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Abstract

When further demands are placed on emissions and performance of cars, trucks
and busses, the vehicle manufacturers are looking to have cheap ways to evaluate
their products for specific customers’ needs. Using simulation tools to quickly
compare use cases instead of manually recording data is a possible way forward.
However, existing traffic simulation tools do not provide enough detail in each
vehicle for the driving to represent real life driving patterns with regards to road
features.

For the purpose of this thesis data has been recorded by having different
people drive a specific route featuring highway driving, traffic lights and many
curves. Using this data, models have then been estimated that describe how hu-
man drivers adjust their speed through curves, how long braking distances typi-
cally are with respect to the driving speed, and the varying deceleration during
braking sequences. An additional model has also been created that produces
a speed variation when driving on highways. In the end all models are imple-
mented in Matlab using a traffic control interface to interact with the traffic
simulation tool sumo.

The results of this work are promising with the improved simulation being
able to replicate the most significant characteristics seen from human drivers
when approaching curves, traffic lights and intersections.
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1
Introduction

This chapter serves as a broad introduction to the different areas of research that
this thesis builds upon.

1.1 Driving cycles

Driving cycles is an important tool for the evaluation of engine emissions and
fuel consumption and are used to give vehicles environmental certification in a
country or region. Driving cycles are also used by vehicle manufacturers in order
to optimize powertrains based on specific use cases. A driving cycle is essentially
a speed profile recorded over a certain amount of time designed to mimic regular
usage of the vehicle type it’s supposed to test. Numerous driving cycles are used
around the world to assess the environmental impact of vehicles. Some of the
most well known driving cycles are the New European Driving Cycle (nedc)
used for car certification in Europe, and the EPA Federal Test Procedure (ftp-75
and its successors) used for certification in the United States.

Different driving cycles are used for different vehicle types since often the
regular usage can vary greatly. Bus engines for example are typically tested on a
driving cycle containing lots of starts and stops, mimicking a bus going between
stops, while an engine for a truck designed to carry heavy loads is tested on a
driving cycle with longer segments of rather constant speed representing long
range highway/freeway driving.

This thesis however is mainly concerned with driving cycles for cars, but the
work may be extended to other vehicle types as well. Driving cycles for cars have
differing characteristics depending on what type of driving they aim to represent.
For example, urban driving contains lots of stops and relatively low speeds while
driving on rural roads or highways means very few stops and generally higher
speeds. There are driving cycles that have been designed to cover urban and
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(a) The ftp-75 driving cycle, assembled
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Figure 1.1: A comparison between the nedc and ftp-75 driving cycles.

highway driving separately and there are also ones where both types of driving
are present.

Many driving cycles (including ftp-75, see Figure 1.1a) are created by record-
ing the speed of vehicles driving specific routes and then using averages and piec-
ing together different parts to create one driving cycle that’s deemed representa-
tive of a car’s regular usage. Since this type of method is based on real world data
it produces driving cycles with speed variation close to what is observed from
human drivers in real traffic and road situations. The reliance on real world data
however means that the driving cycle is more favourable to the type(s) of car that
was driven during the test. The ftp-75 driving cycle consists of the udds (Urban
Dynamometer Driving Schedule) driving cycle with an added repetition of the
first 505 s (Environmental Protection Agency (EPA), 2017).

Some other driving cycles (for example nedc, Figure 1.1b) are created in the-
ory, only using real driving as a guideline in its creation. The nedc is made up
of four repeated udc (Urban Driving Cycle) followed by an eudc (Extra-Urban
Driving Cycle) (United Nations, 2013). The result is a driving cycle that has sec-
tions of acceleration/deceleration with fixed gear changes, and sections of con-
stant speed. This type of driving cycle is not very representative of real driving
and the nedc has been heavily criticized for producing fuel consumption and
emission figures that are far from what can be achieved in real life (Mock et al.,
2012). The predictable shape and repetition of the driving cycle has also meant
that car manufacturers can optimize their powertrains to get better results from
the specific driving cycle while not actually producing better results in real world
driving, something referred to as “cycle beating” (Kågesson, 1998).
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1.1.1 Related Research

With regards to the problems faced by using predetermined driving cycles, re-
search has been conducted on generating driving cycles with characteristics sim-
ilar to real driving. The goal with these methods is to eliminate the need for
predetermined driving cycles (such as ftp-75 or nedc) and instead be able to
generate driving cycles that can be used for engine testing and emission evalua-
tion (Nyberg et al., 2016; Souffran et al., 2011).

One approach to generate driving cycles is to make use of a stochastic process
that given data recorded from many test drives is able to construct a driving cycle
that represents real driving. Some papers (Gong et al., 2011; Nyberg et al., 2016;
Souffran et al., 2011) make use of Markov models to generate these new driving
cycles. The approach presented by Nyberg et al. (2016) has the added possibility
to generate equivalent driving cycles that provide the same excitation as a given
standardized driving cycle, e.g. nedc.

Another approach with the same goal is to use real world driving data to cal-
ibrate engines for a specific set of driving missions carried out in real life (Tong
et al., 1999). This approach can be used for passenger cars as well as other types
of vehicles. A set of driving missions can be defined which represent the most
likely driving that the vehicle will be exposed to during its life time. The draw-
back with this approach is that recording driving data takes a lot of time and is
expensive. There is also very little control over test parameters such as traffic
when driving in real life. If vehicle routes are simulated inside a traffic simula-
tion where parameters can be set for traffic, vehicles and driver behaviour this
method could prove more viable. This thesis will make use of a traffic simulation
to simulate driving missions.

1.2 Microscopic Traffic Simulation

Traffic simulation is an area of research that is concerned with the understanding
of phenomena such as traffic flow, traffic jams, and vehicle interaction in traffic
through the use of simulation. Simulating these phenomena accurately can give
valuable information about efficient road construction to minimize traffic jams
and improved event planning in large cities when roads are closed off (Krauß,
1998).

Traffic simulation is usually divided into two groups: Macroscopic- and micro-
scopic simulation. Macroscopic simulation models are aimed at describing traffic
in large road networks where the main point of interest is traffic flow and how it
evolves over time. Macroscopic models are thus based on flow equations repre-
senting single vehicles as particles within a fluid moving along the roads. Micro-
scopic models on the other hand describe each vehicle and its behaviour on the
road individually and a larger traffic context is created by having all vehicles in-
teract according to the given model. The models generally consist of differential
equations with parameters based on empirical studies of human driver behaviour.
Microscopic models generally give more detailed results than macroscopic simu-
lation but may have problems simulating larger road networks (Brackstone and
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Figure 1.2: Screenshot of the sumo graphical interface showing an intersec-
tion with several vehicles present.

McDonald, 1999).

1.2.1 Car-following Models

Since it’s the interaction between vehicles on the road that serves as the source
of different traffic phenomena, a family of models exist based on the concept of
car-following. Car-following models model the relationship between one vehicle
and the vehicle in front of it based on the distance and speed difference between
the two. Usually a car-following model considers the vehicle and the driver as
a single unit where attributes such as reaction time, acceleration and braking
ability consider both the vehicle itself and the driver (Brackstone and McDonald,
1999).

1.2.2 The SUMO Traffic Simulation

sumo is an open source traffic simulation software package which includes a sim-
ulation environment with accompanying graphical interface, a network importer
and editor allowing maps from OpenStreetMap to be imported and used in the
simulation, among other tools. The simulation models in sumo are based on the
car-following principle.
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1.2.3 Related Research

Numerous studies have been undertaken in search of modelling and understand-
ing human driving behaviour. The entire field of car-following models aims to
replicate interactions between human drivers in traffic on a vehicle by vehicle ba-
sis, see Brackstone and McDonald (1999) for an overview. Some notable research
on car-following are Chandler et al. (1958) which includes one of the first stud-
ies on traffic interactions, and Gipps (1981) in which a car-following model is
presented that serves as the base for many modern simulation models.

