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Abstract

This report present the work to develop a misfire detection algorithm for on-
board diagnostics on a spark ignited combustion engine. The work is based on
a previous developed model-based detection algorithm, created to meet more
stringent future legislation and reduce the cost of calibration. In the existing ap-
proach a simplified engine model is used to estimate the torque from the flywheel
angular velocity, and the algorithm can detect misfires in various conditions.

The main contribution in this work, is further development of the misfire detec-
tion algorithm with focus on improving the handling of disturbances and vari-
ations between different vehicles. The resulting detection algorithm can be au-
tomatically calibrated with training data and manage disturbances such as man-
ufacturing errors on the flywheel and torsional vibrations in the crankshaft oc-
curring after a misfire. Furthermore a robustness analysis with different engine
configurations is carried out, and the algorithm is evaluated with the Kullback-
Leibler divergence correlated to the diagnosis requirements.
In the validation, data from vehicles with four cylinder engines are used and the
algorithm show good performance with few false alarms and missed detections.
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Sammanfattning

I denna rapport presenteras arbetet med utveckling av en algoritm för misständ-
ningsdetektion lämplig för fordonsbunden övervakning i gnisttända förbrännings-
motorer. Arbetet baseras på ett tidigare utvecklad modellbaserad algoritm, ska-
pad för att klara framtida strängare krav samt för att minska kalibreringsbördan.
I den befintliga metoden används en enklare motormodell för att skatta momen-
tet från svänghjulets vinkelhastighet och algoritmen kan upptäcka misständning-
ar i varierande förhållanden.

Det största bidraget i arbetet är vidareutvecklingen av detektionsalgoritmen med
fokus på förbättrad hantering av störningar och variationer mellan fordon. Den
resulterande detektionsalgoritmen kan automatiskt kalibreras med träningsda-
ta och hanterar störningar som tillverkningsfel på svänghjulet och vibrationer i
vevaxeln efter en misständning. Vidare görs en analys av robustheten med olika
motorkonfigurationer, och algoritmen utvärderas med Kullback-Leibler divergen-
sen i korrelation med kraven satta på diagnosen.
I valideringen, används data från fordon med fyrcylindriga motorer och algorti-
men visar god prestanda med få falsklarm och missade detektioner.
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1
Introduction

The thesis is written at Volvo Cars in Gothenburg and focuses on misfire detec-
tion in internal combustion engines. This introducing chapter contains the back-
ground and description of the problem as well as the goals and purpose of the
thesis.

1.1 Background

Monitoring of automotive engines is becoming more important as the require-
ments of reliability and environmental friendliness increases. The on-board diag-
nostics (OBDII) legislations were introduced in 1994, which require that vehicle
emissions and its underlying factors must be monitored on-board the vehicle [1].
One of the OBDII requirements is that engine misfires must be detected.

Engine misfires is a phenomenon that describe incomplete combustions in the en-
gine cylinders. A misfire will induce a raised level of exhaust emissions and may
also damage the catalytic converter, which strongly influence the performance of
the automotive exhaust emission control system, see [18].

Detecting engine misfire is a non-trivial task complicated by several factors such
as vibrations, manufacturing errors, cold starts, and varying speeds and loads,
see [7]. The problem is further complicated by the fact that the on-board compu-
tational power in a vehicle is limited, and therefore the implemented detection
algorithm needs to be held at a low complexity.
In conjunction with the introduction of a new engine generation with four cylin-
der engines, Volvo is investigating in new algorithms that have good detection
performance but at the same time are easy to calibrate. As the demands of rapidly

1



2 1 Introduction

launching new vehicle models to attract customers, an alternative method that re-
duces the manual calibration effort is pursued.

When an engine misfire occurs, it results in a reduced rise of the cylinder pressure
as a result of the incomplete combustion. Since the use of an in cylinder pressure
gauge is considered to be both too expensive and have poor durability [13], it
is not used in mass produced automobiles. Instead a transient decrease in the
rotational speed of the crankshaft is utilized to detect a misfire. An example
of how a misfire appear in the rotational speed of the crankshaft is shown in
Figure 1.1, where the misfire is injected around sample 100.

20 40 60 80 100 120 140 160 180

1400

1425

1450

1475

1500

1525

1550

ω
 
[
r
p
m
]

Sample

Misfire

Figure 1.1: Flywheel angular velocity measurements around speed 1500rpm
and load 0.8g/rev with an injected misfire around sample 100.

The basis of this thesis is a model-based misfire detection algorithm that has been
developed in collaboration between Linköpings University and Volvo Cars, see
[12]. The introduction of a new generation of Volvo engines with four cylinders
instead of previous generations with five and six cylinders require that the detec-
tion algorithm is adjusted and additional investigations are required to ensure
that the method is robust. Although the developed misfire detection algorithm
can handle the majority of the mentioned complications such as varying engine
speed and load, potential improvements can be made in the area of disturbance
handling. Torsional vibrations in the crankshaft after a misfire are pointed out
as a problem in [12], since it causes oscillations in the signal and thus increase
the risk of false alarms. Other potential sources of errors in a model-based mis-
fire detection approach are vehicle to vehicle variations such as manufacturing
errors, wear out, and deviating frictions. These mentioned potential vehicle to
vehicle errors causes systematic distortions and thus need to be investigated and
compensated for to improve the detectability performance.

To evaluate the detectability of misfires and quantify the performance of the mis-
fire detection algorithm the Kullback-Leibler divergence is proposed [12]. The
interpretation of the Kullback-Leibler divergence is intuitive for comparative pur-
poses, but the relation to Volvo KPI (Key Performance Indicator), which are the
requirements on the misfire detection algorithm used by Volvo, are not fully eval-
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uated. Volvo KPI include legal requirements regarding detection of misfires, and
internal requirements at Volvo to avoid false alarms and thereby prevent unnec-
essary warranty expenses.

1.2 Goals and purpose

The purpose of this master thesis is to investigate and further develop the model-
based misfire detection algorithm proposed in [12] in the means of detectability
and disturbance handling. Another goal is to investigate the use of the Kullback-
Leibler divergence as an misfire detection performance evaluation tool and relate
the result to Volvo’s requirements. The goal can be divided in the following bul-
lets:

• Adapt the misfire detection algorithm in [12] for four-cylinder engines and
evaluate the misfire detection performance. The result is compared to the
detection performance in six-cylinder engines.

• Investigate the impact of vehicle to vehicle variations and how to compen-
sate for such variations in the detection algorithm.

• Investigate how to compensate in the algorithm for vibrations in the power-
train following a misfire.

• Investigate the Kullback-Leibler divergence in terms of misfire detection
performance, and how it relates to the requirements set by Volvo.

1.3 Method

In model-based diagnosis system design, the principle is to develop a model that
describe the fault-free behavior while the effects of the different faults is known,
see for example [8]. In the case of misfire diagnosis two behavioral modes is
considered: fault-free combustion and misfire.

NF no fault

Fmf misfire

Thus the purpose of the detection algorithm is to create a test quantity for the
hypothesis test such that when a misfire occurs the null hypothesis is rejected

H0 : FP ∈ NF

H1 : FP ∈ Fmf
where FP is the present behavioral mode.

In [8], a systematic design procedure for such diagnosis systems is suggested
which this work mainly follows. The steps can be summarized as:
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1. Define which faults that are diagnosed and what the requirements are.

2. Study the system and the faults that are diagnosed.

3. Build a model of the process in the fault-free case.

4. Investigate how the fault influence the system.

5. Design a test quantity to be used in the hypothesis tests.

6. Evaluate the diagnosis system in simulations and if possible in reality. If
the performance is not satisfactory, refine the model or the test.

7. Final implementation of the diagnosis system.

In this thesis, no final implementation is made. However, steps 1-6 in the proce-
dure are considered in the design process and the evaluation is done with mea-
surements both from test rig and on road.

1.4 Related research

Misfire detection is a well-covered area in the literature and many various meth-
ods are proposed. In [16], a survey is presented of research regarding diagnosis
algorithms for automotive applications, for example misfire detection methods.
A proven strategy for misfire detection is to measure the time between the pre-
determined angular interval on the flywheel to estimate its angular velocity, see
[18]. The flywheel angular velocity of the flywheel can then be filtered using sig-
nal processing to classify misfires, see [7]. Such methods based on the angular
velocity often performs well at low speed, but experience difficulties at higher
engine speeds due to increasing vibrations according to [16]. Another common
strategy is the use of the angular velocity signal to estimate engine torque in a
model-based approach, see for example [12, 13, 18]. One of the difficulties in a
model-based approach lies in succeeding to balance between keeping low com-
plexity in order to enable on-board detection, and process errors and imperfec-
tions to get a high detectability. In [13], a Kalman filter approach is presented us-
ing a simplified engine model that also features compensation for disturbances.
However the algorithm experience difficulties at higher speeds due to reduced
signal-to-noise ratio. Another method is used in [18] where torque waveforms
nonuniformity is utilized to detect misfiring cylinders where [18] also argues for
the use of the frequency domain to detect misfires.

An analytical model for the cylinder pressure is developed in [6] where the method
is based on a parameterization of the ideal Otto cycle. The in-cylinder pressure is
given as a function of crank angle, manifold pressure, manifold temperature and
spark timing and requires fine tuning but could then be used in on-line applica-
tions.
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The work in this master thesis is based on and a continuation of the work in [12].
A model-based approach is proposed where the indicated torque is estimated
from the angular velocity signal and an algorithm is developed that is kept at low
complexity to enable on-line misfire detection. Furthermore, [12] addresses the
idea to use the Kullback-Leibler divergence for quantitative fault detection anal-
ysis. The Kullback-Leibler divergence is a widely used tool in statistics and pat-
tern recognition to evaluate the similarity between two distributions. However,
in [12] it is suggested to evaluate the dissimilarity between fault-free data and
misfire data. The advantages of using the Kullback-Leibler distance between dis-
tributions is discussed in [14] where the Kullback-Leibler distance is highlighted
as conceptually simpler than the use of probability.





2
Data and signals

This chapter briefly describes how data is collected and which data that is used
in this work. Also the signals used during the design process are presented.

