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Abstract i

Abstract

A diagnosis procedure is an algorithm to detect and locate (isolate) faulty components
in a dynamic process.

To achieve diagnosis, redundancy has to be included in the system. This redundancy
can be either hardware redundancy or analytical redundancy. Methods based on analyt-
ical redundancy need no extra hardware. The redundancy is generated from a process
model instead. In this thesis, methods based on analytical redundancy are used.

A mathematical model and a controller are derived for an inverted pendelum. Two
diagnosis methods, parity equations and parameter estimation, are implemented on the
pendelum. Di�erent faults are then applied to the pendelum. Weights on the rod and
on the cart of the pendelum corresponds to component faults, constants added to the
output and input signals corresponds to sensor faults and actuator faults respectively.
The diagnosis methods are studied in order to see how good the methods are compared
with each other and to results in scienti�c articles using similar methods.

Key Word: Diagnosis, Inverted pendelum, Analytical redundancy, Parity equations,
Parameter estimation, Residual generation.
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ii Notation

Notation

Abbreviations

AFD Actuator Fault Diagnosis.
ARMA AutoRegressive Moving Average.
ARMAX AutoRegressive Moving Average with eXternal input.
ARX AutoRegressive with eXternal input.
BJ Box-Jenkins.
CFD Component Fault Detection.
DSP Digital Signal Processor.
FDI Fault Detection and Isolation.
FIR Finite Impulse Respons.
GLR Generalized Likelihood Ratio.
IFD Instrumental Fault Diagnosis.
LQ Linear Quadratic.
LS Least Squares.
RLS Recursive Least Squares.
SPRT Sequential Probability Ratio Test.
SVD Singular Value Decomposition.
TMR Triple Modular Redundancy.
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Chapter 1

Introduction

Diagnosis is a procedure to detect and locate faulty components in a dynamic process.
Faults and failures in complex automated control systems are, in general, unavoidable
facts and they require quick detection, location and identi�cation. A diagnosis scheme
is of importance in, for example

� Nuclear plants

� Aeroplanes

� Automotive engines

This is due to increasing demand for higher performance, higher safety and reliability.
Di�erent fault detection and isolation techniques have been developed over the recent
years.

This report is a study of how two diagnostic methods are to be implemented. The
process that is used to study the methods are the inverted pendelum. The fault detection
and isolation (FDI) concept consist of two major steps: the residual generation and the
residual evaluation. The main focus here will be the residual generation.

1.1 Motives for the thesis

At Fordonssystem diagnosis is a rather new research area. There are at the moment
two Ph.D students in diagnosis at Fordonssystem. They are interested in how di�erent
methods in diagnosis perform on a process, if the di�erent methods are di�cult to
implement, what kind of problems di�erent methods can alert and other uncertainties.
This has resulted in this thesis where some methods in model based diagnosis are to be
implemented on an inverted pendelum.

1.2 Objectives

The objectives with this thesis work is to

� Design and simulate the diagnosis methods in a simulation tool.
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� Implement the chosen methods in the lab environment.

� Design experiments to evaluate the methods with respect to robustness, diagnostic
time, determine the type of faults that the methods are well suited to diagnose.

� Compare the methods with each other and with experiments in articles.

1.3 Readers guide

We start in Chapter 2 by de�ning the diagnosis problem and describe some approaches
that are found in literature. Those who are familiar with diagnosis can skip this chapter.

Then in Chapter 3, we give a description over the system that is used when imple-
menting the chosen methods, the inverted pendelum. A physical model and a controller
for the system are derived. The controller, which is built in Simulink, works on the
pendelum with the help of dSPACE. A presentation of dSPACE is therefore given in
Chapter 4.

In Chapter 5, the �rst method, parity equations, applied to the pendelum is pre-
sented. First, the theory of the method is given. Then the results after simulation and
the results after using the method on the pendelum are reported. The chapter ends
with the problems the method gave in this application and what it can give in other
applications.

Chapter 6 present the second method, parameter estimation. The chapter is orga-
nized as the previous chapter.



Chapter 2

The Fault diagnosis problem

In this chapter the diagnosis problem will be de�ned and approaches to solve the problem
will be presented. This chapter is based on [1].

2.1 Problem formulation

A general diagnosis procedure for a dynamic system consists of several tasks. In literature
the following steps are suggested.

� Fault detection: Detect when a fault has occured. That is often done with a suit-
able comparison, for example in parameter estimation, the estimated physical
parameters are compared to their nominal values.

� Fault isolation: Isolate the fault. Primarely to determine the faults origin but
also the fault's type, size and time.

These two tasks are commonly referred to as FDI which sometimes is referred to as
diagnosis and the other way around.

The system to be diagnosed often include a control loop which further complicates
the problem. A control loop tends to hide or mask a faulty component or sensor making
it even more important, in a controlled system, to detect faults. The control loop can
also damp the system's signals making it necessary to excite the signals from the system.
If the system, as in this thesis, is unstable, we have a control loop and a special test
sequences which is used for fault detection thus making methods badly suited for sudden
faults.

We speak of faults and failures in diagnosis. In diagnosis literature there is a dis-
tinction between the two and the de�nition can be written as:

De�nition 2.1. A failure suggests a complete breakdown of a process component while
a fault is thought of as an unexpected component change that might be serious or

tolerable.

Obvious fault sources are actuators and sensors where the faults can be a bias or a
gain fault. Other examples are component faults, e.g a mass that changes.
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Fault diagnosis and fault detection is not a new problem and before model based
fault diagnosis, they were accomplished e.g by introducing hardware redundancy in the
process. A critical component was then duplicated, triplicated (TMR) or even quadru-
pled and a majority decision rule was then used. Hardware redundancy methods are
fast and easy to implement but they have several drawbacks

� Extra hardware can be very expensive

� It introduces more complexity in the system

� The extra hardware is space consuming which can be of great importance, e.g in
a space shuttle. Also the components weight sometimes has to be considered.

Instead of using hardware redundancy, analytical redundancy can be utilized to reduce,
or even avoid, the need for hardware redundancy. The methods examined in this re-
port are founded on analytical redundancy. Analytical redundancy is in principle the
relationships that exists between process variables and measured output signals. If an
output signal is measured there are information about all variables that in
uences the
output signal in the measurement. If the relationships are known , by quantative or
qualitative knowledge, this information can be extracted and the extracted information
from di�erent measurements can be checked for consistency against each other.

There are di�erent types of analytical redundancy. Instead of measuring several out-
puts we compare di�erent output measurements at di�erent times. If the relationship
between time series of outputs and inputs are known, we can from this relationship
extract fault information. This kind of analytical redundancy is called temporal redun-

dancy.

The faults acting upon a system can be divided into three types of faults.

� Sensor (Instrument) faults: Faults acting on the sensors

� Actuator faults: Faults acting on the actuators

� Component (System) faults: A fault acting on the system or the process we
wish to diagnose.

A general FDI scheme based on analytical redundancy can be illustrated as in Figure 2.1,
an algorithm with measurements and control signals as inputs and a fault decision as
output.

It is unrealistic to assume that all signals acting on the process can be measured,
therefore an important property of an algorithm is how it reacts on these unknown
inputs. It is also unrealistic to assume a perfect model, the modelling errors can be
seen as unknown inputs. An algorithm that continue to work satisfactory even when
unknown inputs vary is called robust. In some approaches we have the possibility to
achieve disturbance decoupling, i.e make the isolation decision independant of unmea-
sured disturbances.
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➪ ➪ ➪

➪

Actuators
Dynamic
process Sensors

Diagnosis
  system

Sensor faults

Outputs

Component faults

Disturbance

Actuator faults

Diagnosis
 decision

Control signals

Figure 2.1. Structure of a diagnosis system.

2.2 Control engineering approaches to FDI

In control based approaches the diagnosis procedure is explicitly parted into two stages,
the residual generation stage and the residual evaluation stage, as illustrated in Fig-
ure 2.2. The residual evaluation can in its simplest form be a thresholding test on the

Diagnosis System

 Residual
Generator

 Residual
Evaluation

Control Signals Measurements

Diagnosis
 decision

Figure 2.2. Two stage diagnosis system.

residual, i.e. a test if j r(t) j> Threshold. More generally the residual evaluation stage
consists of a change detection test and a logic inference system to decide what caused
the change. A change here represents a change in normal behavior of the residual.

The residual generation approaches can be divided into three subgroups, limit &

trend checking, signal analysis and process model based.

� Limit & trend checking: This approach is the simplest imaginable, testing sen-
sor outputs against prede�ned limits and/or trends. This approach needs no
mathematical model and is therefore simple to use, but it is hard to achieve
high performance diagnosis.
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� Signal analysis: These approaches analyse signals, i.e sensor outputs, to achieve
diagnosis. The analysis can be made in the frequency domain, or by using a
signal model, e.g an ARMA-model. If fault in
uence are known to be greater
than the input in
uence in well known frequency bands, a time-frequency
distribution method can be used.

� Process model based residual generation: These methods are based on a pro-
cess model. The process model based approaches are further parted into two
groups, parameter estimation, and geometric approaches.

Before we can discuss the methods in this section we need to make some de�nitions.
The approaches to be discussed here generates residuals which can be de�ned as

De�nition 2.2 [Residual]. A residual r(t) is a scalar or vector that is 0 or small in

the fault free case and 6= 0 when a fault occurs.

The residual is a vector in the parity space. This de�nition implies that a residual
r(t) has to be independant of, or at least insensitive to, system states and unmeasured
disturbances.

We will now concentrate on linear systems because they can be systematically ana-
lyzed. A general structure of a linear residual generator, can be discribed as in Figure 2.3.
The transfer function from the fault f(t) to the residual r(t) then becomes

+

Hy(s)

Hu(s)

Gu(s)

Gf(s)

+

f(t)

u(t)

y(t)

r(t)

Process

Residual generator

Figure 2.3. General structure of a linear residual generator.

r(s) = Hy(s)Gf (s)f(s) = Grf(s)f(s)

The conditions that has to be ful�lled to be able to detect a fault in the residual has a
natural de�nition. To be able to detect the i:th fault in the i:th column of the response
matrix, [Grf(s)]i has to be nonzero, i.e.
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De�nition 2.3 [Detectability]. The i:th fault is detectable in the residual if

[Grf (s)]i 6= 0

This condition is however not enough in some practical situations. Assume that we
have two residual generators with structure as in Figure 2.3. When excited to a fault the
residuals behave as in Figure 2.4. Here we see that we have a fundamentally di�erent

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t

fault
r (t)1

r (t)2
fault

Figure 2.4. Example residuals.

behavior between r1(t) and r2(t) as r1(t) only re
ects changes on the fault signal and
r2(t) has approximately the same shape as the fault signal. Thus r1(t) can not be used
in a reliable FDI application even though it is clear that Gr1f (s) 6= 0.