Relating specifically to human driving Treiber et al. (2006) presents their so
called Human Driver Model built upon a previous driver model presented in
Treiber et al. (2000). In order to more accurately simulate a human driver this
model includes a finite reaction time, imperfect estimation capabilities of the
distance between vehicles, and anticipation several vehicles ahead in traffic. This
thesis will take inspiration from some of the car-following research though the
work itself will not be based on car-following.

1.3 Problem Statement

With further demands on vehicle emissions and performance it’s becoming in-
creasingly important for vehicle manufacturers to have quick and reliable ways
to evaluate their vehicles for specific customers’ needs. By using a microscopic
traffic simulation tool to simulate driving missions in real road networks it should
be possible to repeat the same missions under varying circumstances without hav-
ing to drive there in real life, thereby saving time and resources. If speed profiles
from a traffic simulation could be made representative of real-world driving this
approach would be valid. At the moment the traffic microsimulation tool sumo
does not generate speed profiles with the required amount of detail.

The purpose with this thesis is to create models that together can describe how
human drivers adjust their speed with respect to common road features such as
curves and intersections as well as a model describing the general speed variation
when driving on straight roads. The models will be used together with the sumo
traffic simulation tool to simulate driving missions on real road networks which
can then be compared and evaluated against actual driving data from the same
roads.

1.4 Delimitations

The goal with this thesis is not to develop a new traffic simulation model but
merely to add new features to an existing model. The new functions will be
limited to adjusting the speed (and acceleration) of vehicles in different ways
mostly related to road features such as curves and intersections and not vehicle
interactions. Furthermore these additions will have to be made to a model that’s
already implemented in sumo.
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The decision has been made to utilize traci (Traffic Control Interface) in
sumo as the injection point of the new models. Through traci it’s possible to con-
trol a sumo simulation via Matlab or Python for example, making it faster and
easier to iterate on code without having to recompile sumo. Since this work will
utilize Matlab for data processing and subsequent modelling, using Matlab
with traci will make the transition between modelling and implementation sim-
ple. This way Matlab’s computational flexibility can also be used in the imple-
mentation of the models. The main drawback is that the work will be bound by
what functions are available through traci, which is more limited than program-
ming directly in the sumo codebase using c++ . sumo can be downloaded from
http://sumo.dlr.de/wiki/Downloads, and the traci implementation for
Matlab used here called TraCI4Matlab is available at http://mathworks.
com/matlabcentral/fileexchange/44805-traci4matlab

This work does not aim to create a general model applicable to all different
types of roads. The modelling will be based on data from one or two routes which
will consist mainly of rural roads and highways, so city driving is unaccounted
for, though city driving should mainly be governed by car-following interactions
and not road features which reduces the impact any of the models would have.

1.5 Thesis Outline

In Chapter 2 the background for the work is presented highlighting differences
between simulation and measurements where improvements will be made.

Chapter 3 shows how a route was decided, and what data was recorded with
the instrumented test vehicle. The data that will be used to for each model is
shown along with the selection procedure for each of the data sets.

Chapter 4 contains the modelling procedures for all models. Model structures,
estimation procedures and model outputs are shown.

Chapter 5 presents principally how the models are implemented to work with
sumo and also how simulation performance is impacted by the implemented
behavioural models.

The results are shown in Chapter 6 in relation to the measurements, as well
as simulation results before the implemented modifications.

In Chapter 7 the conclusions are presented followed by possible future work
that can be carried out to improve the results.

http://sumo.dlr.de/wiki/Downloads
http://mathworks.com/matlabcentral/fileexchange/44805-traci4matlab
http://mathworks.com/matlabcentral/fileexchange/44805-traci4matlab


2
Background

In this chapter the focus of the thesis will be presented in relation to the aspects
of the sumo behavioural model that will need to be improved in order to more
accurately reflect human driving behaviour. Observations from human driving
will be used as the basis for these changes.

2.1 Car-following Models in SUMO

The vehicle behaviour in sumo is defined by an underlying car-following model
described by the set of equations in (2.1) - (2.4). A lane changing algorithm is
also implemented but is not described here. This car-following model which was
presented by Stefan Krauss in Krauß (1998) can be seen as a variant of the car-
following model proposed by P. G. Gipps in Gipps (1981) that guarantees the
safety of vehicles on the road by including a safety distance between them.

vsafe(t) = vl(t) +
g(t) − gdes(t)

τ + τb
(2.1)

vdes(t) = min [vmax, v(t) + a(v)∆t, vsafe(t)] (2.2)

v(t + ∆t) = max [0, vdes(t) − η] (2.3)

x(t + ∆t) = x(t) + v∆t (2.4)

where the default model has the following parameters

gdes = τvl(t) (2.5)

τb =
vl(t) + v(t)

2b
(2.6)

with the definitions in Table 2.1.

7
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Table 2.1: Variable definitions for the default car-following model in sumo

Notation Definition Unit
v(t) Current speed of the vehicle m/s
vl(t) Current speed of the leading vehicle m/s

vsafe(t) Current speed that guarantees that no collision will oc-
cur with the leading vehicle

vdes(t) The vehicle’s current desired speed m/s
vmax The vehicle’s maximum speed depending on the speed

limit
m/s

a(v) The vehicle’s acceleration capability given the speed m/s2

b Typical deceleration used by driver/vehicle m/s2

g(t) Current distance between the current vehicle and its
leader

m

gdes(t) Current desired distance for the current vehicle to the
leader

m

τ Reaction time of the driver-vehicle unit s
τb Time scale s
∆t Length of a simulation time step s
η Random perturbation (> 0) on the speed m/s

x(t) The vehicle’s current (one dimensional) position on the
road

m

When adjusting the speed of a vehicle in the simulation the vehicle’s acceler-
ation parameter as well as car-following behaviour should still be adhered to. If
the vehicle’s speed is only adjusted with vmax, car-following and acceleration will
work as normal, see equation (2.2). This is the way speed adjustment works via
traci and is how all speed adjustments will be applied. The acceleration param-
eter a(v) can be adjusted without impacting the car-following behaviour.

Because of how changing the speed and acceleration works, any properties of
the model such as the car-following behaviour and safety distance to vehicles etc.
will remain intact.

2.2 Identifying Limitations in SUMO

This section details some areas in sumo where models are needed in order to
generate realistic human driving with respect to speed keeping. Figure 2.1 shows
the same driving mission carried out in real life as well as in sumo, with areas of
special interest shown in greater detail in Figure 2.2. For more information about
the measurements, see Chapter 3.
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Figure 2.1: A driving mission carried out in both real life and simulation.
The rectangles marked a, b, c correspond to the respective subfigures in Fig-
ure 2.2.

2.2.1 Adjusting Speed to Curvature

In sumo there is no system in place that changes vehicle speeds depending on
road geometry. In Figure 2.2a it’s shown that there exists a relationship between
road curvature and driving speed for human drivers. In order to safely pass any
curves, drivers must adjust their driving speed according to what they perceive as
safe. The speed adjustment can be seen to vary between drivers and the amount
of adjustment could also be affected by parameters such as visibility around the
curve, the road surface and weather conditions. The speed-curvature relationship
will be investigated to see what parameters contribute to the speed adjustment
and if a model can be constructed that can replicate the speed well.

2.2.2 Speed Variation

When driving on a relatively straight road with a constant speed limit and with
no traffic interactions, human drivers exhibit a speed variation of varying ampli-
tude as seen in Figure 2.2b. Realistically this speed variation could be dependent
on the type of driver and on the type of road. This thesis will aim to find a repre-
sentation of this speed variation with the use of randomly generated noise.
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2.2.3 Anticipation

Human drivers will often avoid hard braking and instead let their vehicle coast
for a while or only brake lightly if they are able to anticipate obstacles on the
road ahead of them in a sufficient amount of time. This can be observed by look-
ing at how drivers behave when they’re approaching an intersection (in this case a
roundabout) from a rural highway with a speed limit of 100 km/h, see Figure 2.2c.
It’s apparent that different drivers utilize coasting to different degrees. Anticipa-
tion also affects how drivers adjust to speed limits and curves. Coasting will be
modelled by considering an anticipation distance for drivers which is dependent
on the speed and thus letting them begin decelerating long before intersections
or other obstacles when driving at high speeds.

