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Abstract

The requirements on fuel consumption and emissions for passenger cars are get-
ting stricter every year. This has forced the vehicle industry to look for ways to
improve the performance of the driveline. With the increasing focus on electri-
fication, a common method is to combine an electrical driveline with a conven-
tional driveline that uses a petrol or diesel engine, thus creating a hybrid electric
vehicle. To fully be able to utilise the potential of the driveline in such a ve-
hicle, an efficient energy management strategy is needed. This thesis describes
the development of an efficient route-based energy management strategy. Three
different optimisation strategies are combined, deterministic dynamic program-
ming, equivalent consumption minimisation strategy and convex optimisation,
together with segmentation of the input data. The developed strategy shows a
decrease in computational time with up to more than one hundred times com-
pared to a benchmark algorithm. When implemented in Volvo’s simulation tool,
VSim, substantial fuel savings of up to ten percent is shown compared to a charge-
depleting charge-sustain strategy.
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Notation

Vehicle and component model notations

Variable Meaning

mvehicle Vehicle mass
vvehicle Vehicle speed
avehicle Vehicle acceleration
J Inertia
θ Road inclination

ωcomponent Angular velocity for the component
Pcomponent,mech Mechanical power in the component
Pcomponent,loss Power loss in the component

ηGB Gearbox efficiency
I Current
Ri Internal resistance in the battery
Uoc Open circuit voltage in the battery
UR1 Voltage over the internal resistance
SOC State of Charge for the battery
∆t Time step
Q0 Battery nominal capacity

SOCstart The start value of the State of Charge
SOCend The end value of the State of Charge
Qf uel The fuel energy
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Optimisation notations

Variable Meaning

λ The equivalence factor (dual variable)
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q The weight factor for the update law
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tN The last segment
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Segmentation notations

Variable Meaning

σ The standard deviation
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Controller notation

Variable Meaning
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1
Introduction

1.1 Background

The requirements on fuel consumption and emissions for passenger cars are get-
ting stricter every year. This has forced the vehicle industry to look for ways to
improve the performance of the driveline. With the increasing focus on electri-
fication, a common method is to combine an electrical driveline with a conven-
tional driveline that uses a petrol or diesel engine, thus creating a hybrid vehicle.
This gives the opportunity to power and propel the vehicle with either electricity
from a battery, liquid fuel or a combination of these.

The benefit from having a combustion engine with long range, quick and well-
developed infrastructure for refuelling is combined with the energy efficient elec-
tric motor. Especially when driving in the city at lower speeds and with many of
decelerations that can be used for charging the battery, the electric driveline is
highly effective compared to the combustion engine driveline. One big drawback
of the electric driveline is however the battery. The battery size has a strong im-
pact on the weight of the vehicle, it consumes a lot of space and it is expensive,
consequently the capacity is limited.

With a limited battery, a problem to solve is how to optimally propel the vehi-
cle. To solve this problem, computationally heavy methods such as Dynamic Pro-
gramming (dp) have been utilised in research. These methods use data about the
road profile that are sampled from test driving or generic drive cycles. Another
method of accessing road profile data could be from the navigational system, as
when driving today, the destination is often set in the navigation system or can
be predicted from the driver’s behaviour, giving access to road profile data in
advance.

1



2 1 Introduction

Methods for energy management in vehicles today, in general, use minor knowl-
edge about the full route ahead. An improved method can reduce the fuel con-
sumption by using more information about the full route ahead, which is bene-
ficial for both users and the environment. Since vehicles have limited capacity
of processing data, an efficient optimisation strategy that is still able to converge
close to a global optimum would make an excellent compromise. Due to this,
Volvo Car Corporation (vcc) has outlined an interest to further examine the area
of optimal control in the Energy Management System (ems) for Hybrid Electric
Vehicles (hevs). With vccs current strategy on using electric motors in all future
cars and an annual sale of more than half a million vehicles, an improved strategy
has the potential for extensive fuel savings.

1.2 Problem Formulation

To be able to fully utilise the potential of a hev, the ems has to be designed
with many factors in mind. As the battery and the electrical energy often is a
limiting factor, the ems needs to deploy the electrical energy during the sections
of the route where using it will decrease the fuel consumption the most. There
are however some limiting factors which makes it impossible to deploy the most
exact algorithms to decide the optimal solution for the route. The ems needs to
be implemented online in the vehicle where the Engine Control Unit (ecu) often
have a very limited amount of computing power and memory. The cloud can be
used to increase the computational power, however with a fleet of several million
vehicle, the capacity in the cloud is also limited.

A simple and common strategy used in ems forhevs is Charge-Depleting/Charge-
Sustaining (cdcs), where the vehicle is operated almost entirely with electrical
power until the battery level reaches a lower threshold. For a route shorter than
the electric range, this strategy is optimal in terms of saving fuel. For a drive
longer than the electric range, cdcs is most likely not an optimal solution, as it
uses all of the electrical energy directly and not when the benefit is greatest. An
illustration of the cdcsmethod can be seen in Figure 1.1.

This thesis aims to design and evaluate an efficient optimisation-based ems for
hevs. Implementing a new ems might lead to reduced costs and a better use
of electrical energy. However, the new ems is subject to the same constraints as
the current one, meaning that a new algorithm should be very efficient in terms
of computing power and memory usage. As the navigation systems in the cars
can provide data about the inclination, speed limits and length of the planned
route, that data can be used in the ems to be able to optimise the deployment
of electrical and liquid energy by optimising the torque split between the electri-
cal machines and the combustion engine for the planned route, resulting in an
optimal State of Charge (soc) trajectory to follow.
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SO
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Figure 1.1: An illustration of the cdcsmethod. The first region is the CD re-
gion, where the battery charge is depleted, using only the electrical machines
to propel the vehicle for as long time as possible. In the second region, the
CS region, the propulsion is done mainly using the ice, with the electrical
machines still recouping battery with regenerative braking and helping the
ice when power to the battery has been recovered, to stay in the sustain area
as shown with the two horizontal dotted lines.

1.3 Related Research

There are many different control strategies used to control a hev. Extensive re-
search has been conducted by a number of authors in this area. Different ap-
proaches can be summed up into two sub-categories, rule-based and optimisation-
based[1, 2], as seen in Figure 1.2.

Rule-based strategies is defined by sets of rules, that if fulfilled, or not fulfilled
will decide in what mode the hev will be working. The rules are most often set
by a method of combined heuristics, intuition, human expertise and powertrain
characteristics[1–3], specified for an optimal solution for individual components
and thus not the optimum for the entire system. This is however a computational
efficient method that can provide a quite good strategy in cases where the rules
are set for the correct scenario[2].

The optimisation-based strategies rely on minimising a cost function and can be
divided further into two sub-categories, global optimum strategies and real time
control strategies[1–3]. Global optimum strategies are formulated to find the
global optimum solution for a whole drive cycle. For this purpose, data about
the drive cycle needs to be provided in advance[1]. Characterising for such al-
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Figure 1.2: Subcategories of control strategies

gorithms are the comprehensive amount of computational power required, thus
not suitable for usage in vehicles.

dp is a very common method to do offline optimisation. The method is compu-
tationally heavy, suffering from the "curse of dimensionality" [1], meaning the
computational complexity of the algorithm will increase exponentially with the
number of variables. It does however always find a global optimum for the given
discretisation. If the discretisation is small, the solution is accurate. A larger
discretisation results in a larger error, although with the benefit of reducing the
computational time. The method is for those reasons well suited to use as a bench-
mark algorithm for comparing to other methods[4] as done in [5].

As the issues with Dynamic Programming needs to be accounted for, the case
when the disturbances are known in advance have been given a specific name
and are referred to as Deterministic Dynamic Programming (ddp)[4]. ddp is
well suited for situations where the route, together with speed limits and road in-
clinations are known in advance, as those are what is referred to as disturbances.

Another of the most researched global optimisation methods for energy manage-
ment in hevs is Ponytryagin’s minimum principle (pmp)[1]. The method is rather
computationally heavy, however it can be combined with piecewise linear approx-
imations of the vehicle model, resulting in a faster algorithm [6].

Convex optimisation is also an interesting for developing ems. This method does
not have the possibility to solve discrete problems such as engine on/off or gear
choice, it can however be used to solve the torque split. Convex optimisation is
therefore often coupled with either dp [7] or pmp [8, 9]. There is also a possibility
to couple it with rule-based strategies as done in[10]. The two optimisation-based
methods achieve a good balance between computational time and accuracy in the
respective articles[7–9].

The real time control strategies do not need as much computational power and
are implementable in a vehicle for real time usage. Of these optimisation strate-
gies, one of the most popular is the Equivalent Consumption Minimisation Strat-



1.4 Objective of the thesis 5

egy (ecms) [1]. The ecms strategy is similar to pmp, however where pmp solves
the global problem, ecms can be implemented to solve parts of the optimisation
problem in real time[11].

The coupling of the previous stated methods with some sort of data segmentation
is an interesting area. The Eco-Discharge strategy presented in[12] shows that the
use of segmentation could be a powerful tool. The Eco-Discharge strategy relies
on the road profile being accessed by the Advanced Driver-Assistant Systems In-
terface Specifications (adasis)-protocol, the protocol is well suited for usage in
hevs[13]. adasis can provide information about the road ahead directly to the
CAN-BUS in the car for a simple integration.

As most global optimum strategies are not directly applicable for online imple-
mentations, a combination with a real time control strategy is often used. It de-
fines an instantaneous cost function which is possible to solve with a real time
solver[1], thus reducing the computing effort needed in the ecu. As the real time
control strategies are implementable online, they are important to consider. The
most researched of the real time control strategies are the ecms strategy and the
Model Predictive Controller (mpc) strategy[1]. Optimisation strategies will be
further discussed in Chapter 3.

1.4 Objective of the thesis

This thesis aims to develop and evaluate an efficient optimisation-based energy
management strategy for a hev using Volvo’s Scalable Product Architecture plat-
form (spa). The spa platform with a hybrid powertrain has one petrol combus-
tion engine and two electrical machines.

The ems should use convex optimisation and dynamical programming together
with ecms and segmentation. The thesis is also going to evaluate this ems against
other solutions on the same platform, both in terms of fuel consumption and
computational time.

• Can an efficient ems that generates a correct soc reference from limited
segmented input data be constructed by introducing convex optimisation
instead of using a root finding method in ddp/ecms.

• How much computational time can be saved by segmenting the input data
to the optimisation algorithm.

• How well does the algorithm with segments as input perform compared to
an optimal solution for the problem without segmented data.

• What variables are needed in the segments to get a correct reference.

The ems developed during the thesis will furthermore be implemented in vccs
simulation tool, Volvo simulation tool (vsim). This is made to validate against
more advanced models and for benchmarking against cdcs to see if an improve-
ment is possible.
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1.5 Delimitations

The mathematical model of the vehicle studied is simplified to exclude any dy-
namics. Since the optimisation is conducted on a segmented drive cycle, the
length of each segment is of importance. Using rather long segments will result
in the vehicle is operated at constant conditions for a long time and the dynamics
between the segments have minor impact.

The code for some of the optimisation algorithms is not created from scratch, due
to this thesis being based on similar algorithms developed in a thesis at vcc [14].

To solve a convex problem, a variety of different solvers exist. Due to the limited
time only a few solvers are studied.

The developed ems is tested only in model-based simulations. Implementation
and testing in a real vehicle is not possible given the short period of time and lack
of computational power in today’s vehicles.

No account is taken to factors such as driveability.

No account is taken to the emissions. The optimisation will only be done with
regards to the fuel consumption. Emissions is however related the the fuel con-
sumption, which means that a decrease in fuel consumption will most likely lead
to a decrease in emissions.

A limitation in what to present in the report has to be drawn. The possibility for
more testing and validation is extensive.



2
Hybrid Electric Vehicle

2.1 A brief introduction to the Hybrid Electric Vehicle

The hev have become quite common in recent years. This section gives a short
explanation about different types of hevs and how they work.

2.1.1 Configurations of HEVs

There are two different ways to build the hev in terms of battery charging. The
first way is often simply called a hev. This one does not have external charg-
ing possibilities, instead charging takes place through the engine or with re-
generative braking. The other way is called a plug-in hybrid electric vehicle
(phev). This vehicle comes with the same possibilities as a hev, however also
with the added functionality of external charging of the battery by connecting to
a charger[15].

Further, there are some different configurations to couple the electrical machine(s)
and the combustion engine in the powertrain. There are mainly two different
configurations, a parallel powertrain and a series powertrain. These can also be
combined, creating a series/parallel powertrain[16]. A presentation of how the
different configurations are designed follows.

Parallel powertrain

The parallel powertrain usually consists of an electrical machine and a combus-
tion engine working in parallel, both connected to the same torque split coupling
which is then connected to the gearbox[17]. The parallel powertrain has one de-
gree of freedom, meaning that the electric machine and the engine is running
at equal angular velocity set by the gearbox and only the torque split is decided

7



8 2 Hybrid Electric Vehicle

FD GB T C

EM

ICE FT

BAT T

Figure 2.1: A schematic illustration of a parallel powertrain. The powertrain
consists of a final drive (FD), a gearbox (GB), a torque coupling (TC), an
electrical machine (EM), a battery (BATT), an internal combustion engine
(ICE) and a fuel tank (FT).

in the ems [18]. A schematic illustration depicting a parallel powertrain can be
found in Figure 2.1.

Through the Road
A more uncommon parallel configuration is the "Through the Road" configura-
tion, which also falls under the parallel powertrain. This configuration consists
of two mechanically separated powertrains, where the combustion engine is con-
nected to one of the vehicles axles, while the electric machine is connected to
the other axle. This removes the need for a complicated and expensive torque
coupling[19]. A schematic illustration depicting a Through the Road powertrain
can be found in Figure 2.2.

