
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Driver-truck models for software-in-the-loop
simulations

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan vid Linköpings universitet

av

Oskar Daniels

LiTH-ISY-EX–14/4799–SE

Linköping 2014

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Driver-truck models for software-in-the-loop
simulations

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan vid Linköpings universitet

av

Oskar Daniels

LiTH-ISY-EX–14/4799–SE

Handledare: Chih Feng Lee
isy, Linköpings universitet

Samuel Wickström
Scania

Examinator: Erik Frisk
isy, Linköpings universitet

Linköping, 9 oktober 2014

Avdelning, Institution
Division, Department

Vehicular systems
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2014-10-09

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://www.ep.liu.se

ISBN

—

ISRN

LiTH-ISY-EX–14/4799–SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Förar- och fordonsmodeller för software-in-the-loop-simuleringar

Driver-truck models for software-in-the-loop simulations

Författare
Author

Oskar Daniels

Sammanfattning
Abstract

By using vehicle-to-vehicle communication, vehicles can cooperate in many ways by sending
positions and other relevant data between each other. One popular example is platooning
where many, especially heavy vehicles, drive on a trail with short distances resulting in a
reduction of air resistance. To achieve a good efficiency of the platooning it is required that
vehicle fleets are coordinated, so that the percentage of time for driving in platoon is maxi-
mized without affecting the total driving time and distance too much. For large fleets, this
is a complex optimization problem which would be difficult to solve by only using the real
world as the test environment.

To provide a more adaptable test environment for the communication and platooning coor-
dination, an augmented reality with virtual vehicles (“Ghost trucks") with relevant commu-
nication abilities are developed. In order to realise the virtual testing environment for trucks,
Scania initiated a project that could be divided into the workload of three master theses. This
thesis involved the part of developing the virtual vehicles, which include the development
of a truck model and a driver model.

The developed truck model consists of a single track vehicle model and several powertrain
models of different complexity provided by Scania. Additionally, the driver model consists of
steering wheel and speed controls in order to keep the truck on a safe distance from the lead
truck and stay on a preferred lane. The key feature of the driver-truck model is its modular
design, which provides great flexibility in selecting the level of detail for each component.
The driver-truck model can be duplicated and simulated together in real time and performs
platooning with each other in a road system based on the real world. As the driver-truck
model is module based, it can easily be extended for future purposes with more complex
functions.

The driver-truck model is implemented in Simulink and the simulation performance for dif-
ferent model complexity is evaluated. It is demonstrated that the flexibility of the developed
model allows a balanced decision to be made between realistic truck behavior and simu-
lation speed. Furthermore, multi-truck simulations are performed using the model, which
demonstrate the effectiveness of the model in the evaluation of truck platooning operations.

Nyckelord
Keywords vehicle models, driver models, trucks, platooning

http://www.ep.liu.se

Abstract

Genom att använda kommunikation mellan fordon, kan dessa samarbeta genom
att skicka positioner och annan relevant data mellan varandra. Ett populärt exem-
pel är platooning där många, i synnerhet tunga fordon, kör i en kolonn med korta
avstånd som resulterar i en minskning av luftmotståndet. För att uppnå en god
effektivitet med platooning krävs att fordonsflottor är koordinerade så att ande-
len tid för körning i kolonn maximeras utan för mycket påverkning av den totala
körtiden. För stora flottor är detta naturligtvis ett komplext optimeringsproblem
som skulle vara svårt att lösa genom att endast använda den verkliga världen som
testmiljö.

För att ge en mer anpassningsbar testmiljö för kommunikation och koordiner-
ing av platooning, utvecklades en förstärkt verklighet med virtuella fordon (“
Ghost trucks ") med relevanta kommunikationsförmåga. För att förverkliga den
virtuella testmiljön för lastbilar inledde Scania ett projekt som kunde delas upp
i tre examensarbeten. Detta examensarbete involverade delen för att utveckla
de virtuella fordonen, vilket inkluderar implementation av en förar- och last-
bilsmodell.

Den utvecklade lastbilsmodellen består av en tvåhjulig fordonsmodell med flera
drivlinemodeller av olika komplexitet från Scania. Dessutom består förarmod-
ellen av ratt- och hastighetskontroller för att hålla lastbilen på ett säkert avstånd
från den framförvarande lastbilen samt hålla sig inom en önskad vägfil. Ett vik-
tigt inslag i modellen är dess modulkonstruktion som ger stor flexibilitet vid val
av detaljnivå för varje komponent. Förar- och fordonsmodellen kan dupliceras
för att sedan simuleras tillsammans i realtid och utföra platooning med varandra
på ett vägsystem baserat på den verkliga världen. Tack vare att förar- och for-
donsmodellen är modulbaserad kan den enkelt utvecklas för framtida ändamål
med mer komplexa funktioner. Relevansen av dynamiken för fordonsmodellen
bevisades med hjälp av fysiska beräkningar, och resultatet utvärderades med till-
fredsställande resultat.

Fordonsmodellen är implementerad i Simulink och prestandan för de olika mod-
ellernas komplexitet har simulerats och utvärderas . Det har visats att flexi-
biliteten i modellen möjliggör ett balanserat beslut mellan realismen i lastbilens
beteende och dess simuleringshastighet. Dessutom har flera lastbilar kunnat
simuleras samtidigt med hjälp av modellen, vilket visart effektiviteten av mod-
ellen i utvärderingen för koordinering av platooning.

iii

Abstract

By using vehicle-to-vehicle communication, vehicles can cooperate in many ways
by sending positions and other relevant data between each other. One popular
example is platooning where many, especially heavy vehicles, drive on a trail
with short distances resulting in a reduction of air resistance. To achieve a good
efficiency of the platooning it is required that vehicle fleets are coordinated, so
that the percentage of time for driving in platoon is maximized without affecting
the total driving time and distance too much. For large fleets, this is a complex
optimization problem which would be difficult to solve by only using the real
world as the test environment.

To provide a more adaptable test environment for the communication and pla-
tooning coordination, an augmented reality with virtual vehicles (“Ghost trucks")
with relevant communication abilities are developed. In order to realise the vir-
tual testing environment for trucks, Scania initiated a project that could be di-
vided into the workload of three master theses. This thesis involved the part of
developing the virtual vehicles, which include the development of a truck model
and a driver model.

The developed truck model consists of a single track vehicle model and several
powertrain models of different complexity provided by Scania. Additionally, the
driver model consists of steering wheel and speed controls in order to keep the
truck on a safe distance from the lead truck and stay on a preferred lane. The key
feature of the driver-truck model is its modular design, which provides great flex-
ibility in selecting the level of detail for each component. The driver-truck model
can be duplicated and simulated together in real time and performs platooning
with each other in a road system based on the real world. As the driver-truck
model is module based, it can easily be extended for future purposes with more
complex functions.

The driver-truck model is implemented in Simulink and the simulation perfor-
mance for different model complexity is evaluated. It is demonstrated that the
flexibility of the developed model allows a balanced decision to be made between
realistic truck behavior and simulation speed. Furthermore, multi-truck simula-
tions are performed using the model, which demonstrate the effectiveness of the
model in the evaluation of truck platooning operations.

v

Acknowledgments

I would like to thank Olivier and Sina for the good cooperation, and also the other
guys at Scania for nice discussions during the coffee breaks. I would also like to
thank both my supervisors, Samuel and Lee, for all the help during the thesis. I
thank my father, mother, sister and brother for a long time of love and support.
Finally a special thanks to all the brothers and sisters in OL4an. Thanks to you,
these last five years have been absolutely amazing.

Stockholm, August 2014
Oskar Daniels

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem formulation . 2

1.2.1 The project . 2
1.3 Objectives . 2
1.4 Related literature . 3
1.5 Contribution . 4
1.6 Thesis outline . 4

2 The simulation environment 5
2.1 Overview . 5
2.2 Driver-truck model . 5
2.3 Inputs to the driver-truck model . 6

2.3.1 Model parameters . 7
2.3.2 Initial states . 7
2.3.3 Routing data . 7
2.3.4 Surrounding traffic . 7

2.4 Outputs from the driver-truck model 8
2.5 Transformations between coordinate systems 8
2.6 Filtering of the routing data . 10

2.6.1 Path generation . 10
2.6.2 Slope calculation . 10

3 Development of vehicle models 13
3.1 Engine and powertrain . 13

3.1.1 The cruise controller . 13
3.1.2 The gearbox . 14
3.1.3 The engine . 14

3.2 Dynamics and kinematics . 14
3.2.1 Longitudinal forces . 15
3.2.2 Lateral forces . 17
3.2.3 Assumptions used in the model 18

3.3 Simulation models and parameters 19

ix

x Contents

3.3.1 Model parameter values . 19

4 Development of driver models 21
4.1 Steering wheel control . 21

4.1.1 Preview Points . 21
4.1.2 Error calculation . 22
4.1.3 Control method . 25

4.2 Speed control . 30
4.2.1 Speed limit . 31
4.2.2 Vehicle following . 31

5 Results and discussions 37
5.1 Evaluation in simulink . 37

5.1.1 Vehicle model . 37
5.1.2 Driver model . 38

5.2 Multiple driver-truck models with interactions 42

6 Conclusions and future work 47
6.1 Conclusions . 47
6.2 Future work . 47

A Control parameters for path following 51

Bibliography 53

1
Introduction

1.1 Background

Transportation is and will always be an important part of the society. As more and
more goods are needed to be moved long distances, higher demands for heavy
transports are in place. In the latest decades different intelligent transportation
systems (ITS) have been developed to improve both safety and efficiency. Modern
vehicles have access to a number of sensors and advance features that can be
used to support the driver, for example navigation, adaptive cruise control and
emergency brakes and anti-lock braking systems.

