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Abstract

The functionality of vehicle engine control systems is getting more and more complex d
new emission laws and increasing demands from customers. More computing power r¢
possibilities to use more advanced algorithms. An example is the possibility to estmate
rameters that are not directly measurable, often because of economical reasons, which
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used to make control systems work better. One important parameter affecting the dynamic

the vehicle is the weight, especially concerning heavy trucks where the load varies a lof
weight is known, enhancements in the behavior of the vehicle can be achieved.

Here, a method for estimating the weight of a vehicle during driving is developed byreo
ing the acceleration of the vehicle and the estimated torque from the engine. The methg
based on measurements from standard automotive sensors and can be applied to any
and it is implemented and successfully validated in heavy truck field trials. In on-liné-ex
ments an accuracy of about £10% without a trailer and £20% with a trailer connedted i
tained. The deterioration in accuracy when using a trailer is probably due to the vehicle
caused by the play between the truck and the trailer. Nevertheless, the accuracy is eno
obtain a substantial improvement in performance of control systems.
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Abstract

The functionality of vehicle engine control systems is getting more and
more complex due to new emission laws and increasing demands from
customers. More computing power results in possibilities to use more
advanced algorithms. An example is the possibility to estimate param
ters that are not directly measurable, often because of econoraical re
sons, which can be used to make control systems work bettenmOne i
portant parameter affecting the dynamics of the vehicle is the weight,
especially concerning heavy trucks where the load varies a lot. If the
weight is known, enhancements in the behavior of the vehicle can be
achieved.

Here, a method for estimating the weight of a vehicle during driving is
developed by comparing the acceleration of the vehicle and the estimated
torque from the engine. The method is based on measurements from
standard automotive sensors and can be applied to any vehicle, and it is
implemented and successfully validated in heavy truck field trials. In on-
line experiments an accuracy of ab&ali0% without a trailer ani20%

with a trailer connected is obtained. The deterioration in accuracy when
using a trailer is probably due to the vehicle shuffle caused by the play
between the truck and the trailer. Nevertheless, the accuracy is enough to
obtain a substantial improvement in performance of conteéss.
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Introduction

Modern vehicles consist of increasingly sophisticated control systems,
which contain a growing humber of control algorithms needing even
more parameters. The weight of the vehicle is one parameter that is si
nificant to many algorithms, but since the vehicle’s weight is seldom
known, control algorithms are not designed to take advantage of it. If the
weight could be estimated during driving, greater performance of the
algorithms could be expected. One example of this is the cruiseleontro
ler. In order to gain better comfort and lessen the fuel consumption the
algorithm should act a bit differently if the truck is unloaded or if it is
driven with full load. Knowledge of the weight is also fundamental when
deriving control algorithms that reduce driveline oscillations with engine
control [12].

The goal of this thesis is to develop and implement a method that est
mates the vehicle’s weight during driving without using any kind bf ba
ance. The basic idea of the method is to treat the vehicle as one rigid
body that, according to Newton’s second law, achieves a certain acce
eration when driven with a certain force.

1.1 Qutline

The experiments are performed on Scania heavy trucks described in
Chapter 2 along with their internal data buses.

In Chapter 3, a first order model of a truck drivline is developed.

Chapter 4 develops two different methods of identifying the masel p
rameters from measured data; estimating during acceleration and-estim
tion during gear shifting.

The algorithm development is considered in Chapter 5, which includes
treatment of measuring vehicle acceleration and estimating engine torque.

Chapter 6 covers the experiments with weight estimation and tha-exper
mental equipment.

Finally, Chapter 7 contains the conclusions.
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The Experimental Vehicles

The trucks used for the experiments are three Scania heavy duty trucks
from the 4-series. They have different engines and weight, and one of the
trucks can be driven with or without trailer.

2.1 The Trucks

Scania 144L 6x2

e r e
B e e i

Figure 2.1 Scania 144L 6x2 truck.

Weight: 24400 kg (+ 32000 kg)

The Scania 144L 6x2 (six wheels, two driven) is a truck with a 14 liters
V8-engine. The fuel system is based on an in-line injection pump system
[1], and the transmission is equipped with an automatic gear shift system
called OptiCruise [2]. A trailer is available for this truck with a weight of
32000 kg.
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Scania 124L 6x2

Figure 2.2 Scania 124L 6x2 truck.

