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Abstract

The high demands on low fuel consumption and low emissions on the combus-
tion engines of both today, and the future, is highly dependent on advanced con-
trol systems in order to fulfill these demands. The control systems and strategies
are based on models which describe the physical system. The more accuratly
the models describe the real world system, the more accurate the control will be,
leading to better fuel economy and lower emissions.

This master’s thesis investigates and improves the mass flow model used for a
compressible restriction, such as over the throttle valve, egr valve, or the waste-
gate valve, for example. The standard model is evaluated and an improvement is
proposed which does not assume isentropic flow. This seems to explain the devia-
tion from the isentropic Ψ -function shown in earlier research such as (Andersson,
2005). Furthermore a throttle valve is analyzed in ansys in order to show the gen-
eration of entropy. The presence of pressure pulsations in a combustion engine
is also evaluated, especially how they effect the otherwise assumed steady flow
model. It is tested if a mean value pressure is sufficient or if one needs to take the
pulsations in to account, and the result shows that a mean pressure is sufficient,
at least for the throttle when typical intake manifold pulsations is present. A
dynamic flow model is also derived which can be useful for pressure ratios close
to one. The dynamic flow model is based on the standard equation but with an
extra dynamic term, however it is not implemented and tested due to complexity
and time limitation. The proposed new non-isentropic flow model has proven
promising and can hopefully lead to lower emissions and better fuel economy.

iii





Acknowledgments

First of I would like to express my gratitude to Lars Eriksson at vehicular system,
Linköping University and the air charge group at Volvo Car Corporation which
brought this subject to my attention and gave me the opportunity to conduct this
master’s thesis. Furthermore i would like to thank my supervisor at Linköping
University, Robin Holmbom for his guidance and the productive discussions we
had. I also want to send a thank to my supervisors at Volvo Car Corporation,
Samuel Alfredsson and Marcus Rubensson which have shown great interest and
have helped me a lot with supplying me with data and answering questions. A
thank also goes out to Tobias Lindell working at the engine lab at Vehicular Sys-
tems, Linköping University, helping me with for instance collecting data and
installing new sensors on the engine rig.

Linköping, june 2017
Carl Vilhelmsson

v





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Research 5
2.1 Common Fluid Science . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Incompressible Flow Restriction . . . . . . . . . . . . . . . . . . . . 6
2.3 Compressible Flow Restriction . . . . . . . . . . . . . . . . . . . . . 6
2.4 Pressure Pulsations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Applications for the Flow Model . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Wastegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Throttle and EGR . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.3 Turbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.4 Cylinder Air Charge . . . . . . . . . . . . . . . . . . . . . . 11

3 Theory and Phenomena 13
3.1 Steady Isentropic Compressible Flow . . . . . . . . . . . . . . . . . 13
3.2 Steady Non-Isentropic Compressible Flow . . . . . . . . . . . . . . 16
3.3 Pulsating Pressure Ratio . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Unsteady Isentropic Compressible Flow . . . . . . . . . . . . . . . 21

4 Approach 25
4.1 Steady Compressible Flow . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Unsteady Compressible Flow . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results 31
5.1 Fixed Throttle Position . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



viii Contents

5.2 Normal and Extended Ψ -function . . . . . . . . . . . . . . . . . . . 32
5.2.1 Engine Measurements . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Flow Bench Measurements . . . . . . . . . . . . . . . . . . . 35

5.3 Pulsating Pressure Ratio . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Throttle Valve ANSYS Analysis . . . . . . . . . . . . . . . . . . . . 42
5.5 Dynamic Compressible Flow . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 53
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Ψ -function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Dynamic Flow Model . . . . . . . . . . . . . . . . . . . . . . 55

A Calculations for Isentropic Compressible Flow 59

B Calculations for Non-isentropic Compressible Flow 63

C Calculations for Unsteady Compressible Flow 67

Bibliography 71



Contents ix

Parameters and Variables

Notation Description

p Pressure [pa]
T Temperature [K]
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1
Introduction

A short introduction to the problems and why it is interesting to investigate them
further is presented in this chapter. The main goals and the primary expected
results of the thesis along with the outline is also introduced here.

1.1 Background

Today’s vehicles have to be more and more environmentally friendly, one of the
main effects a vehicle has on the environment is the release of greenhouse gases
coming from the burning of fossil fuel. To reduce this effect and save money the
consumer wants fuel efficient vehicles. In order to design and control these new
engines, models for each component are required to be accurate and reliable in
all driving situations. Some of these components are the different valves which
directs flows in the engine, such as the throttle, egr, and wastegate. One aspect
that has not been investigated is the effect of pulsations for both low and high
pressure ratios.

One example is the wastegate, a bypass valve that controls how much of the
exhaust flow goes in to the turbocharger thereby boosting the engine with air lead-
ing to better fuel economy. The wastegate flow model is not well developed due
to the harsh and unsteady conditions in the exhaust, making it hard to measure
the flow and get an accurate model for all working conditions. The model for the
wastegate effects the whole engine simulation model. Some of the obvious bene-
fits of having an accurate model is that together with a turbocharger model one
can apply a good feed forward to the boost control loop increasing driveability.
An accurate model will estimate the exhaust manifold pressure more correctly
which affect the calculations for volumetric efficiency, hence correct air fuel ratio
will be obtained and lower emissions achieved. This master’s thesis will address
some different flow phenomena, pulsating and unsteady flow, low and high pres-
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2 1 Introduction

sure ratios over restrictions and hopefully end up with an extended useful model
for mass flow through a compressible restriction.

1.2 Problem Formulation

Accurate and faster engine control systems are one way to increase fuel economy,
driveability, and decrease emissions. For this, better models of the different com-
ponents in the engine are needed. The wastegate can be seen as a compressible re-
striction, just as the throttle, and in some cases the egr-valve. There are two main
types of egr systems, low pressure route, and high pressure route. High pressure
route can be seen as a compressible restriction but the low pressure route egr-
valve have to be investigated further. There are several problems when trying
to model the wastegate and egr flow. When using the same analogy as for the
throttle, measuring the mass flow can not be done due to the heat which a regular
mass flow meter can not handle, and for the egr the pulsating flow sometimes
leads to back flow. The fact that the mass flow is split up between the turbine and
the wastegate makes the mass flow meter on the intake side of the engine unus-
able in order to obtain the mass flow past the wastegate. The pulsations coming
from the cylinder when an exhaust valve opens makes the pressure ratio over the
wastegate not to be steady which is assumed in the throttle case. There might also
be flow disturbances and circulations occurring due to the fact that wastegate and
turbine is located so close to each other. Some previous works such as Andersson
(2005),Hendricks et al. (1996) have shown that the model used, based on isen-
tropic compressible flow does not correspond with measured data see figure 1.1.
That model is then adapted to fit the measured data in many different ways, some
different ideas are proposed by for example (Hendricks et al., 1996)(Reshaping
Ψ (Π)-function with help of 2 parameters),(Andersson, 2005)(Uses gamma as tun-
able parameter). The interesting part is why it differs from the theory, this will
be investigated further. To be carried out in this thesis are the following:

• 1: Repeat the measurements in (Andersson, 2005) showing that the CdΨ (Π) ,
Ψ (Π).

• 2: Investigate with the help of CFD to why these phenomena occurs.

• 3: Investigate the effects pressure pulsations have on the model where the
conditions otherwise are assumed steady.

• 4: Create an extended flow model, combining the model for an isentropic
compressible restriction with the previous investigations.

• 5: Investigate the improvements of the new extended model against the
basic model.
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Figure 1.1: The original data measured by Per Andersson at vehicular sys-
tem, Linköping University is shown in this figure. One can clearly see the
deviation between model and collected data. The original picture comes
from (Andersson, 2005).

1.3 Expected Results

The main expected result of this thesis is an useful extended model for the mass
flow through a variable restriction, that can be used for improving the total en-
gine model, which would lead to better and more accurate engine control. This
is obtained by closer investigation of the different sub problems.

• 1: Reconstructed measurements from the work in (Andersson, 2005) show-
ing that the theory for an isentropic compressible restriction do not match
the measurements.

• 2: CFD simulations trying to explain why the deviation in the Ψ (Π)-function
occurs.

• 3: Plots and data showing the effects a pulsating pressure have on the com-
pressible flow model.

• 4: Flow through a variable restriction is measured for different pressures
in a test bench in order to eliminate the effects pulsations have on the mass
flow and furthermore evaluating what is causing the deviation.
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• 5: Taking the results from the previous stated excepted results and devel-
oping a new extended mass flow model.

• 6: Presented measurements of the flow through a restriction and comparing
the new extended model against a basic model.

1.4 Outline

The main chapters of this thesis with a short description are as follows:

• Chapter 1 - Introduction
Introduction to the problem, why it is desirable to solve and expected re-
sults

• Chapter 2 - Related Research
Presenting the literature studies made on the subject.

• Chapter 3 - Theory and Phenomena
Different theories and ideas are presented in what manner some problems
are to be solved.

• Chapter 4 - Approach
This chapter describes how the different tests are to be carried out and what
data is to be collected and why.

• Chapter 5 - Result
This presents the results from the different problems and tests stated in
previous chapters.

• Chapter 6 - Conclusion
The conclusions which can be drawn are presented here along with some
ideas for future work.



2
Related Research

Here some related research is presented which were part of the literature studies
conducted in order to form a better understanding of the subject of this master’s
thesis. Information is also collected about both common fluid science and where
these equations can be applied when modeling some engine components is pre-
sented here.

