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Sammanfattning

Många ingenjörsproblem formuleras naturligt som optimalstyrningsproblem. Det
kan röra sig om att förflytta sig mellan två punkter på snabbast möjliga sätt, eller
att sätta en satellit i omloppsbana med minsta möjliga energiåtgång. Många opti-
malstyrningsproblem är dock för svåra för att lösas analytiskt och kräver därför
användandet av numeriska metoder. De numeriska metoder som vunnit störst
spridning är de så kallade direkta metoderna. Det finns dock en stor nackdel
med dessa. Om problemet inte är konvext så är lösningen som erhålls är inte
garanterat globalt optimal, det vill säga den absolut bästa, istället är den garan-
terat lokalt optimal, det vill säga den bästa i sin närhet. För att kompensera för
detta bör problemet lösas flera gånger, under olika betingelser, för att på så sätt
undersöka om lösningen är en bra kandidat till globalt optimum.

CasADi är en mjukvara speciellt utformad för dynamisk optimering. Den har
vunnit stor spridning under de senaste åren tack vare att den tillhandahåller al-
la nödvändiga byggstenarna för dynamisk optimering. Detta har givit enskilda
ingenjörer och forskare möjligheten att på egen hand formulera och lösa optimal-
styrningsproblem numeriskt, detta kräver dock goda teoretiska kunskap om de
nödvändiga numeriska metoderna.

Fördelen med en toolbox som löser generella optimalstyrningsproblem är att de
underliggande numeriska metoderna har testats och visats fungera på optimal-
styrningsproblem med kända lösningar. Detta medför att användaren inte behö-
ver uttömmande kännedom om de numeriska metoderna, utan kan fokusera på
att formulera och lösa optimalstyrningsproblem.

Huvudbidraget i denna uppsats är en optimalstyrnings-toolbox för MATLAB ba-
serad på CasADi. Toolboxen kräver inte expertkunskaper inom numeriska meto-
der för optimal styrning, men tillhandahåller ändå ett gränssnitt som möjliggör
komplexa problemformuleringar.

Toolboxen implementerar två direkta metoder, direct multiple shooting och direct
collocation. Det möjliggör en problemformulering med många frihetsgrader. Den
viktigaste funktionalitet är att den direkta metoden kan bytas utan att problem-
formuleringen behöver ändras, vilket medför att användaren på ett enkelt sätt
kan ändra betingelserna för sitt problem.

I uppsatsen beskrivs hur de två implementerade direkta metoderna fungerar och
de designval som gjorts. Det beskrivs även vad som återstår att testa och utvärde-
ra i toolboxen, samt de problem som använts som referens under utvecklingsar-
betet.
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Abstract

Many engineering problems are naturally posed as optimal control problems. It
may involve moving between two points in the fastest possible way, or to put a
satellite into orbit with minimum energy consumption. Many optimal control
problems are too difficult to be solved analytically and therefore require the use
of numerical methods. The numerical methods that are the most widespread are
the so-called direct methods. However, there is one major drawback with these.
If the problem is non-convex, the solution is not guaranteed globally optimal,
that is, the absolute best, instead it is guaranteed locally optimal, that is the best
in its vicinity. To compensate for this, the problem should be solved several times,
under different conditions, in order to investigate whether the solution is a good
candidate for the global optimum.

CasADi is a software specifically designed for dynamic optimization. It has
gained wide spread in recent years because it provides all the necessary building
blocks for dynamic optimization. This has given individual engineers and scien-
tists the ability to independently formulate and solve all sorts of optimal control
problems. However, this requires good theoretical knowledge of the necessary
numerical methods.

The advantage of a toolbox, which solves general optimal control problems, is
that the underlying numerical methods have been tested and shown to function
on optimal control problems with known solutions. This means that the user
does not need exhaustive knowledge of the numerical methods involved, but can
focus on formulating and solving optimal control problems.

The main contribution of this thesis is an optimal control toolbox for MATLAB
based on CasADi. The toolbox does not require expert knowledge of the numer-
ical methods, but provides an alternative lower level abstraction that allows for
more complex problem formulations.

The toolbox implements two direct methods, direct multiple shooting and di-
rect collocation. This allows a problem formulation with many degrees of free-
dom. The most important property of the toolbox is that the discretization can
be changed, without the problem formulation needing to be altered. This way
the user can easily change the conditions for his/her problem.

The thesis describes how the two implemented direct methods work, and the
design choices made. It also describes what remains to test and evaluate, and
the problems that have been used as a reference during the development process.
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1
Introduction

Optimal control is one of the best ways to gain insights into the control of dy-
namic systems. It may involve finding the minimum energy way of keeping a
satellite in orbit, the optimal drug scheduling for chemotherapy, or choosing the
best torque converter for a wheel-loader. In all but the simplest cases, the solu-
tion to optimal control problems requires the use of computers. Implementing
the numerical methods needed is not trivial, but rigorously made, the implemen-
tation can be used for solving general optimal control problems. This thesis is
about the design and implementation of an optimal control toolbox for Matlab
which aims to make numerical optimal control available to users in industry and
academia, making it possible for them to solve real-world optimal control prob-
lems with little or no expertise within the field of numerical optimal control.

The thesis has been conducted as a cooperation between Linköping Univer-
sity and Scania. Work was conducted during the spring semester of 2016 and
presented in August the same year. Work was located to both Linköping Univer-
sity and Scania in Södertälje.

1.1 Motivation

Solving real-world optimal control problems is a difficult task. A model needs to
be provided and it needs to have certain properties [17]. For instance be smooth
in the region of interest, quantitatively accurate and possess good extrapolation
properties since the optimal solution is generally found at some extreme. Typical
for real-world optimal control problems is that the dynamics are nonlinear and
the constraints governing the allowed behaviour of the system complex.

Finding a good objective function is not trivial. Unilateral objective functions
such as minimum time tend to produce solutions with undesirable properties
such as jerk [13]. This due to that the solver only takes one aspect into account
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2 1 Introduction

when calculating the solution, quality aspects such as smoothness are not con-
sidered unless explicitly stated. A good objective function is therefore often a
compromise between different properties that takes time and methodical effort
to make.

Real-world optimal control problems often become large and non-convex. This
means that the solver can only guarantee a local optimum, which is dependent
on the starting point of the optimization (the inital guess). It it therefore a good
idea to try a number of different starting points in order to assess the solution. It
is also a good idea to investigate how the discretization method affects the opti-
mization, this can be done by changing discretization method completely, or the
settings of the current method.

CasADi is software specifically tailored for dynamic optimization and has
gained wide spread since its release in 2012. In itself, CasADi is not a solver for
general optimal control problems, but it provide the necessary building blocks
for formulating and solving general optimal control problems. This has enabled
engineers and researchers to formulate and solve more complex optimal control
problems than was previously possible using standard optimal control software.

The benefits of using a toolbox based on CasADi, instead of tailoring the code
for each problem, are several. For instance, trouble shooting CasADi-based code
is tricky, because it is hard to distinguish between faults in the problem formu-
lation, from bugs in the discretization method. A toolbox can provide discretiza-
tion methods that have been proven to work on problems with known solutions,
which makes troubleshooting easier. It can also provide a good separation of
problem formulation and discretization method, which makes changing solver
method and settings easier. The drawback of a toolbox is that it is hard to make
it as flexible as custom written code.

This thesis is about the design and implementation of an optimal control tool-
box, based on CasADi, that aims to be flexible enough to solve real-world optimal
control problems, while being simple enough to be used by non-experts in the
field of numerical optimal control.

1.2 Purpose

The purpose has been to make numerical optimal control accessible to researchers
and engineers in academia and industry. This was contributed to by designing a
MATLAB toolbox, based on CasADi[1], for solving optimal control problems.

1.3 Questions

To guide the design work, two main questions and several sub-questions was
identified.

1. Which methods are available for solving optimal control problems numeri-
cally?

(a) What are their different properties?
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2. How should the optimal control toolbox be designed?

(a) How should the optimization methods be implemented in the toolbox?

(b) How should the model be represented in the toolbox?

(c) How should the objective function be provided by the user?

(d) How should the constraints be specified?

(e) What should be the default behaviour of the toolbox?

(f) What options should be supported?

1.4 Delimitations

Optimal control is a wide field that can be divided into two classes, continuous
time optimal control and discrete time optimal control. The problems studied
here are of continuous time, whose basic problem formulation is given in section
2.1.1. It would simply be too time consuming and disparate to cover both classes
in a master’s thesis.