A new addition to the ITS is the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication. Fleet Management Systems (FMS) has been created, pro-
viding companies with the possibility to organize their vehicle fleets for a better
effiency. V2V will not only be useful for when vehicles should drive automati-
cally, as a solution for the absence of the driver’s vision. It can also be used to
support the driver with a visual demonstration of the surrounding environment,
and thereby adding information that can’t be provided from windows or mirrors.

By using V2V the vehicles also can cooperate in many ways by sending positions
and other relevant data between each other. One popular example is platoon-
ing where many, especially heavy vehicles, drive on a trail with short distances
resulting in a reduction of air resistance. To achieve a good efficiency of the pla-
tooning it is required that vehicle fleets are organized so that the percentage of
time for driving in platoon is maximized without affecting the total driving time
and distance too much. Recent studies have been done (Liang [2014]) for how to
coordinate the vehicles and plan their routes to use platooning in a more efficient
way, by adding more intelligence in the fleet management systems. However for

1

2 1 Introduction

large fleets, this will of course be a complex optimisation problem that would be
difficult to develop by only using the real world as the test environment.

1.2 Problem formulation

To provide a more adaptable test environment for the communication and pla-
tooning coordination, an augmented reality with virtual vehicles (“Ghost trucks")
with relevant communication abilities can be developed in software and demon-
strated by a visualisation software. The augmented reality can provide informa-
tion that can be used to test the platooning coordination, but also to test other
transportation systems, where the real truck responds to simulated sensor data.
A primary test scenario can be a real truck catching up a virtual truck and use
this to perform platooning or other adaptive speed control.

When tests are performed in an augmented world, the development can be both
cheaper and safer. However, it is crucial that the virtual vehicles have dynamics
that respond to internal and external disturbances similar to real trucks and also
behaves as if it is controlled by a real driver.

1.2.1 The project

In order to realise the virtual testing environment for trucks, Scania initiated a
project that can be divided into workload of three master theses. The project
involves developing a system consisting of virtual trucks, a server based environ-
ment and a visualisation software. Each part are developed by one thesis student.

The server based environment were to use data from Open Street Map to cre-
ate the virtual world consisting of multiple virtual trucks and provide a link
between the connected trucks and the visualisation software. The server were
also expected to handle the communication between the virtual trucks. The envi-
ronment can be seen as a simulation of V2V communication. The server would
access the truck models as dynamic-link libraries, were the formats of input and
output were to be defined in the project.

The visualisation software provides a 3D-visualisation of the road system and
traffic on a screen on board of the real truck or other clients connected to the
server. The server and the virtual trucks would provide information that can be
used to test the implementation of the software.

1.3 Objectives

The goal of this thesis was to develop the virtual truck models in a Matlab/Simulink
platform with dynamics that respond to internal and external disturbances sim-
ilar to real trucks. The truck models were expected to automatically follow a
provided route in real world roads (primary highways) and generate data in real
time. Information such as positions, velocity and heading would be simulated

1.4 Related literature 3

and sent to a simulated environment which receives, collects and sends informa-
tion between multiple virtual trucks. The trucks would then use the information
given from the environment to follow the roads correctly, keep the speed limit,
and avoid driving into other vehicles connected to the server. Other information
such as fuel consumption would also be good to simulate, for example test scenar-
ios when slip streaming effects are investigated. The virtual trucks were expected
to be modeled to drive with the same inputs as for a real truck, i.e. the steering
wheel and throttle.

For achieving the overall goal a set of subtasks were introduced. These were:

• Implement different powertrain models with different complexities based
on a powertrain model developed by Scania CV AB.

• Implement a dynamic model for lateral and longitudinal motion.

• Implement a driver model that follows the road and drives legally.

• Compile the model as an dynamic library link for easy access from the
server.

• Implement a driver model that reacts on and avoids collision with other
vehicles connected to the server.

1.4 Related literature

Virtual vehicles had been used in many implementations before. One example
is driving simulators where different vehicles with artificial intelligence is used
for providing the driver with different challenges. One example is Han-wu et al.
[2006]. However these implementations only need to mimic the physics in a way
that the driver perceive as natural, rather than actually simulating the true dy-
namics of vehicles. Also, these vehicles are used for predefined driving routes,
which results in different demands on the intelligence compared to the thesis.

For actually modeling dynamics of vehicles there are a lot of relevant literature
and implementations. For the longitudinal dynamics, Scania have already done
some implementations of realistic vehicle models for simulations in Simulink.
However, there are some deficiencies with these models. Firstly the models are
not restricted in computational complexity, because most of the simulations are
done offline and often only uses one vehicle in the simulation. In this project a
cluster of trucks is simulated in real time which add a lot more computational
restrictions. Therefore simpler models are needed. Different methods of longitu-
dinal modeling is described by Eriksson and Nielsen [2014].

For the lateral dynamics, Thommyppillai et al. [2009] describes a method where
the axles of the vehicle is simplified to single wheels. This is a well used approach
that is relevant for the thesis. The lateral forces on the tires is well investigated
by Pacejka [2006].

4 1 Introduction

There are also many different approaches for developing driver models for the
steering of the vehicle. One popular method is by using the control perspective,
where the driver is considered to be a controller which makes it easy to imple-
ment mathematical functions directly from input to output. Ljung and Glad
[2003] describes the most popular of the general control strategies. There are in-
finite ways of using different states in the heading and positions for finding an
optimal angle of the steering wheel. The methods by Chatzikomis and Spentzas
[2009] and Sharp and Valtetsiotis [2001] are only a few examples. However the
methods for finding the reference path are seldom described in these articles.

An other part of the driver model is the platooning intelligence. This is also an
area that is well investigated, where different types of control methods can be
used. The approach described by Alam [2014] is one example.

1.5 Contribution

By combining existing knowledge of vehicle and driver modeling, a complete
driver-truck model is developed. Also a method for generating a reference path
from arbitrary waypoints is implemented, which provides a driver-truck model
that can follow any path that are defined in Open Street Map. The model can
therefore be used to create an augmented reality from real word data where real
and virtual trucks can drive together and interact in real time. This provides the
possibility to test platooning coordination and other different control strategies
with the virtual trucks as references. As the model is developed by modular
implementation with simulink, it can be extended for other purposes as well.

1.6 Thesis outline

Chapter 2 describes the overall system that has been developed and the interac-
tion between the subsystems.

Chapter 3 describes the modeling of the dynamics of the trucks, and how it has
been implemented.

Chapter 4 describes how the driver has been modeled for following the route and
behave in traffic.

Chapter 5 presents the results achieved in the thesis.

Chapter 6 presents an analysis of the results and describes possible future work.

2
The simulation environment

This chapter describes the developed system and presents an overview of the
driver-truck model. Interactions between models and their respective inputs and
outputs are described. Algorithms for handling the received data and transfor-
mations between coordinate systems are also presented.

2.1 Overview

The system that have been developed in cooperation with other master students
in a project initiated by Scania CV AB consists of three parts: The server, the
clients and the driver-truck models, as presented in Figure 2.1. The server col-
lects information about the world to create a simulation environment, based on
real world data with extensions from the simulated driver-truck models. The
server also creates a database using the information from both the driver-truck
models and from real trucks. It also uses Open Street Map and the Advanced
Driver Assistance Systems Interface Specifications (ADASIS) to create routing
data for the driver-truck models. In this project, the clients are real trucks that
receives the information from the server and use it to extend the driver’s knowl-
edge of the surrounding augmented environment. However, a client could also
be an observer that receives information for analyses.

2.2 Driver-truck model

The driver-truck model developed in this thesis emulates the behavior of a real
truck and is able to interact with other clients (real trucks). It receives data from
the server to be used by the driver model, which are described in Chapter 4. The

5

6 2 The simulation environment

Figure 2.1: Overview of the system

driver model then controls the inputs to the vehicle model which are described in
Chapter 3. The outputs from the vehicle model will then be generated and sent
back to the server. A diagrammatic representation of the model can be seen in
Figure 2.2. The driver-truck model is developed in Simulink and is compiled as
a Dynamic-Link Library (DLL), using the generated C-code based on the model.
The DLL then provides data types and functions for reading outputs, writing
data to the inputs and set the model parameters. The server can then execute the
model for generating and updating the states and outputs, which is calculated
from the previous states. Each execution simulates the model for one time step
of 0.01 seconds.

Figure 2.2: Diagrammatic representation of the driver-truck model

2.3 Inputs to the driver-truck model

The server can send data to the Simulink model by using the provided functions
mentioned in Section 2.2. The data that is received from the server can be divided
into four parts, which are the model parameters, the initial states, the routing

2.3 Inputs to the driver-truck model 7

data, and the surrounding traffic.

2.3.1 Model parameters

The server can set the parameters that define the dynamics of the vehicle which
are presented in Table 3.1. The control parameters in the driver model will then
be calculated as described in Chapter 4.

2.3.2 Initial states

The initial states include the initial position as an array consisting of the latitude
and longitude in the geodetic coordinate system, the initial altitude in cm, and
the initial heading as a scalar in radians from −π to π, where 0 and π

2 represents
north and east respectively.

Table 2.1: Input data for the initial states
Input Structure
initialPosition[2] {lat0, long0}
initialHeading scalar
initialAltitude scalar

2.3.3 Routing data

The routing data provides information about the route that the vehicle should fol-
low. The server uses Open Street Map (Haklay and Weber [2008]) and the ADA-
SIS protocol (Ress et al. [2008]) to send relevant data to the vehicle. The routing
data includes latitude, longitude, altitude, number of lanes, speed limit, and road
type for each waypoint that defines the desired route. The data is structured into
arrays consisting data for the next ten desired waypoints and are updated each
time a waypoint is passed. This provides the vehicle enough information about
its future path, but still allows the server to dynamically change the route within
a short time interval. The number ten is chosen for limiting the amount of data
that shall be sent, and still provide sufficient data to the driver model. However,
no investigation for finding an optimal number of waypoints are done within the
time period of the thesis.

