNet);
int res = getResult( theNet, fc_sym);
result.push_back( res );
//outTest << res << "\n";
theNet.ClearAllEvidence();

}

//outTest.close();

float rel = matchResult( result, output);
cout << "Validation finished" << endl;
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cout << "Correctness: " << rel << endl;

string i;
cin >> i;

return 0;
}

A.4 Neural Network

A.4.1 Cost Function and Back propagation

function [ J, grad ] = costFunction( params, X, Y, input_layer_size,...
hidden_layer_size,...
output_layer_size, lambda)

%COSTFUNCTION

m = size(X, 1);
num_malfuncs = size(Y,2);
J = 0;
grad = 0;

Theta1 = reshape(params(1:hidden_layer_size * (input_layer_size + 1)),...
hidden_layer_size, (input_layer_size+1));

Theta2 = reshape(params((1 + ...
(hidden_layer_size * (input_layer_size + 1))):end),...
output_layer_size, (hidden_layer_size+1));

% feed forward propagation

X1 = [ones(size(X,1),1) X];
z2 = X1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(size(a2,1),1) a2];
z3 = a2*Theta2';
a3 = sigmoid(z3);
h = a3;

% cost function + reg

for k = 1:num_malfuncs
J = J + 1/m * (- log(h(:,k))' * Y(:,k) - log( 1 - h(:,k))' * ...
(1 - Y(:,k)));

end

reg = lambda/(2*m) * ( sum(sum(Theta1(:,2:end).^2)) + ...
sum(sum(Theta2(:,2:end).^2)));

J = J + reg;

% Back propagation

DELTA2 = 0;
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DELTA1 = 0;

for t = 1:m

% forward propagation
a1 = [1 X(t,:)];
z2 = a1 * Theta1';
a2 = sigmoid(z2);
a2 = [1 a2];
z3 = a2 * Theta2';
a3 = sigmoid(z3);

% calc error in output nodes
delta3 = (a3 - Y(t,:))';

% calc delta 2 error in each node in layer 2 (hidden layer 1)
g_grad = [1 sigmoidGradient(z2)];
delta2 = (Theta2'*delta3).*g_grad';

% add to earlier results
DELTA2 = DELTA2 + delta3*a2;
DELTA1 = DELTA1 + delta2(2:end)*a1;

end

Theta2_grad = 1/m*DELTA2;
Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + lambda/m * Theta2(:,2:end);

Theta1_grad = 1/m*DELTA1;
Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + lambda/m * Theta1(:,2:end);

grad = [Theta1_grad(:) ; Theta2_grad(:)];

end

A.4.2 Randomize Weight Initialization

function [ init_parameters ] = randInitWeights( num_parameters, interval)
%RANDINITIALIZEWEIGHTS

init_parameters = interval(1) + (interval(2) - interval(1)) .*...
rand(num_parameters,1);

end

A.4.3 Validation

function [ rel , faulty_indexes ] = predError( Output, p_res )
%PREDERROR

res_out = 0;
faulty_indexes = [];
for i=1:size(Output, 1)

if(sum(p_res(i) == find(Output(i,:))))
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res_out = res_out + 1;
else

faulty_indexes = [faulty_indexes; i];
end

end

rel = res_out/size(Output,1);

end
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