2.1 Data

The data used in this work are collected from five Volvo cars with four and six
cylinder engines. The measurements are either collected in a chassis dynamome-
ter or during real driving scenarios on the road. In all data sets, misfires are in-
jected periodically in all cylinders one at the time, always with several engine cy-
cles in between. The measurements from the chassis dynamometer are collected

Data set Vehicle Num.Cyl. Condition Num.Comb.

1 1 4 FTP75 70794
2 1 4 FTP75 69053
3 1 4 FTP75 74641
4 2 4 On the road 31995
5 3 4 Steady state 573202
6 4 4 Steady state 92232
7 2 4 Steady state 540083
8 5 6 Steady state 688884

Table 2.1: Data used to train and evaluate the misfire detection algorithm.
Num.Comb is an abbreviation for the number of combustions included in
the measurement and Num.Cyl is the number of cylinders in the engine.

7



8 2 Data and signals

indoors without disturbances from environmental conditions, such as varying
driving surfaces and whether conditions, which make them suitable for compar-
isons. Such measurements are available both from steady state conditions with
constant speed and load or following the FTP75 driving cycle. The FTP75 cycle
is a city driving scenario that includes cold starts but is limited to lower engine
speeds. Data set 4 is a real driving scenario with measurement on the road that
includes higher engine speed but no cold starts. Data sets 5, 6, 7, and 8 contains
steady state measurements covering several engine operating points including
cold starts. In Table 2.1 the measurement condition and vehicle for each data set
are shown.

2.2 Signals

Four signals shown in Table 2.2, from the vehicle’s control system ares used by
the algorithm in this work to monitor all driving cases. The function and purpose
of each signal are briefly described below.

Signal Variable Unit

Flywheel angular velocity ω rpm
Air mass flow ma g/rev
Catalyst warming flag − −
Crank angle counter − −

Table 2.2: List of the used signals in the algorithm.

2.2.1 Flywheel angular velocity

The angular velocity is the prime signal used in detection of misfires. When a
misfire occur, it introduces an instantaneous reduction in the angular velocity
and it is this reduction that is utilized to detect misfires. The angular velocity is
also used to categorize the engine behaviour in different operating points based
on speed.
The angular velocity is not directly measured, but calculated from the original
signal that count the time between two succeeding teeth on the flywheel with
a high frequency clock [18]. One sample of the angular velocity can then be
obtained by the equation

ωi =
θi − θi−1

∆ti
(2.1)

where ∆ti is the segment time for the fixed angular interval θi −θi−1. An example
of the appearance of the flywheel angular velocity signal is shown in Figure 2.1.

2.2.2 Air mass flow

The appearance of the flywheel angular velocity signal depend on several various
causes. The engine load is one such factor and together with the engine speed, it
is often used to categorize the engine behaviour in different operating points [7].
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Figure 2.1: Flywheel angular velocity signal around 1275 rpm and load 0.3
g/rev.

In [12], a used approximation is that the air mass flow varies proportionally to
the intake manifold pressure. Thereby the air mass flow can be used to represent
the engine load. The same approximation is used in this work.

2.2.3 Catalyst warming flag

The catalyst warming flag is set to point out that the catalytic converter is cold.
When the catalytic converter is cold it needs to be heated up to function properly
and thus avoid unnecessary exhaust. This is typically done by increasing amount
of fuel and delaying the ignition of the fuel mixture in order to heat up the ex-
haust gas. This combined with an overall cold engine gives an engine behavior
that deviates from the behaviour in normal conditions and complicates misfire
detection.

2.2.4 Crank angle counter and sampling

The crank angle counter contains the position on the flywheel of each sample and
depends on the sampling resolution of the angular velocity. Current flywheel
standards allow sampling of every 6◦ on the flywheel [13]. Although, such a high
resolution contains more information about the combustions, it requires more
computational power and also introduce more quantization noise and uncertain-
ties due to the manufacturing imperfections.

In this work, the angular resolution is set to 30◦, which means that a full engine
cycle, i.e. two revolutions, result in 2 · 360◦/30◦ = 24 samples. These samples are
represented by crank counts 1,2,. . . ,24 where crank count 1 represent an interval
starting approximately 20◦ before top dead center of cylinder 1.
The crank counts are assigned to each cylinder such that the interval from the
ignition of the cylinder until the ignition of the next cylinder is covered. The mis-
firing cylinder can thereby be identified through the crank counts, as the effects
of a misfire are isolated to an interval in the signal. Thus in a four cylinder engine,
six crank counts are paired with each cylinder while four samples are paired with
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each cylinder in a six cylinder engine. The firing order of the cylinders is 1-3-4-2
in the four cylinder engine and 1-5-3-6-2-4 in the six cylinder engine, which give
the association of crank counts to each cylinder that are presented in Table 2.3.
During cold start, the crank counts are assigned with one step offset in the six
cylinder engine, as the ignition is delayed [12]. This is not necessary in four cylin-
der engines as the combustion are more separated and the effects of a misfire are
still within the assigned interval.
An example of computed angular velocity ω from a four cylinder vehicle during
one cycle and corresponding crank counts is presented in Figure 2.2. In the fig-
ure, the assigned crank count intervals in Table 2.3 clearly include the increase
in angular velocity connected to each cylinder combustion.

Crank count
Cylinder 4-cyl.engine 6-cyl.engine

1 1, 2, 3, 4, 5, 6 1, 2, 3, 4
2 19, 20, 21, 22, 23, 24 17, 18, 19, 20
3 7, 8, 9, 10, 11, 12 9, 10, 11, 12
4 13, 14, 15, 16, 17, 18 21, 22, 23, 24
5 5, 6, 7, 8
6 13, 14, 15, 16

Table 2.3: The crank counts that are associated to each cylinder.
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Figure 2.2: Flywheel angular velocity at 1500rpm and load 0.8g/rev and the
corresponding crank counts.



3
Engine torque model

In this chapter the engine torque model described in [12] is presented and the con-
nection to the previous presented flywheel signal is shown. The model output is
an estimate of the torque at the crankshaft, which is further processed according
to [12] in order to enhance the effect of a misfire. The result is discussed and the
visibility of a misfire is analyzed for various conditions and operating points.

3.1 Torque estimation

There are several advantages of using a torque model for detecting misfires in-
stead of working directly on the angular velocity signal. To start with, the phys-
ical behavior of combustions can be described in a torque model and thus the
effects of a misfire can be isolated by theoretical analysis [11]. Another benefit
is that the torque has resembling values at similar operating points, which is an
advantage in a model-based diagnosis compared to the original angular velocity
signal that is more varying, see Figure 2.1.

Various different methods to estimate the engine torque are proposed in the lit-
erature, each with their respective advantage. Although a complex model of the
crankshaft, such as presented in [17] and [19], would describe the physical behav-
ior more accurately, these methods are not suitable for online misfire detection
due to the limited computational power. Instead a simpler model is sufficient to
capture the misfire behavior for the purpose of online detection [12]. Using New-
ton’s second law of motion the relation between the torque at crankshaft and the
angular velocity can be described as

J
dω
dt

= Tcomp (3.1)

11



12 3 Engine torque model

where J is the moment of inertia, ω is the angular velocity at the flywheel and
Tcomp is the composite torque applied on the crankshaft. The inertia depend on
θ but is here assumed constant.

As the flywheel angular velocity is sampled angular synchronous with a fixed
angular interval ∆θ on the flywheel, the left side of (3.1) is modified accordingly

J
dω
dt

= J
dω
dθ

dθ
dt

= J
dω
dθ

ω =
J
2
dω2

dθ
. (3.2)

The derivative can then be approximated using Euler forward as

J
2
dω2

dθ
≈ J

2
(
ω2
θ+∆θ − ω

2
θ

∆θ
), (3.3)

and thus the composite torque can be obtained by combining (3.1), (3.2) and (3.3)
as

Tcomp =
J

2∆θ
(ω2

θ+∆θ − ω
2
θ). (3.4)

An example of the estimated composite torque for one engine cycle is shown in
Figure 3.1. J is unknown, but as only the fluctuations in the torque signal are
of importance for misfire detection, the actual value of the torque is indifferent,
and J

2∆θ can thus be seen as a constant scaling factor. Thus, there is no unit on
the y-axis in the figures of the estimated torque, as the torque plots purposes are
mainly to show the fluctuating behaviour.
In Figure 3.1, it can be seen that the signal have a periodic appearance where
the four highest peaks corresponds to a cylinder combustion. However, the ap-
pearance of the six samples corresponding to each cylinder differ between the
cylinders which will be further analyzed later.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T

crank count

Figure 3.1: Estimated torque at 1500rpm and load 0.8g/rev and the corre-
sponding crank counts.
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3.2 Distinguishing misfire from nominal behavior

The most prominent effect of a misfire is the lack of an in cylinder pressure rise
due to the missing combustion. Accordingly, the fluctuations of the correspond-
ing torque produced from the in-cylinder pressure Tpr is the key to detect mis-
fires. An example of how a misfire is visible in the estimated torque signal is
shown in Figure 3.2, where the misfire is injected around sample 55.

20 40 60 80 100

T

Sample

Misfire

Figure 3.2: Estimated torque at 1500rpm and load 0.8g/rev with a visible
misfire around sample 55.

However, the torque from the cylinder pressure is only one part of the estimated
composite torque Tcomp in (3.4) which consist of four main factors

Tcomp =

ncyl∑
i=1

(Tpr,i + Tmass,i) − Tload − Tf r (3.5)

where Tpr,i is the torque produced from the in-cylinder pressure in cylinder i,
Tmass is the inertial torque from the moving piston mass, Tload is the required
load from the driveline and Tf r is torque losses due to friction.