As the routing data are given in discrete positions, interpolation is needed to
generate information between these points. The interpolation method for doing
so is described in Section 2.6.

2.3.4 Surrounding traffic

The server provides information about the vehicles that surrounds the receiving
vehicle. The server will find the four vehicles that are closest ahead of the receiv-
ing vehicle, and send the lateral and longitudinal distances to these vehicles in
the local coordinates of the receiving vehicle. The received data will consist of
an array which is presented in Table 2.3 where dxi and dyi denotes the relative
longitudinal and lateral distances.

8 2 The simulation environment

Table 2.2: Input data for the routing information
Input Structure
latitude[10] {lat1, lat2, ..., lat10}
longitude[10] {lon1, lon2, ..., lon10}
altitude[10] {alt1, alt2, ..., alt10}
nrOfLanes[10] {nr1, nr2, ..., nr10}
speedLimit[10] {speed1, speed2, ..., speed10}
routeType[10] {type1, type2, ..., type10}

Table 2.3: Input data for the surrounding traffic
Input Structure
relativeDistances[8] {dx1, dy1, dx2, dy2, ..., dx4, dy4}

2.4 Outputs from the driver-truck model

Whenever the server calls the step function, the model will update its states based
on the current inputs. The new states will then be accessible by reading the
provided output data type. The output signals is presented in Table 2.4, which
also includes the parameters that define the size of the vehicle.

Table 2.4: Output data
Output Structure
latitude scalar
longitude scalar
speed scalar
heading scalar
width scalar
length scalar
height scalar

2.5 Transformations between coordinate systems

The route data are received in the geodetic coordinate system used by the Global
Position System (GPS), i.e. World Geodetic System 1984 (Smith [1987]). Hence,
transformations between Smith [1987] and the vehicle model’s inertial system, de-
fined by the north-east coordinate system are needed. The relationship between
the differential of the distances in northern-eastern directions and the angles for
an ellipsoid is

dxN = RM (φ)dφ (2.1)

2.5 Transformations between coordinate systems 9

dxE = RN (φ) cos(φ)dλ, (2.2)

where dxN , dxE are the differentials of the distances in northern and eastern di-
rections respectively, and dλ, dφ are the differential of the longitude and latitude
respectively. RM and RN is called “Radius of Curvature in the meridian” and “Ra-
dius of Curvature in the prime vertical” respectively. Both are functions of the
current latitude and are defined as

RM =
asm(1 − e2)

(1 − e2 sin2 φ)3/2
(2.3)

RN =
asm√

1 − e2 sin2 φ
, (2.4)

where asm is the semi-major axis and e is the first eccentricity which can be de-
rived from the flattening, f , that defines the shape of the ellipsoid. The relation-
ship is defined by

e2 = 2f − f 2 (2.5)

The Smith [1987] defining values for the semi-major axis of the earth and the
reciprocal of flattening is presented in Table 2.5. From (2.1) and (2.2) the veloc-
ities in the northern and eastern directions can be transformed to the angular
velocities in Smith [1987] by

φ̇ =
ẋN

RM (φ)
(2.6)

λ̇ =
ẋE

RN (φ) cos(φ)
, (2.7)

where ẋN is the vehicle velocity in the northern direction and ẋE is the velocity
in the eastern direction.

Table 2.5: Smith [1987] defining parameters
Parameter Symbol Value Unit
Semi-major axis asm 6378137.0 m
Reciprocal of flattening 1/f 298.257223563 -

10 2 The simulation environment

2.6 Filtering of the routing data

The routing data only gives information at the actual waypoints that defines the
route. When the vehicle is between two waypoints, the values for the number
of lanes, speed limit and road type is assumed to equal the latest value until the
next waypoint is passed. However for the actual path and slope, some filtering is
needed before the data can be handled by the driver-truck model.

2.6.1 Path generation

The path is generated using the uniform Catmull-Rom spline (Catmull and Rom
[1974]), seen in Figure 2.3. The Catmull-Rom spline is a special case of Beizer
curve that generates a path that passes through each waypoint. The path will
also be C1-continuous in each point, therefore avoiding having sharp corners
resulted by a simpler linear interpolation. The algorithm that defines the spline
is given by

S(t) =
[
t3 t2 t 1

]
MC


P0
P1
P2
P3

 , 0 ≤ t ≤ 1, (2.8)

with

MC =
1
2

·


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

 (2.9)

where S(t) describes the spline between the points P1 and P2, with t = 0 at P1
and t = 1 at P2. In the special case where P1 is the first waypoint in the route, the
unknown point P0 are replaced by 2P1 −P2, based on a assumption that there are
no curvature before the starting point. Likewise, P3 are replaced by 2P2 − P1, in
the case where P2 is the last known waypoint in the route.

2.6.2 Slope calculation

The slope is estimated as the average slope between two points, given by

β = arctan
Hn+1 − Hn
||Pn+1 − Pn||

, (2.10)

where Hn denotes the altitude in the latest passed waypoint, Hn+1 is the altitude
in the next waypoint, and ||Pn+1 − Pn|| equals the ground distance between these
waypoints. The slope, β, is defined as an angle between −π2 and π

2 , where a posi-
tive value represents an uphill slope.

2.6 Filtering of the routing data 11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

P
2

P
3

P
1

P
0

Figure 2.3: A Catmull-Rom spline between P1 and P2.

3
Development of vehicle models

The implementation of the vehicle model is described in this chapter. The basics
of a powertrain from Scania is described as well as the theory behind the model
for dynamics and kinematics. Parameters that have been used for the model are
also summarized in Section 3.3.1. The vehicle model is simplified or extended
depending on the desired complexity.

3.1 Engine and powertrain

The model of the engine and powertrain has been based on a model adapted from
Scania CV AB. The basic purpose of the model is to simulate the longitudinal
engine force, Feng , from a desired speed reference. The parts that are included in
the model are cruise controller, engine, gearbox and the final drive. These models
will have behavior that is similar to the engines and powertrains in real Scania
trucks. The models of the cruise controller, gearbox and engine are exchangeable
to fit the purpose of simulation scenario, where more functionality results in
higher computational effort.

3.1.1 The cruise controller

The cruise controller will generate the throttle based on a desired speed. There
are three different variations of the cruise controllers with different levels of com-
plexity, which include: a simple PID-controller, a standard cruise controller im-
plemented by Scania, and a "Scania Active Prediction" cruise controller. The lat-
ter uses future slope of the road to decide which throttle level needed for follow-
ing the reference speed.

13

14 3 Development of vehicle models

3.1.2 The gearbox

The gearbox is modeled to automatically control which of the twelve different
gears that are used. There are two different versions of the gear shift logic. The
"Scania Active Prediction" cruise controller will always be used with a corre-
sponding gear shift logic, which similar to the cruise controller will base the
selected gear from the future slope of the road. When another cruise controller
model is in use, a simpler gear shift logic are used. This is based on a static map-
ping, where each gear has a corresponding up- and down-shifting limit for the
current speed.

3.1.3 The engine

The engine is modeled as an internal combustion engine (ICE), and generate the
torque of the driveshaft based on the throttle from the cruise controller. The
throttle will control how much fuel that are combusted, and the resulted torque
are based by a static fuel map received from Scania. Finally the user is able to
choose to calculate consumed fuel or not, and therefore there are two possible
versions of the engine model. One where the used fuel are integrated over the
simulation time, and one without those calculations.

3.2 Dynamics and kinematics

The dynamics and kinematics of the vehicle are based on a bicycle model, where
the axles of the vehicle are simplified to single wheels. It is a model with three
degrees of freedom and involves longitudinal, lateral and yaw motion. The forces
and states in this model are shown in Figure 3.1.

The kinematics of the vehicle are described by

vN = u cosψ − v sinψ (3.1)

vE = u sinψ + v cosψ, (3.2)

where vN and vE are the northern and eastern velocities respectively. The longitu-
dinal velocity and and the lateral velocity are denoted with u and v respectively,
while ψ denotes the heading of the vehicle, i.e. the angle between the north vector
and the vehicle’s longitudinal vector.

Using the vehicle model presented by Thommyppillai et al. [2009], and merging
the lateral forces for each axle, the dynamics of the vehicle is given by

m(u̇ − vψ̇) = Fx − Fyf sin δ (3.3)

m(v̇ + uψ̇) = Fyr + Fyf cos δ (3.4)

3.2 Dynamics and kinematics 15

Fyr

Fyf

b

a

Vr

Vf

ψ

v

y

a

X

X

f

N

E

a r

δ

ω

x

u

Figure 3.1: The bicycle model describing the basic dynamics and kinematics
of a vehicle

Iz ψ̈ = aFyf cos δ − bFyr , (3.5)

where Fx is the total longitudinal force acting on the vehicle and Fyf and Fyr are
the lateral forces on the front and rear tires. The length from the front axle to the
center of gravity is denoted with a, and Iz is the moment of inertia around the
vehicle’s up vector which is defined as:

Iz =
1

12
m(w2 + l2), (3.6)

where w and l are the width and length of the truck, which is approximated as a
solid cuboid.

3.2.1 Longitudinal forces

The total longitudinal force, Fx, as described in (3.7), are resulted from the envi-
ronment and the powertrain. The forces are shown in Figure 3.2 and Fx is given
by:

16 3 Development of vehicle models

Fg

Fair

Froll

Feng

β

Fbrake

Figure 3.2: The longitudinal forces on the vehicle

Fx = Feng − Fbrake − Fair − Froll − Fg , (3.7)

where Feng is the force from the powertrain described in Section 3.1, Fbrake is the
braking force induced by the driver, Fair is the force from the air drag, Froll is the
total force from the rolling resistance for all the wheels and Fg is the gravitational
force on the vehicle.