2.1 Common Fluid Science

Fluid is the common name for gases and liquids, a fluid’s properties can for exam-
ple be described by its viscosity, compression module, and density. These basic
properties are also dependent on the internal states of a fluid, such as pressure
and temperature, but can in some cases for simplicity be considered as constants.
There are three main governing equations within fluid science, the continuity
equation which states the preservation of mass, the momentum equation which
is a form of newtons second law of motion, the energy equation which states the
preservation of energy. When considering a fluid flowing in a pipe one very use-
ful dimensionless number is the Reynold’s number which is the relation between
inertial forces and viscous forces. The Reynold’s number can describe the type of
flow, if it is laminar, semi turbulent or fully developed turbulent flow, this is very
useful when choosing the approach by which a problem is to be solved. Reynold’s
number is described in equation (2.1), where U is the relative fluid velocity, L is
the characteristic length and v is the dynamic viscosity. For a non-circular pipe
the characteristic length (L) is the hydraulic diameter (dh), described in equation
(2.2) where A is the area of the cross section and O is the circumference. More
basic fluid science is presented in (Karl Storck, 2012).
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6 2 Related Research

Re =
Inertialf orces

V iscousf orces
=
UL
v

(2.1)

dh =
4A
O

(2.2)

2.2 Incompressible Flow Restriction

An incompressible flow is a flow where the change in density of the fluid is
very small and can be neglected. Incompressible flow can be described with the
Bernoulli equation, if friction and compressibility effect are neglected. In (Çengel
et al., 2012) the incompressible flow equation is derived from Newton’s second
law of motion. The inertia of the gas when reaching high velocities is the reason
the flow is considered to be compressible, when the velocities are low the inertia
can be neglected, hence incompressible flow. Equations for such flows through
a restriction are described in (Eriksson and Nielsen, 2014) both for laminar and
turbulent flows. The long route egr-valve can perhaps be seen as an incompress-
ible flow since the pressure drop over the valve is low, hence the gas velocity and
inertia is low, however in (Klasén, 2016) a compressible flow model is used since
it produced a slightly better fit to measured data.

2.3 Compressible Flow Restriction

A compressible flow is a flow where the density in the fluid changes significantly
and have to be considered. The flow equations for an isentropic compressible
restriction with the shape of a converging nozzle, seen in figure 3.1a, are derived
in (Çengel et al., 2012). However, the assumption that these equations apply to
the shape of a throttle shown in figure 3.1b, and also the shapes of wastegate and
in some cases EGR valves, are made in many automotive works. This assumption
might be the reason for the deviation from measured data to theory. Assuming
the flow is isentropic, compressible, and adiabatic a model for the throttle is de-
scribed in (Eriksson and Nielsen, 2014). Since it is in this thesis beneficial to have
the Ψ (Π) function normalized, to make it easier to compare with normalized
data, the normalized model stated in (Andersson, 2005) is to be used. Here also
a small linear region is added to fulfil the Lipschitz condition, and prevent oscil-
lations. An indication that the linear region is to small is if oscillations in mass
flow occurs during simulations at steady state, stated in (Eriksson and Nielsen,
2014).

Together with others, (Andersson, 2005) says that Cd , the discharge coefficient,
are mainly dependent on two factors, pressure ratio Π and the valve angle α. The
area dependent factor Cd(α) is hidden within the model for effective area, as in
(Eriksson and Nielsen, 2014), Aef f (α) = Cd(α)A(α), which are determined using
matlab function lsqcurvfit, hence there is no need to determine Cd(α) solely. To
determine if the pressure ratio dependent factor of Cd(Π) is negligible, (Ander-
sson, 2005) plots Cd(Π)Ψ (Π) together with only the Ψ (Π)-function and here a
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deviation occurs which implies that Cd(Π) can not be ignored. His test is carried
out by setting a throttle valve at a fixed position and doing a sweep in pressure
ratio, which is done by controlling the engine speed. Furthermore the data is
normalized by dividing with the mean of the three biggest measured values for
each throttle angle, this to remove the area/angle dependent factor. Explained,
the biggest values are assumed to be the same as Aef f (α) since Cd(Π)Ψ (Π) is one
where the biggest values occurs, hence a division removes the effect of Aef f (α).
Further explanation on how this is used is described in the approach chapter.

2.4 Pressure Pulsations

In the books (Ockendon, 2003) and (Lighthill, 2001) waves and compressible flow
are described in detail. Special interest for this thesis are longitudinal waves in
tubes which can be described using non-linear gas dynamic equations, (2.3). The
assumption that the variables only change along the length of the tube is made,
for every cross section area the variables are thus the same. These equations are
obtained by solving the governing equations, which are the continuity equation,
momentum equation, and energy equation. These equations are described fur-
ther in (Yang, 2015) and (Chalet et al., 2011).

∂ϕ

∂t
+
∂F(ϕ)
∂x

= B (2.3a)

ϕ =


ρA
ρuA

ρ
(
e + 1

2u
2
)
A

 (2.3b)

F(ϕ) =


ρuA

(p + ρu2)A

ρu
(
e + 1

2u
2 + pρ−1

)
A

 (2.3c)

B =

 0
p dAdx − ρFr
ρqeA

 (2.3d)

These equations are preferable solved numerically, but analytical solution ex-
ists, however they might only apply to specific conditions. One of those solutions
gives the linear acoustic wave equation (2.4), where only small fluctuations in
the thermodynamic properties, pressure and density are considered and all non-
linear effects are negligible. The mean velocity is not taken into account, all this
considered, these equation are a good, if not perfect description for sound waves
where all the considerations are true.

∂2pe
∂x2 =

1

c2
0

∂2pe
∂t2

(2.4)
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The aucustic wave equation is useful when considering sound in the engine,
but might not be useful when modelling the high amplitude pressure pulsations,
and varying gas speed in the exhaust or intake manifold. In the books mentioned
above there are also models for waves propagating through restrictions, apply-
ing the analogy to electrical impedance and inductance. In (Lighthill, 2001) the
inductance is described carefully, and some examples for various geometries are
given, it is to be solved with numerical integration of the Laplace equation for
that specific geometry, or approximated. Which in the case of a variable restric-
tion makes it very inconvenient, a map for different areas, pressure ratio over
restriction, and flow would have to be made to get the correct inductance for all
cases. This makes the inductance approach, at least in this case, very inconve-
nient but for a non-variable restriction and known waves it is useful. However
in (Kiwan et al., 2016) an unsteady compressible flow equation is derived which
takes the inertia of the gas into account, hence making it possible to take the pul-
sations and transients into account. This unsteady compressible flow equation
seems to estimate the flow much more accurate than the steady compressible
flow equation in (Çengel et al., 2012). (Kiwan et al., 2016) validates the model
against "GT power", which is an engine simulation program and not real world
data, however "GT power" is well recognized among engine manufacturers.

In a combustion engine it is two main type of waves, expansion wave, and
compression wave, the expansion wave is a wave of lower pressure such as in
the intake manifold and the compression wave is a wave of higher pressure such
as in the exhaust manifold. When these waves enters a larger volume or cavity
a part of the wave is reflected backwards but as the opposite wave, detailed de-
scription in (Lighthill, 2001). For example, a low pressure wave in the intake
runner excited by the opening of the intake valve enters the larger manifold cav-
ity and this causes a part of the wave energy to reflect back into the runner as
a compression wave. This effect is used when engine designers tune the length
of the runners so that the reflected compression wave enters the cylinder just be-
fore the intake valves are closing. In many works the waves effect are neglected
and only some mean value model is used, however in (Stockar et al., 2016) a way
of modelling the transients and waves are proposed which uses the one dimen-
sional wave equations and a reduction methodology to make the equations more
manageable. This wave description together with the unsteady compressible re-
striction equation in (Kiwan et al., 2016) can be useful to both model the waves
and calculate their effects on the flow through a restriction. In (Semlitsch et al.,
2014) an in depth analysis of the flow leaving the cylinders through the exhaust
valves are made, the approach is numerical with finite elements which do not
directly help this thesis, but a wider understanding of the different events under
which gas enters the exhaust manifold are described. There are two main parts
under which gases evacuates the cylinder, the blow-down phase, which occurs
when the exhaust valve first opens and the pressure in the cylinder are rapidly
blown out until pcyl = pem. Part two is when the upward motion of the piston is
pushing out the remaining exhaust gases. This is also described in (Eriksson and
Nielsen, 2014) where the different events also can be seen in a p − V diagram.

The frequencies of the pulsations are shown in previous works such as (Macián
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et al., 2004) and (Liang and Holmbom, 2016), where measurements of pressure
have been made and proven to be the same as that of the exhaust valves open-
ings (2.5). There will also be resonance frequencies due to the exhaust manifold
volume and length of pipe.

ωp =
2RPM

60
2π (2.5)

In (Thomasson and Eriksson, 2015) a model for the pressure waves in the
exhaust manifold are developed, this model assumes exhaust valve as a com-
pressible restriction and calculates the cylinder pressure trace. When the exhaust
valves opens the cylinder pressure and temperature are used to calculate the rate
of mass flow to the exhaust manifold, hence leading to pressure pulsations in the
volume.

2.5 Applications for the Flow Model

The use of an extended flow model taking the pulsations and dynamic behav-
ior into account have many applications where such conditions are present, this
thesis focuses on the valves related to combustion engines such as the throttle,
wastegate, and egr valves. In this section a short introduction of the different
valves, and improvements an accurate flow model can have is described.

2.5.1 Wastegate

When modeling a valve such as the wastegate valve there are two main parts, the
signal to position model, and the position to flow model. More about modelling,
both with a system identification approach and a physical modelling approach
are described in (Ljung and Glad, 2004).