If the relatively small dynamic component of the friction is ignored, Tf r may be
included in Tload [13]. The composite torque is then reduced to

Tcomp =

ncyl∑
i=1

(Tpr,i + Tmass,i) − Tload . (3.6)

It is known that the fast variations of Tcomp are mainly due to Tpr and Tmass, while
Tload are less variable within a single stroke [11].
Tpr is periodic and largest at the second sample of each combustion i.e. crank
count 2, 8, 14 and 20. Thus, in the estimated torque signal, torque peaks related
to large Tpr can be observed at these particular crank counts, see Figure 3.1.
Tmass changes proportional to ω2 and is the dominant factor at higher speed. Ac-
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cording to [11, 17, 19], Tmass should be periodic just as Tpr and thus similar in
each cylinder. However in Figure 3.1, Tmass is proven to have uneven interval
in the measurements and is largest at crank count 5, 10, 17, 22. This behaviour
probably depend on the engine geometry and is discussed more in the next sec-
tion.

3.2.1 Pre-processing of the estimated torque

Compared to the flywheel velocity signal, the estimated torque has the benefit
that at similar speeds and loads it obtain similar magnitudes. This makes it pos-
sible to compare different combustions, if they occur at similar speeds and loads.
In [12], two steps are presented to pre-process Tcomp in order to further distin-
guish Tpr and to make Tcomp independent of load.

Slow variations which do not occur during a single stroke is not relevant to detect
misfires. Such slow variations include Tload and can be compensated for in the
estimated torque, Tcomp, by subtracting the mean torque for each engine cycle.
This increase the similarity between combustions in each operating point.

Variation related to load can be compensated for by normalizing the estimated
torque with respect to the air mass introduced per cycle ma. This create a quan-
tity that is independent of load but also as demonstrated in [12] the normaliza-
tion improve performance. Because of the independency of load the considered
operating points can be limited to speed and thus significantly reduced.

Remaining characteristics in the estimated torque relies on Tpr and Tmass. In Fig-
ures 3.3, 3.4, and 3.5, the normalized estimated torque with subtracted mean are
plotted for three different engine speeds, all with a misfire injected in cylinder 1.

The behavior of Tmass prevails at higher speed due to that it changes proportion-
ally to ω2 and thereby the torque provided by Tpr is less visually distinguishable.
This also means that misfires is less distinct than at lower speed when Tpr is dom-
inant. In Figure 3.4 at 2500rpm, Tpr and Tmass have the same magnitude and two
clear peaks are visible for each combustion.

In Figure 3.5, the uneven spacing between the peaks related to Tmass are espe-
cially clear. However, as the torque at similar speed has a resembling shape for
each cylinder individually, this can be handled by considering each cylinder sep-
arately in the algorithm. This also treats the problem with small variations be-
tween the different cylinders which might be related to simplifications in the
model.
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Figure 3.3: Estimated torque at 1200rpm with subtracted mean and normal-
ized with respect to ma .
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Figure 3.4: Estimated torque at 2500rpm with subtracted mean and normal-
ized with respect to ma.
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Figure 3.5: Estimated torque at 5000rpm with subtracted mean and normal-
ized with respect to ma.
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3.3 Cold starts

The developed engine model is also valid during cold starts and an example of
normalized estimated torque with subtracted mean for each cycle during cold
start is presented in Figure 3.6. Focus during cold starts is to heat the catalytic
converter, the fuel mixture and ignition timing is thereby changed. This causes
that Tpr is not as distinct as during normal engine behaviour at the same speed,
and the smaller contribution from Tpr makes misfire detection especially diffi-
cult during cold starts. As the behaviour during cold starts differ significantly
from normal behaviour at the same operating point, cold starts are considered
separately when detecting misfires.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

T

crank count

Misfire

Figure 3.6: Estimated torque during cold start at 1200rpm with subtracted
mean and normalized with respect to ma.
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Misfire detection algorithm

In the design of the misfire detection algorithm, the purpose is to create a test
quantity that classify each combustion as either a misfire or a fault-free combus-
tion. The algorithm design used in [12] for six cylinder vehicles is here used with
only minor changes as a result of the cylinder reduction. The algorithm design
includes the creation of a test quantity which attempt to optimally use all crank
counts assigned to each cylinder in order to determine the combustion behavior.

4.1 Operating points

The estimated torque has proven to have a varying behaviour and as previously
suggested, data need to be categorized depending on the actual engine operat-
ing conditions. As the normalization with respect to air mass flow per cycle,
introduced in Section 3.2.1, remove dependency on load, only varying speed is
considered. Nine operating points based on speed are used in this work, starting
at 1000rpm with 500rpm intervals up to 5000rpm, where each combustion is as-
sociated to the best matching. For example, this means that idling, which occur
around 850rpm, is categorized to the lowest operating speed.
To handle the deviations between the cylinders, the estimated torque is further
categorized depending on the firing cylinder resulting in: cylinders * speed oper-
ating points = 36 engine modes. Finally also cold start need to be considered sep-
arated in the algorithm to ensure better performance. As cold starts are limited to
lower engine speeds only the lowest three speed operating points are considered.
In total, this result in 48 operating points for four cylinder vehicles where each
operating point needs an optimized test quantity to classify data. A similar con-
ducted categorization for a six cylinder engine results in 72 operating points.

17
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4.2 Hypothesis test

The behavior of each combustion k is described by a vector of six samples of the
estimated torque, tk = (T1, T2, T3, T4, T5, T6)T corresponding to the firing cylinder.
Where tk either belong to the behavioral mode of misfire, Fmf , or no fault, NF.
The behavior of the estimated torque is highly variable. Even though different
operating points are used, certain variations within each operating point need
to be managed. Since a consistent difference is observed when a misfire occur
compared to fault-free behaviour, these smaller variations within each operating
point can be handled by considering probability density functions (pdf). For each
operating point a hypothesis test can thus can be formed where the behavioral
modes are described by pdfs. pnf is the fault-free distribution connected to the
null hypothesis and pmf is the misfire distribution connected to the alternative
hypothesis,

δ(tk) =
{
H0 if tk ∈ pnf (tk |ω)
H1 if tk ∈ pmf (tk |ω)

where both distributions are dependent of speed. To visualize how pnf and pmf
may appear, histograms of sample 1 and 4 in cylinder 1 around 1500rpm are
shown in Figure 4.1 and Figure 4.2.

4.3 Design of test quantity

The detectability performance of a misfire vary between the different samples
associated to a combustion, which is clear when comparing the separation of mis-
fires and fault-free combustions in Figure 4.1 and Figure 4.2. However, in the
creation of the test quantity as much information about each combustion as pos-
sible is wanted. Thus all six samples are used while emphasis is placed on the
samples with greater separation.
A straight forward way of doing so is to assign weights to the samples based on
how much information they include, and thereby take all samples into consider-
ation [12]. The aim is to choose weights such that the resulting one-dimensional
test quantity has as large separation between the distributions of misfire and fault-
free combustions as possible. Further, this method is suitable for online diagnosis
as it is not computationally complex.

If wk = (w1, w2.w3, w4.w5, w6)T is the weights for a certain operating point k, the
test quantity r is given by

r = wTk tk + βk (4.1)

where tk = (T1, T2, T3, T4, T5, T6) is the normalized estimated torque with removed
mean for one combustion categorized to operating point k. βk is chosen in each
operating point such that r ≥ 0 in the fault-free case and r < 0 for misfires. This
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Figure 4.1: Histogram of estimated torque from sample 1 in cylinder 1
around 1500rpm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

p
(T

4
)

T4

Misfire Fault−free

Figure 4.2: Histogram of estimated torque from sample 4 in cylinder 1
around 1500rpm

means that βk works as a threshold and a higher value increase the risk of false
alarms while the risk of missed detection is decreased and the other way around
when βk is lowered.

4.4 Parameterization

The weights wk and the threshold parameter βk are found and stored in the al-
gorithm using training data. This means in each operating point, 7 parameters
needs to be stored in four cylinder vehicles, respectively, 5 parameters in the six
cylinder vehicles. In total, for all operating points, this results in that 336 param-
eters needs to be stored in a four cylinder vehicle and 360 parameters in a six
cylinder vehicle.

To find the parameters that maximize the separation between the fault-free pdf
and the pdf of misfire in each operating point, the machine learning approach
Support Vector Machines (SVM) is utilized. SVM is a technique developed for
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binary classification and can be applied to parameterize models such as the one
described by (4.1), see [2].

SVM used training data and the approach may roughly be interpreted as maxi-
mizing the margin between the two classes’ closest data points, denoted as the
support vectors. The support vectors contain all relevant information about the
classification and thereby only the closest data points are relevant. The middle of
the margin is by SVM considered the optimal decision boundary that separates
the two classes. If the distributions of the two classes overlap, data points on
the “wrong side” of the boundary are penalized to reduce their influence in the
optimization. For further information about SVM see [2] and [9].

The requirements in Volvo KPI places emphasis on avoiding false alarms rather
than avoiding missed detections, which will be further declared in Section 5.2.
Thus, the middle of the margin is not the optimal decision boundary in this appli-
cation. However, to avoid manual calibration of the threshold in each operating
point, the thresholds selected by SVM are used in this work.

4.5 Summary

All the necessary tools to set up the misfire detection algorithm are now pre-
sented and as a summary, the steps to train the algorithm are described below.
All parameters are automatically tuned with no need for manual calibration.

1. Use training data that cover all considered engine operating points where
both fault-free data and misfire data have to be included. Estimate the
torque and compensate for unwanted variations by removing the mean
torque for each engine cycle and normalize the estimated torque with re-
spect to air mass introduced per cycle ma.

2. Categorize each combustion in operating points based on speed, firing cylin-
der, if cold start occurs or not and if the combustion belongs to the fault-free
case or misfire. Crank counts in Table 2.3 are used to associate the correct
samples to each cylinder.

3. Parameterize the weights and thresholds in the test quantity for each oper-
ating point with the use of SVM.
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Kullback-Leibler divergence

correlated to Volvo KPI

A method to quantify the separation between the pdf of misfire and the pdf of
fault-free combustion is interesting for analysing the diagnosis performance. For
this purpose the Kullback-Leibler divergence is introduced in this chapter. The
Kullback-Leibler divergence give a good basis for evaluation and comparison.
However, without any connection to the actual requirements on the detection
algorithm specified in Volvo KPI, the Kullback-Leibler divergence does not pro-
vide any explicit information about the algorithm performance. By establishing
a correlation between the Kullback-Leibler divergence and the requirements, the
application of the Kullback-Leibler divergence is increased to also include evalu-
ating if requirements can be met.