Air drag force

The air drag force is caused by pressure from the air in front of the vehicle. How-
ever, the pressure are reduced when the vehicle is driving close to another vehi-
cle. From empirical studies (Wolf-Heinrich [1998]) there have been shown that
the air drag reduction is dependent not only on the distance to the vehicle ahead,
but also on the distance to the second vehicle ahead and in some cases also on
the distance to a following vehicle. The total formula for calculating the air drag
resistance is given by

Fair =
1
2
cD (d)Aρv2 (3.8)

where A is the front area of the vehicle and ρ is the density of the air. The air drag
coefficent cD is given in Figure 3.3, and d is the distance to the vehicle ahead.

Rolling resistance

The rolling resistance force is caused by the tire deformation. The resulting force
is given by:

3.2 Dynamics and kinematics 17

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
c D

 r
ed

uc
tio

n
[%

]

Relative distance [m]

Air drag reduction

Two vehicles ahead
One vehicle ahead
Vehicle behind

Figure 3.3: Mapping of the air drag coefficient cD (d) (Wolf-Heinrich [1998])

Froll = croll ·mg cos(β) (3.9)

where croll is a dimensionless constant depending on the properties of the tires
and the ground surface.

Gravitational force

The gravitational force on the vehicle acts when the vehicle is driven uphill or
downhill. From Figure 3.2 the force can be derived as:

Fg = mg sin(β) (3.10)

3.2.2 Lateral forces

The lateral rear and front forces, Fyr and Fyf are calculated by the magic formula
(?) and are given by

Fyi = 2D sin{C arctan[B(1 − E)αi + E arctan(Bαi)]} (3.11)

where ai is the slip angle. From Thommyppillai et al. [2009] the slip angle for the

18 3 Development of vehicle models

front axle is given by

αf =
u sin δ − (v + aψ̇) cos δ
u cos δ + (v + aψ̇) sin δ

(3.12)

and the slip angle for the rear axle is given by

αr =
bψ̇ − v
u

(3.13)

where b is the length from the rear axle to the center of gravity.

The parameters B, C and E in (3.11) are called stiffness factor, shape factor and
curvature factor respectively. These describe the characteristics of the tires and
affect how the force will depend on the slip angle. The relationships are well
described in ? and typical values for the parameters are presented in Table 3.1.
The last parameter, D, is called the peak factor that is the maximum lateral force
that will act on the tires. It is sometimes estimated using µFz where µ is the
friction coefficient, which in this case are for rubber on asphalt. Fz is the normal
force on the tire, which in the case of a bicycle model is the normal force for the
whole axle. With the assumption that both axles have equal normal force, the
peak factor for each axle can be estimated as

D ≈ 1
2
µmg. (3.14)

3.2.3 Assumptions used in the model

Due to various assumptions, the model is not a perfect representation of the re-
ality. As alluded in Section 3.2 and Figure 3.1 the single track model employs a
single (imaginative) wheel in the middle of every axle to represent forces experi-
enced by the actual wheels. In reality, the forces may differ between each wheel
which would affect the resulting motion. However, these differences would be
not be significant in conditions where all the tires have similar properties and
the ground surface are consistent, which both are assumed in this thesis.

In the graph for the air drag reduction in Figure 3.3, it is assumed that there
are only Heavy-Duty Vehicles ahead or behind of the vehicle. If the surrounding
vehicles were smaller, the air drag reduction would be lower.

Other error sources include model parameter discrepancies. Some values, for
example tire parameters, would be difficult to obtain. Most parameters are es-
timated to values that are realistic but not explicitly given from a certain truck.
Also the mass and center of gravity for the vehicle are dependent on the loading
which could have a significant difference between different travels. However, the
parameters can be changed by the user before the model is initialised.

3.3 Simulation models and parameters 19

3.3 Simulation models and parameters

The vehicle model is implemented in simulink, and a diagrammatic representa-
tions is shown in Figure 3.4. The inputs to the vehicle model are controlled by
the driver model and include the brake, steering wheel and speed reference to
the cruise control. The outputs that are generated are position, speed, heading
and yaw rate.

Figure 3.4: Diagrammatic representation of the vehicle model

The blocks representing the cruise controller, engine and gearbox can vary be-
tween the different models as described in Section 3.1. Thus, there are six differ-
ent combinations with different complexities and behavior.

3.3.1 Model parameter values

The parameters in the model can differ between different vehicles. Most of the
parameters are difficult to obtain for a certain vehicle, as it will require detailed
knowledge, such as tires and load. However the range of parameters can be esti-
mated for a typical truck. Those intervals are described in Table 3.1.

20 3 Development of vehicle models

Table 3.1: Typical truck parameters
Parameter Symbol Typical interval Unit
Vehicle mass m [10000 , 80000] kg
Front area A [5 , 20] m2

Length from front to mass center a [10, 20] m
Length from rear to mass center b [5, 15] m
Total length of the truck l [15, 35] m
Width of the truck w [2, 3] m
Coefficient of rolling friction croll [0.005, 0.01] -
Tire stiffness factor B [0, 100] -
Tire shape factor C [1.0, 2.0] -
Tire-road friction coefficient µ [0.5, 1.0] -
Tire curvature factor E [−50, 1] -
Air density ρ [1.0 , 1.4] kg m−3

Gravitational acceleration g [9.780 , 9.832] m s−2

4
Development of driver models

The implementation of driver model is described in this chapter. The purpose of
driver model is to generate steering wheel and speed reference such that the ve-
hicle follows a desired route and behaves legally in traffic. The methods for how
the data from the server is used together with internal feedback for controlling
the inputs to the vehicle model is presented in this chapter.

4.1 Steering wheel control

The major objective of the driver-truck model is to follow a path that is described
by waypoints received from the server. The path generation is described in Sec-
tion 2.6. A feedback controller is designed to calculate the steering wheel angle
reference based on the error between the path and on estimated future positions
of vehicle. An overview of the logic to control the steering wheel is presented in
Figure 4.1

4.1.1 Preview Points

As the driver model needs information about the future of the road to react on the
changes of curvature, so called "preview points" are calculated. The distance that
is traveled between each preview point equals uT where u is the longitudinal
velocity and T is the time difference between each preview point. The distances
from the preview points to the path are then calculated as described in Section
4.1.2. The preview points are calculated assuming that the vehicles heading is
constant as seen in Figure 4.2, thus the resulting equation for the points is

21

22 4 Development of driver models

Figure 4.1: Overview of the logic for deciding the steering wheel angle

PT,n =
[
xN,n
xE,n

]
= PT,0 + n · uT

[
cosψ
sinψ

]
(4.1)

where PT,n is the expected position at nT seconds in the future, and xN,n and
xE,n is the corresponding northern and eastern position. The current position is
notated with PT,0.

uT uT uT uT uT

e0 e1
e2

e3

e4

e5

pT1 pT2 pT3 pT4 pT5

y

x

Figure 4.2: Corresponding errors for five preview points and the current
position

4.1.2 Error calculation

To follow the road correctly, the driver-model needs information about the devia-
tion from the desired path. For this the closest point on the path is needed, which
can be adapted with the Newton-Raphson method.

4.1 Steering wheel control 23

Finding the relevant waypoints

Firstly, as the spline described in Section 2.6.1 is piecewise-defined between each
waypoint, the four waypoints that defines the spline that includes the closest
point must be found. For doing this, the closest waypoint is calculated using

W∗0 = minWi ||Wi − PT||2, (4.2)

where Wi denotes the waypoints received from the server, and the closest way-
point is notated with W∗0. Then the two neighboring waypoints, W∗−1 and W∗1 are
used to create the vector v = (W∗1 −W∗−1) which is used as an estimate of the tan-
gent vector in Wi. By then calculating the scalar product of the vector from the
target point to the closest waypoint and the estimated tangent vector with

C = (W∗1 −W∗−1) • (W∗0 − PT), (4.3)

the searched waypoints can be found with the following criteria: If C < 0, the clos-
est point is assumed to belong between the closest waypoint and next following
waypoint, and if C > 0 it is assumed to belong between the previous waypoint and
the closest waypoint. The four waypoints that defines the sought Catmull-Rom
spline, P0,P1,P2,P3 will then be:

[
P0 P1 P2 P3

]T
=


[
W∗−2 W∗−1 W∗0 W∗1

]T
, C > 0[

W∗−1 W∗0 W∗1 W∗2
]T
, C < 0

(4.4)

First approximation of the closest point

In the normal case, the path will most often have a low curvature. Therefore, by
creating a vector between P1 and P2 and project the target point on that vector, a
good approximation of t in (2.8) for the Catmull-Rom can be found with

t∗,0 =
(PT − P1) • (P2 − P1)

|P2 − P1|2
(4.5)

which equals the distance between P1 to the projection of the target point on the
line between P1 to P2, divided by the length of that line. By then computing
the Catmull-Rom formula for t∗,0 a good approximation of the closest point are
adapted. In the special case when driving on a path with zero curvature, this
estimation will equal the true closest point. For paths with more curvature, the
Newton-Raphson method must be used.

24 4 Development of driver models

The Newton-Raphson method

Firstly the function, D(t), describing the squared distance from the target point
PT and a point on the Catmull-Rom spline S(t), is created with

D(t) = |S(t) − PT(t)|2 =
∑
i=x,y

(Si(t) − PT,i(t))
2. (4.6)

By minimizing D(t), a more precise approximation of the closest point can be
found. The function can be minimized using the Newton-Raphson method, which
is computed by repeatedly calculating a new t∗ based on the previous result with

t∗,n+1 = t∗,n − D′(t)
D′′(t)

(4.7)

For a sufficiently well-chosen initial approximation, t∗ will converge quadrati-
cally to an optimal t. By using the approximation from (4.5), the error can be
expected to be insignificant after only a couple of iterations when the vehicle is
driving on a highway, as the curvature are close to zero.