Series powertrain

The series powertrain consists of a combustion engine, coupled with a genera-
tor charging the battery. The combustion engine can when coupled this way be
configured to run at a more optimal efficiency, charging the battery through the
generator or producing electrical energy directly to the electric machine. The elec-
tric motor is connected to the drive shaft. In this configuration, the combustion
engine has no direct coupling to the wheels[17]. This gives the series powertrain
one degree of freedom from the power link and the ice can be seen as half a
degree of freedom since the requested power can be generated with any combi-
nation of torque and angular velocity[18]. A schematic illustration depicting a
series powertrain can be found in Figure 2.3.

Series/parallel powertrain

A series/parallel powertrain is a combination of the series powertrain and the par-
allel powertrain, meaning that it in some way is possible to use the combustion
engine for propulsion as in the parallel configuration, while it is still possible to
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FD GB ICE

FT

BAT T

EM EGB

Figure 2.2: A schematic illustration of a Trough the Road powertrain. The
powertrain consists of a final drive (FD), a gearbox (GB), an internal combus-
tion engine (ICE), a fuel tank (FT), an electrical machine (EM), an electrical
gear box (EGB) and a battery (BATT). There are also two clutches, one be-
tween the ICE and the GB, and one between the EM and the EGB.

FD EM P L

BAT T

GEN ICE

FT

Figure 2.3: A schematic illustration of a series powertrain. The powertrain
consists of a final drive (FD), an electrical machine (EM), a power link (PL), a
battery (BATT), a generator (GEN), an internal combustion engine (ICE) and
a fuel tank (FT).
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FD GB P SD

EM

ICE FT

GEN

BAT T

Figure 2.4: A schematic illustration of a series/parallel powertrain. The
powertrain consists of a final drive (FD), a gearbox (GB), a power split device
(PSD), an electrical machine (EM), a battery (BATT), a generator (GEN), an
internal combustion engine (ICE) and a fuel tank (FT).

use the ice for producing electrical energy through a generator, as in the series
configuration. There are different ways to produce this coupling[16, 17]. The
series/parallel powertrain has two degrees of freedom, due to to separate power-
trains that can be controlled individually [18]. A schematic illustration depicting
a series/parallel powertrain can be found in Figure 2.4.

2.2 Studied Configuration

The studied configuration in this thesis is the spa platform from vcc. It is a phev
with a combined parallel and through the road configuration. The parallel config-
uration is connected to the front axle, where an internal combustion engine (ice)
is coupled with an Integrated Starter Generator (isg). The isg replaces the stan-
dard starter motor and can act as both motor and generator. These are directly
connected to the motor shaft, meaning that the isg and the ice must be turning
at the same time, with equal rotational speed. This gives the possibility to charge
the battery through the isg at the same time as running the ice, however also the
limitation that there is no possible way to use the isg for full electric propulsion.

For full electric propulsion, the Electric Rear Axle Drive (erad), which is an
electrical machine connected to the rear axle, is used. The machine can give full
electric propulsion to the vehicle through rear wheel drive. Between the erad
and the rear axle is a single ratio electrical gearbox, which can be disconnected
from the erad with a clutch when not in use, for the purpose of minimising
losses.

With this configuration, the possibility to use a four-wheel drive is given using the
ice/isg and the erad at the same time. A schematic illustration of the studied
SPA platform can be found in Figure 2.5.
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FD GB ISG ICE

FT

BAT T

ERAD EGB

Figure 2.5: A schematic illustration of the configuration of the studied ve-
hicle. The powertrain consists of a final drive (FD), a gearbox (GB), an Inte-
grated Starter Generator (ISG), an internal combustion engine (ICE), a fuel
tank (FT), a battery (BATT), an Electric Rear Axle Drive (ERAD) and an Elec-
trical Gearbox (EGB). There are also two clutches in the powertrain, one be-
tween the ISG and the GB and one between the ERAD and EGB, making it
possible to connect or disconnect any of those sides of the powertrain.

2.2.1 Component Models

The losses of the combustion engine and of the electrical machines are modelled
as piecewise linear equations. These equations are written as Equation 2.1, where
k represents the set of linear equations for different loads and a specific angular
velocity ω. The linearisation is made by vcc based on measurements.

P kloss(ω) = Ak(ω) · Pmech + Bk(ω) (2.1)

The number of angular velocities where the lines are defined are quite few to
reduce the data required. Interpolation is used to find the correct set of lines
given the current angular velocity. The actual loss in the component has to be
equal to the maximum value of all linear, see Equation 2.2. Figure 2.6 illustrates
a load with blue line and the loss as the blue circle, which is the maximal value
of piecewise linear functions along the line. As seen, the value differ slightly
from the actual value on the black line. With increasing number of lines, that
difference can be reduced. A general description of the function to find the loss
is given in Equation 2.3.

Ploss = max
k

(Ak(ω) · Pmech + Bk(ω)) (2.2)

Ploss = f (Pmech, ω) (2.3)

With this way of modelling, all dynamics are removed from the component mod-
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Ploss

Pmech

Figure 2.6: Piecewice linearisation illustrated. The black line in the illustra-
tion depicts a function, the orange lines depicts the piecewise linearisation
of the function with 6 lines and the blue line and circle depicts the piecewise
approximation of the function at a certain place.

els. For each time step, the losses are calculated only depending on the current
load and angular velocity. Since the models have no transient behaviour, the ac-
curacy might differ from a more complex model. However, to be convinced that
the model is convex and possible to solve with limited resources, a choice of a
higher complexity is not justified.

Electric machines and combustion engine

The following functions are given for the combustion engine and electrical ma-
chines.

PICE,loss = f (PICE,mech, ωICE) (2.4)

PISG,loss = f (PISG,mech, ωISG) (2.5)

PERAD,loss = f (PERAD,mech, ωERAD ) (2.6)

Gearbox

The gearbox is modelled with losses proportional to the load and choice of gear,
where ηgb is the loss coefficient for a specific gear. The load Pmech,inputshaf t is the
sum of the power from the ice and isg, since these are connected to the output
shaft of the engine.
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PGB,loss = |ηgb(gear) · Pmech,inputshaf t | (2.7)

Pmech,inputshaf t = PICE + PISG (2.8)

When the absolute sign is removed, the losses can be described with a piecewise
linear approach as the maximum of the positive and negative value of Equa-
tion 2.7.

PGB,loss = max(±ηgb(gear) · Pmech,inputshaf t)) (2.9)

Electrical gearbox

For the electrical gearbox, the loss coefficient ηegb is modelled dependent on the
angular velocity of the rear axis and the direction of energy transfer. A map with
a set of velocities where interpolation and if necessary extrapolation is used.

P kEGB,loss =

 ηkegb(wwh) · Pmech k = 1, Pmech ≥ 0

ηkegb(wwh) · Pmech k = 2, Pmech < 0
(2.10)

This can also be described as a piecewise linear function.

PEGB,loss = max
k

(P kEGB,loss) (2.11)

Battery

The battery is modelled as a voltage source Uoc and an internal resistance Ri .
Since the complexity of the problem to solve is desired to be low and the models
for the rotating components are highly simplified, this model is regarded as a
good choice.

Combining the equation for power and Ohms law, the power loss can be solved
to depend on the current and resistance, see Equation 2.14. URi is the voltage
over the resistance and I the current in the circuit.

Pbatt,loss = URi · I (2.12)

URi = Ri · I (2.13)

Pbatt,loss = Ri · I2 (2.14)

The voltage source can be modelled as a constant or to be changing with the soc,
Equation 2.15.
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Pech = Uoc(SOC) · I (2.15)

Solving Equation 2.15 for current and combining with Equation 2.14, yields an
expression for the power loss of the battery, Equation 2.16.

Pbatt,loss =
Ri

Uoc(SOC)2 Pech
2 (2.16)

As seen, the loss depends on the square of the voltage. To avoid modelling mul-
tiple squares, a linear approximation is used. The constants a and b are approxi-
mated by vcc for the best fit.

1
a · SOC + b

' Ri
Uoc(SOC)2 (2.17)

The battery model can also be simplified with piecewise linear functions to avoid
solving an equation of second order. The model assumes a constant voltage of
the battery, therefore the loss will only depend on electrochemical power.

Pbatt,loss = max
k

(Ak · Pech + Bk) (2.18)

2.2.2 Component constraints

The engine, the electric machines and the battery all have limits in terms of power
output. All of these are approximated as piecewise linear functions with different
number of lines depending on the component. Calculating the correct limits for
every operating point are done prior to running the optimisation, implemented
in a previous thesis [14] and not further looked into.

2.2.3 Vehicle model

Using the component models from the previous section, the vehicle model can
be summed up with four equations. The output power from the driveline is
modelled to always exceed the requested power to propel the vehicle, Preq, Equa-
tion 2.19. This is due to when a large negative request is given from large de-
celeration, all energy cannot be used for regenerative braking. A variable for
the power from using the normal brakes could be introduced, however since this
heavy deceleration happens very seldom, this is not seen as necessary.

Equation 2.20 describes how the electrochemical power from the battery is con-
sumed and Equation 2.21 how the power from fuel is used in the ice.
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Preq ≥ PICE,mech + PISG,mech + PERAD,mech − PGB,loss − PEGB,loss (2.19)

Pech = Pbatt,loss + PISG,mech + PISG,loss + PERAD,mech + PERAD,loss + PAUX (2.20)

Pf = PICE,mech + PICE,loss (2.21)

The change of the soc for battery is calculated using Euler forward. Escale repre-
sents the transformation from energy in the battery in Joule to soc, where Q0 is
the charge of the battery.

Pech(t) =
Escale
∆t

(SOC(t) − SOC(t + 1)) (2.22)

Escale = Q0 ·Uoc (2.23)

The requested power to propel the vehicle, Preq, is based on calculating the re-
quired wheel torque, as Equation 2.24. The different parts that contribute to the
required torque is seen in Equation 2.25. The road load polynomial f (vvehicle)
describes rolling- and air resistance. The inclination of the road, θ, as well as the
acceleration of the vehicle affects the required torque.

Preq = T qreq ·ωwh (2.24)

T qreq = rwh · vvehicle · f (vvehicle) + sin(θ) ·mvehicle · g +

avehicle(mvehicle + J/rwh)
(2.25)
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2.2.4 Operating modes

A usage of operating modes is introduced in last year’s thesis [14] to describe how
the driveline can be configured for different propulsion methods. The erad can
either be engaged or not using the EGB. The combustion engine can either be
turned on or off. Since the isg is directly connected to the ice, a mutual variable
is created for these. The 8-speed gearbox can have gear 1 to 8 and the neutral.
This results in a total 36 (2*2*9) combinations of modes. When the ICE is turned
off, the choice of gear is not relevant and can be set to the neutral. Due to that,
the number of modes is reduced to 20, presented in Table 2.1.

Table 2.1: The complete set of modes for the vehicle.

Mode ERAD ICE+ISG Gear

1 off off 0

2 off on 0

3 off on 1

4 off on 2

5 off on 3

6 off on 4

7 off on 5

8 off on 6

9 off on 7

10 off on 8

11 on off 0

12 on on 0

13 on on 1

14 on on 2

15 on on 3

16 on on 4

17 on on 5

18 on on 6

19 on on 7

20 on on 8
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Logic control of the ERAD

The thesis [14] investigated controlling the erad and the EGB clutch with logic.
In that case the speed and torque demand defines if the erad should be engaged
or not. The set of rules are given in vsim and not further investigated. To con-
trol the erad and EGB clutch with logic reduces the operational modes seen in
Table 2.1 to the set of operational modes seen in Table 2.2.

Table 2.2: The set of modes when using logic control of the erad.

Mode ICE+ISG Gear

1 off 0

2 on 0

3 on 1

4 on 2

5 on 3

6 on 4

7 on 5

8 on 6

9 on 7

10 on 8





3
Optimisation

This chapter presents the theory behind the optimisation methods used in the
approach to design the optimisation algorithm. The theory behind the methods
is explained and in some cases exemplified. The chosen solvers for the methods
are also in some cases evaluated against others, where the choice of the solver is
explained.

3.1 Dynamic Programming

dp is a very common method for offline optimisation, as presented in Section 1.3.
The method is a way of investigating and storing the cost for all possible combina-
tions to a specific problem. By finding the path with the lowest cost, a global opti-
mal solution is found. To further explain the functionality, the problem analysed
in this thesis will be used as an example. To solve the problem, a two-dimensional
grid is used. One axis represents the number of time steps or segments and the
other the set of modes, explained in Section 2.2.4. The number of nodes in the
grid correspond to the size of the problem. A simplified problem with 3 modes
and 4 time steps is illustrated in Figure 3.1. N is for this example equal to the
number of segments. The numbers in the nodes shows the indices and not the
cost.

19



20 3 Optimisation

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

1,5

2,5

3,5

time step

mode

t1 t2 tN−1 tN tN+1

1

2

3

Figure 3.1: An empty grid for a DP problem with 3 modes and 4 time steps.
The last column of nodes is in this setup only used to define the final time
and soc for the battery.

The method works by calculating the cost for the current node, described as the
subproblem, starting from the second to last column in the grid. Figure 3.2 shows
the first step for the nodes of mode 1 and 2. Since no costs are present in the last
column, only the cost for running with the current mode from tN to tN+1 is added
to the total cost.
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Figure 3.2: The first step of the DP algorithm. All combinations of paths to
the next node are evaluated and the one with the lowest cost is chosen. The
green arrows represent all possible subproblems to solve for the first node
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The subproblem for a vehicle is to minimise the fuel consumption in each time
step. When using a hybrid vehicle, the battery and electric machines add another
degree of freedom. ecms can be used to solve the subproblem, see Section 3.2.