Weight: 18000 kg

The Scania 124L 6x2 is powered by a six-cylinder 12 liters engine, and
the fuel injection is handled by a unit-pump system [1]. Also, this truck is
equipped with OptiCruise.
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Scania 124L 4x2

Figure 2.3 Scania 124L 4x2 truck.

Weight: 38000 kg

The Scania 124L 4x2 has a six-cylinder 12 liters engine with an in-line
injection system. The transmission is manually shifted and the truck a
ways has a trailer connected to it.

2.2 The CAN Bus

The CAN-bus is a serial two wire bus for vehicles developed by Bosch
GmbH [3]. It is used for communication between the different control
units in vehicles calledodesof the CAN-bus. The communication is

based on different CAN-messages and to identify these they all contain a
CAN-identifier. A CAN-message can e.g. be current engine temperature
or the speed of the right front wheel.

! Controller Area Network
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Truck Modeling

The basic idea for weight estimations is to treat the truck as one rigid
body and apply Newton’s second law or Newton’s generalized second

law [14]. When using Newton’s second law the truck is treated as a mass
and the engine output as a longitudinal force causing a longitudinal a
celeration. An equivalent situation, which is used in this chapter, is to
treat the truck as a moment of inertia and the engine output as a torque. A
schematic picture of the truck as a moment of ineltiis, seen irFigure

3.1
M
Figure 3.1 Physical model of the truck.

If the torque M, and angular acceleratioay, are measured androe

pared it is possible to estimate the moment of inettiBjfferent parts of

the truck contribute to the moment of inertia of the rigid body in different
ways, and the topic of this chapter is finding the expressions far-calc
lating the mass from the estimatid

Modeling the driveline can be done in many different ways and with
different order of the model [12]. The model should have enough co
plexity to be able to reproduce the aimed physical phenomena, but
choosing a higher complexity also includes more parameters. If these
extra parameters are unknown, they have to be estimated in some way
and that introducesngertainty.

The physical model ifigure 3.1represents a first order model. This
assumes a stiff driveline without any flexibility or possibilities to model
driveline oscillations. It is assumed that this model is sufficient for weight
estimations, since the problem with driveline oscillations can be avoided
or filtered out over time.
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Wheels

Engine  Transmission

Final drive

Figure 3.2 The driveline of the truck. The engine torque is scaled in the
transmission and the final drive, and results in a motive force at the
wheels.

The driveline is modeled as several rotation moments of inertia and two
gearsFigure3.3 shows the stiff physical model of the\driine.

Engine  Transmission Final drive Truck
Kg‘
S, ég Job
3 K,

Figure 3.3 Physical model of the driveline. The last part represents the
rest of the truck which can be seen as a big moment of inertia.

The inertia of the truck and the moment of inertia of the wheelsare r
placed by an equivalent mass moment of inejia,

3.1 Driveline Equations

Engine Equations

MC/A ; fM@
o,

Figure 3.4 Engine model.
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Newton’s second law applied to the engine gives the following equation

@,J. =M, - M, (3.1)

whereM, is the torque delivered from the combustion compensated by
internal engine friction, anbl, is the torque output from the engine when
the engine’s mass moment of inertih, is taken into consideration. The

engine speed is representeddy

Direct measure of the torque is not possible, which means that the torque
has to be estimated in some way. A simple approximation of the diesel
engine torque is a linear function of injected fuel amount and engine
speed. One drawback with this model is that it is a static function and no
dynamically behavior of the torque is considered, but the approximation
is assumed to be satisfactory.

A model of the engine friction varies with speed and temperature of the
engine and is measured in a test bench.

Transmission Equations

M, A
ol |

/AMr
L

K,
‘ o,

Figure 3.5 Transmssion model.

The transmission is described by

w, = K, (3.2)
M

@J, =M, ——+~ (3.3)
g th

whereKg is the gear ratio ant the mass moment of inertia in the san
mission. Speed and torque at the output shaftuemaedM;, respetively.
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Final Drive Equations

M

w

s
o

Figure 3.6 Final drive model.

s

-0,

K

of

The model inFigure3.6 leads to the following equations

w, Ky =@ (3.4)
@, J; = MKy =M, (3.5)

whereKg is the gear ratio and is the moment of inertia of the final
drive. The speed and torque of the wheelsgrandM,,.