The derivatives D′(t) and D′′(t) can be calculated from (4.6), which are given by

D′(t) =
∑
i=x,y

d
dt

(Si(t) − Pv,i(t))
2 = 2

∑
i=x,y

Si
′(t)(Si(t) − Pv,i(t)), (4.8)

and

D′′(t) = 2
∑
i=x,y

d
dt

Si
′(t)(Si(t)−Pv,i(t)) = 2

∑
i=x,y

Si
′′(t)(Si(t)−Pv,i(t)) + Si

′(t)2, (4.9)

where S′(t) and S′′(t) can be found by differentiating the equation for the Catmull-
Rom spline (2.8)), given by:

S′(t) =
[
3t2 2t 1 0

]
MC


P0
P1
P2
P3

 (4.10)

and

4.1 Steering wheel control 25

S′′(t) =
[
6t 2 0 0

]
MC


P0
P1
P2
P3

 (4.11)

In the control algorithms described in Section 4.1.3 only the lateral devation in
the vehicles local coordinate system are used. The lateral deviation can be calcu-
lated with

e = ŷ • (S(t∗) − PT) (4.12)

where ŷ is a normalized vector representing the vehicles lateral direction, i.e

ŷ =
[
− sin(ψ)
cos(ψ)

]
(4.13)

where ψ is the heading of the vehicle.

For the preview points it is considerable to not use the iterations in (4.7), and
thereby trusting that the first estimated point caculated in (4.5) is good enough
for controlling the vehicle. This would remove computational complexities, which
could be necessary if a large amount of preview points is used. However, this
method may not be robust, as there are no proof that the first estimate of the
closest point is close enough to the true closest point. Also note that the current
error must be calculated with at least a few Newton-Raphson iterations, as it is
important that the estimation of the current lateral error is similar to the true
error, as it are used for reviewing the control algorithm.

4.1.3 Control method

To actually control the steering wheel to follow the path from the calculated er-
rors there are number of different methods to choose between. In the classical
control theory there are three main strategies that could be used for the current
problem, as described in Ljung and Glad [2003]. These are the PID-, LQR-, and
MPC-controllers. In Naranjo et al. [2005], fuzzy logic have been used with good
result, and there exists numerous other methods that are similar to the ones that
have been mentioned here.

In this thesis two different methods have been examined. Firstly, a PID-controller
has been used, which is a simple method where the parameters are chosen ad hoc.
Secondly a more complex method with a LQ-regulator is implemented, which is
less time consuming than a MPC-controller and have a more straight-forward use
of the preview points compared to fuzzy logic.

26 4 Development of driver models

PID-controller with preview points

The PID-controller calculates the steering wheel angle depending on the propor-
tional, integral and deravative values of the feedback signals. The feedback will
contain the current lateral error, the current heading error, and the lateral errors
in the preview points. The output value of the steering wheel is

δ(t) = KP ,ψeψ(t) + KI,ψ

t∫
0

eψ(τ) dτ + KD,ψ
d
dt
eψ(t)+

n∑
i=0

(KP ,iei(t) + KI,i

t∫
0

ei(τ) dτ + KD,i
d
dt
ei(t)) (4.14)

where KP ,i , KI,i , KD,i are parameters for the different proportional, integral and
derivative controllers respectively, and n is the number of preview points. The
output is also saturated to avoiding unrealistic angles on the steering wheel.

The parameters is chosen ad hoc based on basic knowledge of the functionality of
each parameter. The number of preview points for this method should preferably
be very low to be able to make correct assumptions for each parameter. Hence,
the implemented PID-controller only uses one preview point. However, to few
preview points may negatively effect the performance of the method. Therefore
the LQ-regulator has been implemented which is able to use more of the preview
points.

Linear-quadratic regulator with preview points

A linear-quadratic regulator is an optimal controller that uses the systems dynam-
ics to minimize a cost described by a quadratic function containing the different
errors and input energy. The quadratic function can be weighted in such way
that prioritized errors are more significant. In this thesis a method inspired by
Sharp and Valtetsiotis [2001] has been used, where the state of the vehicle’s mo-
tion is used together with the preview errors, to compute an optimal angle for
the steering wheel that minimizes the error in heading and lateral position.

To be able to use LQR a linear model of the system is needed. By linearising
the lateral forces and slip angles a linear model is adapted for slip angles, lateral
velocities, yaw rate and the steering wheel angle close to zero. The linearisation
is done as follows:

The first degree Maclaurin expansion of the slip angle for the front axle is defined
in (3.12):

αf ≈
u sin 0 − (v + aψ̇) cos 0
u cos 0 + (v + aψ̇) sin 0

+

4.1 Steering wheel control 27

(1 −
(u sin 0 − (v + aψ̇) cos 0)(−u sin 0 + (v + aψ̇) cos 0)

(u cos 0 + (v + aψ̇) sin 0)2
) · δ (4.15)

= −
(v + aψ̇)

u
+ (1 +

(v + aψ̇)2

u2)δ (4.16)

and by linearising at v = 0 and ψ̇ = 0

αf ≈ δ −
(v + aψ̇)

u
. (4.17)

The linearised equation for slip angle for the rear axle is

αr =
bψ̇ − v
u

(4.18)

which is equal to (3.13), as it already is linear. The fact that arctan(x) ≈ x and
sin(x) ≈ x when x is close to zero, can be used to linearise the the Pacejka formula
(3.11) with

Fyi = 2D sin{C arctan[B(1 − E)αi + E arctan(Bαi)]}
≈ 2D sin{C arctan[B(1 − E)αi + E(Bαi)]}
= 2D sin{C arctan[Bαi]}
≈ 2D sin{BCαi}
≈ 2BCDαi
= Kαi , (K ≡ 2BCD), (4.19)

for small slip-angles. By combining (3.4) and (3.5) for the vehicle’s lateral dynam-
ics, together with the linearised equations for the lateral forces (4.19),

v̇ =
Kαf
m

+
Kαr
m
− uψ̇ (4.20)

and

ψ̈ = a
Kαf
Iz
− bKαr

Iz
(4.21)

By adding the linear equations for the slip angles, (4.17) and (4.18), a complete
linear model of the vehicle’s lateral motion can be derived:

28 4 Development of driver models

v̇ = −(
K(a − b)
mu

+ u) · ψ̇ +
K
mu

· δ (4.22)

ψ̈ = −K(a + b)
Izu

· ẏ − K(a2 + b2)
Izu

· ẏ +
Ka
Iz

· δ (4.23)

The linearised model described by (4.22) and (4.23) can then be written as a linear
state space model, Ẋv = AvXv + Bvδ, with

Av =



0 1 0 0

0 0 0 −(
K(a − b)
mu

+ u)

0 0 0 1

0 −K(a + b)
Izu

0 −K(a2 + b2)
Izu


, B =


0
K
mu
0
Ka
Iz


(4.24)

and

Xv =
[
y v ψ ψ̇

]T
(4.25)

which can be converted to the discrete form Xd(k + 1) = AdXd(k) + Bdδ(k) with
the Matlab function c2d.

The preview points errors can be written as a discrete state space model Xp(k +
1) = ApXp(k) + Epnp(k) with

Ap =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


, Ep =



0
0
...
0
1


(4.26)

and

Xp =
[
e0 e1 . . . en

]T
(4.27)

if the discrete sampling time is the same as the preview time. This will result in
that the second preview point at instant k are shifted to the first preview point at
instant (k + 1), and similarly for the rest of the preview points. The lateral error
for the last preview point at instant (k + 1), are an unknown input at instant k
and is therefore handled as gaussian noise, notated with np.

4.1 Steering wheel control 29

By combining the discrete state space models for the vehicle’s lateral motion and
the previewed lateral errors, a complete model for the control problem can be
adapted as

z(k + 1) = Az(k) + Bδ(k) + Enp(k)

Γ(k) = Cz(k) (4.28)

with

A =
[
Ad 0
0 Ap

]
, B =

[
Bd
0

]
, E =

[
0

Ep

]
, (4.29)

C =
[
1 0 0 0 −1 0 0 . . . 0
0 0 1 0 −1/uT 1/uT 0 . . . 0

]T
, (4.30)

and

z =
[
y v ψ ψ̇ e0 e1 . . . en

]T
(4.31)

By setting Γ(k) = Cz(k) a connection between the path and the vehicle model
is adapted, where the first row in Γ(k) describes the current lateral deviation
between the path and the road and the second row describes the current heading
error.

The quadratic criteria

J =
∑
i=x,y

(ΓT(k)R1Γ(k) + r2δ
2(k)), (4.32)

with

R1 =
[
r11 0
0 r12

]
(4.33)

provides the possibility to set a balance between lateral deviation, heading error,
and the angle of the steering wheel, by varying r11, r12 and r2. By setting

Q = CTR1C, (4.34)

the criteria can be rewritten with

30 4 Development of driver models

J =
∑
i=x,y

(zT(k)Qz(k) + r2δ
2(k)), (4.35)

and the optimal δ(k) that minimizes J is then given by

δ(k) = −FzT(k) (4.36)

where the optimal gain, F is adapted from

F = (BTPB + R2)−1BTPA (4.37)

and P can be adapted by solving the discrete algebraic Ricatti Equation:

P = Q + AT(P − PB(BTPB + r2)−1BTP)A (4.38)

which can be solved by iterating the dynamic Ricatti Equation

Pn+1 = Q + AT(Pn − PnB(BTPB + r2)−1BTPn)A (4.39)

for P0 = Q until it converges.

Implementation of the LQ-controller

The calculation of the optimal gain, F, would be too time consuming to be done
for each time step. Therefore it are calculated once when the model is initialized.
However, as the optimal gain depends on the current speed, it is calculated for
a number of different speeds to create a look-up table for each element in F. By
then adding the current speed as an input to the controller, the optimal gain can
be interpolated and multiplied with the state feedback to compute the steering
wheel angle as in (4.36). Finally the output are saturated for avoiding unrealistic
values on the steering wheel.