For the next column of nodes the subproblem is solved and the cost added to the
cost for all subsequent nodes. The chosen node to go to is where the cost is lowest,
illustred in Figure 3.3 in blue for the first step.
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Figure 3.3: The second step of the DP algorithm. The cost of a node in the
N-1th column is added to each succeeding, shown as green arrows for the
node for the first mode. The combination with the lowest total cost is saved
as seen in blue for the first step.

The process is repeated for all columns and the local solution with the lowest
cost is stored. To find the optimal solution, the nodes in the first column stores
the accumulated cost when starting there. By choosing the starting node with the
lowest accumulated cost, the global optimum is found. The path through the grid,
illustrated as an orange line in Figure 3.4, shows the optimal choice of modes for
each time step.
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Figure 3.4: The final grid from the DP algorithm. The blue lines represent
the cheapest cost from each node and the path with the lowest total cost is
extracted and shown in orange colour.

3.2 Equivalent Consumption Minimisation Strategy

ecms is an optimisation strategy directly comparable to pmp. In pmp the Hamil-
tonian is used, an equation to describe the optimisation to solve, Equation 3.1.
The optimal control signal u* is when the Hamiltonian is minimised.

u∗ = argmin H(x(t), u(t), λ(t)) (3.1)

For a hybrid vehicle, the energy consumption can be from both fuel energy and
electric energy. ECMS introduces the equivalence factor, λ in the Hamiltonian,
see Equation 3.2. Since the fuel and electrochemical power cannot be directly
compared, the equivalence factor can be described as the price for using electrical
energy.

H = Pf + λ · Pech (3.2)

The Hamiltonian is minimised in each time step to find the optimal torque distri-
bution to propel the vehicle.

[TICE , TISG, TERAD ] = argmin H (3.3)

The strength with this method is that there exists a specific value of the equiva-
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Figure 3.5: The soc trajectory for a charge sustaining case. The equivalence
factor λ is increased and decreased by 10 percent to test the sensitivity.

lence factor if the drive mission is known. That is used in [14], where different
values of the equivalence factor is tested to find the one that best fulfils the con-
straints on the final value of the soc. If the correct equivalence factor is found,
that implies ecms have found the optimal solution to the problem, however the
lower and upper constraints of soc can be violated during the soc trajectory.

The voltage of the battery varies with the charge level, as described in Section 2.2.1.
This results in a lambda that varies over time and is hard to identify accurately
from guessing. Using the wrong value of λ can result in a SOC trajectory that
varies significantly from the desired one. A change of 10 percent from the opti-
mal value result in large differences in the trajectories as seen in Figure 3.5.
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3.3 Convex Optimisation

Convex optimisation can as discussed in Section 1.3 be used with good results
when connected with other algorithms such as dp. A convex optimisation prob-
lem is a problem on the form as in equation 3.4, e.g., see [20].

minimise f0(x)

subject to fi(x) ≤ bi , i = 1, . . . , m.
(3.4)

where the functions f0, . . . , fm : Rn → R are convex, meaning that they satisfy

fi(αx + βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ Rn with α + β = 1, α ≥ 0, β ≥ 0[20].

3.3.1 Solvers

There are many different solvers commonly used for solving convex optimisation
problems. Some commonly used solvers are SeDuMi and SDPT3, both available
from the framework that is CVX, a framework for modelling and describing prob-
lems using MATLAB [21]. CVX might be quite good in developmental stages,
as one tries to define a problem and solve it. However as the time for CVX to
setup a problem and describe it using the specified framework is long, it does not
perform as well for problems that needs to be setup many times with different
variables. CVX is a commercial solver [21].

For implementations where time is a factor, there are solvers made for being em-
bedded. One of those is CVXGEN, a solver which optimises offline to generate a
solver that works very well for small problems and can be used to solve those in a
very small amount of time. It generates a fast custom solver for the specified prob-
lem [22]. However, to generate a solver for a specific problem gives limitations in
the problem setup. If the problem changes, the solver has to change. Therefore,
this makes CVXGEN hard to use for purposes when the problem formulation
changes. CVXGEN is a commercial solver [22].

Another of the solvers made for embedded purposes is the Embedded Conic
Solver (ECOS). It is a convex optimisation solver which can handle second or-
der cone programs (socp). It is written in ANSI C, with about 1000 rows of code,
making it very fast and efficient. It utilises a very fast converging interior point
algorithm for solving the problem [23]. The layout of ECOS enables utilisation of
the solver for very fast problem setup and solve. It is therefore compatible to use
when the problem layout is changing. ECOS is an open source solver, distributed
under the GNU General Public License v3.0 [24].
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3.3.2 The dual problem

When solving an optimisation problem, the problem at hand is called the primal
problem, which can be exemplified as in Equation 3.5. When a primal problem
exists, there is always a corresponding dual problem. For the given linear exam-
ple in Equation 3.5 the dual problem is formulated as in Equation 3.6, where µ is
the dual variable. There exists a dual variable for each constraint[25].

minimize max cT x

subject to Ax ≤ b
x ≥ 0

(3.5)

maximise max bT µ

subject to AT µ ≥ c
µ ≥ 0

(3.6)

If the primal problem does have an allowed, limited optimal solution, x∗, then
the dual problem does also have an allowed, limited optimal solution, µ∗[25].

When using convex optimisation on a torque split problem for a hev, the dual
variable for the soc constraints, in this case called λ will be equivalent to the
equivalence factor λ used in the Hamiltonian in ecms, from Section 3.2[7]. This
fact is the key behind how an efficient solver can be designed. By solving a convex
optimisation problem, the resulting dual variable for the soc constraints gives
information about how the ecms-problem can be solved.





4
Segmentation

With the recent advances in autonomous functions for vehicles, the navigational
system has had to be updated. Therefore nowadays the navigational systems for
cars and other vehicles have become quite advanced with functions like adasis
included. Those functions can be used to help plan the trip, in terms of how the
energy management in the vehicle should act during the trip. With the input of
a destination from the user of the vehicle, the navigational system of the car is
able to output data, using adasis output horizon data containing, among others,
speed limits and altitude profiles. This data can then be used to plan the trip.
In this thesis, the data is used in the vehicle ems. However, the data that comes
straight from adasis has a low resolution but can still result in a lot of informa-
tion, meaning that to optimise directly from that data would be time consuming.
Therefore, this chapter will examine an approach for a segmentation algorithm.
The algorithm should be able to merge data from the adasis output to larger seg-
ments, with length up to a couple of kilometres, to limit the amount of data to
process in the optimisation algorithm. An illustration of how the segmentation
could work can be seen in Figure 4.1.

The improvements that can be made with segmentation can be seen in for ex-
ample [26] where a development of ecms using segmentation of data from the
navigation system was covered. The reference signal in soc was modified given
the route ahead and major improvements compared to a non-predicting ecms is
shown. A segmentational approach is also done by the authors of [12], where
the road is segmented and where the segments are later sorted into order by the
power demand for each segment. The optimisation is then done on the sorted
segments. This strategy were successful and could lead to decreases in fuel con-
sumption and the time when the engine is running [12].

27
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Figure 4.1: Illustration of how data about altitude and speed limit can be
segmented.

4.1 ADASIS

adasis is a protocol in which the communication interface from the navigational
system to the rest of the car is specified. The communication is done over the
Control Area Network (CAN). The information provided is an Advanced Driver-
Assistance Systems (adas) horizon, which allows the vehicle to gain knowledge
of the road forward, further than ordinary sensors would allow as the data used
is from the navigational system. adasis is widely used and developed by a coor-
dinator that partners with many of the major automotive companies[27].

There are two different versions av adasis, one version for short range applica-
tions and one version for long-range applications. The difference between the
two versions is the sampling rate of the data. The short-range version gives infor-
mation about the route very often, while the long range version gives information
about the route with longer distance between the points. The version used in this
thesis will be the long-range version, as the routes that are used will be of sub-
stantial length. The data collection from adasis and the basic functionality in
making that data useful is done in the same way as the authors from [12] did.

4.2 Data

As the data from long-range adasis is sparser, it is not that precise. Together
with the fact from what the authors of [28] found, that a driver seldom drives
according to the speed limit of the road, the data a segmentation algorithm will
take decisions on will have faults. The same authors did also find that adapting a
general driver model is very difficult [28]. With those limitations, segmentation
will not be able to provide a perfect approximation to the route.

The number of segments does also matter. According to [29] there is a limit for
when a substantial improvement is seen for each added segment.



5
Method

To construct a route based optimal ems for a hev, there are many factors that
have to be taken into account when optimising. The main factors vehicle factors
are discrete decisions such as gear choice and combustion engine on/off, torque
split and the available energy. Other main factors are environmental or route
factors such as the road profile and speed limits. By combining several of the
methods presented in earlier chapters, a computational efficient algorithm can be
constructed while keeping good results. All implementation is done in MATLAB.

5.1 General description

This thesis presents a method where ddp and ecms is combined with convex
optimisation and a segmentation algorithm, resulting in a soc reference trajec-
tory. The algorithm for discrete decisions using ddp and ecms was developed
in a previous thesis [14] and is further developed to decrease the computational
time required for each iteration. Previously, the algorithm used a root-finding
algorithm to find the correct value of the equivalence factor for the whole drive
cycle, a quite time-consuming process.

In the implementation described in this thesis, the root-finding algorithm is re-
placed by convex optimisation. As stated in Section 3.3.2, the dual variable for
the soc-constraint in convex optimisation and the equivalence factor inddp/ecms
is for this problem the same and is hereafter given the common description λ.

One great benefit with convex optimisation is the ability to find the correct λ
for the whole drive cycle, even if hitting a constraint. λ is therefore not set to
one value but can change during the drive cycle. The convex optimisation is
implemented with the Embedded conic solver ECOS.

29
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Figure 5.1: Flow chart of the complete algorithm presented in the method
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The implemented segmentation algorithm starts with data from the navigational
system through adasis, which is segmented according to speed limits and the
road inclination. The segments are then used as input to the optimisation algo-
rithm, efficiently limiting the amount of data to the algorithm while keeping a
high quality to maintain accurate results. This makes it possible to run the opti-
misation algorithm in a small amount of time.

The complete optimisation algorithm using ddp and ecms combined with convex
programming requires handling of how λ is updated between the solvers. λ has
to be guessed to start the solver, which can be problematic as a guess far away
from the actual value might cause the solver to be unable to start iterating. An
approach to handle this is presented in Section 5.6. A flow chart of the complete
algorithm is presented in figure 5.1.

For validation in an online environment, Volvo Simulation Tool vsim is used. To
be able to test the algorithm, a way to control the soc of the battery is required.
This controller is constructed in vsim and shall aim to follow the reference soc
trajectory from the algorithm.

5.2 Segmentation

The segmentation is made using data on road inclination and speed restrictions
to produce segments of the drive cycle.

Figure 5.2: Input and output for the segmentation algorithm.

5.2.1 Data

The data used for input into the algorithm comes from adasis and is recorded
during vcc test drives. The collected data is then processed, and the different
routes sent from adasis is used. adasis sends a new route for every recalculation
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of the route that it does, meaning that when the driver deviates from the given
route, adasis recalculates a new route.

Those routes are then used to generate drive cycle data, to convert the data to
something that can later be usable in the optimisation algorithm. The data not in
routes are sorted out and the routes with to small amount of data is thrown away.
The connection of the altitude points is first done using a linear approach con-
necting the different points, thereafter the linear approach is interpolated with
regards to the time, so that each time point holds a data point.

5.2.2 Algorithm

Input

The algorithm will use data on speed limits and altitude data from adasis to
make decisions about when to start or end a segment. In developmental purposes,
other drive cycles will be used as well, as long as they contain the appropriate
data.

Computations

As the algorithm needs to be fast it is strictly using logic. The logic based choices
are made on the speed limits, the altitude change between the segments and the
first and second derivative of the altitude. There are however some overriding
logic. No segmentation is made if the distance in which a new speed limit is
valid is too short. There is also a minimum distance specified between segments.

The overriding logic is necessary for eliminating small changes that would make
a segmentation with the original logic, which would greatly increase the number
of segments and lead to no or almost no improvement.

Output

The segmentational algorithm provides the number of segments, the time when
the different segments are active, the altitude data, the speed limits and the road
inclination. To be able to closer examine how the implemented segmentation will
work in the finished algorithm, recorded speed data will be used to provide the
segments with data of the mean speed during each segment and the standard
deviation of the speed from mean in each segment.

The standard deviation is found using the Matlab implementation of Equation 5.1,
where σ is the standard deviation, n is the amount of samples, Xi is the value in
each sample point and X is the mean over all samples.

σ =

√√
1
n

n∑
i=1

(Xi − X)2 (5.1)

The implementation with standard deviation doubles the number of segments,
with half of each segment implemented as the standard deviation over the seg-
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ment subtracted to the mean of the segment and the other half instead with the
standard deviation added to the mean of the segment.

5.3 Data setup

Before running the solver algorithms, data about the problem and the vehicle
is loaded. The maps that describe losses are precomputed for all modes and
time steps. Due to ddp testing all possible combinations in every iteration, this
method is very efficient in terms of saving time. By only storing the data that is
relevant, the memory usage can be kept small.

The maps of losses in each component are only specified for a few angular veloc-
ities, as presented in section 2.2.1. Interpolation is required to find the correct
piecewise linear functions for a given angular velocity, where a faster method
compared to the standard in Matlab is developed.

5.3.1 Operating mode reduction

In Section 2.2.4, the number of modes when controlling the ERAD based on logic
was determined to be ten. This thesis introduces a way of reducing the number
of modes tested in each segment by selecting a maximum of three suitable gears
depending on the speed of the vehicle. For high velocities there is no relevance
evaluating the lower gears and there is no need evaluating the highest gears when
the vehicle speed is low.