The toolbox is only accessible via MATLAB. There was only time to implement
the toolbox in one language and in cooperation with Scania the choice was made
to choose MATLAB. Since many engineers and researchers already use MATLAB,
it is hoped that this choice will benefit many of them.

How to model for optimal control is not included in the thesis. Primarily this
is due to that it is a different topic than designing a toolbox. For the reader inter-
ested in vehicle powertrains and the optimal control of those, Martin Sivertsson’s
dissertation Optimal Control of Electrified Powertrains [15] and Jonas Asprion’s
dissertation Optimal Control of Diesel Engines [3] are good places to start at.

There are several ways to solve optimal control problems numerically. This
toolbox uses only two, namely direct multiple shooting and direct collocation.
The choice for these two was based on documented successful use [8] and impor-
tant drawbacks of the other methods, briefly presented in chapter 2.

The method used to design the toolbox was to study and solve optimal control
problems and through the teachings gradually come up with a design. Since time
was a restriction there was only time to study a few problems. Those studied were
chosen in cooperation with the supervisors. If they were sufficient remains to be
seen in the first round of user testing.





2
Theory

2.1 Optimal Control

Optimal control is one of the most useful and systematic methods for controller
design and evaluation [11]. Its strength lies in its systematic approach of attack-
ing control problems and in the fact that many engineering challenges are natu-
rally formulated as optimal control problems, for instance driving from Södertälje
to Katrineholm, as fast as possible, without exceeding the speed limit. The ben-
efit of an optimal control problem formulation is especially pronounced when it
comes to multiple input multiple output systems, where traditional performance
measures such as settling time, static gain and phase margin may be inadequate
for describing the desired behaviour [12]. This section presents the basic opti-
mal control problem (ocp) formulation, a brief overview of the different optimal
control approaches and focuses on the numerical solution of ocps using direct
methods.

The problems studied are so called continuous time optimal control problems,
but is for simplicity referred to as optimal control problems. Continuous time
refers to that the system’s dynamics are formulated in the continuous time do-
main.

2.1.1 Basic problem formulation

A basic ocp formulation is represented as follows:
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6 2 Theory

min
u(t)

E(T , x(T ), P ) +

T∫
0

L(t, x(t), u(t), P ) dt

s.t. x(0) = x0,

ẋ(t) = f (t, x(t), u(t), P ), t ∈ [0, T ]

h(t, x(t), u(t), P ) ≤ 0, t ∈ [0, T ]

hT (T , x(T ), u, P ) ≤ 0,

(2.1)

where t represents the independent variable, x the state, u the control, P the
free optimization parameter vector and T the terminal value of the independent
variable. The sum E(T , x(T ), P ) +

∫ T
0 L(t, x(t), u(t), P ) dt is known as the objective

function and must be scalar valued [8]. E(T , x(T ), P ) is the terminal state cost,
also known as a Mayer term. L(t, x(t), u(t), P ) is the integral cost function and
may be referred to as a Lagrange term. When the objective function consists
of both a Mayer term and a Lagrange term the combination can be referred to
as a Bolza objective. x0 is the state initial value, ẋ(t) the state derivative with
respect to the independent variable and f (t, x(t), u(t), P ) the ordinary differential
equation right hand side. h(t, x(t), u(t), P ) is the inequality path constraints and
hT (T , x(t), u(t), P ) the terminal inequality constraints.

2.2 Numerical Solution to Optimal Control Problems

Most real-world optimal control problems are too large and complex to be solved
analytically and therefore require the use of numerical methods. This section
gives a brief overview of the available methods. Most of the section is devoted to
the direct methods which are essential for solving large and complex ocps.

2.2.1 A Brief Overview

There are three classes of methods for solving optimal control problems [8]. There
is continuous time dynamic programming, the indirect methods and the direct
methods.

Continuous time dynamic programming is based on solving the Hamilton-
Jacobi-Bellman equation [11]. Advantages of this approach is that it provides
sufficient conditions for optimality and the optimal control is given in feedback
form. The disadvantages are that the Hamilton-Jacobi-Bellman partial differen-
tial equation is hard to solve numerically, and that the so-called cost-to-go func-
tion is required to be continuously differentiable, which may not be the case.
When discretizing the Hamilton-Jacobi-Bellman equation the problem can be-
come impossible to solve due to its sheer size, which can occur even for a rela-
tively small number of states [8]. This is what is known as Bellman’s curse of
dimensionality.

The indirect methods are based on Pontryagin’s maximum principle (pmp)
which uses necessary conditions for optimality to derive a boundary value prob-
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lem (see [2] for a definition) which must be solved to find the optimal control [8].
The advantages are that the theory is well established, and it can in many cases
be computationally efficient. The main disadvantages of pmp is that it is hard to
find an initial guess for the so called adjoint variable, and that it is ill suited for
inequality constraints due to problems in selecting the active constraint [5, 8].

The direct methods convert the ocp into a nlp by discretizing the indepen-
dent variable and applying a numerical integration method to discretize the con-
tinuous time dynamics [5]. The nlp is then solved using an nlp-solver. The main
advantage of this family of methods is that good nlp-solvers handles inequality
constraints well. The main disadvantage is computational effort.

2.2.2 Direct Methods

This section introduces two of the direct methods, namely direct multiple shoot-
ing and direct collocation, both implemented in the toolbox. It is presented in a
simple form, in order for the reader to easier develop a basic understanding of
the methods.

Direct single shooting, another direct method, discretizes the continuous time
dynamics by numerical integration of the state trajectory [8]. The integration is
performed from the initial time instant to the end time in one sweep, an illustra-
tion is found in figure 2.1. The benefit of this is that it is not necessary to provide
an initial guess. The disadvantage is poor performance when the underlying sys-
tem is unstable. That is because the instability is inherited by the integration
method, which may cause divergence. This makes it unsuitable for optimizing
unstable systems, and has therefore not been considered for implementation. A
method that solves the above mentioned problem is multiple shooting and is de-
scribed in further detail below. Readers interested in learning more about direct
single shooting are referred to [8, 9].

NLP

Since the direct methods transform the ocp into anlp, thenlp-formulation used
is presented in equation (2.2), where x represents the lower bound on the opti-
mization variable x, and x̄ the upper bound.

min
x

f (x)

s.t. x ≤ x ≤ x̄
h(x) ≤ 0

g(x) = 0

(2.2)

Direct Multiple Shooting

Prior to the mathematical description an outline of direct multiple shooting is
presented in order for the reader to easier understand the mathematics.
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x(t) 

uK 
u2 

u1 

tK+1 tK … t2 t1=0 

uK-1 

Figure 2.1: Illustration of the direct single shooting method.

As stated previously the basic idea of any direct method is to convert the
ocp into a nlp. The conversion is performed by first discretizing the indepen-
dent variable into a finite number of intervals. For convenience the indepen-
dent variable is referred to as time. On each time interval the control signal is
parametrized, typically as a constant, which makes the control signal piecewise
constant over the entire time period. The continuous time dynamics is discretized
separately on each segment using a numerical integration routine. Integrating
the dynamics separately on each interval is what is meant by multiple shooting.
The input to the system during the integration is the constant control signal value
for that segment. Since the system is integrated separately on each time interval
the overall state trajectory is not continuous. To correct this a constraint binding
the trajectories together is introduced in the nlp-formulation. This way the orig-
inal ocp has been transformed into a nlp. An illustration of the method is found
in figure 2.2.
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xK+1 

xK 

xK-1 

x2 

x1 

uK 
u2 

u1 

tK+1=T tK … t2 t1=0 

uK-1 

Figure 2.2: Illustration of the direct multiple shooting method.

Mathematically the procedure is described as follows. The time interval t ∈
[0, T ] is divided into K equidistant segments of length h according to

h =
T
K
, (2.3)

where

t1 = 0

tk+1 = tk + h for k = 1, . . . , K.
(2.4)

On each time interval the control signal u(t) is parametrized as

u(t) = uk for t ∈ [tk , tk+1] and k = 1, . . . , K. (2.5)

The state trajectory is integrated numerically according to

x(tk+1) = F(tk , xk , uk , P ) ≈
tk+1∫
tk

f (t, x(t), uk , P ) dt (2.6)

where F(t, x, u, P ) is the numerical integration routine and xk represents the state
at t = tk . The integral cost contribution on each segment is also calculated using
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numerical integration

l(tk , xk , uk , P ) ≈
tk+1∫
tk

L(t, x(t), uk , P ) dt. (2.7)

To force the state trajectory to be continuous the following constraint is formed:

xk+1 − F(t, xk , uk , P ) = 0, for k = 1, . . . , K. (2.8)

This yields the nlp-formulation of the ocp

min
x1,...,xK+1,
u1 ,...,uK

K∑
k=1

l(tk , xk , uk , P ) + E(T , xK+1, P )

s.t. 

x1
u
...
x
u

xK+1


≤



x1
u1
...
xK
uK
xK+1


≤



x̄1
ū
...
x̄
ū

x̄K+1


h(t2, x2, u1, P )

...
h(tK+1, xK+1, uK , P )
hT (T , xK+1, uK , P )

 ≤ 0.



x2 − F(t1, x1, u1, P )
...

xK+1 − F(tK , xK , uK , P )
L(t2, x2, u2, P ) − l(t1, x1, u1, P )

...
L(tK , xK , uK , P ) − l(tK−1, xK−1, uK−1, P )


= 0.