5.1 Kullback-Leibler divergence

The Kullback-Leibler divergence is a tool used in probability theory, information
theory and statistics to measure the similarity between two density functions [10].
The Kullback-Leibler divergence from misfire data pmf to fault-free data pnf is
expressed K(pmf ‖ pnf ) and defined as

K(pmf ‖ pnf ) =

∞∫
−∞

pmf (x) log
pmf (x)

pnf (x)
dx (5.1)

where

K(pmf ‖ pnf ) ≥ 0 and

21
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K(pmf ‖ pnf ) = 0 only if pmf = pnf ,

which can be interpreted as the expected log-likelihood ratio when pmf is the
true distribution [12].
In [12] it is suggested to use the Kullback-Leibler divergence to quantify the sep-
aration of two pdfs to evaluate the detection performance in fault diagnosis. It
may then instead be interpreted as the "distance" between faulty data and fault-
free data, where a higher value means larger separation between faulty data and
fault-free data i.e., it is easier to distinguish pmf from pnf .

For an accurate calculation of the KL divergence the estimation of the pdfs is
important. Especially the estimation of the tail of pnf is crucial since if the pdfs
are well separated, the computation of (5.1) mainly depends on the tail of pnf
since pmf is close to zero for fault-free data. There are various ways the pdf
could be approximated. Either a non-parametric method e.g. a kernel density
estimator can be used, which center a kernel function at each data point and then
approximate the pdf by summing up all the kernel functions [2], or a parametric
method, which fits a known distribution to data by estimating its parameters [3].

A non-parametric method requires lots of data to make a good approximation
of the tails and is in the computation of the Kullback-Leibler divergence very
sensitive to outliers. As the distribution of fault-free and misfire data has an
appearance similar to the normal distribution, see Figure 4.1 and Figure 4.2, a
parametric Gaussian distribution is used as an approximation in this work. In
addition, the requirements on the diagnosis algorithm are partially expressed in
standard deviations based on Gaussian distributed data.

If pnf and pmf are k-dimensional multivariate Gaussian distributions, respec-
tively, with mean µpnf and µpmf , and covariance matrix Σpnf and Σpmf . The
Kullback-Leibler divergence can be computed analytically as

(5.2)K(pmf ‖ pnf ) =
1
2

(
tr(Σ−1

pnf Σpmf ) + (µpnf − µpmf )TΣ−1
pnf (µpnf − µpmf )

− log
(detΣpmf

detΣpnf

)
− k

)
.

5.2 Volvo KPI

Volvo KPI include requirements on probability of false alarm and probability of
missed detection which both depend on the threshold placement. First priority
for a manufacturer when thresholding misfire detection algorithms, is to meet
the requirements in the OBDII legislation regarding detecting misfires, in order
to get legal permission to sell the vehicle. The requirement on highest probability
of missed detection related to the OBDII legislation depend on several factors [1].
Here an approximation is used, for a simpler interpretation, and the demand is
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Min.dist. to J Max.misclass. [%]

False alarm 4.2σnf 0.0058
Missed detection 2.7σmf 1

Table 5.1: Requirements on the detection algorithm in terms of false alarm
and missed detection, expressed both as the minimum allowed distance in
standard deviations from the mean to the threshold J, and maximum allowed
percentage of misclassification.

set such that at least 99% of occurred misfire must be detected. From the manu-
facture’s point of view, this requirement is adequate to avoid vehicle damage due
to not detected misfires and therefore the main focus is instead on avoiding false
alarms.
False alarms increase the risk for unnecessary warranty issues that could lead to
high costs for a manufacturer. Thus the requirement on the probability of false
alarm, which is set by the manufacturer, is more stringent than the requirement
on probability of missed detection.

The requirement in Volvo KPI is set with the premise that the threshold used
for classification J is selected such that the legal requirement on probability of
missed detection is met. Based on this threshold placement, the requirement on
probability of false alarms are expressed as the distance between the mean of the
fault-free data µnf and J , measured in standard deviations of the fault-free data
σnf . The requirement is set to a minimum distance of 4.2σnf between µnf and J .
In the requirement both the distribution of fault-free data pnf and misfire data
pmf are assumed to be Gaussian with means µnf and µmf , and variance σ2

nf and

σ2
mf .

In Table 5.1 the requirements are presented, both expressed in the maximum al-
lowed percentage of misclassification and the minimum allowed distance in stan-
dard deviations. The distance between pmf and the J , is measured in standard
deviations of the misfire data σmf .

The minimal distance between the mean of pnf and the mean of pmf that meet
the requirements, can therefore be expressed (4.2σnf + 2.7σmf ). This distance is
visualized in Figure 5.1, where also the threshold is selected such that both the
requirement on probability of false alarms and the requirement on probability of
missed detection are meet.

5.3 Correlation

The Kullback-Leibler divergence use no information about the threshold in its
equation (5.2), while both the requirement on the probability of missed detec-
tion and the probability of false alarm are dependent on the threshold position.
However, if both requirements is considered together, the position of the thresh-
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Figure 5.1: Gaussian pdfs with minimal separation that meet the require-
ments and the threshold inserted 4.2σnf from µnf and 2.7σmf from µmf

old can be ignored and a correlation between the Kullback-Leibler divergence
and the requirements in Volvo KPI can be established.

By replacing the distance between the distribution means (µpnf − µpmf ) in equa-
tion (5.2) in the one-dimensional case, with the corresponding minimum distance
in the requirement (4.2σnf + 2.7σmf ). A lower limit of the Kullback-Leibler diver-
gence that meet the requirements can be obtained.

K(pmf ‖ pnf ) =
1
2

(σ2
mf

σ2
nf

+
(4.2σnf + 2.7σmf )2

σ2
nf

− log
σ2
mf

σ2
nf

− 1
)

(5.3)

which can be written as

K(pmf ‖ pnf ) = 4.15σ2
R + 11.35σR − log σR + 8.32 (5.4)

where σR =
σmf
σnf

.

Thus, the lowest value of the Kullback-Leibler divergence that fulfill the require-
ments in Volvo KPI depends on the ratio between the standard deviations of the
two distributions. In Figure 5.2, it is shown how the limit change depending
on the ratio where the calculated Kullback-Leibler divergence between fault-free
and misfire data should be equal or larger than the values given by the curve to
meet the requirements. The curve starts at Kullback-Leibler divergence 11.8 and
a standard deviation ratio of 0.1.
Data used in this work normally have a ratio that vary between 0.1 and 1 at speeds
below 2500rpm and a slightly higher ratio up to 2 at higher speeds. This could
depend on that less data are available at higher speed, especially during misfire
which lead to a higher standard deviation and thus the ratio is larger. In Chap-
ter 7 the computed ratios and Kullback-Leibler divergence from the test quanti-
ties in the algorithm are presented and the evaluation with this method is further
discussed.
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Figure 5.2: The lowest allowed Kullback-Leibler divergence between the dis-
tribution of fault-free and misfire data, that is able to fulfill the require-
ments, as a function of the ratio of standard deviations between misfire data
and fault-free data.

This correlation between the Kullback-Leibler divergence and the requirements
in Volvo KPI assumes that the threshold will be set in the optimal location in rela-
tion to the set demands and that the approximation of the Gaussian distributions
are valid. In the data sets 1-3 which are following the FTP75 city driving cycle
and in data set 4 measured on the road, few data points for misfire are available
at higher engine speeds due to limited driving in these conditions. Thereby the
Gaussian approximation of the misfire distribution might not be valid, and the
evaluation with the Kullback-Leibler divergence at higher engine speed is consid-
ered uncertain.

5.4 Conclusion

The Kullback-Leibler divergence as an evaluation tool has several advantages that
have been presented in this chapter. Compared to evaluation using only the
requirements, the Kullback-Leibler divergence is not limited to use with Gaus-
sian distributions. However, to relate Kullback-Leibler divergence to the require-
ments in Volvo KPI, approximated Gaussian distributions is here used. In the
computation of the Kullback-Leibler divergence, the approximation of the distri-
butions tails is central, since a rapid decaying tail result in values that quickly
tends infinity. Although the cases that result in infinity can be interpreted as
good enough, but then there is no basis for comparison and analysis which is the
whole idea behind the use of the Kullback-Leibler divergence in this application.
Another advantage of using the Kullback-Leibler divergence is that no knowledge
about the threshold is needed, only the separation between the two pdfs is consid-
ered. Since information from both pdfs are used, correlation to both the demand
on detected misfires and the allowed number of false alarms can be drawn. This
enables that the same tool can be used both during development and as a evalu-
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ation of the algorithm. The correlation also enables evaluation, connected to the
requirements, earlier during the development process.
Further the Kullback-Leibler divergence allows computation in higher dimen-
sions but the correlation to the requirements is only established in one dimension.
Therefore when multiple dimensions are considered in this work, the computed
Kullback-Leibler divergence is used for comparison only and not to investigate if
the requirements in Volvo KPI are met.



6
Robustness analysis of misfire

detection algorithm

To investigate how the misfire detection algorithm handles variations and to bet-
ter understand how the estimated torque varies due to varying measurement con-
ditions, a robustness analysis of data from several vehicles is conducted in this
chapter. The analysis covers how the estimated torque and misfire detectability
varies between vehicles with different engine configurations and how different
vehicles with same engine configuration vary among themselves. A solution is
proposed on how to compensate for vehicle to vehicle variations such as manufac-
turing errors. In addition, the problem with torsional vibrations in the crankshaft
after a misfire is addressed and a model-based solution is proposed.

