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ABSTRACT

Cylinder pressure modeling and heat release analysis are today impor-
tant and standard tools for engineers and researchers, when developing
and tuning new engines. Being able to accurately model and extract in-
formation from the cylinder pressure is important for the interpretation
and validity of the result.

The first part of the thesis treats single-zone cylinder pressure mod-
eling, where the specific heat ratio model constitutes a key part. This
model component is therefore investigated more thoroughly. For the
purpose of reference, the specific heat ratio is calculated for burned
and unburned gases, assuming that the unburned mixture is frozen and
that the burned mixture is at chemical equilibrium. Use of the reference
model in heat release analysis is too time consuming and therefore a set
of simpler models, both existing and newly developed, are compared to
the reference model.

A two-zone mean temperature model and the Vibe function are used
to parameterize the mass fraction burned. The mass fraction burned is
used to interpolate the specific heats for the unburned and burned mix-
ture, and to form the specific heat ratio, which renders a cylinder pres-
sure modeling error in the same order as the measurement noise, and
fifteen times smaller than the model originally suggested in Gatowski
et al. (1984). The computational time is increased with 40 % compared
to the original setting, but reduced by a factor 70 compared to precom-
puted tables from the full equilibrium program. The specific heats for
the unburned mixture are captured within 0.2 % by linear functions,
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and the specific heats for the burned mixture are captured within 1 %
by higher-order polynomials for the major operating range of a spark
ignited (SI) engine.

In the second part, four methods for compression ratio estimation
based on cylinder pressure traces are developed and evaluated for both
simulated and experimental cycles. Three methods rely upon a model
of polytropic compression for the cylinder pressure. It is shown that
they give a good estimate of the compression ratio at low compres-
sion ratios, although the estimates are biased. A method based on a
variable projection algorithm with a logarithmic norm of the cylinder
pressure yields the smallest confidence intervals and shortest compu-
tational time for these three methods. This method is recommended
when computational time is an important issue. The polytropic pres-
sure model lacks information about heat transfer and therefore the es-
timation bias increases with the compression ratio. The fourth method
includes heat transfer, crevice effects, and a commonly used heat re-
lease model for firing cycles. This method estimates the compression
ratio more accurately in terms of bias and variance. The method is
more computationally demanding and thus recommended when esti-
mation accuracy is the most important property. In order to estimate
the compression ratio as accurately as possible, motored cycles with as
high initial pressure as possible should be used.

The objective in part 3 is to develop an estimation tool for heat
release analysis that is accurate, systematic and efficient. Two meth-
ods that incorporate prior knowledge of the parameter nominal value
and uncertainty in a systematic manner are presented and evaluated.
Method 1 is based on using a singular value decomposition of the es-
timated hessian, to reduce the number of estimated parameters one-
by-one. Then the suggested number of parameters to use is found as
the one minimizing the Akaike final prediction error. Method 2 uses a
regularization technique to include the prior knowledge in the criterion
function.

Method 2 gives more accurate estimates than method 1. For method
2, prior knowledge with individually set parameter uncertainties yields
more accurate and robust estimates. Once a choice of parameter uncer-
tainty has been done, no user interaction is needed. Method 2 is then
formulated for three different versions, which differ in how they deter-
mine how strong the regularization should be. The quickest version is
based on ad-hoc tuning and should be used when computational time
is important. Another version is more accurate and flexible to changing
operating conditions, but is more computationally demanding.



SVENSKT REFERAT

Den svenska titeln pa avhandlingen dr “En-zons-modellering och esti-
mering fér analys av frigjord virme i bensinmotorer!”.

Forbranningsmotorer har varit den primira maskinen for att gene-
rera arbete i fordon i mer &n hundra ar, och kommer att vara hégintres-
sant dven i fortsdttningen framst p.g.a. brinslets hoga energidensitet.
Emissionskrav fran frimst lagstiftare, prestandakrav sasom effekt och
bréansleférbrukning fran potentiella kunder, samt den konkurrens som
ges av nya teknologier sasom brinsleceller fortsitter att driva teknik-
utvecklingen av forbranningsmotorer framat.

Teknikutvecklingen mdojliggérs av att ingenjorer och forskare har
mott dessa krav genom t.ex. grundforskning pa forbranningsprocessen,
nya eller forbittrade komponenter i motorsystemet och nya teknologier
sasom variabla ventiltider och variabelt kompressionsférhallande. De
tva sistndmnda dr exempel pa teknologier som direkt paverkar tryckut-
vecklingen i cylindern, dér det &r viktigt att fa noggrann kunskap om
hur férbrénningsprocessen fortloper och hur brinslets kemiska energi
frigors som virme och sedan omvandlas till mekaniskt arbete. Detta
kallas analys av frigjord virme och kopplar direkt till motorns emissio-
ner, effekt och bransleférbrukning.

En analys av frigjord virme mdojliggors av att man: 1) kan méta
cylindertrycket under férbréanningsprocessen; 2) har matematiska mo-
deller for hur cylindertrycket utvecklas som funktion av kolvrorelsen
och forbranningsprocessen; samt 3) har metodik for att berékna den

1 Egentligen tindstiftsmotorer

iii
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frigjorda virmen genom att anpassa den valda modellen till cylinder-
trycksmétningen.

Sensorerna for att méta trycket i cylindern har den senaste tiden
blivit bade noggrannare och robustare mot den extrema miljé och de
snabba tryck- och temperaturférandringar som sensorn utsétts for un-
der varje cykel. Idag anvinds cylindertryckssensorer enbart i labb- och
testmiljo, mest beroende pa att sensorn dr relativt dyr, men det pa-
gar en teknikutveckling av sensorerna som siktar pa att de i framtida
fordon &ven skall sitta i produktionsmotorer.

Matematiska modeller av cylindertrycksutvecklingen och metoder
for att berdkna den frigjorda virmen behandlas i denna avhandling.

Avhandlingens innehall och kunskapsbidrag

Avhandlingen bestar av tre delar och det sammanhallande temat dr cy-
lindertryck. Den forsta delen behandlar en-zons-modellering av cylin-
dertrycksutvecklingen, dir blandningen av luft och brinsle i cylindern
behandlas som homogen. Detta antagande mdjliggér en kort berdk-
ningstid for den matematiska modellen. Ett bidrag i avhandlingen &r
identifiering av den viktigaste modellkomponenten i en allmént veder-
tagen en-zons-modell samt en modellférbéttring for denna komponent.

I den andra delen studeras kompressionsforhallandet, vilket ar for-
hallandet mellan storsta och minsta cylindervolym under kolvens rorel-
se. Denna storhet dr direkt kopplad motorns verkningsgrad och brans-
leférbrukning. Avsnittet beskriver och utvirderar metoder for att be-
stdimma kompressionsforhallandet i en motor utgaende fran cylinder-
trycksmétningar. Dessa metoder appliceras och utvirderas pa en av
Saab Automobile utvecklad prototypmotor med variabelt kompressions-
forhallande.

Nér man berdknar parametrar i matematiska modeller dir paramet-
rarna har fysikalisk tolkning, sasom temperatur, har anvindaren ofta
forkunskap och erfarenhet om vilka virden dessa bor anta. Den tred-
je delen utvecklar ett verktyg for hur anvindaren kan viga in sadan
forkunskap nédr parametrarnas virden beridknas utgaende fran cylin-
dertrycksmétningar och den valda matematiska modellen. Sarskilt en
av metoderna ger en bra kompromiss mellan anvindarens férkunskap
och méitdata. Detta verktyg kan anvindas for analys av frigjord virme
och motorkalibrering, som ett diagnosverktyg och som ett analysverk-
tyg for framtida motordesigner.



ACKNOWLEDGMENTS

This work has been carried out at the department of Electrical Engi-
neering, division of Vehicular Systems at Linkdpings Universitet, Swe-
den. It was financially funded by the Swedish Agency for Innovation
Systems (VINNOVA) through the excellence center ISIS (Information
Systems for Industrial control and Supervision), and by the Swedish
Foundation for Strategic Research SSF through the research center
MOVII. Their support is gratefully acknowledged.

My time as a PhD student has broaden my mind and been enjoyable
and I would thank all my colleagues, former and present, at Vehicular
Systems since your are all jointly the cause of that.

I would also like to thank my supervisors Dr. Lars Eriksson and Pro-
fessor Lars Nielsen for their guidance and for letting me join the re-
search group of Vehicular Systems. Dr. Eriksson has inspired me greatly
through interesting discussions and through his true enthusiasm for en-
gine research. I have enjoyed working with you. My co-authors Prof.
Lars Nielsen, Ylva Nilsson and Dr. Jan Aslund are also acknowledged
for fruitful collaborations. They have, as well as Dr. Ingemar Anders-
son, Dr. Per Andersson, Dr. Gunnar Cedersund, Dr. Erik Frisk, Martin
Gunnarsson, Per Oberg and many others, contributed to my research
by insightful discussions and creative efforts. Martin Gunnarsson is also
acknowledged for keeping the engine lab running, as well as Carolina
Froberg for making administrative stuff work smoothly. Dr. Erik Frisk



vi

deserves an extra mention since he has constantly been within range of
my questions and he has always helped out without hesitation.

Dr. Lars Eriksson has proof-read the entire thesis, while Dr. Erik Frisk,
Dr. Jan Aslund and Per Oberg have proof-read parts of it. T am very
grateful for the time and effort you have put into my work. Dr. Inge-
mar Andersson has inspired me to finish the thesis, and Professor Lars
Nielsen has helped me to stay focused during the final writing of the
thesis.

To all the people who have hosted me during the middle part of my PhD
studies, among those Andrej Perkovic and Maria Asplund, Dan and
Tottis Lawesson, Fredrik Gustavsson and Louise Gustavsson-Ristenvik,
Pontus Svensson, Mathias and Sara Tyskeng, and especially Jan Bru-
gard, I wish to direct my sincere gratitude for rooming me but also for
making sure I had an enjoyable stay. The year I shared house with
Ingemar and Janne is a memory for life.

The support from my family, my in-law family and all my friends has
been invaluable.

This work would never have been accomplished without the indefati-
gable love, support and encouragement of Sofia. Finally I would like to
thank Nora, Samuel, Ebba and Sofia, whom I love more than life itself,
for all the joy and adventures you bring along.

Link6ping, July 2007
Markus Klein



CONTENTS

1 Introduction 1
1.1 Outline . ... ... . 3
1.2 Contributions . . . . . ... .. ... L. 6
1.3 Publications . . . . . . ... ..o Lo 6

I Modeling 9

2 An overview of single-zone heat-release models 11
2.1 Model basis and assumptions . . . ... ... ... ... 12
2.2 Rassweiler-Withrow model . . . . . . .. ... ... ... 15
2.3 Apparent heat release model . . . . .. ... ... ... 18
2.4 Matekunas pressure ratio . . . . . .. ... ... 20
2.5 Gatowski et al. model . . .. ... ... ... 20
2.6 Comparison of heat release traces . . . . . . .. .. ... 24
2.7 Summary .. o.o. ..o 26

3 Heat-release model components 27
3.1 Pressure sensor model . . . . ... ... ... 27

3.1.1 Parameter initialization — pressure offset Ap . . . 28
3.1.2 Parameter initialization — pressure gain K,, . .. 28
3.1.3 Crank angle phasing . . . . .. ... .. ... .. 29
3.1.4 Parameter initialization — crank angle offset A9 . 30
3.2 Cylinder volume and areamodels . . . . .. .. ... .. 31

vii



viii

3.2.1 Parameter initialization — clearance volume V., . 32
3.3 Temperature models . . . .. ... .. ... ....... 32
3.3.1 Single-zone temperature model . . . .. ... .. 33
3.3.2 Parameter initialization — cylinder pressure at
IvVC PIVC « « + v v v v v o vt e v v e e e e 33
3.3.3 Parameter initialization — mean charge tempera-
ture at IVC TIVC ................. 33
3.4 Crevicemodel . . . . .. . ... 0o, 35
3.4.1 Parameter initialization — crevice volume V.. . . 36
3.4.2 Parameter initialization — cylinder mean wall tem-
perature T, . . . . . . ..o Lo 36
3.5 Combustion model . . . . .. .. ... 37
3.5.1 Vibe function . . . . . .. ..o 37
3.5.2 Parameter initialization — energy released Q;, . . 38
3.5.3 Parameter initialization — angle-related parame-
ters {Gig, Aed, Aeb} ................ 39
3.6 Engine heat transfer . . . . . . ... ... 39
3.6.1 Parameter initialization — {Cy,C2} . . . . . . .. 42
3.7 Thermodynamic properties . . . . .. .. .. ... ... 42
3.7.1 Parameter initialization — y3gp and b . . . . . . . 42
3.8 Summary of single-zone heat-release
models . . . . ... 43
3.9 Sensitivity in pressure to parameter initialization . . . . 45
A specific heat ratio model for single-zone heat release
models 49
41 OQutline .. ... .. ... . ... .. . . 50
4.2 Chemical equilibrium . . . . . .. .. ... .00 50
4.3 Existing modelsof v . . ... ... o 0oL 52
4.3.1 Linear modelin T . ... .. ... ........ 52
4.3.2 Segmented linear model in 7" . . . . . . . .. .. 52
4.3.3 Polynomial modelin pand 7" . . . .. ... ... 53
4.4 Unburned mixture . . . ... .. .. ... ... ..... 54
4.4.1 Modeling A-dependence with fixed slope, b. . . . 57
4.5 Burned mixture . . . . . ... ..o 58
4.6 Partially burned mixture . . . . . .. ... ... 63
4.6.1 Reference model . . . ... ... ... .. .... 63
4.6.2 Grouping of y-models . . . . ... ... 64
4.6.3 Evaluation criteria . . . . .. ... .. ... ... 67
4.6.4 Evaluation covering one operating point . . . . . 68
4.6.5 Evaluation covering all operating points . . . . . 72
4.6.6 Influence of v-models on heat release parameters 76
4.6.7 Influence of air-fuel ratio A . . . . .. ... ... 7
4.6.8 Influence of residual gas . . . . .. ... ... .. 79

4.6.9 Summary for partially burned mixture . . . . . . 82



4.7

ix

Summary and conclusions . . . . . ... ... L. 83

IT Compression Ratio Estimation 85

5 Compression ratio estimation — with focus on motored

cycles 87
51 Outline . ... ... L 88
5.2 Cylinder pressure modeling . . . . ... .. ... .. .. 89
5.2.1 Polytropicmodel . . . . .. ... ... .. 89
5.2.2 Standard model . . . . . .. ... 90
5.2.3 Cylinder pressure referencing . . . . .. ... .. 90
5.3 Estimation methods . . . ... .. .. ... .. ..... 91
5.3.1 Method 1 — Sublinear approach . . . . . .. ... 91
5.3.2 Method 2 — Variable projection . . . . . .. ... 92
5.3.3 Method 3 — Levenberg-Marquardt and polytropic
model . . . .. ... 93
5.3.4 Method 4 — Levenberg-Marquardt and standard
model . . ... ... L 94
5.3.5 Summary of methods . . . ... ... ..., .. 94
5.4 Simulation results . . ... ... oo 0L 95
5.4.1 Simulated engine data . . . ... ... ... ... 95

5.5

5.6

5.4.2 Results and evaluation for motored cycles at OP2 96
5.4.3 Results and evaluation for motored cycles at all

OP . .. 98
5.4.4 Sensitivity analysisat OP2 . . . .. .. ... .. 101
5.4.5 Results and evaluation for fired cycles at OP2 . . 103
Experimental results . . . . ... ... ... 0L, 103
5.5.1 Experimental engine data . . . . ... ... ... 103
5.5.2  Results and evaluation for OP2 . . . . . ... .. 105
5.5.3 Results and evaluation for all OP . . . . . . . .. 108
Conclusions . . . . . . .. ... ... 112

IITI Prior Knowledge based Heat Release Analy-

S1S

ysis
6.1
6.2

6.3

115
6 Using prior knowledge for single-zone heat release anal-

117
Outline . . . . . . ... 119
Cylinder pressure modeling . . . . ... .. ... .. .. 120
6.2.1 Standard model . . . . . .. ... ... ... 120
6.2.2 Cylinder pressure parameters . . . . . . . . . .. 120
Problem illustration . . . . ... ... .. ... ..... 120
Estimation methods . . . . ... ... ... ... .... 123

6.4



6.4.1 Method 1 — SVD-based parameter reduction . . 124
6.4.2 Method 2 — Regularization using prior knowledge 130
6.4.3 How to determine the prior knowledge? . . . . . 139
6.4.4 Summarizing comparison of methods 1 and 2 . . 141
7 Results and evaluation for motored cycles 143
7.1 Simulation results — motored cycles . . . . . . . ... .. 143
7.1.1 Simulated engine data . . . . ... ... ... .. 143
7.1.2 Parameter prior knowledge . . .. .. ... ... 144
7.1.3 Method 1- Results and evaluation . . .. .. .. 146
7.1.4 Method 2— Results and evaluation . . .. .. .. 157
7.1.5 Summary for simulation results . . . . . .. ... 169
7.2 Experimental results — motored cycles . . ... .. ... 174
7.2.1 Experimental engine data . . . . ... ... ... 174
7.2.2 Parameter prior knowledge . . .. ... ... .. 175
7.2.3 Method 1- Results and evaluation . .. .. ... 175
7.2.4 Method 2- Results and evaluation . .. .. ... 176
7.3 Summary of results for motored cycles . . . . .. .. .. 184
8 Results and evaluation for fired cycles 187
8.1 Simulation results — fired cycles . . . . . ... ... ... 187
8.1.1 Simulated enginedata . . . . ... ... ... .. 187
8.1.2 Parameter prior knowledge . . . . .. ... ... 188
8.1.3 Method 1- Results and evaluation . . ... ... 189
8.1.4 Method 2— Results and evaluation . ... .. .. 193
8.1.5 Summary for simulation results . . . . . . .. .. 208
8.2 Experimental results — fired cycles . . . ... ... ... 209
8.2.1 Experimental enginedata . . . .. ... ... .. 209
8.2.2 Parameter prior knowledge . . . ... ... ... 209
8.2.3 Method 1- Results and evaluation .. ... ... 211
8.2.4 Method 2- Results and evaluation .. ... ... 213
8.3 Summary of results for fired cycles . . . ... ... ... 220
84 Future Work . . ... .. .. ... ... 221
9 Summary and conclusions 223
9.1 A specific heat ratio model for single-zone heat release
models . . . . ... 223
9.2 Compression ratio estimation . . . .. .. ... .. ... 224
9.3 Prior knowledge based heat release analysis . . . . . .. 226

Bibliography 229



xi

A A specific heat ratio model — further details 237
A.1 Temperature models . . . . . ... ... ... ...... 237
A.1.1 Single-zone temperature model . . . .. ... .. 237
A.1.2 Two-zone mean temperature model . . . . . . .. 238
A.2 SAAB 2.3L NA - Geometricdata . . . . . ... ... .. 239
A.3 Parameters in single-zone model . . . . . ... ... .. 240
A4 Crevice energy term . . . . . ... ... 242
A5 Simple residual gas model . . . . . ... ... ... L. 245
A.6 Fuel composition sensitivity of v . . . . . ... ... .. 246
A.6.1 Burned mixture — Hydrocarbons . . . . ... .. 246
A.6.2 Burned mixture — Alcohols . . . . ... ... .. 247
A.6.3 Unburned mixtures . . . . . .. ... ... .... 250
A.6.4 Partially burned mixture — influence on cylinder
Pressure . . . ... o. oo oo e e e e 250
A.7 Thermodynamic properties for burned mixture . . . . . 253

A.8 Thermodynamic properties for partially burned mixture 254

B Compression ratio estimation — further details 263
B.1 Taylor expansions for sublinear approach . . . . . . . .. 263
B.2 Variable Projection Algorithm. . . ... ... ... ... 264
B.3 SVC - Geometricdata . . . . ... ... ... ...... 265
B.4 Parameters in single-zone model . . . . ... ... ... 265

C Prior knowledge approach — further details 267
C.1 Levenberg-Marquardt method . . . . .. ... ... ... 267

C.1.1 Minimizing prediction errors using a local optimizer268
C.2 Linear example . . . . . . . ... ... ... ... 272

C.2.1 Linear example for methods 1 and 2 . . . . . .. 274
C.3 Motivation for M2:3+ . . . .. .. ... ... 275
C.4 L850 — Geometricdata . . . . . .. ... ... ... .. 279
C.5 Parameters in single-zone model — motored cycles . . . . 279
C.6 Parameters in single-zone model — fired cycles . . . . . . 279

C.7 Complementary results for prior knowledge approach . . 282

D Notation 289
D.1 Parameters . . .. . . ... ... ... 289
D.1.1 Heat transfer . . . . .. .. ... ... 289

D.1.2 Engine geometry . . . . . . ... ... ... 290

D.1.3 Enginecycle . ... ... ... ... ... 290

D.1.4 Thermodynamics and combustion . . ... ... 291

D.1.5 Parameter estimation . . . ... ... ... ... 292

D.2 Abbreviations . . . . . .. ..o 293

D.3 Evaluation criteria . . . . . . . . . . ... ... ... .. 294



xii



INTRODUCTION

Internal combustion engines have been the primary machine for gen-
erating work in mobile applications for more than a century, they are
also continuing to be of high interest due to the high energy density
of the fuels and their possibility to give good total fuel consumption.
Continuous improvements and refinements are made to meet the in-
creasing performance demands from customers and legislators, where
both emissions and total system economy are important.

Emission regulations from the legislators provide a hard limit on
the design—they must be met. Today the state-of-the-art technology
for achieving low emissions from combustion engines, is the gasoline en-
gine equipped with a three-way catalyst (TWC). Regulations for diesel
engines are also continuously being made stricter to reach those of the
gasoline engine with a TWC.

Development and competition between manufacturers strives to meet
the needs of customers and deliver products with better performance
both with respect to power and fuel consumption. Emerging technolo-
gies like the gas turbine and now the fuel cell pose possibilities and give
a healthy competition, which also drives the technology development
of combustion engines forward.

Engineers have met the challenges posed by stricter emission regula-
tions through for example fundamental research on combustion, adding
new components to more complex systems, as well as optimization of
total system performance. Engine systems are becoming increasingly
complex as new technologies are developed, but systematic methods are
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also required to handle and integrate these technologies. Some exam-
ples of promising techniques for spark ignited (SI) engines are variable
valve actuation and variable compression ratio. Both of these exemplify
technologies that control the development of the in-cylinder process di-
rectly and where it is of importance to get accurate knowledge about
the combustion process. The combustion process and other in-cylinder
processes are directly reflected in the measured cylinder pressure, and
used as a standard tool for tuning and optimizing engine performance.
This is of course also important for conventional engines.