The di�erence between the two residuals in the example are the value of Grf (0). It
is clear that residual 1 has Gr1f (0) = 0 while residual 2 has Gr2f (0) 6= 0, This leads to
another de�nition

De�nition 2.4 [Strong detectability]. The i:th fault is said to be strongly detectable

if and only if

[Grf (0)]i 6= 0

The above de�nitions show that it can be of great importance to perform a frequency
analysis of the residual generator. If the designed residual generator has a response like
r1(t), an easy solution can be to �lter the residual, e.g through a integrating �lter.
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2.2.1 Model based diagnosis

In this report we will investigate model based diagnosis, i.e a diagnosis procedure that is
founded on a model of a system to be diagnosed. Why is there a need for a mathematical
model to achieve diagnosis? It is easy to imagine a scheme where important entities of
the dynamic process is measured and tested against prede�ned limits. The model based
approach instead performs consistency checks of the process against a model of the
process. There are several important advantages with the model based approach.

1. Outputs are compared to their expected value on the basis of process state, there-
fore the thresholds can be set much tighter and the probability to identify faults
in an early stage is increased dramatically.

2. A single fault in the process often propagate to several outputs and therefore causes
more than one limit check to �re. This makes it hard to isolate faults without a
mathematical model.

3. With a mathematical model of the process the FDI scheme can be made insensitive
to unmeasured disturbances, making the FDI scheme feasible in a much wider
operating range.

2.2.2 Isolation strategies

If we now have strongly detectable residuals, how can isolation be achieved? Here the
method with structured residuals is described.

The idea behind structured residuals is that a bank of residuals is designed making
each residual insensitive to di�erent faults or subsets of faults while remaining sensitive
to the remaining faults, i.e. if we want to isolate three faults we can design three residuals
r1(t), r2(t) and r3(t) to be insensitive to one fault each. Then if residuals r1(t) and r3(t)
�re we can assume that fault 2 has occured.

2.2.3 Geometric approaches

Geometric approaches generate residuals which are vectors. The methods can be divided
into open and closed loop approaches. In an open loop approach there are, as the name
suggests, no feedback from previously calculated residuals. The idea behind closed loop
approaches, i.e. observer based approaches, are to use a state estimator as a residual
generator.

2.2.4 Parameter estimation approach

In a parameter estimation approach is important parameters in a process estimated, for
example masses, volumes or frictional coe�cients, compared to a nominal value. The
method can be described in three steps.

1. The data processing step where parameters are estimated.

2. The fault detection step where the comparison to a nominal value is done.
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3. The fault classi�cation step where it is tested if a fault is present or not. If so,
isolation of the fault source is done.

2.3 Robustness issues

One problem, as was noted earlier, is that unmeasurable signals often act upon the
system plus the in
uence by modelling errors. This makes it hard to keep the false
alarm rate at an appropriate level.

If it is known how the uncertainty in
uences the process, so called structured un-
certainty, this information can be utilized to actively reduce or even eliminate their
in
uence on the residuals. If it is not known how disturbances act on the system there
is little that can be done to achieve any decoupling. We actually don't produce any ro-
bustness, at best we can maximize the sensitivity to faults and minimize the sensitivity
to disturbances over all operating points.

However it is possible to increase robustness in the fault evaluation stage, i.e. in the
threshold selection step, e.g by using adaptive threshold levels or statistical decoupling.
This is called passive robustness. It is not likely that one method can solve the entire
robustness problem, a likely solution is one where disturbance decoupling is used side
by side with passive robustness.

2.4 Model structure

To proceed in the analysis of residual generation approaches we need an analytical model.
In this report a state representation of the model are used as

_x(t) = f(x(t); u(t))

y(t) = h(x(t); u(t)) (2.1)

The linear (time-continuous) state representation

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (2.2)

As we have noted earlier we have three general types of faults:

� Sensor (Instrument) faults: Modeled as an additive fault to the output signal.

� Actuator faults: Modeled as as additive fault to the input signal in the system
dynamics.

� Component (System) faults: Modeled as entering the system dynamics with
any distribution matrix. Here it is seen that actuator faults only are special
case of component faults.

There are also uncertainties about the model or unmeasured inputs to the process. If
these uncertainties are structured, i.e. it is known how they enter the system dynamics,
this information can be incorporated into the model.
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In the linear case and model uncertainties are supposed structured, the complete
model becomes

_x(t) = Ax(t) +B(u(t) + fa(t)) +Hfc(t) +Ed(t)

y(t) = Cx(t) +Du(t) + fs(t) (2.3)

where fa(t) denotes actuator faults, fc(t) component faults, fs(t) sensor faults and d(t)
disturbances acting on the system. H and E is called the distribution matrices for fc(t)
and d(t).

2.5 Approaches in this report

In this report the residual generation stage is emphasized. The two methods, parity
equation and parameter estimation, both uses process model based residual generation.



Chapter 3

Modelling the inverted pendelum

In this chapter a model for the system is derived which later is used by both the parity
equations method described in Chapter 5 and the parameter estimation method de-
scribed in Chapter 6. The controller for the unstable system was already made, but
designing the controller includes using the model of the system and therefore is the
design of the controller using Linear Quadratic control (LQ) shortly described.

When experimenting with the pendelum, dSPACE is used to get the controller, which
is implemented in SIMULINK, and the pendelum to work together. The products from
dSPACE makes it possible to use constructions, for example controllers, in SIMULINK
on real processes. They also makes it possible to study interesting signals, saving them
to MATLAB and change parameters during an experiment. In the next chapter the
products from dSPACE are further explained.

3.1 System description

r

T
F

αangular sensor

position sensor

toothed rack

pendelum

motor output gear

Figure 3.1. Experimental setup for the inverted pendelum.
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The inverted pendelum, shown in Figure 3.1, consists of a cart which is equipped with
a motor and a potentiometer. The motor gives the driving force to the system and the
potentiometer is used to measure the cart's position. The motor shaft is connected to
one gear while the potentiometer shaft is connected to another larger gear. Both these
gears mesh with the toothed rack where the motor makes the cart to move sideways.
When the cart moves, the potentiometer shaft turns and the voltage measured from the
potentiometer can be calibrated to obtain the track position. A rod is mounted on the
cart whose axis of rotation is perpendicular to the direction of motion of the cart. A
potentiometer mounted on the axis of rotation allows you to measure the angle of the
rod with the vertical.

3.2 The model

The equations of motion for the inverted pendelum are treated in several books, for ex-
ample [5]. The system is both unstable and non-linear but a linear model can be obtained
around an operating point. Here, the mass of the rod is assumed to be concentrated at
a point mass mp at distance l from the axis of rotation. Furthermore it is assumed that
the rod is rigid and that friction can be neglected. The simpli�ed model can be seen
in Figure 3.2. If these assumptions hold, then the force Fp exerted by the cart on the

z=0 z

F

l

ϕ

Mc

mp

Fp

Mc

mp

Fp

F
ϕ

l

z

: length of rod

: force excerted by the cart on the rod

: mass of rod

: mass of cart

: driving force

: angle of the rod with the vertical

: position of the cart

Figure 3.2. Simpli�ed model of the inverted pendelum.

pendelum at the pivot must always act along the rod. To derive a mathematical model
of the remaining factors of the system, Newton's second law is used for the forces on the
pendelum and the cart in the horizontal and vertical direction [2].

Applying Newton's law for the forces on the cart in the horizontal direction gives

F � Fp sin' =Mc�z (3.1)

The forces on the pendelum in the horizontal direction gives

Fp sin' = mp
d2

dt2
(z + l sin') = mp

�
�z + l �' cos'� l _'2 sin'

�
(3.2)

Applying on the forces on the pendelum in the vertical direction gives

mpg � Fp cos' = mp
d2

dt2
(l � l cos') = mpl

�
�' sin'+ _'2 cos'

�
(3.3)
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Eliminating Fp from (3.1), (3.2) and (3.3) results in

F = (Mc +mp) �z +mpl
�
�' cos'� _'2 sin'

�
mpg sin' = mp�z cos'+mpl �' (3.4)

The linearizing of (3.4) is done around z = _z = ' = _' = 0. This means that higher order
terms such as '2, _'2 and ' _' are neglected since they are assumed to be small when '

is close to zero. The cos' and sin' terms are linearized using the Taylor series of cos'
and sin' and neglecting the higher order terms. These approximations are accurate as
long as ' is small. The result is

F = (Mc +mp) �z +mpl �'

mpg' = mp�z +mpl �' (3.5)

The approximate model of the system is completely discribed by ', _', z and _z. To
rewrite (3.5) in state space form, the state vector is written as

x = [z _z ' _']T (3.6)

The resulting state space description of the system is

_x(t) =

2
6664
0 1 0 0
0 0 �mpg

Mc
0

0 0 0 1

0 0 (Mc+mp)g
Mcl

0

3
7775x(t) +

2
6664

0
1
Mc

0
� 1

Mcl

3
7775F

y(t) =

"
1 0 0 0
0 0 1 0

#
x(t) (3.7)

Since the cart is driven by a DC motor the force that acts on the cart must be transformed
to the input voltage [5]. This can be done with the help of Figure 3.3. Assuming negliable

R

+

+

-

-

I
+

-

V

T

F

r

r’

mK ω

Figure 3.3. A principle sketch over the motor.

armature inductance, the electrically equation becomes

V = IR+Km! =

= IR+
KmKg

r
_z (3.8)

where
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V Input voltage (Volt)
I Armature current (Ampere)
R Armature resistance (Ohm)

Km Motor torque constant (Nm/Ampere)
Kg Gear ratio of the gearbox (dimensionless)
r Radius of the output gear (Meter)
! Angular velocity of motor shaft (rad/s)

The torque produced at the motor shaft is given by the mechanically equation

�m = KmI (3.9)

which, after the gearbox becomes the output torque.