Longitudinal Equations

The longitudinal forces acting on the truck are showrigure3.7,
where the wheel radius iig and ny is the weight of the truck without the

wheels.

a
R
' F,
m, <
M, | F, F,
0, // w,, Zf
wf
£C) (S,
F F

/i1 Ji2

Figure 3.7 Longitudnal forces acting on the truck.
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F. is the resulting force of all longitudinal forces acting from the outside
on the truck ana is the acceleration of the truck. The rotational speed of
the front wheel igu.

At the rear wheel the following equations apply.

(3.6)

w wr

. a
M, - Ffrlrw = O)WJwr = r J

w

mya=Fy,-F (3.7)

Wherel,; is moment of inertia anah,, is the weight of the rear wheels.

The equations at the front wheel are

. a
Faaly = QO dut = r Jut (3.8)

w

F,—Fp, =mya (3.9)

The right lane in (3.6) and (3.8) is made under the assumption that no slip
exists between the tire and the road.

The longitudinal forces on the truck are described by
F-F-F,=na (3.10)
Combining (3.6) - (3.10) yields the following expression

M, =[d, + 3y +( +m, +m )],

_ [JW . mrﬁ]ww (3.11)

which makes it possible to derive the truck’s weight from the total m
ment of inertia.

Inserting (3.3) into (3.5) gives

@,y = (-0, + MK, - M, (3.12)
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whereKq = KgKgr. With (3.1) the expression becomes
W, J; = (W (I, +J) + MK, = M, (3.13)
and insertion of (3.2) and (3.4) into (3.13) yields

w,J; = -Kiw, (I, +J3.)+ MK, - M, (3.14)

w

Finally, (3.11) and (3.14) gives the desired model
@[3, +3,+mr2 + K23, + )| = MK, ~Fr,  (3.15)

3.2 Modeling External Forces

When estimating the road gradient the fdfgénas to be divided into its
components: air drag, rolling resistance and resistance from the slope of
the road.

I:w = I:air + I:roll + Fs!ope (3-16)
Modeling Aerodynamic Drag
At speedv and headwind speeg the air drag is [4]
1 2
Far = EPRRNA(VWO) (3.17)

wherep is the air densityg,, the drag coefficient andl the frontal area of
the vehicle. Here some difficulties with the unknown headwind speed
occur.

Modeling Rolling Resistance

The rolling resistance occurs when the tire deforms in contact with the
road. An approximation of the resistance is [5]
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Froll = m (Crl + Cr ZV) (318)

wherec;; andc,, are parameters depending on e.g. type of tires and road
pavement.

Modeling Climbing Resistance

Climbing resistance is a product of the gravitational force and the slope
of the road. It is calculated by

Fyope =Mgsiny (3.19)

wherey is the slope of the road.

3.3 Final Driveline Model
Combining (3.15)-(3.19) yields the resulting model

O[3 + 3+ M2 + K23, + 3)] =
1 , (3.20)
MKy = > P8, A+5)*T, =M (G + GV, ~ Mg, sinX

If vo is neglected everything excaptandy can be measured or caic
lated. These two can to be estimated, and the method of doing this is
explained in the next chapter.
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Method Development

The basic idea with estimating the weight is to compare the acceleration
of the vehicle with the torque output from the engine, as discussed in the
previous chapteFigure 4.1shows an example of the acceleration and

the torque from the engine compensated by the current gear ratio to
achieve the torque at the wheels.

25 C T T T T T T T T T

--- Torque at the wheels [Nm/5000]
— Acceleration [m/s"2]

Time [s]

Figure 4.1 Comparison between the vehicle’s acceleration (solid) and
the torque at the wheels (dashed). The correlation between these two is
strong and the basic idea behind estimating the weight. Note thee driv
line oscillations at t = 18.

There is a strong correlation between these two, and finding theddepen
ency between them is the key to estimate the weight. This physeeal rel
tionship is described by the model (3.20) under certain condit®ns d
scribed below.

15
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When identifying parameters in the model it is important to know when
the model is valid and in which situations it is more or less reliable.