Flow Model

The flow model is using the above described compressible flow through restric-
tion equations, where the Aef f (α) and Cd(Π) are to be found. This assumes
that the discharge coefficient can be divided into two parts one angle depen-
dent and one pressure ratio dependent, Cd(α,Π) = Cd(α)Cd(Π). Starting of with
the modelling of the Cd(Π)Ψ (Π)-function one can chose between some different
approaches described in for example (Andersson, 2005), and (Hendricks et al.,
1996). However the idea is the same, normalizing the function to remove area
dependent factor and then fitting Cd(Π) so that Cd(Π)Ψ (Π) agrees with measure-
ments. When Cd(Π)Ψ (Π) are modeled, the approach in (Eriksson and Nielsen,
2014) can be used to model the Aef f using lsqcurvfit to parametrize some poly-
nomial function. Measurements are obviously made in order to obtain the data
for fitting the models.
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Position Model

The modelling of the positioning in such a valve as the wastegate are carefully
described in (Thomasson et al., 2013) with help of, for example (Mehmood et al.,
2010) to model the aerodynamic force. First a model for signal to wastegate ac-
tuator are made with slow ramps to describe the statics and then steps are made
to evaluate the time constant, there are different time constants depending on
if pressure is rising or falling. Furthermore according to Newton’s second law
of motion a force balance is set up (2.6), which is the model for the wastegate’s
position.

ẍm = Famb − ẋb − Fact − Ff r − Fsb − Faero (2.6)

An approach by which the different forces are identified is described, first
by static experiment to remove the influence of dynamic friction and the mass,
when they are identified steps are made and the mass (m) and dynamic damping
(b) are fitted using lsqcurvfit. The aerodynamic force is modeled in (Mehmood
et al., 2010) for a VNT-system but the approach may be the same. The aerody-
namic force is mainly dependent on the pressure difference between the exhaust
manifold and the following exhaust. Previous forces are calculated with engine
off to remove the influence of aerodynamic force, when engine is turned on the
difference between the expected static position and the real position are due to
aerodynamic force which then can thus be determined. A model for the vacuum
tank and pump is also proposed in (Thomasson et al., 2013). However assuming
that the vacuum pump can keep the pressure constant, a vacuum reference pres-
sure will suffice. A model for the wastegate position is needed in order to obtain a
good feed forward to the turbo control, and be able to evaluate the improvements
of a better flow model.

2.5.2 Throttle and EGR

The throttle and egr valves are very similar in the design but have different pur-
poses, throttle controlling the air flow into the engine and the EGR controlling
how much exhaust gases are recycled. Both valves are however butterfly valves
controlled with a servo motor, the design can be seen in figure 3.1b. The posi-
tioning system of these valves are much simpler to model than the positioning of
the wastegate valve since they are actuated by, in most cases, a closed loop servo
motor. In (Eriksson and Nielsen, 2014) a first order system is proposed for the
throttle reference signal to position, a simple step response is sufficient to obtain
the gain and time constant. The flow modeling is furthermore the same as for the
wastegate, however a different polynomial function for the effective area (Aef f )
might be used to capture the different shape characteristics.

2.5.3 Turbo

The boost pressure control system are greatly dependent on estimation and mod-
elling of the turbocharger, which in turn needs an accurate estimation of mass
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flow through the turbine driving the turbo charger. The difficulty lies here in es-
timating how the total mass flow is divided among the turbine and the wastegate
path. If accurate models for wastegate signal to boost pressure are presented a
fast control system can be developed. First when designing a control system for
the boost pressure, models for the compressor, turbine, and connecting shaft is
needed. In (Eriksson and Nielsen, 2014) basic models for compressor, turbine,
and shaft are described, in (Leufvén and Eriksson, 2013) an extension of these
models are proposed that is choke and surge capable. Furthermore in (Llamas
and Eriksson, 2017) a new way of fitting the data to the models is described,
where not the model error is minimized, instead the orthogonal distance to the
model is minimized. In (Leufven and Eriksson, 2016) turbo compressor models
are extended for low pressure ratios. There are many different approaches on
how to develop a turbo control system depending on such as what sensors are
available and how much effort is put into the design. In (Eriksson and Nielsen,
2014) a static feed forward from a look up table, together with a second order
engine speed dependent system is used. The look up table is the static gain from
wastegate position to boost pressure for different engine speeds, and the second
order systems are identified with help of step responses, also for different engine
speeds. The regulator parameters, which also are engine speed dependent, are
tuned using IMC. In (Criscuolo et al., 2011) a similar approach is made, however
it is for a two stage sequential turbocharging system and the supply voltage is
compensated for. In (Liang and Holmbom, 2016) a structure where the system
is modeled in different stages are made, here sensors for turbo speed and waste-
gate position is supplied. Different solutions are proposed on how to model the
system for requested boost pressure to requested turbo speed, a look up table,
non-linear static compensator, or physical modeling. The turbo speed is then
controlled instead of controlling the boost pressure directly. Static errors are re-
moved by a feedback controller from boost pressure to requested turbo speed.
The system from wastegate to turbo speed is then identified by doing step re-
sponses and assuming first order system. This way parts of the system can be
modeled separately, and hopefully leading to a better and more complete defini-
tive model, due to the fact that less characteristics of different parts are over-
looked. In common for most turbo controllers are that they consists of some sort
of PID-controller, however there are exceptions, such as in (Liang and Holmbom,
2016) where a state feedback is used with an integrating part. Common is also
the use of kalman filters to estimate states which are of interest. More general
control theory can be read about in (Glad and Ljung, 2006), (Glad and Ljung,
2003), and (Martin Enqvist and Strömberg, 2014), for example.

2.5.4 Cylinder Air Charge

The total air mass flow to the cylinder are described in (Andersson, 2005) (2.7),
here for one cylinder, which then is used to calculate the correct amount of fuel
to be injected. The volumetric efficiency ηvol-function are described in many
different works and in many different ways, it is usually a function which is
parametrized with regards to engine speed and intake manifold pressure, some
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models are proposed in (Eriksson and Nielsen, 2014).

CAC = ηvol
pimVd
RimTim

(2.7)

There is also the approach of physical modeling where effects as charge cool-
ing, residual gases, and fuel enrichment are taken into account. One such model
(2.8) are described in (Andersson, 2005), here it is only two tuning parameters,
and the ηvol-function is not present.

CAC =
pim

Rim

(
Tim − C1

1−λ2

λ2

)Cηvol
(
rc −

(
pem
pim

) 1
γe

)
Vd(

1 + 1
λ( AF )s

)
(rc − 1)

(2.8)

A sensitivity function for how the exhaust pressure pem effects the CAC is also
derived from (2.8) in (Andersson, 2005), which is a good tool when evaluating
how much the improved estimations of pem due to better wastegate flow model,
effects the CAC. In order to compare the improvements of the flow model a base-
line exhaust pressure model is required which also is presented in (Andersson,
2005).



3
Theory and Phenomena

In this chapter the theory and governing equations behind the models used in this
master’s thesis are presented. The assumptions made when deriving the models
are explained and ways of improving and investigating why some errors occur
are described here.

3.1 Steady Isentropic Compressible Flow

Similar derivation is made in a lots of previous works, one example (Çengel et al.,
2012), but the derivation is also presented her in order for the reader to get a bet-
ter understanding. In steady flow, a flow where the fluid properties can change
from point to point, but for every point they do not change with time. The conser-
vation of energy equation, with help of the enthalpy describing internal energy
can be applied, assuming no work or heat is transfered out, or in to the system.
The following equation can be stated:

h1 +
V 2

1
2

+ gz1 = h2 +
V 2

2
2

+ gz2 (3.1)

For an ideal gas the enthalpy is only dependant on the temperature, when assum-
ing that the specific heat constant pressure (cp) is a constant, hence the following
equation applies:

h2 − h1 = cp(T2 − T1) (3.2)

Studying the figure 3.1 and assuming that it is only small changes in potential en-
ergy, (z1 − z2 ≈ 0). Also assuming that the inlet velocity is very low relative to the
exit velocity V 2

2 − V
2
1 ≈ V

2
2 Combining this assumption with previous equations

(3.1) and (3.2) following equation is obtained:

13
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(a) Converging nozzle which the isen-
tropic compressible restriction equa-
tions is derived for.
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(b) A throttle body which the isen-
tropic compressible restriction equa-
tions is applied on.

Figure 3.1: Assuming steady and isentropical flow makes the equations ap-
ply to both cases.

T1 = T2 +
V 2

2
2cp

(3.3)

Assuming isentropic process for an ideal gas, following equation applies:

T2

T1
=

(p2

p1

) (γ−1)
γ

(3.4)

Introducing the Mach number for air which is a ratio of the velocity and the
local speed of sound (c).

M =
V
c

=
V√
γRT

(3.5)

Replacing the velocity with the Mach number in the equations (3.3) and (3.4)
these new equations are obtained, see appendix A for further description of cal-
culations.

T1

T2
= 1 +

γ − 1
2

M2 (3.6)

p1

p2
=

(
1 +

γ − 1
2

M2
) γ
γ−1

(3.7)

The mass flow air can be described as follows, with the help of the ideal gas law,
and the previous stated equations (3.7), and (3.6), see appendix A for further
explained calculations:

ṁideal = ρAV (3.8)

Replacing the temperature and pressure after the nozzle with the pressure before
gives:

ṁideal =
p1√
RT1

AM
√
γ

1 +
γ − 1

2
M2

−
(γ+1)

2(γ−1)

(3.9)
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Substituting the Mach number with pressure ratio (Π), see appendix A, adding
the discharge coefficient (Cd(α,Π)) which we assume is depending on the throt-
tle angle and pressure ratio. Also changing the area factor (A) to a function of
throttle angle (A(α)) seen in figure 3.1b. This sets up for a useful function when
applied to a variable nozzle, valve, or throttle.