� = �mKg = KmKgI (3.10)

The torque creates a force at the output gear that is

F =
�

r
(3.11)

Using (3.8), (3.10) and (3.11) the resulting relation between the input voltage and the
force on the cart is

F =
KmKg

Rr
V �

�
KmKg

r

�2 1

R
_z (3.12)

Substituting (3.12) into the state space equation gives

_x(t) =

2
666664
0 1 0 0

0 � 1
RMc

�
KmKg

r

�2
�

mpg

Mc
0

0 0 0 1

0 1
RMcl

�
KmKg

r

�2 (Mc+mp)g
Mcl

0

3
777775x(t) +

2
6664

0
KmKg

rRMc

0

�
KmKg

rRMcl

3
7775V

y(t) =

"
1 0 0 0
0 0 1 0

#
x(t) (3.13)

Using the numerical values of the constants in (3.13) gives

_x(t) =

2
6664
0 1 0 0
0 �16:00 �4:53 0
0 0 0 1
0 52:46 47:06 0

3
7775x(t) +

2
6664

0
3:78
0

�12:39

3
7775V

y(t) =

"
1 0 0 0
0 0 1 0

#
x(t) (3.14)

3.3 The controller

The method used to design a controller is here called LQ-control. Here, the controller
is already given. The method uses a state space model like

_x = Ax+Bu+Nv

y = Mx (3.15)
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and results in the state feedback vector L, such that the feedback law

u = �Lx (3.16)

minimizes the cost function

V (L) = E

�Z 1

0

�
yT (t)Q1y(t) + uT (t)Q2u(t)

�
dt

�
(3.17)

The matrices Q1 and Q2 are cost matrices used to designate a weight or priority to each
of the states and inputs. In the case with the inverted pendelum, the control of the
angle is more important than the control of the position. There are only priorities on
those two states. That is because only two states are measured. The other two states,
the velocities of the cart and the angle of the rod, are estimated in SIMULINK with
derivative blocks from the measured states. In [5] are the cost matrices that we use
given.

Q1 =

2
6664
0:25 0 0 0
0 0 0 0
0 0 4:0 0
0 0 0 0

3
7775 and Q2 = 0:0003 (3.18)

The feedback vector L can be obtained from

L = Q�12 BTS (3.19)

where S is the positive semide�nite symmetrical solution to the Riccati equation

SA+ATS � SBQ�12 BTS +MTQ1M = 0 (3.20)

In this caseM is the identity matrix. By this we have got a closed system where the poles
are the eigenvalues to the matrix A�BL. The matrix calculations can be performed by
the MATLAB command lqr. The resulting feedback vector becomes

L = [28 31 137 12] (3.21)

The vector is then �ne tuned to the pendelum resulting in

L = [30 33 110 20] (3.22)



Chapter 4

SIMULINK and dSPACE

In this section a short description is given of how the application to the inverted pen-
delum is done with a short presentation of SIMULINK followed by a presentation of the
products from dSPACE.

4.1 SIMULINK

SIMULINK is a kind of extension to MATLAB which can be used to simulate dynamic
systems. A system is built with di�erent blocks such as step functions, sums, gains,
integrators, di�erentiators or transfer functions. Variables de�ned in MATLAB can
be used in blocks. They can also be fetched or sent to MATLAB. When the system
have been built it can be simulated, using di�erent types of numerical methods, for
example Euler or Runge-Kutta methods. The controller that is used is implemented in
SIMULINK and can be found in Appendix B.

4.2 dSPACE

The idea with the products from dSPACE is to use MATLAB and above all SIMULINK
in realtime applications. A short manual to it is [10]. The principle of how dSPACE
work with MATLAB and SIMULINK can be described with the 
owchart in Figure 4.1.
The controller is �rst created in SIMULINK where, as usual, parameters de�ned in
MATLAB can be used. Given a model, there is a toolbox that directly generates C-code
corresponding to the model. This toolbox is called Real-Time Workshop. The C-code is
now used in di�erent ways by dSPACE via its Real-Time Interface. Partly the C-code
is compiled and downloaded to the DSP and partly a number of �les are created that
makes it easy to extract information from the simulation and change parameters. This
is all done automatically. When the code is downloaded it starts running immediately
and a number of things can be done. As help there are two tools which can be used in a
couple of ways, TRACE and COCKPIT. More features, for example creating your own
input signals to the process in MATLAB, are described in [10].

COCKPIT is a virtual instrument panel where it is possible to change parameters
in a SIMULINK model. But it is also possible to study di�erent signals practically in
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MATLAB

SIMULINK

Real-Time
Workshop

Real-Time
Interface

C-compiler-
charger

DSP

Process

TRACE

COCKPIT

 Power
module

.trc file

Data

Parameters Collected
   data

C-coded model

Variables

Parameters

Figure 4.1. Flowchart of how dSPACE work with MATLAB and SIMULINK.

realtime. There can only be one COCKPIT connected to each DSP, therefore must the
DSP be speci�ed when starting the program. The instrument panel can be built with
thirteen di�erent kinds of instruments. The limitations in the COCKPIT program are
�rst of all that in SIMULINK blocks where more than numerical values can be chosen, it
is not possible to change parameters. It is also not possible to vary parameters in so called
masked block in SIMULINK where one can choose more than just numerical values. The
Figure 4.2 show the COCKPIT window in the inverted pendelum application.

Some blocks in SIMULINK don't work at all with dSPACE. Blocks that acts like
that are those which plot curves. To deal with this problem the TRACE program have
been made. The point with TRACE is to have the possibility to study certain signals
more in detail and to easily load data to MATLAB. Which DSP we are working with
must be speci�ed here too when starting TRACE. The recieved plots are not in realtime.
They appear with a delay which is approximately the chosen time interval. The main
reason for this is that the communication between the DSP and the computer is done
via Ethernet and therefore making it impossible to maintain the chosen sampling rate
and at the same time transfer data. The TRACE window is shown in Figure 4.3.
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Figure 4.2. The COCKPIT window.

Figure 4.3. The TRACE window.



Chapter 5

Parity equations method

In this section, we use structured parity equations derived from a state-space model [1]
as a diagnosis method on the inverted pendelum.

The strategy of parity equations is an open-loop strategy, i.e. there are no feedback
from previously calculated residuals that utilizes what is called temporal redundancy
which is a type of analytical redundancy, see Section 2.1.

With temporal redundancy it is possible, given analytical knowledge on the process
behavior, to predict how process state and input signals will a�ect future outputs. Con-
sidering a time window, all information about any faults that may have occured during
that time are present in the measurement.

Assuming that all signals acting upon a system are measurable, fault detection will
be possible. This because the process variables can be extracted from the measured
output signals, if the relatonship between process variables and measured output signals
are known. But this is not always a realistic situation, therefore we need to make the
diagnostic procedure invariant to unmeasurable inputs acting on the system. In order to
isolate the faults we make the residuals insensitive to one or several of the other faults
in order to distinguish between them. That makes it possible to see which fault that has
occured and we have what is called structured parity equations.

5.1 Theoretical background

5.1.1 Fault detection

The �rst step is to generate the residuals. If we �rst consider the fault free case, then
the discrete-time state-space model given in (2.2) is

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (5.1)

Since we are going to utilize temporal redundancy we need an expression for the output
based on previous measurements. The output at time t+ 1; t + 2; : : : ; t+ s; s > 0 then
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becomes

y(t+ 1) = CAx(t) + CBu(t) +Du(t+ 1)

y(t+ 2) = CA2x(t) + CABu(t) + CBu(t+ 1) +Du(t+ 2)

...

y(t+ s) = CAsx(t) + CAs�1Bu(t) + : : :+ CBu(t+ s� 1) +Du(t+ s)

If we gather the equations in vectors we get

Y(t) = Rx(t� s) +QU(t) (5.2)

where

Q =

0
BBBBBB@

D 0 : : : 0
CB D 0 : : : 0
CAB CB D 0 0
...

...
. . .

CAs�1B CAs�2B : : : CB D

1
CCCCCCA

Y(t) =

0
BBBBBBBBBBBBBBB@

y1(t� s)
...

ym(t� s)
y1(t� s+ 1)

...
y1(t)
...

ym(t)

1
CCCCCCCCCCCCCCCA

U(t) =

0
BBBBBBBBBBBBBBB@

u1(t� s)
...

uk(t� s)
u1(t� s+ 1)

...
u1(t)
...

uk(t)

1
CCCCCCCCCCCCCCCA

R =

0
BBBBBB@

C

CA

CA2

...
CAs

1
CCCCCCA (5.3)

Assuming k inputs andmmeasurements, the vectorY is [(s+1)m] long andU is [(s+1)k]
long. Matrices R and Q have the dimensions [(s+ 1)m� n] and [[(s+ 1)m]� [s+ 1]k]
respectively. Note that y(t) and u(t) are vectors and not scalar values.

In equation (5.2), Y, U and Q are known. If we multiply with a vector wT of length
[(s+ 1)m] and move all known variables to the left side we get

r(t) = wT (Y(t)�QU(t)) = wTRx(t� s) (5.4)

Equation (5.4) will now qualify as a residual (parity relation) if the residual is invariant
to state variables, i.e.

wTRx(t� s) = 0 8x (5.5)

Given a vector w that satis�es (5.5) we have a residual generator where the left hand
side of (5.4) is the computational form and the right hand side is the internal form.

If we now drop the fault free, no disturbance assumption made in (5.1), the residual
generator (5.4) will then change to

r(t) = wT (Y(t)�QU(t)) = wT (Rx(t� s) +QaFa(t) +TcFc(t) +TdD(t) + S(t))
(5.6)
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where
Fa is a vector of (unknown) actuator faults
Fc is a vector of (unknown) component faults
D is a vector of (unknown) disturbances
S is a vector of (unknown) sensor faults

It can be seen that Tc and Td have the same structure as Q with B changed to H and
E respectively and D = 0. Qa has also the same structure as Q with D = 0.

If we now want a residual (5.6) to be insensitive to the unknown disturbances or
actuator faults we add the additional constraint:

wT [R Td Qa] = [0 0 0] (5.7)

where in Td and Qa only the columns in the B and D matrices corresponding to inputs
to decouple are left.