Validity of Model

The model is an approximation of the driveline with the engine and three
external forces. It does not model braking or driveline oscillatiork-Bra

ing must be monitored not to disturb the measurements. Avoiding driv
line oscillations is more difficult, but by starting measuring a few seconds
after the gear is engaged most of the driveline oscillations are strongly
reduced and the infénce is rather small.

Parameter Estimation

The model is of first order and can thus be interpreted as a straight line.
The model (3.20) can be rewen as

f2(M¢, Ky,V) = @, f,(m) + f5(m, X) (4.1)

which shows the dependencies of the variables. The dependence of the
velocity in the rolling resistance have here been neglected according to
the discussion in Section 5.5.

If w, and f,(M_, Kg,v) are measuredf,(m) is the slope of the line

and f,(m, x) is the intersection with the y-axis. To estimate this line, at
least two points, @, , f,(M,K,V)), are needed.

One important observation is that a longer interval between the measured
points makes the estimation of a straight line less dependent on errors in
acceleration and torque. Another observation is that a lot of points also
make the estimation more robust. Biy(m, x) must be regarded as a

constant during the estimation, and since the gradient of theyneaiks,

the time of collecting the measurable variables must be short enough to
consider these to be constant. These circumstances lead to two methods;
estimating during acceleration, discussed in Section 4.1, and estimating
during gear shifting, discussed in Section 4.2.

The fact thatm, is included in two terms in (4.1) is discussed later in
Chapter 5.



4.2 Estimating During Gear Shift 17

4.1 Estimating During Acceleration

This method estimates the two parameters from a short interval of an
acceleration. There has to be a tradeoff of the interval length not be too
short, which makes the acceleration interval too small, or too long since
the extenal forces must be considered to be constant.

An advantage with this method is that the driveline is transferring torque
in the same direction, thus making the influence of drivline oscillation
small. But the acceleration is positive and probably from one gear only,
making the acceleration interval quite small and therefore the estimation
more unceain.

4.2 Estimating During Gear Shift

By measuring the acceleration and torque just before and when a gear is
disengaged, a big difference in acceleration is measured. This forms the
base for a good estimation as the errors in acceleration and torque does
not affect the estimation too much. The disadvantage is danger with dri
eline osdilations.
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Algorithm Development

This chapter covers development of algorithms used when estimating
during both acceleration and gear shift. The experimental equipment is
used to sample data from real driving with trucks. MATLAB [6] is used

for testing and developing the algorithms. The development includes both
implementation of the driveline model and handling of numericdd-pro
lems and sampling effects.

5.1 Sampling CAN-bus Messages

The CAN communication is based broadcastsi.e. every node sends

out each type of message at a certain rate. Depending on type of control
system, node and type of message, this rate can vary from 1 Hz to 100
Hz. These rates are selected, depending on the bandwidth of each signal,
to avoid aliasing. To prevent additional aliasing, sampling by the alg
rithms is done at 100 Hz. This means that some of the signals are resa
pled at a higher rate then they were sampled originally, but with low-pass
filtering after resampling, extra distortion is avoided.

5.2 Measuring Acceleration

Measuring acceleration is done by taking the derivative of the velocity.
Special care has to be taken when numerical differentiation is used. Noise
is a big problem and the differentiation have to be combined with filte

ing. The velocity is available at the front wheels if the truck is equipped
with ABS', and always available from the output shaft of the tragsmi

sion. Measuring velocity at the front wheels is a bit better because the
propeller shaft is more exposed to driveline oscillating.

Three differentiation algorithms [13] are compared. The first (5.1) is a
simple backward differentiation and (5.2) is short non causal symmetrical
algorithm that uses values both from the ‘future’ and the past. This means
that the input data have to be delayed to make this possible. The third

! Antilock Braking System

19
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algorithm (5.3) is also non causal and symmetrical but it spans over a
longer interval compared to (5.2).