ṁ =
p1√
RT1

A(α)Cd(α,Π)

√
2γ
γ − 1

(
Π

2
γ −Π

γ+1
γ

)
︸                     ︷︷                     ︸

Ψ (Π)

(3.10)

Where Π is the ratio of pressure over the nozzle if flow is going from pressure one
to pressure two, otherwise the pressure and temperature in the equation have to
be switched so that the ones upstream are used in equation (3.10). Assuming
only one direction of mass flow the pressure ratio are defined as follows:

Π =

 p2
p1

if p2 < p1

1 otherwise
(3.11)

The critical pressure ratio is at the maximum of the Ψ (Π)-function, this happens
when the speed of sound is reached in the nozzle, this occurs for pressure ratios:

Π =
( 2
γ + 1

) γ
γ−1

(3.12)

Using the critical pressure ratio in the Ψ -function we state the normalized Ψ *-
function as follows:

Ψ ∗(Π) =

√
2γ
γ−1

(
Π

2
γ −Π

γ+1
γ

)
√

2γ
γ−1

( 2
γ+1

) 2
γ−1
−
(

2
γ+1

) γ+1
γ−1


(3.13)

Applying the linear region in order to fulfil the Lipschitz condition and prevent
oscillations for pressure ratios near one when simulating, also setting the values
under the critical pressure ratios to one. This in order for the model to work in al
possible conditions.

Ψ (Π) =


1 if 0 < Π ≤

(
2
γ+1

) γ
γ−1

Ψ ∗(Π) if
(

2
γ+1

) γ
γ−1

< Π ≤ Πlin

Ψ ∗(Πlin) Π−1
Πlin−1 if Πlin < Π ≤ 1

(3.14)

This function can be seen in the figure 3.2 where the linearized limit is set to
Πlin = 0.99 and γ = 1.4.
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Figure 3.2: Here the Ψ -function for an isentropical compressible nozzle can
be seen with both linearized area for pressure ratios over 0.99, and for pres-
sure ratios below the critical ratio the function are set to one.

3.2 Steady Non-Isentropic Compressible Flow

Previous calculations of the expansion and acceleration were based on equation
(3.4) which assumes the generated entropy to be zero. Entropy is a state property,
entropy is the quantity of microscopic disorder in a system, more information
about entropy can be found in (Çengel et al., 2012). The change of entropy is
defined as follows:

dS =
(dQ
T

)
(3.15)

For an ideal gas where the specific heats are assumed constants, the change in
entropy can be described as follows for any process:

s2 − s1 = cv ln
T2

T1
+ Rln

V1

V2
(3.16a)

s2 − s1 = cpln
T2

T1
− Rln

p2

p1
(3.16b)

If the process is assumed to be isentropic (s2 − s1 = 0) the equation (3.16b)
gives the previous stated equation (3.4). In figure 3.3, a diagram of the isentropic
process is shown together with a more accurate process which is called the actual
process. A logical explanation to the loss of kinetic energy which can be seen in
the diagram is the fact that the molecules bounce and collide lowering the overall
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kinetic energy and thus generating entropy, and internal energy in the form of
temperature. The temperature drop will thus be a bit lower than the theoretical
isentropical calculated temperature.

s
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Isentropic process

Actual process
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Figure 3.3: The entropy on the x-axis and the enthalpy on the y-axis. A
throttling process is shown, for both isentropic process where the entropy
is constant hence equation (3.4) does apply, and one actual process where
the entropy increase and thus also the enthalpy which leads to lower exit
velocity and lower mass flow.

The efficiency of a nozzle, or some other restriction over which there is a pres-
sure drop, is defined as:

ηN =
V 2

2a

V 2
2s

(3.17)

The kinetic energy equation (3.3) still applies but the isentropic equation (3.4)
does not, however the isentropic relation with regard to the efficiency of the noz-
zle can be stated as follows, which is shown in appendix B.

T2a

T1
= 1 − ηN

(
1 −

(p2

p1

) γ−1
γ

)
(3.18)
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This new governing equation leads to a different result for the mass flow
which in this case takes the isentropic efficiency into account, the calculations
are shown in appendix B and the resulting equation below. The pressure ratio is
corrected to make the calculations easier, this corrected pressure ratio (or more
accurate the temperature ratio) is called ΠηN and is defined in both appendix B
and equation (3.19).

ΠηN = 1 − ηN
(
1 −

(p2

p1

) γ−1
γ

)
(3.19)

ṁf ull =
p1√
RT1

A(α)Cd

√
2γ
γ − 1

(
Π

2
(γ−1)
ηN −Π

(γ+1)
(γ−1)
ηN

) ηN
(ηN − 1) 1

ΠηN
+ 1


γ
γ−1

(3.20)

Ψ =

√
2γ
γ − 1

(
Π

2
(γ−1)
ηN −Π

(γ+1)
(γ−1)
ηN

) ηN
(ηN − 1) 1

ΠηN
+ 1


γ
γ−1

(3.21)

One can see that the critical pressure ratio does not occur at the same pressure
ratio as for isentropic flow, the pressure ratio is now a function of the isentropic
efficiency. The critical pressure ratio is easiest obtained by finding the maximum
value of the Ψ -function numerically. The normalized pressure ratio function is
thus:

Ψ ∗ =

√
2γ
γ−1

(
Π

2
(γ−1)
ηN −Π

(γ+1)
(γ−1)
ηN

) ηN
(ηN−1) 1

ΠηN
+1


γ
γ−1

max(Ψ )
(3.22)

However for low isentropic efficiencies the Ψ -function will never reach a critical
pressure ratio before Π ≈ 0, the Ψ -maximum for low isentropic efficiencies is
reached for pressure ratios close to zero.

lim
Π→0

Ψ = inf for ηN / 85% (3.23)

This is inconvenient when the function is to be normalized for low efficiencies,
one can thus remove the lowest pressure ratios in order to not divide with an
extremely large number and ruining the possibility of comparing the shapes of
the Ψ -function for the different efficiencies. The critical pressure ratio as a func-
tion of the isentropic efficiency is shown in figure 3.5. In (Çengel et al., 2012)
it is stated that the efficiency of a nozzle or other short restriction is in most
cases above 90% and for converging nozzles above 95%.The previously constant
critical pressure ratio is now replaced with the new efficiency dependent critical
pressure ratio, defined as the pressure ratio where the Ψ -function reaches maxi-
mum.

Ψ (Πcrit , ηN ) = max(Ψ ) (3.24)
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Ψ (Π) =


1 if 0 < Π ≤ Πcrit

Ψ ∗(Π) if Πcrit < Π ≤ Πlin

Ψ ∗(Π) Π−1
Πlin−1 if Πlin < Π ≤ 1

(3.25)
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Figure 3.4: Here the Ψ -function for various isentropical efficiencies over a
nozzle can be seen with both linearized area for pressure ratios over 0.99.
Also for pressure ratios below the critical ratio the function are set to one.



20 3 Theory and Phenomena

0.85 0.9 0.95 1

Isentropic efficiency η
N
 [-]

0.3

0.35

0.4

0.45

0.5

0.55

C
ri
ti
c
a
l 
p
re

s
s
u
re

 r
a
ti
o
 Π

 [
-]

Figure 3.5: Here the critical pressure ratio is shown as a function of the
isentropic efficiency, worth noting is that for efficiencies below 85% there
is no critical pressure ratio since the extended Ψ -function does not have a
maximum value here as stated in equation (3.23)

3.3 Pulsating Pressure Ratio

The use of a mean pressure ratio when calculating the momentarily mass flow
can be one factor that effects the deviating shape of the Ψ -function. Since the
Ψ -function is non-linear the assumption that the average pressure ratio can be
used to calculate the mean Ψ -function value is incorrect but might be sufficient.
The assumption is explained in figure 3.6.

Ψ =

 Ψ (mean(Π)) assumption which is used.
mean(Ψ (Π)) correct way.

(3.26)

For pulsating flows this assumption would in theory distort the Ψ -function
in the same way as is shown in (Andersson, 2005) where the real Ψ -values is a
bit under the theoretical Ψ -function. However if the intake pulsations is large
enough to explain the deviation or if it is the isentropic efficiency which causes
this effect needs to be investigated further.
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0.6 0.7 0.8 0.9 1

Figure 3.6: If the pressure ratio is pulsating between the two outer dashed
lines and the mean pressure ratio is the dotted line, using the mean pressure
ratio to calculate the Ψ -value one gets the upper dot on the Ψ -function line.
The correct way to calculate the average Ψ -value is for every time step cal-
culate the Ψ -function value and then take the average of these. The lower
dot is thus obtained, the difference is shown in equation (3.26)

3.4 Unsteady Isentropic Compressible Flow

Using Newton’s second law of motion on a fluid particle in an unsteady com-
pressible flow, and neglecting the gravity, which often can be done assuming
small height differences in the flow, one gets the 1-D linear momentum equation,
derivation shown in appendix C.

1
ρ

∂p

∂x
+ v

∂v
∂x

+
∂v
∂t

= 0 (3.27)
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Assuming isentropic processes in the flow the isentropical relation between den-
sity and pressure, can be used to substitute the density in equation (3.27) with a
stagnation/inlet density and pressure.