(2.9)

A common choice of integration method is a fixed step explicit Runge-Kutta
method. However there are other choices, for instance can a variable step length
solver be used. The use of such solvers is one of the major advantages of direct
multiple shooting [9].

A more general way to parametrize the control signal is by using polynomials
with constant polynomial coefficients in each interval, however a piecewise con-
stant control signal, as described here, is the most widespread [8] and therefore
used in the description.

Direct Collocation

Direct collocation is based on an idea almost identical to that of direct multiple
shooting. The important difference is that the numerical integration methods
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is integrated into the nlp. The integration method used is an implicit Runge-
Kutta method based on collocation [2]. The basic idea behind this method is to
approximate the state trajectory using polynomial interpolation. Starting with a
number of predetermined points, called the collocation points, the interpolating
polynomial is differentiated with respect to time. At the collocation points the
differentiated polynomial is equaled to the state dynamics. The polyonomial can
then be integrated and the state trajectory integrated. The benefit of this integra-
tion method is the possibility to get the highest possible order of any Runge-Kutta
method, the possibility of having stiff decay (a property of the integration method
that enables it to capture the quantitative behaviour of the system despite it be-
ing stiff [2]), and that the resulting nlp is very sparse [9, 6]. The major drawback
of direct collocation is that an adaptive, error controller integration method can
not be used [9].

The following mathematical description is to a large degree adapted from
[1], the reason is that the implementation is based on that source. Having the
same notation will hopefully facilitate for readers familiar with that source or
are interested in reading it.

Direct collocation is described as follows (it might be a good idea to start
by looking at figure 2.3, because this might get confusing). To begin with, the
time interval t ∈ [0, T ] is discretized into K , equidistant, segments called control
intervals according to:

h =
T
K
, (2.10)

where

t1,0,0 = 0,

tk+1,0,0 = tk,0,0 + h, for k = 1, . . . , K.
(2.11)

On each control interval the control signal is approximated as piecewise constant:

u(t) = uk for t ∈ [tk,0,0, tk+1,0,0]. (2.12)

Each control interval is further divided into N segments called collocation inter-
vals, of size hk :

hk =
h
N
, (2.13)

where
tk,i,0 = tk,0,0 + i hk , for k = 1, . . . , K,

i = 0, . . . , N .
(2.14)

On each collocation interval d + 1, predetermined points are defined according
to:

tk,i,j = tk,i,0 + τj hk for k = 1, . . . , K,

i = 0, . . . , N − 1,

j = 0, . . . , d.

(2.15)

where τ0 = 0 and τ1,...,d are the collocation points. How they are calculated is
described in [6]. An illustration of the procedure of discretizing the independent
variable is found in figure 2.3.
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collocation point 

collocation interval 

Control interval 

… 

tK,1,0 

tK,1,1... tK,1,d tK,0,1 ... tK,0,d t2,1,1... t2,1,d t2,0,1... t2,0,d 

t2,1,0 

t1,1,1 ... t1,1,d t1,0,1 ... t1,0,d 

t1,1,0 

tK+1,0,0 = T tK,0,0 t1,0,0 = 0 t2,0,0 

t 

Figure 2.3: Discretization of the independent variable using direct colloca-
tion.

On each collocation interval the state trajectory is approximated using an in-
terpolating polynomial written on Lagrange-form according to:

t = tk,i,0 + hkτ, t ∈ [tk,i,0, tk,i+1,0]

x(t) ≈
d∑
j=0

Lj (τ) xk,i,j ,
(2.16)

where

Lj (τ) =
d∏

r=0,r,j

τ − τr
τj − τr

, (2.17)

and xk,i,j are the polynomial coefficients. The benefit of writing the polynomial
on Lagrange form is that the bounds on the coefficients are the same as those
for the state trajectory [6]. The trajectory polynomial is then differentiated and
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forced to equal the dynamics at the collocation points according to:

f (tk,i,j , xk,i,j , uk , P ) =
1
hk

d∑
r=0

∂Lr
∂τ

(τj ) xk,i,r for k = 1, . . . , K,

i = 0, . . . , N − 1,

j = 1, . . . , d,

(2.18)

To get the state value at the end of the interval the interpolating polynomial is
simply evaluated at that point according to:

x+
k,i =

d∑
r=0

Lr (1)xk,i,r for k = 1, . . . , K,

i = 0, . . . , N − 1,

(2.19)

where

x+
k,i =

xk+1,0 if i = N − 1
xk,i+1 otherwise.

(2.20)

An illustration of the state interpolation is found in figure 2.4. The Lagrange
term also needs to be integrated, this is performed by quadrature:

T∫
0

L(t, x(t), u(t), P ) dt ≈
K∑
k=1

N−1∑
i=0

hk

d∑
r=0

1∫
0

Lr (τ) dτ L(tk,i,r , xk,i,r , uk , P ). (2.21)
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tk,i+1,0 tk,i,d-1 tk,i,d tk,i,1 tk,i,0 

Figure 2.4: Representation of the state trajectory.
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Together this creates the NLP

min
x1,0,0,...,xK,N−1,d ,xK+1,0,0

u1 ,...,uK

K∑
k=1

N−1∑
i=0

hk

d∑
r=0

BrL(tk,i,r , xk,i,r , uk , P ) + E(T , xK+1,0,0, P )

s.t. 

x1
x
...
x
u
...
x
...
x
u

xK+1



≤



x1,0,0
x1,0,1
...

x1,N−1,d
u1
...

xK,0,0
...

xK,N−1,d
uK

xK+1,0,0



≤



x̄1
x̄
...
x̄
ū
...
x̄
...
x̄
ū

x̄K+1



h(t1,0,1, x1,0,1, u1, P )
...

h(t1,N−1,d , x1,N−1,d , u1, P )
h(t2,0,0, x2,0,0, u1, P )
h(t2,0,1, x2,0,1, u2, P )

h(t2,N−1,d , x2,N−1,d , u2, P )
...

h(tK,0,0, xK,0,0, uK−1, P )
h(tK,0,1, xK,0,1, uK , P )

...
h(tK,N−1,d , xK,N−1,d , uK , P )
h(tK+1,0,0, xK+1,0,0, uK , P )

hT (T , xK+1,0,0, P )



≤ 0,


f (tk,i,1, xk,i,1, uk , P ) − 1

hk

∑d
r=0

∂Lr
∂τ (τ1)xk,i,r

...

f (tk,i,d , xk,i,d , uk , P ) − 1
hk

∑d
r=0

∂Lr
∂τ (τd)xk,i,r

x+
k,i −

∑d
r=0 Lr (1)xk,i,r


= 0,

for k = 1, . . . , K, i = 0, . . . , N − 1.
(2.22)
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Collocation points

The choice of collocation points influences the behaviour of the integration method
[2]. Two sets of points are more common than the other, the Legendre points and
the Radau points, their values up to order five is given in table 2.1 and included
for completeness [6]. Both are high order methods. The Legendre points have an
order of 2d and Radau 2d−1. If the system is stiff the Radau points are preferable
because they provide stiff decay.

Points d Legendre points Radau points
1 0.500000 1.000000

2
0.211325 0.333333
0.788675 1.000000

3
0.112702 0.155051
0.500000 0.644949
0.887298 1.000000

4

0.069432 0.088588
0.330009 0.409467
0.669991 0.787659
0.930568 1.000000

5

0.046910 0.057104
0.230765 0.276843
0.500000 0.583590
0.769235 0.860240
0.953090 1.000000

Table 2.1: Collocation points up to order five. Source: table 10.1 in [6].

2.2.3 Integrating the Objective Function

Every differentiable Mayer term can be reformulated into a Lagrange term, the
same is valid for the other way around [5]. This means that they are mathemati-
cally equivalent. Despite this the Lagrange term is numerically preferable, partly
this is because the Mayer formulation results in a larger nlp [3], and partly be-
cause it is not as accurate. Since the Mayer term needs to be included as an extra
state in the ocp formulation this increases the size of the nlp, which also means
that the discretization error is introduced twice [5].