Ya(t) —va(t-1)

(1) = 51
Ya(t) . (5.1)
v () = “Yp(t+2)+8y, (t+1) -8y, (t-D+y,(t-2) (5.2)
12h
ey = Ye(t+3) —9y (t+2) +45y (t+1) 45y (t -D + 9y (t -2) —y,(t -3
yc (t) - 6ch
(5.3)
Input
20 T T T T T T T
10
0 -
-10 : : : : : : :
0 5 10 15 20 25 30 35 40
Time [s]
Output
15 T T T T T T T
10
AN
5F \ ” K ,/\\/\—
-5 '

Time [s]

Figure 5.1 Different outputs of differentiation algorithms. The simple
backward difference (solid black) varies more compared with the non
causal (5.2) plotted in solid gray. The more complex (5.3) (dotted) nearly
follows the more simple (5.2) and gives no significant enhancement.
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As seen irFigure 5.1 the simple backward difference (5.1) varies more
compared to the other. By buffering some samples and therefore causing
a slight delay, a non causal differentiation can be used. (5.2) is a short
algorithm of that type, and as seen in the figure, the characteristic are
better. When extending the algorithm to (5.3) no significant gain im acc
racy is obtained.

Filtering the differentiation output from (5.2) with an appropriate low-
pass filter yields an acceleration which is usable. This is shotiguime
5.2where a second order Butterworth filter is used.

Vehicle speed

v

E

e]

[}

[}

Q.

n

5 10 15 20 25 30
Time [s]
Vehicle acceleration

—_ T T T T T
N

<

2

E

c

o

@

[}

©

8

< -05 + + + + +

5 10 15 20 25 30
Time [s]

Figure5.2 An example of calculating acceleration. The differentiation
algorithm (5.2) is used with a second order Butterworth low pass filter.

5.3 Estimating Engine Torque

The engine torque and friction are estimated in the ECU, as described in
Section 3.1, and they depend on engine speed, injected fuel amount and
engine temperatur&igure5.3 shows the torque measured at normal
operating temperature in a test bench, and it can be approximated with a
linear function of the fuel quantity and the engine speed.
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Actually, it is the torque that results in a motive force that is wanted. This
means that if there are some accessories that consume power from the
engine, they will affect the resulting torque at the wheels. This can be e.g.
the air compressor, the alternator or the cooling fan. If all accessories
operate at the same time this could be as much as 15 % of the maximum
produced power by the engine. When using the experimental trucks it is
impossible to know when the accessories consume power, therdfore su
tracting a statistical mean value of the consumed power from the engine’s
power is assumed to be sufficient.

max

Torque

max max

Fuel quantity Engine speed

0 idle

Figure 5.3 Torque map measured in a test bench. The output torque of
the engine can roughly be approximated to a linear function of the fuel
quantity and the engine speed.

5.4 Estimating Gear Ratio and Shift Detecting

Manually operated transmissions have no sensors that indicates which
gear is used and because of this an estimation of the current gear ratio has
to be made. The gear ratio is defined as speed of the input shaft divided
by speed of the output shaft of the transmission. Simply dividing these
two rotational speeds is not sufficient since the speed sensorsrhave li

ited bandwidth. This especially concerns the sensor at the output shaft
which is worse than the sensors at the front wheels. It is obvious that the
guotient has to be filtered in some way. Ordinary low-pass filtering is not
suitable because when a gear is engaged strong filtering of the quotient is
desirable. But on the other hand, during gear shift very little filtering is
wanted for a quick adaptation to the new gear ratio. An adaptige alg
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rithm supported by a change detector [7] is used to solve the problem,
giving fast response to big changes in gear ratio but slow response to
small changes. The change detector is also used as a gear shift indicator
as shown irFigure5.4.

12+
107 "~ Com \r/aatliic():iity
18
61
4t
2L
Of L i / X X X X e
0 5 10 15 20 25 30 35 40
Time [s]

Figure 5.4 Gear ratio estimation (solid) and gear detection (dashed).
The gear validity is a measure of how long time a certain gear is used
which can be used to avoid driveline oscillations. The adaptive filtering
of the gear ratio makes it constant bit by bit.

5.5 Weight and Gradient Estimation

When all variables are measured, a straight line approximation gives the
truck’s weight and the gradient of the road. Equation (5.4) makea®-a co
parison with the straight line equatigrs kx + 1.
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MKy =60, (3 + 3, + K2(J, +J,)) -

1 2 :mr\/\%ww-'-rwm(gSinX-FCM)
5meA(v+v0) r, TT i
y

(5.4)

As seen in (5.4) the estimation of the weight,is simply done byid

viding the slope of the line with,%. Extracting the gradieny, from| can

only be done with knowledge of the weight, but this problem is easily
solved since the estimation of the weight is independent frand

therefore can be done in advance yAs small, it is a good approxan

tion to use siry = x. Since it is not possible to measure the headwind
speed, the estimation of the gradient has to be made with the assumption
that the influence of headwind speed is negligible. The part of the rolling
resistance that depends on the velocitg g, mVv and can not be fit into

eithery orl. Since this part is small compared to the other parts in (5.4), it
is a good approximation to ignore it.