If we instead want the residual to be insensitive to sensor faults we make sure that
all wi that appears in front of the sensor whose fault we wish to make the residual
insensitive to are set to 0. This implies (s+1) zeros per sensor fault. If we have arranged
Y(t) as in (5.3) and want to make the residual insensitive to faults in the i : th sensor
w gets the structure:

w = (w1(t� s); : : : ; wi�1(t� s); 0; wi+1(t� s); : : : ; wm(t� s);

; : : : ; w1(t); : : : ; wi�1(t); 0; wi+1(t); : : : ; wm(t))
T

Example 5.1. Suppose

x = (x1 x2)
T y = (y� y�)

T d = (d1 d2)
T

If we now assume we have the model

_x(t) = Ax(t) +Bu(t) +Tdd(t)

y(t) = Cx(t) +Du(t) + fs(t) (5.8)

where fs(t) is a sensor fault. A, C and Td have the dimensions [2 � 2], and where B
and D have the dimensions [2� 1]. The dimensions for Y, U, R and Q are then [6� 1],
[3� 1], [6� 2] and [6� 3] respectively where Y has the shape

Y(t) =

0
BBBBBBB@

y�(t� 2)
y�(t� 2)
y�(t� 1)
y�(t� 1)
y�(t)
y�(t)

1
CCCCCCCA

(5.9)

Now if we want a residual to be insensitive to sensor faults in sensor �, the residual look
like

wT = (0; w�(t�2); 0; w�(t�1); 0; w�(t))
T

If we instead want a residual to be insensitive to the disturbance d1, the residual would
satisfy the condition

wT [R [Td]1] = [0 0] (5.10)
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I f1 f2 f3
r1 1 1 0
r2 1 1 1
r3 1 1 1

II f1 f2 f3
r1 1 1 0
r2 1 0 1
r3 1 1 1

III f1 f2 f3
r1 1 1 0
r2 1 0 1
r3 0 1 1

Table 5.1. Example coding sets

5.1.2 Fault isolation

We now have the knowledge to make a residual insensitive to one or several of the other
faults so we can therefore design a bank of residuals to achieve isolation. Let us look at
an example.

In Table 5.1 three examples are presented and each row represents a residual. A 1 in
position j on row i implies that fault fj a�ects residual ri. The di�erent columns in the
coding sets in Table 5.1 is called the fault code. A coding set is a table that describes
how di�erent faults a�ect the residuals.

If for example in coding set III residuals r1 and r3 �re while r2 don't, i.e fault code
(101)T , it is probable that fault f2 has occured.

To detect a fault, no column can have only zeros and to achieve isolation all columns
must be unique. If these two requirements are satis�ed, the coding set is called weakly

isolating.

A small fault could trigger some residuals but not some other residuals. To avoid mi-
sisolation, the coding set should be constructed so that two columns cannot get identical
when ones in a column are replaced by zeros. A coding set that satisfy this requirement
is called a strongly isolating set.

In Table 5.1, coding set I is non-isolating, II is weakly isolating and III is strongly
isolating.

It is not possible to make the residuals insensitive to an arbitrary number of distur-
bances and faults. The limit is

sy + su � m� 1 (5.11)

where sy denotes the number of sensor faults that we want to decouple and su denotes
the number of actuator faults and disturbances we want to decouple. More about that
limit is explained in [1].

5.2 Application on the pendelum

When we linearized the model in Section 3.2, we did it at the x1 = x2 = x3 = x4 = u = 0.
In order to get the matrix H in (2.2) we must also linearize at dmp = dMc = 0. The
matrix we obtain is

H =

0
BBBB@

0 0

0 �1:72u(t)
M2
c

0 0
1:72u(t)
Mcmpl

1:72u(t)
M2
c l

1
CCCCA (5.12)
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wx w' wa wmp wMc

0 0.8521 -0.0549 15.7830 4.8008
-3.2865 0 -0.0168 0.0006 1.4639

0 -3.5605 1.0000 -10.0001 -3.3294
9.5935 0 0.3050 0.0073 -1.0199

0 5.5651 -0.8352 -25.7829 -6.4689
-8.3093 0 -0.2555 0.0110 -1.9786

0 -3.8567 -1.1099 10.0000 3.7230
1.0000 0 -0.3394 0.0046 1.1340

0 1.0000 1.0000 10.0000 1.2746
1.0000 0 0.3049 0.0004 0.3886

Table 5.2. Solutions to wTR = 0.

Note that the elements are multiplied with the input u(t). We get this intuitively
because if the pendelum don't move we cannot see if any component fault, i.e any
change in a mass, has occured. This means that when u(t) are zero the residuals will
be zero. We can now build the matrices R, Q and Tc in order to calculate the residual
generators. Residual generators are calculated for sensor faults x and ', actuator fault
a and component faults mp and Mc.

R =

0
BBBBB@

C

CA

CA2

CA3

CA4

1
CCCCCA

Q =

0
BBBBB@

D 0 0 0 0
CB D 0 0 0
CAB CB D 0 0
CA2B CAB CB D 0
CA3B CA2B CAB CB D

1
CCCCCA

Tc =

0
BBBBB@

0 0 0 0 0
CH 0 0 0 0
CAH CH 0 0 0
CA2H CAH CH 0 0
CA3H CA2H CAH CH 0

1
CCCCCA

Finally we can get the vectors w which satisfy the condition (5.7). How it was solved is
shown in Appendix A.

This gives us the vector wx. Similar calculations were made for w', wa, wmp and wMc .
That gives us the vectors in Table 5.2. The vectors are then used to get the residuals
with (5.6). The residuals then gives us the coding set in Table 5.3. To ful�ll the goal
of having strongly isolating residuals the coding set was intended to have zeros in the
diagonal of Table 5.3. This is not accomplished since there are zeros in the positions
(r'; fmp), (rmp ; f') and (ra; fMc), (rMc ; fa) of Table 5.3. The reason for this is because
the faults enter the system dynamics in the same way giving a model that have the same
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fx f' fa fmp fMc

rx 0 1 1 1 1
r' 1 0 1 0 1
ra 1 1 0 1 0
rmp 1 0 1 0 1
rMc 1 1 0 1 0

Table 5.3. Coding set for the pendelum.

structure in the corresponding cases. Looking in the case of the zeros in (ra; fMc) and
(rMc ; fa) and using (3.5) where we add a mass change, 4Mc and an actuator fault, fa
which gives (5.13).

(Mc +4Mc +mp) �z = F �mpl �'+ fa

(Mc +mp) = F �mpl �'+ fa �4Mc�z| {z }
~fa

(5.13)

making it impossible to seperate fa and 4Mc. Looking in the same case instead at the
structure of the model, the result becomes as in (5.14),

_x(t) = Ax(t) +Bu(t) + Pfa;c(t)

y(t) = Cx(t) +Du(t) (5.14)

where P have the same structure in both cases.

The goal was to have zeros in the diagonal. Instead we now have columns which are
identical, f', fmp and fa, fMc. This makes it impossible to isolate these faults. If we
look only on sensor and actuator faults we can get a strongly isolating set.

A problem that arose was that it was hard to get good vectors w. The reason was that
the matrices Q and Tc were badly conditioned which in turn was because of the model's
matrices A, B, C and D. This was solved by using Singular Value Decomposition
(SVD).

5.3 Simulated results

To simulate the system we use SIMULINK. We use the discrete model and the controller
which were derived in Section 3.2 and 3.3, and the MATLAB function described in
Appendix A. This gives the implementations in Appendix B. The faults we are looking
at are bias fault on sensors and actuator and component faults as a change in a mass.

5.3.1 The fault free case

In the fault free case we can see in Figure 5.1 how close to zero all the residuals are. The
reason that they are not exactly zero is that the condition (5.5) is not exactly zero.
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Figure 5.1. Simulated residuals in a fault free case.

5.3.2 Fault in position sensor

If we now add a fault to the position sensor with the magnitude of 5 centimeters, we get
the residuals in Figure 5.2. The residual rx is nearly zero as it is expected to be as seen
by column 1 in Table 5.3. The other four residuals makes a distinct reaction when the
fault occur and then returns to be close to zero. From the de�nitions in Section 2.2 we
�nd that the faults are not strongly detectable, but detectable, when the residuals only
re
ects the changes on a fault.
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Figure 5.2. Simulated residuals when a fault in the position sensor occur at t=1.

5.3.3 Fault in angle sensor

When we instead add a fault to the angle sensor with the magnitude 0.05 radians, or
approximatly 3 degrees, the residuals work as expected in this case too, as we can see
in Figure 5.3. The residual for the angle r' is close to zero and the others react when
the fault occur as seen by column 2 in Table 5.3. In this case the residuals don't return
so close to zero, which is a little bit better. In fact, the residual for the rod's mass,
rmp , doesn't return at all to zero which is how we want a residual to react. Again from
the de�nitions in Section 2.2 we �nd that the faults are not strongly detectable, but
detectable, when the residuals only re
ects the changes on a fault. The residual rmp is
though strongly detectable. Here, the residuals are smaller than before.

Comparing with the coding set in Table 5.3 we �nd that the residual rmp react which
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it shouldn't do at all. This is not what was expected.
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Figure 5.3. Simulated residuals when a fault in the angle sensor occur at t=1.

5.3.4 Fault in actuator

One fault was added to the actuator and had the magnitude of 1 Volt, see Figure 5.4.
The residuals worked as expected here too. Those residuals that should react do that
while the residual for the actuator is still. Here, the two residuals for the masses, the
rod and the cart, don't return against zero. The residual for the mass of the cart, rMc , is
very small which a�ect the fault isolation on the real process. On the real process there
is a risk that the fault information will be buried in noise.

Comparing with the coding set here we �nd that the residual rMc react which it
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shouldn't do. This is also not what was expected.
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Figure 5.4. Simulated results when a fault in the actuator occur at t=1.

5.3.5 Component faults

When changing a mass in the model and simulating, the results didn't became as ex-
pected. No residuals gave any reaction, in spite of the large mass changes, 88 % for the
mass of the cart and 48 % for the mass of the rod. This was not expected. A reason for
this could be the input signal u(t) in matrix H in (2.3). It makes it possible to rewrite
the model so that the matrices B and H can be put together to one matrix B0 making
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the model to become like (5.15).

_x(t) = Ax(t) +B0u(t)

y(t) = Cx(t) +Du(t) (5.15)

Comparing with the coding set we �nd that the residuals for component faults are
the same as the residuals r' and ra making it impossible to isolate these faults.

5.3.6 Tests

Since the residuals for the massesMc andmp didn't seemed to work for component faults,
we instead looked at how our sensor and actuator residuals would react when a sensor or
actuator fault occured and a mass had been changed. The result were that the residuals
variance increased and some residuals, especially during an actuator fault, didn't behave
as we wanted. Also the signi�cance between a fault and a fault free situation decreased.
This means that the method is not especially robust.

The number of previous time measurements, s, has in [1] been chosen to the same
as the system order. An experiment was made where s was increased, from four to six.
What happened was that the residuals didn't change any of their reactions but their
magnitudes did change. Since its always possible to normalize the residuals, increasing
the number of time measurements is not something that can be used to improve the
results in this case. No further investigation has been done because of this.

5.4 Experimental results

In order to perform the experiment, we add to the signal that we want to have a fault,
a step in SIMULINK. The step is then controlled in dSPACE so that it can be active
when we want it to be. We then log the input and output signals under a time period
and invoke the step during this period. The logged data are then used by a MATLAB
script that calculates the residuals.