ρ

ρ0
=

( p
p0

) 1
γ

(3.28)

1
ρ0

(p0

p

) 1
γ ∂p

∂x
+ v

∂v
∂x

+
∂v
∂t

= 0 (3.29)

Applying the equation to a restriction in a pipe, the assumption that the variables
only change with the length of the pipe but is the same for every cross section area
is to be made. The flow is thus uniform, and have only one dimension, hence the
above equation (3.29) applies. The equation also assumes isentropic flow, this is
motivated by the small effect the isentropic efficiency have when pressure ratio
is close to one, where this model is intended for use. Further integrating the
equation from the start of the pipe x0 where the pressure is p0 to xt and pressure
pt , t, indicating the throat of the valve. Also assuming that the inlet velocity is
negligible v0 ≈ 0 the integration becomes:

p
1
γ

0
ρ0

xt∫
x0

1

p
1
γ

dp +
v2
t

2
+

xt∫
x0

∂v
∂t
dx = 0 (3.30)

Further simplifications and assumptions of the equation above, shown in ap-
pendix C, gives an unsteady compressible mass flow equation where an extra
dynamic term is added to the previous steady equation. Similar assumptions
and calculations as in appendix C are made in (Kiwan et al., 2016)

A2
ef f C

2
d

p2
0

T0R

2γ
γ − 1

(
Π

2
γ −Π

γ+1
γ

)
= ṁ2 + AdynA

2
ef f C

2
d

2p0

T0R
Π

2
γ
∂ṁ
∂t

(3.31)

In order to deal with the possibility of reversing mass flows some comparisons
are to be made in order to determine in which direction the pressure ratio forces
the flow. The flow does not necessary flow from high pressure to low pressure
since the inertia of the flow can force flow from low to high pressure.

po =

 p1 if p1 ≥ p2

p2 if p1 < p2
(3.32)

To =

 T1 if p1 ≥ p2

T2 if p1 < p2
(3.33)

Π =


p2
p1

if p1 ≥ p2
p1
p2

if p1 < p2
(3.34)
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The mass flow direction is of interest and needs to be determined, the equa-
tion only states the magnitude. To ensure this effect is described the steady part
of the equation have to change sign when the flow is driven from p2 to p1 if the
positive flow is defined from p1 to p2. The mass flow square are to be divided
into two parts, one with absolute sign, to prevent the square from removing the
sign dependency.

sign(p1 − p2)A2
ef f C

2
d

p2
0

T0R

2γ
γ − 1

(
Π

2
γ −Π

γ+1
γ

)
= ṁ|ṁ| + AdynA2

ef f C
2
d

2p0

T0R
Π

2
γ
∂ṁ
∂t

(3.35)





4
Approach

In this chapter the approach used when taking measurements and how the model
parameters are calculated is presented. The valves which the previous presented
models are intended for are the ones in a combustion engine, where the dynamic
one is intended for low pressure ratios such as when a long route egr system is
used. The system is presented in figure 4.1.

Throttle

Wastegate

Long-Route EGR valve

Oxygen sensor

Mass flow sensor

Air filter

Turbine

Compressor

Intercooler

Long-route EGR system

Follwing exhaust system

Intake manifold Exhaust manifold

Cylinders

Figure 4.1: Here a schematic air path system is shown for a turbocharged en-
gine with long route egr system, long route egr is shown within the dashed
line. The oxygen sensor shown is just an example on how the flow past the
long route egr can be estimated.

25
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4.1 Steady Compressible Flow

In this section the approach and how the measurements are taken for the steady
non-isentropic model is presented.

4.1.1 Approach

To validate the theoretical calculations and formulas in the two sections regard-
ing steady compressible flow in the theory chapter, the approach and some thoughts
are described in the following section. The goal is to validate the Ψ -function
against real measured data not only theoretically , however the Ψ -function is not
a measurable state, some calculations is needed. To start of the isentropical effi-
ciency needs to be determined. This is done by doing measurements on a throttle
during steady flow and using the following formula, where all the states are easily
measured in the part rightmost, except T2a. The temperature at the throat of the
valve cant be measured since it is a very local temperature and after the valve the
generated speed causes turbulence and temperature rise. The temperature needs
to be determined analytical using ANSYS or the efficiency is to be approximated
plotting the Ψ -function and using lsqcurvefit to chose the isentropic efficiency
that minimizes the error in the model.

ηN =
V 2

2a

V 2
2s

=
T1 − T2a

T1 − T2s
=

T1 − T2a

T1 − T1

(
p2
p1

) (γ−1)
γ

(4.1)

To determine if the efficiency can be seen as a constant, or if it is pressure ratio
dependent, or perhaps throttle angle dependent, measurements need to be done.
This is done different pressure ratios, and throttle angles, only then the depen-
dency can be determined. The isentropic efficiency can also be input temperature
dependent (T1), however since it is hard to generate a wide range of input tem-
peratures this will only be investigated for the temperatures which is naturally
obtained when making the tests for different pressure ratios, and angles.

The mass flow function is as stated before, here with the addition of an angle,
and pressure ratio dependent Cd .

ṁ =
p1√
RT1

A(α)Cd(α,Π)Ψ (Π, ηN ) (4.2)

The angle dependant Cd part can be assumed to be absorbed by the A(α) which
combined is called Aef f (α).

ṁ =
p1√
RT1

Aef f (α)Cd(Π)Ψ (Π, ηN ) (4.3)

First of assuming that the isentropic efficiency is high enough so that there will
be a critical pressure ratio in the Ψ -function. For pressure ratios below the criti-
cal pressure ratio the Ψ -function will thus be one, as defined before. Setting the
throttle at a fixed position will make the effective area Aef f a constant. Making
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sweeps in the pressure ratio for fixed throttle angle, and normalizing with the val-
ues obtained for pressure ratios below the critical pressure ratio, C∗d(Π)Ψ ∗(Π, ηN )
can be extracted.

p1√
RT1

Aef f (α)Cd(Π)Ψ (Π, ηN )
p1√
RT1

Aef f (α) Cd(Π < Πcrit)Ψ (Π < Πcrit , ηN )︸                                   ︷︷                                   ︸
Assumed one for the lowest pressure ratios

=
ṁ

ṁ(Π < Πcrit)
= C∗d(Π)Ψ ∗(Π, ηN )

(4.4)
In short terms, the mass flow is measured and divided with the mean value of the
maximum mass flows, which occurs below the critical pressure ratio, thus the nor-
malized C∗d(Π)Ψ ∗(Π, ηN )-function is obtained. The theoretical Ψ -function can
now be compared with C∗d(Π)Ψ ∗(Π, ηN ) in order to determine if Cd(Π) can be
neglected, this is done both for isentropic Ψ -function (ηN = 100%), and for the
non-isentropic Ψ -function which uses isentropic efficiency. This to determine
if the Ψ -function taking the efficiency into account can explain the deviations
between the isentropic Ψ -function and C∗d(Π)Ψ ∗(Π), shown in for example (An-
dersson, 2005) where the Cd(Π) can not be neglected. When the Ψ -function have
been calculated the effective area function can easily be determined, using some
assumed polynomial expression and lsqcurvefit to decide the coefficients. The
polynomial which is used are proposed in (Eriksson and Nielsen, 2014) and is de-
scribed in equation (4.5) where ai are the coefficients which are to be determined.

Aef f = a0 + a1α + a2α
2 (4.5)

4.1.2 Measurements

Since the derived equations assume that the flow is steady, no change with time,
and in the intake manifold of an engine there is plenty of pulsations coming from
the intake valves the measurements are thus preferable made in a flow bench
where there no pulsations are generated. This to ensure that the phenomena
which causes the deviation in the theoretical Ψ -function from the measurements
in (Andersson, 2005) is not caused by the pulsations. Signals to be measured are
temperature and pressure, before and after the throttle, the mass flow past the
throttle, and throttle angle. This is done for various fixed throttle angles and for
every angle a wide range of pressure ratios. The flow test is carried out at Volvo
in their flow bench and a picture of the setup is shown in figure 4.2.

When deciding the Aef f (α)-function the measurements are done for various
throttle angles from the idle opening, to fully open, and for some various pres-
sure ratios that the flow bench can mange to produce when throttle is fully open.
Same signals are to be collected in this case.
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Figure 4.2: Here a standard Volvo throttle housing is mounted with sensors
in the flow bench at VCC, a loss free cone is used to reduce inlet turbulence.

4.2 Unsteady Compressible Flow

In this section the theoretical approach by which the dynamic compressible mass
flow model parameters can be calculated is presented. Suggestions on how the
measurements are to be conducted is also described.

4.2.1 Approach

The approach in which the dynamic compressible flow function is determined is
partly the same as for the static equation. The effective area Aef f and isentropic
efficiency is determined just as for the static function. However the efficiency
might be neglected due to the fact that the Ψ -function for pressure ratios close
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to one is almost the same regardless of the efficiency, and the dynamic function
main use is for pressure ratios close to one where the pulsating effects are large
and one needs to account for backflow. If one needs a model for a valve which
both should work for low pressure ratios where the efficiency needs to be taken
into account, and for pressure ratios close to one where the dynamic effects cant
be ignored, the previous derived compressible flow equation with regard to ef-
ficiency can replace the static part of the dynamic flow equations otherwise the
original Ψ -function can be used.

The similarity between the unsteady compressible flow equation and a first
order system is striking, the difference is the square of the mass flow term. The
square term can however easily be linearized around m0, here the static term is
replaced with ζ and the dynamic term with φ.

ζ = ṁ2 + Adynφ
dṁ
dt

(4.6)

Variable change:

∆ṁ = ṁ − ṁ0 (4.7)

And for mass flows close to m0:

ṁ2 ≈ ṁ2
0 + 2ṁ0∆ṁ (4.8)

ζ = ṁ2
0 + 2ṁ0∆ṁ + Adynφ

d∆ṁ
dt

(4.9)

Laplace transforming gives the first order system:

ζ − ṁ2
0

2ṁ0 + sAdynφ
= ∆ṁ (4.10)

The time constant is thus as follows and the Adyn can be determined by making
steps in mass flow rate for different plate angles and at different linearized mass
flow magnitudes.

Adynφ

2ṁ0
= τ (4.11)

Adyn =
2ṁ0τ
φ

(4.12)

To determine which variables that affect the dynamic area function further in-
vestigations on how a number of parameters, such as mass flow, pressure ratio,
temperature and so on, affect the measured values for Adyn. This in order to
determine if Adyn can be considered a constant or is dependant on some other
parameter and a function can be determined.
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4.2.2 Measurements

The data that is to be collected needs to be highly resolved in order to capture
the pulsations coming from the filling and emptying of the cylinders. When
evaluating the dynamic model on the throttle side a regular mass flow meter
can be used, as long as it samples fast enough. However for the long route egr
valve which the dynamic model is intended to be used for the mass flow can not
be measured directly. One way to estimate the mass flow over the long route
egr valve is to measure the oxygen level on the intake side of the engine after
the mixing point of the fresh air and exhaust gases, see figure 4.1. Defining the
percentage of oxygen in a gas as:

O2% =
mO
mtot

(4.13)

Assuming that the percentage of oxygen in both fresh air and exhaust gas is
known the precentage of oxygen after the mixing point can be described as:

O2% =
O2%air ṁair + O2%exhaustṁEGR

ṁair + ṁEGR
(4.14)

Thus the mass flow over the egr valve can be described using a mass flow sensor
and an oxygen sensor.