In the case with estimating during acceleration, estimating the line can be
done with LMS [8] or a similar algorithm.

Filtering the Estimations

A truck’s weight is rather constant during driving and therefore strong
filtering of the weight estimations is possible. On the other hand, the
weight can decrease during driving if the truck is e.g. a gravel truck, thus
the filtering must not be too strong. The estimations are influenced by
two type of disturbances; an influence by measurement errors, mainly in
acceleration measurement, causing a ‘white’ noise, and a disturbance
caused by e.g. vehicle shuffle on a bumpy road. The latter will make
some estimations differ a lot from the mean value compared to other
estimations, therefore a filter that discards the extreme values before
normal filtering is used.

! Least Mean Square
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Experiments

The experiments are made with a PC notebook connected to the truck’s
CAN-bus. Either data can be recorded with the PC and later processed
with MATLAB or the algorithms can be implemented in the PC and e
timations made in real time.

6.1 Experimental Platform

Connecting the PC to the CAN-bus is accomplished by using an adapter
connected to the parallel port which is called PPCan from Mecel [9].
Connected to the CAN-bus, it is possible to listen to the different CAN-
messages and thus be able to sample the desired variables.oFhe alg
rithms can be implemented in the PC and the result displayed directly on
screen in real time.

The software on the PC is a real time operating system [10] based on the
real time kernel RTKernel [11] together with the PPCan driversi9]. |
cluding the algorithms everything is written in C which makes xhe e
perimental software very flexible and portable.

As seen irFigure 6.2several variables are displayed simultaneously i
cluding both the recent estimation and the filtered weight and gradient.

25
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Figure 6.1 Experimental situation. PC connected via a CAN-adapter to
the truck’s CAN-bus.

Figure 6.2 Screen picture of the PC. To the left commands are executed,
and to the right variables and estimated parameters are shown in real
time.
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6.2 Experiments with the Acceleration Method

The method with estimation during acceleration is only implemented in
MATLAB and experiments are done off-line with recorded daigure

6.3 shows an estimation based on data during a full throttle acceleration
at different gears. This data is collected during several gears in a full
throttle acceleration and to make an estimation possible the truck is
driven on a flat road as the gradient of the road has to be constant during
the time of collecting the data.

2.5 T T T T T T T

1.5

Torque at the wheels [Nm]

-4 -3 -2 -1 0 1 2 3 4
Angular acceleration of the wheels [rad/s"2]

Figure 6.3 Estimating the weight and road gradient during acceleration.
This data comes from a full throttle acceleration and it is possible to see
the acceleration at different gears as clusters with points with different
acceleration. The slope of the straight line (in solid), made by LNIS est
mation, gives a weight of 18600 kg which is close to the real weight
18000 kg (dashed) of the Scania 124L 6x2.

As seen irFigure 6.3the estimation is quite accurate, except for some
points that differ, possibly due to driveline oscillations. This depends on
that the data covers an full throttle acceleration at several gears which
makes the range of acceleration big. But this does not work in a real
situation when the slope and headwind changes during the collection of
data. Consider a short time interval when the external forces (3.16) can



28 Chapter 6 Experiments

be treated as constant, say two seconds. Two seconds cover only a part of
the time that a gear is normally used, which means an estimation has to
be made with a part of the points in one clustéfigure 6.3 These

points will have very little difference in acceleration and torque making a
straight line estimation inaccurate. This will not work satisfactorily and

that is a reason for investigating the other method more close.

6.3 Experiments with the Gear Shift Method

This method with estimating during gear shifting is implemented in the
PC notebook and tested on the three trucks described in Chalpigura.
6.4 shows the results of weight estimations with the Scania 144L 6x2.
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Figure 6.4 Weight estimations with the Scania 144L 6x2 without a

trailer. The real weight is 24400 kg. The dots are the estimations and the
solid line the filtered weight. The upper figure is based on velogity se
sors from the front wheels, and the lower on a sensor at the output shaft
of the transnssion.