2.2.4 Acceleration

Acceleration in sumo only includes one parameter value which means that the
acceleration when vehicles are not bound by car-following is constant. In real-
ity the acceleration changes depending on which gear the driver is using and
at which speed the vehicle is going. A gear changing algorithm will have to be
implemented if the simulated accelerations are going to be representative.
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a highway.
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Figure 2.2: Three different areas where changes will be made in the simula-
tion so that it more closely resembles a human’s driving.





3
Data Acquisition and Processing

This chapter explains the data acquisition that will be used for the modelling
procedure later on in the thesis. Shortcomings in the data will be discussed and
data used for estimation and validation will be clearly shown before moving on
to the modelling in the next chapter.

3.1 Driving Data

For the purpose of this thesis, data has been recorded from several runs over
a specific route with an instrumented vehicle. Different drivers were used for
every test drive in order to get more varied data and to avoid drivers getting
accustomed to the specific route. In total the route was driven by 15 different
people who volunteered to participate without compensation. 12 of the drivers
were male, 3 female and most were in the ages between 24-35 years old with a
few being older.

Measurements carried out on a different route as part of a research project
a few years prior were also made available for this thesis. The measurements
were carried out with the same car equipped with the same instruments, so the
data was comparable. While the two routes contain parts of the same roads they
were deemed sufficiently different to be used as estimation and validation data
respectively.

3.1.1 Route for Measurements

When deciding a route to drive for recording data there were a few points to
consider

1. The route should contain a good amount of curves and intersections/traffic
lights to get sufficient data for curvature speed modelling, anticipation and

13
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Previous route
New route

Figure 3.1: The route chosen for measurements (red) and the previously
recorded route (blue) in the vicinity of Linköping University. Map image
taken from Google Maps.

braking.

2. The route should include highway driving so that stationary speed variation
can be estimated.

3. The route should preferably avoid roads that had been driven on in a previ-
ous research project.

4. The route should not take longer than 30 min to drive in order to make it
easier to get people to volunteer.

These requirements led to the route which can be seen in Figure 3.1 where the
previously driven route is also shown. The route is 19 km long and includes
six traffic lights, around 30 significant curves and approximately 5 km highway
driving. The route is in general very flat so any speed fluctuations due to slopes
can reasonably be neglected.

3.1.2 Available Measurements

The instrumented vehicle is equipped with a can-bus which records data from
the car’s on-board computer, a gps, and an imu. All relevant signals from these
sources can be found in Table 3.1.

Some problems were encountered while recording data where measurements
from the gps and imu sources would occasionally be missing. Additionally the
gps would sometimes have problems finding the correct position, rendering its
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Table 3.1: Table describing the measured signals from the instrumented ve-
hicle that were relevant for the work in this thesis.

Measurement unit Measurements
can-bus Time

Angular velocities of all wheels
Throttle pedal angle
Clutch
Brake

gps Time
Latitude
Longitude
Speed

imu Time
x, y, z accelerations
ϕ, θ, ψ angles

measurements uncertain for some period. Thankfully the data from the can-bus
was always available without any problems.

Since this thesis focuses on analyzing speed profiles the speed was the most
important measurement and while the speed was measured by the gps the data
from the can-bus was seen as a better source for two reasons: Firstly the above
mentioned unreliability of the gps rendering parts or the entirety of the record-
ing useless. Secondly the speed from the gps is also filtered leading to some
inaccuracies when the car stops. Meanwhile the can wheel angular velocity data
doesn’t suffer from any of these problems, and by taking the mean angular veloc-
ity of all four wheels and multiplying with the wheel radius the car’s speed could
be obtained in a reliable way throughout all test drives, see equation (3.1) where
F, R, l and r denote front, rear, left and right respectively.

v(t) = rwheel
ωF,l(t) + ωF,r(t) + ωR,l(t) + ωR,r(t)

4
(3.1)

By using dead reckoning from the wheel speeds it was possible to get a suf-
ficiently precise measurement on the driven distance. Using a stop sign along
the route as a syncing point for all runs the largest difference in estimated dis-
tance between runs was approximately 20 m which was deemed to be within the
margin of error for the 19 km route.

The imu was not fully aligned with the car so measured accelerations in
(x, y, z) had to be rotated according to the measured angles roll, pitch and yaw
(denoted (ϕ, θ, ψ) to give the acceleration in the proper directions, see Figure 3.2
for a visualization of the coordinates. Of main interest here is the acceleration in
x which can be used to judge the braking action, and also the acceleration in y
which might be useful when analyzing driving through curves.

The signals for the throttle, clutch and brake pedals were judged to potentially
be useful when determining braking and acceleration behaviour of drivers. Both



16 3 Data Acquisition and Processing

y

x

z

φ

θ

ψ

Figure 3.2: The coordinate system of the car. (ϕ, θ, ψ) represent roll, pitch
and yaw respectively.

brake and clutch can be applied to different degrees and in that way affect the
deceleration of the vehicle differently, but the clutch and brake signals were only
binary i.e. on or off, so their usefulness were limited.

Something else to note is that the three measurement units all have their own
internal sampling rate meaning that the data needed to be resampled at a com-
mon rate in order to use them together for modelling purposes.

3.2 Map Data

Since sumo has the ability to import map data from OpenStreetMap and simu-
late traffic on those road networks, that same data was also used for the parts of
modelling that require knowledge of road features, e.g. curvature, speed limits
and intersections. While a network imported like this was found to generally
work quite well there were instances where speed limits were incorrect or inter-
sections were not connected properly to incoming roads. These things had to be
manually edited to agree with real-life.

3.2.1 Improving Road Geometry with Splines

Definition 3.1. For any curve C(s) the curvature κ(s) is defined as

κ(s) =
1
r(s)

=
∥∥∥∥∥dT(s)
ds

∥∥∥∥∥ (3.2)

where r(s) is the radius of curvature and T(s) is the unit tangent vector to the
curve for a given s.
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Using Definition 3.1 the curvature of a plane curve given in the Cartesian
coordinates (x(s), y(s)) is given by equation (3.3), where ′ is used to denote the
derivative d

ds . This expression has been used to calculate the curvature of roads.

κ =
|x′y′′ − x′′y′ |

(x′2 + y′2)
3
2

(3.3)

The geometry of the imported road network was generally accurate, but since the
road geometry is only C0 continuous (points are connected with no continuous
derivatives) calculating the curvature according to equation (3.3) with discrete
differentiation led to discontinuities and curvature values that were not realis-
tic. Additionally the large variance in length between some road segments led to
inaccurate curvature at the connecting points.

To alleviate this problem the road geometry was interpolated using cubic
spline interpolation with equal spacing along the road. The geometry used by
the spline interpolation was modified with corners being cut so that the spline
wouldn’t deviate too much from the original geometry at sharp corners, see Fig-
ure 3.3a for an example. The resulting spline S(d) describes the route coordinates
[x, y] as a function of the route distance d. It has the representation seen in equa-
tion (3.4).

[
x
y

]
= S(d) =



Px,1(d)
Py,1(d)

 , d0 ≤ d ≤ d1

...Px,n(d)
Py,n(d)

 , dn−1 ≤ d ≤ dn

(3.4)

with the cubic polynomials Px,k(d), Py,k(d) on the form

Pk(d) = pk,1d
3 + pk,2d

2 + pk,3d + pk,4 (3.5)

where the parameters pk,1, pk,2, pk,3, pk,4 are determined with spline interpolation
and where k denotes each separate geometry segment.