2.2.4 Mesh Refinement

Mesh refinement is a technique for controlling the discretization error [5]. It re-
sembles in many ways the error control of adaptive step length integration meth-
ods. By estimating how large the discretization error is the algorithm decides
whether to make the mesh finer, or if it is sufficient as it is. This way the problem
is solved with a finer and finer grid until an acceptable accuracy is reached.
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Mesh refinement as a method of error control is not implemented in the tool-
box, but the idea of solving the ocp with a finer and finer grid is supported. By
solving the ocpmultiple times, starting with a coarse grid, and use the previous
solution as an initial guess, it is sometimes possible to achieve faster convergence
than trying to solve a finely resolved ocp with a poor initial guess from the start.

2.2.5 Scaling

Proper scaling is very important when it comes to solving nlps [4]. Despite this
there is no scaling method that guarantees a proper scaling of the nlp, mainly
due to the fact that there is no definition of what proper scaling is. For ocps
it is preferable to scale the ocp and hope that it results in a properly scaled nlp.
However, some rules of thumb can be applied. Choose the scaling factor X so that
the state variable take on values ranging from zero to one, and shift the scaled
variable using rx according to:

x(t) = Xx̃(t) + rx. (2.23)

The same technique is applied to the control signal, using the scaling factor U
and shifting term ru :

u(t) = Uũ(t) + ru . (2.24)

The dynamics are then scaled according to:

˙̃x(t) = f (t, x(t), u(t), P ) / X. (2.25)

2.3 CasADi

CasADi [1] provides the key technology for making the optimal control toolbox
possible. CasADi is an open-source software for dynamic optimization. It is not a
general purpose ocp solver, but has been designed to provide the necessary build-
ing blocks for solving ocps. Key features of CasADi are algorithmic differentia-
tion, interfaces to nlp and ODE solvers, and functions tailored for implementing
direct methods. How CasADi works is a dissertation of its own (namely [1]) and
is therefore covered in no further detail, however it is noticed that CasADi made
the toolbox possible.

2.4 Optimal Control Software

There are a bunche of optimal control software on the market, some are open
source and some are proprietary, in table 2.2 a table of some of them are pre-
sented.
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Name Discretization method NLP-solver Accessible via
This toolbox Direct multiple shooting

and direct collocation
all CasADi
supported
solvers

MATLAB

PROPT Pseudospectral KNITRO,
SNOPT,
CONOPT,
CPLEX

MATLAB

MUSCOD-II Multiple shooting SQP-
method

C, FORTRAN,
gPROMS

ACADO Multiple shooting SQP-
method

C++, MAT-
LAB

DIDO Pseudospectral - MATLAB

Table 2.2: Table of Optimal Control Software



3
Method

3.1 Introduction

The method for designing the toolbox was to read theory regarding the numeri-
cal solution of ocps, then solve optimal control problems using CasADi to gain
practical experience, and finally to combine theory with experience to come up
with a design. Three main problems have been studied during the work. One sim-
ple problem with multiple formulations and an analytical solution, one problem
with nonlinear dynamics and time variant constraints, and one complex multiple
phase problem were the dynamics changes with the phase.

3.2 The Studied Optimal Control Problems

This section presents the three main problems that was studied during the design
process.

3.2.1 The Bryson-Denham Problem

The Bryson-Denham problem is a classical minimum energy optimal control
problem and is presented in [7, p. 122]. The formulation presented in [7] is

19
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the following:

min
a(t)

1
2

1∫
0

a(t)2 dt

s.t.

v̇(t) = a(t),

ẋ(t) = v(t),

v(0) = −v(1) = 1,

x(0) = x(1) = 0,

x(t) ≤ l.

(3.1)

The analytical solution to the problem for 0 < l ≤ 1/6 is:

a(t) =


− 2

3l

(
1 − t

3l

)
, 0 ≤ t ≤ 3l

0, 3l ≤ t ≤ 1 − 3l
− 2

3l

(
1 − 1−t

3l

)
, 1 − 3l ≤ t ≤ 1

v(t) =


(
1 − t

3l

)2
, 0 ≤ t ≤ 3l

0, 3l ≤ t ≤ 1 − 3l

−
(
1 − 1−t

3l

)2
, 1 − 3l ≤ t ≤ 1

x(t) =


l
(
1 −

(
1 − t

3l

)3)
, 0 ≤ t ≤ 3l

l, 3l ≤ t ≤ 1 − 3l

−l
(
1 −

(
1 − 1−t

3l

)3)
, 1 − 3l ≤ t ≤ 1.

(3.2)

For l = 1
9 the analytical solution is illustrated in figure 3.1.

The Bryson-Denham problem can easily be augmented to capture different
types of problem formulations. Below follows how the problem can be aug-
mented to include free end time, a Mayer formulation (in contrast to the Lagrange
formulation presented above) and a two phase formulation.

Free end time

To augment (3.1) to include free end time, the end time is, instead of being a fixed
value, changed into a variable whose value is determined in the optimization. For
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Figure 3.1: Analytical solution to problem (3.1) for l = 1
9 .

(3.1) the new optimization variable T is introduced according to:

min
a(t)

1
2

T∫
0

a(t)2 dt

s.t.

v̇(t) = a(t),

ẋ(t) = v(t),

v(0) = −v(T ) = 1,

x(0) = x(T ) = 0,

x(t) ≤ l.

(3.3)
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Mayer formulation

Problem (3.3) can also be reformulated as a Mayer formulation instead of the
Lagrange formulation presented in (3.1):

min
a(t)

z(T )

s.t.

ż(t) = a(t)2/2

v̇(t) = a(t),

ẋ(t) = v(t),

v(0) = −v(T ) = 1,

x(0) = x(T ) = 0,

x(t) ≤ l.

(3.4)

Two-phase problem

Problem (3.3) can also be converted into a two phase ocp:

min
a(t)

1
2

T1∫
0

a(t)2 dt +
1
2

T2∫
T1

a(t)2 dt

s.t.

v̇(t) = a(t),

ẋ(t) = v(t),

x(t) ≤ l.
v(0) = 1,

x(0) = 0,

v(T1) = 0,

x(T1) = l,

v(T2) = −1,

x(T2) = 0.

2T1 − T2 = 0

(3.5)

3.2.2 An Optimal Control Benchmark: Transient Optimization of
A Diesel-Electric Powertrain

The following problem is presented in [16] and is designed as a benchmark prob-
lem for optimal control software [16]. For that reason the problem has been in-
cluded as one of the reference problems, but also for its nonlinear dynamics and
time varying constraints. The nomenclature is taken from the original paper [16],
apart from a few changes, and is presented in table 3.1 and 3.2.
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Symbol Description Unit

ṁ Mass flow kg/s
p Pressure Pa
tf End time s
uf Injected fuel mg/cycle
uwg Wastegate position -, [0, 1]
BSR Blade speed ratio -
E Energy J
F Force N
J Inertia kg · m2

M Torque Nm
P Power W
T Temperature K
λ Air-fuel equivalence ratio -
φ Fuel-air equivalence ratio -
ρ Density kg/m3

ω Rotational speed rad/s

Table 3.1: Optimal control benchmark symbol description

The problem (3.9) consists of optimizing the transient response of a diesel-
electric powertrain when an increase in the generator electrical power is required.
The model is a four state, three control, mean value engine model (mvem) paired
with an electrical generator (the combination of the internal combustion engine
and electrical generator is referred to as genset) of a medium-duty electrified
powertrain. The dynamics are nonlinear and the constraints, as included here,
are time varying.

For the reader not familiar with engine modeling and control, a mvem is a
control-oriented model designed to study the fuel- and air-path of the engine
[10]. The individual cylinders are not modeled, instead the mean value over a
cycle is used, and thereof its name. By a Diesel-electric powertrain a configura-
tion having both an internal combustion engine and electric motor/generator is
meant, colloquially referred to as a hybrid.