4.2 Speed control

The speed reference that are sent to the cruise controller are based on a number
of factors. Firstly all heavy trucks must drive beneath a maximum velocity, Vmax,
which in the Europe region is 90 km/h. The vehicle speed will then also be lim-
ited by the actual speed limit of the road that it is driving on. The third limitation
is the traffic, as the vehicle must keep a speed that is slow enough for not driv-
ing into other vehicles. From all these criteria the lowest limit are passed as the

4.2 Speed control 31

desired speed. Also, a low-pass filter is added to the speed reference, which pre-
vents overshoots in the cruise controller. An overview of the logic for deciding
the speed reference is presented in Figure 4.3.

Figure 4.3: Overview of the logic for deciding which speed reference that
should be sent to the cruise controller

4.2.1 Speed limit

The model will get information about the speed limit for each of the ten way-
points that is received from the server. As the vehicle will need time to deceler-
ate, the lowest speed limit for these points are used. This will result in that the
vehicle aregin to decelerate before the a waypoint with lower speed is passed, but
begin to accelerate exactly when a waypoint with higher speed is passed.

4.2.2 Vehicle following

Another important objective for the model is avoiding driving into other vehi-
cles. In this thesis the model will solve this by following possible slower vehicles
ahead with a predefined gap distance. Another possible method could be to over-
take such vehicles. However more information about the surrounding traffic is
needed to make such decisions. Therefore the overtaking scenario has not been
investigated in this thesis. The basics of the used method for vehicle following
is to estimate which vehicles that needs to be considered, and then adaptively
choose a speed reference for the cruise controller depending on the position and
speed of the targeted vehicle.

Transformation to path coordinates

As described in Section 2.3.4 the server provides the vehicle with relative posi-
tions to the four closest vehicles ahead. The distances are defined in the ego vehi-
cle’s local coordinate system where dx represents the longitudinal distance, and
dy represents the lateral distance, with positive values at the left of the vehicle.
However, the ego vehicle should only track the vehicles that drives in the same
traveling path. Therefore the local distances are transformated to the traveling
path coordinates, to be able to decide which vehicles which is relevant.

32 4 Development of driver models

B

A

dy

dx

se

re

Figure 4.4: Distances to vehicle A in the ego vehicle’s traveling path coordi-
nates and distances to vehicle B in the ego vehicle’s local coordinate system

The current curvature, Cp, of a traveling vehicle can be calculated from the vehi-
cle’s yaw-rate and longitudinal velocity with

Cp =
ψ̇

u
(4.40)

By assuming that the vehicle drives with a constant curvature at each time step,
the traveling path can be estimated using a circle with a radius of

Rp =
1
Cp

=
u

ψ̇
(4.41)

By creating an angle, ζ, between the origin of the circle and the two vehicles, the
distances se along the path, and re out from the path, can be calculated. The angle
is defined as

ζ = tan−1(
dx
χ

) (4.42)

where

4.2 Speed control 33

χ =
{
−(R + dy) , R < 0
R + dy , R > 0 (4.43)

which, together with the fact that dx always is positive, and tan−1 is monotonic,
means that

ζ =

 − tan−1(dx
R+dy) , R < 0

tan−1(dx
R+dy) , R > 0

(4.44)

the distance along the path can then be calculated with

se = |R|ζ = R tan−1(
dx

R + dy
) (4.45)

The distance along the normal of the path is from the figure given from the defi-
nition of sinus as following

cos(ζ) =
{ χ

R+re
, R < 0

χ
−R−re , R > 0 (4.46)

and thanks to that χ is an odd function, the resulting cos(ζ), which are equal for
all R, thus can be simplified to

cos(ζ) =
R + dy
R + re

, (4.47)

where

re =
R + dy
cos(ζ)

− R. (4.48)

By using the fact that ζ is an odd function and cos(ζ) is an even function,

re =
R + dy

cos[tan−1(dx
R+dy)]

− R. (4.49)

Note that for the special case where ψ̇ = 0, which is equivalent to R → ∞, the
vehicle’s traveling path is straight, which means se = dx and re = dy. This can be
proven by calculating the limits of (4.45) and (4.49) for R→∞.

34 4 Development of driver models

Lane probability from fuzzy logic

By using re and se the vehicle can characterize which of the surrounding vehicles
it should be tracking. The intuitive method is to compare re with a limit value,
and from that estimate if the targeted vehicle is driving in another lane than
the ego vehicle, and if it can be passed by continue to drive in the current lane.
Unfortunately, it is not possible to define an exact value for the limit on re. Of
course re must be larger than the width of the vehicles, and extra safety distance
between the vehicles is needed. In addition, the estimation of re will have some
uncertainty, and finally, one or more vehicles may be in the progress of changing
lanes. This results in a more complicated problem. In this thesis, fuzzy logic has
been used to estimate the probability for the targeted vehicle being in the same
lane as the ego vehicle. The method is similar to Moon et al. [2009], but with
some different logic rules and use of the probability value.

Table 4.1: Rule set for the fuzzy logic, where the structure for each rule is:
IF C1 AND C2 THEN O(Ri)

Rule C1 = re C2 = d|re|/dt O(Ri)(in lane)
R1 VERY HIGH NO, 0.0
R2 VERY LOW YES, 1.0
R3 HIGH NEGATIVE MAYBE, 0.5
R4 HIGH ZERO NO, 0.0
R5 HIGH POSITIVE NO, 0.0
R6 LOW NEGATIVE YES, 1.0
R7 LOW ZERO MAYBE, 0.5
R8 LOW POSITIVE NO, 0.0

The method is based on a number of logical rules listed in 4.1. Each rule has two
conditions, the first condition is on the lateral distance, and the second condition
is on the derivative of the lateral distance. However, instead of using discrete val-
ues, continuous values between 0 and 1 are computed depending on how much
the conditions are satisfied. The resulting value is called the "truth value", µ(Ri),
which for each rule Ri can be calculated by minimum inference where the truth
value will be equal to the minimum of the mapped values for each condition. The
inference can be described with

µ(j) = min{M(C1, j), M(C2, j)} (4.50)

where M(Ci , j) decl ares the mapped value for condition Ci in rule Rj . The
mapped values for lateral distance and its derivative are presented in Figure 4.5.
Each rule will also have an output value, O(Ri), which are 0 if the rule says that
the vehicle is outside the lane, 1 if it says that the vehicle is outside the lane, and
0.5 if there is an uncertain case. By using so called centroid defuzzication, the
truth and output values for each rule can be combined to compute a single value

4.2 Speed control 35

that describes the position of the target vehicle. The centroid defuzzication is
computed by calculating the "center of gravity" with

Plane =

∑
Ri
µ(Ri)O(Ri)∑
Ri
µ(Ri)

(4.51)

The resulting value, Plane, is then used to represents the probability for the target
vehicle being in the same lane as the ego vehicle.

0.5 1 1.5 2 2.5
0

0.5

1

1.5

se/w

F
uz

zy
 v

al
ue

Lateral distance

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

d|se|/dt

F
uz

zy
 v

al
ue

Derivative of lateral distance

VERY LOW
LOW
HIGH
VERY HIGH

NEGATIVE
ZERO
POSITIVE

r /w [-]e

d|r |/dt [m/s]e

Figure 4.5: Fuzzy values

Adaptive cruise controller based on fuzzy logic

The adaptive cruise controller (ACC) are based on the relative velocity and po-
sition of the target vehicle and the ego vehicle. The reference for the relative
velocity are 0, thus making the vehicle drive in the same speed as the preceding
vehicle. The relative distance will have predefined gap distance in seconds as a
reference, Tref , that can be chosen by the server. The current gap time is found
by dividing the relative distance, se, by the current velocity, u, while the relative
velocity is calculated by deriving se in time. The errors is then computed by sub-
tract the reference values, and then be multiplied by the in lane probability. The
resulting formula for the errors is:

36 4 Development of driver models

eu,i = Plane,i ṡe,i (4.52)

for the velocity and

es,i = Plane,i(
se,i
u
− Tref) (4.53)

for the longitunal gap time. The errors are then given to a proportional controller
with following structure

uacc,i =
{
u + Kueu,i + Kses,i , se < smax
Vmax , se > smax

(4.54)

where smax represent a maximum distance when the target vehicle is handled by
the ACC. The final speed reference from the ACC is

Uacc = min{uacc,i}. (4.55)

5
Results and discussions

This chapter presents the results in the different computational time when vary-
ing the complexities for the relevant parts of the model. There are also results
in the driver’s ability to follow the route and behave legally together with the
surrounding traffic.

5.1 Evaluation in simulink

The simulation models are evaluated in Simulink. The Simulink models provide
all simulated data which has been sent to the Matlab workspace for further anal-
ysis. It is also possible to measure the elapsed time for each simulation, which
have been used for analyzing the differences in computational efficiency for the
different vehicle models.

5.1.1 Vehicle model

When the vehicle model is evaluated there are two properties that are investi-
gated. Firstly, it is important that the vehicle model reacts in the same way as a
real truck. This could have been validated by testing different inputs on a real
truck and comparing the results with the behavior of the implemented models for
the same inputs. This method is not used, as it would be very time consuming
and is out of the scope of this project. However, since the vehicle models are de-
veloped based on tested models from Scania and can be verified using the laws of
physics, it is believed that the models developed here are well posed. The second
property is simulation time which varies between the different combinations in
the powertrain and cruise controller (CC) described in Section 3.1. By testing dif-
ferent combinations simulation time, it is possible to receive an approximation of
the maximal amount of trucks that are possible to simulate together in real time.

37

38 5 Results and discussions

The resulted approximations is presented in Table 5.1. Note that the approxima-
tions are far from exact values, but still provides good comparison. There are also
reasons to be believe that these numbers would be higher when the models are
compiled and executed by the server, however it is noted that the Scania Active
Prediction model is too complex to be used for the purpose of the thesis.