6.1 Varying number of cylinders

Recently at Volvo, a new generation of engines with four cylinders was intro-
duced instead of the previous generations with five or six cylinders. This of
course affects the vehicle in various ways and the subsequent changes crucial
for misfire detection is examined in this section. The detection algorithm in [12],
which this work is based upon, was developed using data from a six cylinder en-
gine and thus it is important to understand how the detectability performance is
affected when the number of cylinders are reduced.
A valid comparison is difficult to perform since data collected in real driving
scenarios are affected by varying environmental influences and driver operation.
Therefore, all data used in this comparison is collected in a chassis dynamometer
under controlled conditions. An example of the estimated torque from a six cylin-
der vehicle is shown in Figure 6.1 which can be compared with the four cylinder
measurements in Figure 3.1 collected at the same speed and load.
During one engine cycle, two additional cylinder combustion occurs which gives

27
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T

crank count

Figure 6.1: Estimated torque at 1500rpm and load 0.8g/rev and the corre-
sponding crank counts in a six cylinder engine.

two additional torque peaks. Compared to the four cylinder engine no uneven
spacing between the peaks from the reciprocating torque is observed.

6.1.1 Misfire Visibility

To analyze the misfire visibility in a four cylinder engine compared to in a six
cylinder engine, data collected at one fixed speed and load is used. Figure 6.2
and Figure 6.3 display several fault-free combustions and misfires plotted in the
same figure, from two such stationary operating points for both engine types.
Each figure contains data from one cylinder. The plots to the left show estimated
torque from the four cylinder engine and the plots to the right show estimated
torque from the six cylinder engine.
Furthermore the Kullback-Leibler divergence is computed for each crank count
in the figures individually, to quantify the separation and the results are pre-
sented in Table 6.1 and 6.2.

In all figures, misfires are well separated from fault-free data. The separation
is greatest at the crank counts where the combustion provide most torque and
less distinct when the slower changing torque from the inertia is big. In the four
cylinder engine, the peaks from the inertial torque comes with uneven intervals
which was observed in Section 3.3. Therefore two different appearance are ob-
served in cylinder 1 and 2. For the same reason, the behaviour of cylinder 4 is
similar to cylinder 1 and cylinder 3 have a similar behaviour to cylinder 2, see
Figures 3.3, 3.4, and 3.5.

At lower speeds, the torque contribution from the inertia is smaller and the ef-
fects from a combustion is visual longer i.e. misfires are separated from fault-free
data during more samples. Comparing the plots from the two engine configura-
tions at low speed, a similar behaviour is displayed in both cases. However, in
the four cylinder engine where there are longer time between the combustions
more samples are clearly separated. Interesting to observe is sample 6 in the four
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Cylinder 1
Engine model Sample

1500rpm 1 2 3 4 5 6
4 cyl 16.69 379.25 100.64 31.15 1.10 11.88
6 cyl 57.41 178.54 60.07 10.65

4000rpm
4 cyl 17.02 163.34 27.23 0.01 2.55 8.21
6 cyl 0.73 30.24 13.61 0.12

Table 6.1: Kullback-Leibler divergence for each crank count in Figure 6.2.
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Figure 6.2: Estimated torque from cylinder 1 at 1500rpm and 4000rpm. The
two plots to the left are from a four cylinder engine and the two to the right
are from a six cylinder engine.

cylinder engine where the estimated torque of misfire are slightly higher than the
fault-free values.

Considering the computed Kullback-Leibler divergence in Tables 6.1 and 6.2, at
least one of the samples in each configuration and cylinder is well above the re-
quirements stated in Section 5.2 as σmf /σnf is below 1 in all cases. This means
that if the detection algorithm is designed in an efficient way the requirements
should be met. However, note that this is steady state data in which it is consid-
erably easier to separate the distributions compared to more varying conditions.
Comparing the six and four cylinder engine, the values indicates that misfires are
more separated from fault-free data in the four cylinder engine, and at least the
last of the two additional samples should improve the detectability of misfires.
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Cylinder 2
Engine model Sample

1500rpm 1 2 3 4 5 6
4 cyl 6.37 174.09 34.08 10.12 3.06 12.94
6 cyl 40.10 201.57 38.42 3.18

4000rpm
4 cyl 14.34 117.37 15.37 0.72 0.28 7.58
6 cyl 1.20 39.05 12.60 0.65

Table 6.2: Kullback-Leibler divergence for each crank count in Figure 6.3.
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Figure 6.3: Estimated torque at cylinder 2 at 1500rpm and 4000rpm. The
two plots to the left are from a four cylinder engine and the two to the right
are from a six cylinder engine.

The different behavior of cylinder 1 and 2 in the four cylinder engine are proven
to give different performances as cylinder 2 obtain significantly lower values.

At higher speeds the inertial torque prevail and thereby the distinguishability of a
misfire is reduced in the plots. In both engine configurations, the clearest reduc-
tion in estimated torque following a misfire passes before the next combustion
occur, and the estimated torque obtain the same magnitude as in the fault-free
case. However, misfires are still separated in the sixth sample in the four cylin-
der engine as the estimated torque of misfire become larger than in the fault-free
case. The computed Kullback-Leibler divergence still indicates that the require-
ments should be met and that in the four cylinder engine misfires are still more
detectable in cylinder 1 than cylinder 2.
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It is important to consider the varying detectability between the samples during a
combustion when the detection algorithm is designed. For a better comparison of
the overall performance, all samples assigned to a cylinder need to be considered
together.

6.1.2 Misfire detectability performance

To get an overview of the misfire detectability for the different cylinders and
engine configurations, the Kullback-Leibler divergence can be computed for all
samples assigned to one cylinder. Data from varying speeds and loads are used
and divided into operating points depending on speed and cylinder, see Table 6.3
for the six cylinder engine and Table 6.4 for the four cylinder engine. However
higher dimensions are used for the computation of the Kullback-Leibler diver-
gence and thus the relation to the requirements established in Section 5.2 can not
be applied. The load are varied over an equidistant range at each speed except
1000rpm in the six cylinder engine where less data was available.

The result indicates that in the six cylinder engine it should be most difficult to de-
tect a misfire around 1500rpm and with increased difficulty for cylinders further
away from cylinder 1. Important to note is that the data used in the computation
had less varying load at 1000rpm which probably is the reason to the high values,
which coincides with the results in [5]. When the speed increases the separation
also increases. This partly contradicts the results in previous section when each
sample was considered. The explanation is that at higher speeds, the distance
between the mean of the estimated torque of misfires and fault-free data, at the
most separated samples, are larger than at lower speeds. However when consid-

Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000 4500

1 249.15 51.51 86.11 66.73 122.31 172.29 167.86 144.34
2 248.67 51.08 88.38 63.51 122.00 169.43 162.73 135.05
3 224.18 50.76 81.83 64.35 116.86 166.62 151.41 121.35
4 241.65 50.85 82.63 62.36 120.94 181.39 159.32 111.77
5 183.03 52.04 79.54 57.66 121.03 168.69 147.85 135.62
6 273.13 48.32 77.41 57.24 109.46 137.10 138.52 133.02

Table 6.3: Kullback-Leibler divergence for all cylinders at various speed and
load in a six cylinder engine.

Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000 4500

1 92.36 134.33 115.59 152.63 145.47 136.93 151.84 183.42
2 52.36 71.41 43.71 75.46 95.38 75.25 97.01 115.58
3 70.57 118.22 100.86 117.42 113.85 94.45 119.87 148.04
4 85.26 117.64 56.25 76.75 76.20 73.31 89.17 90.24

Table 6.4: Kullback-Leibler divergence for all cylinders at various speed and
load in a four cylinder engine.
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ering steady state data, at one crank count with constant speed and load, the
variances are very small especially at lower speeds and thus the Kullback-Leibler
divergence become higher. When more varying data are used, the distance be-
tween the distribution means are still similar but the variances have increased,
which give a larger impact in the Kullback-Leibler divergence at lower speed.

The result from the four cylinder engine is more difficult to interpret. Certain
trend with decreasing detectability following the firing order can be observed as
cylinder 1 and 3 have the highest Kullback-Leibler divergence and cylinder 4 and
2 have the lowest values.
Comparing the different speed operating points there are no clear trend but the
results suggest that both 1000rpm and 2000rpm are especially problematic.

Based on these results, there are no clear benefits of the reduced number of cylin-
ders. Although the additional two samples associated with each cylinder shows
further information about the misfire. The four cylinder vehicle has a consider-
able variation between the cylinders as it both contains the cylinder with largest
and smallest separation between fault-free data and misfire data.
The only significant observed difference between the cylinders that which could
explain this is the behaviour of the inertia torque. To obtain similar values in
each cylinder a more complex model that describe the inertia torque and other
torsional effects are required but at a higher computational cost.
Since each cylinder is considered separately, the model is still useful and the use
of the misfire detection algorithm developed in [12] is valid.

6.2 Vehicle to vehicle variations

The measurement of the angular velocity at the flywheel is central in the detec-
tion of misfires. In the previous equations in Section 2.2.1, the production of the
flywheels is assumed to be perfect with no manufacturing errors at all. Even if the
margin of error in the production is small, it is suggested in [19] that manufactur-
ing errors such as tooth errors on the flywheel exist and affect the measurements.
Similar issues may also emerge with wear out of the teeth on the flywheel [15].
In a model-based approach where training data is used, periodic errors in the
signal due to the manufacturing may not be a problem if the algorithm is only
trained and used on one specific vehicle. However to accurately use the algo-
rithm on several objects, manufacturing errors must be considered.

6.2.1 Pitch error modeling

In [19], manufacturing errors are modeled by adding a teeth pitch error bθ to the
angular velocity ω equation (3.2) as

ωi =
∆θ + bθ

∆ti
(6.1)
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where ∆θ is the fixed interval between two teeth and ∆ti is the measured time
between two samples. When 30◦ measurement resolution is used, bθ is a vector
with values for 12 angular intervals and thus cover a full revolution. Each pa-
rameter in the vector bθ is used twice during every engine cycle as the flywheel
rotates two revolutions. Since all measurements to estimate the torque are taken
from this signal, the teeth pitch error implicit comprise all systematic distortions.

To visualize how the estimated torque may vary when the described errors exist,
an error (bθ = −0.05◦) is introduced in the data according to (6.1) at crank count
21, and plotted together with the original data in three dimensions, see Figure 6.4.
Values belonging to misfires are marked as "+". The three dimensions belong
to the crank counts with most separation between fault-free and misfire data of
cylinder 2 i.e. crank counts 19, 20 and 21.
To visualize the approximated Gaussian distributions of data and also show the
requirements, ellipses representing 4.2 standard deviations for the fault-free data
and 2.7 standard deviations for misfires are plotted for each 2D projection of the
data. Again, the used data is collected in a chassis dynamometer and the different
groups in the plot comes from the varied load.