The cubic spline is C2 continuous and representing the geometry with a cu-
bic spline means that the polynomials describing each segment can be analyti-
cally differentiated when calculating the curvature which is more reliable than
using discrete derivatives. Figure 3.3b shows the difference between curvature
calculated from road geometry and curvature calculated from a spline. The road
geometry data used for calculating curvature has had some processing where seg-
ments shorter than 0.1 m were removed or otherwise the highest calculated curva-
ture was in the region of 104 which would have been unusable for any modelling
purpose.

Something to take note of is that the calculated curvature is still not repre-
sentative of the real road curvature since a curvature of 1 equals a curve radius
of 1 m. Realistically a curvature of around 0.2 (curve radius of 5 m) would be
about the highest expected curvature on any road. The limitation here is most
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(a) Example of road geometry interpolated
with splines where the corners are cut at
1/5th of the segment length, and where cor-
ners are not cut. The spline with cut cor-
ners more closely resembles the actual road
geometry.
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(b) Comparison between curvature calcu-
lated from road geometry of the entire route
with some processing, and curvature calcu-
lated from an interpolating spline based on
the same geometry.

likely that the map data from OpenStreetMap isn’t sufficiently detailed to get ac-
curate road curvature from. Modelling will have to be carried out on this data
regardless.

3.3 Preparation of Data

In order to easily compare and use the recorded data for modelling, every test
drive was resampled and adjusted so that all of them would cover the same dis-
tance and be sampled equally over this distance (all tests were sampled with 1
m resolution). The resampling was done over distance so that the driving speed
and the time standing still at traffic lights and intersections wouldn’t have an ef-
fect on the amount of samples. With this data preparation in place it was then
simple to calculate a mean speed profile consisting of the mean speed at every
distance sample. Doing this results in a speed profile without any individual
driver behaviour while random disturbances are also reduced so that it’s mostly
the speed adjustments for curves and intersections that is visible. Some consider-
ations were taken before calculating the mean. Speed profiles with extraordinary
disturbances such as the occasional tractor on the road were removed because
these could not represent normal driving. Ultimately 9 speed profiles (out of
15) were used to calculate the mean speed profile. The mean speed profile will
mainly be used for estimating speed through curves.

The individual resampled speed profiles will still be used when modelling the
anticipation distance and the braking behaviour before stops at intersections and
traffic lights.
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3.3.1 Data for Curvature Speed Model

For identifying a curvature speed model, points of local maxima in curvature
κmax along the route were matched to local minima, vmin, in the mean speed pro-
file. Since there is only one set of input data (curvature), estimation on all speed
profiles would result in the same model as estimation on the mean speed profile.
Data corresponding to intersections was removed because the speed is affected
by other factors than curvature there. Figure 3.3 shows part of the selected data
in speed and curvature.

Only using data at the extreme points in both data series means that mod-
elling will only be carried out on the most relevant data. The extreme points
were selected with criteria for prominence and distance, i.e. selected points had
to have a prominence over surrounding points higher than 0.1 m/s and be at least
60 m apart. As an effort to counter the large variation in peak curvature, the inte-
gral of curvature within 50 m around each peak position was calculated and used
for modelling as well. The integral was calculated with the trapezoidal method:

κint(p) =
1
2

2L∑
n=1

(κ(p − L + n − 1) + κ(p − L + n)) (3.6)

where p is the peak position (the distance in the route where the peak was found),
and L is the distance before and after the peak to integrate over, in this case
L = 50.

In the end only 30 points of speed and curvature were selected, which isn’t
a significant amount so precautions will have to be made during the modelling
procedure.

3.3.2 Data for Braking Distance Modelling

For modelling the braking distance dbrake, local minima in speed were identified
as described above but this time intersections were included in the data as well.
Then a point prior to the minimum was found corresponding to where the brak-
ing starts by analyzing the car’s acceleration in the x direction. These points are
denoted vstart and vend respectively. The braking distance was then calculated
as the difference in position between these two points. Stretches of road with
traffic lights were removed from the data because of the unpredictability of the
traffic light state leading to braking over shorter distances than under normal
conditions.

For this model all different speed profiles could be used since the model vari-
ables vstart, vend and dbrake aren’t the same for any tests. From all tests then a
selection of approximately 500 samples was obtained which is significantly bet-
ter than the amount of data for the curve speed model. An example of the data
selection is shown in Figure 3.4 where the mean speed profile has only been used
so a comparison can easily be made to Figure 3.3 and 3.5 however, all tests are
used as data sources.
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Figure 3.3: Part of the data that will be used for curve speed modelling. Data
from intersections has not been selected.
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Figure 3.4: Visualizing the data that will be used for anticipation/braking
distance modelling. Data from intersections is used here.
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Figure 3.5: Visualizing the data that will be used for braking sequence mod-
elling.

3.3.3 Data for Braking Sequence Modelling

Braking sequences again make use of found minima in speed, here denoted vend,
along with the identified speed where braking starts, vstart. In order to model the
varying behaviour during an entire braking sequence the model estimation must
be carried out on series of data instead of just isolated points, where each series
consists of all speed and distance values taken between vstart and vend.

Braking sequences from all tests could be used here as well as data from traf-
fic lights and intersections to ultimately get a large selection of data consisting
of about 350 different braking sequences with varying amounts of samples. The
modelling will most likely have to be separated into braking for curves, and brak-
ing for intersections and traffic lights since the behaviour is different when brak-
ing to a stop, see Chapter 4.

Figure 3.5 shows the identified braking sequences over the same segment on
the route as Figure 3.3 and 3.4, again the mean speed profile is used here for ease
of comparison but it’s not used as a data source.

3.3.4 Data for Speed Variation Modelling

The speed variation when driving without external influences will be modelled
from data corresponding to free driving on highways without any traffic inter-
actions. This is done so that hopefully no speed adjustments will occur due to
external sources and only the driver’s internal speed variation will show. Data
was taken from the 9 test runs that make up the mean speed profile and the rele-
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vant data was selected by hand so that the criteria could be fulfilled. In Figure 3.6
the data from the second part of highway driving is shown.
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Figure 3.6: The data that will be used for speed variation modelling. The
speed limit here is 100 km/h (27.78 m/s).



4
Modelling

This chapter presents the modelling procedures for the different areas presented
in Chapter 2 using the data laid out in Chapter 3. Throughout the chapter the
coefficient of determination, R2 will be used as a measure of fit for the models, i.e.
how well the model fits to the data, and root mean square error (rmse) will be
used to assess the models’ performance, i.e. the deviation between model values
and measurements, see Definition 4.1 and 4.2 below, taken from Montgomery
and Runger (2003, chapter 11).

Definition 4.1. A vector y has N values and for each value in y there exists a
modelled or predicted value in ŷ. The coefficient of determination, R2 is then
defined as

R2 ≡ 1 −
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(4.1)

where ȳ is the mean of y,

ȳ ≡ 1
N

N∑
i=1

yi

Definition 4.2. A vector y has N values and for each value in y there exists a
modelled or predicted value in ŷ. The root mean square error (rmse) between
the two is defined as

rmse ≡

√√√
1
N

N∑
i=1

(yi − ŷi)2 (4.2)

The root mean square error has the same unit as the elements in y and ŷ.

23
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Table 4.1: Notation for the curve speed model. Boldface is used to indicate
vectors.

Notation Explanation
κ,κ Curvature

κint,κint Integral of curvature
vmin, vmin Speed at curve
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(a) Speed through curves vmin plotted
against the curvature κ.
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(b) Speed through curves vmin plotted
against the integral of curvature κint
around the max curvature.

Figure 4.1: A downward trend in speed is visible for both increasing curva-
ture and increasing curvature integral.

4.1 Speed Adjustment Through Curves

This section describes how the model for curve speed adjustment is derived. Data
is first analyzed to expose any relationships in the variables and then the model
expression is presented. Lastly parameters are estimated and the model perfor-
mance is reviewed. The notation used for this model can be found in Table 4.1.