The method is based on a map for gear selection provided by vcc. The most
suitable gear for each segment is calculated with the nearest neighbour method,
called gearsuggestion. To use the potential of ddp to test multiple alternatives,
plus-minus one gear is added to the set of gears, gearset if possible.

gearset =


{0} gearsuggestion = 0
{1, 2} gearsuggestion = 1
{gearsuggestion ± 1} gearsuggestion ∈ [2, 7]
{7, 8} gearsuggestion = 8

(5.2)

When the erad is controlled through optimisation, the reduction of operating
modes will not be used. This is to test how a maximum 20 set of operating modes
compares to a greatly reduced number when controlling the erad through logic.

This reduction of operational modes is hereafter referred to as gear reduction.

5.3.2 Acceleration between segments

The data from the segmentation algorithm contains segments with constant ve-
locity and inclination. Changing the velocity of the vehicle between segments is
something being ignored with this simplified data. To account for that, a method
of adding segments with constant acceleration between each segment where the



34 5 Method

velocity changes is tested. The velocity in these segments is set as the mean value
of the starting and final velocity. A constant acceleration is used, which gives
a segment length depending on the change in velocity. The new segment starts
where the velocity profile changes, i.e. where the speed limit sign is placed.

5.4 Dynamic programming and ECMS

The first part of the optimisation algorithm consist of optimising the discrete
variables, such as choice of gear and engine on/off, for all segments. For this, a
ddp-approach is chosen. The method will find the global optimum and is rather
efficient when the number of optimisation variables are limited. ecms is used to
get the torque split for each segment in order to get the cost for using a specific
operating mode. The script for ddp and integration of ecms origins from the
thesis[14] and has been improved in this thesis.

The input to the solver is data about route and and vehicle data for all operating
modes and segments, as well as the λ for all segments. For the first iteration λ
has to be initialised.

The output is the choice of operating mode for all segments, as shown in Table 2.2.
That includes choice of gear and engine on/off for the combustion engine. If the
ERAD is not controlled with logic, the output needs to include the status of the
ERAD as well, as can be seen in Table 2.1.

Figure 5.3: Input and output for the ddp/ecms algorithm.

5.5 Convex optimisation, ECOS implementation

All problems solved by the convex solver ECOS needs to be on matrix form. The
problem set up is as presented in Equation 5.3.

minimise cT x

subject to Ax = b

Gx �K h
(5.3)
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Where, as specified in [24], the symbol �K denotes generalised inequality with
respect to the cone K. From now, let K be the second order cone, i.e. the vector
h − Gx belongs to the second order cone K:

Gx �K h⇔ s = h − Gx ∈ K

Figure 5.4: Input and output for the convex optimisation.

Since the studied configuration as specified in Figure 2.5, can be used with dif-
ferent ways of propulsion, four cases have been made for these. Which engine
is active or not active in which case can be found in Table 5.1. The cases can be
directly linked to the modes as specified in Table 2.1. As the cases are different
in use of drivline components, there is no idea of solving a variable related to a
component that is not active.

Table 5.1: Description of different cases in ECOS.

Case 1 Case 2 Case 3 Case 4

ICE On Off On Off

ERAD On Off Off On

This result in the number of variables in the problem formulation to change de-
pending on which case is present in each time step. The variables for the four
cases can be seen in Table 5.2. Therefore, the problem formulation part iterates
the build of matrices over the number of time steps in the drive cycle. For each
time step, one case is active, and for that case the correct variables are put into
the problem matrices.
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Table 5.2: The variables during different cases in ECOS described in Ta-
ble 5.1. Where Slack is introduced in Equation 5.8.

Var.nr Case 1 Case 2 Case 3 Case 4

1 PICE SOC PICE PERAD

2 PICE,loss PBatt,loss PICE,loss PERAD,loss

3 PISG Pech PISG PEGB

4 PISG,loss Slack PISG,loss SOC

5 PERAD PGB PBatt,loss

6 PERAD,loss Pf Pech

7 PGB SOC Slack

8 PEGB PBatt,loss

9 Pf Pech

10 SOC Slack

11 PBatt,loss

12 Pech

13 Slack

5.5.1 The objective function

The main goal with the optimisation is to minimise the fuel consumption over
all segments. The fuel energy is calculated using the variable for fuel power Pf .
Since all dynamics are removed from the models, the fuel energy consumed over
one segment, Qf uel , can be seen as the fuel power times the length of the segment,
Equation 5.4

Qf uel = Pf ·∆t (5.4)

This gives the objective function as Equation 5.5, where t represents one segment
and tN is the last segment.

minimise
tN∑
t=1

Qtf uel (5.5)

If the requested regenerative breaking power exceeds the maximal power that
either the battery or the erad and isg together can recover, the difference has to
be accounted for in the model. To avoid the solver from using the gearboxes to
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recover that energy, which is not possible in reality, a minor minimisation is used
on these as well.

As the number of active components differs with the actual case, the objective
function depends on this and one objective function for each case is formulated.
The objective functions for the different cases can be seen in Equation 5.6. The
final objective function will be a combination of these, depending on the cases in
the problem to solve.



minimise
tN∑
t=1

Qtf uel + s · P tGB + s · P tEGB case = 1

minimise
tN∑
t=1

s · P tech case = 2

minimise
tN∑
t=1

Qtf uel + s · P tGB case = 3

minimise
tN∑
t=1

s · P tEGB case = 4

(5.6)

Where s is the weight and is equal to 0.001 for all cases.

5.5.2 Models

The problem to solve will depend on the case that is active. From Table 5.2, the
problem at hand for each case can be seen. The inequality and equality models
used are described in Sections 2.2.1 and 2.2.3, with the exception of the imple-
mentation of the battery as a second order cone, which is described below.

Second Order Cone Programming

ECOS does have the ability to solve problems where second order cones are in-
cluded. This ability is used as the quadratic over linear battery model as seen
when combining Equations 2.16 and 2.17 can be formulated as a second order
cone. The quadratic over linear function is convex if the denominator is greater
than zero[20], thus it can be used in the convex optimisation.

To make an easy conversion, the program QCML [30] is used to convert the
quadratic over linear equation to a second order cone. For the input arguments to
ECOS, the conversion is as follows: from Equation: 5.7 to Equations: 5.8 and 5.9.
Where the matrix in Equation 5.8 describes the linear relationships, the two first
rows for the linear constraints and the last row for the cone and the matrix in
Equation 5.9 describes the quadratic relationship as a second order cone K.
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Pbatt,loss =
1

f1(SOC)
· Pech

2

Pech − Pbatt,loss ≤ +f2(SOC)

Pech − Pbatt,loss ≥ +f3(SOC)

SOC ≥ 0

(5.7)

Where f1(SOC) = a1 · SOC + b1 comes from a linear fitting of Ri
Uoc(SOC)2 in the

battery model described in Equation 2.16. And where f2(SOC) = a2 · SOC + b2
and f3(SOC) = a3 · SOC + b3 comes from linear fittings of maximum respective
minimum limits of the output power from the battery, Pech − Pbatt,loss, depending
on the soc.

−a2 −1 1 0
a3 1 −1 0
0 −1 0 1



SOC
PBatt,loss
Pech
Slack

 ≤
 b2
−b3

0

 (5.8)

−a1 0 0 −1
−a1 0 0 1

0 0 −2 0



SOC
PBatt,loss
Pech
Slack

 �K
b1
b1
0

 (5.9)

Where a1, b1, a2, b2, a3 and b3 in Equation 5.9 comes from f1(SOC), f2(SOC) and
f3(SOC) in Equation 5.7 and where K is a second order cone.

Scaling

To achieve accurate results from the convex solver, all variables to be solved
should be of around an equal size. Since soc is of magnitude 100 and Pf uel of
magnitude up to 106, the solver will run into numerical problems if the scaling
is not done properly. In the implementation for the thesis, the scaling used re-
sults in variables with a value in the interval [−1, 1]. A diagonal scaling matrix
α with the same dimensions as the number of variables is multiplied to the prob-
lem setup matrices. Each diagonal element represent the scaling being used for
the corresponding variable.

minimise (cα)T x

subject to (Aα)x = b

(Gα)x �K h
(5.10)
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5.6 Connecting the algorithms

To connect the algorithms the operating modes being calculated by ddp/ecms
is used in the convex optimisation to calculate the optimal λ. The connection is
illustrated in Figure 5.5. λin denotes the value being sent to ddp/ecms and λout
the value from ECOS. The initial λ has to be guessed. By updating λin for the
next iteration based on λout , the result from both solvers should converge.

λin

Deterministic dynamic
Programming and

ECMS
λin 

Convex Opmitimsation
(ECOS)

λout

Yes

Stop criteria.
Solution

converged? 
Control law No

Stop

Figure 5.5: Illustration of how the optimisation algorithms are connected
and how λ is updated between iterations.

5.6.1 Control law

The key behind solving the problem quickly is to update λ in a smart way to
ensure that all kinds of drive missions are solved fast and accurate. The authors
of [7], suggest a method where a weight factor q decides how to update λ. This
method is seen as easy to understand and is used to update λ to the next iteration.
As seen in Equation 5.11, the weight factor decides how much to trust the differ-
ence between the solvers for the next iteration i + 1. This can be described as a
factor of how accurate the solution from the convex solver is. The weight factor
varies between 0 and 1, where a higher value means that the new value from the
convex solver should be trusted. For the extreme case where q is zero, no regards
is taken to λout from the convex solver and the previous λin is used again. This
will not change anything between iterations and is considered as a non-existing
case. Conversely, if q is equal to one, λout from the convex solver is directly used
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in the next iteration.

λin
i+1 = λin

i + q · (λout
i − λini) (5.11)

To give a value of how close to the correct solution the algorithms are, the root-
mean-square error is used. The value is calculated based on the sum of the square
of the error in each time step, as seen in Equation 5.12.

∆λ(t) = λin(t) − λout(t)

λRMS =

√
1
Nseg

(
∆λ(1)2 + ∆λ(2)2 + . . . + ∆λ(Nseg )2

) (5.12)

By updating q ∈]0, 1], λ converges to optimal where λRMS is close to zero. The
choice of q has to be a trade-off between reducing the computational time and
minimising the risk of over/undershooting the value of λ. A flow chart of how q
is updated is seen in Figure 5.6

Running the ddp/ecms algorithm with a too high or low value of λ will result
in a large error in the soc trajectory and a trajectory of operating modes that is
not optimal. If then the convex problem is solved with constraints for the start
and end point for the soc are fixed within small limits, the result can be trouble
finding a feasible solution. This might also reduce in a bad solution in which
the results are wrong due to the convex solver being too constrained to solve the
problem in a way so that the optimal λ is found. For example, if the ice is turned
off in many segments due to a low guess of λ, while the drive mission should
be charge sustaining, the vehicle cannot generate enough energy to the battery
during the few segments the ice is running to be charge sustaining.

Initial value of the weight factor

The first two iterations needs to be run with a very low weight factor to get closer
to the target. This is due to the problem when initialising with a too high or too
low λin, the output value will not be perfect. Depending on the λRMS-value after
the first iterations, q is chosen between 0.4 and 0.6 as seen in Equation 5.13.

q =


0.6, λRMS ≥ 0.3
0.5, 0.05 < λRMS < 0.3
0.4, λRMS ≤ 0.05

(5.13)

When controlling the erad through optimisation, the λout can differ significantly
from the desired value, although always with a correct sign if λin should be in-
creased or decreased. To handle this, the weight factor q is given 1/5 of the value
in Equation 5.13.
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Relaxation of the SOC constraints

An alternative to iterating with a small q and fixed constraints on the start and
final value on soc is to change to a relaxation of these constraints. Two new vari-
ables are introduced that describe the soc trajectory’s difference from the desired
start and end value. These variables are then added to the objective function to
minimise the difference.

SOCdif f ,start = |SOC(t1) − SOCstart | (5.14)

SOCdif f ,end = |SOC(tN+1) − SOCend | (5.15)

The relaxation solver has the strength of being able to solve the case of where
the guessed λ generates a mode trajectory that creates a non-feasible problem.
Due to this strength, in the case of controlling the eradwith logic, the relaxation
solver is always used in the first iteration. If the λRMS-value is between 0.2 and
0.8 after the first iteration, it is used in the second iteration as well. This is to use
the potential with the relaxation solver to get closer to the correct value of λ and
decrease the number of iterations required with the normal solver.

When the relaxation solver is used, the value of q is set to 1. This means that the
resulting λout is copied directly to be used as input in the next iteration. In the
case of optimising the erad, the relaxation solver is not used. This is due to that
the algorithm in this case is very sensitive to which value λ has.

Decreasing error between iterations

To make sure that the solution converges to the optimal, the λRMS-value has to
decrease between the iterations. If it does not, the λout from the convex solver
has increased or decreased too much. This indicates that the weight factor, q has
been too high. The last valid solution where the λRMS-value was decreasing is
stored and to the next iteration q is divided by two.
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Figure 5.6: Flow chart of how the weight factor is updated.
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5.6.2 Stop criteria

Detecting whether the solution converges can be done in several ways. This thesis
presents three different alternatives, which combined could be made into many
more. The choice of the three alternatives is because each of them tells some-
thing important about the problem. The different alternatives is presented in the
list below. When any of these criteria are fulfilled, the algorithm will stop. The
threshold for the criteria are chosen based on extensive testing of the algorithm
with the purpose of avoiding additional numbers of iterations without improve-
ments in the solution.

• λRMS below threshold

• q below threshold If q is very small, there is no further idea to keep iterat-
ing as λ won’t change enough to affect the result. As the algorithm some-
times cannot find perfect convergence between λin and λout , it can however
find a value close enough, this gives a solution close to optimal.