In-cylinder pressure modeling and estimation

The in-cylinder pressure is important since it contains information
about the work production in the combustion chamber and thus gives
important insight into the control and tuning of the engine. Being
able to accurately model and extract information from the cylinder
pressure is important for the interpretation and validity of the result.
Researchers and engineers strive to extract as much information as pos-
sible from the combustion chamber through the in-cylinder pressure and
models of different complexity exist for interpretation of the cylinder
pressures. Here the focus is on single-zone models that treats the in-
cylinder contents as a single zone and single fluid. These models can
describe the cylinder pressure well and have a low computational com-
plexity, which is also an important parameter when analyzing engine
data.

Due to the short time scales of the process a sequence of measure-
ments on an engine gives huge amounts of data. These large sets of
data have to be analyzed efficiently, systematically, and with good ac-
curacy. in-cylinder pressure analysis, the most efficient models are the
single zone models, and the accuracy of these is the topic of the thesis.
The foundation for the analysis of the model is the first law of ther-
modynamics where the relation between work, volume, pressure and
temperature is described through the ratio of specific heats. Analyses
that have been performed show that the specific heat ratio is of high im-
portance for the model and therefore this model component is studied
in great detail. Therefore, the first part of the thesis is on single-zone
heat release modeling, where the specific heat ratio model constitutes
a key part.

In-cylinder pressure models in general have a number of parame-
ters, that have to be determined. For an accurate in-cylinder pressure
analysis it is necessary, but not sufficient as will be shown later in the
thesis, that the difference between the measured and modeled data is
small. To minimize this difference, in a given measure, requires that
the parameters are estimated, and this is the estimation problem.

Whenever the parameters in a physical model have a physical mean-
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ing, the user usually has an expectation or prior knowledge of either
what values the parameters should have, or at least the range in which
they should be in. The user might even know which parameters that
are most certain. These are examples of information that come from
our prior knowledge. In the third part of the thesis it is shown how
such information can be incorporated in the estimation problem.

Compression ratio estimation

The theme in the thesis is cylinder pressure and the second part treats
compression ratio estimation based on measured cylinder pressure data.
This particular problem is directly motivated by the variable compres-
sion engine, where the compression ratio can be changed continuously
to eliminate an important design trade-off made in conventional en-
gines. High compression ratios give good engine efficiency but at high
loads a high compression ratio can result in engine destruction through
engine knock. In such an engine the compression ratio is changed con-
tinuously to get the best performance from the engine. When the engine
is driven at low loads a high compression ratio is selected for good ef-
ficiency and at high loads a low compression ratio is used to reduce
engine knock. Compression ratio estimation is studied for several rea-
sons where the most important is for diagnostic purposes. A too high
compression ratio can lead to engine destruction while a too low com-
pression ratio gives a too high fuel consumption.

Four different methods for compression ratio estimation are pro-
posed and evaluated. The research was motivated by the variable com-
pression engine, but the methods are generally applicable and can also
be used on conventional engines to get a better value of the compression
ratio from experimental data.

1.1 Outline

An outline of the thesis in terms of short summaries of each chapter is
given below and indicates the scope of each chapter. The notation used
is summarized in appendix D, where the parameters are given in ap-
pendix D.1, and the abbreviations are summarized in appendix D.2. In
the thesis various evaluation criteria are used, and they are summarized
in appendix D.3.

Chapter 2: An overview of single-zone heat-release models

This chapter serves as an introduction to single-zone heat release mod-
eling. First the basis and assumptions made for single-zone heat release
modeling are given. Based on these, four well-known heat release mod-
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els are presented. These are compared with respect to their computed
heat release trace given a cylinder pressure trace.

Chapter 3: Heat-release model components

The model components used in the most descriptive single-zone heat
release model in chapter 2, the Gatowski et al. (1984) model, are de-
scribed. The model components of the other three heat release mod-
els form a subset of these. For each model component, a method to
initialize the model component parameters is given. The sensitivity in
cylinder pressure for each of these parameters is then investigated. The
chapter ends with a summary of the equations, parameters, inputs and
outputs of the Gatowski et al. model.

Chapter 4: A specific heat ratio model for single-zone heat
release models

An accurate specific heat ratio model is important for an accurate heat
release analysis. This since the specific heat ratio couples the systems
energy to other thermodynamic quantities. This chapter therefore in-
vestigates models of the specific heat ratio for the single-zone heat
release model developed by Gatowski et al. (1984). The objective is
to find a model accurate enough to only introduce a cylinder pressure
modeling error in the order of the cylinder pressure measurement noise,
while keeping the computational complexity at a minimum. Based on
assumptions of frozen mixture for the unburned mixture and chemical
equilibrium for the burned mixture, the specific heat ratio is calculated
using a full equilibrium program for an unburned and a burned air-fuel
mixture, and compared to already existing and newly proposed models
of v. It is assumed that a general single-zone heat release model can
be used as a reference model.

The evaluation is performed in terms of modeling error in v and in
cylinder pressure. The impact each y-model has on the heat release,
in terms of estimated heat release parameters in the Vibe function is
illustrated. The influence of fuel composition, air-fuel ratio and residual
gas content is also investigated.

Large parts of the material in this chapter and in appendix A have
previously been published in Klein and Eriksson (2004c) and Klein and
Eriksson (2004a). Appendix A contains further details and argumenta-
tion that support the development of the specific heat ratio models, and
gives a background and a thorough explanation of some of the details
in the models.
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Chapter 5: Compression ratio estimation — with focus on mo-
tored cycles

The purpose of this chapter is to estimate the compression ratio given
a cylinder pressure trace, in order to diagnose the compression ratio
if it e.g. gets stuck at a too high or too low ratio. Four methods
for compression ratio estimation based on cylinder pressure traces are
developed and evaluated for both simulated and experimental cycles.
A sensitivity analysis of how the methods perform when subjected to
parameter deviations in crank angle phasing, cylinder pressure bias and
heat transfer is also made.

In appendix B further details and argumentation on compression
ratio estimation for motored cycles are given, and it serves as a com-
plement to this chapter. Chapter 5 together with appendix B is an
edited version of Klein et al. (2006), which itself is based on Klein et al.
(2004) and Klein and Eriksson (2005b).

Chapter 6—8: Using prior knowledge for single-zone heat re-
lease analysis

Two methods that take parameter prior knowledge into account, when
performing parameter estimation on the Gatowski et al. model, are
presented. The application in mind is a tool for cylinder pressure es-
timation that is accurate, systematic and efficient. The methods are
described in detail, and it is shown how to incorporate the prior knowl-
edge in a systematic manner. Guidelines of how to determine the prior
knowledge for a specific application are then given. The performance
of the two methods is evaluated for both simulated and experimen-
tally measured cylinder pressure traces. These evaluations are made
in chapter 7: Results and evaluation for motored cycles and in chap-
ter 8: Results and evaluation for fired cycles. Appendix C contains
further details and argumentation that support the development and
evaluation of the two parameter estimation methods.

Experimental and simulated engine data

During the project different engines have been available in the Vehicular
Systems engine laboratory. Therefore the simulated and experimental
data used in the chapters are from different engines.

Chapters 2-4 use a naturally aspirated 2.3L engine from SAAB,
and its geometry is given in appendix A.2. In chapter 5 the SAAB
Variable Compression (SVC) engine is used, with the geometry given
in appendix B.3. The results for chapters 6-8 are based on data from
a turbocharged 2.0L SAAB engine, see appendix C.4.
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1.2 Contributions

The following list summarizes the main contributions of this thesis:

e The interrelation between models in the single-zone heat release
model family is shown. A method for finding nominal values for
all parameters therein is suggested.

e It is shown that the specific heat ratio model is the most impor-
tant component in cylinder pressure modeling.

e The importance of using the cylinder pressure error as a measure
of how well a specific heat ratio model performs is pinpointed.

e A new specific heat ratio model to be used primarily in single-
zone heat release models. This model can easily be incorporated
with the Gatowski et al.-model, and reduces the modeling error
to be of the same order as the cylinder pressure measurement
noise.

e Four methods for estimating the compression ratio index, given
a cylinder pressure trace are proposed. One method is recom-
mended for its accuracy, while another is preferable when com-
putational efficiency is important.

e Two methods of using prior knowledge applied to the in-cylinder
pressure estimation problem are presented and evaluated. For the
second method, it is shown that prior knowledge with individu-
ally set parameter uncertainties yields more accurate and robust
estimates.

1.3 Publications

In the research work leading to this thesis, the author has published a
licentiate thesis and the following papers:
Journal papers:

e M. Klein, L. Eriksson, and Y. Nilsson (2003). Compression es-
timation from simulated and measured cylinder pressure. SAFE
2002 Transactions Journal of Engines, 2002-01-0843, 111(3), 2003.

e M. Klein and L. Eriksson (2005a). A specific heat ratio model for
single-zone heat release models. SAE 2004 Transactions Journal
of Engines, 2004-01-1464, 2005.

e M. Klein, L. Eriksson and J. Aslund (2006). Compression ratio
estimation based on cylinder pressure data. Control Engineering
Practice, 14(3):197-211.
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Conference papers:

e M. Klein, L. Eriksson and Y. Nilsson (2002). Compression es-
timation from simulated and measured cylinder pressure. FElec-
tronic engine controls, SP-1703, SAE Technical Paper 2002-01-
0843. SAE World Congress, Detroit, USA, 2002.

e M. Klein and L. Eriksson (2002). Models, methods and per-
formance when estimating the compression ratio based on the
cylinder pressure. Fourth conference on Computer Science and
Systems Engineering in Link6ping (CCSSE), 2002.

e M. Klein and L. Eriksson (2004c). A specific heat ratio model
for single-zone heat release models. Modeling of SI engines, SP-
1830, SAE Technical Paper 2004-01-1464. SAE World Congress,
Detroit, USA, 2004.

e M. Klein, L. Eriksson and J. Aslund (2004). Compression ratio
estimation based on cylinder pressure data. In proceedings of
IFAC symposium on Advances in Automotive Control, Salerno,
Ttaly, 2004.

e M. Klein (2004). A specific heat ratio model and compression
ratio estimation. Licentiate thesis, Vehicular Systems, Linkoping
University, 2004. LiU-TEK-LIC-2004:33, Thesis No. 1104.

e M. Klein and L. Eriksson (2004b). A comparison of specific heat
ratio models for cylinder pressure modeling. Fifth conference on
Computer Science and Systems Engineering in Link6ping (CC-
SSE), 2004.

e M. Klein and L. Eriksson (2005b). Utilizing cylinder pressure
data for compression ratio estimation. IFAC World Congress,
Prague, Czech Republic, 2005.

The following conference papers have also been produced by the author
during the project, but they are not explicitly included in the thesis:

e M. Klein and L. Nielsen (2000). Evaluating some Gain Schedul-
ing Strategies in Diagnosis of a Tank System. In proceedings of
IFAC symposium on Fault Detection, Supervision and Safety for
Technical Processes, Budapest, Hungary, 2000.

e M. Klein and L. Eriksson (2006). Methods for cylinder pres-
sure based compression ratio estimation. FElectronic Engine Con-
trol, SP-2003, SAE Technical paper 2006-01-0185. SAE World
Congress, Detroit, USA, 2006.
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Part 1

Modeling






AN OVERVIEW OF SINGLE-ZONE
HEAT-RELEASE MODELS

When analyzing the internal combustion engine the in-cylinder pressure
has always been an important experimental diagnostic, due to its direct
relation to the combustion and work producing processes (Chun and
Heywood, 1987; Cheung and Heywood, 1993). The in-cylinder pressure
reflects the combustion process, the piston work produced on the gas,
heat transfer to the chamber walls, as well as mass flows in and out of
crevice regions between the piston, rings and cylinder liner.

Thus, when an accurate knowledge of how the combustion process
propagates through the combustion chamber is desired, each of these
processes must be related to the cylinder pressure, so the combustion
process can be distinguished. The reduction of the effects of volume
change, heat transfer, and mass loss on the cylinder pressure is called
heat-release analysis and is done within the framework of the first law
of thermodynamics. In particular during the closed part of the en-
gine cycle when the intake and exhaust valves are closed. The most
common approach is to regard the cylinder contents as a single zone,
whose thermodynamic state and properties are modeled as being uni-
form throughout the cylinder and represented by average values. No
spatial variations are considered, and the model is therefore referred to
as zero-dimensional. Models for heat transfer and crevice effects can
easily be included in this framework. Another approach is to do a more
detailed thermodynamic analysis by using a multi-zone model, where
the cylinder is divided into a number of zones, differing in composition
and properties. Each zone being uniform in composition and temper-

11
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ature, and the pressure is the same for all zones, see for e.g. (Nilsson
and Eriksson, 2001).

The goal of this chapter is to show the structure of different single-
zone heat-release model families and how they are derived. The dis-
cussion of details in the model components are postponed to chapter 3,
since they might distract the readers attention from the general struc-
ture of the model family. Chapter 3 gives a more thorough description
of the model components.

Single-zone models for analyzing the heat-release rate and simulat-
ing the cylinder pressure are closely connected; they share the same
basic balance equation and can be interpreted as each others inverse.
They are both described by a first order ordinary differential equation
that has to be solved. In heat release models a pressure trace is given
as input and the heat release is the output, while in pressure models
a heat release trace is the input and pressure is the output. For a
given heat-release model an equivalent pressure model is obtained by
reordering the terms in the ordinary differential equation. Since they
are so closely connected it is beneficial to discuss them together.

2.1 Model basis and assumptions

The basis for the majority of the heat-release models is the first law
of thermodynamics; the energy conservation equation. For an open
system it can be stated as

dU = dQ — W + > h;dm;, (2.1)

K3

where dU is the change in internal energy of the mass in the system, dQ
is the heat transported to the system, dW is the work produced by the
system and ) . h; dm; is the enthalpy flux across the system boundary.
Possible mass flows dm; are: 1) flows in and out of the valves; 2) direct
injection of fuel into the cylinder; 3) flows in and out of crevice regions;
4) piston ring blow-by. The mass flow dm; is positive for a mass flow
into the system and h; is the mass specific enthalpy of flow 7. Note
that h; is evaluated at conditions given by the zone the mass element
leaves.

As mentioned earlier, single-zone models is our focus at the moment,
so we will now look into those in more detail. Some commonly made
assumptions for the single-zone models are:

e the cylinder contents and the state is uniform throughout the
entire chamber.

e the combustion is modeled as a release of heat.
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Figure 2.1: Schematic of the combustion process in the cylinder, that
defines the sign convention used in the pressure and heat-release mod-
els.

e the heat released from the combustion occurs uniformly in the
chamber.

e the gas mixture is an ideal gas.

Consider the combustion chamber to be an open system (single zone),
with the cylinder head, cylinder wall and piston crown as boundary.
Figure 2.1 shows a schematic of the combustion chamber, where the
sign conventions used in pressure and heat-release models are defined.
The change in heat dQ consists of the released chemical energy from
the fuel dQ.p, which is a heat adding process, and the heat transfer to
the chamber walls dQp;, which is a heat removing process. The heat
transport is therefore represented by dQ) = dQ., — dQn:. Note that
the heat transfer cools the gases at most times, but in some instances
it heats the air-fuel mixture. The only work considered is the work
done by the fluid on the piston W), and it is considered positive, there-
fore AW = dW,. The first law of thermodynamics (2.1) can then be
rewritten as

dQch = dU:; + de — Z h7 dm,- + dQ}Lt. (2.2)

The piston work dW,, is assumed to be reversible and can be written
as dW,, = pdV. For an ideal gas, the change in sensible energy dUs is
a function of mean charge temperature T" only, thus:

US = mtotu(T), (23)
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which in its differentiated form becomes:
AU, = myotcy(T)dT + w(T)dmyor, (2.4)

where my,; is the charge mass, and ¢, = (g—;ﬁ) is the mass specific

heat at constant volume. The mean temperature is found from the

ideal gas law as T = s pV R and its differentiated form is
1
dT = Vd dV — RTd 2.5
mtotR( D+ D Mot ), (2.5)

assuming R to be constant. For reading convenience, the dependence
of T'in ¢,, ¢, and 7y is often left out in the following equations. Equa-
tion (2.2) can now be rewritten as

e+ R
R

dQen = %Vdp + pdV + (u— e, T)dmuoy — > hidm + dQ,

(2.6)
using equations (2.4) and (2.5). The specific heat ratio is defined as
v = z—‘j and with the assumption of an ideal gas the mass specific gas
constant R can be written as R = ¢, —c¢,, yielding that the mass specific
heat at constant volume is given by

Cy = ——. (2.7)

The mass specific heat is the amount of energy that must be added
or removed from the mixture to change its temperature by 1 K at a
given temperature and pressure. It relates internal energy with the
thermodynamic state variables p and T', and is therefore an important
part of the heat release modeling. Inserting (2.7) into (2.6) results in

RT
dQch = ’y—Vdp+ ,y—pdV—i—(u—’y— dmtot Z h dml—{—tht

(2.8)
From this equation, four different single-zone models with various levels
of complexity will be derived. To begin with the isentropic relation is
derived, then the polytropic model is formulated and this model forms
the basis for calculating the mass fraction burned with the Rassweiler-
Withrow method (Rassweiler and Withrow, 1938). Secondly, a model
for computing the apparent heat release first proposed in Krieger and
Borman (1967) will be derived. Thirdly, the pressure ratio developed
by Matekunas (1983) is shortly summarized. Finally, a model including
heat transfer and crevice effects (Gatowski et al., 1984) will be given.
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The isentropic process and isentropic relation

In many situations real processes are compared to ideal processes and as
comparison the isentropic process is normally used. From the isentropic
process an isentropic relation can be found by integrating the first law
of thermodynamics (2.8). The assumptions are:

e Nomass transfer: Crevice effects and leakages to the crankcase (of-
ten called blow-by) are non-existent, i.e. dmy,; = dm; = 0.

e Neither heat transfer nor heat release:

- Heat transfer is not explicitly accounted for, i.e. dQps = 0,
and thus dQ = dQ., — dQn: = dQch.

- Using the fact that there is no release of chemical energy
during the compression phase prior to the combustion or
during the expansion phase after the combustion, therefore
dQ@ = 0 for these regions.

e The specific heat ratio «y is constant.
The first two assumptions yield that (2.8) can be expressed as:

_Jp
%

From (2.9) and the last assumption above the isentropic relation is
found by integrating as

dp = dv. (2.9)

pV? = C = constant (2.10)

by noting that « is considered to be constant.

2.2 Rassweiler-Withrow model

The Rassweiler-Withrow method was originally presented in 1938 and
many still use the method for determining the mass fraction burned,
due to its simplicity and it being computationally efficient. The mass
fraction burned x;(6) = % is the burned mass m;(0) normalized by
the total charge mass m¢.:, and it can be seen as a normalized version of
the accumulated heat-release trace Q. (0) such that it assumes values
in the interval [0, 1]. The relation between the mass fraction burned
and the amount of heat released can be justified by noting that the
energy released from a system is proportional to the mass of fuel that
is burned. The input to the method is a pressure trace p(f;) where the
crank angle # at each sample j is known (or equivalently; the volume
is known at each sample) and the output is the mass fraction burned
trace zp, rw (6;).
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A cornerstone for the method is the fact that pressure and volume
data during compression and expansion can be approximated by the
polytropic relation

pV"™ = constant. (2.11)

This expression comes from the isentropic relation (2.10) but v is ex-
changed for a constant exponent n € [1.25,1.35]. This has been shown
to give a good fit to experimental data for both compression and ex-
pansion processes in an engine (Lancaster et al., 1975). The exponent
n is termed the polytropic index. It differs from ~ since some of the
effects of heat transfer are included implicitly in n. It is comparable
to the average value of ~, for the unburned mixture during the com-
pression phase, prior to combustion. But due to heat transfer to the
cylinder walls, index n is greater than =y, for the burned mixture during
expansion (Heywood, 1988, p.385).

When considering combustion where dQ = dQ., # 0, equation (2.8)
can be rewritten as

”V Lag - %dV:dpc—&—dpv, (2.12)
where dp. is the pressure change due to combustion, and dp, is the
pressure change due to volume change, compare dp in (2.9). In the
Rassweiler-Withrow method (Rassweiler and Withrow, 1938), the ac-
tual pressure change Ap = p;j41 —p; during the interval A0 = 6,1 —0;,
is assumed to be made up of a pressure rise due to combustion Ap.,
and a pressure rise due to volume change Ap,,

dp =

Ap = Ap. + Ap,, (2.13)

which is justified by (2.12). The pressure change due to volume change
during the interval Af is approximated by the polytropic relation (2.11),
which gives

Apy(§) = Pj+1,0 — Pj = Dj (< Vi >n - 1> . (2.14)

Vit
Applying AG = 6011 — 6, (2.13) and (2.14) yields the pressure change

due to combustion as

) V n
Apc(j) = pj+1 — p; (V'j-1> . (2.15)
J

By assuming that the pressure rise due to combustion in the interval
A# is proportional to the mass of mixture that burns, the mass fraction
burned at the end of the j’th interval thus becomes

my(j) o Ape(k)
my(total) Zﬁio Ape(k)’

o, rw () = (2.16)
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Figure 2.2: Top: Fired pressure trace (solid) and motored pressure
trace (dash-dotted). Bottom: Calculated mass fraction burned profile
using the Rassweiler-Withrow method.

where M is the total number of crank angle intervals and Ap.(k) is
found from (2.15). The result from a mass fraction burned analysis is
shown in figure 2.2, where the mass fraction burned profile is plotted
together with the corresponding pressure trace. In the upper plot two
cylinder pressure traces, one from a fired cycle (solid) and one from a
motored cycle (dash-dotted) are displayed. When the pressure rise from
the combustion becomes visible, i.e. it rises above the motored pressure,
the mass fraction burned profile starts to increase above zero. The
mass fraction burned profile increases monotonously as the combustion
propagates through the combustion chamber. Equations (2.15)-(2.16)
form the classical Rassweiler-Withrow mass fraction burned method.
If instead a heat-release trace is sought, the pressure change due
to combustion in (2.12), dp. = “+dQ, can be rewritten and approxi-
mated by
Q) = L1 Ap (), (2.17)
where the volume V' during interval j is approximated with Vj; /5 (the
volume at the center of the interval), and Ap.(j) is found from (2.15).
The heat-release trace is then found by summation. This method will
be called the Rassweiler-Withrow heat release method. The calcu-
lated heat release approximates the released chemical energy from the
fuel minus energy-consuming processes such as the heat transfer to the
cylinder walls and crevice effects. If heat transfer and crevice effects
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Figure 2.3: Calculated heat-release trace (upper) and mass fraction
burned trace (lower), using the apparent heat release (solid) and
Rassweiler-Withrow (dash-dotted) methods.

where non-existent, the heat release would correspond directly to the
amount of energy added from the chemical reactions. The heat-release
trace for the same data as in figure 2.2 is displayed in the upper plot
of figure 2.3 as the dash-dotted line.