4.1.1 Analyzing the Data

Before constructing the model, the data must first be analyzed to see what shape
a possible model would take. A relationship between curvature and speed must
be established and Figure 4.1 shows that lower speeds are generally associated
with both an increase in curvature and curvature integral, as to be expected. As
described in Section 3.3, the data for this model is taken from the mean speed
profile. The lack of data points makes it hard to draw definitive conclusions
about the function itself but the trends are reasonably clear to at least state that
there is a general relationship.

Something to consider is how different drivers react to curvature. Is a person
who drives fast in general more likely to also drive faster through curves, or is



4.1 Speed Adjustment Through Curves 25

0 0.1 0.2 0.3 0.4 0.5 0.6

Curvature [m -1]

-40

-20

0

20

40

60

80

sp
ee

d 
de

vi
at

io
n 

[%
]

Speed deviation with respect to curvature

(a) Proportional speed deviations from the
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(b) Proportional speed deviations from the
mean speed profile by 9 drivers over 150
random samples.

Figure 4.2: Speed deviation through curves compared with speed deviation
of random samples.

the amount of curve adjustment separate from how fast one drives on straight
roads? To determine if the speed through curves has comparable characteristics
to normal driving the proportional speed deviation from the mean is analyzed.
By looking at the proportional deviation instead of the absolute deviation the
variation should likely be in the same region for high and low speeds. As a way
to assess the speed deviation for general driving, 150 random speed samples were
taken from the route at positions in the range from 1.2 km to 16.5 km to avoid
any traffic lights which interfere with the speed distribution between drives. Fig-
ure 4.2 shows the deviations side by side, and there isn’t any visible difference
between them. The data used here is from the 9 test drives that make up the
mean speed profile.

Table 4.2: Difference in mean µ and standard deviation σ of the proportional
speed deviation between the curve speeds and the random speed samples of
the four different drivers seen in Figure 4.3, clockwise from upper left.

µcurve − µrand [%] σcurve − σrand [%]
0.655 1.84
−0.310 2.34
−0.552 −1.39

0.157 3.55
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Figure 4.3: Comparison between the distribution of speed deviations when
driving through curves and speed deviation for random speed samples, for
four separate drivers. The histograms are normalized so that the area of each
bar is the relative number of observations. The sum of the bar areas is 1.

Looking at separate drivers, Table 4.2 and Figure 4.3 show that the distribu-
tion of speed deviations are similar for curves and random speed samples with
regards to both the bias and standard deviation. While it’s hard to draw con-
clusions from such a small data set there is nothing that clearly points towards
a different behaviour in curves specifically. With no evidence supporting a dif-
ferent speed deviation in curves it will be assumed that the proportional speed
deviation is the same for curves as it is for general driving.

4.1.2 Constructing the Model

Figure 4.1 shows a decreasing speed for increasing curvature and curvature in-
tegral as one would expect. In mathematical terms this would imply a function
that’s strictly decreasing for any κ, κint ≥ 0. The speed through a curve must also
be positive to make driving through it possible. The model properties can be
summarized as follows

vmin = fcurve(κ, κint) (4.3)
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subject to

κ, κint ≥ 0 (4.4)

fcurve(κ, κint) > 0 (4.5)

∂fcurve(κ, κint)
∂κ

< 0 (4.6)

∂fcurve(κ, κint)
∂κint

< 0 (4.7)

A function that fulfills the criteria in (4.4) - (4.7) would be the exponential
function of a negative variable, e−x, leading to the model expression

fcurve(κ, κint) ≡ β1e
−κ + β2e

−κint + β3 (4.8)

where β1, β2, β3 > 0. This is a linear model in the parameters β1, β2 and β3 which
means that linear regression can be used to estimate their values according to
equation (4.9).

vmin = Xβ (4.9)

where

X =
[
e−κ e−κint 1

]
β =

β1
β2
β3


Linear regression can be used on the model (4.8). Ideally the data should be

divided into training and validation data, but since the data selection is so small
in this case cross validation has been used instead. Cross validation is the process
of estimating multiple models with different data partitions and then averaging
the results to get a better view of model performance for small data sets. Using
linear regression, β1, β2 and β3 received the following values

β1 = 14.25
β2 = 9.95
β3 = −4.09

The values were not bounded during the estimation and β3 ended up being nega-
tive which is not allowed for this function. Setting β3 = 0 and only estimating β1
and β2 gives

β1 = 8.45
β2 = 11.15

with cross validation resulting in

R2 = 0.745

rmse = 2.38 m/s
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Figure 4.4: The model in (4.8) with the parameters in (4.10) plotted as a 3-d
surface together with the data points in vmin.

For the definitions of R2 and rmse see Definition 4.1, 4.2. The model fit to the
data is reasonably good but the error is rather high, which in part could be due
to lack of data and/or bad data. The curvature has been pointed out as not being
entirely accurate previously and only using 9 drivers to create the mean speed
profile could mean that some random variations are still visible.

The model is plotted as a 3-d surface in Figure 4.4 together with the data
points used in the estimation and cross validation process.

4.2 Speed Variation

It’s not possible to model the speed variation as the other models with regression
simply because there is no input that maps to an output. Instead the speed vari-
ation must be modelled as a stochastic process which varies naturally in a way
that replicates the speed when driving undisturbed.

Definition 4.3. A Wiener process w (or Brownian motion) is a stochastic process
in which each sample k is an increment on the previous sample. The increments
x are taken from an independent Gaussian normal distribution with mean 0 and
variance σ2 (Hida, 1980).

w0 = 0 (4.10)

xk ∼ N (0, σ2), k = 1, . . . , N (4.11)

wk = wk−1 + xk (4.12)
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In order to make sure the noise doesn’t deviate too far from zero a threshold
is set above which the noise will be sampled from a distribution with a mean , 0
that moves it back within the threshold. The complete process can be described
as follows

w0 = 0 (4.13)

µk =

0, |wk−1| < b
(sign(wk−1)b − wk−1)a, otherwise

(4.14)

xk = N (µk , σ
2) (4.15)

wk = wk−1 + xk (4.16)

b, a, σ design parameters

where b is the threshold within which the process should stay, a is the gain ap-
plied to the process outside the threshold, σ is the standard deviation. These
parameters can be changed to fit different driving styles.

In order to make the process applicable to different speeds it’s applied in pro-
portion to the desired speed.

vnew = vdes(1 + wk) (4.17)

A threshold b = 0.05 means that the speed variation will try to stay within 5%
of the desired speed and is easily observable from measurements. a and σ are
harder to estimate and a trial and error approach is the best way to find values
for them. Increasing a means that the driver more aggressively adjusts the speed
when it drifts outside the threshold. a = 0.01 was found to match one particular
driver reasonably well. σ controls how much variation there is between every
new sample, where σ = 0.001 roughly represents the behaviour of one driver.

In order for the process to have frequency components close to human drivers
it is also filtered with an ma (moving average) zero-phase filter. The process is
created at 100 Hz and then downsampled to match the simulation’s step length,
in this case 1 Hz.

Definition 4.4. A moving average (ma) filter applied on a vector x calculates a
new vector xf where every element is the mean of all elements in x within the
sliding window of size α.

xf(n) =
1
α

(x(n) + · · · + x(n − (α − 1))) (4.18)

For a zero-phase filter xf is reversed after filtering and the filter is then applied
a second time to eliminate the phase shift that happens otherwise (Oppenheim,
1999).

4.3 Braking Distance

The goal with modelling the braking distance is to get a function that describes
the distance that is used for braking before an obstacle on the road given the cur-
rent speed and the desired speed at the obstacle. “Obstacle” here refers to static
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Table 4.3: Notation for the braking distance model. Boldface is used to indi-
cate vectors.