• Combination of several criteria that all have to be fulfilled. To decrease
the number of iterations when close to an optimal solution, multiple criteria
are combined. Iterating for λRMS below threshold is not necessary when no
or minor changes are seen between the iterations and the soc trajectories
are similar between the optimisation methods.

– Minor change of operating mode in the segments between iterations.
Suggested in [7] and slightly modified.

– Change in fuel consumption between iterations below threshold.

– Difference in soc trajectory between the ddp/ecms and convex opti-
misation below threshold.

Since the relaxation of soc constraints gives a solution slightly different than the
one without, the last iteration has to be with the normal solver without relaxation.
The iteration with the lowest λRMS is stored and retrieved when a stop criterion
is reached. The algorithm outputs the optimal soc trajectory for the problem and
the optimal λ for each segments.

5.7 Controller

To evaluate the generated soc trajectories possibility to save fuel with the more
advanced vehicle model in vsim, a controller is required for the actual soc to
follow the generated trajectory. The objective for the controller is to follow a
reference soc-trajectory, therefore, it does in some way need to be able to control
the charge of the battery.

Given the complexity of the model in vsim, the control method is designed to
be simple for a straightforward implementation and validation. The main scope
with the thesis is calculating reference trajectories and not designing an advanced
controller. Since the reference soc trajectory is calculated based on segmented
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road data and a simple vehicle model, the trajectory cannot be perfectly followed.
This reduces the need for an advanced controller. Two controllers are designed
with the same control method, however with different ways of calculating the
reference signal r(t). These two controllers are developed in parallel to test which
method that gives best performance. The main idea behind the controllers can
be seen in Figure 5.7. The erad is not part of the control method.

Figure 5.7: Simple sketch of the input and output of the controller. Only the
input to the ISG controller is modified.

5.7.1 Control method

The control method works by updating the engine thresholds depending on the
reference signal. By doing this the soc reference trajectory can be followed. This
works by lowering the engine threshold when the soc value is below the soc
reference trajectory to force the vehicle to run with the ice instead of electric
propulsion. The opposite holds for when the soc value is higher than the refer-
ence value, in this case to thresholds are increased to force the vehicle to run all
electric to consume electrical energy.

The reference signal, r(t), to the controller comes from the two ways of calcu-
lating the reference, presented in Section 5.7.2 and 5.7.3. An illustration of the
thresholds can be seen in Figure 5.8. The engine is started when the power re-
quest is above a threshold, shown in green, and turned off when the request is
below a threshold, shown in orange. To reduce the number of engine starts, a
band between the lines is used.
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Figure 5.8: An illustration of how the thresholds for engine on/off is changed
depending on the difference from the reference signal r(t).

The thresholds are specified for a few values of r(t) and velocity of the vehicle.
The decision of using the velocity is based on the fact that the vehicle should op-
erate differently depending on the velocity. For a low speed, electrical propulsion
is desired, thus increasing the threshold to avoid starting the ice. For a highway
drive, the opposite holds.

Control of charge request

The controller for charge request to the isg in vsim is continuously updated with
the deviation from the reference soc trajectory. This controller is based on a
number of rules which are not modified.

5.7.2 Deviation from trajectory method

The controller in this method is designed to follow the reference based on the
deviation from the reference soc trajectory in each time step, as seen in Equa-
tion 5.16. The engine on/off thresholds are specified for a few deviations from
the trajectory, creating bands as seen in Figure 5.9. The further away from the
reference trajectory the soc value is, the more aggressive the controller will be.
Interpolation is used to find the correct threshold for the current vehicle speed
and deviation.

rdeviationcontroller (t) = SOC(t) − SOCref (t) (5.16)
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Figure 5.9: An illustration of the principle on how the deviation from ref-
erence controller works. The further away from the reference trajectory in
solid line, the more aggressive the controller is.

5.7.3 Deviation from gradient method

A second method evaluated is based on the deviation from the gradient to the
next point on the soc reference trajectory, as seen in Equation 5.17. The control
parameters are specified for a few deviations from gradient, where a larger differ-
ence of the gradient gives a more aggressive controller. Interpolation given the
actual deviation in gradient and vehicle speed is used.

rgradientcontroller (t) =
SOCref (t) − SOC(t)

tref ,target − t
(5.17)

Due to the large error in gradient when being close to a target point in time and
slightly off in soc, the next target point is updated when being rather close. The
drawback with this method is that peaks in reference are neglected, however it
greatly reduces the problem with the controller being too aggressive when it is
close to a target.
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Figure 5.10: An illustration of the deviation from gradient to next target
controller. The current target is marked with a x and the reference for the
current time marked with o. The orange lines represents different gradient
deviations that defines the thresholds.

5.7.4 Implementation in VSIM

To be able to test the constructed algorithm in an online adaption, vsim is used.
The algorithm is run before the simulation starts, generating a reference soc-
trajectory for the chosen driving mission.

Recalculating the reference trajectory

The reference trajectory is never perfect due to the limited input data and the
simplified vehicle model being used in the optimisation. If the controller is un-
able to follow a reference trajectory, a recalculation of the trajectory is desired.
Otherwise, the battery level is highly forced by the controller to get to the refer-
ence, which causes the vehicle to operate in a way that might be far from optimal.
For example if the vehicle is at standstill at a red light where the speed limit is
50 km/h, the vehicle cannot discharge the battery in the way that the reference
profile suggest. If there is a high speed segment after the red light, the vehicle is
forced to operate all electric to consume the battery energy "saved" when stand-
ing still. Recalculating the reference might prevent such behaviour, resulting in
a reduced fuel consumption.

The recalculation is triggered when the soc deviates from the reference soc tra-
jectory above a threshold. If that happens, the simulation is paused and the opti-
misation algorithm is run. Only the part of the drive cycle remaining is recalcu-
lated. The reference soc trajectory is updated and vsim is run again.
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Results

This chapter presents the results from testing the developed algorithm in Mat-
lab and comparisons of different implemented features, as well as comparison to
the ddp/ecms algorithm developed in [14]. It does also present results from im-
plementing the developed algorithm in vsim where the two different controllers
are compared and validated. The resulting complete algorithm with controller is
compared to the cdcsmethod to evaluate the potential fuel saving.

The test set consist of three recorded drive cycle, which are used to generate
results. These are given the names GAC, PFC, and SHC, where their respective
recorded speeds, speed limits and if applicable, altitude profiles can be found in
Appendix A. The new standard cycle for vehicle classification, WLTP, is also part
of the test set. For SHC and WLTP, no information about the speed limits exist.
To use these in the segmentation algorithm, an estimation of the speed limits is
made, seen in Appendix A. All tests will be done on a laptop with quad core i7
2.8 GHz CPU and Matlab R2015b.

To test different cases of discharge, a few levels are introduced. These are used
both in the Matlab and vsim tests.

• Large

• Medium

• Small

• Standard

• Sustain

Where Large describes close to a full discharge, small a rather low starting soc

49
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of the battery and medium in between large and small. The standard discharge
describes a discharge of the battery between a large and a medium discharge. The
sustain discharge describes a charge sustaining case, meaning that the starting
and final soc is equal.

6.1 Segmentation algorithm

As can be seen in Table 6.1, the time for the algorithm to run is dependent on
the drivecycle duration, as this correlates with how many data points the set of
vectors describing the drive cycle contains. From the table one can also notice that
the number of segments created and the length of the drivecycle in kilometers
have little to none effect on the time to run the algorithm. In Figure 6.1 a plot of
how run time depends on the drive cycle time and therefore the number of data
points can be seen. The figure shows a linear relation in the time it takes to run
the algorithm in relation to the number of data points.
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Figure 6.1: Figure showing how the segmentation algorithm run time de-
pends on the drive cycle length in seconds.
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Table 6.1: Differences in the run time for the segmentation algorithm shown
together with the number of segments created, the distance of the cycle and
the drive cycle time for a number of adasis recordings that has been run
through the segmentation algorithm.

Time to run
algorithm [s]

Number of
segments

Distance [km] Drive cycle
time [s]

0.045 6 3.32 274

0.449 30 46.8 2377

0.203 20 22.2 1214

0.347 22 38.9 2087

0.520 30 51.0 3013

0.273 20 30.4 1546

0.268 22 29.6 1576

0.396 24 57.3 2284

0.294 20 32.2 1666

0.086 7 11.5 522

0.085 13 8.23 483

0.202 22 23.7 1197

0.116 7 16.7 661

0.103 8 11.1 622

0.145 15 13.2 832

0.264 19 25.5 1497

0.191 19 16.6 1062

0.522 35 43.7 2890

The results from the segmentation algorithm is seen in Figure 6.2, where the GAC
cycle has been run through the segmentation algorithm. It can be seen that the
segmentation algorithm misses some parts of the original data. This is mainly
due to a minimum segment length required, explained in Section 5.2.



52 6 Results

Distance

S
p

e
e

d

Segmentational algorithm, Speed limits

Speed limit

Segment speed limit

Segment starts

Distance

A
lt
it
u

d
e

Segmentational algorithm, Altitude

Altitude

Segment starts

Segment altitude

Figure 6.2: The segmented GAC cycle. The red dots symbolise segment
starts, the red dotted line symbolises the data in the segments, and the cyan
lines represent the original data, recorded during vcc test drives.

6.2 Optimisation algorithm

The optimisation algorithm for the energy management is evaluated in Matlab
with different drive cycles and settings. A number of features in the algorithm
introduced in this thesis is separately tested to find their performance. The result
is presented with a plot of the resulting SOC reference trajectory together with
a table showing the computational time. In some cases the fuel consumption or
number of iterations is also relevant and presented in the table as well.

The original version of the implemented algorithm is defined with the following
settings:

• Logically controlled ERAD

• Gear reduction

• Battery model as second order cone

• No acceleration between segments

If nothing else is mentioned about the solver, this version is used. The standard
drive cycle used for tests is the cycle named GAC. If nothing else is specified, this
cycle has been used.

For each drive cycle, the data to be used in the optimisation algorithms is given
the following names:
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• Original data, recorded speed or DP/ECMS, recorded speed (original data)

• Original data, speed limits

• Segmented, speed limits

Original data means that no segmentation is performed and the original ADASIS
data is used with a 1 second resolution. The velocity data can either be from
recording the speed of the vehicle or from the speed limits for the same drive.
The segmented version is from running the data with speed limits through the
segmentation algorithm.

No conclusions can be drawn from the fuel consumption when testing in Matlab
with different ways to get the velocity for the same drive cycle since this will
generate different versions of the drive cycle. Only when the same drive cycle
and velocity profile is used, the fuel consumption from running in Matlab can be
compared.

6.2.1 Drive cycle segmentation

This section will show the results from the tests of how the implemented optimi-
sation algorithm performs when used with data that has been run through the
segmentation algorithm. The results are compared to when the optimisation al-
gorithm has been used with original data with speed limits and recorded speed.
The ddp/ecms algorithm[14] which the method is also tested and used for nor-
malisation of the presented data.
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Table 6.2: Differences in computational time for the implemented optimi-
sation algorithm with different cycles and different discharges. The column
Method describes the input data of different forms. The results from an
ddp/ecms algorithm is also shown in the table for each case and used to
normalise from.

Cycle Discharge Method Computational
time

GAC Large Segmented, speed limits 4.3

GAC Large Original data, speed limits 155

GAC Large Original data recorded speed 74

GAC Large ddp/ecms, recorded speed 100

GAC Medium Segmented, speed limits 1.2

GAC Medium Original data, speed limits 22

GAC Medium Original data recorded speed 33

GAC Medium ddp/ecms, recorded speed 100

GAC Small Segmented, speed limits 1.7

GAC Small Original data, speed limits 17

GAC Small Original data recorded speed 22

GAC Small ddp/ecms, recorded speed 100

GAC Sustain Segmented, speed limits 1.62

GAC Sustain Original data, speed limits 114

GAC Sustain Original data recorded speed 18

GAC Sustain ddp/ecms, recorded speed 100

SHC Standard Segmented, speed limits 0.81

SHC Standard Original data, speed limits 27

SHC Standard Original data recorded speed 28

SHC Standard ddp/ecms, recorded speed 100
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Figure 6.3: soc reference trajectories for the methods described in the Ta-
ble 6.2
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Worth to note from Table 6.2 is the difference in computational speed between
the different methods, as well as the difference in the soc trajectories between
the different methods for the same drive cycle, seen in Figure 6.3.

6.2.2 Gear reduction

This section shows the results from the tests of how the implemented optimisa-
tion algorithm performs when used with a reduced set of gears, as discussed in
Section 5.3.1. The results are compared to tests when the gear reduction is not
used. Multiple sets of input data to the optimisation algorithm are used in the
tests and only the ones with equal velocity data can be compared in terms of fuel
consumption.

Table 6.3: Differences in fuel consumption, number of iterations and compu-
tational time for the implemented optimisation algorithm with and without
gear reduction. The results are normalised based on the values from the test
with gear reduction and recorded speed from the original data. This table
shows the results from a medium battery discharge. The fuel consumption
should be compared only between the pairs with equal data speed data.

Cycle Method Fuel consumption
per distance

Computational
time

Iterations

GAC No gear reduction, seg-
mented, speed limits

1.10 8.0 17

GAC Gear reduction, seg-
mented, speed limits

1.14 2.8 7

GAC No gear reduction, Origi-
nal data, speed limits

1.02 452 18

GAC Gear reduction, Original
data, speed limits

1.06 66 3

GAC No gear reduction,
recorded speed

0.96 132 5

GAC Gear reduction, recorded
speed

1.00 100 5
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Figure 6.4: soc trajectories for the methods described in Table 6.3 where the
feature to reduce the number of gears evaluated in ddp in each segment is
tested.