2.3 Apparent heat release model

The work by Krieger and Borman (1967) was derived from the first
law of thermodynamics and called the computation of apparent heat
release. It is also called the computation of net heat release. The
method takes neither heat transfer nor crevice effects into account,
thus dQp¢ is lumped into dQ = dQcp — AQnt and dmyy = dm; = 0
in (2.8). Hence, the apparent heat release d@) can be expressed as:

1 1(T)
dQapr = ———Vdp+ ————pdV, (2.18)
1T) -1 1T) -1
which is the same expression as the Rassweiler-Withrow method was
based upon (2.12), but assuming that (7)) = n. The mass fraction

burned zp apr is computed by integrating (2.18) and then normalizing
with the maximum value of the accumulated heat release Q agr, i.e.

_ Qanr(0) [ 9%Eedl
manr(f) = max Qagr  max QaHr (2.19)
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Method 910 950 985 Agb
Rassweiler-Withrow -6.4 98 | 269 | 33.3
Apparent heat release | -4.5 | 11.0 | 25.2 | 29.8

Table 2.1: Crank angle positions for 10 %, 50 % and 85 % mfb as well
as the rapid burn angle A#, = 0g5 — 619, all given in degrees ATDC for
the mass fraction burned trace in figure 2.3.

The Rassweiler-Withrow method in (2.16) is a difference equation, and
this causes an quantization effect compared to the ordinary differential
equation given in (2.18). The net heat-release trace and mass fraction
burned profile from the Krieger and Borman model are similar to those
from the Rassweiler-Withrow method, the former being physically the
more accurate one. One example is given in figure 2.3, where the upper
plot shows the net heat-release traces and the lower plot shows the mass
fraction burned traces, from the cylinder pressure in figure 2.2. For this
particular case, the Rassweiler-Withrow method yields a slower burn
rate compared to the apparent heat release method for the same data.
This is reflected in the crank angle for 50 % mfb 659, which is 11.0
[deg ATDC] for the apparent heat release method and 9.8 [deg ATDC]
for the Rassweiler-Withrow method. Table 2.1 summarizes the crank-
angle positions for 10 %, 50 % and 85 % mfb as well as the rapid burn
angle duration A#,, and shows that the Rassweiler-Withrow method
yields a shorter burn duration for this particular case. The rapid burn
angle duration is defined as A8, = g5 — 01p.

The shorter burn duration is also reflected in the heat release trace,
and the difference is due to the assumptions on n and Vji,/, in the
Rassweiler-Withrow method. The mass fraction burned profile is cal-
culated assuming that the mass of burned mixture is proportional to
the amount of released chemical energy.

Pressure simulation

An ordinary differential equation for the pressure can be simulated by
solving (2.18) for the pressure differential dp:

(1) —1)dQ —~(T)pdV
= .

When performing a heat-release analysis the pressure is used as input
and the heat release is given as output, and when the pressure trace
is being simulated the heat-release trace is given as input. Therefore a
cylinder pressure simulation based on (2.20), can be seen as the inverse
of the heat release analysis (2.18). The only additional information
that is needed for the computation is the initial value of the pressure.

dp =

(2.20)
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2.4 Matekunas pressure ratio

The pressure ratio concept was developed by Matekunas (1983) and it
is a computationally efficient method to determine an approximation of
the mass fraction burned trace. The pressure ratio is defined as the ratio
of the cylinder pressure from a fired cycle p(f) and the corresponding
motored cylinder pressure pg(6):

PR(0) = 1. (2.21)

The pressure ratio (2.21) is then normalized by its maximum

PR(6)

PRy (6) = max PR(0)’

(2.22)

which produces traces that are similar to the mass fraction burned pro-
files. The difference between them has been investigated in Eriksson
(1999), and for the operating points used, the difference in position for
PRy (0) = 0.5 was in the order of 1-2 degrees. This suggests PRy (0)
can be used as the mass fraction burned trace zjapr. The cylin-
der pressure in the upper plot of figure 2.4 yields the pressure ratio
PR (2.21) given in the middle plot, and an approximation of the mass
fraction burned in the lower plot.

2.5 Gatowski et al. model

A more complex model is to incorporate models of heat transfer, crevice
effects and thermodynamic properties of the cylinder charge into the
energy conservation equation (2.8). This was done in Gatowski et al.
(1984), where a heat-release model was developed and applied to three
different engine types, among those a spark-ignited engine.

Crevice effect model

Crevices are small, narrow volumes connected to the combustion cham-
ber. During compression some of the charge flows into the crevices, and
remain there until the expansion phase, when most of the charge re-
turns to the combustion chamber and some charge stays in the crevices.
Also, a small part of the charge in the cylinder blows by the top piston
ring, before it either returns to the cylinder or ends up in the crank-
case, a phenomena termed blow-by. Since the flame can not propagate
into the crevices, the charge residing in the crevices is not combusted.
The temperature in the crevices are assumed to be close to the cylin-
der wall temperature, due to that the crevices are narrow (Heywood,
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Figure 2.4: Top: Fired pressure trace (solid) and motored pressure
trace (dash-dotted), same as in the upper plot of figure 2.2. Middle:
Matekunas pressure ratio PR(6) (2.21). Bottom: Computed mass frac-
tion burned profile using (2.22).

1988, p.387). This has the result that during the closed phase a sub-
stantial amount of charge could be trapped in the crevices. According
to Gatowski et al. (1984), the crevice volumes constitute as much as
1-2 percent of the clearance volume in size. It is also shown that due to
the temperature difference in the cylinder and in the crevices, as much
as 10 (mass) percent of the charge could then be trapped in crevices at
peak pressure.

The model in Gatowski et al. (1984) assumes that all crevices can
be modeled as a single aggregate constant volume V.., and that the
charge in the crevice assumes the wall temperature T,, and has the
same pressure as the combustion chamber. The ideal gas law thus
gives the following expression for the mass in the crevice

p VCT‘ ‘/C’I"

N dp, 2.23
RT, Mer = g P (2.23)

where it is assumed that T, and R are constant.

Here, we will only consider spark-ignition engines with a premixed
air-fuel charge during the closed part of the engine cycle. Blow-by is
also neglected, hence the only mass flow occurring is the one in and out
of the crevice region. Mass balance thus yields

dmyior = dm; = —dme,. (2.24)
With the definition of enthalpy h = RT + u and using (2.23)—(2.24),
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then equation (2.8) can then be rewritten to:

dQch - Vdp—&—,y 1pdV+( —|—h’—u)
= 1 5 Vdp+ s3pdV + (— +T 4+ ¥ ‘“) ?ujdp+tht-
(2.25)
To get a cylinder pressure model, equation (2.25) can be solved for the
pressure differential yielding the following expression:

dQu — 2y pdV — Q)

Vey —u)
Tuw (_ +T7+ uRu)
The enthalpy A’ is evaluated at cylinder conditions when the crevice

mass flow is out of the cylinder (dmg, > 0), and at crevice conditions
otherwise.

dp = (2.26)

Heat transfer model
The heat transfer model relies upon Newton’s law of cooling
Qne = he AAT = h A(T — T,,), (2.27)

and Woschni (1967) found a correlation between the convection heat
transfer coefficient h. and some geometric and thermodynamic proper-
ties!,

0.013B~ 0.2 OS(C Uy + Co(p—po)Tres Vs )
he = PresVres . (2.28)
T0.55
Woschni’s heat transfer correlation model will be further discussed in
section 3.6. Note that when simulating heat transfer in the crank angle
domain,

dQny _ AdQmn dt . 0
B d a8 MmN (2.29)

should be used, where the engine speed N [rpm] is assumed constant
in the last equality.

Model of thermodynamic properties

The ratio of specific heats v(7T') is modeled as a linear function of tem-

perature
Yiin (T') = 300 + b (T — 300). (2.30)

In Gatowski et al. (1984) it is stated that this component is impor-
tant, since it captures how the internal energy varies with temper-
ature. This is an approximation of the thermodynamic properties

IThe value of the first coefficient differs from the one in (Woschni, 1967), since
it is recalculated to fit the SI-unit system.
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but it is further stated that this approximation is consistent with the
other approximations made in the model. Using v(T) = ngg and
R(T) = cp(T) — ¢ (T'), together with the linear model of v(T) in (2.30),

gives the following expression for ¢, (T):

R R

o(T) = (T) -1 - Y300 + b(T — 300) — 1°

(2.31)

The only thing remaining in (2.25) to obtain a full description of the
model, is an expression for v’ — u. Remembering that ¢, = (g—;ﬁ)v,
u’ —u can be found by integrating c,. This describes the sensible energy
change for a mass that leaves the crevice and enters the cylinder. The
integration is performed as:

- :fT,cUdT
=7 {ln("yg()o +b (T/ — 300) — 1) — 111(’}/30() +b (T — 300) — 1)}

_ R Viin—1
b ln(’Yunfl ?

where equation (2.31) is used.

(2.32)

Gross heat-release simulation

Inserting equations (2.23) to (2.32) into (2.8), yields the following ex-
pression for the released chemical energy:

dQch -

1 B R 7/ -1 chr
—Vdp+——pdV+d T+RT' +=1 d
Vit pdV+ Qnet+(co T+HRT'+ n(7_1 VR,

(2.33)
which is reformulated as
1 Y
dQen, = ——Vdp + ——pdV +dQn;+
v—1 v—1
dQnet
2.34)
1 1. [~ =1\ Ve (
— T+T +=1 —dp.
=TTy n(v—l))dep
dQcrevice

This ordinary differential equation can easily be solved numerically for
the heat-release trace, if a cylinder pressure trace is provided, together
with an initial value for the heat release. Given the cylinder pressure in
figure 2.2, the heat-release trace given in figure 2.5 is calculated. The
solid line is the gross heat released, i.e. the chemical energy released
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| | | |
-100 -50 0 50 100
Crank angle [deg ATDC]

Figure 2.5: Heat-release trace from the Gatowski model given the cylin-
der pressure in figure 2.2.

during the engine cycle. The dash-dotted line shows the heat released
if not considering the crevice effect, and the dashed line shows the
net heat release, i.e. when neither heat transfer nor crevice effects are
considered. For this particular case, the heat transfer is about 70 J and
the crevice effect is about 30 J, i.e. approximately 14 and 6 percent of
the total released energy respectively.

Cylinder pressure simulation

Reordering (2.34), gives an expression for the pressure differential as

dp = (2.35)

dQch - ﬁ pdV - tht
Ver (T 1 r—1 i
7 (ﬁ + 3111(—171 ) + T’)

This ordinary differential equation can easily be solved numerically for

the cylinder pressure, if a heat-release trace dQ.;, is provided, together
with an initial value for the cylinder pressure.

1

2.6 Comparison of heat release traces

The single-zone heat release models presented in the previous sec-
tions all yield different heat release traces for a given cylinder pressure
trace. This is shown in figure 2.6, where the heat release traces for the
Rassweiler-Withrow, apparent heat release and Gatowski models are
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Figure 2.6: Upper: Heat-release traces from the three methods,
Gatowski (solid), apparent heat release (dashed) and Rassweiler-
Withrow (dash-dotted), given the cylinder pressure in figure 2.2.
Lower: Mass fraction burned traces corresponding to the upper plot
with the addition of the Matekunas pressure ratio (dotted).

displayed in the upper plot. As expected, the accumulated heat release
is higher for the Gatowski model since it accounts for heat transfer and
crevice effects. The mass fraction burned traces do not differ as much,
as displayed in the lower plot of figure 2.6. For this operating point,
the apparent heat release model produces a mass fraction burned trace
more like the one found by the Gatowski model, as shown by comparing
the burn angles given in table 2.2. Note that the heat release traces
from the Rassweiler-Withrow, apparent heat release and Matekunas
models are set constant when they have reached their maximum values
in figure 2.6. If not, their behavior would be similar to the net heat
release trace Qe given in figure 2.5.

Method 910 950 985 Aeb
Rassweiler-Withrow -6.4 98 | 269 | 33.3
Apparent heat release | -4.5 | 11.0 | 25.2 | 29.8
Matekunas -6.9 9.2 | 24.0 | 30.9
Gatowski et.al. -5.1 | 10.4 | 24.4 | 29.5

Table 2.2: Crank angle positions for 10 %, 50 % and 85 % mfb as well
as the rapid burn angle A#, = 0g5 — 610, all given in degrees ATDC for
the mass fraction burned traces in the lower plot of figure 2.6.
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2.7 Summary

A number of single-zone heat release models have been derived start-
ing from the first law of thermodynamics. The four models described
are then compared and their specific model assumptions are pointed
out. The most elaborate one is the Gatowski et al. model, which in-
cludes heat transfer described by Woschni’s heat transfer correlation
and crevice effects. This model also assumes that the specific heat
ratio for the cylinder charge can be described by a linear function in
temperature. The other three models, the Rassweiler-Withrow model,
the Matekunas pressure ratio and the apparent heat release model,
are all more computationally efficient than the Gatowski et al. model,
merely since they lack the modeling of heat transfer and crevice effect,
as well as having a constant specific heat ratio for the first two cases.
This computational efficiency of course comes to a cost of less descrip-
tive models. The model components in the Gatowski et al. model will
now be more thoroughly described in chapter 3.



HEAT-RELEASE MODEL
COMPONENTS

Single-zone zero-dimensional heat-release models were introduced in
the previous chapter, where their structure and interrelations were
discussed. Now the attention is turned to the details of the various
components given in chapter 2, and especially those for the Gatowski
et al.-model are treated more fully here. Some of the model compo-
nents have already been introduced in section 2.5, but all components
will be more thoroughly explained and compared to other model com-
ponents in sections 3.1-3.7. It is also described how to find initial values
for all parameters. These values are used as initial values when using
the single-zone models for parameter estimation. In chapters 5-8 they
will also be used as nominal values for fixed parameters, i.e. parameters
that are not estimated. The equations that form the complete Gatowski
et al. single-zone heat release model are emphasized by boxes, and the
model is summarized in section 3.8. In section 3.9 the cylinder pressure
sensitivity to the initial values of the parameters is briefly investigated.

3.1 Pressure sensor model

The in-cylinder pressure is measured using a water-cooled quartz pres-
sure transducer, a piezoelectric sensor that becomes electrically charged
when there is a change in the forces acting upon it. Piezoelectric trans-
ducers react to pressure changes by producing a charge proportional
to the pressure change. This charge is then integrated by the charge
amplifier, that returns a voltage as output proportional to the pressure.

27
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The charge amplifier has a slow drift due to charge leakage. It is how-
ever assumed that this drift is slow, and a static model of the pressure
sensor can then be used:

|pm(6) = K, p(6) + Ap

: (3.1)

where p,, is the measured cylinder pressure and p is the true cylinder
pressure. The gain K, is considered to be constant for the measure-
ment setup, but the offset Ap changes during the cycle due to leakage
in the charge amplifier and thermal shock of the sensor. Due to the
assumption of a slow drift in the charge amplifier, the pressure offset
Ap is considered to be constant for one cycle.

3.1.1 Parameter initialization — pressure offset Ap

The determination of the pressure offset is referred to as pegging the
pressure signal, or as cylinder pressure referencing. The pressure offset
can be estimated with various methods (Randolph, 1990; Brunt and
Pond, 1997). It is generally recommended that pegging is performed
once for every pressure cycle. One method is to find Ap in the least
squares sense using a polytropic model for the cylinder pressure p.

Another method is to reference the measured cylinder pressure p,, ()
to the intake manifold pressure p,,q, before inlet valve closing (IVC),
for several samples of p,,q,. This method is often referred to as intake
manifold pressure referencing (IMPR) (Brunt and Pond, 1997). Due
to standing waves (tuning) in the intake runners at certain operating
points, see figure 3.1, the referencing might prove to be insufficient. The
referencing should be done at crank angles where the change in cylin-
der pressure is approximately flat for all operating points, i.e. where
the intake manifold pressure p,,., and the cylinder pressure p are the
same or have a constant difference (Brunt and Pond, 1997). Figure 3.2
shows the cylinder pressure change for 0 € [-200, —160] [deg ATDC]
for a number of operating points. Using the same approach as in Brunt
and Pond (1997), the referencing should be done between -167 to -162
CAD.

If IMPR proves to be insufficient, Ap must be estimated from
the measured cylinder pressure data during the compression phase to
achieve a correct referencing. If so, referencing to py,q, will however
still serve as an initial value.

3.1.2 Parameter initialization — pressure gain K,

The gain K, can be determined in at least three different ways, summa-
rized in Johansson (1995): The first is to determine the gain for each
component in the measurement chain and multiply them to get K;
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Cylinder pressure [Pa]
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Figure 3.1: Speed dependent effects in the intake runners like ram and
tuning effects, are clearly visible between -200 [deg ATDC] and IVC.

The second is to calibrate the total chain by applying a well defined
pressure step and measure the result; The third way being to determine
the total gain in conjunction with a thermodynamic model. Here the
first method is used, and the gain K, is determined by using tabulated
values from the manufacturer.

3.1.3 Crank angle phasing

The pressure trace is sampled at certain events, such as every crank
angle degree. Since the mounting can not be performed with infinite
precision, an uncertainty in the exact crank angle position for the sam-
pling pulses is inherent. Therefore when calculating the heat-release
trace (2.34), or when simulating the cylinder pressure (2.35) to com-
pare it with a measurement, the phasing of the pressure trace relative
to the volume trace will most definitively affect the outcome. Accord-
ing to Amann (1985); Morishita and Kushiyama (1997); Stas (2000),
this phasing need to be accurate within 0.1 CAD, in order to accurately
calculate the work (imep) from a specific cylinder. According to Brunt
and Emtage (1997) the phasing need to be within 0.2 CAD to find an
imep accurate within 1 %, since typically a 1 CAD phase shift induce
a 4 % imep error with gasoline engines and the relationship between
imep error and crank angle error is linear (Brunt and Emtage, 1996).
In Andersson (2005), models for crank angle offset Af in a multi-
cylinder engine are developed. The crank angle offset depends on the
cylinder number and the phase of the cycle, i.e. Af differs during com-
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Figure 3.2: Pressure offset as function of CAD when referencing to
intake manifold pressure. The pressure change is approximately flat
for all operating points between -167 and -162 CAD.

pression, combustion and expansion. This is due to crank-shaft torsion
and flexibility. Here we will study the cylinder closest to the crank an-
gle encoder, so the torsion will be small. These effects are therefore not
modeled here. Instead the crank shaft is considered to be rigid, and it
is assumed that the sampled value at crank angle 6; can be modeled as
having a constant offset Af from the true crank angle 6; trye, the crank
angle phasing is modeled as

0; + A0 = 0; rue | (3.2)

3.1.4 Parameter initialization — crank angle offset Af

The determination of A6 is often referred to as TDC determination.
An initial value of Af is provided from a number of motored cycles,
by referencing the peak pressure position for the measured cylinder
pressure with the corresponding position for a simulated pressure trace,
given the same operating conditions. The simulated pressure trace is
computed using the Gatowski et al. model.

Other methods of finding the crank angle offset A6

The easiest way to find A# is of course to consider only motored cy-
cles, i.e. when there is no combustion. Then the cylinder pressure
would have its maximum at TDC if it were not for heat transfer and
crevice effects. Instead, the peak for the compression pressure occurs
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before TDC. This difference is referred to as “thermodynamic loss an-
gle” (Hohenberg, 1979). Attempts to avoid the problem connected with
unknown heat transfer have been taken in Sta$ (1996); Morishita and
Kushiyama (1997); Nilsson and Eriksson (2004), by using the polytropic
relation to determine the position of TDC.

3.2 Cylinder volume and area models

The cylinder volume V' (6, z,f¢) consists of a clearance volume V, (25 )
and an instantaneous displacement volume V;q(6, zo5¢), as

V(0. 2055) = Vel@ors) + Via(b:wogy) | (3-3)

The instantaneous displaced volume V;; depends on the crank angle 6,
cylinder bore B, crank radius a,, connecting rod length [, pin-off z,s
and is given by

2
Via(0, zog5) = %(,/(l +ar)? —al;; —arcos — \/l2 — (arsin® — xorf)?) |,
(34)
for zo5y € [-(l — ar), (I — a,)]. The pin-off is defined as positive in the
direction of the crank angle revolution. Note that for an engine with
pin-off, the crank positions for BDC and TDC are affected. They are
given by:

LT

Orpc = arcsin ; _if;, (3.5a)

Oppc = arcsin (M) + T, (3.5b)
l—a,

and are not symmetric, as in the case without pin-off. The impact of
pin-off on the cylinder volume is investigated in (Klein, 2004, pp. 149).
It is found, for the SVC engine with x,f¢ € [—2.2, 4.7) mm, that the
relative error in instantaneous cylinder volume can be as large as 3.4 %,
when the pin-off is not considered. By interpreting the difference in
crank angle position of TDC due to pin-off as a constant crank angle
offset A, as in (3.2), the relative error in V(6,z,5¢) is reduced to
less than 0.6 % in the worst case. Not accounting for pin-off therefore
contributes to the problem of TDC determination. Thus if the engine’s
pin-off is unknown, the discrepancy in computing the cylinder volume
V(6,0) (3.3) can almost fully be captured by the crank angle offset
model (3.2). However if the pin-off x,s¢ is known, there is no reason
for not including it in V(6,z.5¢) (3.3), since it increases the accuracy
of V(0,z,5¢) at almost no additional computational cost.
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When simulating either the heat release (2.34) or the cylinder pres-

sure (2.35), it is necessary to know the differential of the volume func-

dV(G,zoff
do

tion ) and it is given by

2
dV(@(;g‘off) _ 7rB4 ar (sin9—|—

(3.6)

(arsind — z45¢) cos b )
VI = (a,sinf — zop5)?