There are always di�erence between a simulation and an experiment and that is the
di�erence between the process and the model and measurement noise. In this case there
is also no disturbance in the simulations. During the experiments though, there are
noise which we have tried to �lter with LP-�lters that through experimentation have
their cuto� frequency at 10 Hz. Here, we will also see that when the input signal is zero
the residuals will be zero. In this case there will be another di�erence between simulated
and experimented results. The experiment with an actuator fault didn't work which in
the simulated case it did.

5.4.1 The fault free case

The residuals in the fault free case are shown in Figure 5.5. Here we see that the residuals
includes noise compared to the simulated ones. Now, they are much more insecure. From
the results here we arbitrary include thresholds on the residuals, which are the dotted
lines in the Figures 5.5, 5.6, 5.7 and 5.8,
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Figure 5.5. Residuals in a fault free case.

5.4.2 Fault in position sensor

When we add a fault to the position sensor, which results in Figure 5.6, we can see that
all the residuals react. Even the residual rx react a little bit. This is not something it
should. This is because the condition wTRx(t-s) = 0 is ful�lled for the model but the
real process' R di�ers from the model's. If the residual rx can be improved, for example
by a better �lter, then localisation of position fault are possible in this case.
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Figure 5.6. Residuals when a fault in the position sensor occur.

5.4.3 Fault in angle sensor

Adding a fault to the angle sensor results in Figure 5.7. Here we can see that the residual
r' also reacts at the fault. But its reaction is less than what the residual rx did when
a fault occured on that sensor. The condition (5.5) is then better ful�lled for an angle
fault than for a position fault.The other residuals reactions are smaller than compared
to the result on the fault in the position. Still, it is possible to locate a fault in the angle
sensor in this case. A re
ection to be made is that in this experiment, we could see on
the output signal for ', named Angle, a change the size of the fault, see Figure 5.7. If
we observe the experiment with a fault in the position sensor, there is no such change
in the output signal for the position, named Position, see Figure 5.6. This is because
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Figure 5.7. Residuals when a fault in the angle sensor occur.

Position have no trouble keeping its reference, but the Angle must keep the rod vertical
to control it causing this to show the fault.

5.4.4 Fault in actuator

When we add a fault to the actuator we notice in Figure 5.8 that the residuals don't
work at all as expected. There are no reaction at all from any of the residuals, except a
very small one from the residual for the pendelum's mass. In this case it is not possible
to locate a fault in the actuator.
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Figure 5.8. Residuals when a fault in the actuator occur.

5.4.5 Component faults

Adding a mass to the pendelum or on the cart didn't made the residuals to work as we
wanted either. The conclusion must be that it is not possible to locate any fault on this
process.

5.4.6 Tests

Since the residuals for the masses Mc and mp didn't seemed to work for component
faults, we instead looked at how our sensor and actuator residuals would react to a
change in a mass when a sensor or actuator fault also occured. The result were that the
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residuals variance increased and some residuals, especially for an actuator fault, didn't
work. Also the signi�cans between a fault and a fault free situation decreased.

In order to improve the residuals an attempt were made where the sampling period
was changed to a slower period to see if it made any di�erence, which in this case it
didn't. Instead the residuals became worse probably because the signals became less
substantial when we changed the period.

Another attempt to improve the residuals were an experiment where the controller
was sampled at one sample period and the residual generator at another. This got, on
a sensor fault, all the residuals to react.

The same experiment with changing the number of previous time measurements, see
Section 5.3.6, was made in this case too. The result became the same as before. The
residuals reactions didn't change but their magnitudes on the reactions did.

5.5 Problems

The �rst problem that arose were that there was a di�erence between the model and
the real process. That made it a bit di�cult during simulations since the controller
didn't work perfectly with the model. It also made the results from simulations and
experiments to di�erentiate.

The next problem was to achieve good vectors w. In this case the matrics Q and
Tc were badly conditioned, which was due to the model's matrices. This was solved by
using Singular Value Decomposition (SVD).

During the simulations the residuals were discovered to be weakly detectable. A
possible solution that was never tried here is to �lter the residuals, e.g through an
integrating �lter.

The biggest problem was that the method didn't work during simulations. Just look
at the component faults where nothing happened. The coding set that was derived
didn't match the actual results.

5.6 Comparison with articles

Since no articles have been found where this method has been applied to an inverted
pendelum, comparisons against observermethods are done instead since the methods are
related.

Comparing with [7] we �nd that there two of three sensor fault and the only actuator
fault be detected and located. The sensor fault that can't be located is a sensor for the
velocity of the cart. Here that sensor doesn't exist but the two sensor fault could be
detected and located as in the article. There is one di�erence and that is that the method
in the article is more robust towards parameter variations than the parity equation
method.

Comparing with [9] we �nd that the two observer based methods in that article can
detect and locate three sensor fault. The third sensor is, as in the previous comparison,
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a sensor for the velocity of the cart. Parity equation method could as noted before detect
and locate the other two faults.

5.7 Conclusions

The conclusions of this method would be that

� It is a method that is easy to understand.

� The model that is used to determine the necessary matrices must be precise. Here,
we could use the model to design a controller, but the model couldn't be used to
design the residuals.

� If there are any numerical problems to calculate the vectors w, then the only thing
we can do is to use SVD to get vectors that can be used.

� Sensor and actuator faults could be detected and isolated during simulations. Only
sensor faults could be detected when the method was used on the process. But
component fault could not be detected in either cases.

� The coding set that was derived didn't match the actual results.



Chapter 6

Parameter estimation method

In this section we use parameter estimation as a diagnosis method on the inverted
pendelum [6, 7]. This is another method to utilize the analytical redundancy.

A parameter estimation method is based on the idea that faults are related to changes
of the system parameters. Fault detection and isolation can then be performed by a
suitable comparison of the estimated physical parameters to their nominal values. But
when discretizing the continuous-time model, the close relationship between the physical
parameters and those of the continuous-time model is lost. Therefore, fault localisation
is less intuitive in discrete-time case than in the continuous-time case and most of these
methods will therefore only perform fault detection. Some of the techniques combine
state space methods with identi�cation techniques for localisation.

Here we will use a method for fault detection and localisation based on discrete-time
identi�cation. This is because the signals that is received from dSPACE to SIMULINK
andMATLAB are discrete. For this method, the relations between the physical parame-
ters and those of the discrete-time model need not be known. The principle is described
in Figure 6.1.

⇓

⇒

⇓
⇓

⇒

⇒

⇒

⇓
 

 identification
(discrete time)

detection

localisation
   step 1

localisation
   step 2

     nominal
fault signatures

numerical
  models

   fault
detected

  fault
located

⇒       nominal
parameter values

Figure 6.1. Principle of FDI based on discrete-time identi�cation.

For identi�cation, in order to obtain reliable models, the input signals must ful�l the
condition of being persistently exciting, i.e the signals have to excite all system modes
during the identi�cation procedure. If the input signals aren't persistently exciting they
must be enhanced in some way. This can be done for example by using additional input
signals. This could degrate the performance of the system. A solution would be to use
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a test sequence. Then the method would not be suited to detect rapidly acting faults
like sudden sensor or component break downs.

For application of FDI methods based on parameter estimation, it has to be distin-
guished between supervision of open loop and closed loop systems. When identi�cation
has to be performed in a closed loop, the signals are �ltered by the controller and hence
the condition of persistent excitation may not be ful�lled.

Compared to the number of Component Fault Detection (CFD) methods, only a
few methods deal with instrument fault detection and localisation. In [8] a method is
reported, performing fault detection and localisation of slowly acting sensor gain and
sensor bias faults in closed loop systems. However, here we will only look at component
faults because the method is well suited for it.

6.1 Theoretical background

6.1.1 Identi�cation

For system identi�cation, linear regression model structures are very useful in describing
basic linear and nonlinear systems [3]. In order to estimate the nonmeasurable model
parameters we write the model as

y(t) = 'T (t)� (6.1)

where '(t) consists of measurable inputs and outputs in a discrete model and output
deratives in a continuous model. � are the model parameters to be estimated.

Example 6.1. For an ordinary linear di�erential equation

y(t) + a1
dy(t)

dt
+ a2

d2y(t)

dt2
+ : : : + an

dny(t)

dtn
=

= b0u(t) + b1
du(t)

dt
+ b2

d2u(t)

dt2
+ : : : + bm

dmu(t)

dtm

we get

'(t) =

"
�
dy(t)

dt
�
d2y(t)

dt2
: : : �

dny(t)

dtn

u(t)
du(t)

dt

d2u(t)

dt2
: : :

dmu(t)

dtm

#T

� = [a1 a2 : : : an b0 b1 : : : bm]
T

Note that � is the model parameters, not the physical parameters. In a continuous
time model, � could have been written as a function of the physical parameters p as

� = f(c) (6.2)
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But when using discrete time models, the relation between the discrete time model
parameters and the physical parameters becomes complex making it di�cult to use the
relation for analytical fault localisation.

When the model structure is determined we use the measurable input and output
signals in order to estimate the parameter vector �. This can be done with, for example,
the Least Squares method (LS) where we minimize the quadratic estimation error

VN (�) =
NX
i=0

�
y(i)� 'T (i)�

�2
and achieve the solution

�̂ =
h
'(t)T'(t)

i�1
'T y

If we have time varying parameters, we can instead choose the Recursive Least Squares
method (RLS) with forgetting factor which eliminates that problem.

6.1.2 Identi�cation in a closed loop

Because of the system's unstable character we have to identify the system in a closed
loop. This is troublesome since the controller will interfere in the identi�cation, or in the
worst case it will be the controller that is identi�ed. To succeed with an identi�cation
experiment we must determine if the experiment is informative enough. In [3] it is
stated that we can retrieve a correct description of the true system with a prediction-error
method (ARX, ARMAX or BJ) if we have an informative data set. In general, nonlinear
or time-varying or noisy or complex (high-order) controllers yield experiments that are
informative enough. A more exact condition dealing with time-varying controllers is to
let the input signal be given by

u(t) = Fi(q)y(t) +Ki(q)w(t) i = 1; 2; : : : ; r

Here Fi and Ki are linear �lters that are changed during the experiment between r

di�erent ones. With an extra input signal wj(t) that passes through �lters without
any zeros on the unit circle, there will always be an informative data set. Comparing
with Figure 6.2, we see that w(t) can be considered as an additional extra input signal
w1 (measurable), as noise w2 in the controller (unmeasurable), as set point changes
(reference signal) in the controller w3, or as a combination of these e�ects. Here though,
we don't have a time-varying controller.