Important to note from Table 6.3 is that the error in fuel consumption from the
gear reduction is about the same for all methods, compared to the fuel consump-
tion with no gear reduction. Also worth to note is the difference in computational
time between the methods with gear reduction and the methods without gear re-
duction. The iterations is related to the computational time and can explain the
big difference. As can be seen in Figure 6.4, the soc trajectories for the different
methods have minor difference.

6.2.3 Piecewise linear battery model

This section shows results from the tests of how the implemented optimisation
algorithm performs when the second order cone is introduced, as discussed in
Section 5.5.2, together with the results from when the second order cone is re-
moved and replaced by a piecewise linear model of the battery. Multiple sets of
input data to the optimisation algorithm are used in the tests.
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Table 6.4: Differences in fuel consumption, number of iterations and compu-
tational time for the implemented optimisation algorithm with and without
a second order cone implemented. The input data is in different forms and
medium discharge is used. The results is normalised from the values when
the second order cone and recorded speed from the original data are used.
The fuel consumption should be compared in pairs, the two at the top with
each other, the following two with each other etc.

Cycle Method Fuel consumption
per distance

Computational
time

Iterations

GAC Cone, segmented,
speed limits

1.14 3.8 7

GAC No cone, segmented,
speed limits

1.15 4.3 13

GAC Cone, original data,
speed limits

1.06 67 3

GAC No cone, original data,
speed limits

1.06 375 14

GAC Cone, recorded speed 1.00 100 5

GAC No cone, recorded
speed

1.00 335 13
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Figure 6.5: soc trajectories for the methods described in Table 6.4 where the
second order cone is compared to using a piecewise linear battery model.

Worth to note from Table 6.4 is that the error in fuel consumption between the
methods with a second order cone compared to those without a second order cone
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is quite small. One can note that the method with the implemented cone is faster
than the method with the linearised model in all cases. However, the difference
in iterations between the methods is quite large, which can explain the difference
in computational time. As seen in Figure 6.5, there is some differences in the soc
trajectories for the different methods.

6.2.4 Mean velocity and standard deviation

This section shows the results from the tests of how the implemented optimisa-
tion algorithm performs used with segmented data that has additional informa-
tion about the speed in each segments. The mean speed is used together with
standard deviation, where description of the method is seen in Section 5.2.2.
The implementation of standard deviation doubles the amount of segments com-
pared to the original segmentation, while the mean speed implementation have
the same amount of segments as the original version. The results are compared
between using original data with speed limits and using the recorded speed. It is
also compared with results from the ddp/ecms algorithm. The mean speed and
standard deviation methods new velocity profiles, meaning two new versions of
the drivecycle. Comparing the fuel consumption is therefore not relevant.

Table 6.5: Differences in number of iterations and computational time for
the implemented optimisation algorithm with input data of different forms.
The results from an ddp/ecms algorithm is also shown in the table and used
to normalise from. This table shows the results from a medium battery dis-
charge.

Cycle Method Computational
time

Iterations

GAC Segmented, speed limits 1.3 7

GAC Segmented, mean speed 0.70 4

GAC Segmented, standard deviation 0.78 3

GAC Original data, speed limits 24 3

GAC Original data recorded speed 36 5

GAC ddp/ecms solver, recorded speed 100 -



60 6 Results

Time

S
O

C

SOC trajectories

Segmented data

Original data with speed limits

Original data with recorded speed

Segmented with mean speed

Segmented with standard deviation

From DDP/ECMS solver

Figure 6.6: soc trajectories for the methods described in Table 6.5.

Interesting to note is the difference between the computational time for the seg-
mented methods as can be seen in Table 6.5. The computational time is somewhat
higher in the case of segmentation with speed limits than in the cases with mean
speed and standard deviation. However, the computational time for each iter-
ation is lower in the cases of mean speed and speed limits than with standard
deviation. As can be seen in Figure 6.6, there are some difference between the
methods, where one can see that the method with standard deviation follows the
ddp/ecmsmethod quite close.

6.2.5 ERAD optimisation

This section shows the results from tests of how the implemented optimisation
algorithm performs when the erad is controlled with optimisation, as discussed
in Section 2.2.4. To compare and benchmark, the results are compared to using
the erad controlled with logic. Multiple sets of input data to the optimisation
algorithm are used in the tests. The results from erad optimisation with the
ddp/ecms algorithm are used to benchmark from. All tests are made without
gear reduction to isolate the difference between only changing the control of the
erad.
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Table 6.6: Differences in fuel consumption and computational time for the
implemented optimisation algorithm with erad control by logic or optimi-
sation, where the input data are of different forms and for different dis-
charges. Results from an ddp/ecms algorithm with erad optimisation is
also shown in the table for each case and used to normalise from.

Cycle Discharge Method Computational
time

GAC Medium Segmented, speed limits 0.32

GAC Medium Segmented, speed limits, erad optim. 1.0

GAC Medium Original data, speed limits 18

GAC Medium Original data, speed limits, erad optim. 73

GAC Medium Original data, recorded speed 5.4

GAC Medium Original data, recorded speed, erad op-
tim.

61

GAC Medium ddp/ecms, recorded speed, erad optim. 100

GAC Small Segmented, speed limits 0.27

GAC Small Segmented, speed limits, erad optim. 1.3

GAC Small Original data, speed limits 4.3

GAC Small Original data, speed limits, erad optim. 96

GAC Small Original data, recorded speed 6

GAC Small Original data, recorded speed, erad op-
tim.

90

GAC Small ddp/ecms, recorded speed, erad optim. 100

GAC Sustain Segmented, speed limits 0.56

GAC Sustain Segmented, speed limits, erad optim. 1.8

GAC Sustain Original data, speed limits 35

GAC Sustain Original data, speed limits, erad optim. 113

GAC Sustain Original data, recorded speed 8.8

GAC Sustain Original data, recorded speed, erad op-
tim.

139

GAC Sustain ddp/ecms, recorded speed, erad optim. 100
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Figure 6.7: soc trajectories for the methods described in Table 6.6.

Important to note from Table 6.6 is the difference in many cases when using erad
optimisation compared to when the erad is controlled with logic. The differ-
ence in computational time in the "original data" methods versus the "segmented"
methods are very large. From Figure 6.7 it can be seen that the soc trajectories
for the different methods differ quite a lot.

6.2.6 Summary

The results from the tests of the optimisation algorithm tells that the compu-
tational time can be decreased significantly with the use of segmentation. The
computational time can also be reduced by controlling the erad with logic and
by decreasing the amounts of gears to choose from. The number of iterations dif-
fers with the different settings, with more iterations showing that the problem is
harder to solve and increasing the computational time. The implementation of
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mean speed and standard deviation from the mean speed shows some differences
in computational time. This is mainly due to fewer iterations needed to converge
to an optimum. To replace the second order cone with a piecewise linear model
increases the number of iterations needed and the computational time for the
algorithm.

In the cases of the replacement of the second order cone with a piecewise linear
model and with the implementation of gear reduction, the fuel consumption for
the simulations in Matlab are compared. The comparison only holds for the same
drive cycles, i.e. the segmented versions can be compared to each other. From
the replacement of the second order cone, the difference in fuel consumption for
the segmented versions is very small, showing that the implementation of the
cone does not effect the solution in a major way. For the implementation of gear
reduction, the difference in fuel consumption shows that there might be an effect
on the solution. These effects are researched more in the implementation in vsim
as done in Section 6.4.

6.3 Controller

The two controllers described in the method are implemented in vsim. The pa-
rameters in the controllers are tuned and the performance of the algorithm devel-
oped in this thesis is evaluated. The vehicle models in vsim is the most advanced
in terms of fuel consumption available, apart from implementation in a real ve-
hicle, which is outside the scope of this thesis. Several cycles and discharge rates
are evaluated in order to understand the different scenarios where the method
have benefits and drawbacks.

To get the most realistic test method, the simulation is run where the vehicle fol-
lows a recorded velocity, while the reference trajectory is calculated based on a
segmented profile using speed limits. The controllers are developed with differ-
ent levels of aggressiveness to test how accurately the reference trajectory should
be followed. If nothing else is mentioned, the normalisation of the fuel consump-
tion is made where the original version of the implemented algorithm with a
standard tuning of the controller is given the index 1.

The final value of soc is very important to have in mind. The difference compared
to the desired final value is shown in the last column of all tables in this section
as SOC diff % and calculated as Equation 6.1 where TN+1 is the time when the
last segment ends.

SOC diff % = SOC(TN+1) − SOCref (TN+1) (6.1)

A SOC difference at the end of the cycle means that the desired amount of elec-
trical energy hasn’t been used. Instead liquid fuel energy has been used, which
affects the fuel consumption. A final value above the desired one, a positive dif-
ference, indicates that too small amount of battery energy has been used and
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instead fuel energy, resulting in a higher fuel consumption. To compare the fuel
consumption for different control strategies for the same cycle and discharge, the
final value of soc has to be rather similar. By amplifying the reference signal
during the last minute of the cycle, the reference trajectory is followed more ac-
curately, resulting in a reduced difference in the final soc value.

6.3.1 Tuning of the controllers

The two controllers are tuned using the GAC cycle to achieve good fuel economy.
Three versions of the both controllers are produced. A controller is first tuned to
show good results for a number of discharges, called the standard version. This
one is then slightly modified to get a more aggressive, as well as a more soft
controller. The tuning is made from experience of test drives and studying the
power demand in vsim at different velocities.

Deviation controller

The results from the tuning of the deviation from reference-controller can be seen
in Table 6.7. The standard controller performs best or equal to the alternatives
for all tested discharges, indicating that the tuning of the standard controller was
done in a good way. The soc trajectories can be seen in Figures 6.8a-c, where a
clear difference is seen between the controllers, especially for the small discharge,
as seen in Figure 6.8c.

Table 6.7: Results from simulation with different tuning of the deviation
controller and with different discharges using the GAC cycle.

Cycle Discharge Controller tuning Fuel consumption SOC diff %

GAC Large Standard 1.00 0.9

GAC Large Soft 1.01 1.3

GAC Large Aggressive 1.00 0.7

GAC Medium Standard 1.00 0.8

GAC Medium Soft 1.02 1.0

GAC Medium Aggressive 1.02 0.7

GAC Small Standard 1.00 0.8

GAC Small Soft 1.00 0.9

GAC Small Aggressive 1.00 0.8
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Figure 6.8: soc trajectories for the methods described in Table 6.7.

Gradient controller

The results from the tuned gradient controller is presented in Table 6.8. Here,
the softer version of the controller performs slightly better for medium and small
discharge. The fuel consumption when using the aggressive controller is equal or
higher for all tests compared to the standard controller.
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Table 6.8: Results from simulations with different tuning of the gradient
controller and different discharges with the GAC cycle.

Cycle Discharge Controller tuning Fuel consumption SOC diff %

GAC Large Standard 1.00 1.2

GAC Large Soft 1.01 2.1

GAC Large Aggressive 1.01 1.1

GAC Medium Standard 1.00 1.2

GAC Medium Soft 0.99 1.1

GAC Medium Aggressive 1.03 1.2

GAC Small Standard 1.00 0.9

GAC Small Soft 0.99 0.7

GAC Small Aggressive 1.03 1.0
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Figure 6.9: soc trajectories for the methods described in Table 6.8.

6.3.2 Validation of the controllers

To ensure that the controllers performs well for more than the GAC cycle, a val-
idation with other cycles is presented in this section. Another recorded cycle
called SHC and the new standard cycle for fuel consumption, WLTP, is used. To
achieve realistic results, the starting soc of the battery is an important factor.
With a large amount of energy available in the battery, the vehicle will run all
electric for almost the entire cycle giving minor room to optimise the usage of
the ice. This results in the method in this thesis being very close to cdcs, hence
a starting charge that will generate both electric and fuel powered propulsion is
chosen.
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Deviation controller

As seen in Table 6.9, the only difference in fuel consumption is for the SHC cycle
with the soft controller. However the final soc value for that method is smaller
than the result from the other tuning-levels of the controller, implying that too
much electric energy was used and fuel saved.

Table 6.9: Simulation of the different tunings of the deviation controller.
Two cycles are tested with the three different tuning levels.

Cycle Discharge Controller tuning Fuel consumption SOC diff %

SHC Medium Standard 1.00 0

SHC Medium Soft 0.99 -1.0

SHC Medium Aggressive 1.00 0

WLTP x2 Medium Standard 1.00 1.9

WLTP x2 Medium Soft 1.00 2.0

WLTP x2 Medium Aggressive 1.00 2.8
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Figure 6.10: soc trajectories for the methods described in Table 6.9.

Gradient controller

For the gradient controller, the soft tuning does not perform well for the SHC
cycle due to the long distance between the target points. The standard and the
aggressive tuning gives similar results.
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Table 6.10: Simulation of the tuned gradient controller. Two cycles are
tested with the three different tuning levels.

Cycle Discharge Controller tuning Fuel consumption SOC diff %

SHC Medium Standard 1.00 0

SHC Medium Soft 1.12 7.7

SHC Medium Aggressive 1.00 0

WLTP x2 Medium Standard 1.00 1.9

WLTP x2 Medium Soft 1.00 2.6

WLTP x2 Medium Aggressive 0.99 1.7
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Figure 6.11: soc trajectories for the methods described in Table 6.10.

6.4 Simulation of complete algorithm with controller

To analyse how the different settings of the implemented algorithms affect the
fuel consumption, the complete algorithm and controllers are tested in simula-
tion. The computational time for the algorithm is equal to what is presented in
Section 6.2, as the exact same algorithm is used in the simulations. The standard
tuning of both the deviation and gradient controller are used for all further tests.
If nothing else is mentioned, the legend Standard in the figures denotes that the
standard tuning of the deviation controller and the original settings in the com-
plete algorithm, Section 6.2, are used.
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6.4.1 Segmentation compared to recorded speed

A simulation is run where the soc reference trajectory is calculated based on
the recorded speed. This shows how a more accurate reference affects the fuel
consumption, compared to using segmented data, see Table 6.11. As seen in
Figure 6.12, the reference and actual soc trajectory are very close during the
entire cycle when using recorded speed to generate the reference soc trajectory.