When computing the heat transfer rate (3.28), the instantaneous com-
bustion chamber surface area A(6,z,5s) through which the heat trans-
fer occurs is computed as

A(@,xoff) = A, +Apc+Alat(67xoff)7 (37)

where A, is the cylinder head surface area and A, is the piston crown
surface area. Here it is assumed that these areas can be approxi-
mated by flat surfaces, A,c = Acp, = ”TBZ. The lateral surface area
At (0, 205 f) is approximated by the lateral surface of a cylinder. The
instantaneous combustion chamber surface area can then be expressed

as

2
Al 2o55) = % +7rB( (I+a.)?— I(Q)ff — a, cosf — \/12 — (a,sinf — l‘off)2) .
(3.8)
The compression ratio r. is defined as the ratio between the maxi-
mum (Vg + V) and minimum (V) cylinder volume:
 Va+Ve Vi

) 14 v 3.9
r V. T (3.9)

3.2.1 Parameter initialization — clearance volume V.

The clearance volume V. strongly influences the maximum cycle tem-
perature and pressure through the compression ratio, and for heat re-
lease and pressure simulations it is therefore of great importance. Due
to geometric uncertainties in manufacturing, a spread of the actual
clearance volume from engine to engine and cylinder to cylinder is in-
herent (Amann, 1985). The compression ratio given from the manufac-
turer serves well as an initialization. It can also be initialized by using
a polytropic relation, an initialization that works better the lower the
real compression ratio is (Klein et al., 2003). This since the polytropic
relation does not take heat transfer and crevice effects into account
explicitly.

3.3 Temperature models

Two models for the in-cylinder temperature will be described, the first
is the mean charge single-zone temperature model and it is the one
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used in the Gatowski et al.-model. The second is a two-zone mean
temperature model, used to compute the single-zone thermodynamic
properties as mean values of the properties in a two-zone model, an
approach that will be introduced in the next chapter in section 4.6.

3.3.1 Single-zone temperature model

The mean charge temperature T' for the single-zone model is found
from the state equation pV = my,RT, assuming the total mass of
charge my,; and the mass specific gas constant R to be constant. These
assumptions are reasonable since the molecular weights of the reactants
and the products are essentially the same (Gatowski et al., 1984). If all
thermodynamic states (pref,Tref,Vres) are known/evaluated at a given
reference condition ref, such as IVC, the mean charge temperature T’
is computed as

T(0) = Tive

= OV (6) | (3.10)

The cylinder volume at IVC is computed using the cylinder volume
given in (3.3) for 6y ¢ and is therefore considered to be known. The
two other states at IVC (p;ve,Trve) are considered unknown and have
to be estimated.

3.3.2 Parameter initialization — cylinder pressure at
IVC prve

The parameter pry o is initialized by the measured cylinder pressure
Pm in conjunction with the pressure sensor offset Ap and gain K, the
crank angle position for IVC, and the crank angle offset Af by using
equations (3.1) and (3.2). It needs to be pointed out that the position
of IVC does not mean when the intake valve touches its seat, rather the
position where intake mass flow has stopped. Therefore in most cases
PIVC > Pman- The parameter prycis also used as an initial value for
the ordinary differential equation in e.g. (2.35).

3.3.3 Parameter initialization — mean charge tem-
perature at IVC T}y ¢

The mean charge temperature at IVC differs from the gas temperature
in the intake manifold T;,4,. The charge is heated due to both mixing
with residual gases that are approximately at 1400 K (Heywood, 1988,
p.178), and in-cylinder heat transfer from piston, valves and cylinder
walls. On the other hand, fuel evaporation can cool the charge by as
much as 25 K according to Stone (1999). Altogether these effects make
Trve become larger than T,4,. In Oberg and Eriksson (2006) three
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models for computing the residual gas mass fraction z, = - (Fox
et al., 1993; Ponti et al., 2004; Mladek and Onder, 2000) are compared.
The first model is based on a flow restriction model, and the other
models are based on energy balance at a reference point e.g. IVC and
require a cylinder pressure measurement. The last two methods also
compute the residual gas temperature T;. and Try . It is found that the
model in Ponti et al. (2004) but with the exclusion of external EGR, is
the best choice and it is therefore used here. It is described as follows;
Compute Ty ¢ using the ideal gas law, the mass of the air-fuel charge
My, and an estimate of x, according to:

Mef

Mtot = T . (3.11)
where my is the total charge mass, and
Maf = mqa(l+ 114 )s (3.12)
A(F)s

where \ and (%)S are the normalized and stoichiometric air-fuel ratios
respectively, and m, is calculated from the measured air mass flow.
The specific gas constant and temperature at IVC are stated by

Rive = Ror(prve,Tr) - r + Ruaf(Tay) - (1 — 2r), (3.13)
prve Vive

T =T "7~ 3.14

fve Rive myot ( )

Thermodynamic properties such as the specific gas constants R and
specific heats ¢, are evaluated using a chemical equilibrium program
developed by Eriksson (2004), more thoroughly described in section 4.2.

The new residual gas mass fraction is computed using energy bal-
ance at IVC as

couaf(Tag) - (Trve — Tuy)

Ty = ’
va,r(pmaanr) . (Tr - TIVC’) + Cvu,af(Taf) : (TIVC - Ta )
(3.15)
where the temperature for the air-fuel charge 7,y is given by
1—'yaf
Tat = Toan <M> v (3.16)
pive

assuming that the fresh charge experiences a polytropic process from
manifold conditions to in-cylinder conditions. The residual gas tem-
perature T, is given by a correlation model developed in Mladek and
Onder (2000) as

T, = —(Cr1, (Mot N)) > + Cs 1, . (3.17)
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The parameters in (3.17) have to be tuned using simulations for each
engine type, as done in Oberg and Eriksson (2006). In order to have a
converging fix-point iteration scheme, z, is updated according to

Trnew + Trold
Trused = 72 s (318)

where @, peyw is given by (3.15) and x, g is the estimate from the
previous iteration.

The algorithm for computing x,. and Ty ¢ can then be summarized
as:

Algorithm 3.1 — Residual gas mass fraction (Ponti et al., 2004)
Let z,. be the initial estimate of the residual gas mass fraction, and set
Ty old = Ty-

1.Compute the total mass m,; (3.11).

2.Compute the temperature at IVC, Ty ¢ (3.14).

3.Compute the residual gas mass fraction, z;, e, using (3.15).
4.Update the estimate x, yseq according to (3.18).

x'r',used_x'r',old| <1x 1074’ if
Tr,used

not return to step 1 and set 2, o1 = Zr used-

5.Check if , ,s5cq has converged, i.e. if

6.Return =, = 2, yseq and Tryc.

3.4 Crevice model

In an engine, gases flow in and out of the crevices connected to the
combustion chamber as the cylinder pressure rises and falls. Crevices
include those volumes between piston, rings and liner, any head gas-
ket gap, spark plug threads and space around the pressure transducer.
During compression some of the charge flows into the crevices, and
remains there until the expansion phase, when most of the charge re-
turns to the combustion chamber. The flame can not propagate into
the crevices, and therefore some of the charge is not combusted. A
small part of the cylinder charge blows by the piston rings and ends up
in crank-case. Here this part is assumed to be zero and therefore not
modeled.
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When modeling the crevice effect, the temperature in the crevices
are assumed to be close to the cylinder wall temperature, so during the
closed phase a substantial amount of charge could be trapped in the
crevices. Consider the ratio of total charge mass to the mass in the
crevices:

Mor _ Ver T (3.19)

Miot V Ter
According to Gatowski et al. (1984), the crevice volume V., can con-
stitute as much as 1-2 percent of the clearance volume V. in size. The
temperature difference in the cylinder 7" and in the crevices 7., ap-
proaches a factor 4-5 at the end of combustion. As a consequence as
much as 10 (mass) percent of the charge could then be trapped in
crevices at peak pressure.

The model developed and applied in Gatowski et al. (1984) assumes
that all crevices can be modeled as a single aggregate constant volume
V., and that the charge in the crevice assumes the average wall tem-
perature T,, and is at the same pressure as in the combustion chamber.
The ideal gas law thus gives

Ve
PVer = Mep RTyy = dme, = ———dp, (3.20)
RT,
where it is assumed that T, and R are constant. Gatowski et al. (1984)
points out that this model is not meant to account for each crevice, but
rather to account for the overall crevice effect.

3.4.1 DParameter initialization — crevice volume V.,

The single aggregate crevice volume V., is unknown and is therefore
set to 1.5 percent of the clearance volume V., which is a reasonable
value according to Gatowski et al. (1984). For an engine with varying
clearance volume, such as the SVC engine, this would yield a crevice
volume dependent of the compression ratio. To avoid this, V., is set to
1.5% V. at r. = 11, i.e. the clearance volume in the mid range of the
compression ratio is used.

3.4.2 Parameter initialization — cylinder mean wall
temperature 7,

The cylinder wall temperature T, is not only used in the crevice model,
but also in the heat transfer model described in section 3.6. It varies
during the engine cycle due to heat transfer in the cylinder block, but
the surface temperature fluctuations are locally relatively small (i.e. 5-
10 K) suggesting that a constant surface temperature can be used (Ana-
tone and Cipollone, 1996). Therefore an area-weighted mean value of
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the temperatures of the exposed cylinder walls, the head and the pis-
ton crown for the closed part of the engine cycle is used. Here T,
is initialized to a constant value of 440 K (Brunt and Emtage, 1997;
Eriksson, 1998), set only by it being a reasonable value. There ex-
ists other methods of estimating the cylinder wall temperature, see e.g.
Arsie et al. (1999).

3.5 Combustion model

The combustion of fuel and air is a very complex process, and would
require extensive modeling to be fully captured. The approach here is
to use a parameterization of the burn rate of the combusted charge.
The prevailing combustion model is the Vibe function (Vibe, 1970),
which in some literature is spelled Wiebe function.

3.5.1 Vibe function

The Vibe function is often used as a parameterization of the mass
fraction burned z;, and it has the following form

B_Big ) m+1

rp(0) =1 — ool =7 , (3.21)

and the burn rate is given by its differentiated form

do - Aacd Aacd 7

dap(0)  a(m+1) (9 - 919)m oo(so)" (3.22)

where 04 is the start of the combustion, a and m are adjustable param-
eters, and Af.q is the total combustion duration. The Vibe function
is over-parameterized in a, m, and Af.4, since for example the sets
[a=1, Ab.q =1, m = 1] and [a = 4, AB.q = 2, m = 1] give identical
function values. To parameterize the mass fraction burned (mfb) trace
with physical parameters, two burn rate angles are often used, namely
the flame-development angle Af; which corresponds to the crank angle
from 0 % mfb (ignition) to 10 % mfb, and the rapid burn angle A6,
(10-85 % mfb) (Heywood, 1988), illustrated in figure 3.3. The burn
angle parameters have a direct relation to the parameters in the Vibe
function, but due to the over-parameterization in a and A6.4, one of
them must be specified before-hand to get a unique solution. If Af.4
is specified, the Vibe parameters become:

_— In(In(1 —0.1) —In(1 — 0.85)) .

2
In Af; — (A6, + AGy) ’ (3.232)
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Mass fraction burned profile

[

Mass fraction burned [-]

© o o o o o o
w S 5 [=2] ~ [ee] ©
T . T T

o
N

0.1

0 10 20 30 40 50 60 70 80
Crank angle degree since ignition

Figure 3.3: Mass fraction burned profile with the flame development
angle A6, and rapid burn angle Af, marked.
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a=—(

The differentiated Vibe function (3.22) is used to produce a mass frac-
tion burned trace, i.e. a normalized heat-release trace. The absolute
value of the heat-release rate % is given by

dQcn - dxy

where Q;,, represents the total energy released from combustion.
Summing up, the combustion process is described by (3.24) and
parameterized by Qin, 0ig, Abg, and Ab,.

3.5.2 Parameter initialization — energy released @);,

The total energy released Q;;, is influenced by a lot of parameters, such
as residual gas fraction, combustion efficiency, mass of fuel, fuel heating
value, but also the mass fraction burned rate due to the dependence of
thermodynamic properties for the mixture of temperature and pressure.
It is here modeled as

Qin = myrquvny, (3.25)

where my is the fuel mass, ggv the specific lower heating value of
the fuel and 7y is the combustion efficiency. There at least two ways
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of computing Qiy; If the fuel mass my is measured, s, can be found
from (3.25) by assuming a combustion efficiency. If my is not measured,
another approach must be taken. One such approach is to rewrite my
in (3.25) as
11—
_ mafA _ ( 967~)£ntot7 (3.26)
T4+ AMF)s T4+ XF)s

where the total charge mass my,; is found using the ideal gas law at
a reference point during the high-pressure phase, e.g. IVC, yielding

My = veVive = The fuel is assumed to be iso-octane, that has
RiveTrive ,

R, = 29Ok;K (at 300 K), lower heating value qgy = 44.0]‘,3—9‘], and
stoichiometric air-fuel equivalence ratio (%)s = 14.6 (Heywood, 1988,
p.915). The specific gas constant R;y¢ is given by (3.13) and the

residual gas fraction z,. by (3.15). So @, is initialized as

mpy

(1—2.) prveVive
1+ X4)s RiveTrve

Qin =mgnNfrqav = Nf4aV (327)

where the combustion efficiency 7y is assumed to be one.

To solve the ordinary differential equation in (2.34) an initial value
for the accumulated heat released at IVC Qv ¢ must be specified. It
is set to zero.

3.5.3 Parameter initialization — angle-related pa-
rameters {0;,, A0y, Ab,}

The angle-related parameters {6;,, Ay, Afy} are initialized by the
mass fraction burned trace found from the Rassweiler-Withrow method
mentioned in section 2.2. Nominal values are in the intervals (Eriksson,
1999):

0;g Ay N
[[30,0] [deg ATDC] | [15, 40] [deg] | [10, 50] [deg]

To get an unique solution for (3.23), the total combustion duration

Afcq is set to L09T rad.

3.6 Engine heat transfer

Typically 20-35 % of the fuel energy is passed on by heat transfer to the
engine coolant, the upper limit is reached for low load conditions (Stone,
1999, p.429). Of the total heat transfer, about half comes from in-
cylinder heat transfer and the rest from heat transfer in the exhaust
port.
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In-cylinder heat transfer

The in-cylinder heat transfer occurs by both convection and radiation,
where convection constitutes the major part (Schmidt et al., 1993). In
ST engines, up to approximately 20 %, but usually much less of the in-
cylinder heat transfer is due to radiation, but this is in some instances
included in the correlation for convective heat transfer (Woschni, 1967).
For CI engines however, the heat transfer originating from radiation can
constitute a more significant part (up to 40 % (Heywood, 1988, p.696))
and has to be accounted for explicitly (Annand, 1963). Since we are
dealing with SI engines, only convective heat transfer is modeled, but
keeping in mind that the radiative heat transfer is accounted for by the
correlations.

The magnitude of the rate of energy transfer by convection Qng,
which occurs in a direction perpendicular to the fluid surface interface,
is obtained by Newton’s law of cooling

Que = he AAT = he A(T = T,) |, (3.28)

where A is the surface area of the body which is in contact with the
fluid, AT is the appropriate temperature difference, and h. is the con-
vection heat transfer coefficient. The coefficient h. varies both in time
and space, and since it is a composite of both microscopic and macro-
scopic phenomena, many factors must be taken into consideration for
a full description. A full description of h. is needed if for example
thermal stress on the cylinder head is to be investigated (Bergstedt,
2002). On the other hand, a position-averaged heat transfer coefficient
will be sufficient for predicting the heat flow to the coolant, and this
will be the approach taken here. There exists a number of models for
he, for e.g. (Annand, 1963; Woschni, 1967; Hohenberg, 1979). Later
works (Shayler et al., 1993; Hayes et al., 1993; Pivec et al., 1998; Wim-
mer et al., 2000) experimentally verified the Woschni correlation to be
the better one for the closed part of the engine cycle.

Woschni’s heat-transfer correlation

The form proposed by Woschni (1967) is:
he = C(pw)**B~02T79%, (3.29)

Woschni found that the exponent for T should be -0.53, but this is
not consistent with the prerequisites in the derivation, see (Klein, 2004,
pp- 37). Woschni states that the characteristic speed w depends on two
terms. One is due to piston motion and is modeled as the mean piston
speed u, = % [m/s]|, where a [m] is the crank radius and N [rpm] is
the engine speed. The other term is due to swirl originating from the
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combustion event, which is modeled as a function of the pressure rise
due to combustion, i.e. p—pg where pg is the motored pressure. Woschni
used the measured motored pressure, but later on Watson and Janota
(1982) proposed to use the polytropic process model (2.11) instead:

Vv n
po = pref( ;f ) (3.30)
where n is the polytropic exponent, and (pres, Vier) are evaluated at
any reference condition, such as IVC. The characteristic speed wcan
then be expressed as:

VIrve

w = C’lup + CQ(T—T()): C’lup + 027
prve Vive

(p—po), (3-31)

where the first term originates from convection caused by piston motion
and the second term from the combustion itself, where T} is the motored
mean gas temperature. This results in the following expression for the
heat transfer coefficient h.!:

prve Vive

0.013 B-02p08 (01 up + M)O'S

he = % . (332)
where
P cylinder pressure for fired cycle [Pal
Do cylinder pressure for motored cycle [Pal]
T mean gas temperature [K]
Up mean piston speed [m/s]
1% instantaneous cylinder volume [m3]
Ch constant [-]
Cy constant [m/(s K)]

(prve,Vive,Trve) — at reference condition IVC

Simulation in crank angle domain

Note that Qn; = dgt“ , thus when simulating heat transfer in the crank
angle domain,

dQny  dQue dt . 60

o TR

(3.33)

should be used where N [rpm] is the engine speed.

IThe numerical value of the first coefficient differs from the one in (Woschni,
1967), since it is calculated to fit the SI-unit system.
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3.6.1 Parameter initialization — {C}, C5}

Woschni found experimentally that during the closed part of the engine
cycle, the parameters C; = 2.28 and Cy = 3.24 - 10~2 gave a good fit,
and they therefore serve well as initial values. Woschni also pointed out
that the parameters (C7,Cs) are engine dependent, and are therefore
likely to change for different engine geometries.

3.7 Thermodynamic properties

The accuracy with which the energy balance can be calculated for a
combustion chamber depends in part on how accurately changes in
the internal energy of the cylinder charge are represented. The most
important thermodynamic property used in calculating the heat release
rates for engines is the ratio of specific heats, v = E—" (Gatowski et al.,
1984; Chun and Heywood, 1987; Guezennec and Hamama, 1999).

In the Gatowski et al.-model, the specific heats ratio v(T") is mod-
eled as a linear function of temperature,

(1 (T) = 7300 + (T = 300) | (3.34)

Gatowski et al. (1984) states that this component is important, since it
captures how the internal energy varies with temperature. This is an
approximation of the thermodynamic properties but it is further stated
that this approximation is consistent with the other approximations
made in the model. It will be shown in chapter 4 that the linear model
of v in temperature T introduces a modeling error in cylinder pressure
which is 15 times the cylinder pressure measurement noise in mean. A
model of v that introduces an error in the same order as the noise is
also given in chapter 4.

3.7.1 Parameter initialization — 73,9 and b

The initial values for the two parameters in the linear model of ~y (3.34)
are computed by using a chemical equilibrium program (Eriksson, 2004).
First the specific heat ratio is computed for a specific fuel by assuming
that the mixture is burned and at equilibrium at all instances. Then
the two parameters 390 and b are fitted in the least squares sense to
the resulting . Nominal values are in the intervals; 300 € [1.35, 1.41]
and b€ [-8-107°, —12-107°] K1,
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3.8 Summary of single-zone heat-release
models
The model component equations, that are emphasized by boxes in chap-

ter 2 and 3, for the Gatowski et al.-model are summarized here, together
with the inputs, outputs and unknown parameters for the model.

Model inputs

and outputs

Input | Description | Unit

A air-fuel ratio [-]

N engine speed [rpm]

Peah exhaust manifold pressure [Pa]

Dman intake manifold pressure [Pa]

Trnan intake manifold temperature K]

Orve crank angle degree for IVC [deg ATDC]
Oevo crank angle degree for EVO [deg ATDC]
Output | Description | Unit

P cylinder pressure [Pa]

D measured cylinder pressure [Pa]

Qch chemical energy released as heat | [J]

In heat release models a pressure trace is given as input and the heat
release is the output, while in pressure models a heat release trace is
the input and pressure is the output.

Model component equations

Heat release differential (2.25);

dQcn = 5 Vdp + Z5pdV + (55 + T' + “F) ¥e=dp + Qe

(3.35)
or cylinder pressure differential (2.26);
dQch — 5 pdV — dQ
dp = - il V’Y L - ”/t (3.36)
PV (T )
Pressure sensor model (3.1);
Pm = Kpp+Ap (3.37)

Crank angle phasing (3.2);

gi + AO = ai,true (338)
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Cylinder volume V (8, z,5¢) (3.3), (3.4) and (3.6);

V(0 xopp) = Ve(@oss) + Via(0, woyf) (3.39a)
Via(0, zopyp) = 7TT’Bz( (l+a)?— :L‘sz —aycos0 — /12 — (zof 5 + a,sinf)?)
(3.39b)
B? r o 7 S
AV (0, zo¢) _mB% (sin9+ (Tofy +a SIHQ)C.OSQ ) (3.39)
do 4 VI = (zofs + a,sin6)?
Temperature model (3.10);
Tive
= — 77V 3.40
prveVive: (3.40)
Crevice model (3.20);
Ver
o= 3.41
dm RT. dp (3.41)
Vibe combustion model (3.24), (3.22) and (3.23);
dQcn dy
— Qb 42
T (8.422)
dzp(0)  a(m+1) (0 —0;,3\™ _a(f’A—;ig)m“
= < .42b
d Aoy \ Db ) € ' (3.420)
In(In(1 — 0.1) — In(1 — 0.85))
= -1 42
I Afy — In(A0y + AGy) (3:42¢)
Abeq\ pyir
=—(—)""1In(1-0.1 42
o= —(GE)™ - o) (3.420)

Woschni’s heat transfer correlation (3.33), (3.28), (3.32) and (3.8);

dgem _ dfl?tht % — O ;T_ON (3.43a)
Ou = he AAT = he A(T — T,) (3.43b)
0.013 B~02p" (Cru, + W)OS
he = T0.55 (3.43¢)
A0, 055) = == + ”B(\/W* arcost — /I = (zors +ar sin€)2>
(3.43d)

To simulate the Gatowski et al.-model, equations (3.36)—(3.43) are
used together with the linear specific heat ratio model (3.34);

Yiin (T) = 7300 + b (T — 300) (3.44)

and the corresponding crevice energy term (2.32);

w—u= gln(:__ll) (3.45)
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Par. | Description Value Equation

Y300 | constant specific heat ratio [-] 1.3678 (3.34)
b slope for specific heat ratio| K 1] —8.13-1075 (3.34)

Cy | heat-transfer parameter [-| 2.28 (3.32)

C | heat-transfer parameter [m/(s K)] 3.24-1073 (3.32)

Af | crank angle phasing [deg ATDC] 04 (3.2)

Ap | bias in pressure measurements [kPa] 30 (3.1)

K, | pressure measurement gain|-| 1 (3.1)
prve | cylinder pressure at IVC [kPa) 100 (3.10), (2.26)
Trve | mean charge temperature at IVC |K]| 340 (3.10)

T, | mean wall temperature [K] 440 (3.20),(3.28)

V. | clearance volume [cm3] 62.9 (3.3)

Ve | single aggregate crevice volume [% V] 1.5 (3.20)

0ig | ignition angle [deg ATDC] -20 (3.22)
Afy | flame-development angle [deg ATDC] 15 (3.22)

A@, | rapid-burn angle [deg ATDC] 30 (3.22)

Qin | released energy from combustion [J] 1500 (3.24)

Table 3.1: Nominal values for the parameters in the Gatowski et al.
single-zone heat release model. For fired cycles, T, = 440 K and
Trve = 340 K, and for motored cycles, T,, = 400 K and Ty ¢ = 310 K.