The four states x(t) are, engine speed ωice(t), intake manifold pressure (the
pressure in the volume prior to the combustion chamber) pim(t), exhaust mani-
fold pressure (pressure in the volume after the combustion chamber, before the
turbocharger) pem(t), and the turbocharger speed ωt(t):

x(t) =
[
ωice(t), pim(t), pem(t), ωt(t)

]T
(3.6)

The three control signals u(t) are, injected amount of fuel uf (t), wastegate posi-
tion uwg (t) and generator power Pgen(t):

u(t) =
[
uf (t), uwg (t), Pgen(t)

]T
(3.7)
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Index Description

a air
c compressor
c, surge compressor surge limit
em exhaust manifold
f fuel
gen generator electrical
genset combustion engine and generator
ice Internal combustion engine
im Intake manifold
max maximum
mech generator mechanical
min minimum
t turbine
tm turbine mechanical
tc turbocharger
wg wastegate

Table 3.2: Optimal control benchmark index description

The differential equation describing the dynamics is

ẋ(t) = f (x(t), u(t)) =



Pice(t)−Pmech(t)
Jgensetωice(t)

RaTim
Vim

(ṁc(t) − ṁac(t))
ReTem(t)
Vem

(ṁac(t) + ṁf (t) − ṁt(t) − ṁwg (t))
Pt(t)ηtm−Pc(t)
Jtcωtc(t)


. (3.8)

The optimal control problem is formulated either as minimum fuel or minimum
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time according to the following:

min
u(t)

tf∫
0

ṁf (t) dt or min
u(t)

tf

s.t.

x(0) = x0

ẋ(t) = f (x(t), u(t))

xmin ≤ x(t) ≤ xmax
umin ≤ u(t) ≤ umax

0 ≤ Pgen(t) ≤ 100 kW

Pice(x(t), u(t)) ≤ Pice,max(x(t), u(t))

Πc ≤ Πc,surge

BSRmin ≤ BSR(x(t), u(t)) ≤ BSRmax
0 ≤ φ(x(t), u(t)) ≤ 1/λmin

Pgen(tf ) = 100 kW

Egen(tf ) = 100 kJ

ẋ(tf ) = 0.

(3.9)

The optimal solution to problem (3.9) is accompanied with the paper and has
been calculated using PROPT [18] and ACADO [14]. The minimum fuel solution
is illustrated in figure 3.2.

3.2.3 Optimal Control of a Diesel-Electric Powertrain During an
Up-Shift

This ocp, presented in [13], consists of finding the optimal control of an electri-
fied, heavy-duty powertrain, during an up-shift. The model consists of the same
genset as in (3.8) and a flexible driveline model, where the flexibilities have been
lumped into a single flexibility in the driveshaft.

For simplicity the nomenclature is the same as that of the previously pre-
sented ocp (3.9) (see table 3.1 och 3.2 for nomenclature), which is the same
nomenclature used in [13]. Indices specific to this problem is presented in ta-
ble 3.3.
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Figure 3.2: Minimum fuel solution to problem (3.9).

Index Description

ds driveshaft
tr transmission
w wheel
D drag
g gear
f d final drive

Table 3.3: Index specific to the up-shift ocp (3.15)

The complete model is not presented, it would simply consume too much
space, instead enough to form the ocp is presented. For the complete model the
reader is referred to [17] for the genset model, and [13] for the phase specific
models.

In essence, a gear shift using an automated manual transmission can be bro-
ken down into three steps [13]. First, reduce transmission torque and disengage
the present gear. Two, prepare the new gear and match rotational speeds of the in-
put and output shafts of the gearbox. Three, accelerate to previous vehicle speed.
During the first step the genset is connected to the wheels via the transmission
and driveline. During the second phase the wheels roll freely. During the third
step the genset and wheels are connected again, but this time the transmission
inertia and gear ratio is different. In order to capture this in an ocp, the problem
is divided into three phases corresponding to the three steps described above. In
[13] the three phases are named torque phase, synchronisation phase and inertia
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phase, the same designation is used here.
To account for the complete powertrain, not just the genset, the genset (3.8)

is extended with three new states. Transmission speed ωtr (t), driveshaft windup
angle θds(t) and wheel speed ωw(t):

x(t) =
[
ωice(t), pim(t), pem(t), ωt(t), ωtr (t), θds(t), ωw(t)

]T
. (3.10)

Since the dynamics of the genset do not change with the phase it is denoted
f (x(t), u(t)), and calculated according to (3.8). For the torque phase, the dynam-
ics are calculated as follows.

f1(x(t), u(t)) =


f (x(t), u(t))
ω̇ice(t)/γg1

ωice(t)/(γg1γf d) − ωw(t)
(Mds(t) − 0.5ρacDAωw(t)2r3

w − Fr rw) / (Jw + mvr2
w)

 (3.11)

where Mds(t) = kdsθds(t) + bds(ωice(t)/(γg1γf d) − ωw(t)). For the synchronisation
phase the dynamics are calculated according to:

f2(x(t), u(t)) =


f (x(t), u(t))

(−btrωtr (t) −Mds/γf d)/Jtr2
ωtr (t)/γf d − ωw(t)

(Mds(t) − 0.5ρacDAωw(t)2r3
w − Fr rw) / (Jw + mvr2

w)

 (3.12)

where Mds(t) = kdsθds(t) + bds(ωtr (t)/γf d − ωw(t)). For the inertia phase the dy-
namics are calculated in the same way as in the torque phase (3.11), with the dif-
ference that a new gear ratio γg2 is used, and the inertia the engine experiences
changes with the new gear according to:

f3(x(t), u(t)) =


f (x(t), u(t))
ω̇ice(t)/γg2

ωice(t)/(γg2γf d) − ωw(t)
(Mds(t) − 0.5ρacDAωw(t)2r3

w − Fr rw) / (Jw + mvr2
w)

 , (3.13)

where Mds(t) = kdsθds(t) + bds(ωice(t)/(γg2γf d) − ωw(t)).
For objective function, minimum jerk in the transmission speed was chosen [13].
For this problem it is defined as the squared time derivative of the transmission
acceleration according to (3.14).

jerk = α̇tr (t)
2

αtr (t) = ω̇tr (t)
(3.14)

To complete the ocp formulation the boundary conditions needs to be deter-
mined. The initial value is determined from a desired vehicle speed and cal-
culated backwards through the driveline, which results in the corresponding ro-
tational speeds of wheels, transmission and engine. Furthermore, the dynamics
are required to be zero at t = 0.
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For the boundary between the torque and synchronisation phase the genset torque
is required to be zero according to: Mgenset(t1) = Mice(t1) + Pmech(t1)/ωice(t1) = 0.
This enables the present gear to be disengaged.

For the boundary between the synchronisation och inertia phase the same
condition that was applied to the previous boundary is added: Mgenset(t2) =
Mice(t2) + Pmech(t2)/ωice(t2) = 0. An additional constraint that forces the engine
to match the speed of the prepared gear is also added, in order to enable the new
gear.

For the terminal conditions, the optimization is required to stop when the
model reaches stationary conditions, the wheel speed is the same as the beginning
of the up-shift, and the generator energy reaches the same value as the beginning
of the up-shift. The ocp, including the boundary conditions, is presented in
(3.15). The solution is illustrated in figure 3.3 and 3.4.

min
x,u

t1∫
0

α̇tr (t)
2 dt +

t2∫
t1

α̇tr (t)
2 dt +

t3∫
t2

α̇tr (t)
2 dt

s.t.

umin ≤ u(t) ≤ umax
xmin ≤ x(t) ≤ xmax

Pice(x(t), u(t)) ≤ Pice,max(x(t), u(t))

Πc(x(t), u(t)) ≤ Πc,surge

BSRmin ≤ BSR(x(t), u(t)) ≤ BSRmax
0 ≤ φ(x(t), u(t)) ≤ 1/λmin

ẋ(t) =


f1(x(t), u(t)), 0 ≤ t ≤ t1
f2(x(t), u(t)), t1 ≤ t ≤ t2
f3(x(t), u(t)), t2 ≤ t ≤ t3

ωice(0) = ωice,0
ωtr (0) = ωice,0 / γg1

ωw(0) = ωice,0 / (γg1γf d)

Egen(0) = 0

ẋ(0) = 0

Mgenset(t1) = Mgenset(t2) = 0

ωice(t2) = ωtr (t2) γg2

ωw(t3) = ωw(0)

Pgen(t3) = 0

Egen(t3) = 0

ẋ(t3) = 0.

(3.15)
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Figure 3.3: Optimal state trajectory for problem (3.15). The blue color shows
the state trajectory in the torque phase, the red shows the trajectory in the
synchronization phase, and the yellow the trajectory in the inertia phase.
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Figure 3.4: Optimal control signal for problem (3.15). The blue color shows
the control signal in the torque phase, the red shows the control signal in the
synchronization phase, and the yellow the control signal in the inertia phase.
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Implementation

4.1 Entering Optimal Control Problems

An ocp is represented using a data type called ocp_ocp. It consist of four parts:
Phases, bounds on the free optimization variables, symbolic variables and prop-
erties.