The introduced error produce a distinct displacement that decreases when the
load increase and is especially clear at the projection at the T2 − T3 plane. A
similar behavior is observed at both operating speeds since the error changes
proportional to engine speed. Due to the displacement the fault-free distribution
of vehicle 1 and the misfire distribution of the vehicle with introduced pitch error
partially coincide. This means that if a misfire detection algorithm trained with
data from vehicle 1 was used on the vehicle with introduced pitch error, there
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Figure 6.4: Estimated torque at crank count 19 (T1), 20 (T2) and 21 (T3).
Values which belongs to misfires are marked as +. The ellipses around the
projections on the different axes represent the requirements.
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would be a raised risk for missed detections.

To investigate if these kind of variations are present between real vehicles, data
from vehicle 2 and vehicle 3 in Table 2.1 is compared in Figure 6.5.
A constant offset can be observed in between the vehicles both plots, even if not
as clear as in Figure 6.4 with an introduced error. The displacement is especially
visible in the 2D projection at the T2 − T3 plane with a rotation between the dis-
tributions at both engine speeds, marked in the plots with a dashed circle. Such
recurrent offset between vehicles can be explained by teeth pitch errors or other
factors that are included in (3.2).
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Figure 6.5: Estimated torque at crank count 19 (T1), 20 (T2) and 21 (T3).
Values which belongs to misfires are marked as +. The ellipses around the
projections on the different axes represent the requirements.

6.2.2 Compensation

To be able to compensate for constant variations between vehicles as the one de-
scribed above, it is sufficient to find bθ in equation (3.2). The correction factor bθ
between vehicle 2, here considered as the true vehicle, and vehicle 3 is estimated
by using equations (6.1) and (2.1)

∆θ
∆ti,2

=
∆θ + bθ
∆ti,3

(6.2)

which can be rewritten as

bθ = ∆θ
(∆ti,3
∆ti,2

− 1
)

(6.3)

where ∆ti,2 and ∆ti,3 are the segment times at interval i for vehicle 2 and 3.

The difficulty in estimating bθ is to avoid that temporary variations are included
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in the estimation. The segment time measurements used in (6.3) are in the same
way as the angular velocity measurements highly varied which creates difficul-
ties when two measurements are compared. To conduct the comparison between
similar data and avoid variations due to change in speed and load as well as envi-
ronmental conditions, steady state measurements at constant speed and load are
used from both vehicles in the computation. The parameter bθ is then estimated
by using the mean value at each crank count for several measured engine cycles
with removed trends. Since each segment on the flywheel is measured twice, the
mean segment time ratios from the two revolutions are used. Furthermore mea-
surements at higher speeds are preferred in the estimation as the variations due
to engine geometry are clearer in measurement. Since bθ is a constant, values
obtained at one operating point can then be used at all operating points.

The obtained values of bθ when the vehicles in Figure 6.5 are considered, lies
between −0.0375◦ and +0.024◦. This magnitude of the errors is consistent with
results presented in [19]. For further validation, bθ computed with (6.3) is used
to calibrate data from vehicle 3 against vehicle 2. The result is presented in Fig-
ure 6.6. At both speeds, the calibration increases the similarity between the vehi-
cles which should improve the diagnosis performance.
The compensation is further evaluated with the Kullback-Leibler divergence in
Section 7.3, where the compensation is implemented in the detection algorithm.
The implementation in the misfire detection algorithm is done by storing the
mean estimated torque for each crank count from a steady state measurement at
one operating point, thereby totaly 24 extra parameters needs to be stored. Be-
fore the algorithm is used, this data is utilized to find the compensation vector bθ
that then is used in the angular velocity measurements (6.1).
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Figure 6.6: Estimated torque at crank count 19 (T1), 20 (T2) and 21 (T3).
Values which belongs to misfires are marked as +. The ellipses around the
projections on the different axes represent the requirements.



36 6 Robustness analysis of misfire detection algorithm

6.3 Torsional vibrations in the crankshaft

When a misfire occur, it results in an instantaneous reduction in the provided en-
gine torque. This disturbance causes a torsional vibration in the crankshaft and
driveline which create an oscillation in the measured signal that in the worst case
inflicts false alarms, see Figure 6.7. Oscillations in the test quantity were also ob-
served in [12] and pointed out as the primary cause of false alarms.
The cause of these false alarms are oscillations with large amplitude and short
wavelength i.e., the system is under-damped and the measurements varies con-
siderably and fast. At higher speeds the oscillations are damped by the inertia of
the rotating pistons, and thus the problem with oscillations are minor. To reduce
the risk of false alarms due to oscillations following a misfire, a model-based
approach to compensate this behavior is developed.

10 20 30 40 50 60 70
Sample

r

false alarm

Figure 6.7: False alarm as a result of an oscillation in the test quantity after
a real misfire.

6.3.1 Model

The oscillations are not very distinct in the estimated torque if all samples are
plotted. If instead the mean value of all samples in each combustion is used,
the appearance of the oscillations become distinct, see Figure 6.8, with a similar
appearance as the test quantity in Figure 6.7.

In [17] it is suggested to compensate for the oscillating behaviour by storing wave
forms in the algorithm to filter out the effect of torsional vibrations. Here the
oscillation has a behavior similar to the one of an exponentially damped sinusoid
and thus can be described by the equation

Tmean(x) = Ae−λx cos(ωx + Φ) (6.4)

where A is the amplitude, λ the damping constant, ω angular frequency and Φ
the phase angle.

The oscillations vary both depending on speed and load and as shown in Fig-
ure 6.9, where the model is fitted to data, also differ depending on which cylinder
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Figure 6.8: Mean estimated torque for each combustion after a misfire. An
oscillation with similar behaviour as an exponentially damped sinusoid can
be observed.

the misfire occur in. To manage this, the oscillations are modelled depending on
speed, load and cylinder.

6.3.2 Compensation

In the estimated torque signal it is primary the first undershoot, which can be
observed in Figure 6.8 and Figure 6.9 between sample 4 and 8, that is problematic
and causes false alarms. The low torque values that follow as a consequence
of the undershoot, causes an increased risk of misclassification. Even though
both operating points based on speed and load are used the oscillation form vary
within the operating points. In [17], it is pointed out that different gears result
in different wave forms and thus different models might be needed. To avoid
increasing the risk of false alarms if the model has a slightly offset to measured
data, no compensations for the overshoots are made and the compensation is
limited to removing the first undershoot. This is made by

tk = tk − f (k, α), (6.5)

where tk = (T1, T2, T3, T4, T5, T6) is the normalized estimated torque with removed
mean for each combustion k and f (k, α) is the model described by (6.4) with the
known parameters α = (A, λ, ω,Φ).

The parameterization of the model is done automatically using a Matlab curve-
fitting function, lsqcurvefit, which solves the problem in least-squares sense
on training data for each operating point. An example of resulting torque after
the compensation is displayed in Figure 6.10. The compensation removes the
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Figure 6.9: Mean estimated torque following several misfires in each cylin-
der separate. The red curve is the fitted model according to 6.4

problematic first wave trough which is the cause of false alarms. The remaining
variations in the signal are within the normal differences between combustions
and can be handled in the classification.

Further evaluation is carried out in Section 7.3 where this compensation is imple-
mented in the detection algorithm and used on validation data. Since the oscilla-
tions vary both depending on speed, load and also differ depending on in which
cylinder the misfire occur. Data also needs to be categorized based on load when
training the algorithm, Step 2 in Section 4.5. As the problem with oscillations is
minor at higher engine speeds the compensation is limited to engine speeds be-
low 2500rpm. Furthermore no observations of oscillations causing false alarms
have been made during cold start, thus the compensation for torsional vibrations
is limited to normal driving conditions. Eight loads, four speeds and the four
cylinders result in a total 128 operating points where the model needs to be pa-
rameterized in the algorithm. The model has 4 parameters that needs to be stored
in each operating point which result in totaly 512 parameters.
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Figure 6.10: Mean estimated torque after a misfire with and without com-
pensation for oscillations. The red curve is the fitted model according to
(6.4)





7
Evaluation

The evaluation in this chapter is carried out in three steps. First, the results when
the misfire detection algorithm is trained without compensation for vehicle to ve-
hicle variation or oscillations after a misfire are presented. Then, the performance
of the algorithm with compensation for vehicle to vehicle variation is evaluated
and finally also the compensation for torsional vibrations in the crankshaft after
a misfire is introduced. All the results are compared and discussed in terms of the
number of false alarms and missed detections but also using the Kullback-Leibler
divergence in correlation to Volvo KPI.

7.1 Training and validation data

The training of the misfire detection algorithm is done according to the descrip-
tion in Section 4.5. All weights and thresholds are automatically optimized with
SVM and the parameters in the oscillation model are automatically obtained with
the Matlab curve-fitting function, lsqcurvefit. The algorithm is trained with
data set 7 from Table 2.1 which contain steady state measurements from vehicle 2
to cover all engine modes including cold starts.
The training data include 540083 combustions of which 8676 contain injected
misfires. For validation data sets 1-6 are used. The compensation for vehicle to
vehicle variations require that steady state measurements are available for accu-
rately calibration and thus only data set 5 and 6 are considered in the evaluation.

41
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7.2 Evaluation of misfire detection algorithm

In Table 7.1, the results from the misfire detection algorithm are presented in
terms of number of false alarms and missed detections.
Important to note is that the threshold is set in the middle of the margin between
the distributions according to SVM and not according to the requirements in
Section 5.2. Here the probability of false alarm is acceptable only in data set
5. Potentially the requirement could be met in more data sets if the threshold
instead was selected according to the requirements.

The large amount of false alarms in data set 6 are caused by differences between
the vehicles in the validation data and the training data, the vehicle to vehicle
compensation is introduced and evaluated in Section 7.3. In data set 2, several
of the false alarms originates from oscillations in the test quantity as a result of
torsional vibrations after a real misfire, the compensation for torsional vibrations
in the crankshaft are implemented and evaluated in Section 7.4.