Unknown parameters

The parameters used in the Gatowski et al. single-zone model and an
example of nominal values is summarized in table 3.1.

3.9 Sensitivity in pressure to parameter ini-
tialization

The cylinder pressure is simulated for the nominal values in the table 3.2
using (3.36)—(3.45), and yields the cylinder pressure given in figure 3.4.
The nominal values are the same as in table 3.1. To get an idea of how
sensitive the cylinder pressure is to errors in the initialized parameters,
a sensitivity analysis is performed by perturbing the parameters one
at a time with the realistic perturbations given in table 3.2. In most
cases the perturbation is set to 10 percent of their nominal value, but
when the nominal value is small in comparison to the uncertainty in
the parameter this approach would not give a fair comparison. The
perturbation for these parameters are therefore set to reasonable values.

The perturbed simulated cylinder pressure is then compared to the
nominal one, in terms of root mean square error (RMSE) and maximum
absolute residual value (Max Res), where RMSE is the more important
measure when considering least squares optimization. The residual
is here defined as the difference between the nominal and perturbed
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Par. Nominal & perturbation value RMSE | Max Res S
[kPa] [kPa] 5
Y300 1.3678 0.137 B 522.6 | 1407.3 5.25
Aby 15 5 [deg] 270.5 | 1029.2 0.58
Oig -20 5 [deg ATDC] | 237.9 860.3 0.73
V. 62.9 6.29 [em?] 210.3 603.7 1.76
K, 1 0.1 [-] 184.9 465.0 1.55
T 440 44 K] 110.1 285.4 0.88
Qin | 1500 150 [7] 101.7 263.7 0.81
AB, 30 5 [deg] 101.6 397.4 0.45
prve | 100 10 [kPa] 95.7 217.9 0.77
Trve | 340 44 K] 63.7 176.7 0.36
Vr 1.5 1.5 (% V| 36.3 122.3 0.03
b -8.13-107°  -8.13-107% [K! 25.0 77.0 0.19
Af 0.4 0.2 [deg] 10.3 31.4 0.02
Ap 30 10 [kPa] 10.0 10.0 0.02
Co 3.24 1073 3.24.107%  [m/(s K)| 3.8 8.2 0.03
Cy 2.28 0.228 - 1.6 2.9 0.01

Table 3.2: Nominal and perturbation values, where the perturbations
are performed by adding or subtracting the perturbation from the nomi-
nal value. The root mean square error (RMSE), maximal residual (Max
Res) and sensitivity function S (3.46) are computed for the worst case
for each parameter. The parameters are sorted in descending order of
their RMSE.

cylinder pressures. The parameter sensitivity is also examined, and it
is computed here as
RMSE(p)

_ P
5= |[Az| 7

x|

(3.46)

where z is the nominal parameter value, Az is the parameter perturba-
tion and p is the mean cylinder pressure. The results are summarized
in table 3.2. When comparing the RMSE for every parameter, the
constant 3o in the linear specific heat ratio model, the burn related
angles Afy and 6,4, and the clearance volume V, show highest sensitiv-
ity in the mean and are therefore more in need of a proper initialization
than the others. On the other hand, disturbances in the values of the
two Woschni parameters C; and Cy do not affect the resulting cylinder
pressure significantly. Note that the model of the cylinder pressure is
nonlinear, so the results found from this analysis is only valid locally,
but it still gives an idea of which parameters are the most sensitive
ones.
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Simulated cylinder pressure

Cylinder pressure [MPa]

-100 -50 0 50 100
Crank angle [deg ATDC]

Figure 3.4: Simulated cylinder pressure using the nominal values in
table 3.2.
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4

A SPECIFIC HEAT RATIO MODEL
FOR SINGLE-ZONE HEAT
RELEASE MODELS

The accuracy with which the energy balance can be calculated for a
combustion chamber depends in part on how accurately changes in the
internal energy of the cylinder charge are represented. The most impor-
tant thermodynamic property used when calculating the heat release
rates in engines is the ratio of specific heats, (T, p, \) = E—” (Gatowski
et al., 1984; Chun and Heywood, 1987; Guezennec and Hamama, 1999).

Based on the first law of thermodynamics, Gatowski et al. (1984)
developed a single-zone heat release model that has been widely used,
where the specific heat ratio is represented by a linear function in mean
charge temperature 7"

Yiin(T') = 300 + b(T — 300). (4.1)

This allows a critical examination of the burning process by analysis
of the heat release. In order to compute the heat release correctly,
the parameters in the single-zone model need to be well tuned. These
parameters, such as heat transfer coefficients, 300 and b in the linear
~v-model (4.1) and so on, can be tuned using well known methods.
For instance, Eriksson (1998) uses standard prediction error methods
(Ljung, 1999) to tune the parameters. This is done by minimizing the
prediction error of the measured cylinder pressure, i.e. by minimizing
the difference between the modeled and measured cylinder pressure.
Applying standard parameter identification methods usually ends up
in non-physical values of 3¢9, as it becomes larger than 1.40, which is
the value of 30 for pure air. It has also been shown in table 3.2 that

49
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Y300 is the most sensitive single-zone parameter. But more importantly,
the linear approximation of «y (4.1) itself introduces a model error in the
cylinder pressure which has a root mean square error of approximately
30 kPa, for low load engine operating points, and approximately 90
kPa in the mean for operating points covering the entire operating
range. These errors are more than four times the error introduced by
the measurement noise in the former case, and more than ten times
in the latter case. These errors will affect the computed heat release
and a better model of (7, p, A) is therefore sought. A correct model
of v(T,p,\) is also desirable in order to avoid badly tuned (biased)
single-zone model parameters.

The objective is to investigate models of the specific heat ratio for
the single-zone heat release model, and find a model accurate enough
to only introduce a modeling error less than or in the order of the
cylinder pressure measurement noise, while keeping the computational
complexity at a minimum. Such a model would help us to compute a
more accurate heat release trace.

This work relies upon the single-zone framework and the general
single-zone heat release model given by (3.36)—(3.43) is used as a refer-
ence model. This is of course an approximation, but reasonable since
single-zone models describe the cylinder pressure well. This has been
verified experimentally e.g. in Gatowski et al. (1984).

4.1 Outline

In the following section three existing y-models are described. Then
based on chemical equilibrium, a reference model for the specific heat
ratio is described. Thereafter, the reference model is calculated for an
unburned and a burned air-fuel mixture respectively, and compared to
these existing models in the two following sections. With the knowledge
of how to describe «y for the unburned and burned mixture respectively,
the focus is turned to finding a «-model during the combustion process,
i.e. for a partially burned mixture. This is done in section 4.6, where
a number of approximative models are proposed. These models are
evaluated in terms of the normalized root mean square error related to
the reference y-model found from chemical equilibrium, as well as the
influence the models have on the cylinder pressure, and also in terms
of computational time.

4.2 Chemical equilibrium

According to Heywood (1988, p.86), it is a good approximation for per-
formance estimates to consider the unburned gases as frozen and the
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burned gases as in chemical equilibrium. Assuming that the unburned
air-fuel mixture is frozen and that the burned mixture is at equilib-
rium at every instant, the specific heat ratio and other thermodynamic
properties of various species can be calculated using the Matlab pack-
age CHEPP (Eriksson, 2004). The reference fuel used is iso-octane,
Cg Hig, which reacts with air according to:

1
A (8 + 18/4)
110 + 4202 + ysH + ysHy + ysOH
+y6 H20 + y7CO + ysCO2 + yg N O + y10 N2, (4.2)
where the products given on the right hand side are chosen by the

user and A is the air-fuel ratio (AFR). The coefficients y; are found by
CHEPP and they reveal the mole fraction &; = Zy-tyi of specie 7 that

CsHig + (O2 + 3.773N3) —

the mixture consists of at a given temperature, pressure and air-fuel
ratio. From z;, the mass fraction z; is computed using the molar mass
MT; as Tr; = i‘,/]\47

The mixture is assumed to obey the Gibbs-Dalton law, which states
that under the ideal-gas approximation, the properties of a gas in a
mixture are not influenced by the presence of other gases, and each gas
component in the mixture behaves as if it exists alone in the volume at
the mixture temperature (Cengel and Boles, 2002, Ch 12). Therefore,
the thermodynamic properties can be added together as e.g. in:

U(Tap7 )‘) = in(T7p7 )\)U,(T), (43)

where u; is the internal energy from specie ¢ and u is the total internal
energy. The enthalpy h(T,p, \) is computed in the same manner. All
thermodynamic properties depend on the air-fuel ratio A, but for nota-

tional convenience this dependence is hereafter left out when there is no
risk of confusion. The definition of the specific heat ¢, is ¢, = (g—%) ,

1%
and by using (4.3) it is expressed as

8:51»

co(T,p) = Z 2i(T, p)eo,i(T) +ui(T) 5 (T, p), (4.4)

where the individual species are ideal gases. The specific heat ¢, =

(‘9”) is calculated in the same manner, as
P

T
8:&-
ep(T,p) =Y (T, p)eys(T) + hi ()57 (T5p)- (4.5)
The specific heat ratio v is defined as
(T, p)
T,p) = 22~ 4.6
AT = (16)
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4.3 Existing models of ~

The computational time involved in repeated use of a full equilibrium
program, such as CHEPP (Eriksson, 2004) or the NASA program (Gor-
don and McBride, 1971; Svehla and McBride, 1973), can be substantial,
and therefore simpler models of the thermodynamic properties have
been developed. Three such models will now be described.

4.3.1 Linear model in T

The specific heat ratio during the closed part of the cycle, i.e. when
both intake and exhaust valves are closed, is most frequently modeled
as either a constant, or as a linear function of temperature. The latter
model is used in (Gatowski et al., 1984), where it is stated that the
model approximation is in parity with the other approximations made
for this family of single-zone heat-release models. The linear function
in T can be written as:

Yiin (1) = ¥300 + b (T — 300). (4.7)

Depending on which temperature region and what air-fuel ratio A the
model will be used for, the slope b and constant ~309 in (4.7) have to
be adjusted. Concerning the temperature region, this shortcoming can
be avoided by increasing the complexity of the model and use a second
(or higher) order polynomial for 7, (7). This has been done in for
example Brunt et al. (1998). Such an extension reduces the need for
having different values of v399 and b for different temperature regions.
Later on, 7;;,(T) is calculated in a least squares sense for both burned
and unburned mixtures.

4.3.2 Segmented linear model in T

According to Chun and Heywood (1987), the commonly made assump-
tion that (7)) is constant or a linear function of mean temperature
is not sufficiently accurate. Instead, they propose a segmentation of
the closed part of the engine cycle into three segments; compression,
combustion and post-combustion (expansion). Both the compression
and post-combustion are modeled by linear functions of 7', while the
combustion event is modeled by a constant . They further state that
with these assumptions, the one-zone analysis framework will provide
accurate enough predictions. The model of v can be written as:

Y500 + beemP (T — 300)  mp, < 0.01
Yseg(Ts ) = Y5500 0.01 <z, <099 (4.8)
Ysom + b<P (T — 300) z, > 0.99
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where the mass fraction burned x; is used to classify the three phases.
The y-model proposed by Chun and Heywood (1987) has discontinuities
when switching between the phases compression, combustion and post-
combustion.

4.3.3 Polynomial model in p and T

The third model is a polynomial model of the internal energy u devel-
oped in Krieger and Borman (1967) for combustion products of C,, Ha,, .
For lean and stoichiometric mixtures (A > 1), a single set of equations
was stated, whereas different sets where found for each A < 1. The
model of u for A > 1 is given by:

uSB(T,p,\) = A(T) — @ + Ueorr (T, P, A), (4.9)

given in [kJ/(kg of original air)], where
A(T) = arT + aoT?* + ... + asT" (4.10a)
B(T) =bo +bT + ...+ bsT*. (4.10D)
The gas constant was found to be:

.02
R(T,p,\) =0.287 + &)\0 + Reorr (T, p, N), (4.11)

given in [kJ/(kg of original air) K]. Krieger and Borman suggested that
two correction terms Ucorr and Reoq should account for dissociation,
modeled as non-zero for 7' > 1450 K and given by:

ucorr(T7p7 )‘) = Cy CXP (D()‘) + E(T’ )‘) + F(T,p, )‘)) (4.12&)

D()\) =dy+ dl)\_l + dg)\_g (4.12b)
-1 -3
BT, 3) = St el R *esh (4.12¢)

fa+ fsAt
T

F(T,p,\) = (fo+ AN+ f3A72 + YIn(fep)  (4.12d)

T 1
Rcorr(T7p7 )\) = Cr €XP (7“0 In A+ nt T2/ 1— = n(pr)) ) (413)

where T is given in Kelvin (K) and p in bar. The values of the coef-
ficients are given in table 4.1. For a fuel of composition C,, Ha,, the
stoichiometric fuel-air ratio is 0.0676. Therefore, equations (4.9)-(4.11)
should be divided by (1+0.0676 A1), to get the internal energy per unit
mass of products. In general, Krieger and Borman (1967) found that
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a1 as as Q4
0.692 39.17-107% [52.9-1079|-228.62- 10~ 13
as bo b1 bo
277.58-107'7  3049.33 |-5.7-1073 —-9.5-107°
b3 b4 Cy Cr
21.53-1079 |—200.26 - 10~ 2.32584 | 4.186-1073
d() d1 dg €0
10.41066 7.85125 -3.71257 | —15.001 - 103
el es fo f1
—15.838-10%] 9.613-10% | -0.10329 -0.38656
f3 fa f5 fe
0.154226 -14.763 118.27 14.503
0 T T2 T3
-0.2977 11.98 -25442 -0.4354

Table 4.1: Coefficient values for Krieger-Borman polynomial given
in (4.10)-(4.13).

the error in u was less than 2.5 percent in the pressure and tempera-
ture range of interest, where the extreme end states were approximately
{2300 K, 0.07 MPa} and {3300 K, 35 M Pa}, and less than 1 per-
cent over most of the range. A model of 7 is now given by its definition

as R
@
VKB = C—p =1+ =, (4.14)

v C’U

where R is given by (4.11) and ¢, = (g—;ﬁ) is found by differentiat-
1%
ing (4.9) with respect to T

4.4 Unburned mixture

Now the attention is turned to the unburned mixture. First of all,
the specific heat ratio for an unburned frozen mixture of iso-octane is
computed using CHEPP in the temperature region 7' € [300, 1000] K,
which is valid for the entire closed part of a motored cycle. The specific
heat ratio for A = 1 is shown in figure 4.1 as a function of temperature,
together with its linear approximation (4.7) in a least squares sense.
The linear approximation «;j,, is fairly good for A = 1. Actually, the
specific heats ¢, and ¢, from which + is formed, are fairly well described
by linear functions of temperature. Table 4.2 summarizes the root mean
square error (RMSE), normalized RMSE (NRMSE) and the coefficients
of the respective linear function for v, mass-specific heats ¢, and ¢, for
temperature region ' € [300,1000] K and A = 1. The RMSE of ~};,
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Iso—octane; Unburned mixture @A=1
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Figure 4.1: Specific heat ratio for unburned stoichiometric mixture
using CHEPP and the corresponding linear function of temperature.

Property Constant Slope NRMSE | RMSE
Yien |- 1.3488 | —13.0-107° | 0.19% | 0.0024
cin 13/(kg K)] 1051.9 0.387 0.15 % 1.78
b 13/ (kg K)J 777.0 0.387 0.20 % 1.78

Table 4.2: Coefficients, normalized RMSE and RMSE
proximations of 7, mass-specific ¢, and c,, for temperature region
T € [300,1000] K and A = 1.

in linear ap-
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Iso—octane; Unburned mixture
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Figure 4.2: Specific heat ratio for unburned stoichiometric mixture
using CHEPP for various air fuel ratios A as functions of temperature.
A = oo corresponds to pure air.

is defined as:

M
1
RMSE = | = Y (1(T5) 145, (T)))2, (4.15)
j=1
where M are the number of samples. The NRMSE is then found by
normalizing the modeling error in each sample j according to:

L g (L) — 3 (T) 2

NRMSE = | = 3 (T Jlmnal)” 4.1

RMSE =\ 37 2 (75 (419

Besides temperature, the specific heat ratio also varies with AFR,

as shown in figure 4.2 where A is varied between 0.8 (rich) and 1.2

(lean). For comparison, y(7T) is also shown for A = oo, i.e. pure air
which corresponds to fuel cut-off.

The coefficients in ~, (4.7) vary with A as shown in the two upper

plots of figure 4.3. Both the constant 399 and the slope b become

smaller as the air-fuel ratio becomes richer. From the bottom plot
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Iso—octane; Linear model of y for unburned mixture
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Figure 4.3: Upper: The constant value 7309 in (4.7) as a function of A
for unburned mixture at equilibrium. Middle: The value of the slope
coefficient b in (4.7) as a function of AFR. Bottom: Normalized root
mean square error (NRMSE) for ~, (7).

of figure 4.3, which shows the NRMSE for different AFR:s, it can be
concluded that the linear approximation v}, (7') is better the leaner
the mixture is, at least for A € [0.8,1.2].

4.4.1 Modeling \-dependence with fixed slope, b

Since it is always desirable to have as simple models as possible, an
important question is: —Would it inflict a major discrepancy to fix the
slope coefficient b and let only 399 vary with the air-fuel ratio? This is
investigated by setting the slope b to the value for A = 1, and finding the
coefficient 300 in a least squares sense. The slope is fixed at A = 1, since
for spark ignited engines this is the region where the engine should be
operating most of the time, due to legislations. The results are shown in
figure 4.4, where the coefficient 399 becomes approximately the same
as when letting the slope vary. The relative difference is less than 0.1
% for A € [0.8,1.2]. For the NRMSE an increase for A # 1 compared to
when b is free is expected, but the increase is not very significant at all.
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Iso—octane; Linear model of y for unburned mixture
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Figure 4.4: Upper: The constant value 300 in (4.7) as a function of A
for unburned mixture at equilibrium with fixed and free slope b respec-
tively. Bottom: NRMSE for ~} (T') for fixed and free slope coefficient.

For X € [0.8,1.12] the relative difference in RMSE is less than 5 % and
for A € [0.94,1.06] it is less than 1 %. This suggests that at least for
A € ]0.94,1.06], the linear approximation with fixed slope set at A = 1,
can be used as a model of v(7T') with good accuracy for the unburned
mixture. The parameter 730 is then taking care of the A-dependence
with good accuracy.

4.5 Burned mixture

The specific heat ratio v for a burned mixture of iso-octane is computed
using CHEPP in temperature region 7' € [500,3500] K and pressure
region p € [0.25,100] bar, which covers most of the closed part of a firing
cycle. The mixture is assumed to be at equilibrium at every instant.
The specific heat ratio depends strongly on mixture temperature T,
but ~ also on the air-fuel ratio A\ and pressure p as shown in figure 4.5
and figure 4.6 respectively. For the same deviation from A\ = 1, rich
mixtures tend to deviate more from the stoichiometric mixture, than
lean mixtures do. The pressure dependence in « is only visible for
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Iso—octane; Burned mixture @p=7.5 bar
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Figure 4.5: Specific heat ratio for burned mixture at various air-fuel
ratios A at 7.5 bar using CHEPP.

Region | T € Y300 b
A [500, 3500] 1.3695 | —9.6-10~°
B [500, 3000] 1.3726 | —9.9.107°
C [500, 2700] 1.3678 | —9.4-107°
D [500, 2500] 1.3623 | —8.8-107°
E [1200,3000] | 1.4045 | —11.4-107°

Table 4.3: Coefficients in the linear approximation ~f, (T') found
in (4.7) for A =1 and p = 7.5 bar.
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Iso—octane; Burned mixture @A=1
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Figure 4.6: Specific heat ratio for burned stoichiometric mixture using
CHEPP at various pressures.

T > 1500 K, and a higher pressure tends to retard the dissociation and
yields a higher ~.

To model the specific heat ratio with a linear function ~f;, (T') of
temperature, and thereby neglecting the dependence of pressure, will
of course introduce a modeling error. This modeling error depends on
which temperature (and pressure) region the linear function is fitted to,
since different regions will yield different coefficient values in (4.7). In
figure 4.7 7y is computed at A = 1 and p = 7.5bar for T' € [500, 3500] K,
and as well as the corresponding linear function 4/, (4.7) and the
polynomial vk (4.14) developed in Krieger and Borman (1967). In
table 4.3, the coefficients in ¥, are computed for five temperature
regions. Table 4.4 displays the maximum relative error (MRE) and
NRMSE for 7¢, and yxp. The maximum relative error for 77, is
defined as ,

MRE:maX"Y(Tj’p)_’Ylin(Tj)‘. (417)
(T, p)

The linear approximation 'ylbm(T) does not capture the behavior of
~(T) for A = 1 very well, as shown in figure 4.7. The coefficients for
the linear model 'Ylbm(T) vary with the specific temperature region, as
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Iso—octane; Burned mixture @A=1, p=7.5 bar
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Figure 4.7: Specific heat ratio for burned stoichiometric mixture using
CHEPP, the corresponding linear function fylbm and Krieger-Borman
polynomial vx 5.