The phases are, part from the free optimization parameters P , what form the
ocp. A phase is represented using the data type ocp_phase. It is defined in
a way similar as the basic ocp (2.1), with the difference that an ocp_phase is
formulated in a slightly more general way. The mathematical description of how
the ocp_phase is defined is presented in (4.1).

min
x(t), u(t)

E(T , x(T ), u(T ), P ) +

T∫
0

L(t, x(t), u(t), P ) dt

s.t. ẋ(t) = f (t, x(t), u(t), P )

T ≤ T ≤ T̄
x ≤ x ≤ x̄
x0 ≤ x(0) ≤ x̄0

xT ≤ x(T ) ≤ x̄T
u ≤ u ≤ ū
gi(0, x(0), u(0), P ) = 0

gf (T , x(T ), u(T ), P ) = 0

h(t, x(t), u(t), P ) ≤ 0

hi(0, x(0), u(0), P ) ≤ 0

hf (T , x(T ), u(T ), P ) ≤ 0

(4.1)

31
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The free optimization parameter vector P is not included in ocp_phase, instead
it is entered into the ocp_ocp where it is subjected to the constraint P ≤ P ≤ P̄ .

The symbolic variables (t, x, u and P ) are used to create the mathematical
expressions, for instance the Lagrange term L(t, x, u, P ) or dynamics f (t, x, u, P ).

The properties are information regarding the size of the problem. This in-
clude number of states, number of controls, number of free optimization param-
eters and number of phases.

In order to illustrate how an ocp is entered into the toolbox a small example
where (3.3) is entered is presented below.

function ocp = bryson_denham_single_phase_ocp()

% OCP properties
nx = 2;
nu = 1;
np = 0;
n_phase = 1;

% Symbolic variables
[t, x, u, p] = ocp_var(’t’, nx, nu, np);

% Phase description
xi = [0; 1]; % Inital value
xdot = [x(2); u]; % Dynamics
xf = [0; -1]; % Terminal value

phase_desc = ...
{’L’, u^2, ... % Lagrange term
’f’, xdot, ... % Dynamics
’T_lb’, 1, ... % End time lower bound
’T_ub’, 1, ... % End time upper bound
’x_lb’, [0; -1], ... % State lower bound
’x_ub’, [1/9; 1], ... % State upper bound
’xi_lb’, xi, ... % Inital state lower bound
’xi_ub’, xi, ... % Inital state upper bound
’xf_lb’, xf, ... % Terminal state lower bound
’xf_ub’, xf, ... % Terminal state upper bound
’u_lb’, -inf, ... % Control lower bound
’u_ub’, inf}; % Control upper bound

% Create phase
p1 = ocp_phase(phase_desc);

% OCP formulation
ocp_desc={’t’, t, ... % Symbolic variables

’x’, x, ...
’u’, u, ...
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’p’, p, ...
’nx’, nx, ... % Problem size
’nu’, nu, ...
’np’, np, ...
’n_phase’, n_phase};

% Create OCP
ocp = ocp_ocp(ocp_desc, p1);

end

4.2 Representing the Model

The models that can be entered are limited to ordinary differential equations
(ODEs) and required to be entered on the format ẋ(t) = f (t, x, u, P ). It is up to the
user to design how to implement the model equations, but certain ways of doing
it are more beneficial than others.

To facilitate the simulation of the model it should be implemented in a sep-
arate function. That function should return the state derivative, but also any
constraints and other calculations of interest to the ocp formulation. To use MAT-
LABs ODE-solvers the model function needs simply be wrapped into a function
that conforms to the ODE-Solvers standard.

To clarify how a model can be implemented the torque phase dynamics (3.11)
implementation is presented:

function [dX, h, c] = torque_phase_dynamics(X, U, param)

% Indices
[we, pim, pem, wtc, wtr, flex, ww, e] = enum(8);
[umf, uwg, pgen] = enum(3);

% Variables
w_e = X(we);
theta = X(flex);
w_w = X(ww);
P_gen = U(pgen);

% Air and drag resistnace
F_a = 0.5 * param.rho_air * param.c_d * ...

param.A_f * w_w^2 * param.r_w^2;

% Gear ratio
i_tot = param.i_t(1) * param.i_f;

% Drive shaft torque
T_ds = param.k_ds*theta + param.c_ds * (w_e/i_tot - w_w);
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% Change intertia depending on phase
param.J_genset = param.J_phase(1);

% MVEM dynamics and constratins
[dX, h, c] = MVEM(X, U, T_ds/i_tot, param);

% Dynamics not part of MVEM
dw_tr = dX(we)/param.i_t(1);
dtheta = (w_e/i_tot - w_w);
dw_w = (T_ds - F_a*param.r_w - ...

param.F_r*param.r_w)/param.J_veh;
dE = P_gen;

% RHS
dX = [dX; dw_tr; dtheta; dw_w; dE];

% Aux calcs
c.dtheta = dtheta;
c.dw_tr = dw_tr;
c.T_ds = T_ds;

end

4.3 Discretization Methods

The toolbox provides two ways of discretizing ocps, either using direct multiple
shooting or direct collocation. The implementation follows the theory presented
in theory chapter. However, certain things are worth pointing out. Therefore
follows a description of the two implementations starting with multiple shooting.

4.3.1 Multiple Shooting

The integration method used is a fixed step, fourth order, explicit Runge-Kutta
method. It discretizes the state and integral cost separately in every control in-
terval. Two settings are controllable: the number of control intervals, K , and the
number of Runge-Kutta steps, M, per control interval. If the problem contains
multiple phases it is possible to choose a different number of control intervals
and Runge-Kutta steps for each phase.

The inequality constraints are calculated in the following way:

hk = h(tk , xk , uk−1, P ) for k = 2, . . . , K + 1 (4.2)

This means that the inequality constraints are not imposed at t = 0.
The NLP variable vector resulting from the discretization is found in (4.3),

where V is the number of phases and the elevated index represents the phase,
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not an exponent. The indices to the control and state variables in the nlp vector
are stored and returned when a call to the discretization function has been made.



T1
...
T
V

P
x1

1
u1

1
...

x1
K(1)
u1
K(1)

x1
K(1)+1
...
xV1
uV1
...

xVK(V )
uVK(V )
xVK(V )+1



(4.3)

To give an example of the syntax, the following code where problem (3.3) is
solved using direct multiple shooting, is provided below. Note, the function
bryson_denham_single_phase_ocp() was presented in a previous exam-
ple.

% Formulate OCP
ocp = bryson_denham_single_phase_ocp();

% Initial guess: zeros
v0 = struct;
v0.T = 2;
v0.p = 0;
v0.x = @(t) interp1([0, v0.T], [0 0; 0 0], t, ’linear’, 0);
v0.u = @(t) interp1([0, v0.T], [0, 0], t, ’linear’, 0);

% Discretize and solve NLP
K = 100; % Control intervals in each phase
opts = {’rk_steps’, 10}; % RK steps per control interval
ocp_sol = ocp_solve(ocp, v0, ’shooting’, K, opts);
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4.3.2 Direct Collocation

The order of the implicit Runge-Kutta method depends on the choice of colloca-
tion points, and the number of collocation points, both up to the user to decide.
The implementation has two modes, normal and rigid. The difference between
the modes is in the treatment of the inequality constraints. In normal mode the
inequality constraints are only enforced at the end of the control intervals, this is
the same treatment that is made in the direct multiple shooting case. In contrast
to direct multiple shooting, direct collocation also defines the state points in be-
tween the control intervals xk,i,j (provided that more than one collocation point is
used), this makes it possible to enforce the inequality constraints on these points
as well. In the toolbox that is done by choosing the rigid mode. A mathematical
description of how the inequality constraints are calculated is shown in (4.4).

hk,i,j =


0 if k = 1, i = 0, j = 0
h(tk,0,0, xk,0,0, uk−1, P ) if k , 1, i = 0, j = 0
h(tk,i,j , xk,i,j , uk , P ) if k ≥ 1, i > 0, j > 0
h(tK+1,0,0, xK+1,0,0, uK , P ) if k = K + 1

for k = 1, . . . , K + 1 i = 0, . . . , N − 1 j = 0, . . . , d.

(4.4)
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The nlp variable vector that the direct collocation implementation creates is
found in (4.5), where V is the number of phases.