Table 5.1: Approximation of maximal numbers of vehicles possible to simu-
late for different powertrain combinations

CC and gear shift logic Fuel consumption Number of trucks
Scania Active Prediction Yes 2
Scania Active Prediction No 2

Simple Scania CC Yes 22
Simple Scania CC No 23
Simple own CC Yes 26
Simple own CC No 28

5.1.2 Driver model

The driver model has been tested by feeding the model with data that follows
the same format as the data that is received from the server when the whole
system is in use. The model have been tested in its ability to follow the road by
using the different steering control methods, and also in how it handles the speed
according to the speed limit and the surrounding traffic.

The test route

The driver model been simulated to drive on the highway (E4) between Södertälje
and Nyköping by being fed with GPS-waypoints describing that road. As de-
scribed in Chapter 2 the received route data should also include the altitude,
number of lanes, speed limit and road type. These have however not been adapted
from the reality for the simulink simulations, but have been randomly generated
or chosen directly for intended purposes.

Steering wheel controller

In Figure 5.1 the lateral deviation has been plotted for the first 200 seconds in a
simulation where one version of the LQ-regulator has been in use. The target is
obviously to always stay inside the driving lane. For a common case on a highway
where the lane has a width of 4 meters and the truck has a width of 2.5 meters,
the critical value for the deviation is at 0.75 meters, which are used for validating
the methods in the thesis. As seen in the figure the deviation varies between 0
and 1 meter, which is not really as good as preferred.

In the histogram in Figure 5.2 the distribution of the lateral deviation is presented
for the same simulation as in Figure 5.1. However, the histogram has been com-
puted from the whole simulation of 1000 seconds, i.e. 100 000 samples. By look-
ing in the histogram it’s evident that, even though the vehicle sometimes deviates

5.1 Evaluation in simulink 39

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

Time

La
te

ra
l d

ev
ia

tio
n

[s]

[m
]

Figure 5.1: Lateral deviation for a simulation of 200 seconds

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Lateral deviation [m]

D
is

tr
ib

u
ti
o
n
 [

%
]

Figure 5.2: Distribution of the lateral deviation for a simulation of 1000
seconds (100 000 samples), normalized to percentage of time.

more than what is defined as critical, it only happens for a few samples. By look-
ing on the percentage of when the vehicle deviates more than 0.75m, a suitable
performance measurement value is received. Also, it is interesting to evaluate
the mean square error (MSE) and root mean square (RMS).

By varying the tunable parameters in both the PID-controller and the LQ-regulator,
it is possible to analyze which parameters yield the best performance by ob-

40 5 Results and discussions

serving the performance measurement values presented earlier. The parameters
and its simulated performance is presented for both the PID-controller and LQ-
regulator in Appendix A.

By comparing the performance for the two different control methods, some ob-
servations can be done. Because of the high amount of parameters in the PID-
controller, it is difficult to observe an obvious pattern for how the parameters af-
fect the performance. In this study, PID controller with only one preview point is
considered, as the number of tuning parameters increase drastically with increas-
ing number of preview points. It is clear from Table A.1 that the LQ regulator
performs better than the PID controller. The best tuned LQ only deviates above
the critical value for less than 1% of the time, compared to above 4% for the best
tuned PID. It is noted that the worst deviations for PID controlled vehicles are
typically lower than the LQ regulator. However, the deviations of the PID de-
creases slower than the LQ. Furthermore, MSE and RMS penalize large deviation
more heavily. Hence, in some cases, the MSE and RMS of the PID and LQ are
comparable.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100
Lateral deviation from desired route

Time

S
pe

ed

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

Time

La
te

ra
l d

ev
ia

tio
n

[s]

[s]

[m
]

[k
m

/h
]

Figure 5.3: Plot of speed profile and lateral deviation for a simulation with
a LQ-regulator with TP = 0.4

For the LQ-regulator some interesting patterns can be found. When the preview
time is low (0.4 seconds) the performance is bad. By looking closer, and plot the

5.1 Evaluation in simulink 41

deviation together with the speed profile, an explanation can be found. In Figure
5.3 it is clear that the deviation is fine until the speed reaches 30 km/h, where
the deviation suddenly reaches several meters. The reason is probably that the
resulted preview distance is too short, and don not provide enough information
of the future curvature of the road. In the same way the performance for long
preview time is worse when driving in high speed, where the preview distance
is too long. This may be solved by using the distance rather than time when
calculating preview points.

Speed limit following

The speed limit following has been tested by generating a speed limit profile
where the limit changes by arbitrary time intervals. The speed limit profile may
not be realistic for a normal highway, but suits the purpose of the analysis. The
resulted driving speed for a 1000 seconds simulation is plotted together with the
actual speed limit in Figure 5.4.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120
Following the speed limit

Time

S
pe

ed

Driving speed
Speed limit

[s]

[k
m

/h
]

Figure 5.4: Performance for following the speed limit

As seen the driving speed is always close to or below the actual speed limit. How-
ever the speed profile is not optimal, as the deceleration time depends on the
current speed and the step size for the desired speed. This results in that the
driver-truck model drives in the lower speed too early. This is obvious when
the speed limit changes from 90 km/h to 40 km/h, where the actual speed are 40
km/h approximately 20 seconds before it is supposed to be so. This is not a major
problem as the driver-truck model still drives in a legal speed profile. However
it results in a longer driving time than what is preferred. The error is caused
by shortcoming of the speed limit following logic. The expected time to reach
the speed limit is not taken into account, and the time for changing the speed
is directly affected by the number of waypoints received. As a result, excessive

42 5 Results and discussions

number of waypoints received can lead to earlier deceleration and larger error.

It can also be noted that the driver does not reach the speed limit for the case of
a limit on 110 km/h, which is consistent with the rule on the driver-truck model
for not being allowed to drive in higher speed than 90 km/h.

Vehicle following

As the vehicle interaction is dependent on the server, it is not optimal to test the
vehicle following without incorporating the server. However the Matlab/Simulink-
environment can still provide a useful platform for data analysis, therefore a sim-
ple test scenario without the server has been used. The scenario is created by
first simulating one vehicle, driving alone with a speed reference of 70km/h, and
then recording its positions as a Matlab-timeseries. Then a second vehicle has
been simulated alone, but by using the recorded positions, the longitudinal and
lateral differences have been generated and fed to the second vehicle. In that
way a simple version of the server interaction is simulated. The resulting driving
profile is presented in Figure 5.5.

As seen in the figure the performance of the ACC is satisfying. The vehicle is
driving faster than the preceding vehicle in the beginning, but slows down as it
is getting closer. In the end it is keeping a gap time of the desired one second and
performs platooning. The resulted air drag reduction is presented in Figure 5.6.
The ACC could however have a little faster performance. In the figure it is clear
that the following vehicle notices the other vehicle 90 seconds into the simulation
but the desired gap time is not reached until 200-400 seconds into the simulation.
This is partially intended, as the model is primarily designed for minimizing the
risk of driving into other vehicles rather than perform platooning. It can also be
noted that the lane probability is bouncing between 0 and 1 when the vehicle are
getting closer. This may look strange, but can be explained by the fact that the
distance at that moment is too big for reasonable results in the lane probability
calculations.

5.2 Multiple driver-truck models with interactions

For the final implementation that is compiled and used in the actual system with
the server interactions, the vehicle model with the fastest simulation time is used
(simple PID cruise controller without fuel consumption calculations). This pro-
vided a light model that could be duplicated multiple times and therefore be used
to create a good proof of concept of a platooning coordination system. The model
is module based and implemented in Simulink and can be extended with more
complex functions in the future. For the driver model, the LQR controller is used
because of the better results in the evaluation.

From a stress-test by the server, a new approximation of the maximal amount of
trucks simulated together in real time could be provided. In this way the result is
around 50 trucks. It is not clear if the limit is on the memory or the computational
power of the used computer. However the result proved that the model could be

5.2 Multiple driver-truck models with interactions 43

used for the intended purpose of simulating a big amount of virtual vehicles to
create a simulation environment for platooning coordination.

For the final test, a scenario with two or three virtual trucks is used. They start
at the same place, but at different time and with different speed. The intention is
that the vehicles shall reach each other and then perform platooning. The result
is evaluated by watching the real time visualisation that is developed as the third
part of the project. It is clear that the vehicles follow the roads as intended, even
though in some cases some vehicles deviate from the road. That can however be
explained by the fact that the roads in the visualisation are linearly interpolated
between the waypoints, unlike the solution used by the driver model. The speed
controller also works as in the Simulink simulations, even though the real time
visualisation makes it more obvious that the vehicle following controller is too
slow to be perfectly satisfied. A test scenario with a real truck were also planned
for the future, but could not be done within the limited time period of the thesis.

44 5 Results and discussions

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500
Distances to other trucks

Time

D
is

ta
nc

e
to

 c
lo

se
st

 v
eh

ic
le

 a
he

ad

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Time

G
ap

 ti
m

e

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Time

La
ne

 p
ro

ba
bi

lit
y

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

Time

S
pe

ed
 r

ef
er

en
ce

Desired gap time
Actual gap time

[s]

[s]

[s]

[s]

[k
m

/h
]

[-
]

[s
]

[m
]

Figure 5.5: Distance and time gap to closest vehicle ahead, value of lane
probability and the resulted speed reference from the ACC

5.2 Multiple driver-truck models with interactions 45

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Time

P
er

ce
nt

ua
l r

ed
uc

tio
n

of
 a

ir
dr

ag

[s]

[%
]

Figure 5.6: Resulted air drag reduction for the same simulation as Figure 5.5

6
Conclusions and future work

In this chapter the drawn conclusion from the thesis is presented together with
suggestions on work that can be done in the future.