Disregarding data set 6, cylinder 2 and 4 are overrepresentated with 29 of the
total 38 false alarms. This is compliant with the conclusion in Section 6.1.2 that
these cylinders are especially problematic for misfire detection. Furthermore, all
false alarms occur during normal driving and mainly take place at lower speeds
and loads. In Figure 7.1 the false alarms and missed detections from data set 1, 2,
3 and 4 are plotted to show the main problematic operating conditions.

The separation between pmf and pnf in the test quantises are quantified with
the Kullback-Leibler divergence for each speed operating point and cylinder and
the results are shown in Tables 7.2, 7.3, 7.4, and 7.5. In the tables, the ratio
between the standard deviation of misfire data and fault-free data are also shown
to enable correlation to the requirements. Together with Figure 5.2, the tables can
be used to draw conclusions if the distributions are separated enough to fulfill the
requirements.

In the computation of the Kullback-Leibler divergence, data set 1, 2, and 3 are
lumped together in order to obtain distributions with more data points at higher
speeds. However, still only a few misfire data points are available at higher

Data set Vehicle Fault-free Misfire FA Miss

1 1 67177 3617 6 1

2 1 65968 3085 20 8

3 1 71164 3477 6 2

4 2 30485 1510 5 0

5 3 562822 10380 1 3

6 4 90565 1667 8651 9

Table 7.1: Evaluation of the misfire detection algorithm.
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Figure 7.1: Plot showing at which speeds and loads false alarms and missed
detections occur in data set 1, 2 and 3.

speeds which could explain the high ratios between the standard deviations in
Table 7.2 and also in 7.3. Therefore the results at higher speeds in data set 1-4,
which indicate that the detectability is low, are considered as uncertain. The ab-
sence of false alarms and missed detections at higher speeds also suggest that the
separation is sufficient.

Overall, the Kullback-Leibler divergence is lower compared to the computed val-
ues in the misfire detectability analysis in Section 6.1.2. This can be explained by
the reduction from six dimensions to one when creating the test quantity.
The values in all data sets indicates worst performance in cylinder 2 and 4 around
1500-2000rpm, which confirm with the observed false alarms in Figure 7.1.

Cylinder Speed [rpm]
1000 1500 2000 2500

1 27.91 19.14 21.10 32.10
σmf /σnf 0.38 0.37 0.82 0.95

2 21.05 12.55 13.71 15.46
σmf /σnf 0.23 0.32 0.59 0.53

3 21.67 17.23 21.70 29.67
σmf /σnf 0.16 0.36 0.90 1.96

4 20.18 15.08 18.20 20.98
σmf /σnf 0.74 0.50 0.88 1.39

Table 7.2: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 1,2 and 3.
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Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000

1 39.21 33.00 31.34 30.51 54.48 49.21 37.85
σmf /σnf 0.30 0.43 0.60 2.08 3.19 3.74 5.64

2 27.94 19.98 16.43 15.94 25.72 28.59 21.61
σmf /σnf 0.10 0.24 0.26 0.53 0.85 1.45 2.71

3 30.92 41.77 46.62 27.93 41.59 33.79 34.71
σmf /σnf 0.16 0.48 0.74 1.46 2.03 1.94 2.66

4 23.11 28.68 22.89 14.91 27.91 28.93 21.00
σmf /σnf 0.50 0.38 0.59 1.00 1.26 1.61 1.44

Table 7.3: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 4.

Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000 4500 5000

1 25.43 43.12 24.75 52.19 83.11 52.33 75.49 110.40 111.68
σmf /σnf 0.52 0.25 0.23 0.45 0.91 0.72 0.62 0.71 0.29

2 20.60 46.11 27.87 26.20 19.49 27.36 51.67 59.44 55.74
σmf /σnf 0.22 0.20 0.15 0.30 0.44 0.43 0.55 0.77 0.33

3 21.02 95.62 35.30 38.99 27.38 22.03 35.36 82.21 58.45
σmf /σnf 0.17 0.28 0.22 0.54 0.72 0.36 0.29 1.13 0.36

4 33.43 42.07 30.97 24.47 40.32 41.81 46.89 30.13 61.55
σmf /σnf 0.52 0.16 0.27 0.31 0.37 0.49 0.24 0.30 0.36

Table 7.4: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 5.

Cylinder Speed [rpm]
2000 3500 5000

1 32.27 40.18 4.87
σmf /σnf 0.19 0.95 1.24

2 25.91 23.30 37.30
σmf /σnf 0.05 0.36 0.24

3 61.30 22.68 16.18
σmf /σnf 0.36 0.51 0.44

4 34.82 29.03 4.04
σmf /σnf 0.10 1.65 1.07

Table 7.5: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 6.
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7.3 Compensation for vehicle to vehicle variations

For an accurate vehicle to vehicle compensation, steady state measurements are
required in the calibration. The parameter bθ is found with the method described
in Section 6.2.1 and implemented according to (6.1) in the angular velocity equa-
tion in the algorithm.

As steady state measurements are required, the compensation is applied on data
set 5 and 6 only. The calibration to find bθ is done in both vehicles with data col-
lected at 5000 rpm and load 0.8. The results after the compensation are presented
in Table 7.6 and the corresponding Kullback-Leibler divergences are presented in
Table 7.7 and 7.8.

The compensation give a performance gain for both data sets in terms of a re-
duced number of missed detections and a large reduction in false alarms in data
set 6. When comparing the computed Kullback-Leibler divergence before and
after the compensation, even if a few operating points have a slightly reduced
values, the pervading conclusion is an performance gain also in terms of separa-
tion. All the operating points lies above the requirements and thus indicate that
the distributions have the required separation. In Figure 7.2 and Figure 7.3 his-
tograms of the test quantity for data set 6 with and without the compensation are
displayed. After the compensation, the distributions obtain more distinct peaks
and larger margin to the threshold which means misclassification can be avoided.

Data set Vehicle Fault-free Misfire FA Miss

5 3 562822 10380 2 0

6 4 90565 1667 1 0

Table 7.6: Evaluation of the misfire detection algorithm after compensation
of vehicle variation.

0

0.5

1

1.5

p
(r
)

r

Fault−freeMisfire

Figure 7.2: Histogram of the test quantity r given data set 6 without com-
pensation for vehicle to vehicle variation. The separating line represent the
threshold parameterized using SVM.
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Figure 7.3: Histogram of the test quantity r given data set 6 with compensa-
tion for vehicle to vehicle variation. The separating line represent the thresh-
old parameterized using SVM.

Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000 4500 5000

1 25.67 48.48 23.03 62.12 83.12 72.13 96.48 114.18 124.90
σmf /σnf 0.54 0.20 0.23 0.42 0.91 0.89 0.70 0.66 0.28

2 21.56 47.93 26.48 26.26 28.01 41.58 57.24 55.75 70.94
σmf /σnf 0.21 0.18 0.16 0.30 0.29 0.55 0.63 0.94 0.43

3 22.03 93.20 29.88 47.48 47.82 38.85 52.54 57.18 69.65
σmf /σnf 0.15 0.35 0.26 0.50 0.54 0.34 0.26 1.55 0.27

4 32.75 45.40 34.93 30.00 41.16 45.84 57.34 40.00 55.81
σmf /σnf 0.52 0.15 0.23 0.26 0.35 0.65 0.31 0.42 0.41

Table 7.7: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 5 after compensation for vehicle varia-
tion.

Cylinder Speed [rpm]
2000 3500 5000

1 29.92 66.71 38.56
σmf /σnf 0.17 0.31 1.55

2 26.62 45.98 35.40
σmf /σnf 0.04 0.50 1.43

3 61.18 58.23 68.69
σmf /σnf 0.36 0.26 0.98

4 37.43 32.75 33.72
σmf /σnf 0.11 0.11 0.86

Table 7.8: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 6 after compensation for vehicle varia-
tion.
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7.4 Compensation for torsional vibrations

The compensation for torsional vibrations following a misfire are included in
the misfire detection algorithm and applied on data set 1-6. The compensation
with the parameterized model described by (6.4) is activated when a misfire is
detected and is limited to removing the first undershoot.
The calibration for vehicle to vehicle variations described in Section 7.3 is still ap-
plied on data set 5 and 6. The result in the number of false alarms and missed de-
tections is presented in Table 7.9 and the computed Kullback-Leibler divergences
are presented in Tables 7.10, 7.11, 7.12 and 7.13.

In data sets 1-4 the number of false alarms are reduced which indicates that the
compensation serves its purpose. There are still a few false alarms that comes as a
result of oscillations when the compensation was not sufficient, or the measured
data deviates from the modeled behaviour. In the cases where the measured data
deviates within an operating point the used static model is not valid and instead
an increased risk for missed detection is introduced.
Some of the remaining missed detections in data sets 1-3 could be explained by
that the compensation for vehicle to vehicle variations is not applied. The com-

Data set Vehicle Fault-free Misfire FA Miss

1 1 67177 3617 5 1

2 1 65968 3085 9 8

3 1 71164 3477 5 2

4 2 30485 1510 3 0

5 3 562822 10380 2 0

6 4 90565 1667 1 0

Table 7.9: Evaluation of the misfire detection algorithm.
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Figure 7.4: Test quantity from data set 2 computed from measurements
around 1600 rpm. A missed detection occur around sample 38.
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pensation for vehicle to vehicle variations potentially accomplish a greater simi-
larity between the training data and validation data. Thereby missed detections
such as in Figure 7.4, where the threshold is not optimally set relative to the vali-
dation data could possibly be avoided.
Remaining false alarms are caused by several different reasons. One observed
source of error that cause a few false alarms is a fast reduction in engine speed.
The reduction could be caused by gear shifting or heavy breaking and further
investigations are required to avoid these false alarms.