T1
...
TV
P

x1
1,0,0
x1

1,0,1
...

x1
1,N−1,d
u1

1
...

x1
K(1),0,0
...

x1
K(1),N (1)−1,d
u1
K(1)

x1
K(1)+1,0,0

...
xV1,0,0
xV1,0,1
...

xV1,N−1,d
uV1
...

xVK(V ),0,0
...

xVK(V ),N (V )−1,d
uVK(V )

xVK(V )+1,0,0



(4.5)

Only indices to the control variables and state variables at control boundaries,
that is x1,0,0 to xK+1,0,0, are returned when direct collocation is used. This is the
case even if rigid mode is used.
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4.3.3 Providing the Initial Guess

The initial guess needs to be handed to the discretization methods in the form
of a struct with four entries: End time guess, free parameter guess, state guess
and control guess. The state and control entries should be functions that take the
independent variable as input and returns the guess at the input value. Examples
have been provided above, in the description of multiple shooting and direct
collocation. After every call to ocp_solve() the solution is also returned in the
form of an initial guess struct.

4.3.4 Control Continuity

When dealing with multiple phase ocps it needs to be decided how the control
signal should be treated when it passes the phase boundary. For both the direct
multiple shooting and the direct collocation implementation the control signal is
not continuous across the boundary as a default. That is, the first control value in
the next phase is not required to equal the last control value of the previous phase.
If a continuous control signal is desired the function control_continuity()
can be used or such constraints can be added manually to the nlp.

4.4 Solving Optimal Control Problems

The nlp resulting from the discretization process is solved usign an nlp-solver.
Since the toolbox is built on CasADi it supports allnlp-solvers that are supported
in CasADi, however IPOPT [20] is the default solver. How to set options using
CasADi syntax and solve problem (3.3) (the example from the direct multiple
shooting and direct collocation description) is presented in an example below.

% NLP options
nlp_opts = struct;
nlp_opts.ipopt.max_iter = 1000;
nlp_opts.ipopt.acceptable_iter = 500;
nlp_opts.ipopt.acceptable_tol = 1e-6;
nlp_opts.ipopt.tol = 1e-7;

% Solve ocp with user defined NLP options
ocp_opts = {’nlp_opts’, nlp_opts};
ocp_sol = ocp_solve(ocp, v0, ’shooting’, K, opts);

4.4.1 Solving the reference problems

This section contains the solution to the reference problems using the toolbox.
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Bryson-Denham problem

The analytical solution to the Bryson-Denham problem (3.1) is given in equa-
tion (3.2). The analytical solution is plotted together with the numerical solution,
found using the toolbox, in figure 4.1.
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Figure 4.1: Comparison of the state trajectories obtained when solving the
Bryson-Denham problem (3.1) analytically and numerically. The numerical
solution was obtained using the direct collocation with 50 control intervals.
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Figure 4.2: Comparison of the control signals obtained when solving the
Bryson-Denham problem (3.1) analytically and numerically using the tool-
box. The numerical solution was obtained using the direct collocation with
50 control intervals.

An Optimal Control Benchmark: Transient Optimization of A Diesel-Electric
Powertrain

For the optimal control benchmark problem, a comparison of the minimum fuel
solution is plotted in figure 4.3 and 4.4
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Figure 4.3: Comparison of the state trajectories obtained when solving the
optimal control benchmark problem (3.9) for minimum fuel. The numerical
solution using this toolbox was obtained using the direct collocation with
100 control intervals.
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Figure 4.4: Comparison of the control signals obtained when solving the
optimal control benchmark problem (3.9) for minimum fuel. The numerical
solution using this toolbox was obtained using the direct collocation with
100 control intervals.

Optimal Control of a Diesel-Electric Powertrain During an Up-Shift

For the up-shift problem, a comparison of the minimum jerk solution is plotted
in figure 4.5 and 4.6. Notice that the solutions are not the same. This is because
the objective function is not formulated in such a way that the solution is unique.
From the transmission speed and down to the wheels the solutions are the same,
which shows that the optimization worked properly. That they differ in controls
and some states is due to the problem formulation. An objective function com-
prised of both jerk and fuel consumption would have solved the problem.
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Figure 4.5: Comparison of the state trajectories obtained when solving the
up-shift problem (3.15) for minimum jerk. The numerical solution using this
toolbox was obtained using the direct collocation with 100 control intervals
in each phase. The blue, red and yellow colors belong to the toolbox solution,
and purple, green and turquoise to the reference solution. Blue and purple
represents the torque phase, green and red the synchronization phase, and
turquoise and yellow the inertia phase.
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Figure 4.6: Comparison of the control signals obtained when solving the up-
shift problem (3.15) for minimum jerk. The numerical solution using this
toolbox was obtained using the direct collocation with 100 control intervals
in each phase. The blue, red and yellow colors belong to the toolbox solution,
and purple, green and turquoise to the reference solution. Blue and purple
represents the torque phase, green and red the synchronization phase, and
turquoise and yellow the inertia phase.
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4.4.2 Complete Code Example

Here follows the entire solution to problem (3.3).

% OCP properties
nx = 2;
nu = 1;
np = 0;
n_phase = 1;

% Symbolic variables
[t, x, u, p] = ocp_var(’t’, nx, nu, np);

% Phase description
xi = [0; 1]; % Initial value
xdot = [x(2); u]; % Dynamics. x(2) = a
xf = [0; -1]; % Terminal value

phase_desc =
{’L’, u^2, ... % Lagrange term
’T_lb’, 0.1, ... % End time lower bound
’T_ub’, 5, ... % End time upper bound
’xi_lb’, xi, ... % Initial state lower bound
’xi_ub’, xi, ... % Initial state upper bound
’x_lb’, [0, -1], ... % State lower bound
’x_ub’, [1/9, 1], ... % State upper bound
’xf_lb’, xf, ... % Terminal state lower bound
’xf_ub’, xf, ... % Terminal state upper bound
’u_lb’, -inf, ... % Control lower bound
’u_ub’, inf, ... % Control upper bound
’f’, xdot}; % Dynamics

% Create phase
p1 = ocp_phase(phase_desc);

% OCP formulation
ocp_desc={’t’, t, ... % Symbolic variables

’x’, x, ...
’u’, u, ...
’p’, p, ...
’nx’, nx, ... % Problem size
’nu’, nu, ...
’np’, np, ...
’n_phase’, n_phase};

% Create OCP
ocp = ocp_ocp(ocp_desc, p1);
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% Initial guess: zeros
v0 = struct;
v0.T = 2;
v0.p = 0;
v0.x = @(t) interp1([0, v0.T], [0 0; 0 0], t, ’linear’, 0);
v0.u = @(t) interp1([0, v0.T], [0, 0], t, ’linear’, 0);

% Discretize and solve NLP
K = 100; % Control intervals in each phase

ocp_sol = ocp_solve(ocp, v0, ’collocation’, K);

% Plot results
xlabels = {’x_1’, ’x_2’};
ulabels = {’u’};
tlabel = ’t’;
plot_results(ocp_sol, tlabel, xlabels, ulabels);



5
Design Choices

The leading design choice was to provide two discretization methods. This fa-
cilitates performing a sensitivity analysis of the initial guess and discretization
method, which should always be conducted in order to ensure that the solution is
a good candidate for optimum. When performing a sensitivity analysis, changing
discretization method seamlessly, without changing the problem implementation
in any other way, is of great importance. Therefore, it was crucial to design this
into the toolbox. The other core decision was to give access to the internal vari-
ables in the toolbox. This means giving access to the nlp variables and indexing
them so that they can be manipulated in a meaningful way.

The key to seamlessly switch discretization method lies in separating prob-
lem formulation from discretization, but also in making the output from the dis-
cretization methods behave identically to functions that take the output from the
discretization as input. The latter means that no other function need to require
the information whether the problem was discretized using direct multiple shoot-
ing or direct collocation than the one that decides what discretization method to
choose. By providing only one data type for representing ocps, ocp_ocp, the
discretization methods have the same information about the ocp. This separates
the ocp from the discretization method. By making the return value structures
from the discretization methods have the same entries, that are constructed in
the same way, it is not possible to distinguish between the methods based on out-
put. Thereby there is no need for any other function to have information about
the discretization method. This together with separating ocp from discretization
enables seamless switching of the discretization method.
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5.1 Entering Optimal Control Problems

The phase definition (4.1) includes two boundary equality constraints. It would,
mathematically, have been sufficient to provide two inequality constraints. Nu-
merically that proved to be less efficient. Using the nlp-solver IPOPT it proved
not as easily for the solver to identify the constraint as an equality unless explic-
itly formulated so. There are other constraints that could have been added. For
instance, the dynamic optimization software Optimica [21] uses equality con-
straints subjected to the entire time horizon, and point constraints at arbitrary
time points. This was not included since it was not necessary for solving the
reference problems. If point constraints at arbitrary time points are desired the
problem can be implemented as a multi-phase problem in the toolbox, or if user
testing proves it necessary the toolbox can be extended to include it.