6.1 Conclusions

By combining physical models for single-track vehicle dynamics, powertrain mod-
els developed by Scania, and different control strategies, a driver-truck model are
developed in Simulink. The driver-truck model could then be duplicated and
simulated together in real time and perform platooning with each other in a road
system based on the real world. The developed model is used in a project in Sca-
nia to demonstrate the concept of coordinating platooning. As the driver-truck
model are module based and implemented in simulink, it can easily be extended
for future purposes with more complex functions. The relevance of the dynamics
of the vehicle model is proved by physical calculations, and the performance was
evaluated with satisfying results.

6.2 Future work

There are parts in the driver-truck model that can be improved, and possibilities
for extensions that have not been researched in the thesis. One way to improve
the performance of the model’s behavior is to implement the same logic that are
implemented in real trucks. This will also be useful to test such logic.

Additionally, the control algorithms can also be optimized. Even though the vehi-
cles follow the path with a deviation of less then 1 meter, it is preferable to have
a controller that ensures that the vehicle stays in the preferred lane.

47

48 6 Conclusions and future work

In future tests, platooning may be implemented in both real and virtual trucks.
The performance of ACC will be very important for such tests. Moreover, pla-
tooning logic may be included in real trucks.

It is also possible to implement an intelligent algorithm for automatic braking.
There are many active research activities on automatic emergency braking, and
some are even commercially available. Such systems can easily be added to the
driver-truck model. Also braking is needed for driving according to the speed
limit, as shown in Section 5.1.2

The model could also be extended for adding more functionality. One example
could be to add environmental disturbances such as weather, which can be mod-
eled to affect the friction of the road. Another interesting addition is to simulate
the sending of warning messages, and to provide other vehicle’s information of
accidents, or dangerous road hazards. The driver-truck model could also include
logic for overtaking vehicles. However, all of these improvements would need
additions in the server as well.

Finally, there can be a lot of future work of the actual system that are developed
in the project. The system can be improved and extended to perform tests with
more virtual and real vehicles, and in the future be used for coordinating the
vehicle fleet for an optimal use of platooning.

Appendix

A
Control parameters for path following

Table A.1 and Table A.2 presents the parameters and its simulated performances
for the LQ-regulator and PID-controller respectivly.

Table A.1: Performance of the LQ-regulator for different parameters
Parameters Performance

Tp R11/R2 R12/R11 MSE > 0.75m(%) RMS
0,4 0,01 1 0,40 25 0,63
0,4 0,01 2 0,62 29 0,79
0,4 0,01 5 1,8 41 1,35
0,4 1 1 10 44 3.1
0,4 1 2 1,9 40 1,4
0,4 1 5 1,5 39 1,2
0,6 0,01 1 0,10 0,6 0,31
0,6 0,01 2 0,11 1,0 0,33
0,6 0,01 5 0,15 7,1 0,39
0,6 1 1 0,16 7,1 0,40
0,6 1 2 0,07 0,5 0,27
0,6 1 5 0,08 0,5 0,29
0,8 0,01 1 0,18 12 0,43
0,8 0,01 2 0,18 12 0,43
0,8 0,01 5 0,18 12 0,43
0,8 1 1 0,23 12 0,48
0,8 1 2 0,20 12 0,44
0,8 1 5 0,19 12 0,43

51

52 A Control parameters for path following

Table A.2: Performance of the PID-controller for different parameters
Parameters Performance

KP0 KD0 KPp KDp KPψ MSE > 0.75m(%) RMS
0,1 1 0 10 0,1 1,6 31 1,27
0,1 10 0 10 0,1 2,8 58 1,6
1 1 0 10 0,1 0,11 5,3 0,32
1 10 0 10 0,1 0,21 7,6 0,46

0,1 1 0 100 0,1 20 98 4,5
0,1 10 0 100 0,1 17 98 4,1
1 1 0 100 0,1 1,5 30 1,2
1 10 0 100 0,1 1,5 31 1,23

0,1 1 0,1 10 0,1 0,63 23 0,80
0,1 10 0,1 10 0,1 1,14 26 1,1
1 1 0,1 10 0,1 0,09 4,3 0,31
1 10 0,1 10 0,1 0,17 5,6 0,41

0,1 1 0,1 100 0,1 11 98 3,3
0,1 10 0,1 100 0,1 9,5 98 3,1
1 1 0,1 100 0,1 1,2 30 1,1
1 10 0,1 100 0,1 1,4 31 1,2

0,1 1 0 10 1 1,6 31 1,3
0,1 10 0 10 1 3,8 60 1,9
1 1 0 10 1 0,10 5,3 0,32
1 10 0 10 1 0,19 6,7 0,44

0,1 1 0 100 1 19 98 4,3
0,1 10 0 100 1 17 98 4,1
1 1 0 100 1 1,4 30 1,2
1 10 0 100 1 1,4 30 1,2

0,1 1 0,1 10 1 0,59 22 0,77
0,1 10 0,1 10 1 1,4 31 1,2
1 1 0,1 10 1 0,09 4,4 0,30
1 10 0,1 10 1 0,21 7,6 0,46

0,1 1 0,1 100 1 9,4 98 3,1
0,1 10 0,1 100 1 9,4 98 3,1
1 1 0,1 100 1 1,2 30 1,1
1 10 0,1 100 1 1,4 30 1,1

Bibliography

Assad Alam. Fuel-Efficient Heavy-Duty Vehicle Platooning. PhD thesis, KTH,
Automatic Control, 2014. QC 20140527. Cited on page 4.

E. Catmull and R. Rom. A class of local interpolating spline. Computer Aided
Geometric Design, pages 317–326, 1974. Cited on page 10.

C.I. Chatzikomis and K.N. Spentzas. Apath-following driver model with longitu-
dinal and lateral control of vehicle’s motion. Forschung im Ingenieurwesen, 73
(4):257–266, 2009. Cited on page 4.

Lars Eriksson and Lars Nielsen. Modeling and Control of Engines and Drivelines.
John Wiley & Sons, 2014. Cited on page 3.

Mordechai (Muki) Haklay and Patrick Weber. Openstreetmap: User-generated
street maps. IEEE Pervasive Computing, 7(4):12–18, October 2008. ISSN 1536-
1268. doi: 10.1109/MPRV.2008.80. URL http://dx.doi.org/10.1109/
MPRV.2008.80. Cited on page 7.

He Han-wu, Lu Yong-ming, and Lou Yan. Virtual reality based intelligent vehicle
modeling in driving simulation system. In Computer-Aided Industrial Design
and Conceptual Design, 2006. CAIDCD’06. 7th International Conference on,
pages 1–5. IEEE, 2006. Cited on page 3.

Kuo-Yun Liang. Coordination and routing for fuel-efficient heavy-duty vehicle
platoon formation. 2014. Cited on page 1.

L. Ljung and T. Glad. Reglerteori : Flervariabla och olinjara metoder. 2003. Cited
on pages 4 and 25.

Seungwuk Moon, Kyongsu Yi, HyongJin Kang, and Paljoo Yoon. Adaptive cruise
control with collision avoidance in multi-vehicle traffic situations. SAE Inter-
national Journal of Passenger Cars-Mechanical Systems, 2(1):653–660, 2009.
Cited on page 34.

J.E. Naranjo, C. Gonzalez, R. Garcia, T. de Pedro, and Haber R.E. Power-steering
control architecture for automatic driving. 2005. Cited on page 25.

53

http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1109/MPRV.2008.80

54 Bibliography

H. Pacejka. Tyre and Vehicle Dynamics. Butterworth-Heinemann, 2006. Cited
on page 3.

Christian Ress, Dirk Balzer, Alexander Bracht, Sinisa Durekovic, and Jan Löwe-
nau. Adasis protocol for advanced in-vehicle applications. In 15th World
Congress on Intelligent Transport Systems, 2008. Cited on page 7.

RS Sharp and V Valtetsiotis. Optimal preview car steering control. Vehicle Sys-
tem Dynamics, 35, 2001. Cited on pages 4 and 26.

Randall W Smith. Department of Defense World Geodetic System 1984: its defi-
nition and relationships with local geodetic systems. Defense Mapping Agency,
1987. Cited on pages 8 and 9.

M. Thommyppillai, S. Evangelou, and R. S. Sharp. Car driving at the limit by
adaptive linear optimal preview control. Vehicle System Dynamics, 47(12):
1535–1550, 2009. Cited on pages 3, 14, and 17.

Hucho Wolf-Heinrich. Aerodynamics of Road Vehicles: From Fluid Mechanics to
Vehicle Engineering. SAE, 1998. Cited on pages 16 and 17.

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förla-
gets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

© Oskar Daniels

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem formulation
	1.2.1 The project

	1.3 Objectives
	1.4 Related literature
	1.5 Contribution
	1.6 Thesis outline

	2 The simulation environment
	2.1 Overview
	2.2 Driver-truck model
	2.3 Inputs to the driver-truck model
	2.3.1 Model parameters
	2.3.2 Initial states
	2.3.3 Routing data
	2.3.4 Surrounding traffic

	2.4 Outputs from the driver-truck model
	2.5 Transformations between coordinate systems
	2.6 Filtering of the routing data
	2.6.1 Path generation
	2.6.2 Slope calculation

	3 Development of vehicle models
	3.1 Engine and powertrain
	3.1.1 The cruise controller
	3.1.2 The gearbox
	3.1.3 The engine

	3.2 Dynamics and kinematics
	3.2.1 Longitudinal forces
	3.2.2 Lateral forces
	3.2.3 Assumptions used in the model

	3.3 Simulation models and parameters
	3.3.1 Model parameter values

	4 Development of driver models
	4.1 Steering wheel control
	4.1.1 Preview Points
	4.1.2 Error calculation
	4.1.3 Control method

	4.2 Speed control
	4.2.1 Speed limit
	4.2.2 Vehicle following

	5 Results and discussions
	5.1 Evaluation in simulink
	5.1.1 Vehicle model
	5.1.2 Driver model

	5.2 Multiple driver-truck models with interactions

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	A Control parameters for path following
	Bibliography
	Copyright