Table 6.11: Results from simulation when creating a reference SOC trajec-
tory based on the recorded speed, compared to using segmented data with
speed limits.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Medium Deviation 1 0.7

GAC Medium Deviation, recorded speed 0.98 0
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Figure 6.12: soc trajectories for the methods described in Table 6.11.

6.4.2 CDCS compared to the implemented algorithm

The algorithm is evaluated against a cdcs-strategy. This is where the potential
fuel savings with the method can be seen. The fuel consumption is normalised
from the cdcs results.

The GAC cycles is tested with three discharges, with results as Table 6.12. The
final value of soc can be noticed as higher with the controllers than cdcs for all
cases.
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Table 6.12: A cdcs strategy simulated for three levels of discharge and com-
pared to simulating with the two controllers and a SOC reference trajectory.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Large CDCS 1.00 0.3

GAC Large Deviation 0.92 1.3

GAC Large Gradient 0.93 1.2

GAC Medium CDCS 1.00 0.3

GAC Medium Deviation 0.92 1.2

GAC Medium Gradient 0.94 1.2

GAC Small CDCS 1.00 0.3

GAC Small Deviation 0.96 0.8

GAC Small Gradient 0.97 0.9
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Figure 6.13: soc trajectories for the methods described in Table 6.12.

The results from simulating the SHC, PFC and WLTP cycles is seen in Table 6.13.
The larger final SOC diff when running with the controllers compared to cdcs is
worth to notice.
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Table 6.13: A cdcs strategy simulated for three drive cycles and compared
to simulating with the two controllers and a soc reference trajectory.

Cycle Discharge Controller Fuel consumption SOC diff %

SHC Standard CDCS 1.00 0.0

SHC Standard Deviation 0.91 0.3

SHC Standard Gradient 0.92 0.0

WLTP x2 Standard CDCS 1.00 1.3

WLTP x2 Standard Deviation 0.94 1.9

WLTP x2 Standard Gradient 0.95 1.9

PFC Standard CDCS 1.00 -0.0

PFC Standard Deviation 0.90 0.4

PFC Standard Gradient 0.90 0.3
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Figure 6.14: soc trajectories for the methods described in Table6.13.

6.4.3 Mean velocity and standard deviation

The usage of mean speed and standard deviation from the mean speed in the
segments when calculating the reference soc trajectory is tested in vsim, with
results in Table 6.14.
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Table 6.14: The results from simulating GAC and PFC when creating the soc
reference profile with mean speed and standard deviation from the mean
speed as compared to the original version with segments with the speed as
speed limits.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Standard Deviation 1.00 0.3

GAC Standard Deviation + mean 0.99 0.2

GAC Standard Deviation + mean + std 0.99 0.3

PFC Standard Deviation 1.00 0

PFC Standard Deviation + mean 0.99 -0.5

PFC Standard Deviation + mean + std 0.99 -0.3
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Figure 6.15: SOC trajectories for the results from simulating with the setup
as described in Table 6.14.

6.4.4 Recalculating the SOC reference trajectory

The recalculation of the soc reference trajectory is implemented in vsim and vali-
dated with the GAC cycle. As seen in Table 6.15, the fuel consumption is lowered
when recalculating the soc trajectory with similar soc difference. Figure 6.16
shows the step in reference at the middle of the drive cycle when the recalcula-
tion is made.
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Table 6.15: The resulting fuel consumption and soc difference testing recal-
culation of the soc reference trajectory as compared to the original version
without recalculation of the soc trajectory.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Medium Deviation 1 0.7

GAC Medium Deviation with re-
calculation of the
soc reference

0.995 0.8

Time

S
O

C

SOC trajectories GAC, Medium discharge

 Reference recalculation

Standard

Reference, standard

Standard with ERAD optimisation

Reference, standard with ERAD optimisation

Figure 6.16: soc trajectories for the method described in Table 6.15.

6.4.5 Gear reduction

When removing the reduction of gears, no noticeable difference in the fuel con-
sumption can be seen, see Table 6.16. Interesting to notice is the difference in
soc reference trajectory, Figure 6.17. Due to allowing the highest gear at a low
velocity when not using gear reduction, the trajectory differs.
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Table 6.16: The resulting fuel consumption and soc difference when simu-
lating with a soc reference profile calculated without the reduction of gears
as compared to the original version with gear reduction.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Medium Deviation 1.00 0.8

GAC Medium Deviation with-
out gear red

1.00 0.8

PFC Medium Deviation 1.00 0.0

PFC Medium Deviation with-
out gear red

1.00 0.3

Time

S
O

C

SOC trajectories GAC, Medium discharge

 Gear reduction

Standard

Reference, standard

Standard with gear reduction

Reference, standard without gear reduction

(a)

Time

S
O

C

SOC trajectories PFC, Standard discharge

 Gear reduction

Standard

Reference, standard

Standard with gear reduction

Reference, standard without gear reduction

(b)

Figure 6.17: SOC trajectories for the methods described in Table 6.16.

6.4.6 Acceleration segments

When adding acceleration segments in the calculation of the soc reference tra-
jectory, as described in Section 5.3.2, a noticeable difference in reference is seen
for SHC and a minor difference is seen for PFC, Figure 6.18. The resulting fuel
consumption and soc difference is presented in Table 6.17.
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Table 6.17: The resulting fuel consumption and soc difference from simu-
lating the SHC cycle with acceleration segments as compared to the original
method without acceleration segments.

Cycle Discharge Controller Fuel consumption SOC diff %

SHC Medium Deviation 1.00 0.7

SHC Medium Deviation w/ acceleration 1.02 1.3

PFC Standard Deviation 1.00 0.3

PFC Standard Deviation w/ acceleration 0.99 0.2

Time

S
O

C

SOC trajectories SHC, Standard discharge

 With acceleration segments

Standard

Reference, standard

Standard with acceleration segments

Reference, standard with acceleration segments

(a)

Time

S
O

C

SOC trajectories PFC, Standard discharge

 With acceleration segments

Standard

Reference, standard

Standard with acceleraion segments

Reference, standard with acceleraion segments

(b)

Figure 6.18: soc trajectories for the methods described in Table 6.17

6.4.7 ERAD optimisation

When the erad is controlled through optimisation instead of with logic, the re-
sulting fuel consumption is slightly higher for GAC and lower for the two WLTP
cycles as can be seen in Table 6.18. As seen in Figure 6.19, there is a major differ-
ence between the soc reference trajectories, while the fuel consumption is rather
similar.
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Table 6.18: The resulting fuel consumption and soc difference when simu-
lating with a soc reference profile calculated with optimisation of the erad
usage as compared to the original version with the erad controlled by logic.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Medium Deviation 1.00 0.8

GAC Medium Deviation ERAD optim 1.01 0.6

WLTP x2 Standard Deviation 1.00 1.9

WLTP x2 Standard Deviation ERAD optim 0.98 1.5

Time

S
O

C

SOC trajectories GAC, Medium discharge

 ERAD optimisation

Standard

Reference, standard

Standard with ERAD optimisation

Reference, standard with ERAD optimisation

(a)

Time

S
O

C

SOC trajectories WLTP x2, Medium discharge

 ERAD optimisation

Standard

Reference, standard

Standard with ERAD optimisation

Reference, standard with ERAD optimisation

(b)

Figure 6.19: soc trajectories for the method described in Table 6.18

6.4.8 Piecewise linear battery model

The second order cone is removed from the battery model and replaced by a piece-
wise linear battery model. No change in fuel consumption is seen, Table 6.19,
however a minor difference in soc reference trajectory for both of the cycles can
be seen, see Figure 6.20.
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Table 6.19: The resulting fuel consumption and soc difference from simulat-
ing the GAC cycle with the battery modelled with piecewise linear functions
compared to the original version with a second order cone.

Cycle Discharge Controller Fuel consumption SOC diff %

GAC Medium Deviation 1.00 0.7

GAC Medium Deviation w/ removed cone 1.00 0.8

PFC Medium Deviation 1.00 0.0

PFC Medium Deviation w/ removed cone 1.00 0.3

Time

S
O

C

SOC trajectories GAC, Medium discharge

 Piecewise linear battery model

Standard controller

Reference, standard controller

Standard controller with simple battery model

Reference, std ctrl with simple battery model

(a)

Time

S
O

C
SOC trajectories PFC, Standard discharge

 Piecewise linear battery model

Standard controller

Reference, standard controller

Standard controller with simple battery model

Reference, std ctrl with simple battery model

(b)

Figure 6.20: soc trajectories for the methods described in Table 6.19.

6.4.9 Summary

The complete algorithm together with the controller tested in vsim show a sig-
nificant possibility to save fuel compared to a cdcs strategy for all tested cycles.
The standard tuning of the controllers gives the overall best performance overall
compared to a softer or more aggressive tuning. All of the settings introduced in
the method, Chapter 5, are evaluated individually in order to create a good basis
for the discussion. In general the results from the tests can be summarised as the
original version of the implemented algorithm, presented in Section 6.2, gives
promising and reliable results in terms of fuel savings. The recalculation of the
soc reference trajectory is implemented with good results.





7
Discussion

The results shows the great potential for the implemented algorithm to save fuel
for the tested plug-in hybrid. Comprehensive results are produced and presented
in Chapter 6 to show how the developed algorithm perform. Tests of the different
features that reduces the computational time while increasing the accuracy of the
results are shown. To get a reliable results, a number of different drive cycles was
used for testing and validation.

7.1 Optimisation algorithm

The implemented algorithm is a global optimum strategy for the approximated
problem presented in the thesis. Since the method is built for the approximated
problem, it should be benchmarked against a global optimum strategy such as dp,
with a more advanced problem setup. To really examine the method, it should
also be benchmarked against a real time strategy. Those two tests would better
help to understand the performance of the implemented algorithm.

7.2 Simulation of complete algorithm

When simulating a number of drive cycles, a reduction in fuel consumption of
5-10% compared to cdcs is achieved. Only a minor difference is seen in fuel
consumption when simulating using different ways to calculate the soc refer-
ence trajectory, as discussed more detailed in this chapter. The difficulty behind
designing the ems is based on several things, including a simple design of the
controller, simple vehicle models in the algorithms and difference between speed
limits and the actual driven velocity. The favourable results can be seen as a good
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trade-off between these factors, where an additional significant reduction in fuel
consumption requires an overall improvement while keeping the computational
time low.

7.3 Data accuracy

The altitude data from adasis used in the segmentation is often scant, meaning
very infrequent updates of the altitude compared to the actual inclination. To
correct this and approximate an altitude profile for the drive cycles, the data has
been interpolated. This can lead to errors and does most likely smooth out the
inclinations.

The speed limits provided from adasiswill in most cases not be a correct approx-
imation of the actual driven velocity. There are many factors that will affect the
speed of the vehicle, most important the driver and the traffic. However, even
with the bad approximation of the speed that is the speed limits, the results pro-
duced are quite good. This is discussed more in Section 7.6.4.

7.4 Vehicle model

As the vehicle model used in the implemented algorithms is without dynamics
and with piecewise linear component models, which in themselves are approxi-
mations, the accuracy they provide can be set to question. As the offline simu-
lations are run only using the implemented algorithm with these simple vehicle
models, the fuel consumption in those cases should only be used to compare re-
sults with the same drive cycle. This gives an indication of how the different
implementations of the algorithm performs compared to each other.

To get a better approximation of the fuel consumption and how it performs com-
pared to other methods one should look at the vsim implementation. In vsim,
the vehicle models are much more advanced, thus suitable for generating results
for how the implemented algorithm is affecting the fuel consumption. The re-
sults can also be compared with how a real vehicle would behave with different
ems algorithms.

The need for a more complex vehicle model in the algorithm is connected with
the low accuracy of the adasis data. A better vehicle model will most likely give a
result closer how the vehicle is operated in a reality. However, since the data from
adasis is not accurate and a more complex model with added dynamics would
increase the computational time for the algorithm, increasing the complexity is
not regarded necessary.

The method of optimising with quite simple models without dynamics and with
input data on a segmented form, as done in the implemented algorithm performs
well in the test sets used. It is interesting to see that despite the simplifications
done, the implemented algorithm can produce a soc trajectory with high quality.
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7.5 Connecting DDP/ECMS and ECOS

The method to use ddp/ecms for choice of operating mode and ECOS to find the
correct equivalence factor was found to be quite difficult in terms of connecting
the algorithms. The problem formulation in the given ddp/ecms-algorithm is
quite advanced and was difficult to translate for the convex optimisation problem
formulation. Due to this, a minor difference between the solvers might sometimes
exist, which is handled in the control law when updating λ.

The authors of [7], suggested a simple method of updating λ between each it-
eration of the algorithm. This method was found to require improvement for
our implementation, especially when using optimisation of the ERAD state. By
analysing the results, the algorithm is improved with several new ways of up-
dating λ for a faster and robust algorithm for all possible optimisation settings.
The drawback with the ddp/ecms method is that a very precise λ is sometimes
required to get the exact correct start and end value of the soc trajectory. The
way of decreasing the weight factor q and stopping when below a threshold gives
good performance. To continue iterating with a very small q gives no noticeable
difference in the soc reference trajectory from the convex optimisation.