Notation Explanation
dbrake,dbrake Braking distance
vstart, vstart Speed before braking
vend, vend Speed after braking
∆v,∆v Speed difference, vstart − vend
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(a) The braking distance dbrake plotted
against the starting speed vstart.
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(b) The braking distance dbrake plotted
against the speed difference ∆v.

Figure 4.5: The braking distance is increasing in both vstart and ∆v, though
the function is not the same for both.

features of the road such as curves and intersections with stops. Traffic lights are
not included since they are not static features. The notation used throughout this
section and Section 4.4 is described in Table 4.3.

4.3.1 Analyzing the Data

The data being used here is described in 3.3.2 with sections of road with traffic
lights being removed. Figure 4.5 shows how the braking distance dbrake is de-
pendent on both the initial speed vstart and the speed difference ∆v of the entire
braking sequence. Clear increasing trends are visible in both variables.

Model estimation will be carried out on 12 of the 15 test drives while 3 test
drives are used as validation data.

4.3.2 Constructing the Model

It seems clear that the braking distance should be a positive distance that’s in-
creasing for higher values in vstart and ∆v. The properties can be summarised
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Table 4.4: Parameters values and corresponding p-values for the quadratic
model (4.25) estimated with linear regression.

Parameter Value p-value
β0 −25.9 -
β1 3.97 1.96e-57
β2 −1.27 2.60e-65
β3 1.98 3.20e-19
β4 −0.01 0.94
β5 −1.26 1.61e-20

as

dbrake = fbrake(vstart, ∆v) (4.19)

subject to

vstart ≥ 0 (4.20)

∆v ≡ vstart − vend ≤ vstart (4.21)

fbrake(vstart, ∆v) ≥ 0 (4.22)

∂fbrake(vstart, ∆v)
∂vstart

≥ 0 (4.23)

∂fbrake(vstart, ∆v)
∂∆v

≥ 0 (4.24)

Given the shape of measurement data, a quadratic function on the form

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 (4.25)

where y = dbrake, x1 = vstart, x2 = ∆v has been investigated. The constraints in
(4.22) - (4.24) can then be expressed as

β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 ≥ 0 (4.26)

β1 + β3x2 + 2β4x1 ≥ 0 (4.27)

β2 + β3x1 + 2β5x2 ≥ 0 (4.28)

The parameter values have been estimated with linear regression and in Ta-
ble 4.4 the values and corresponding p-values of the parameters are shown. Look-
ing at the p-values, β4 stands out with a very high value and also a parameter
value close to 0, meaning that the term β4x

2
1 is insignificant and removing it

should not impact the model much. Furthermore, the constraints (4.27), (4.28)
imply that β0, β2 ≥ 0 while at the moment they are negative. Fixing these values
to 0 reduces the model expression to

y = β1x1 + β3x1x2 + β5x
2
2 (4.29)
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The constraint (4.27) is fulfilled for all x2 ≥ 0 when β1, β3 ≥ 0, as they are
with the current values. Constraint (4.28) states that

∂y

∂x2

∣∣∣∣∣
0≤x2≤x1

= β3x1 + 2β5x2 ≥ 0 (4.30)

which can be evaluated at x2 = x1 to yield

β3 + 2β5 ≥ 0 (4.31)

With the values for β3, β5 in Table 4.4 the expression evaluates to < 0. Fixing the
expression to 0 results in the following relationship

β5 = −1
2
β3 (4.32)

Finally the model (4.25) can be expressed with only 2 parameters (changing
the name β3 to β2, and substituting y, x1, x2 for dbrake, vstart,∆v respectively)

dbrake = β1vstart + β2

(
vstart∆v −

1
2

(∆v)2
)

(4.33)

With linear regression the parameters are estimated to

β1 = 2.72
β2 = 1.49 (4.34)

with

R2 = 0.813

rmse = 60.4 m

on the validation data. The model does provide a good fit but the error is high
which is partly due to the larger error at longer braking distances skewing the
data, but there could also be refinements made to the way data is selected for
modelling. Taking into account that the data is not adjusted for specific drivers
and that the drivers themselves aren’t particularly consistent the model error is
acceptable. By comparison, estimating the complete model (4.25) with all param-
eters β0, . . . , β5 yields rmse = 57.7 m which is only a minor improvement over the
model which has been used and also proves that this model structure cannot per-
form better with the current data selection. A 3-d surface plot of the estimated
function is shown in Figure 4.6.
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Figure 4.6: The model in (4.33) with the parameters in (4.34) plotted as a
3-d surface together with the data points in dbrake. The model is not defined
for any values to the left of the line ∆v = vstart.

4.4 Braking Sequences

Braking sequences are modelled so that the deceleration before curves and inter-
sections becomes more gradual and varied compared to the purely on/off state
of the braking currently used in the simulation. Some data is first presented and
then a neural network model is used to model the braking sequences. The nota-
tion in this section is the same as in the previous section.

4.4.1 Analyzing the Data

The data used for modelling the braking sequences includes all speed samples
between vstart and vend and using data from all test drives results in a large selec-
tion of samples. The acceleration data is quite noisy so an ma zero-phase filter
with window size 3 has been applied to the data, see Definition 4.4.

Furthermore there are a few samples with accelerations above 0 but since
the model should only cover braking all data was limited to values below 0 in
order to avoid accidental positive accelerations being produced by the model. In
Figure 4.7 5 adjusted braking sequences are shown.

4.4.2 Constructing the Model

Due to the nonlinear nature of the data combined with the data having no clear
qualities to narrow down a model from, i.e. trends or shapes, it has been decided
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(a) The acceleration during 5 braking se-
quences plotted against the speed differ-
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(b) The acceleration during 5 braking se-
quences plotted against the remaining dis-
tance.

Figure 4.7: The acceleration behaviour during braking sequences looks to be
highly nonlinear in nature.

that an artificial neural network will be used for function fitting on the data. The
neural network type that will be considered here is the so-called feedforward neu-
ral network consisting of an input, a hidden layer with a certain amount of neu-
rons (also called nodes), and an output layer that produces the function output
(Haykin, 1994). The neuron functions for the hidden layer are sigmoid transfer
functions and the output layer contains one neuron with a linear transfer func-
tion. Whenever this thesis is referring to the network size, it’s the amount of neu-
rons in the hidden layer that’s being considered. Figure 4.8 shows an overview
of the network structure. This type of neural network has the ability to approx-
imate any function given enough data and a sufficient amount of neurons in the
hidden layer (Hornik et al., 1989).

The main design parameter in the neural network is to determine the amount
of neurons that should be present in its hidden layer. Adding more neurons to
the function generally provides a better fit to the data but with diminishing re-
turns for every added neuron. Additionally overfitting might become a problem
when using many neurons, meaning that the model does not generalize well to
other input data. Since the data is taken from all drivers there are differences in
disturbances and speed variations between the data sets.

The data has been divided into training and validation sets. The validation set
constitutes data from three test drives amounting to approximately 20% of the
data. Neural networks of different sizes have been trained on the data and the
results can be seen in Table 4.5. The mean square error (mse) has been used as
a performance metric during training and training was stopped when the error
increased for more than 20 consecutive iterations. The Levenberg-Marquardt al-
gorithm (Levenberg, 1944; Marquardt, 1963) for nonlinear estimation was used
during training and since it’s not guaranteed to find the global minimum the re-
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Figure 4.8: The two layer neural network structure that will be used for
approximating braking sequences. The hidden layer consists of a number
of neurons that use a sigmoid function while the output layer has a single
neuron that uses a linear function. The layers have weights W and biases b
associated with each neuron and input. The structure shown here assumes
that the weights and biases are applied via matrix operations. In this case
the input is two dimensional (∆v,∆d) and the output is scalar (a), leading to
W1 being N×2 dimensional and W2 being 1×N dimensional where N is the
network size.

sults here are not definitive. Also the network weights are randomized every time
training starts which sometimes leads to different results for training. Effort was
taken to avoid this problem by training multiple iterations of the same network
and then choosing the one with the best performance.