Region| T' € R VKB

MRE | NRMSE| MRE | NRMSE
[500,3500] | 2.0 % | 0.97 % | 2.0% | 0.56 %
[500,3000] | 1.6 % | 0.95 % | 0.7 % | 0.20 %
[500,2700] | 1.9% | 090 % | 0.3 % | 0.17%
[ ]
[ 0

500,2500] | 24 % | 0.74%| 03 % | 017 %
1200,3000] 1.6 % | 0.74 %| 0.7 % | 0.21 %

HoQwe

Table 4.4: Maximum relative error (MRE) and normalized root mean
square error (NRMSE) for different temperature regions at A = 1 and
p ="17.5 bar.
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Region| vxp@\ = 0.975 YxkB@QA =1 YxB@X =1.025
MRE| NRMSE | MRE| NRMSE MRE| NRMSE
A 1.9% 0.8 % | 2.0% 0.56 % | 2.1% 0.59 %
B 1.8% 0.73% | 0.7 % 0.20%| 0.7 % 0.28%

Table 4.5: Maximum relative error (MRE) and normalized root
mean square error (NRMSE) for different temperature regions for
vxB(T,p,\) at p="7.5 bar and A = {0.975, 1, 1.025}.

displayed for temperature regions A to E in table 4.3. A second or-
der polynomial shows the same behavior as the linear case, but when
the order of the polynomial is increased to three, the model captures
the modes of v(T") quite well. By increasing the complexity of the
model even more, an even better fit is found. This has been done in
the Krieger-Borman polynomial, and for this example it captures the
behavior of ~(T) well for temperatures below 2800 K as seen in fig-
ure 4.7 and in the right-most (NRMSE) column in table 4.4, where
the NRMSE value is much higher for temperature region A than for
the other regions. As expected, the Krieger-Borman polynomial is bet-
ter than the linear approximation in every chosen temperature region,
since the NRMSE is smaller. Comparing the MRE:s for temperature
region A, where the respective MRE are approximately the same, one
could then conclude that the models describe v equally well. However
in figure 4.7 it was clearly visible that vx p is the better one, which is
also the conclusion when comparing the respective NRMSE.

In table 4.5, the NRMSE and MRE for the Krieger-Borman poly-
nomial v p(T,p,A) for A close to stoichiometric is displayed. For
A > 1 (lean), yxp fits the equilibrium ~ better than for A < 1, a
tendency which is most evident when comparing the NRMSE for tem-
perature region B. For temperature region A the difference for different
A is less striking, since the vxp does not fit v as well for 7" > 3000 K.
Therefore the Krieger-Borman polynomial is preferably only to be used
on the lean side. On the rich side and close to stoichiometric (within 2.5
%), the Krieger-Borman polynomial does not introduce an error larger
than the linear approximation given in table 4.4, and yx g should there-
fore be used in this operating range.

Summary for special case: Linear models

If a linear model of v is preferred for computational reasons, the per-
formance of the linear model could be enhanced by proper selection of
temperature region. However, the MRE does not decrease for every re-
duction in interval, as seen when comparing MRE:s for regions D and
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B in table 4.4. Thus, the temperature region should be chosen with
care by using the NRMSE as evaluation criteria:

e When using the single-zone temperature 7' to describe the spe-
cific heat ratio of the burned mixture, temperature region B is
preferable, since during the closed part 7" < 3000 K.

e When using the burned-zone temperature 73 in a two-zone model,
temperature region E is recommended, since for most cases T}, €
[1200,3000]. The temperature limits are found by evaluating
a number of experimental cylinder pressure traces using (A.1)
and (A.7). By choosing region E instead of region B, the NRMSE
is reduced by 25%.

4.6 Partially burned mixture

The specific heat ratio v as a function of mixture temperature 7' and
air-fuel ratio A for unburned and burned mixture of air and iso-octane
has been investigated in the two previous sections. During the closed
part of a motored engine cycle, the previous investigations would be
enough since the models of the unburned mixture will be valid for the
entire region. When considering firing cycles on the other hand, an
assumption of either a purely unburned or a purely burned mixture
approach is not valid for the entire combustion chamber during the
closed part of the engine cycle.

To describe the specific heat ratio in the single-zone model for a
partially burned mixture, the mass fraction burned trace x; is used to
interpolate the (mass-)specific heats of the unburned and burned zones
to find the single-zone specific heats. The specific heat ratio is then
found as the ratio between the interpolated specific heats.

4.6.1 Reference model

The single-zone specific heats are found from energy balance between
the single-zone and the two-zone model, from which the single-zone
specific heat ratio yog can be stated:

cp(T,p, ) = xp cpp(Th, p) + (1 — ) cpu(Tu) (4.18a)
CU(Tapv xb) =Tp Cv,b(Tbap) + (1 - xb) Cv,u(Tu) (418b)
ep(Typ, xp)
T = 4.18
’VCE( s Py Z‘b) CU(T,p, xb)7 ( C)

where the mass fraction burned z; is used as an interpolation variable.
The single-zone (T'), burned zone (7}) and unburned zone (7)) tem-
peratures are given by the two temperatures models (A.1) and (A.7)
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described in appendix A.1. The first is the ordinary single-zone tem-
perature model and the second is a two-zone mean temperature model
presented in Andersson (2002). The mass specific heats in (4.18) are
computed using CHEPP (Eriksson, 2004) and v¢g then forms the ref-
erence model.

To compute ycg is computationally heavy. Even when the specific
heats are computed before-hand at a number of operating points, the
computational burden is still heavy due to the numerous table look-
ups and interpolations required. Therefore, a computationally more
efficient model which retains accuracy is sought for. A number of ~-
models will therefore be described in the following subsection, where
they are divided into three subgroups based upon their modeling as-
sumptions. These y-models are then compared to the reference model
vor (4.18), in terms of four evaluation criteria, specified in section 4.6.3.

How to find z,?

To compute the specific heat ratio yog (4.18), a mass fraction burned
trace xp is needed. For simulated pressure data, the mass fraction
burned is considered to be known, which is the case in this work. How-
ever, if one were to use experimental data to e.g. do heat release anal-
ysis, xp can not be considered to be known. There are then two ways
of determining the mass fraction burned; The first is to use a simple
and computationally efficient method to get x; from a given cylinder
pressure trace. Such methods were described in chapter 2 and include
the pressure ratio management by Matekunas (1983) described in sec-
tion 2.4. If one does not settle for this, the second approach is to
initialize x;, using a simple method from the first approach, and then
iteratively refine the mass fraction burned trace x} using the computed
heat release.

4.6.2 Grouping of v-models

Thirteen y-models have been investigated and they are divided into
three subgroups based upon their modeling assumptions; The first
group contains models for burned mixture only. The second contains
models based on interpolation of the specific heat ratios directly, and
the third group, to which reference model (4.18) belongs, contains the
models based on interpolation of the specific heats, from which the ratio
is determined.

Group B: Burned mixture

The first subgroup represents the in-cylinder mixture as a single zone
of burned mixture with single-zone temperature 7', computed by (A.1).
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The first model, denoted By, is the linear approximation in (4.7):
By : 48, (T) = 7} (T) = 300 + b (T — 300), (4.19)

where the coefficients can be determined in at least two ways; One
way is to use the coefficients that are optimized for temperature region
T € [500,3000] (region B in table 4.3) for a burned mixture. This
approach is used in (Gatowski et al., 1984), although the coefficients
differ somewhat compared to the ones given in table 4.3. Another
way is to optimize the coeflicients from the reference model (4.18).
This approach will be the one used here, since it yields the smallest
modeling errors in both v and cylinder pressure p. The approach has
optimal conditions for the simulations, and will therefore give the best
results possible for this model structure.

The second model, denoted Bs, is the Krieger-Borman polynomial
described in (4.9)

B(T)
BQ LuB, = A(T) — T — 'YBQ(T) = 'YKB(T)7 (420)

without the correction term for dissociation. The Krieger-Borman poly-
nomial is used in model B3 as well,

B(T
Bs : UB, = A(T) - ¥ + Ucorr(T7p7 )‘)
— 78:(T,p) = v B(T, p), (4.21)

with the correction term wcor-(T,p, A) for dissociation included. The
fourth and simplest model uses a constant ~:

By : yp, = constant. (4.22)

As for model B, the constant ~yp, is determined from the reference
model (4.18).

Group C: Interpolation of specific heat ratios

The second subgroup uses a two-zone model, i.e. a burned and an un-
burned zone, and calculates the specific heat ratio ~,(Tp) and 7, (7%)
for each zone respectively, where the temperatures are given by the
two-zone mean temperature model (A.7). The mass fraction burned
trace xp is then used to find the single-zone v by interpolating +; and
Yu-

Note that the relations for determining the thermodynamic proper-
ties, shown in (4.18), are not fulfilled for subgroup C during combustion.
It is however fulfilled prior to combustion and after the combustion, i.e.
when a2 = 0 or 2, = 1 and no interpolation is performed.
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The first model, denoted C;, interpolates linear approximations of
~ for the unburned and burned mixture. The coefficients in the linear
functions are optimized for temperature region 7' € [300, 1000] for the
unburned mixture, and temperature region T € [1200,3000] for the
burned mixture. The resulting 7¢, can therefore be written as:

Cy: e, (Ta Z’b) = Ty ’ylbzn(Tb) + (1 - l‘b) ’quj,n (Tu)7 (423)

where the coefficients for the linear functions are given in table 4.3 and
table 4.2 respectively.

The second model was proposed in Stone (1999, p.423), here de-
noted Cs, and is based on interpolation of the internal energy u com-
puted from the Krieger-Borman polynomial:

Cy: uc, = A(T) - a’:bB(T)

E— ’yc2 (T, xb). (424)

This model includes neither dissociation nor the internal energy of the
unburned mixture.

An improvement of model C; is expected when substituting the lin-
ear model for the burned mixture with the Krieger-Borman polynomial.
This new model is denoted C3 and described by:

C3 P ces (Tapv xb) = Tp P)/KB(Tbap) + (1 - xb) ’Yﬁn(Tu) (425)

The fourth model interpolates 7, (7:) and (7}, p) given by CHEPP:

C4 : 7C4(T7p7 xb) =Tp ’yb(Tle) + (1 - xb) ’yu(Tu)7 (426)

and this model is denoted C4. This model will reflect the modeling error
introduced by interpolating the specific heat ratios directly instead of
using the definition through the specific heats (4.18).

The segmented linear model (4.8) developed in Chun and Heywood
(1987) is also investigated and here denoted by model Cs:

NSOmP y peomp (T — 300) @, < 0.01
Cs : ves (T, 1) = Vseg (T, 1) = { §3me 0.01 < 2, < 0.99
NEIP 4 pep (T — 300) @y > 0.99.
(4.27)
Model C5 uses the single-zone temperature for each phase, and classifies
into group C due to that the switching used for z;, in (4.27) can be
seen as a nearest neighbor interpolation. As for model B; and By, the
coefficients in (4.27) are determined from the reference model (4.18).

Group D: Interpolation of specific heats

The last subgroup uses a two-zone model, i.e. a burned and an un-
burned zone, just as the second subgroup, and the specific heats are
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interpolated to get the single-zone specific heats. The first model, de-
noted D1, uses the Krieger-Borman polynomial for the burned zone to
find ¢, 5(Th, p) and ¢, »(Tp, p), and the linear approximations of ¢, ,,(T%,)
and ¢, (T,) given in table 4.2 for the unburned zone:

zy ep i (To,p) + (1 — ) 7 (T)
zp kP (Ty, p) + (1 — xp) chin (T,)”

Dl S Dy (Tap7 l’b) = (428)

An extension of model D; is to use the unburned specific heats ¢, ,, (T3,)
and ¢, (T,) computed from CHEPP:

Ty C;f})B(Tbvp) + (1 - fEb) Cp,u(Tu)
Ty Ci(,bB(Tbap) + (1 - xb) Cv,u(Tu) '

Dy vp, (T, p,p) = (4.29)

This model is denoted Ds and reflects the model error introduced by
using the linear approximation of the unburned mixture specific heats,
when comparing to D;. When comparing it to Dy, it also shows the
error induced by using the Krieger-Borman approximation.

Model Dy is also extended for the burned mixture, where the specific
heats for the burned mixture cp »(Tp, p) and ¢, ,(Tp, p) are computed
using CHEPP. This model is denoted Ds:

Tp Cp,b(Tbap) + (1 - xb) C;;Z(Tu)
zp o p(Ty, p) + (1 — ap) i (Ty)

Dy : VD5 (Tapv xb) = ’ (430)
and reflects the model error introduced by using the Krieger-Borman
approximation of the specific heats, when comparing to D;.
The reference model yo i (4.18) belongs to this group and is denoted
D4:
D4 YDy (Tap7 l’b) = ’}/CE(T7p7 Z‘b). (431)

Modeling of crevice energy term

Note that the usage of a v-model different from the linear model used
in Gatowski et al. [1984], will also affect the amount of energy left or
added to the system when a mass element enters or leaves the crevice
volume. This energy term u' — w is quantified by (2.32) for B;. It has
to be restated for every v-model at hand except model By, and this is
done in appendix A.4.

4.6.3 Evaluation criteria

The different y-models given by (4.19)-(4.30) are evaluated in terms of
four criteria. The criteria are:

1. Normalized root mean square error (NRMSE) in « (4.16), which
gives a measure of the mean error in .
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2. Maximum relative error (MRE) for v (4.17), which yields a mea-
sure of the maximum error in ~.

3. Root mean square error (RMSE) for the corresponding cylinder
pressures, see (4.15) for the RMSE definition. This criterion gives
a measure of the impact that a certain model error has on the
cylinder pressure and will help to find a y-model accurate enough
for the single-zone model.

4. The computational time. It is measured as the time for one simu-
lation of the cylinder pressure model during the closed part, given
a burn rate trace and a specific y-model.

The cylinder pressure model used for the simulations is the model de-
veloped in Gatowski et al. (1984), summarized in section 3.8. The
parameters are given in appendix A.3 and the engine geometry is given
in appendix A.2.

4.6.4 Evaluation covering one operating point

At first, only one operating point is considered. This operating point
is given by the parameter values in table A.1, and corresponds to the
cylinder pressure given in figure 4.8, i.e. a low engine load condition.
The cylinder pressure given in figure 4.8 is used as an example that
illustrates the effect that each model has on specific heat ratio v and
cylinder pressure. To investigate if the engine operating condition in-
fluences the choice of model, nine operating points covering most parts
of the operating range of an engine are used to do the same evaluations.
These operating points are given in table A.2 and their corresponding
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Figure 4.8: Simulated cylinder pressure using Gatowski et al.-model
with nominal values in table A.1, and the linear y-model B replaced
by reference model Dj,.
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cylinder pressures are displayed in figure A.6, where operating point 2
corresponds to the cylinder pressure that is used in the first evaluation
and shown in figure 4.8.

y-domain

The ~-models in the three subgroups are compared to the reference
model yop (4.18). A summary of the results are given here while a
complete picture is given in appendix A.8, see e.g. figures A.7 and A.8,
where +y is plotted as a function of crank angle. The specific heat ratio
for each model is also given in figure A.9 and figure A.10 as a function
of single-zone temperature 7. Table 4.6 summarizes the MRE(7) and
NRMSE(~y) for all models. Figure 4.9 compares the reference model Dy
with the computed values of + for a few of these models, namely By,
Bg, C5, C4 and Dl.

Of these models, model D; (4.28) gives the best description of v and
captures the reference model well. This is confirmed by the MRE(%)
and NRMSE(y) columns in table 4.6, where only model group D yields
errors lower than 1 % for both columns. The lower plot of figure 4.9
shows that model C, deviates only during the combustion, which in this
case occurs for § € [—15, 45] deg ATDC. This deviation is enough to
yield a NRMSE(v) which is almost 0.6 %, approximately six times that
of Dl.

Of the models previously proposed in literature, the linear model
B1 (4.19) has the best performance, although it does not capture the
reference model very well, as seen in the upper plot of figure 4.9. Model
Bs (4.21) is only able to capture the reference model after the com-
bustion, since model Bs is optimized for a burned mixture. Model
Cs (4.27) has good behavior before and after the combustion. But dur-
ing the combustion, the constant v535"° does not capture yo g very well.
Models B4 and Cy has even worse behavior, as shown in figure A.7.

To conclude, model group D yields errors in 7 which are less than
1 % for this operating point. Of these models, model D3 has the best
performance compared to the reference model Dy.

Pressure domain

The impact each y-model has on the corresponding cylinder pressure is
shown in figure 4.10 for models By, Bs, Cs, C4 and Dy, and for all models
in figures A.11 and A.12. The plots show the difference between the
simulated cylinder pressure for reference model D4 and the ~-models,
i.e. the error in the cylinder pressure that is induced by the modeling
error in v. Note that the scaling in the figures are different. The RMSE
introduced in the cylinder pressure is given in table 4.6 for all models.
The RMSE of the measurement noise is approximately 6 kPa and



70 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. ..

y[-]

=IUU -50 0 50 100
Crank angle [deg ATDC]

1.4

y[-]

-100 -50 0 50 100
Crank angle [deg ATDC]

1.1

Figure 4.9: Upper: Specific heat ratios for models B;, Bs and Cs5 as
compared to the reference model Dy. Lower: Specific heat ratios for
models C4 and Dy as compared to the reference model Dj.

Model | MRE: | NRMSE: | RMSE: | Time
v[% | (%] | plkPa] | 5]

B, (4.19) | 4.7 1.3 52.3 3.8
By (4.20) | 5.9 2.7 85.8 4.1
By (4.21) | 5.2 1.8 76.0 4.2
By (4.22) | 7.7 45 62.8 3.8
C,  (423) [ 23 0.69 39.8 47
Co  (4.24) | 7.3 4.1 140.7 4.9
C;  (4.25) | 24 0.65 25.4 5.1
Ci (4.26) | 23 0.58 22.8 | 211.1
Cs (4.27) | 84 15 82.9 4.0
D;  (4.28) | 027 | 0.10 2.8 5.2
D, (4.29) | 026 | 0.09 2.6 12.3
Dy (4.30) | 0.04 | 0.01 0.3 | 3819
Dy (4.18) | 0.0 0.0 0.0 | 3842

Table 4.6: Evaluation of y-models, on the single cycle shown in fig-
ure 4.8.
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Figure 4.10: Upper: Reference cylinder pressure, the same as given
in figure 4.8. Middle: Cylinder pressure error introduced by models
By, B3 and C5. For convenience, the sign for Cs is changed. Lower:
Cylinder pressure error introduced by models C, and D;. Note that
the scaling in the plots are different.
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it is only model group D that introduces a modeling error in the same
order as the noise in terms of RMSE. Thus, the other ~-models will
introduce a modeling error which is significantly larger than the mea-
surement noise as seen in table 4.6, and thereby affect the accuracy of
the parameter estimates. Within group D, models D3 and D, have the
smallest RMSE(p), and therefore yield the highest accuracy. Model Dy
does not introduce a significantly larger RMSE(p) than Ds, and there-
fore the most time efficient one should be used of these two. Altogether
this suggests that any model in group D could be used.

The previously proposed y-models By, Ba, Bs, B4 and Cs, described
in section 4.3, all introduce modeling errors which are at least seven
times the measurement noise for this operating point. Clearly, a large
error, so none of these models are recommended. Of these models, B
induces the smallest RMSE(p) and should, if any, be the one used of
the previously proposed models.

Computational time

The right-most column of table 4.6 shows the computational time. The
time value given is the mean time for simulating the closed part of one
engine cycle using Matlab 6.1 on a SunBlade 100, which has a 64-bit
500 MHz processor. The proposed model D, is approximately 70 times
faster than the reference model D4, where the reference model uses
look-up tables with precomputed values of the specific heats ¢, and c,.
Introducing the model improvement in model D; of the specific heat
ratio to the Gatowski et al. single-zone heat release model is simple, and
it does not increase the computational burden immensely compared to
the original setting, i.e. By. The increase in computational effort is
less than 40 % compared to the linear y-model when simulating the
Gatowski et al. single-zone heat release model.

4.6.5 Evaluation covering all operating points

The same analysis as above has been made for the simulated cylinder
pressure from nine different operating points, where pry ¢ € [0.25, 2] bar
and Trve € [325,372] K. The parameters for each cycle is given in ta-
ble A.2 as well as the corresponding cylinder pressures in figure A.6.
The operating range in p and T that these cycles cover is given in fig-
ure 4.11, where the upper plot shows the range covered for the unburned
mixture, and the lower shows the range covered for single-zone (solid)
and burned (dashed) mixture. According to (Heywood, 1988, p.109),
the temperature region of interest for an SI engine is 400 to 900 K for
the unburned mixture; for the burned mixture, the extreme end states
are approximately {1200 K, 0.2 M Pa} and {2800 K, 3.5 MPa}. Of
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Figure 4.11: Operating range in p and T. Upper: Unburned zone.
Lower: Single zone (solid) and burned zone (dashed).

course, not all points in the range are covered but the cycles at hand
cover the extremes of the range of interest.

The results are summarized in terms of MRE for v in table A.11,
NRMSE for v in table A.12 and RMSE for p in table A.13, where the
mean values over the operating points for each model as well as the
values for each cycle are given. The mean values for each model are
also given here as a summary in table 4.7.

Ordering of models

When comparing the NRMSE for « in table 4.7, the ordering of the
~v-models, where the best one comes first, is:

Dy <D3 <Dy <Dy <Cy <C3 <C1 =By <C5 < B3 < By <Cy < By.

(4.32)
Here By < Co means that model By is better than Co. Comparing RMSE
for the cylinder pressure p, the ordering of the y-models becomes:

Dy <D3 <Dy <D; <Cs <C3<C1 <B1 =By <8B3 <By=<Cs < Cs.
(4.33)
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Model | MRE: | NRMSE: | RMSE:

vI% | %] | plkPal
B, |34 1.2 84.9
B |52 2.4 153.6
Bs | 45 1.7 137.3
B, | 7.1 1.2 110.0
G |19 0.77 56.6
Co | 6.6 3.9 269.2
Cs |19 0.53 124
C, |18 0.46 36.7
Cs |83 1.6 191.9
D: | 026 | 0.097 5.8
Dy | 0.25 | 0.092 5.1
Dy | 0.044 | 0.016 0.7

Table 4.7: Evaluation of y-models, in terms of the mean values for all
operating points in table A.2.

This ordering is not the same as in (4.32), but the only difference lies in
models C5 and By that change their positions between the two orderings.
Model Cs has poor performance in terms of RMSE(p), compared to
NRMSE(y). For model By, it is the other way around.