ṁEGR = ṁair
O2%air − O2%

O2% − O2%EGR
(4.15)

This approach is however problematic since oxygen sensors is not fast enough to
measure the pulsations which occurs twice per engine revolution in the intake
manifold. A high resolved air mass flow sensor can be used instead and the dy-
namic model thus have to be evaluated on the throttle instead of the egr valve.



5
Results

Here the results of this master’s thesis is presented. For example the measured
data both from an engine and a flow bench against standard and extended model
is shown. The simulation results from both ansys and simulink is also pre-
sented.

5.1 Fixed Throttle Position

In order to eliminate the area dependant factor when calculating the Ψ -function
measurements are made for fixed throttle positions, thus the effective area can
be seen as a constant and eliminated. Measurements are made for three different
throttle angles, however for the throttle angle at 5 degrees only a very small range
of pressure ratios was possible to archive due to the limitations in the engines
working range. These measurements are made on an engine thus the intake pul-
sations is present. One can clearly see the deviation between the measured and
theoretical values in figure 5.1, just as in (Andersson, 2005).

31
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Figure 5.1: The Simulation model used to calculate the normalized Ψ -values
for different pressure ratios with the effect of intake manifold pulsations.

5.2 Normal and Extended Ψ -function

Using data where the pressure before and after the throttle, temperature before
the throttle, mass flow past the throttle, and throttle angle are measured during
stationary conditions makes it possible to evaluate the Ψ -function. Furthermore
the isentropic flow equation is used and compared with the non isentropic flow
equation in order to determine if an improvement is achieved.

5.2.1 Engine Measurements

These measurements are made on an engine, thus the pulsations are present, and
the deviation in the Ψ -function can not definitely be explained by the efficiency,
it can also be the pulsations effecting the flow. In figure 5.2 the isentropic flow
equation is used, and in figure 5.3 the non-isentropic flow equation is used and
the optimal efficiency is determined using lsqcurvefit. In order to eliminate the
effective area term from the model the effective area is modeled and then substi-
tuted in order to obtain the Ψ -function. In figure 5.4 the difference between the
fit of the normal and extended Ψ -function is shown along with the calculated
Ψ -values from the data.
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Figure 5.2: Effective area model when the isentropic Ψ -function is used. The
mean relative error is in this case 2.89%
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Figure 5.3: Effective area model when the non-isentropic Ψ -function is used,
the efficiency which minimizes the relative error is 96.5%. The mean relative
error is in this case 2.69% which is a 7% decrease in relative error.
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Figure 5.4: The normalized Ψ -data points is here shown together with both
the standard 100% isentropic efficiency equation and with 96.5% efficiency,
which is obtained using lsqcurvefit.
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Figure 5.5: Pressure ratios above 0.95 is removed due to the linear region in
the model which have a big relative error and thus only makes it harder to
compare the improvement in the model. The total improvement in relative
error is over 30% for the extended model.
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5.2.2 Flow Bench Measurements

These measurements are made with a flow bench, thus pulsations are not present,
and the deviation in the Ψ -function can with these results with certainty exclude
the pulsations as the deviating factor.
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Figure 5.6: The isentropic normalized Ψ -function is here shown together
with the data collected in the flow bench for various throttle angles. One
can see that the efficiency is varying with the throttle angle and the figure
indices that a smaller opening have higher efficiency.

The data collected in the flow bench is used to calculate the efficiency for every
fixed area opening using lsqcurvefit, the result is shown in figure 5.7. The error
between the measured values and the non-isentropic Ψ -function when the esti-
mated efficiency is used is very small, more details of the relative error is shown
in figure 5.8. Using a non-pressure dependant efficiency can be motivated by the
small differences in relative error over the Π-range. Also the area dependant ef-
fect on the isentropic efficiency can perhaps be neglected, the only big deviation
in efficiency is for a throttle opening of 5 degrees.

The Reynold’s number can be calculated using equation (5.1). The results
when calculating the Reynold’s number can be seen in figure 5.9. For a fluid flow-
ing in circular pipe the critical Reynold’s number where the flow is shifting from
laminar to turbulent is said to be around 2000 < Re < 4000 and if there is some
obstacle or a rough surface in the tube turbulent flow will evolve much faster,
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Figure 5.7: The isentropic Ψ -function is the dashed line, the measured val-
ues from the flow bench is the blue line, and the red line is the non-isentropic
Ψ -function when the efficiency is estimated using lsqcurvefit.

(Karl Storck, 2012). The flow is according to the calculated Reynold’s number
fully developed turbulent in all the cases.

Re =
LU
v

=
dh

ṁ
ρA

v
=

4ṁ
Oρ

v
=

4ṁRT
Op2

v
(5.1)
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Figure 5.8: The relative error is here shown for the different throttle angles,
there is no apparent tendencies except that the relative error is a bit higher
for pressure ratios close to one, this since the function here his closer to zero
which leads to higher relative error even if the absolute error is the same or
even smaller.
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Figure 5.9: Here the Reynold’s number is shown for the different throttle
openings and over the pressure ratio, there is in all cases fully developed
turbulent flow. The Reynold’s number is here calculated at the throat of the
valve assuming the valve opening is shaped as a two dimensional crescent.

5.3 Pulsating Pressure Ratio

The effects of a mean pressure ratio when calculating the momentarily mass flow
is described in the theory chapter and is here evaluated. First of is to deter-
mine the shape and size of the pressure pulsations in the intake manifold, this is
done by measuring with a fast enough pressure sensor for three different output
torques, 30 Nm, 80 Nm, and 280 Nm , pressure pulsations shown in figure 5.11.
The mean value of each signal is then removed in order to obtain only the shape
and height of the pulsations. A simulation system is then built in simulink,
see figure 5.10 where the different intake pressure is sent to the model from the
workspace ofmatlab and the pressure pulsations are added, this is done for pres-
sure ratios of 0.2 to 1. The result of the simulation model is shown in figure 5.12,
and the effects of the pulsations is as seen negligible. The use of a mean value
pressure ratio is not enough to explain the distortion of the Ψ -function. How-
ever close to pressure ratio one where the amplitude of the pulsations is enough
to drive the flow in the opposite direction the fit is bad due to the fact that the
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used model cant handle back flow.

Figure 5.10: The Simulation model used to calculate the normalized Ψ -
values for different pressure ratios with the effect of intake manifold pul-
sations.
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Figure 5.11: Intake manifold pressure pulsations for three different engine
loads, first is 30 Nm where the amplitude is 10 kPa, second 80 Nm where the
amplitude is 14 kPa, and last 280 Nm where the amplitude is 16 kPa. The
vertical lines shows where the intake valve closes for each cylinder.
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Figure 5.12: The theoretical Ψ -function along with the calculated Ψ -
function for the three different engine load pressure pulsations. The devi-
ation from the theory close to pressure ratio one is due to the fact that the
pulsations causes pressure ratio to go above one which leads to back flow
which is not taken into account in the model. The deviation from theory
due too pulsations is to small and can not explain the quite large deviation
shown in (Andersson, 2005)
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5.4 Throttle Valve ANSYS Analysis

A throttle valve is modeled in two dimensions with a pipe diameter of 60 mm and
a plate angle of 20 degrees. The mesh is done fairly large upstream and down-
stream of the openings to reduce calculation time, however around the openings
very small elements are used to obtain high accuracy. The calculations are done
for two different pressure ratios which are shown in figure 5.13. The corners of
the valve body is rounded to remove sharp edges which requires extremely fine
mesh size in order to keep the simulation converging.

(a) Pressure contours over the throttle
valve when pressure ratio is 0.8.

(b) Pressure contours over the throttle
valve when pressure ratio is 0.7.

Figure 5.13: The static pressure is shown over the throttle valve.

(a) velocity magnitude over the throttle
valve when pressure ratio is 0.8.

(b) Velocity magnitude over the throttle
valve when pressure ratio is 0.7.

Figure 5.14: The velocity magnitude is shown over the throttle valve.
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(a) The streamline function with velocity
magnitude over the lower opening in the
throttle valve when pressure ratio is 0.8.

(b) The streamline function with velocity
magnitude over the lower opening in the
throttle valve when pressure ratio is 0.7.

Figure 5.15: The shape of the streamlines are very similar between the two
pressure ratios.

(a) The streamline function with velocity
magnitude over the upper opening in the
throttle valve when pressure ratio is 0.8.

(b) The streamline function with velocity
magnitude over the upper opening in the
throttle valve when pressure ratio is 0.7.

Figure 5.16: The shape of the streamlines are very similar between the two
pressure ratios.
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(a) The throttling process for the lower
opening in the valve, this for a pressure ra-
tio of 0.7.
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(b) The throttling process for the upper
opening in the valve, this for a pressure ra-
tio of 0.7.
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(c) The throttling process for the lower
opening in the valve, this for a pressure ra-
tio of 0.8.
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(d) The throttling process for the upper
opening in the valve, this for a pressure
ratio of 0.8. Here the flow simulated does
not seem to be fully developed.