One condition that must be ful�lled in order to have an informative data set is to
have an input signal that is persistenly exciting. With a persistenly exciting signal we
excite all of the system modes. Such a signal has its main energy in frequencies that
is important for the system. If we look at the Bode plot of our system in Figure 6.3,
we see in the Gain plot that it has a hump where most of the information lies. After
the hump there is not much information. We chose to let the crossover frequency, !c,
be where the curve is three decibel lower than where the curve cross the initial gain,
i.e when the curve is approximatly -51 dB. Hence we want an input signal that has its
energy beneath the crossover frequency that is approximatly 63 rad/s.

Looking at the Bode plot gives us more than just how the input signal should look
like. It also gives the sampling interval, Ts. In [3, 4] it is said that about ten times the
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Figure 6.2. Block diagram of a typical feedback system.
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Figure 6.3. Bode plot of the inverted pendelum.

bandwith, !b of the system is a good choice of sampling interval. A rough estimate of
the bandwith is to let it be equal to the crossover frequency. If we do that we get a
bandwith that is 63 rad/s which will give a sampling interval that is approximatly 10 ms
since 10!b =

2�
Ts
.

Some speci�c techniques for identifying systems in a closed loop have been developed.
For example, stating that y and u in Figure 6.2 are outputs of another system, driven
by disturbances and extra inputs (joint input{output identi�cation). But in [3] we are
adviced to apply prediction-error methods in a direct fashion, without taking special
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measures to cope with the feedback. If they fail, no other approach will succed.

If we don't allow any extra input signals, we can get informative experiments if we
shift between di�erent linear controllers. In [3] it is said that it can be su�cient to use
two controllers

u(t) = F1(q)y(t) and u(t) = F2(q)y(t)

subject to h
F1(e

i!)� F2(e
i!)
i
6= 0 8!

This is a useful way of acheiving informative experiments when the requirement of good
control is stringent.

In [6] a third method is used which also is used here. The extra input signal, w1 in
Figure 6.2, is used as the identi�cation input. Then the whole system is identi�ed (the
pendelum and the controller).

6.1.3 Fault detection and isolation

For fault detection we compare the obtained parameter estimates to their nominal values
which allows the detection of a change in the system. When we check for each parameter
if its value increases or decreases, we obtain the fault signature. In [6] has Wald's
Sequential Probability Ratio Test (SPRT) been chosen for the fault detection.

Wald's sequential probability ratio test examine from information which of two hy-
pothesis are true. Two thresholds determines when the value of the test is good enough
to support one of the two hypothesis. If the value is between the thresholds no con-
clusion can be made and more information is needed. To perform a sequential test of
H0 versus Ha, we gather individual observations one at a time, and assess whether the
accumulated information is enough to choose H0 before Ha or viceversa. This is done
in a series of seperate steps:

Step 0: Begin by setting two constants A and B such that 0 < A < B.
Step 1: Study the observation X1. Compute the probability ratio

�1 =
f1(x1)
f0(x1)

. Since very large values

of this ratio support Ha, specify rejection of H0 if
�1 equals or exceeds B > 0, i.e

if �1 � B, reject H0

Alternatively, since very small values of this ratio support H0,
specify acceptance of H0 if �1 equals or drops below
A > 0, i.e

if �1 � A, accept H0

An important feature of the sequential approach is the allowance
for an indeterminate outcome, i.e no conclusion when not enough
substantive information is available either to accept or reject
H0. This occurs if A < �1 < B:

if A < �1 < B, continue gather observations ) study X2

Step 2: Study X2. Compute the probability ratio

�2 =
f1(x1;x2)
f0(x1;x2)

. As in Step 1, if �2 � B,

reject H0, while if �2 � A, accept H0. If
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A < �2 < B, continue gather observations and study X3.
...

Step NL: Study XNL
. Compute the probability ratio test

�NL
=

f1(x1;x2;::: ;xNL)

f0(x1;x2;::: ;xNL)
. As in

Step 1, if �NL
� B, reject H0, while if �NL

�
A, accept H0. If A < �NL

< B, continue gather observations
and study XNL+1.

This method is known as a Sequential Probability Ratio Test (SPRT), due to Wald [11].
Notice that in the common setting where the individual and independant observations
are gathered from f0(x) or f1(x), the probability ratios take the form

�N =
f1(x1; x2; : : : ; xN )

f0(x1; x2; : : : ; xN )
=

QN
i=1 f1(xi)QN
i=1 f0(xi)

(6.3)

Then, e.g, the continuance condition A < � < B is equivalent to

logA < log

 
NY
i=1

f1(xi)

f0(xi)

!
< logB (6.4)

or

logA <
NX
i=1

log
f1(xi)

f0(xi)
< logB (6.5)

Figure 6.4 shows how the SPRT test can look like. As long as the value of the test is
between logB and logA then no decision can be made and the test continues until the
value of the test exceeds or drops below the thresholds and the test stops.
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Figure 6.4. Idealized schematic of the e�ect of SPRT.

Here the di�erence between the estimated parameters and their nominal values is
considered,

4�i;k = �̂i;k � �0;i
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where i is the i:th parameter, k is the k:th estimation and 0 means that it is the nominal
value. Based on the last NL estimates, a test on one of the following hypotheses is made:

H0 : �i;� = �0;i � = k �NL; : : : ; k

H1 :

(
�i;� = �0;i � = k �NL; : : : ; r � 1
�i;� 6= �0;i � = r; : : : ; k

The hypothesis H0 states that all the NL estimated values of parameter i are the same
as the nominal value of that parameter, and the hypothesis H1 states that some of the
NL estimated values one parameter are not the same as the nominal value. To obtain
the fault signature we test the hypothesis for increase and decrease in the parameters
seperatly.

In this thesis are the density functions Gaussian and we let the no-fault hypothesis
H0 have the mean value zero and a variance �2, and the fault hypothesis H1 have the
mean value hmin and the same variance �2. Then for k observations the density functions
becomes

f1 = e
� 1

2�2

Pk

i=1
(4�(i)�hmin)

2

f0 = e
� 1

2�2

Pk

i=1
4�(i)2 (6.6)

The probability ratio will then take the form

�(k) =
f1

f0
=
e
� 1

2�2

Pk

i=1
(4�(i)�hmin)

2

e
� 1

2�2

Pk

i=1
4�(i)2

=

= e
�
hmin
2�2

Pk

i=1
(hmin�24�(i)) (6.7)

Taking the logarithm of �(k) in (6.7) and transforming it to a recurrent test will give

ln�(k) = �
hmin

2�2

kX
i=1

(hmin � 24�(i)) =

=
hmin

�2

kX
i=1

�
4�(i)�

hmin

2

�
(6.8)

The following recurrent test can then be formulated:

ln�+
4�i

(k) = ln�+
4�i

(k � 1) +
jhi;minj

�2i

�
4�i(k)�

jhi;minj
2

�
ln��4�i

(k) = ln��4�i
(k � 1)�

jhi;minj

�2
i

�
4�i(k) +

jhi;minj
2

�
where hi;min is the parameter change which states the minimum value that has to be
detected for the i:th parameter and �i is the standard deviation of the i:th parameter. We
check the magnitude of both ln�+

4�i
(k) and ln��4�i

(k) by comparing them to two limits,
A and B, who express the risk of an undetected fault and of a false alarm respectively.
Then the decisions will be the following

j ln��4�i
(k) j> A the decision is made in favour of H1

j ln��4�i
(k) j< B the decision is made in favour of H0

B �j ln��4�i
(k) j� A no decision can be made

(6.9)
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The fault signature is then given by the decisions from each parameter where each
decision can be one of the three types. Either in favour of H0 or in favour of H1 or
neither. If we call the states

H1 : The decision is made in favour of H1

H0 : The decision is made in favour of H0

X : No decision can be made

then the fault signatures could look like the example in Table 6.1. The fault signature
in the table are grouped in three pairs which signi�es three parameters where the pairs
signi�es the states that ln�+

4�i
and ln��4�i

have.

Fault in: Fault signature

M H1H0 H1H1 H0H1

l H0H0 H1X H1H1

Table 6.1. Example of table of faults and fault sigantures.

The fault isolation phase is divided into two steps. In the �rst step we compare
the obtained fault signature to the reference or nominal signature of each possible fault.
These nominal fault signatures can be obtained through simulation or experimentation.
If the fault signature does not allow this localisation, because some faults have the same
nominal fault signature, the second step is used. In the second step we use parameter
variation functions where only the remaining hypothesis have to be checked. The prin-
ciple is that the variations of the model parameters �i can be expressed as a function of
the faults pj,

�i = �0;i + fi;j (4pj)

where i means the i:th parameter and j means the j:th type of fault. The relations be-
tween the faults and the discrete-time parameters are often too complex or not known.
Therefore, by means of simulation or experimentation we approximate them with inter-
polation polynomials f̂i;j (4pj). In general, the functions of faults are not symmetric for
a positive or negative value of a parameter pj, i.e

fi;j (4pj) 6= fi;j (�4pj)

That means the approximation polynomials f̂+i;j (4pj), for an increasing pj , and f̂
�
i;j (4pj)

for a decreasing pj, are not identical.

Example 6.2. The parameter variation functions for two parameters of the denom-
inator with a change of the pendelum mass m as a fault (-0.5m � 4m � 0.5m) could
look like this:

f̂+a1;m = �0:00734m + 0:02624m2

f̂�a1;m = 0:00134m + 0:14004m2

f̂+a2;m = 0:04564m � 0:06124m2

f̂�a2;m = �0:03844m � 0:33244m2
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For the following fault localisation procedure based on parameter variation functions,
it is assumed that only one fault occur at a time. If changes in the model parameters
4�i are detected, and using the parameter variation functions, we estimate all possible
fault magnitudes p̂j;�i for each considered model parameter. For the fault that has
occurred, the interpolation polynomials belonging to this fault give approximately the
same estimation value while the hypothesis for the other faults will give fault magnitudes
that are quite di�erent.

Example 6.3. Here we have two faults, p1 and p2, where each fault has three interpo-
lation polynomials due to that it's three parameters(�) which are estimated. Assuming
fault p1 has occurred, we see in Figure 6.5 that all interpolation polynomials give ap-
proximately the same estimation value p̂1. When we check the hypothesis for the second

θ̂1 2θ̂ 3θ̂

µ̂p1

σ̂p1
2

f p1, θ 1

p1, θ 2
f

p1, θ 3
f

p̂
1

Figure 6.5. Fault localisation. Fault p1 has occured, checking the hypothesis of fault p1.

fault, the estimated fault magnitudes p̂j will generally all be quite di�erent from each
other, because occuring faults do not belong to this set of interpolation polynomials, see
Figure 6.6. Therefore, the variance of p̂2 will be greater than in the �rst case.