The Kullback-Leibler divergence and the standard deviation ratio indicate that
the performance has been slightly increased in most of the operating points for
the previously problematic cylinders 2 and 4, while a slight reduction in the per-
formance is observed in cylinder 1 and 3. This can be explained by that some data
points of pnf are moved away from the expected value such that the distribution
tail directed away from pmf becomes larger. As the distributions are approxi-
mated as Gaussian, this leads to a higher variance for the fault-free data and thus
lower Kullback-Leibler divergence, see (5.2). This is visualised in Figure 7.5 and
Figure 7.6 where histograms of the test quantity before and after the compensa-
tion for oscillations are plotted, where the dashed line is the fault-free distribu-
tion before the compensation. Figure 7.6 shows a cylinder and operating point
where the Kullback-Leibler divergence indicates a reduced performance and in
Figure 7.5 the Kullback-Leibler divergence indicates improved performance.
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Figure 7.5: Histogram of the test quantity r before and after compensation
for oscillations. The dotted line represent the fault-free distribution before
the compensation, here the compensation increase the Kullback-Leibler di-
vergence.
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Figure 7.6: Histogram of the test quantity r before and after compensation
for oscillations. The dotted line represent the fault-free distribution before
the compensation, here the compensation reduce the Kullback-Leibler diver-
gence.

Cylinder Speed [rpm]
1000 1500 2000 2500

1 27.74 19.28 20.96 31.61
σmf /σnf 0.38 0.37 0.79 0.92

2 21.02 12.98 14.83 17.06
σmf /σnf 0.23 0.32 0.62 0.57

3 21.67 16.85 20.10 27.70
σmf /σnf 0.16 0.34 0.81 1.79

4 19.88 15.17 18.04 19.38
σmf /σnf 0.72 0.49 0.84 1.26

Table 7.10: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 1,2 and 3 with compensation for oscil-
lations in the test quantity.

Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000

1 39.33 33.85 32.56 29.96 54.48 49.21 37.85
σmf /σnf 0.30 0.43 0.60 2.08 3.19 3.74 5.64

2 28.22 20.75 17.66 16.98 25.72 28.59 21.61
σmf /σnf 0.10 0.24 0.26 0.53 0.85 1.45 2.71

3 31.03 43.24 47.45 28.05 41.59 33.79 34.71
σmf /σnf 0.16 0.48 0.74 1.46 2.03 1.94 2.66

4 22.98 29.20 23.06 15.06 28.03 28.93 21.00
σmf /σnf 0.50 0.38 0.59 1.00 1.26 1.61 1.44

Table 7.11: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 4 with compensation for oscillations in
the test quantity.
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Cylinder Speed [rpm]
1000 1500 2000 2500 3000 3500 4000 4500 5000

1 25.50 43.31 19.64 39.36 83.12 72.13 96.48 114.18 124.90
σmf /σnf 0.53 0.17 0.19 0.26 0.91 0.89 0.70 0.66 0.28

2 22.21 51.88 26.90 26.90 28.01 41.58 57.24 55.75 70.94
σmf /σnf 0.22 0.19 0.16 0.30 0.29 0.55 0.63 0.94 0.43

3 21.92 78.94 24.69 32.64 47.82 38.85 52.54 57.18 69.65
σmf /σnf 0.15 0.29 0.21 0.33 0.54 0.34 0.26 1.55 0.27

4 28.07 43.70 28.49 23.86 41.16 45.84 57.34 40.00 55.81
σmf /σnf 0.44 0.14 0.18 0.20 0.35 0.65 0.31 0.42 0.41

Table 7.12: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 5 after compensation for vehicle varia-
tion and compensation for oscillations in the test quantity.

Cylinder Speed [rpm]
2000 3500 5000

1 24.60 66.71 38.56
σmf /σnf 0.14 0.31 1.55

2 28.26 45.98 35.40
σmf /σnf 0.04 0.50 1.43

3 47.68 58.23 68.69
σmf /σnf 0.27 0.26 0.98

4 32.28 32.75 33.72
σmf /σnf 0.09 0.11 0.86

Table 7.13: Kullback-Leibler divergence and standard deviation ratio for the
test quantity obtained from data set 6 after compensation for vehicle varia-
tion compensation for oscillations in the test quantity.



7.5 Summary and discussion 51

7.5 Summary and discussion

The evaluation shows that the original misfire detection algorithm give varying
results. The largest error was observed in data set 6 due to vehicle to vehicle
variations which indicates that calibration of the algorithm is essential to obtain
a robust result. In data sets 1-4, several false alarms caused by torsional vibra-
tions following misfires are observed and compensation is necessary to improve
the performance. In the evaluation, the two suggested and implemented compen-
sations for these problems, improve the performance in terms of number of false
alarms and missed detections without significantly increasing the complexity.

The compensation for vehicle to vehicle variations shows good results on the
steady state measurements with reduced number of false alarms and missed de-
tections but also an increased separation according to the Kullback-Leibler diver-
gence. After the compensation, the correlated requirements in Volvo KPI are met
in all operating points. However, no validation against real measurements on
the road are done, as in the suggested method the correction factor bθ need to be
found with steady state measurements from both the training data and validation
data. The dependency of steady state measurements can be avoided by using the
method in [4], where systematic errors are found by shutting of the fuel supply to
the engine, to obtain a smooth deceleration from high speed without interference
from cylinder compressions.
In the current method the mean estimated torque from one stationary operating
point is used to find bθ . For a more robust result, the average bθ from several
operating points could be used. This would possible reduce the dependency on
similarity of calibration data but increase the amount of stored calibration data
in the algorithm.

The compensation for the oscillations in the signal after a misfire is shown to
remove some of the false alarms, but in certain cases fail to compensate for the
problematic behaviour. When the model fail to describe the oscillatory behaviour
it may instead increase the risk for missed detection. No measurements with mul-
tiple misfires are available in the validation, so the potential increased risk for
missed detection can not be evaluated. An increased risk for missed detection
could originate both from the oscillation peaks, overcompensation or model off-
set. Additional investigation and development of the oscillation compensation
would therefore be interesting and probably further improve the misfire detec-
tion algorithm.
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Conclusions and future work

In this final chapter a short summary of the thesis is given together with sugges-
tions on future work to improve the developed misfire detection algorithm.

8.1 Conclusions

A model-based misfire detection algorithm suitable for on-board diagnostics is
presented and evaluated against real measurements. As in [12], a simplified en-
gine model, with low required computational power, is suggested to estimated
torque from the flywheel angular velocity signal. The estimated torque has the
advantage that at similar operating speeds and loads it obtains resembling values
and different combustions can be compared. The signal is processed such that no
dependencies on load remains and thus the estimated torque is categorized in
operating points based on cylinder, speed and if cold start occur.
A test quantity for classification is then created by weighing all samples of the es-
timated torque related to each combustion. The weights as well as the threshold
are optimized using SVM to obtain maximal separation between fault-free data
and misfire data. To compensate for vehicle to vehicle variations due to manufac-
turing imperfections of the flywheel, a simple method is proposed with only one
parameter per teeth interval to be calibrated. The compensation enables accurate
misfire detection for various vehicles with the same training data. The method is
validated on steady state measurements with successful results, both in a reduced
number of false alarms and missed detections as well as an increased Kullback-
Leibler divergence.
By modeling oscillations following a misfire as an exponentially damped sinusoid
and filter the signal with the model after a misfire, the number of false alarms are
reduced.
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The Kullback-Leibler divergence correlated to Volvo KPI is used to compare and
evaluate the detectability performance. In the analysis, significant differences
between the cylinders are observed in the four cylinder vehicle and therefore
no overall advantage compared to the six cylinder is obtained. The differences
between cylinders are confirmed in the validation of algorithm as the problematic
cylinders are overrepresented when the false alarms are investigated.

Overall the misfire detection algorithm perform well and give few false alarms
and missed detections. This indicates that the used simplified engine crankshaft
model and the pre-processing of the estimated torque enhances the effects of a
misfires enough to be detected. However, the result in several data sets do not
meet the requirements in Volvo KPI. The requirements potentially could be met
if the threshold was set according to the requirements instead of in the middle of
the margin according to SVM.
The evaluation with the Kullback-Leibler divergence also give ambiguous results,
and the worst performing cylinders at certain speeds do not achieve the require-
ments in Volvo KPI. However this is in data sets where no compensation for
vehicle to vehicle variations are used, since no steady state measurements are
available, and such compensation would probably increase the Kullback-Leibler
divergence. Prior to any possible implementation, the calibration of vehicle to
vehicle variations thus needs to be further evaluated with more data from vehicle
on road for better validation. Regarding the compensation for torsional vibration,
the compensation is not robust and further investigation need to be carried out
to fully compensate for the complex oscillating behaviour.

8.2 Future work

As the performance of the algorithm with fault-compensation all depend on the
training data used for parameterization, an analysis of which kind of measure-
ments that give best performance would be interesting. The steady state measure-
ments from a chassis dynamometer used for the parameterization in this work
exclude certain behaviours that is present in real driving scenarios.
For the same reason the developed misfire detection algorithm need additional
testing with measurements from real driving scenarios on the road, with varying
environmental conditions for a more extensive evaluation. Furthermore multi-
ple misfires injected shortly after each other should be considered especially to
investigate if the compensation for oscillations introduce a major risk for missed
detections.

A limitation in the presented misfire detection algorithm is that the compensa-
tion for vehicle to vehicle variations requires steady state measurements to esti-
mate bθ and needs to be calibrated prior to the use of the algorithm. A method
that enable estimation of bθ on-line such as the one presented in [4] could re-
move the limitation in the compensation for vehicle to vehicle variations. Such
method also would reduce the impact of wear out errors since calibration may be
ongoing.
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Certain false alarms were observed due to a fast reduced engine speed. An inves-
tigation to isolate the cause and establish a method on how to manage the speed
reduction, could remove additional false alarms and thereby improve the algo-
rithm performance.
Another possible improvement of the algorithm performance could be obtained
by different choices of operating points. The false alarms and missed detections
registered in the evaluation in the existing algorithm all occur at similar speed
and load. Additional operating points in problematic intervals could be used to
increase separation of data in each operating point.

A model that describe the behaviour of the inertial torque and thus could expose
the torque produced during the combustion would increase the detectability of
misfires. Such model would also possibly solve the problem with varying perfor-
mance in different cylinders and also reduce the number of modes as all cylin-
ders could be considered together. However, such new model must retain low
complexity in order to enable on-line detection.
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