Figure 5.17: Enthalpy and entropy for the throttling process for the lower
and upper streamlines. The process seems to be ideal, this might be since
the calculations are done with a model for turbulence which simplified the
flow with a turbulent flow model.
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5.5 Dynamic Compressible Flow

A regular mas flow meter measures the air mass flow through the pipe with the
help of a platinum wire. A current is sent through the wire, the more mass flow
the more the wire will be cooled which leads to lower resistance and the other
way around for lower mass flows. The mass flow can thus be measured after the
sensor has been calibrated towards a known flow in a flow bench. The dynamic
measurements is carried out in the engine-lab at ISY with one millisecond sam-
pling of the new mass flow sensor which uses a thin film to measure the varying
resistance instead of a platinum wire as before. The film reacts much faster to
changes than the wire due to the greater area to mass ratio which cools or heats
the film faster then the wire. The raw measured signals for the mass flow can
be seen in figure 5.18 and the related intake manifold pressure in figure 5.19.
The measured boost pressure (pressure before the throttle) can be considered
constant since it only oscillates with the resolution of the digital pressure sensor,
0.08 kPa.

0 2 4 6 8 10

Time [s]

1.5

2

2.5

3

H
z
 [
1
/s

]

Mean Π  = 0.3

0 2 4 6 8 10

Time [s]

2.8

2.9

3

3.1

3.2

3.3

H
z
 [
1
/s

]

Mean Π  = 0.5

0 2 4 6 8 10

Time [s]

1.5

2

2.5

3

3.5

4

H
z
 [
1
/s

]

Mean Π  = 0.64

Raw measured MAF-sensor signal

0 2 4 6 8 10

Time [s]

2

2.5

3

3.5

4

H
z
 [
1
/s

]

Mean Π  = 0.79

Figure 5.18: The measured air mass flow signal for four different loads and
thus pressure ratios, the frequency needs to be converted to mass flow with
the help of the calibration line for this particular sensor. The sudden spikes
in the data is probably measurement errors due to bad connections in the
wiring.
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Figure 5.19: Here the intake manifold pressure for the four different cases
can be seen, in the case of pressure ratio 0.5 some load change happens at
the end. Here the data is cleaner and needs no pre-filtering as in the mass
flow case.

The data from the mass flow sensor is pre-filtered by replacing the values that
deviate too much from the previous values in the time series with the previous
value, this removes the sudden spikes that can be seen in the raw air mass flow
sensor signal. Furthermore both intake manifold pressure signal and the mass
flow signal is filtered with a butterworth filter and the filtfilt function in mat-
lab, which is a no phase shifting filter. After filtering the frequency from the
mass flow sensor, the frequency is converted to actual mass flow air in grams per
second using the given calibration line supplied by VCC, shown in figure 5.20.
The filtered and the raw signal for the mass flow can be seen in figure 5.21 which
is zoomed so it is possible to see the difference, where the zoom position is ran-
domly chosen. The same case for the pressure in the intake manifold can be seen
in figure 5.22.

Furthermore the pressure signal is applied to the static non-isentropic com-
pressible flow equation with an isentropic efficiency of 95%, the effective area
function is calculated from data taken in the flow bench see figure 5.23. The re-
sulting modelled mass flow is then compared to the measured and the result can
be seen in figure 5.24, the mean flow was corrected by a very small portion just
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Figure 5.20: The calibration line converting the measured frequency to air
mass flow in grams per second, this particular mass flow meter can even
handle back flows thus presenting a negative value.

so that the mean flow of both signals is at the same level which makes it easier
to compare. The phase difference between the model and the measured values is
due to the distance from measured pressure to measured mass flow which causes
a time delay. However in order to implement the dynamic flow equation to pre-
dict the instantaneous flow past the throttle the measurements should have been
done without any turbo or intercooler which disturbs the flow. A spectral analysis
is made and the result is shown in figure 5.25
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Figure 5.21: Here the filtered mass flow signal can be seen together with
the raw signal, the blue line is the filtered signal and the red is the raw data.
After pre-filtering and filtering the data is converted from frequency to mass
flow.
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Figure 5.22: Here the filtered intake manifold pressure signal can be seen
together with the raw signal, the blue line is the filtered signal and the red is
the raw data. The resolution of the digital pressure sensor can also be seen
here as the steps in the red line.
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Figure 5.23: Here is the measured effective area shown, this line is used
when calculating the flow from the pulsating intake manifold pressure.
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Figure 5.24: Here the measured mass flow signal, blue line, together with
the modelled mass flow, red line, is shown. When pressure ratio is below
the critical pressure ratio the model indicates a constant flow, the pulsations
for the lowest pressure ratio is thus induced by the compressor and the in-
tercooler volume. It is in this case impossible to distinguish the mass flow
pulsations coming from the flow past the throttle or the pulsations induced
from the speed of the turbo.
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Figure 5.25: Here a fourier transfrom is made for the different signals in or-
der to see the spectral content of each signal. The engine was running at 950
rpm which can clearly be seen as the main frequency at almost 200 rad/sec.
Each valve opens every second revolution, thus 2 valves open per revolution
in a four cylinder engine, which is 200 rad/sec at 950 rpm. There is also a
lower peek at 100 rad/sec which is the opening of one valve. Overtones of
the base frequency can also be seen, some of the pulsations in the measured
signals comes from the intake manifold and some from the exhaust pulses
driving the turbo.



6
Conclusion

In this chapter the conclusion and summary of this master’s thesis is presented,
along with some suggestions for future work.

6.1 Summary

This master’s thesis have focused on the standard isentropic adiabatic compress-
ible flow equation for a nozzle and evaluated how well the assumptions made
when deriving the equation fits the conditions for a throttle in a combustion en-
gine. Already in (Andersson, 2005) and among others, measurements shows that
some of the assumptions made when deriving the standard compressible equa-
tion might have been too much of a simplification. Such measurements have
been done in this master’s thesis as well and the same effect has been found. Here
follows a short list of the assumptions which were investigated.

• The first assumption which was investigated was the usage of a mean pres-
sure ratio when calculating the mass flow. Typical intake manifold pul-
sations were measured with fast sampling sensors and the resulting pres-
sure ratio was inserted into a simulink model which calculated the mean
mass flow and presented a Ψ -function. This was done for three different
engine loads, thus three different amplitudes of the pulsations. The result
shows that for typical intake manifold pulsations the resulting Ψ -function
do not deviate as much as shown in (Andersson, 2005). The deviation is
also largest at pressure ratios close to one which is the opposite as the mea-
surements shows in (Andersson, 2005), thus the assumption that the flow
is steady is good enough, at least for the throttle. However where pressure
ratio is close to one and the pulsations are larger this assumption leads to
modeling errors, such as for the long route egr valve.
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• The second assumption is that the flow is both adiabatic and isentropic, adi-
abatic means no heat exchange with the surrounding, and isentropic means
constant entropy. Both these assumptions correlates to the internal energy
of the gas and are therefore lumped into one assumption, this since it needs
extensive tests to show where the energy is coming from if it exchanges en-
ergy with the surrounding or energy is generated within. Where the energy
is coming from is not that interesting, the interesting part is how it affects
the flow. Instead of this assumption an efficiency term is introduced, which
can simplified be described as the amount of useful enthalpy drop divided
by the ideal enthalpy drop over the valve. A new equation is derived with
this in mind, in appendix B, the results are promising and the deviation in
the ideal Ψ -function can be explained by this. The ANSYS analysis indi-
cates a generation of entropy in the streamlines close to the wall, however
no generation of entropy is seen in the other streamlines which does not go
along with the results from the equation and the good fit to the data. This
can be explained by the simplification ANSYS does when calculating turbu-
lent flow, due to lack in computational power and knowledge about ANSYS
fluent the simulation were not complex enough to capture the generation
of entropy. However the model fits well to the data taken in a flow bench
and the efficiency term is around 92.5% which is in line with what is stated
in (Çengel et al., 2012).

• The third assumption is that the effective area function Aef f (α) only de-
pends on the throttle plate angle α and is not dependant on the pressure
ratio Aef f (α,Π). Due to the difficulty in pinpointing where in the model
the deviation is coming from, if it is the Ψ -function or the area function
this has only been investigated by looking at the streamlines in the ANSYS
simulation. The streamlines in the ANSYS analysis does not indicate that
the streamlines are contracting at higher pressure ratios, however here is
a lot of uncertainties due to the lack of computational power once again
which could not simulate pressure ratios below 0.7. Due to the limitations
and large uncertainties in this method it is not investigated further when
the second assumption seems to be the problem in the model.

The improved model which does not assume adiabatic and isentropic flow
have improved the modeling accuracy by decreasing the relative error for both
the effective area function by 7% and for the Ψ -function by 32%. The data
used here is 236 different stationary operating points for the Volvo engine in the
engine-lab, a so called engine map.

Furthermore this master’s thesis introduces a dynamic flow model which uti-
lizes the 1-D momentum equation to add an extra dynamic term to the regular
mass flow model. The dynamic equation handles back flow by shifting the sign of
the flow and replacing pressure and temperature with the upstream pressure and
temperature. The model is intended for places where the pressure ratio is close
to one and there is large pulsations, meaning the pulsating effect is not negligible
here. This occurs in for example the exhaust and more specific the long route
egr valve. However due to the harsh conditions in the exhaust and not being
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able to measure the flow over such a valve the measurements where taken on a
throttle. The pulsations are not as big here and there is an intercooler and a turbo
influencing the measurements in-between of the throttle and the fast sampling
MAF-sensor the connection between the dynamic flow model and the measured
data was never made. The spectrum of the signals where investigated but in order
to implement and finding the terms in the dynamic model more work is needed.

6.2 Future Work

The time spent on this thesis has unfortunate come to an end, however this in-
triguing subject leaves if possible more to think about now than before the work
started. The two main working directions in the future is proposed here.

6.2.1 Ψ -function

In order to be certain that the reason for the deviation in the standard Ψ -function
is the generation of entropy further analysis is needed. This can preferable be
done by someone who have more knowledge in ANSYS fluent and have access to
a super computer. This will show if there is a generation of entropy or if it is some
other effect, however this might not be of interest since the new model correlates
well with the data. Investigations if it is sufficient to assume the efficiency to be
seen as a constant or if there is a need for an efficiency function, some work have
been done in this thesis on this subject but more is perhaps needed.