For the pendelum the fault polynomials for the two faults are shown in Figures 6.7
and 6.8. The x-axis corresponds to the deviation from the parameters nominal values
while the y-axis corresponds to the fault. The fault polynomials are determined by �rst
deriving the model when it is applied for a known fault. From the model the denominator
is studied. It give three parameters which values changes depending on the magnitude
of a fault. In Appendix A is the MATLAB code to generate the polynomials. If the
obtained fault signature is not known, a change in the system behaviour is detected, but
fault localisation is not. There are two possible situations for unknown fault signatures.
The �rst case is when the occurring fault is not known or its reference signature was not
introduced. The second one is due to a fault magnitude which is too small. When the
fault magnitude is too small, a possible situation is that changes may only be detected
in a few parameters.
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Figure 6.6. Fault localisation. Fault p1 has occured, checking the hypothesis of fault p2.
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Figure 6.7. Fault polynomials for the parameters for a fault in Mc.

6.2 Simulated results

Starting with trying to create a good input signal, the position's reference was changed
by hand. Studying the signal's spectrum in Figure 6.9, it shows that most of the signal's
energy lies in the lowest frequency interval. That is what we know how the signal should
be due to the bode plot in Figure 6.3. Deriving a model from the \handmade" signal
and comparing the pole-zero plot of that model to the mathematical model's pole-zero
plot shows that at the righthand side, near 1, the two plots are fairly alike. Since the
sampling rate is high and the faster sample rate a system has the closer to 1 on the real
axis the poles will lie, that area is the most important. Figure 6.10 and Figure 6.11 show
the two zero-pole plots.
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Figure 6.8. Fault polynomials for the parameters for a fault in mp.
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Figure 6.9. Spectrum of the \handmade" signal.

Instead of changing the position reference by hand bandlimited white noise was
�ltered through a fourth order butterworth�lter. The �lter had a cuto� frequency of 4
Hz. Studying the spectrum for the signals in Figure 6.12, we �nd that they are not good
in the low frequency interval. If instead as in [6] the reference signal is used as input
signal and the output signal is ampli�ed, the spectrum in Figure 6.13 becomes similar
to the \handmade" signal. Looking at the pole-zero plot of the new model from the
signals in Figure 6.14 shows a plot that is di�erent than the earlier. Instead of having all
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Figure 6.10. Zero-pole plot of model identi�ed with the \handmade" signal.
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Figure 6.11. Zero-pole plot of model derived in Chapter 3.

the poles and zeros on the real axis, two poles are complexconjugated. Since the whole
system with both the pendelum and the controller are identi�ed it should give a plot
that is di�erent compared to the mathematical model.

The parameters were then determined from the signals using an ARX-model with
its parameters set to three poles, two zeros and one time delay. Three simulations were
done, each with a di�erent seed to the bandlimited white noise, and the � vector

� = [a1 a2 a3 b0 b1 b2]
T (6.10)
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Figure 6.12. Spectrum for input signal u(t) and output signal y(t).
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Figure 6.13. Spectrum for input signal w(t) and output signal y(t).

was determined. The result in the three cases when no faults been applied became

H1(q) =
b0 + b1q

�1 + b2q
�2

1:0000 � 2:5002q�1 + 2:0975q�2 � 0:5711q�3

H2(q) =
b0 + b1q

�1 + b2q
�2

1:0000 � 2:5001q�1 + 2:0973q�2 � 0:5748q�3

H3(q) =
b0 + b1q

�1 + b2q
�2

1:0000 � 2:5181q�1 + 2:1294q�2 � 0:5802q�3
(6.11)
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Figure 6.14. Pole-zero plot of system with the pendelum and the controller.

where

H(q) =
b0 + b1q

�1 + b2q
�2

1:0000 + a1q�1 + a2q�2 + a3q�3
(6.12)

The zeros bi are here disregarded since their standard deviation are larger than the
actual values and because the poles have a larger in
uence over the system than the
zeros. The nominal values are determined by taking the mean value from the three
estimations of each parameter. To derive the thresholds A and B the SPRT test was
done on the three simulations (NL = 3) of a fault free case and of a case with a fault. The
results became the ones in Table 6.2. Studying the results from the test the thresholds

Fault �1 �2 �3

Fault free ln�+
4�i

0:00004 0:00001 0:000006

ln��4�i
0:00003 0:000002 0:00003

mp = 230 gr ln�+
4�i

0:000017 0:00001 0:0008

ln��4�i
0:000017 0:000002 0:0008

mp = 310 gr ln�+
4�i

0:0007 0:0005 0:0016

ln��4�i
0:0007 0:0005 0:0015

Mc = 555 gr ln�+
4�i

0:0161 0:0096 0:0132

ln��4�i
0:0161 0:0096 0:0132

Mc = 855 gr ln�+
4�i

0:0450 0:0270 0:0357

ln��4�i
0:0450 0:0270 0:0357

Table 6.2. Results from SPRT.

were determined ad hoc which gave

4�1 = â1 � a1;0 : 0 < B = 0:0001 < A = 0:001

4�2 = â2 � a2;0 : 0 < B = 0:0001 < A = 0:001

4�3 = â3 � a3;0 : 0 < B = 0:001 < A = 0:01 (6.13)
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Simulations with di�erent faults in the two masses, Mc and mp, were then done to get
the fault signatures. The fault signatures is what the three parameters have for state
from (6.9). Using the same terminology as in the previous section the fault signatures
then becomes the ones in Table 6.3. Since it is two di�erent fault signatures there is no

Fault in: Fault signature

Fault free H0H0 H0H0 H0H0

Mc H1H1 H1H1 H1H1

mp XX XX H1H1

Table 6.3. Table of faults and fault signatures from simulations.

need to use parameter variation functions in the fault isolation part. A problem though
is when mp grows. Then in this case the X:s in the fault signature change to H1 making
the fault signatures to be alike. This is, for example, the case when mp = 1000 grams
but then such large faults cannot be applied without the process breaking down.

6.3 Experimental results

The experiments were done by logging the signals, w1, and y from Figure 6.2, when
di�erent masses were added to the cart and to the rod. Three di�erent measurements
for each mass were gathered to work with. For the cart, starting at the original mass
of the cart, 0.455 kg, two masses of 200 gram each were added, giving a mass to the
cart of 0.455 kg, 0.655 kg and 0.855 kg. On the rod, masses of 20 grams were added to
the original mass of the rod 0.210 kg giving a mass to the rod of 0.210 kg, 0.230 kg and
0.270 kg. The masses were applied using rubber band.

The thresholds in (6.13) from the previous section are here used to determine which
fault that has occured. The SPRT test is used on the logged signals and they give the
results in Table 6.4. As we can see the fault signatures are di�erent depending on the

Fault in: Fault signature

Fault free H0H0 H0H0 H0H0

Mc: 0.655 kg H1H1 H1H1 H1H1

0.855 kg H1H1 H1H1 XX

mp: 0.230 kg H1H1 H1H1 H1H1

0.270 kg H1H1 H1H1 H1H1

Table 6.4. Table of faults and fault signatures from experimental signals using thresholds
derived from simulations.

magnitude of the fault, i.e fault isolation is not possible in this situation.

Since fault signatures could be obtained through simulation or experimentation, we
instead of using the thresholds derived from simulations, derive thresholds from experi-
ments in a fault free case. The thresholds change to

0 < B = 0:0001 < A = 0:01

0 < B = 0:0001 < A = 0:01

0 < B = 0:001 < A = 0:01 (6.14)
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where the threshold A gets a larger value which is due to more disturbed signals. The
fault signatures, using the SPRT test, then becomes as in Table 6.5. Again the fault

Fault in: Fault signature

Fault free H0H0 H0H0 H0H0

Mc: 0.655 kg H1H1 XX H1H1

0.855 kg H1H1 XX H0H0

mp: 0.230 kg XX H1H1 H1H1

0.270 kg H1H1 H1H1 H1H1

Table 6.5. Table of faults and fault signatures from experimental signals using thresholds
derived from experiment.

signatures di�ers depending on the magnitude of the fault and fault isolation is not
accomplished. The di�erence between Table 6.3 and the Tables 6.4 and 6.5 can be
explained by the model fault that exists while the di�erence between Table 6.4 and
Table 6.5 can be explained by the change in thresholds.

A solution in order to have fault detection could be to increase NL and use more
estimations. Another solution is to only look at two parameters or one parameter which
is possible in this case. If we use the two most stabile parameters, i.e we don't use the two
rightmost symbol in the fault signature, and use the thresholds derived from experiment
then the fault signatures would become as in Table 6.6. Now the fault signatures still

Fault in: Fault signature

Fault free H0H0 H0H0

Mc: 0.655 kg H1H1 XX

0.855 kg H1H1 XX

mp: 0.230 kg XX H1H1

0.270 kg H1H1 H1H1

Table 6.6. Table of faults and fault signatures from experimental signals using thresholds
derived from experiment and using two parameters for the signatures.

di�ers but mp = 0:230 kg is a small fault. That means that fault detection is possible,
and fault isolation is possible if the fault is big enough. Since the two signatures are
di�erent from eachother when faults are large it makes fault isolation possible.

6.4 Problems

The problems that occured had really not anything to do with the diagnosis method
itself. Instead they came during the identi�cation of the system's parameters. At �rst,
attempts were made to only identify the pendelum, but a satisfying input signal couldn't
be generated. The �lter that the bandlimited white noise went through was changed
from a butterworth�lter to a FIR-�lter, but that didn't help. Another attempt was
to shift between two di�erent controllers as described in Section 6.1.2, but that didn't
succeed either. Instead the whole system with the pendelum and the controller was
identi�ed.
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At the experiments the major problem was to apply the di�erent masses on the cart
and on the rod. The �nal solution, to use rubber band went though very well.

6.5 Comparison with articles

When comparing with articles [6, 7], the �rst observation is that in the articles it is
another type of inverted pendelum. On the pendelum in the articles it is possible to
directly measure three of the systems four states (position of the cart, velocity of the cart
and the angle of the rod). The fourth state (anglular velocity) has then been estimated
by an observer in order to compensate the e�ects of non-linear friction. In this thesis
the e�ects of the friction have been assumed to be negligable. The di�erence between
the systems with its controllers are that in this thesis there is no observer to estimate
unmeasurable variables. Instead the two unmeasured variables (velocity of the cart and
angular velocity) are here estimated with di�erential blocks in SIMULINK.