The filter used in all estimations works with 15 estimations at a time. The
maximum and minimum values are discarded and a mean value of the
rest is presented. As shown in the figure above the estimations vary a lot,
but the filtered values behave smoother. In the upper figure, the filtered
values have a mean value of 22800 kg with a standard deviation of 1.1,
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and the lower figure have a mean value of 24400 kg and standaad devi
tion of 1.0.
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Figure 6.5 Similar estimation as iigure 6.4 made with the same truck
but with a trailer connected. Total weight is 56400 kg. The variance of
the estimations is bigger compared to experimentswitthe trailer.

In Figure6.4the Scania 144L 6x2 is driven without a trailer an8igure
6.5with a trailer. In the last case the estimations vary more compared to
estimations without a trailer. Results in the upper part are a mean value of
51200 kg and a standard deviation of 3.8, and in the lower a mean value
of 50900 kg and a standard deviation of 5.6.

The difference caused by difference in measuring velocity is not as big as
expected according to the discussion in Sedi@nThe problem with
propeller shaft oscillations is probably not big enough to make any-diffe
ence.

Figure6.6 shows the weight estimations done with the Scania 124L 6x2.
In this case a little larger variance in the transmission based estimations is
observed.
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Figure 6.6 Similar estimations done with the Scania 124L 6x2. The real
weight is 18000 kg. The lower figure based on velocity measured at the
transmission has bigger variance.

Results with the Scania 124L 6x2 are with front wheel sensors a mean
value of 16800 kg and standard deviation of 1.0. With transmission v
locity sensors the result are a mean value of 16600 kg and stardard d
viation of 1.1.
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Figure 6.7 Weight estimations with the Scania 124L 4x2. A trailer is
connected and the total weight is 38000 kg. Estimations vary a lot, but
the filtered weight is roughly at the right value. The speed sensors at the
front wheels are used.
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The mean value of the filtered weightHigure 6.7is 41900 kg and the
standard deviation is 2.4. Figure 6.7andFigure6.6 the estimations

have a big variance compared to the other experiments, this probably
depends on the fact that there is a play between the heavy trailer and the
truck. This can cause vehicle shuffle when shifting gears which affects
the meaurement of the velocity.
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7

Conclusions

If the weight of a vehicle is used in engine control systems, increased
performance of control algorithms can be achieved since the wéight a
fects the dynamic behavior of a vehicle, especially heavy trucks.

A method, based on standard automotive sensors, for estimating the
weight by identifying it as a parameter in a model of the truck isldeve
oped. The model is based on Newton’s second generalized law and it
consists of rotating moments of inertia and longitudinal forces acting on
the vehicle. The actual estimation is done during gear shifting bg- mea
uring acceleration and torque just before and when a gear is disengaged.
The model is of first order and assumes a stiff driveline, which means
that driveline oscillations are not modeled. By avoiding velocitysnea
urements when oscillations usually occur and by strong filtering of the
estimated values, the influence of ostidins is small.

The method is implemented and validated in field trials with threerdiffe
ent heavy trucks. The result obtained with trucks without a trailer is a
estimated weight that diffeesLO % from the real weight, and with trai

ers the accuracy #20 %. The lighter the trailer is compared to the truck,
the better accuracy in the estimation is achieved. The deterioration in
accuracy probably depends on play between the truck and the trailer
causing vehicle shuffle during the gear shift and thus disturbing the
measurements of velocity. A slight improvement in accuracy can be
achieved if the velocity sensors at the front wheels are used instead of the
sensor at the output shaft of the transmission because of propeller shaft
oscilations.

The accuracy is limited mainly due to uncertainties of the actual engine
output torque, since problems with knowing how much powerris co

sumed by accessories as air condition and air compressor. The accuracy is
however enough to substantially improve contrafgrenance.

7.1 Further Work

To improve the estimation of the weight, first of all monitoring of the
accessories has to be carried out, which will result in a more accurate
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engine torque measurement. Additional work can also be done with
avoiding certain gear shifts that result in bad measurements. This will
decrease the variance of the estimations and therefore improve the acc
racy of the fitered weight.
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