Looking at Table 4.5 convergence seems to be a problem for network sizes > 6
since the network with 6 neurons actually performs better than the ones with
more neurons. Another algorithm, Bayesian regularization (Williams, 1995) was
tried out on these networks to see if the convergence could be more reliable by
using that method. The result was better performance (rmse) and fit (R2) but
with undesirable characteristics when extrapolating.

The network with 6 neurons performs the best and also significantly better
than the one with 5 neurons while no better fit was achieved with higher amounts
of neurons. Therefore it will be used as the function approximating the braking
sequences. A 3-d plot of the function is shown in Figure 4.9.

The same network structure is also used to estimate a separate model for brak-
ing before traffic lights, using data from those braking sequences to train and
validate on instead.
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Table 4.5: The performance of the neural network generally improves by
increasing the number of neurons in its hidden layer. Multiple iterations of
each network were trained in an effort to find the best possible performance
for the given amount of neurons.

Network size rmse R2
train R2

val
1 0.0477 0.576 0.629
2 0.0432 0.671 0.691
3 0.0396 0.733 0.781
4 0.0387 0.762 0.820
5 0.0352 0.783 0.830
6 0.0270 0.886 0.895
7 0.0290 0.867 0.880
8 0.0298 0.859 0.864
9 0.0283 0.871 0.878
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Figure 4.9: The 6 node neural network that will be used for braking sequence
approximation. The output shown here was generated with vend = 5 m/s.
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4.5 Gear Changing Model

A rudimentary gear changing model has been created to allow the vehicle’s accel-
eration parameter to take on different values depending on its current speed. If
the amount of gears is g, speed values are defined in a vector vgc of length g − 1
defining when gear changes will occur and the different gear accelerations are
defined in another vector agear of length g. The algorithm initiates a gear change
when the speed goes above any of the values defined in vgc. The gear change can
take an arbitrary amount of time tgc and during the gear change the acceleration
is 0.

Sampling some acceleration sequences from one driver leads to the following
parameter values

g = 5

tgc = 1 s

agear =
[
1.9 1.7 1.4 0.9 0.6

]
m/s2

vgc =
[
20 40 60 80

]
km/h

In the simulation tgc is bound to be a multiple of the iteration step length, which
has been set to 1 s.

An extra element that has been added to acceleration sequences is a gradual
decrease in acceleration when the speed is close to the desired speed. When the
current speed value is over 85% the value of the desired speed, the acceleration
will start to decrease.





5
Implementation

This chapter will briefly describe how the implementation is made in terms of al-
gorithms and how it performs compared to the basic simulation just using sumo.

5.1 Parameters for Vehicles

Options have been added to the simulation to control which of the new models
are used and also to assign the added vehicle parameters.

Table 5.1: Available vehicle parameters for the simulation with the imple-
mented models.

Parameter Data type Description
doSpeedAdjustment boolean Activates the dynamic speed ad-

justments for road features
doNewNoise boolean Activates the speed variation

doGearChanges boolean Activates the gear changing algo-
rithm

accVec [1 × g] double Vector containing the accelera-
tion values at different gears

accSwitchSpeed [1 × (g − 1)] double Vector containing the speed
when gear changes occur

timeToSwitch double Time it takes to switch gears
decel double Maximum deceleration the vehi-

cle is capable of
speedFactor double Factor that is applied to all

speeds by the vehicle
noiseParams [1 × 3] double Noise parameter vector

39
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5.2 Algorithm

The algorithm that determines the vehicle’s speed during the simulation consists
of several steps detailed below.

1. Find objects to brake for

The braking distance model is used to search a length of road ahead of the
vehicle. By evaluating the function at ∆v = v the maximum possible brak-
ing distance for the current speed is received. Within this distance local
maxima in curvature are retrieved as well as the road’s speed limits and
any traffic lights. The distances between these features and the vehicle are
recorded and the curve speed model is used to calculate the speed through
the identified curves. If a traffic light is red, the desired speed at that posi-
tion is 0.

2. Determine if braking should start

The braking distance model is used again to calculate the braking distance
to all of the found speed reductions. Different cases can occur depending
on what is found within the look-ahead distance:

(a) Calculate braking action
If any of the calculated braking distances are shorter than the current
distance between the vehicle and the speed reduction, a braking action
will be calculated using the neural networks. The maximum braking
action out of these candidates is then applied to the vehicle.

(b) Keep the current speed
If speed reductions are found but no braking distance is currently
short enough to initiate braking, the vehicle will keep it’s current speed
until braking starts. Also occurs if neither speed reductions nor speed
increases are found.

(c) Calculate acceleration
If no speed reductions are found but the speed limit is higher than the
current speed, acceleration is calculated with gear changes.

5.3 Performance

It’s important to highlight that performance in sumo is significantly impacted
when using traci (Traffic control interface) with Matlab. traci is also avail-
able for Python, Java and c++ and since these versions have not been tested it’s
not known if performance could be improved by using any of these interfaces
instead of the Matlab one. Looking at the breakdown in Table 5.2 it’s apparent
that communication via traci takes up about the same amount of time that the
simulation itself takes in this case. traci commands are used extensively to con-
tinually save data from the controlled vehicle, such as speed, position and lane
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Table 5.2: Simulation performance when running the implemented code in
Matlab without the sumo GUI. Only a single vehicle was present in the
simulation. 3500 simulation steps were carried out in total, of which the
controlled vehicle was present for around 1300. The numbers represent the
total time spent during the entire simulation. Performance data was gath-
ered using Matlab’s profiler tool.

Function task Time taken [s]
Initializing the simulation 3.88
sumo performing simulation steps 12.56
Reading data via traci 11.98
Sending data via traci 1.91
Reading xml-files with Python 9.33
Calculating spline and curvature 3.33
Calculating new speeds in Matlab 1.68
Other Matlab functions 1.37
Total time 46.04

occupancy, data which is needed for determining new speeds during the simula-
tion and also for analysis after the simulation is finished. The total simulation
time for the example with traci communication in Table 5.2 is 46 s while run-
ning the same simulation without traci takes 17 s, almost three times shorter.
Improvements that can be made with regards to performance are optimizations
to reading the xml files and minimizing the amount of data that is accessed via
traci.





6
Results and Discussion

This chapter presents the results of the thesis with comparisons between the sim-
ulation and measurements and also some discussion on the quality of the results.

6.1 Comparisons

The figures on the following pages show speed profiles from the route planned for
this thesis and speed profiles from the route used in a previous research project.
The simulation before any adjustments are made is compared with the simulation
after the adjustments from this thesis are implemented, and one measured speed
profile from a single driver. Parameters have been adjusted in the models to
match the drivers as close as possible. Any sudden stops occurring during the
first 3 km and last 2.5 km are due to traffic lights and since traffic lights were not
synced between the simulation runs and the measurements these stops might
differ. While recording data for this thesis it was noted whether the driver was
affected by traffic in any way so for the comparison here, a test drive could be
chosen where the amount of traffic was minimal. Traffic information was not
included in the previously recorded data however, so a test drive was selected
where the driving looked suitably “clean” for the most part but it’s not known
where the driver could have been affected by traffic and to what extent.

The speed profile belonging to the measurements carried out for this thesis
seen in the figures below was previously used as part of the validation data set
for the braking distance and braking sequence models. Since cross validation was
used for the curve speed model, the curves in these measurements have been used
for both training and validation. The speed profile belonging to the old route has
not been involved during modelling but some sections of the route are shared
with the route that was used for modelling. Note that the comparison between
the two routes does not compare the same sections of road, rather sections of road
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with similar properties.
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(a) The route for this thesis, used for modelling.
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(b) The route used in a previous research project, not used during modelling.