Also the ARX model is di�erent from that used in [6]. It appears that a model with
four poles and four zeros have been used there. When using the ARX model here the
LS method is used. In the articles have instead the RLS method been used.

Comparing the results with [6] it is found that the results thats been achieved are
similar. In the article a discrete identi�cation has been made, a component fault has
been applied to the pendelum and only the fault signature has been studied which are
what's been done here too.

Comparing the results with [7] we �nd in that article that both sensor faults and
component faults are investigated. For sensor faults the method in [8] is used and for
component faults the method in [6] is used. Three di�erent kinds of component faults
could be detected and isolated compared to the two faults that could be detected and
isolated here. It is a fault in the rod's length that can't be changed in this case. The
faults that occured both in the article and here are slowly occuring faults because the
process has to become excited.

6.6 Conclusions

The conclusions of this method applied to this process would be that

� The friction may not be neglected. If it is not neglected then the model will be
enhanced and a better result could be produced.

� It is di�cult to validate the parameters. If stabile parameters are derived, the
poles aren't necessarly in the positions that they are expected to be.

� In discrete time, large changes in components can give small changes in the model.
If, for example, you change a mass with a large value, the change will still be large
in the poles of a continous time. But transforming the model to discrete time will
make the poles to move towards eachother and move towards 1 on the real axis.
How much is depending on the sample rate.

� It is di�cult to make an identi�cation in a closed loop.
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� Identifying both the controller and the pendelum is easier than to just identify the
pendelum. There is then no problems what the feedback loop can cause to the
identi�cation.



Chapter 7

Conclusions and extensions

7.1 Conclusions

In this report two model-based diagnosis schemes were studied. Model-based diagnosis
is a procedure that uses a mathematical model of the process to be diagnosed.

The mathematical model used in this report is a four state nonlinear and unstable
model that is linearized by assuming no friction, the rod is rigid and small angles. To
control the process a controller is used which is derived from using LQ-method.

After studing articles of FDI methods applied on the inverted pendelum, two methods
were chosen for analysing and implementing them on the inverted pendelum. The two
methods were

� Parity equations method

� Parameter estimation method

Both methods utilizes analytical redundancy. Parity equation method uses an open
loop strategy. It succeeded in detecting and locating sensor faults on the process but
not to detect and locate actuator and component faults on the process, see Table 7.1.
The derived residuals were detectable and not strongly detectable. During simulations
the residuals didn't worked as was expected from the coding set which was surprising.
The mathematical model was for this method not accurate enough.

Sensor fault Actuator fault Component fault

Theory Worked Worked Didn't worked

Simulations Worked Worked Didn't worked

Experimental Worked Didn't worked Didn't worked

Table 7.1. Table of how the parity equation method worked.

Parameter estimation were only used to detect and locate component faults, which
it succeeded with when not all estimated parameters were used in the fault signature.
To detect a fault when using this diagnosis method a statistical method is used, here it
was the Sequential Probability Ratio Test (SPRT).
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Trying to compare the two methods against eachother is di�cult since the methods
are best suited for di�erent faults. Parity equations is though rather simple while pa-
rameter estimation could be di�cult when identi�cation must be performed in a closed
loop.

7.2 Extensions

This report has shown how two di�erent diagnosis method are implemented on an in-
verted pendelum and one is compared to articles that uses the same method. Some
things though that can be improved are

� Improve the mathematical model.

� Investigate the controller.

� Residual evaluation.

Improve the mathematical model

If the mathematical model is improved both methods will become more accurate. One
way of improving the model could be not to neglect the e�ect of the friction.

Investigate the controller

The controller that was used was not derived in this thesis, it was already given. Since
the controller plays a part in the parameter estimation method and we don't know
if the controller is good or bad it should at least be investigated. For example, two
states (velocity of cart and angle) in the model were estimated with di�erential blocks
in SIMULINK. Using di�erential blocks can give bad estimations. This can for example
be avoided by using an observer instead.

Residual evaluation

The residual evaluation in the parity equation method are thresholds that has been
derived ad hoc. It can be improved if the evaluation instead uses some statistical method
as Generalized Likelihood Ratio (GLR) or approaches based on fuzzy logic.
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Appendix A: Matlab script

MATLAB script used in simulations

s = 4;

[N, m] = size(y);

ytmp = y;

Y = zeros((s+1)*m, N-s);

for i=0:s

Y((s-i)*m+1:((s-i)+1)*m,:) = ytmp(s+1-i:N-i,:)';

end;

[N, p] = size(u);

utmp = u;

U = zeros((s+1)*p, N-s);

for i=0:s

U((s-i)*p+1:((s-i)+1)*p,:) = utmp(s+1-i:N-i,:)';

end;

[I,J] = butter(2,0.1);

r_x = filter(I,J,(w_x'*(Y-Q*U)))';

r_fi = filter(I,J,(w_fi'*(Y-Q*U)))';

r_a = filter(I,J,(w_a'*(Y-Q*U)))';

r_m = filter(I,J,(w_m'*(Y-Q*U)))';

r_M = filter(I,J,(w_M'*(Y-Q*U)))';

resT = t(s+1:length(t));

l = ones(997,1);

figure;

subplot(5,2,1),plot(resT,r_x,'-',resT,2.5e-3*l,'y--',resT,-2.5e-3*l,'y--'),

grid, zoom on, ylabel('res_x');

subplot(5,2,2),plot(resT,r_fi,'-',resT,2e-4*l,'y--',resT,-2e-4*l,'y--'),

grid, zoom on, ylabel('res_fi');

subplot(5,2,3),plot(resT,r_a,'-',resT,0.5e-3*l,'y--',resT,-0.5e-3*l,'y--'),

grid, zoom on, ylabel('res_a');

subplot(5,2,4),plot(resT,r_m,'-',resT,0.02*l,'y--',resT,-0.02*l,'y--'),

grid, zoom on, ylabel('res_m');

subplot(5,2,5),plot(resT,r_M,'-',resT,0.0005*l,'y--',resT,-0.0005*l,'y--'),

grid, zoom on, ylabel('res_M');

subplot(5,2,6),plot( resT, u(s+1:length(u)) ),

grid, zoom on, ylabel('In-u');

subplot(5,2,7),plot( resT, y(s+1:length(y),1) ),



58 Appendix A: Matlab script

grid, zoom on, ylabel('Out-x'), xlabel('t');

subplot(5,2,8),plot( resT, y(s+1:length(y),2) ),

grid, zoom on, ylabel('Out-fi'), xlabel('t');

subplot(5,2,9),plot( resT, f(s+1:length(f)) ),

grid, zoom on, ylabel('fel'), xlabel('t');

orient tall;

clear ytmp utmp N p m i s l I J;

MATLAB code to generate residuals

Q1=[D;C*G;C*F*G;C*F*F*G;C*F*F*F*G];

Q2=[zeros(size(D));D;C*G;C*F*G;C*F*F*G];

Q3=[zeros(size([D;C*G]));D;C*G;C*F*G];

Q4=[zeros(size([D;C*G;C*F*G]));D;C*G];

Q5=[zeros(size([D;C*G;C*F*G;C*F*F*G]));D];

Q=[Q1,Q2,Q3,Q4,Q5];

T1=[D;C*K(:,1);C*F*K(:,1);C*F*F*K(:,1);C*F*F*F*K(:,1)];

T2=[zeros(size(D));D;C*K(:,1);C*F*K(:,1);C*F*F*K(:,1)];

T3=[zeros(size([D;C*K(:,1)]));D;C*K(:,1);C*F*K(:,1)];

T4=[zeros(size([D;C*K(:,1);C*F*K(:,1)]));D;C*K(:,1)];

T5=[zeros(size([D;C*K(:,1);C*F*K(:,1);C*F*F*K(:,1)]));D];

Tm=[T1,T2,T3,T4,T5];

T1=[D;C*K(:,2);C*F*K(:,2);C*F*F*K(:,2);C*F*F*F*K(:,2)];

T2=[zeros(size(D));D;C*K(:,2);C*F*K(:,2);C*F*F*K(:,2)];

T3=[zeros(size([D;C*K(:,2)]));D;C*K(:,2);C*F*K(:,2)];

T4=[zeros(size([D;C*K(:,2);C*F*K(:,2)]));D;C*K(:,2)];

T5=[zeros(size([D;C*K(:,2);C*F*K(:,2);C*F*F*K(:,2)]));D];

TM=[T1,T2,T3,T4,T5];

R=[C;C*F;C*F*F;C*F*F*F;C*F*F*F*F];

Z=R([1,3,5,7,9],:)';

rank(Z)

w_tmp=Z(:,[1,2,3,4])\(-Z(:,5))

w_x=[w_tmp(1);0;w_tmp(2);0;w_tmp(3);0;w_tmp(4);0;1;0]

MATLAB code to generate fault polynomials

a1 = 1:1:400;

a2 = 1:1:400;

a3 = 1:1:400;

i = 1;
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M = 0.455;

A = [0,1,0,0;0,-7.28/M,-m*g/M,0;0,0,0,1;0,7.28/(M*l),(M+m)*g/(M*l),0];

B = [0;1.72/M;0;-1.72/(M*l)];

[Ad,Bd] = c2d(A,B,0.01);

[num,den] = ss2tf(Ad,Bd,C(2,:),D(2,:));

poles = roots(den);

pp = [poles(1);poles(3);poles(4)];

p = poly(pp);

ff1 = p(2);

ff2 = p(3);

ff3 = p(4);

a1(i) = 0;

a2(i) = 0;

a3(i) = 0;

i = i+1;

for M = 0.455:0.001:0.855,

A = [0,1,0,0;0,-7.28/M,-m*g/M,0;0,0,0,1;0,7.28/(M*l),(M+m)*g/(M*l),0];

B = [0;1.72/M;0;-1.72/(M*l)];

[Ad,Bd] = c2d(A,B,0.01);

[num,den] = ss2tf(Ad,Bd,C(2,:),D(2,:));

poles = roots(den);

pp = [poles(1);poles(3);poles(4)];

p = poly(pp);

a1(i) = p(2)-ff1;

a2(i) = p(3)-ff2;

a3(i) = p(4)-ff3;

i = i+1;

end
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Figure B.1. Controller used at experiments on the real process.

Simulation of parity equations
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Figure B.2. SIMULINK system to simulate parity equations.
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Figure B.3. A sensor and how its faults are implemented.