Model group D

In terms of NRMSE(y) (4.32) and RMSE(p) (4.33) model group D
behaves as expected, and obeys the rule: the higher the complexity is,
the higher the accuracy becomes. According to the RMSE(p) column in
table 4.7, the models in D all introduce an RMSE(p) which is less than
that found for the measurement noise. Comparing models Dy (4.28)
and Dy (4.29), it is obvious that not much is gained in accuracy by
using the unburned specific heats from CHEPP instead of the linear
functions. The computational cost for Dy was more than two times
the one for Dy, as shown in table 4.6. This suggests that the unburned
specific heats are sufficiently well described by the linear approximation.
Model D3 (4.30) utilizes the burned specific heat from CHEPP, and
this is an improvement compared to model D; which uses the Krieger-
Borman polynomial for ¢,; and ¢, ;. This improvement reduces the
RMSE(p) with a factor 7, but the cost in computational time is high,
approximately a factor 70 according to table 4.6. The comparison also
shows that if we want to reduce the impact on the cylinder pressure,
the effort should be to increase the accuracy of the Krieger-Borman
polynomial for the burned mixture. In figures A.4 and A.5, the specific
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heats for CHEPP and the Krieger-Borman polynomial are given, and
this verifies that the polynomial has poorer performance for higher
temperatures. A new polynomial for the burned mixture, valid for
a smaller but more relevant region for SI engines could increase the
accuracy for high temperatures. A perfect model of the burned mixture
yields the results given by D3, which then poses the lower limit for the
accuracy. The RMSE(p) in table 4.7 for D; is however considered to
be small. Therefore finding a better a model for the burned mixture is
not pursued here, and model D; is recommended as a good compromise
between computational accuracy and efficiency.

Model group C

In model group C, model C5 has good performance when considering
the NRMSE in 7 (4.32), but not as good in RMSE(p) (4.33). This
illustrates the importance of transforming the modeling error in the
v-domain to the cylinder pressure domain. One objective was to get
a model that gives a good description of the cylinder pressure. This
motivates why RMSE(p) is the more important model performance
measure of the two. Model Co (Stone, 1999, p.423) has really bad
performance and would be the last choice here. The rest of the models
in group C obey the same rule as group D, i.e. C4 < C3 < C;.

When the best model in group C, i.e. C4, is compared to all models
in group D, and especially the reference model Dy, it is concluded that
the specific heats should be interpolated, and not the specific heat ra-
tios. This conclusion can be drawn since the only difference between
C4 and D, is how the interpolation is performed. Model C4 interpolates
the specific heat ratios found from CHEPP directly, and model D, in-
terpolates the specific heats from CHEPP and then form the specific
heat ratio. Therefore, group D has better performance than group C.
Since D; has higher accuracy and approximately the same computa-
tional time as all models in group C, there is no point in using any of
the models in group C.

Model group 5B

As expected, the models in group B has the worst performance of them
all, if excluding models C2 and Cs. It is interesting to note that the linear
model 4}, (B1) performs best in the group, although it introduces a
modeling error in p which is at least ten times the measurement noise
in the mean. It has better performance than yxp (Bs) in the pressure
domain, although this is not the case in the y-domain. This again
points out the necessity of evaluating the impact of the y-model on to
the cylinder pressure. Therefore, if the assumption is that the cylinder
contents should be treated as a burned mixture during the entire closed



76 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL...
part of the engine cycle, B; is the model to use.

Summary

To conclude, the models are ordered by their performance and with
computational efficiency in ascending order:

Dy <Dy < By < By (4.34)

Most of the models are excluded from this list, either due to their low
accuracy, high computational time, or because another model with ap-
proximately the same computational time has higher accuracy. Of the
models given in (4.34), Dy is recommended as a compromise between
computational time and accuracy. Compared to the original setting
in Gatowski et al. (1984), the computational burden increases with 40
% and the modeling error is more than ten times smaller in the mean.
This also stresses that the y-model is an important part of the heat
release model, since it has a large impact on the cylinder pressure. The
focus is now turned to how the y-models will affect the heat release
parameters.

4.6.6 Influence of y7-models on heat release param-
eters

The next question is: —What impact does each of the proposed -
models have on the heat release parameters? This is investigated by
using the cylinder pressure for operating point 2, given in figure 4.8,
and estimating the three heat release parameters Ay, A, and Q;, in
the Vibe function, introduced in section 3.5. The cylinder pressure is
simulated using reference model Dy in conjunction with the Gatowski
et al. cylinder pressure model, and this forms the cylinder pressure
measurement signal to which measurement noise is added.

The heat release trace is then estimated given the measurement
from reference model D4. The heat release trace is parameterized by
the Vibe function, which has the heat release parameters A6y, A6,
and Q;, where it is assumed that 60,4, is known a priori. The estima-
tion is performed by minimizing the prediction error, i.e. by minimizing
the difference between the measured cylinder pressure and the modeled
cylinder pressure. The Levenberg-Marquardt method described in ap-
pendix C.1 is used as optimization algorithm. The heat release param-
eters are then estimated for each of the v-models using the Gatowski
et al.-model, where the v-model is replaced in an obvious manner in the
equations. In the estimations, only the three heat release parameters
are estimated. The other parameters are set to their true values given
in table A.1. The results are summarized in table 4.8, which displays
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Model Aby (%] Aby [%] Qin [%] RMSE(p) || Time
RME | RCI | RME | RCI || RME | RCI | [kPa] || [min]
B 5.1 1.7 0.29 3.1 -9.2 14 9.8 3.5
Bo 3.1 1.7 0.63 2.9 -7.3 1.3 9.1 3.8
Bs 3.4 1.7 -0.2 29 -7.2 1.3 9.1 3.9
By 6.8 1.7 -0.11 3.2 -6.2 1.4 10.1 3.5
Cy 0.074 | 14 1.1 2.4 -29 1.1 6.5 4.4
Co 9.6 2.1 -1 3.9 -14 1.7 16.0 4.6
Cs 0.19 1.4 0.75 2.4 -2.5 1.2 6.5 4.8
Cy 0.14 1.5 0.64 2.4 -2 1.2 6.7 200
Cs -8 1.5 -2.5 2.3 27 0.92 6.6 3.7
D, 0.21 1.5 -0.062 | 2.4 -0.67 | 1.3 6.7 4.9
Dy 0.2 1.5 -0.08 2.4 -0.61 | 1.3 6.7 11
Dy 0.22 1.5 -0.13 2.4 -0.48 | 1.3 6.7 360
Dy 0.21 1.5 -0.13 2.4 -0.42 | 1.3 6.7 360

Table 4.8: Relative mean estimation error (RME) and mean relative 95
% confidence interval (RCI) given in percent, for heat release parame-
ters using various v-models at operating point 2. The nominal values
for the heat release parameters are: Ay = 20 deg, Af, = 40 deg and
Qin = 760 J. The computational time and cylinder pressure RMSE are
also given.

the relative mean estimation error RME (D.4) and the mean relative 95
% confidence interval RCI (D.5) in A6y, A6, and Q;;, respectively for
each y-model. The computational time and RMSE(p) are also given.

Discussion

The RMSE of the applied measurement noise is approximately 6.7 kPa,
which is also the RMSE found when using most y-models. For every 7-
model used, the rapid burn angle 6, is most accurately estimated of the
three parameters, and nearly all of them are accurate within 1%. On
the other hand, only model group D is accurate within 1 % for all three
parameters, and this suggests that any of the D-models can be used,
preferably model D; due to its lower computational time. Model Cs
has the highest deviation in the estimates of them all.

4.6.7 Influence of air-fuel ratio \

An investigation is performed here to see how the proposed model
D; behaves for different air-fuel ratios \. The NRMSE(~, A\|D;) and
RMSE(p, A|D;) are computed for model Dy (4.28) compared to refer-
ence model Dy for the air-fuel ratio region A € [0.975, 1.025], at op-
erating point 2. It is assumed that the A-controller of the SI engine
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Figure 4.12: Upper: NRMSE(~, \|D;) for A € [0.975, 1.025] at OP 2.
Lower: RMSE(p, A|Dy) for A € [0.975, 1.025] at OP 2.

has good performance, and therefore keeps the variations in A small.
The results are displayed in figure 4.12, where the upper plot shows the
NRMSE(y, A\|D1), and the lower plot shows the RMSE(p, A|D;). Lean
and stoichiometric mixtures have the lowest errors in the + domain,
which is expected since the Krieger-Borman polynomial for the burned
mixture is estimated for lean mixtures. The error in pressure domain is
approximately symmetric around A = 0.995, and the magnitude is still
less than the measurement noise. This assures that for a few percent
deviation in A from stoichiometric conditions, the introduced error is
still small and acceptable.

Fuel composition

A small, and by no means exhaustive sensitivity analysis is made for
fuels such as methane and two commercial fuels in appendix A.6. This
in order to see if the results are valid for other fuels than iso-octane.
The hydrocarbon ratio for the fuel C,, Hy, is given by y = b/a. It is found
that if y € [1.69, 2.25], the RMSE(p) introduced at OP 2 when using
D; is increased with less than 20 % compared to iso-octane, which is
acceptable.
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4.6.8 Influence of residual gas

The influence of the residual gas on the specific heat ratio has so far
been neglected. Introducing the residual gas mass fraction x,, the
single-zone specific heat ratio yog in (4.18) is reformulated as:

Cp(T,p, I(nxr) =Tp Cp,b(Tb7p) + (1 - Z'b) ((1 - xr)cp,u(Tu) + x, Cp,b(Tu»p))

(4.35a)
C’U(T7p7 Ibaxr) = Tp Cv,b(Tb:p) + (1 - Ib) ((1 - x?")cv,u(Tu) + x Cvﬁb(Tuyp))
(4.35b)
T
Yor (T, p, b, xr) = %(T,p,2v, 21) (4.35¢)

Cv(Tvpa Ty, x’l’) .

The model assumptions are:

e the residual gas is homogeneously distributed throughout the
combustion chamber.

e the residual gas is described by a burned mixture at the appro-
priate temperature and pressure.

e a residual gas mass element in the unburned zone assumes the
unburned zone temperature T,,.

e when a residual gas mass element crosses the flame front, it enters
the burned zone and assumes the burned zone temperature Ty.
The pressure is assumed to be homogeneous throughout all zones.

In figure 4.13, the specific heat ratio v¢o g is computed according to (4.35)
for residual gas fractions z,, = [0, 0.05, 0.1, 0.15, 0.20] given the cylin-
der pressure in figure 4.8. It shows that the larger the residual gas
fraction, the larger the ~.

The difference in v for =, = [0.05, 0.1, 0.15, 0.20] compared to
xzy = 0 is shown in figure 4.14. The difference is largest during com-
pression and combustion. After the combustion, the mass specific heats
for the single zone will coincide with the ones for the burned zone in
accordance with the model assumptions, and there is thus no difference
in 7.

Modeling of z,.-dependence

A simple model of the influence of x, on ~ is to model the influence as
a linear function of x,. during the closed part, i.e.

YT, p, zp, 2r) = v (T, p, ) + bo, 2r = YoB (T, P, Tb) + Voias (27),
(4.36)
where yor(T,p,x) is given by (4.18). Since z, is constant during a
cycle, the term b, x, can be considered as a constant bias Ypies(x;)
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Figure 4.13: Specific heat ratio vcg (4.35) for residual gas fraction
z, = [0, 0.05, 0.1, 0.15, 0.20].

that changes from cycle to cycle. A better model is gained if the mass
fraction burned x; is used, as described in

YT, p, wp, 2r) = vor(T,p, 2p) + (1 — )by, 2 = yor(T, p, 26) + (1 — 26)Vvias (Tr),

(4.37)
which relies on the fact that (7, p, xp, z,-) coincides with yog for every
x, when the mixture is fully burned.

A more appealing and more physically correct model is to extend
model Dy in (4.28) with the Krieger-Borman polynomial for the residual
gas fraction, in the same manner as in (4.35). Thus (4.28) is rewritten
as

CP(T7 P, Ty, 3:7‘) = Tp CII;{:ZP(Tbvp) + (1 - mb) ((1 - xr)clin (Tu) + x, C{,fgg(Tuyp))

DU
(4.382)
C’U(T7p7 xbvx'r') =Ty CUK’},B(T‘}MP) + (1 - l'b) ((1 - xT)Ci;lZ(ﬂl) + X, C{,(bB(Tial))
(4.38D)

C, (T D, Tp xr)
T )= P Tr) 4.38
rytDlmr( P, T, X ) Cv(Tapv l’b,xr) ( C)
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Figure 4.14: Difference in specific heat ratio yo g (4.35) for residual gas
fraction x, = [0.05, 0.1, 0.15, 0.20] compared to z, = 0.

to form the specific heat ratio yp,, for a partially burned mixture with
residual gas mass fraction z,.. In the same spirit as for (4.36) and (4.37)
but with model D; as a base, the following models are formed:

7(T7pa Th, xT‘) = 7D, (Tap7 l’b) + bxrxT =D, (T7pa Z‘b) + Yvias (xT')7
(4.39)
V(T,p, xba"“‘) = VD1 (T,p, */Eb) + (1 - :Cb)bwrl’?‘ = TD: (Tv 'z fL'b) + (1 - fﬂb)'}/bias(l"r)
(4.40)

Evaluation

The specific heat ratio for the six models (4.36)—(4.40) and (4.18), i.e.
no z,-modeling, are all compared to the reference model (4.35) for a
given x,. At the operating point in figure 4.14, the NRMSE in v and
the corresponding value of piqs(x,) for models (4.36), (4.37), (4.39)
and (4.40) are given for the z,:s at hand in table 4.9. The NRMSE for
all six models are also included.

Model (4.37) has the best performance and decreases the NRMSE
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NRMSE(7) [%]
Model z, =0 2, =0.05 | 2, =0.10 | 2, =0.15 | . = 0.20
No model 0 71-1072 | 14-10' [ 21-107' | 2.8-107!
(4.36) 0 48-1072 1 9.7-1072 | 1.5-107' | 1.9-107"
(4.37) 0 82-107% | 1.7-1072 | 2.5-1072 | 3.4-1072
(4.38) 9.8-1072 | 9.9-1072 | 1.0-107' | 1.0-107" | 1.1- 107!
(4.39) 9.8-1072 | 1.1-107* | 1.4-107" | 1.8-107' | 2.2-107"
(4.40) 9.8-1072 | 9.5-1072 | 9.2-1072 | 9.1-1072 | 9.0- 1072
Vbias
Model z,. =0 z, =0.05 | z, =0.10 | z, =0.15 | x,, = 0.20
(4.36) 0 6.5-1077 [ 1.3-107° [ 2.0-1073 | 2.6- 10~
(4.37) 0 1.2-1073 | 2.5-1073 | 3.7-107% | 5.0-1073
(4.39) —6.3-107° | 5.9-107* | 1.2-107% | 1.9-1072 | 2.5-1073
(4.40) 9.6-107° | 1.3-1073 | 2.6-1073 | 3.8-1073 | 5.0-1073

Table 4.9: Normalized root mean square error (NRMSE) and 7pias
for x,, = [0, 0.05, 0.10, 0.15, 0.20] using approximative models (4.36)-
(4.40). Model (4.18) corresponds to no x,-modeling.

with approximately a factor 8, compared to model (4.18). Note that the
NRMSE in table 4.9 are relatively small compared e.g. to the NRMSE
given in table 4.6. When comparing models that are based on D,
the NRMSE(y) is in the same order as in the case of no z,, at least
for models (4.38) and (4.40). The values for piqs(x,) depend almost
linearly upon x,., and it therefore seems promising to model Ypqs(2;)
as a linear function of z,. Especially since model (4.40) gives a smaller
NRMSE than model (4.38). However, the slope b, in Vpias(z,) = by, 2
will change for operating conditions other than the one given here.
The model used therefore needs to be robust to changing operating
conditions, a feature the Krieger-Borman polynomial has. Model (4.38)
only adds an NRMSE(~) of 1.2 % for x, = 0.20 compared to z, = 0,
as shown in table 4.9. Therefore model (4.38) which uses the Krieger-
Borman polynomial is recommended, although it did not have the best
performance of the x,-models at this operating point.

4.6.9 Summary for partially burned mixture
The results can be summarized as:

e The modeling error must be compared both in terms of how they
describe v and the cylinder pressure.

e Comparing models C; and Dy, it is obvious that interpolating the
specific heat ratios directly instead of the specific heats causes a
large pressure error. Interpolation of specific heat ratios does not
fulfill the energy equation.
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e The y-models By, Bs, Bs, B4, C3 and Cs proposed in earlier works,
introduce a pressure modeling error which is at least four times
the measurement noise, and at least ten times the measurement
noise in the mean in our investigation. Out of these models, model
B is the best compromise of computational time and model ac-
curacy.

e If only single-zone temperatures are allowed, model B; is the best
one.

e The computation times are of the same order for all models except
Dg, D4 and C4.

e The models in group D are required to get a cylinder pressure
RMSE that is of the same order as the measurement noise.

e Asacompromise between accuracy and computational time, model
D, is recommended. Compared to the original setting in Gatowski
et al. (1984), the computational burden increases with 40 % and
the cylinder pressure modeling error is 15 times smaller in mean.

e For a residual gas mass fraction z, up to 20 %, model D; can
be extended with specific heats for the residual gas (4.38). These
specific heats are modeled by the Krieger-Borman polynomial.
This model extension adds a NRMSE(~) which is less than 1.2 %
to the previous modeling error for z, = 0.20.

e Only model group D produces prediction error estimates of the
heat release parameters, that are accurate within 1 % for all three
parameters, and this suggests that any of the D-models can be
used, preferably model D; due to its lower computational time.

4.7 Summary and conclusions

Based on assumptions of frozen mixture for the unburned mixture and
chemical equilibrium for the burned mixture (Krieger and Borman,
1967), the specific heat ratio is calculated, using a full equilibrium pro-
gram (Eriksson, 2004), for an unburned and a burned air-fuel mixture,
and compared to several previously proposed models of 7. It is shown
that the specific heat ratio and the specific heats for the unburned mix-
ture is captured to within 0.25 % by a linear function in mean charge
temperature T for A € [0.8, 1.2]. Furthermore the burned mixture are
captured to within 1 % by the higher-order polynomial in cylinder pres-
sure p and temperature T' developed in Krieger and Borman (1967) for
the major operating range of a spark ignited (SI) engine. If a linear
model is preferred for computational reasons for the burned mixture,
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then the temperature region should be chosen with care which can re-
duce the modeling error in v by 25 %.

With the knowledge of how to describe y for the unburned and
burned mixture respectively, the focus is turned to finding a y-model
during the combustion process, i.e. for a partially burned mixture. This
is done by interpolating the specific heats for the unburned and burned
mixture using the mass fraction burned x,. The objective was to find a
model of 7y, which results in a cylinder pressure error that is lower than
or in the order of the measurement noise. It is found that interpolating
the linear specific heats for the unburned mixture and the higher-order
polynomial specific heats for the burned mixture, and then forming the
specific heat ratio

KB lin
cp(T,p, Ty zp ey + (1 — ) ¢
(T, p ) = 24 ) _ Tl b (4.41)
Cv(Tapa xb) Tp C@,b + (1 - xb) Cou

results in a small enough modeling error in . This modeling error
results in a cylinder pressure error that is lower than 6 kPa in mean,
which is in the same order as the cylinder pressure measurement noise.
If the residual gas mass fraction x,. is known, it should be incorporated
into (4.41) which then extends to (4.38).

It was also shown that it is important to evaluate the model error
in v to see what impact it has on the cylinder pressure, since a small
error in vy can yield a large cylinder pressure error. This also stresses
that the y-model is an important part of the heat release model.

Applying the proposed model improvement D; (4.41) of the specific
heat ratio to the Gatowski et al. (1984) single-zone heat release model is
simple, and it does not increase the computational burden immensely.
Compared to the original setting, the computational burden increases
with 40 % and the modeling error introduced in the cylinder pressure
is reduced by a factor 15 in mean.
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COMPRESSION RATIO
ESTIMATION — WITH FOCUS ON
MOTORED CYCLES

The ability to vary the compression ratio opens up new possibilities
but if the compression ratio gets stuck at too high ratios, the risk of
engine destruction by heavy knock increases rapidly. On the other
hand if the compression ratio gets stuck at too low ratios, this results
in low efficiency, and therefore an unnecessary high fuel consumption.
It is therefore vital to monitor and diagnose the continuously changing
compression ratio.

Determination of the compression ratio is in itself an issue of high
importance (Amann, 1985; Lancaster et al., 1975) since it influences
the analysis and control of the combustion process. Due to geometrical
uncertainties, a spread in compression ratio among the different cylin-
ders is inherent (Amann, 1985), and since it is impossible to measure
the compression ratio directly it is necessary to estimate it. Here four
compression ratio estimation methods are developed and their prop-
erties with respect to 1) accuracy, 2) convergence speed, and 3) over
all convergence, are investigated. The approach is to use measured
cylinder pressure traces combined with a cylinder pressure model, to
estimate the compression ratio. A desirable property of the estimator
is that it should be able to cope with the unknown offset introduced by
the charge amplifier, changing thermodynamic conditions, and possibly
also the unknown phasing of the pressure trace in relation to the crank
angle revolution.

Two models for the cylinder pressure with different complexity lev-
els are used; a polytropic model and a single-zone zero-dimensional
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heat release model. Three different optimization algorithms that mini-
mize the prediction error are utilized to estimate the parameters in the
cylinder pressure models. These are:

1. Linear subproblem method. The non-linear problem is formulated
as two linear least-squares problems, that are solved alternately.

2. Variable projection method. It has two steps where the first step
determines only the parameters that appear linearly in the model
through the linear least-squares method. In the second step a line
search is performed for the other parameters in the direction of
the negative gradient. This method is a separable least-squares
method.

3. Levenberg-Marquardt method. This is a well known Gauss-Newton
method with regularization. Numerical approximations of the
gradient and the Hessian are used.

Based on these models and optimization algorithms, four different com-
pression ratio estimation methods are formulated. The methods are
applicable to both motored and fired cycles.

5.1 Outline

The two cylinder pressure models that will be used are given in sec-
tion 5.2. They have been derived in chapter 2 and are summarized here
for convenience. Based on these two models and the three optimiza-
tion algorithms described above, four methods for compression ratio
estimation are introduced in section 5.3. Thereafter, the performance
of the four methods is evaluated for simulated cylinder pressure traces
in terms of bias, variance and computational time in section 5.4. The
simulation study is an important and necessary step for a fair evalua-
tion, due to that the true value of the compression ratio for an engine
is unknown. The simulation evaluation includes a sensitivity analysis.
In section 5.5 the focus is turned to an evaluation of the methods per-
formance on experimental data. Data was collected from the SAAB
Variable Compression (SVC) engine shown in figure 5.1. By tilting the
mono-head, the compression ratio can be continuously varied between
8.13 and 14.67. The geometric data for the SVC engine is given in
appendix B.3. A discussion on compression ratio diagnosis is given.
The conclusions and recommendations of the chapter are summarized
in section 5.6.
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Figure 5.1: Schematic of engine with variable compression. With cour-
tesy of SAAB Automobile AB.

5.2 Cylinder pressure modeling

Two models are used to describe the cylinder pressure trace and they
are referred to as the polytropic model and the standard model.