The symbolic variables are necessary to store in ocp_ocp. That is because
they are needed during the discretization, when the symbolic functions are de-
fined. In that process the constructor is given two arguments: the set of input
variables and the output expressions. The connection between input and output
is created through having the output expressions made up of the exact same vari-
ables as the input variables, and that is why the symbolic variables need to be
stored.

5.2 Discretization Methods

For multi-phase problems it can be desirable to have an equidistant discretization,
even if the phases are of different length. That is why it is possible to choose
individual discretization setting for each of the phases.

The indices to the variable in the nlp vectors (4.3) and (4.5) are stored for
two reasons. The first is that it makes it simpler to add new constraints using the
variables. The second is that it makes it simpler to retrieve the ocp solution from
the nlp solution, it is just a matter of looking up the indices in the nlp solution.
It is not strictly necessary to store the indices to be able to retrieve the solution
or manipulate the variables. The nlp variable vector is always constructed in the
same way and it is therefore possible to calculate the indices, however it is not as
convenient or as robust as storing the indices, for instance would a change in the
structure of the nlp vector force a change in the calculations.

The reason for not imposing the inequality constraints at the first time in-
stant, by default, is simple, it is impossible to affect the state at that time instant.
Looking at only the first control interval t = [t0, t1] the control signal u(t) = u0
is constant. u(t) drives the state x(t) from x(t0) to x(t1). Clearly, u(t) affects the
end state ,x(t1), but not the initial value ,x(t0). It is simply impossible to apply
a control signal u0 that affects x(t0), and that is why the inequality constraints
h(t0, x(t0), u(t0), P ) ≤ 0 are not imposed by default.

Because of the possibility to enforce the inequality constraints on the interme-
diary points it was made possible using the rigid setting in direct collocation. It
was not made the default behaviour because the number of inequality constraints
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increases considerably. This means longer execution time, which can pose a prob-
lem for large ocps, therefore it is reasonable to have the faster mode, normal as
the default one.

The fourth order Runge-Kutta method implemented in the multiple shooting
function was chosen because it is well recognized [2]. There are fixed-step explicit
Runge-Kutta schemes of higher order, but they require more evaluations of the
dynamics and therefore takes longer time to execute. It is therefore a compromise
between computational effort and order, in this case the choice was made to go
for the fourth order method. However, since the toolbox is open-source a user
could easily change the method, to a method of his or her liking.

5.3 Providing an Initial Guess

The format for providing the initial guess was chosen for simplicity. Using a
struct reduces the number of arguments that needs to be handed to the discretiza-
tion methods. Noticable is that the control and state initial guess is provided as a
function. The explanation is that it is the easiest format, that I found, to provide
initial values at time points that are chosen by the discretization method.

5.4 Control Continuity

Control continuity across phase boundaries is not implemented as a default. For
some problems having control continuity is the best solution, at least for some
control signals, for other problems it might not. An alternative to continuity
across the boundary is to limit the change in the control signal, although that
is problem specific. There is no obvious solution how to handle this, the best
solution is therefore to let the user decide based on the problem. Control discon-
tinuity across the phase boundary was therefore the default choice.

5.5 Solving Optimal Control Problems

Since CasADi provides an excellent interface to many nlp-solvers it has not been
necessary to make any design choices other than making IPOPT the default solver.
This is mainly motivated by that it is distributed freely with CasADi. It is also
motivated by that is an interior-point method and therefore handles very sparse
problems well [6].
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Discussion

6.1 Results

The result of the thesis is a toolbox for MATLAB, based on CasADi, for solving
optimal control problems numerically. The toolbox have been proven to correctly
solve ocps on at least three different types of problems. The toolbox is open-
source and will be distributed freely in order for others to harness the power of
CasADi for optimal control purposes.

6.2 Method

The method for designing the toolbox was to read theory, solve a number of
selected problems and then create the design. The method was found from
studying the background of other toolbox creators such as those of PROPT and
ACADO. They are all people, or teams of people, with much experience within
the field of dynamic optimization [14, 19].

A drawback of this method is that it is hard to repeat the design of the toolbox.
However, this form of repeatability is not of great importance, since it is repeata-
bility of the optimal solution that is important. An optimal solution found using
this toolbox must be repeatable using another optimal control software, under
the same conditions. That is why the ocps that was studied during the design
work have known solutions.

During the design work a new version of the toolbox was made for every refer-
ence problem solved. The toolbox changed dramatically for every new problem
and the final version is very good. Judging from this, it is impossible to design
an optimal control toolbox without practical experience of actually solving prob-
lems. Although, the method should be critiqued from two different aspects: How
the theory was deemed correct and how the reference problems were chosen.
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The theory was deemed correct because it is described in multiple sources,
for instance [5, 6, 8, 1]. From several, mostly independent, sources describing the
same theory, in the same way, the conclusion was made that the theory is correct.
To further strengthen this conclusion, a problem with an analytical solution was
studied. The problem, the Bryson-Denham problem (3.1), have an analytical solu-
tion that was obtained using pmp. Since these results were repeated numerically
using this implementation it strengths the conclusion.

To the second point of critique. The reference problems was chosen as a
compromise between different aspects. The most important aspect was that the
solutions had to be known and published. It is a good way to verify that the
implementation works correctly. Another important aspect was the variety of
the problems. By variety, problems with fixed/free end time, with/without in-
equality constraints, Lagrange/Mayer formulation, multiple phases, parameter
estimation components, explicate dependence on the independent variable, etc,
are meant. Ideally all types of problems should be analysed, however there was
only time to study a few. There is also the aspect that at least one of the problems
should reflect a real use case, a really hard problems of real-world importance.
The three problems chosen are motivated below.

The Bryson-Denham problem (3.1) was chosen because it is a well known ocp
and it has an analytical solution. It is also possible to formulate it in more than
one way which makes it versatile in the design work. It is also a good problem to
start with for a beginner.

The optimal control benchmark problem (3.9) was chosen because it is a fairly
large ocp and the solution is readily available. The problem includes time vary-
ing inequality constraints, free end time and a derivative constraint which makes
it interesting to study. The problem was designed as a reference problem for de-
velopers of optimal control software which meant that it also provides solutions
to simplified versions of the problem, which was very handy. It was also accompa-
nied with the model code which made the implementation less time consuming.

The up-shift problem (3.15) is a complex optimal control problem that qual-
ifies as being of real-world importance and was constructed in a cooperation be-
tween Linköping University and Scania. It includes among other, complex con-
straints, multiple phases and free end time.

Two important classes of problems have not been studied in the design work.
A problem were the dynamics depends explicitly on the independent variable
and a parameter optimization problem. An example of the first type of problem
is a down-shift of a heavy-duty truck in an uphill. The latter type could be some
kind of component dimensioning or the optimization of regulator parameters for
some application.
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Conclusions

The following questions were identified in the beginning of the work:

1. What methods are available for solving optimal control problems numeri-
cally?

(a) What are their different properties?

2. How should the optimal control toolbox be designed?

(a) How should the optimization methods be implemented in the toolbox?

(b) How should the model be represented in the toolbox?

(c) How should the objective function be provided by the user?

(d) How should the constraints be specified?

(e) What should be the default behaviour of the toolbox?

(f) What options should be supported?

The available methods for solving optimal control problems numerically was
continuous time dynamic programming, Pontryagin’s maximum principle and
direct transcription. They were covered in the theory section along with their
advantages and drawbacks.

How the toolbox design should be made was answered in the design choice
chapter (chapter 5). The most important question was how to implement the
direct transcription methods since it determines whether the entire toolbox is
working or not.
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7.1 Future Work

There are several interesting topics that could be investigated for future work.
A natural extension would be to test the toolbox on new categories of problems,
specifically those mentioned in the previous chapter, when the dynamics explic-
itly depends on the independent variable, and a parameter estimation problem.
A comparative study of different optimal control software would also be of inter-
est.

A slightly different track is to make a more in depth analysis of dynamic op-
timization, and the underlying numerical methods. Maybe even to go as far as
analysing nonlinear optimization and convex optimization. This could for in-
stance be used for designing real-time nonlinear model predictive control (MPC)
software tailored to a specific application.

A third track is to dig deeper into how to formulate ocps and how to utilize
the results. Should the results be used in an MPC implementation or should some
other control structure be used. If MPC, how to formulate the objective function,
constraints and model?
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