6.2.2 Dynamic Flow Model

The dynamic flow model needs to be investigated further, for example how the
coefficients should be extracted from measurements and how the measurements
should be done, both practical and in theory in order to easily obtain the coef-
ficients needed for an implementation of the model. Another solution is also
to model the dynamics of the system between measuring point and the throttle
valve, which makes it possible to estimate the instantaneous flow past the throt-
tle. When this is done the model can be evaluated. Measurements are preferable
done under such conditions for which the model is intended, as in a long route
egr system of a combustion engine. However the model is hopefully a good start-
ing point when modeling the pulsating and back flowing behaviour of valves
such as the long route egr.
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A
Calculations for Isentropic

Compressible Flow

Some ideal gas relations:

γ =
cp
cv

(A.1)

cp = cv + R (A.2)

c =
√
γRT (A.3)

ρ =
p

RT
(A.4)

Calculations for equations (3.3), and (3.5) to (3.6).

Proof:
V = M

√
γRT (A.5)

T1 = T2 +
(M

√
γRT2)2

2cp
(A.6)

T1

T2
= 1 +

M2γR

2cp
(A.7)

T1

T2
= 1 +

M2

2

cp(cp − cv)

cvcp
(A.8)

T1

T2
= 1 +

M2

2
(γ − 1) (A.9)
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T1

T2
= 1 +

γ − 1
2

M2 (A.10)

Calculations for equations (3.3), (3.4), and (3.5) to (3.7).

Proof:
T1

T2
= 1 +

γ − 1
2

M2 (A.11)

T2

T1
=

(p2

p1

) (γ−1)
γ

(A.12)

1 +
γ − 1

2
M2

−1

=
(p2

p1

) (γ−1)
γ

(A.13)

1 +
γ − 1

2
M2

−1(p1

p2

) (γ−1)
γ

= 1 (A.14)

(p1

p2

) (γ−1)
γ

=

1 +
γ − 1

2
M2

 (A.15)

p1

p2
=

1 +
γ − 1

2
M2


γ
γ−1

(A.16)

Calculations for equations (3.6), (3.7), and (3.8) to (3.9).

Proof:

ṁideal = ρAV =
p2

RT2
AV =

p2

RT2
AM

√
γRT2 =

p2√
RT2

AM
√
γ (A.17)

ṁideal =

p1

1 + γ−1
2 M2

−
γ
γ−1

√√
RT1

1 + γ−1
2 M2

−1
AM
√
γ (A.18)

ṁideal =
p1√
RT1

AM
√
γ

1 +
γ − 1

2
M2

−
γ
γ−1

1 +
γ − 1

2
M2


1
2

(A.19)

ṁideal =
p1√
RT1

AM
√
γ

1 +
γ − 1

2
M2

−
(γ+1)

2(γ−1)

(A.20)
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Calculations for equation (3.9) to (3.10).

Proof:
Π =

(p2

p1

)
(A.21)

M =
V
c

=

√
2cp(T1 − T2)√

γRT2
(A.22)

M =

√√2cp
γR

Π− γ−1
γ − 1

 (A.23)

M =

√√ 2cp
cp
cv

(cp − cv)

Π− γ−1
γ − 1

 (A.24)

M =

√√ 2
γ − 1

Π− γ−1
γ − 1

 (A.25)

ṁideal =
p1√
RT1

A
√
γ

√√ 2
γ − 1

Π− γ−1
γ − 1

1 +
γ − 1

2
2

γ − 1

Π− γ−1
γ − 1

−
(γ+1)

2(γ−1)

(A.26)

ṁideal =
p1√
RT1

A
√
γ

√√ 2
γ − 1

Π− γ−1
γ − 1

Π− γ−1
γ

−
(γ+1)

2(γ−1)

(A.27)

ṁideal =
p1√
RT1

A
√
γ

√√ 2
γ − 1

Π− γ−1
γ − 1

Πγ+1
2γ

 (A.28)

ṁideal =
p1√
RT1

A

√√ 2γ
γ − 1

Π− γ−1
γ − 1

Πγ+1
γ

 (A.29)

ṁ =
p1√
RT1

A

√
2γ
γ − 1

(
Π

2
γ −Π

γ+1
γ

)
(A.30)





B
Calculations for Non-isentropic

Compressible Flow

Proof:

ηN =
V 2

2a

V 2
2s

(B.1)

ηN =
T1 − T2a

T1 − T2s
(B.2)

ηN =
T1 − T2a

T1 − T1

(
p2
p1

) γ−1
γ

(B.3)

ηN =
1 − T2a

T1

1 −
(
p2
p1

) γ−1
γ

(B.4)

T2a

T1
= 1 − ηN + ηN

(p2

p1

) γ−1
γ

︸                    ︷︷                    ︸
The effective pressure quota ΠηN

(B.5)

Substituting the velocity in equation (3.3) is done the same way as for isen-
tropic flow.

T1

T2a
= 1 +

γ − 1
2

M2 (B.6)

Substituting the temperature with velocity in equation (3.18) is done as fol-
lows.
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Proof:
T2a

T1
= 1 − ηN

(
1 −

(p2

p1

) γ−1
γ

)
(B.7)

1 +
γ − 1

2
M2

−1

= 1 − ηN
(
1 −

(p2

p1

) γ−1
γ

)
(B.8)

1
ηN
− 1

ηN

1 + γ−1
2 M2


= 1 −

(p2

p1

) γ−1
γ

(B.9)

1 − 1
ηN

+
1

ηN

1 + γ−1
2 M2


=

(p2

p1

) γ−1
γ

(B.10)

ηN

1 + γ−1
2 M2

 − 1 + γ−1
2 M2

 + 1

ηN

1 + γ−1
2 M2


=

(p2

p1

) γ−1
γ

(B.11)

(p1

p2

) γ−1
γ

=

ηN

1 + γ−1
2 M2


(ηN − 1)

1 + γ−1
2 M2

 + 1

(B.12)

(p1

p2

)
=


ηN

1 + γ−1
2 M2


(ηN − 1)

1 + γ−1
2 M2

 + 1


γ
γ−1

(B.13)

(p1

p2

)
=

1 +
γ − 1

2
M2


γ
γ−1

 ηN

(ηN − 1)

1 + γ−1
2 M2

 + 1


γ
γ−1

︸                                   ︷︷                                   ︸
New part of formula with regard to efficiency

(B.14)

Furthermore the same approach as for isentropic mass flow is used, however
the pressure quota when calculating the Mach number are to be replaced with
the effective pressure quota ΠηN .
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M =

√√ 2
γ − 1

 1
ΠηN

− 1

 (B.15)

For simplicity the Mach number in the new term in equation (B.14) is substi-
tuted first.

Proof:  ηN

(ηN − 1)

1 + γ−1
2 M2

 + 1


γ
γ−1

(B.16)

 ηN

(ηN − 1)

1 + γ−1
2

 2
γ−1

 1
ΠηN
− 1

 + 1


γ
γ−1

(B.17)

 ηN
(ηN − 1) 1

ΠηN
+ 1


γ
γ−1

(B.18)

The mass flow calculations without the new term is:

Proof:

ṁpart =
p1√
RT1

A
√
γ

√√ 2
γ − 1
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Adding the previous calculated part the full equation for the mass flow with
regard to the isentropic efficiency is obtained.

ṁf ull =
p1√
RT1
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γ
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C
Calculations for Unsteady

Compressible Flow

d
s

pdA

(p+dp)dA

s

Fluid particle

Figure C.1: An arbitrary fluid particle in an unsteady compressible flow
stream, 1-dimension, and no gravity field accounted for.

Considering the figure C.1 of a fluid particle, with regards to Newton’s second
law of motion one can do the following simplifications in order to obtain the
linear momentum equations.

Proof: ∑
Fs = mas (C.1)

Assuming
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pdA − (p + dp)dA = m
(∂vds
∂sdt

+
∂v
∂t

)
(C.2)

− dpdA = ρdsdA
(∂v
∂s
v +

∂v
∂t

)
(C.3)

1
ρ

∂p

∂x
+ v

∂v
∂x

+
∂v
∂t

= 0 (C.4)

Which is how the 1-D linear momentum equation in fluid mechanics is com-
monly presented. Now substituting the density with the isentropic relation the
following calculations can be made.

ρ

ρ0
=

( p
p0

) 1
γ

(C.5)

1
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) 1
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= 0 (C.6)

Furthermore integrating and assuming that v0 ≈ 0.
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1

p
1
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v2
t

2
+
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Replacing the velocity with mass flow.

v =
ṁ
ρA

=
ṁ
ρ0A

(p0

p

) 1
γ

(C.8)
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Assuming that the dependency of x on ṁ(x), and p(x) are negligible in the integral
term, the integral can be simplified. Same assumptions is made in (Kiwan et al.,
2016) and the result is promising.
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Substituting the density with ρ0 = p0
T0R

and and pressure with Π = pt
p0

.
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If the last term, containing the dynamics of the flow, in above equation (C.15) is
neglected, and At is replaced by some area function of the valve opening Aef f (α)
and Cd is introduced to account for unknown losses the steady compressible ori-
fice equation is acquired.

Aef f Cd
p0√
T0R

√
2γ
γ − 1

(
Π

2
γ −Π

γ+1
γ

)
= ṁ (C.16)

Since the geometry in the valve changes depending on the opening angle it is
more convenient to replace the integral therm with a dynamic area function, Adyn
which have to be determined by dynamic tests. Assuming that the change of p0
with time is negligible compared to the mass flow change of time, the p0 term
can be extracted from the time derivative. Resulting in the following equation
for unsteady, compressible, isentropic, adiabatic, mass flow, similar to the steady
compressible equation but with a term for the inertia of the gas.

A2
ef f C

2
d

p2
0

T0R

2γ
γ − 1

(
Π

2
γ −Π

γ+1
γ

)
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