Figure 6.1: In general the adjusted simulation manages to follow the mea-
surements well, disregarding the random disturbances. It’s much improved
compared to how the simulation behaves without the adjustments made in
this thesis.
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(a) Data recorded for this thesis.
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(b) Data from the old route.

Figure 6.2: In these plots the effect of the gear changing algorithm can clearly
be seen during the accelerations, changing the available acceleration de-
pending on the current speed. When cruising, the speed variation model
in the adjusted simulation is observed to produce a speed variation that
closely resembles the measurements in terms of amplitude and frequency.
The braking sequences created by the neural network exhibit the more grad-
ual braking seen in the measurements, and the determined braking distance
is accurately estimated.
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(a) The route for this thesis, first section of
rural road. At 5.5 km there is an upwards
slope in conjunction to a curve which re-
duces the speed additionally for the mea-
surements.
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(b) The route for this thesis, second section
of rural road. There is another slope at 10
km which reduces the speed in the mea-
surements.
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(c) The old route. This road section in-
cludes some suburban driving where there
are speed bumps and similar measures de-
signed to lower the speed at certain points
along with intersections with poor line of
sight, all contributing to the larger speed
variations seen in the measurements.

Figure 6.3: Here the effect of the curve speed model can be observed. The
model manages to provide an approximation of the curve speed where the
simulation previously kept a constant speed, but there are still improve-
ments to be made. The models for braking distance and braking sequences
perform well with results close to the measurements for most of the braking
sequences.
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6.2 Discussion

The results show that the estimated models can replicate most of the speed adjust-
ments that human drivers apply through curves and intersections. The neural net-
work used for calculating braking sequences performs very well when compared
to human drivers but lacks some of the random variations sometimes observed
in the measurements, see Figure 6.3a where there are many shorter braking se-
quences. The braking distance model also performs well with most of the esti-
mated braking sequences starting at positions close to what can be observed in
the measurements. It should be noted that these two models are applied in both
curves and places where the speed limit is lowered and that they seem to perform
well in both cases. The speed variation function that’s applied when driving on
straight roads manages to reproduce a speed variation similar to human drivers.
The result is primarily visible for highway driving but the function is applied any
time there are no external disturbances visible to the vehicle.

Out of the models assembled in this thesis, the model that performs the worst
is the curve speed model. It mainly comes down to not having enough data to
model on but also the quality of the data itself. Being bound to use the map data
for calculating the curvature limited how closely the results could match real life
driving and despite efforts to make the data more usable by creating splines from
the road geometry and also making use of the curvature integral it still doesn’t
fully represent reality.

While the results are generally good there are also other things that affect
the driving speed than just curves and speed limits, as seen in Figure 6.3. Inter-
sections, slopes, speed bumps, road surface and surroundings all play a role in
affecting the speed to varying degrees. In order to properly model human driver
behaviour and improve the models further more external factors will have to be
considered when deciding the speed.

The methodology for the models that determine driver behaviour used in this
thesis is based on the decisions and actions of human drivers when approaching
curves or intersections. During the process of working on this thesis different
approaches were investigated for the speed adjustment through curves such as
a model that only used current road curvature and vehicle speed as input and
produced a new vehicle speed as output. The problem with basing the speed
directly on the curvature data is that drivers adjust their speed well before reach-
ing a curve which means that reactions to the curvature occur before any change
in the input has happened. This behaviour led to the conception of the curve
speed model together with the look-ahead model where each model has a sin-
gle purpose as opposed to one model that controls all driver behaviour. Creat-
ing multiple smaller models allowed the estimation process for each to be more
straightforward since the process from input to output is simpler and easier to
visualize. In comparison, the process of how a curve ahead of the vehicle affects
the current speed is not as simple and it might be hard to decide on a model
structure and constraints in the same way as was done for the curve speed model
and the braking distance model.

An advantage with using multiple models with separate tasks is that the two
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models not explicitly attached to curves can be used individually in other situa-
tions. The look-ahead model and the braking sequence model are applied for all
speed reductions, something that would not have been possible if a single model
had been used for the entire process. The decision-making process that is used
in the implementation would not have been possible had there only been one
model governing the curve driving behaviour. Applying the models individually
is what allows the implementation to work as well as it does.

A neural network might have been able to estimate the full driver behaviour
given enough inputs and training data, though it would probably have had to
be larger (more neurons and likely more layers) than the one currently used for
braking sequences. With a more advanced network structure there’s even the
possibility that the decision-making process could be handled by the network as
well. The negative side of this is while using a large neural network one would be
giving up control of the estimation process. The look-ahead model and the curve
speed model have constraints on them which can be handled well when using
regression. With a neural network, especially a large and complex one, it’s very
difficult to control how the output is shaped. Additionally, the data recorded for
this thesis would likely not have been enough to train a more sophisticated neural
network. The neural network that was used for estimating braking sequences is
a fairly small one with only two layers and six neurons, taking two inputs and
producing one output essentially acting as a non-linear function.



7
Conclusions and Future Work

This chapter will go through what conclusions can be drawn from this thesis and
what further work can be carried out in order to improve or expand it.

7.1 Conclusions

Based on comparisons between the simulation data and real world driving, the re-
sults from this thesis show that it is possible to model human driver behaviour to
approximate the speed they drive at with respect to certain road features. Mainly,
the braking distance used for a given speed reduction starting at a certain speed
has been successfully modelled as a quadratic function while entire braking se-
quences have been emulated well with use of a neural network. The curve speed
model presented in this work is inconclusive because of lack of data, but an ap-
proximation of curve speeds with regards to curvature has been achieved.

The models have also been implemented in Matlab to work together with
the sumo traffic simulation environment where simulations can be carried out
on imported maps from OpenStreetMap. The implementation makes use of a
decision-making process that finds objects to brake for and applies the correct
braking action. This creates the possibility to simulate arbitrary routes on any
existing road network throughout the world with the implemented models pro-
ducing speeds much more consistent with human drivers.

7.2 Future Work

Since the curve speed model lacks sufficient data, one possibility for future work
is to perform a more rigorous data collection with a more varied selection of
drivers on different roads to get a large and varied data set of curve speeds and
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general driving. The curvature data received from the road geometry has not
been sufficiently detailed and has often not been accurate to real life. Using road
data from some other more accurate source could be the solution.

At the moment a driver only reduces their speed at intersections if they are
turning, encounter other vehicles, or if there’s a stop sign or a traffic light present.
Determining behaviour through intersections requires information about the in-
tersections themselves and the connecting roads. sumo has many intersection
types which can be useful for predicting behaviour and each road also has an asso-
ciated priority which helps the simulation determine right-of-way scenarios and
yielding in intersections. However, there is no parameter for different road sur-
faces which would be useful in separating insignificant gravel roads from paved
roads in intersections. The data is available from OpenStreetMap which sumo
can import maps from so perhaps it could be possible to include the additional
data when importing.

Line of sight in intersections and curves in part determine how fast one drives
through them and also if objects are visible to the driver. Implementing line of
sight would only be possible if the surroundings are well defined. The imported
data from OpenStreetMap does include forest areas and buildings, but there is
no way to access any of this data from within the simulation at the moment.

The version of sumo that has been used only makes use of 2d map data so
slopes in the terrain are disregarded completely. With a 3d map and a model
changing the speed for slopes it should be possible to get more accurate results
in places with significant elevation differences.

Only a single speed factor for speed limits for each driver has been used,
which has been observed to not be entirely representative of how drivers treat
speed limits and can certainly be improved on in the future. The driver’s percep-
tion of the road plays a role in determining the speed they drive at. Most drivers
will stay well below the speed limit when driving on the smaller rural roads with
speed limits at 70 km/h (see Figure 6.3 as an example, a and b in particular) be-
cause of curves, poor line of sight and also the road surface being damaged. But
on other roads with a speed limit that’s deemed too low the driver might drive
much closer to or even above the speed limit (can be seen in Figure 6.3c).
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