The first guess of λ is of great importance, especially for the computational time.
With reduced set of gears, logically controlled erad and segmented data, the
problem is most often solved with only a few iterations of the implemented algo-
rithm. For this problem setup, the sensitivity to a guess far from the correct one
is low and the problem is always possible to solve with a low number of iterations
of the algorithm.

For the optimisation based control of the erad, the sensitivity to the initial λ is
rather high, thus the update of λ needs to be less rapid. For example if the λ
is slightly too low, ECOS might produce a value substantially higher the correct,
which the update law needs to handle. The method to always iterate towards a
reduced RMS-value of λ is one of the keys behind solving problems where the
sensitivity to correct λ is high. By lowering the coefficient q that controls the
update of λ when the RMS-value is not decreasing, the problem is possible to
solve with good results.

7.6 Detailed discussion of results

In this section the results presented in Chapter 6 as well as the different methods
used in the optimisation to produce the results is analysed and discussed.

7.6.1 Test set

The tests have been made using the entire, or parts of the test set. The test set
contains four different drive cycles, each with different characteristics. A set of
only four different drive cycles is however quite small and for three of these only
a standard discharge is used. To make an detailed conclusions about the imple-
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mented algorithm and how it effects the vehicle fuel consumption, the test set
would have to be increased. The set of four drivecycles used to provide the re-
sults in Chapter 6 is however enough for a report and to give a conclusion of the
performance of the algorithm.

7.6.2 Drive cycle segmentation

The results from when the segmentation algorithm is used as input to the opti-
misation algorithm is seen in Section 6.2.1. The resulting difference in computa-
tional time between the methods is very large, as seen in Table 6.2. The compu-
tational time of the algorithm with segmented data as input only need 0.4-4.5%
of the time it takes for the ddp/ecms algorithm with the original data with real
speed as input.

The fuel consumption in the Matlab simulations is however as discussed above,
very dependent on the implemented models, it is also not comparable due to
the use of different velocities in the drive cycles. Therefore the algorithm was
implemented in vsim and used to generate a reference soc trajectory to follow.
With this implementation, the results can be seen in Section 6.4.1. From those
results, one are able to see that with the more complex models, the resulting fuel
consumption between the different methods is very small. This shows the true
strength of the implemented segmentation algorithm. A very large decrease in
computational time is observed, while the fuel consumption is about the same
for the methods. That the results from the implementation in vsim could be so
good, even with the simplifications made could probably be derived from the fact
that the segmentation still does provide a good soc trajectory. The controller is
designed to follow the soc trajectory while still taking the vehicle characteristics
into account.

7.6.3 Controller

The design of the two controllers are simple and the parameters are tuned mainly
based on the power request for the GAC cycle and testing. Tuning the parame-
ters in a more advanced way and based on more cycles might reduce the fuel
consumption even more. However what can be seen is that a rather quick tuning
of the controller gives a major improvement in fuel economy compared to cdcs.

In the GAC cycle, the vehicle is stopped in the middle of the cycle, while the
trajectory is based on a speed limit of 50km/h. The soc can be seen to differ in-
creasingly from the reference trajectory during stand still, causing the controller
to change to a more aggressive behaviour. This can be solved with recalculation
of the soc reference trajectory, as seen in Section 6.4.4. This results in a further
0.5% decrease in fuel consumption compared to using the original reference tra-
jectory.

7.6.4 Mean velocity and standard deviation

The data about the mean speed and standard deviation is not available from ada-
sis. These factors are however something that might be able to be estimated
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with enough measurements from the same road and same driver over time. With
enough measurements, it could be a much better approximation of the velocity
profile than speed limits, especially in cities due to the traffic. For the purpose
of studying the benefit of using this information, the mean speed and standard
deviation is calculated based on the recorded speed.

As can be seen from the results in Section 6.2.4 the computational time per it-
eration is lower for the test with mean speed and speed limits than in the test
with standard deviation. The implementation using standard deviation doubles
the amount of segments, which explains the increased time per iteration. This
does also lead to around twice as much memory needed to run the algorithm,
compared to using speed limits or mean speed.

As before, the fuel consumption for the offline runs cannot be trusted, therefore
the results from the vsim implementation that can be seen in Section 6.4.3 is
studied. The results shows about 1% decrease in fuel consumption for both cases
and a clear difference in the soc reference profile compared to using speed lim-
its. This tells us that if the data is available, both solutions could improve the
fuel economy. In particular using mean speed over the segment show promising
results, the computational power required is not increased while the fuel con-
sumption is lowered.

7.6.5 Acceleration segments

When testing with acceleration segments, the two cycles evaluated give opposite
results. For GAC, the reference soc trajectory differs significantly from the one
without acceleration and results in a 2% higher fuel consumption. The PFC cy-
cle on the other hand gives a 1% decrease in fuel consumption. The method to
place acceleration segments where the speed limits changes can be questioned,
both since the size of the problem increases with more segments and the issue
of finding the correct places where the driver accelerates. From the velocity pro-
files seen in Appendix A, it can be noticed that a change in speed limit doesn’t
necessary mean that the driver changes the speed of the vehicle where the sign
is.

7.6.6 ERAD optimisation

When changing to generate a soc reference trajectory when controlling the erad
through optimisation, a significant difference is seen in computational time and
soc reference trajectory compared to a logically based control, see Section 6.2.5.
The computational time is more than tripled when using optimisation of the
erad. Results from testing this method in vsim, presented in Section 6.4.7, show
surprising results. The expected result was that the more advanced optimisation
would yield a reference trajectory that lowered the fuel consumption compared
to a logically based trajectory. This was seen for the double WLTP cycle where
a 2% decrease in fuel consumption is presented, however, for the GAC, the fuel
consumption increases by 1%.

That the controllers are tuned based on a profile generated by erad logic and
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the large difference between speed limits and recorded speed for GAC could be
an explanation. The simple design of the controller might also be the factor for
the surprising results. The components controlled is the ice and isg and not the
erad, therefore the benefits of creating a reference trajectory with erad optimi-
sation might even be lost.

7.6.7 Gear reduction

The implemented gear reduction is done so that the algorithm does not have as
many gears to choose between in each segment, thus reducing the problem. Im-
provement has been shown in the behaviour of the gear choices, some of which
were quite unrealistic before the implementation of the gear reduction. The high-
est gear could be chosen at a quite low speed as it theoretically can be the most
effective way to propel the vehicle, this is however a situation that would not hap-
pen during normal driving. The results as shown in Section 6.2.2 shows that the
reduction of computational time between the different cases is substantial. The
great benefit from using gear reduction is the reduced number of iterations re-
quired, seen in Table 6.3. From the results from the implementation in vsim as
seen in Section 6.4.5, it can be seen that the fuel consumption is the same in the
case with gear reduction as the case without. This means that the reduction of
computational speed has been achieved without a loss of accuracy for the result-
ing fuel consumption.

7.6.8 Piecewise linear battery model

The implemented second order cone makes it possible to use a more advanced
battery model. Without the cone, the battery is modelled as piecewise linear and
with the cone the model is a second order equation with more variables used
in the model. The results from the offline simulation shown in Section 6.2.3,
shows that the piecewise linear version is slightly slower in computational time,
but faster in computational time per iteration than the version with a second
order cone. A better initial λ might therefore have shown a different result in
the computational time. The results from the vsim implementation shown in
Section 6.4.8 shows that the fuel consumption is the same in both cases. There-
fore, the use of a more complex cone might not be necessary. A case where a
cone might be beneficial is when soc varies much during the same cycle. This is
due to that the voltage-dependency of soc is included in the cone but not in the
piecewise linear model.

7.7 Reduction of emissions

An interesting aspect of combustion engine vehicles is emissions. In the imple-
mented algorithm, the only optimisation variable is the fuel consumption. Emis-
sions of CO2 are highly connected to the fuel consumption and will be reduced
when using this method, as compared to cdcs. Another important emission is
NOx, which depend on e.g. the temperature of the catalytic converter. As the im-
plemented strategy leads to a blended behaviour in how the vehicle is propelled,



7.7 Reduction of emissions 89

the catalytic converter will cool down when propelling the vehicle using only
electrical energy, before the combustion engine is started anew. This could lead
to increased NOx emissions, however the benefit with this strategy is that in ur-
ban areas, electrical energy is in most cases used for propelling the vehicle. NOx
emissions is most harmful in cities and the method might reduce problems with
high emission there.





8
Conclusions and future work

This chapter presents the conclusions made in the thesis. It reflects the objective
of the thesis in Section 1.4 and make conclusions to the questions asked therein,
based on the results. The chapter does also present the future work to what is
recommended for a continuation of the work presented in the thesis.

8.1 Conclusions

The conclusion for different aspects of the thesis is presented in this section.

• Optimisation method. Convex optimisation is successfully introduced to
solve the problem and to replace the root finding algorithm. The imple-
mented algorithm is efficient and does provide a soc reference trajectory
with similar characteristics as the ddp/ecms algorithm[14], which the im-
plemented algorithm is based on.

• Computational power. The developed optimisation-based ems is very ef-
ficient, as confirmed by simulations in Matlab/vsim. The computational
time is greatly reduced compared to the ddp/ecms algorithm, in many
cases decreased to about one hundredth of the time. With segmentation
of the input data, the problem to solve is reduced, correlated to a limited
memory needed for running the algorithm.

• Fuel consumption. Implemented in vsimwith more advanced models than
in the optimisation algorithm, the developed ems shows very promising
results:

– The fuel consumption compared with a cdcs method can be reduced
by as much as 10%.
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– The difference showed in the Matlab simulations when using no gear
reduction has small or no effect in the vsim simulations.

– There are no substantial fuel savings seen when controlling the erad
with optimisation. This is most likely due to the controller, more tests
should be done with the suggested improvements in Section8.2.

– When using recorded speed to generate the soc reference trajectory,
the fuel consumption in vsim is similar to when using segmented data
with speed limits.

From this in can be concluded that the standard settings used in the imple-
mented algorithm, as presented in Chapter 6 provides good results in terms
of fuel consumption. The savings when using other settings is minor.

• Operating modes. The generation of the soc reference trajectory using
logic to control the erad and gear reduction is tested with promising re-
sults. The reduction of operating modes and complexity of the problem to
solve, while keeping good results is very desirable. This combination shows
great promise for an eventual implementation in a vehicle with limited com-
putational power and memory, since the ems then need to be as fast and
efficient as possible. To control the erad with logic in the algorithm does
in many cases reduce the computational time by more than 50% compared
to controlling through optimisation in the segmented versions. When using
gear reduction, the computational time is in this case also reduced by more
than 50%.

• Battery model. The effects of implementing the battery model as a second
order cone instead of using a piecewise linear battery model seems to be
negligible. The difference in the fuel consumption and computational time
between the cases is small. Therefore, the implementation of the second
order cone instead of that of a piecewise linear model can be unnecessarily
complicated.

• Initial λ. Simulations shows that the computational time is very dependent
on the initial λ. With a bad guess, many iterations can be needed for conver-
gence, where a good guess could give convergence to an optimum in only a
few iterations.

• Variables in the input data. By replacing the speed limits with mean speed
and standard deviation, a better estimation of the velocity profile is given.
A reduction of 1% in the fuel consumption is achieved, however the mean
speed and standard deviation is difficult to estimate in advance. In relation
to the reduction of fuel consumption made from implementing the algo-
rithm compared to the cdcs strategy, the fuel savings with this additional
data are marginal. From this the conclusion can be drawn that data about
speed limits is sufficient.
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8.2 Future work

This section presents our suggestions to continue with the work in this thesis.

• A more advanced controller should be constructed and implemented into
vsim to evaluate how different SOC reference trajectories affect the fuel
consumption. The one constructed performs quite good for the test set, but
there is room for improvement. An issue is that when the soc is close to
the trajectory, the engine on/off thresholds are only based on the speed of
the vehicle which gives an oscillatory behaviour when trying to follow the
reference. A more advanced method could take this into account and also
change the control parameters based on the gradient of the current part of
the trajectory.

• To be able to better understand the results, more tests can be run. Especially
interesting would be to record more cycles using adasis, especially with
more altitude data to be able to better test the algorithm.

• To improve the computational time for the algorithm, a way to guess the ini-
tial λ should be constructed. A suggestion could be that it could use drive
cycle data and desired discharge of the battery, and from those variables
make a guess about what λ value should be used initially in the algorithm.

• As of now, the algorithm is only used and tested in Matlab. The results
of compiling the code to C and to run tests would be very interesting. An
implementation like this would most likely speed up the algorithm signifi-
cantly. If this was done, it would then be interesting to see the results from
a vehicle implementation. To be able to test the algorithm in a vehicle envi-
ronment would help to better understand the results.

• Implementation of more advanced models could be done, such as the cost
for starting the ICE. With the current use of a low number of segments, the
number of engine on/off decisions are limited. This means that the costs
most likely will have a very minor influence over the whole cycle.

• The development of the ems has been done with regards only to the fuel
consumption. Aspects such as driveability and emissions would be very
interesting to analyse.

• The results from comparing the implemented algorithm with a global op-
timum strategy as pure dp with a more advanced problem setup would be
very interesting to evaluate the performance.

• There is a large difference when creating soc reference trajectories using
a logically controlled erad compared to an erad controlled by optimisa-
tion. By improving the logic, that difference could be reduced, however
the best results should be produced when using optimisation. Therefore, to
continue and develop the solver for erad optimisation would probably be
the best way forward in order to achieve the best reference trajectories to
save fuel.
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Figure A.1: The speed of the SHC cycle and estimated speed limits.
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Figure A.2: The speed and speed limits of the GAC cycle.
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Figure A.3: The altitude profile of the GAC cycle.
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Figure A.4: The speed and speed limits of the PFC cycle.
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Figure A.5: The altitude profile of the PFC cycle.
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Figure A.6: The speed of the WLTP Class 3 cycle and estimated speed limits.
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