5.2.1 Polytropic model

A simple and efficient model is the polytropic model, presented earlier
in section 2.2,
p(O)V(0)" =C, (5.1)

where p(f) is the cylinder pressure as function of crank angle 6, V (6)
is the volume, n is the polytropic exponent and C' is a cycle-to-cycle
dependent constant. Sometimes the volume is written as the following
sum,

V(0) = Via(0) + Ve, (5.2)

where V;4(0) is the instantaneous volume displaced by the piston (3.4)
and V, is the clearance volume. The compression ratio r. is related to
these volumes through

max [Viq(0)] + V..

c = s 5.3
r 7 (5.3)

where min [V;4(0)] = 0. The polytropic model (5.1) describes the com-
pression and expansion phases of the engine cycle well, but not the
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combustion phase (Heywood, 1988). Therefore, for cycles with com-
bustion only data between inlet valve closing (IVC) and start of com-
bustion (SOC) will be used, while for motored cycles all data acquired
during the closed part of the cycle, i.e. between IVC and exhaust valve
opening (EVO), is utilized.

5.2.2 Standard model

Gatowski et al. (1984) develops, tests and applies this model for heat
release analysis. This model is from hereon named the standard model.
It is based on the first law of thermodynamics and maintains simplicity
while still including the well known effects of heat transfer and crevice
flows. It has become widely used (Heywood, 1988) and is described
in section 2.5. The pressure is described by the following differential
equation,

dQcn _ _« av. _ dQne
dp 49— y-1Pde 9
9~ 1 Ve (T 1 —1\)’ (5.4)
=1Vt ﬁ(m +T7+ Bln(l_l))

see Gatowski et al. (1984) for the derivation and section 3.8 for details
on model components and parameters. This corresponds to model B
in chapter 4. Equation (5.4) is an ordinary differential equation that
can easily be solved numerically, given an initial value for the cylinder
pressure. The heat release dgg“ is zero for motored cycles and for cycles
with combustion it is modeled using the Vibe function x;, (Vibe, 1970)
in its differentiated form (5.5b)

0-0;,\ m+1
xp(0) =1— e_a( Sz , (5.5a)
dry(0)  a(m+1) (0—0;,\" o 0 big ) mt
_ > 5b
do Abeq \ DO ) © Yo (5:5b)

where z; is the mass fraction burned, 6;, is the start of combustion,
Af.4 is the total combustion duration, and a¢ and m are adjustable
parameters. The heat release is modeled as

dQch —Q' dl’b(a)
40 — Win a0

(5.6)

where ;, is the total amount of heat released. The standard model
(5.4)—(5.6) is valid between IVC and EVO.

5.2.3 Cylinder pressure referencing

Piezoelectric pressure transducers are used for measuring the in-cylinder
pressure, which will cause a drift in the pressure trace, i.e. the absolute
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level is unknown and it is slowly varying. This issue was introduced and
discussed in section 3.1. The modeling assumption was that the pres-
sure offset is considered to be constant during one engine cycle. The
pressure offset is estimated using intake manifold pressure referencing
as described in section 3.1, i.e. by referencing the measured cylinder
pressure p,,(0) to the intake manifold pressure p,a, just before in-
let valve closing (IVC), for several samples of p,,a,. Due to standing
waves in the intake runners and flow losses over the valves at certain
operating points, the referencing might prove to be insufficient. This
is investigated by including a parameter for cylinder pressure offset in
estimation methods 3 and 4, described in the next section.

5.3 Estimation methods

Four methods are developed and investigated for compression ratio es-
timation. These methods are described below and their relations are
summarized at the end of this section. All four methods are formulated
as least-squares problems in a set of unknown parameters x as

min () 3, (57)

where a residual () is formed as the difference between a model and
measurement. The differences between the methods lie in how the
residuals are formed, and in the iterative methods used for solving the
resulting problem (5.7).

The termination criterion for all methods are the same; If the rel-
ative improvement in the residual ||e(z)]|2 is less than 1 x 107° in one
iteration, the method terminates. This numerical value is chosen to
ensure convergence for all initial values.

5.3.1 Method 1 — Sublinear approach
The first method uses the polytropic model (5.1)
p(0) (Via(0) + V)" =C (5.8)

to estimate the polytropic exponent n, the compression ratio r. and
the constant C'. The method alternates between two problems, one to
determine the polytropic exponent n, and the other to determine the
clearance volume V. (i.e. r. = (max [V;q(0)] + V) / Vo).

Applying logarithms on (5.8) yields the residual

1a(C1,n) = Inp(d) — (C1 — nln(Via(9) + Vo)) (5.9)

which is linear in the parameters C; = InC and n, if V. is fixed. An-
other residual, that can be derived from (5.8), is

e1(Ca, Vo) = Via(0) — (Cap(0) /" = V2) (5.10)
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which is linear in the parameters Co = CY" and V,, if n is fixed.
The basic idea is to use the two residuals, €1, and 13, alternately to
estimate the parameters n, V, and C' by solving two linear least-squares
problems. Using a Taylor expansion, see appendix B.1, the following
approximate relation between the residuals is obtained

€1a(0,7) = e1p(0, x). (5.11)

_n
Via(0) + Ve

The relation (5.11) must be taken into account and the residual &1,
is therefore multiplied by the weight w(0) = Viq(6) + V¢, to obtain
comparable norms in the least-squares problem. To use this weight
is of crucial importance and without it the algorithm diverges (Klein,
2004, pp-85). Convergence of the method can however not be proved.
If the residuals were equal, i.e. €1, = €13, the problem would be bilinear
and the convergence linear (Bjoérck, 1996).

Each iteration for estimating the three parameters = = [V, C' n] in
the algorithm consists of three steps.

Algorithm 5.1 — Sublinear approach
Initialize the parameters @ = [V, C n].

1.Solve the weighted linear least-squares problem
: 2
€
min weial;

with V. from the previous iteration and C; = InC.

2.Solve the linear least-squares problem

. 2
min ||e1p
foin [levll2

with n from step 1 and ¢, = C'/".

3.Check the termination criterion, if not fulfilled return to step 1.

5.3.2 Method 2 — Variable projection

The second method also uses the polytropic model (5.1), together with a
variable projection algorithm. A nonlinear least-squares problem (5.7)
is separable if the parameter vector can be partitioned x = (y z) such
that

min ey, I3 (5.12)
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is easy to solve. If £(y, z) is linear in y, £(y, z) can be rewritten as

e(y.2) = F(2)y — g(2). (5.13)
For a given z, this is minimized by
y(2) = [FT(2)F(2)] ' F(2)"g(2) = F'(2)g(2), (5.14)

i.e. by using linear least-squares, where F'f(z) is the pseudo-inverse of
F(z). The original problem min||e(z)||3 can then be rewritten as
xT

min [[e(y, 2|5 = min [g(2) — F(2)y(2)ll3 (5.15)

and
e(y,2) = g(2) — F(2)y(2) = g(2) — F(2)F(2)g(2) = (I = Pp(2))g(2),
(5.16)

where Pp (. is the orthogonal projection onto the range of F'(z), thus
the name variable projection method.
Rewriting the polytropic model (5.1) as

e2(C1,n, Vo) =Inp(0) — (Cy — nln(Vig(0) + V2)) (5.17)

results in an equation that is linear in the parameters C; = InC and
n, and nonlinear in V.. It is thus expressed on the form given in (5.13).
The residual (5.10) is not suitable, since the parameters are coupled for
this formulation, see appendix B.2. With this method the three param-
eters © = [V, InC n] are estimated. A computationally efficient algo-
rithm, based on Bjorck (1996, p.352), is summarized in appendix B.2.

5.3.3 Method 3 — Levenberg-Marquardt and poly-
tropic model

The third method uses the polytropic model (5.1), as methods 1 and 2
did, with a pressure sensor model (3.1) added according to

pm(0) = Kpp(0) + Ap = p(0) + Ap (5.18)

in order to make the pressure referencing better. The measured cylin-
der pressure is given by p,,(0), and the additive pressure bias Ap is
considered to be constant during one cycle. The measurement chain is
considered to be well calibrated, and therefore the measurement gain
K, is set equal to 1. Furthermore, errors in the crank angle phasing Af
between the volume and pressure are also included in the polytropic
model, which then can be written as the following residual:

e3(Ve,n,C, Ap, A8) = p,(0) — Ap — C (Vig(0 + AG) + Vo)™ ™. (5.19)

A Levenberg-Marquardt method (Gill et al., 1981) is used to solve this
nonlinear least-squares problem, that has five unknown parameters: V.,
n, C, Ap, Af.
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5.3.4 Method 4 — Levenberg-Marquardt and stan-
dard model

The fourth method uses the single-zone model (5.4) from Gatowski
et al. (1984) which, in contrast to the other methods, also includes
heat transfer and crevice effects. The model is given in section 3.8
and the parameters used are summarized in appendix B.4. Due to the
complexity of this model, the sublinear approach and variable projec-
tion approach are not applicable, and therefore only the Levenberg—
Marquardt method is used. The increased complexity also causes iden-
tifiability problems for some of the parameters, since there exist many
dependencies between them. This is the case for the crevice volume V.,
and the clearance volume V_, in which estimating the two parameters
at the same time results in coupled and biased estimates. Therefore
one of them is set constant, in this case the crevice volume (Klein,
2004, p. 94). The estimation problem is however still hard, as will be
shown in chapter 6, and therefore the number of parameters to esti-
mate are reduced to five for motored cycles, and eight for fired cycles.
The remaining parameters are fixed to their initial values. The number
of parameters to estimate are determined by comparing the bias and
variance in the parameter values using simulations for different settings
of parameters. For motored cycles the estimated parameters are: Tj,.,
Y300, Ap, Af, and of course V.. For fired cycles the parameters Afy,
ABy, and @, are also included.

5.3.5 Summary of methods

Table 5.1 shows the relations between the methods. For fired cycles,
methods 1, 2 and 3 use cylinder pressure data between IVC and SOC
only, in contrast to method 4 which uses data from the entire closed
part of the engine cycle. For motored cycles, all data during the closed
part of the cycle is utilized by all methods. It is also noteworthy that
if the clearance volume V. is considered to be known, then methods 1
and 2 can be reformulated such that Ap is estimated instead of V.. In
such a case all methods can be used to estimate an additive pressure
bias, see Klein (2004, p. 143) for more details.

Algorithm Polytropic model Standard model
Sublinear Method 1

Variable projection Method 2
Levenberg-Marquardt Method 3 Method 4

Table 5.1: Relation between methods.
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OP2: N=1500 rpm, pman=1.0 bar
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Figure 5.2: Simulated cylinder pressure at OP2 with the compression
ratio set to integer values from 8 to 15.

5.4 Simulation results

A fundamental problem is that the exact value of the compression ratio
in an engine is unknown, which makes the evaluation of the compres-
sion ratio estimation methods difficult. To overcome this obstacle sim-
ulated pressure traces, with well known compression ratios, are used.
The methods are first evaluated on data from motored cycles in one
operating point with respect to the estimation bias, variance and the
residual. Then they are evaluated on all cycles in the generated data
set and a sensitivity analysis is performed. Finally the methods are
evaluated on fired cycles.

5.4.1 Simulated engine data

Cylinder pressure traces were generated by simulating the standard
model (5.4) with representative single-zone parameters, given in ap-
pendix B.4. Three operating points were selected with engine speed
N = 1500 rpm and intake manifold pressures pma, € {0.5, 1.0, 1.8}
bar, which define operating points OP1, OP2 and OP3 respectively.
Pressure traces were generated for both motored and fired cycles at
each operating point for integer compression ratios between 8 and 15,
which covers the compression ratio operating range of the prototype
SI engine. To each trace ten realizations of Gaussian noise with zero
mean and standard deviation 0.038 bar were added, forming altogether
240 motored and 240 fired cycles. This noise level was chosen since it
has the same RMSE as the residual for method 4 in the experimental
evaluation, and thus reflects the application to experimental data. The
data was sampled with a resolution of 1 crank-angle degree (CAD).
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In figure 5.2, one motored cycle is shown for each integer compression
ratio r. at operating point 2 (OP2).

5.4.2 Results and evaluation for motored cycles at
OoP2

The performance of the estimation methods is first evaluated for OP2.
This operating point has an intake manifold pressure in the midrange
of the engine, and a relatively low engine speed for which the effects
of heat transfer and crevices are significant. OP2 is therefore chosen
as a representable operating point. For the simulated pressure, the
parameters in the models are estimated using all methods, for each
individual cycle.

Estimation results

For the variable compression ratio engine, the difference in r. between
two consecutive cycles can be as large as 5 %. Since the estimation
is performed on each cycle, the methods should be able to deal with
initial values that are 5 % off, in order to cope with compression ratio
transients. For the simulated data, the initial parameter values for
the estimations are therefore set to a +5 % perturbation of the true
parameter values. The termination criterion, described in section 5.3,
is chosen in order to assure that the methods have converged, i.e. yield
the same estimate for every initial parameter set.

Figure 5.3 shows a summary of the estimates for all cycles at OP2.
In the figure the true compression ratios are the integer values 8 to 15
and for convenience, the results for methods 1 to 4 are separated for
each true value. The estimate should be as close as possible to the
corresponding dotted horizontal line.

Table 5.2 summarizes the results in terms of relative mean er-
ror (RME) and mean 95 % relative confidence interval (RCI) in 7.,
as well as the mean computational time and mean number of iterations
in completing the estimate for one cycle. The measures RME and RCI
are given for the lower (r. = 8) and upper (r. = 15) limits of the com-
pression ratio, and as a mean for all compression ratios. The relative
mean error RME is defined by

1 M 7 *
M Zj:l reh —Te

K
TC

RME =

7 (5.20)

where 7,7, j = 1,..., M is the estimate of r. corresponding to cycle j
and 77 is the true compression ratio. The mean 95 % relative confidence
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Simulated motored cycles at OP2
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Figure 5.3: Mean value and 95 % confidence interval of the estimated
compression ratio for motored cycles using the four methods, compared
to the true compression ratio. The estimate should be as close as
possible to the corresponding dotted horizontal line.

interval RCI is computed as
M
1 1.960;
RCI = — ; — (5.21)

where o; is computed using (C.18) and (C.20) in appendix C.1. The
mean computational time and mean number of iterations in table 5.2
are given for the worst case of the initial parameter sets. The calcu-
lations were made using Matlab 6.1 on a SunBlade 100, which has a
64-bit 500 Mhz processor.

Analysis of estimation results

Figure 5.3 shows that the estimates from methods 1, 2 and 3 become
poorer the higher the compression ratio is. It stresses that heat transfer
and crevice effects, which are not considered explicitly in the polytropic
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model (5.1), must be taken into account when a better estimate is
desired for higher compression ratios. Method 4 has the correct model
structure and therefore yields a better estimate with much lower bias
and variance for all compression ratios.

These results are further confirmed by the relative mean errors in
table 5.2, where method 4 is the most accurate but also the most time-
consuming method. Method 4 is at the time being not suitable for
on-line implementation, unless a batching technique is used, e.g. where
one cycle is collected and then processed until finished. Of the other
three methods, method 2 performs best concerning estimation accuracy
and is outstanding regarding convergence speed. Method 1 has the
potential of low computational time since it solves linear least-squares
problems only, however the rate of convergence is low which makes it
unsuitable for practical use.

Residual analysis

The residuals corresponding to the cylinder pressures in figure 5.2 are
displayed for all four methods in figure 5.4 for r. = 8 and in figure 5.5 for
r. = 15, together with their respective root mean square error (RMSE).

There is a systematic deviation for methods 1 and 2 that becomes
more pronounced when 7. increases, as seen by comparing figures 5.4
and 5.5. The same systematic deviation occurs for method 3, although
it is smaller. The residuals for method 4 are white noise, which is ex-
pected since method 4 has the correct model structure. The systematic
deviation for methods 1-3 is due to the polytropic model (5.1), which
does not explicitly account for heat transfer and crevice effects . The
systematic deviation for method 3 would be of the same order as for
methods 1 and 2, if it were not for the two extra parameters Af and Ap
in (5.19). These two parameters compensate for the lack of heat trans-
fer and crevice effect with the penalty of parameter biases. The most
pronounced change is the shifted crank angle phasing A6, which results
in a peak pressure position which is closer to top dead center (TDC).
However this model flexibility does not improve the compression ratio
estimate for method 3, which according to table 5.2 has a bias of -3.6 %
in mean.

5.4.3 Results and evaluation for motored cycles at
all OP

The results for all motored operating points are given in table 5.3,
where the relative mean estimation errors and 95 % confidence intervals
are computed as a mean for all compression ratios. For all operating
points, the estimate from method 2 is within 1.5 % and within 0.5 %
from method 4. The confidence intervals are smallest for method 4,
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Method re =38 re =15 all r,
vS. RME RCI | RME RCI | RME RCI std Time Iter
True | [%] (%] [ (% (%] | (%] (%] I [ms] [
1 2.6 4.1 2.3 6.9 2.4 5.4 0.093 63 26.1
2 -0.9 3.5 -1.0 3.8 -0.9 3.6 0.072 3 3.0
3 -2.8 5.9 -4.4 54 | -3.6 5.5 0.19 8 5.0
4 0.35 0.87 | 0.12 0.49 | 0.21 0.65 0.0013 2.6 x10° 14.0

Table 5.2: Relative mean error and mean 95 % relative confidence
interval (RCI) in the estimated r. for r. = 8, r. = 15 and as a mean
for all compression ratios for simulated data from OP2. The standard
deviation, as well as the mean computational time and mean number
of iterations in completing the estimation for one engine cycle are also
given.
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Figure 5.4: Difference between estimated and simulated cylinder pres-
sure for all methods, given the motored cycle at r. = 8 in figure 5.2.
The RMSE for the added measurement noise is 0.038 bar.
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Figure 5.5: Difference between estimated and simulated cylinder pres-
sure for all methods, given the motored cycle at r. = 15 in figure 5.2.
The RMSE for the added measurement noise is 0.038 bar.

followed by method 2. The observations made for OP2 with respect to
bias and variance are confirmed by the results for all operating points.

A trend among the estimates is that a higher intake manifold pres-
sure ppqn reduces the confidence interval. A higher pressure improves
the signal to noise ratio, while the effects of heat transfer and crevice
flows remain the same.

The choice of residual is important. This is illustrated by the fact
that the estimates and confidence intervals for methods 1 and 2 differ,
for which the only difference is the formulation of the residual. Fur-
thermore, methods 1 and 2 use a logarithmic residual of the pressure,
that weighs the low pressure parts between IVC and EVO relatively
higher than method 3 does. For method 3, the samples corresponding
to the highest pressure are the most important ones. This however co-
incides with the highest mean charge temperature, and thus the highest
heat transfer losses. This is where the polytropic pressure model used
in methods 1-3 has its largest model error, since heat transfer is not
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OP1 OP2 OP3

N 1500 rpm 1500 rpm 1500 rpm
Pman 0.5 bar 1.0 bar 1.8 bar
Method RME [%] RCI[%] RME [%] RCI[%] RME [%] RCI[%]

1 3.6 8.5 2.4 5.4 0.45 4.3

2 -0.35 5.7 -0.9 3.6 -14 2.7

3 -3.8 7.1 -3.6 5.5 -3.6 4.7

4 0.37 1.2 0.21 0.65 0.094 0.37

Table 5.3: Relative mean error (RME) and mean 95 % relative confi-
dence interval (RCI) in estimated 7., for simulated motored cylinder
pressures from three operating points defined by engine speed N and
intake manifold pressure p,,q,. The estimate improves with increased
pressure.

Parameter Nominal value Deviations

Ap [kPa] 0 -5 -2 2 5
A0 [deg] 0 -0.25 -0.1 0.1 0.25
Ci [ 2.28 0 114 342 4.56
Ver (% V2] 1.5 0 0.75 2.25 3.0

Table 5.4: Nominal values for the parameters and the deviations used
in the sensitivity analysis.

included explicitly. This explains why both methods 1 and 2 yield a
more accurate estimate than method 3.

5.4.4 Sensitivity analysis at OP2

The next question asked is: — How sensitive are the methods to changes
in heat transfer, crevice volume, an inaccurate TDC determination or
a badly referenced cylinder pressure? A sensitivity analysis is there-
fore performed and model parameter values are altered according to
table 5.4. The estimates for all four methods are summarized in fig-
ure 5.6, where the relative mean error in r. is given as a function of
parameter deviation for each of the four parameters.

According to figure 5.6, methods 3 and 4 are insensitive to an ad-
ditive pressure bias Ap, since their respective models include a pres-
sure bias. Methods 1 and 2 which do not model a pressure bias, are
approximately equally sensitive. This is due to that an additive pres-
sure bias affects all pressure samples equally. A parameter deviation
of |Ap| <2 kPa assures that the estimates from methods 1 and 2 are
within the accuracy of method 3, at least for OP2.

Methods 3 and 4 are also insensitive to a crank angle offset A6, for
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Figure 5.6: Relative mean error for parameter deviations in Ap, A6,
normalized C; and V., for methods 1-4 at OP2. Nominal parameter
values are given in table 5.4, and correspond to the third value on the
X-axis.

the same reasons as for the pressure bias Ap. Comparing methods 1
and 2, method 1 is far more sensitive to Af than method 2. This is
explained by the following: A crank angle offset affects the pressure in
the vicinity of TDC the most, due to the higher pressure. It is therefore
logical that method 2 which uses a logarithmic residual of p, is less
sensitive than method 1. For a parameter deviation of |Af] <0.2 deg,
method 2 yields more accurate estimates of r. than method 3 does.
Todays calibration systems have a possibility to determine the crank
angle offset with an accuracy of 0.1 degree. This suggests that the
crank angle offset Af can be left out when using method 2.

Methods 1, 2 and 3 are all affected, while method 4 is unaffected by
changes in heat transfer C;. The heat transfer affects the pressure in the
vicinity of TDC the most, due to the higher in-cylinder temperature.
Therefore method 1 is more sensitive to heat transfer than method 2
for the same reasons as for the crank angle offset A6.

All methods are sensitive to deviations in crevice volume V.., al-
though method 4 is not as sensitive as the other methods. It is however
important to set V., constant, to avoid an even larger bias in clearance
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volume V.. For motored cycles the clearance volume and the crevice
volume are modeled in almost the same way, due to the relatively low
in-cylinder temperatures. It is therefore natural that a larger crevice
volume causes a larger estimate of the clearance volume, and thereby
a smaller compression ratio. This is the case in figure 5.6, and it has
been seen earlier for motored and fired cycles in Klein (2004, p. 94).

To conclude, the more robust methods 3 and 4 are able to cope with
the parameter deviations imposed upon them, due to their high model
flexibility. Of the other two methods, method 2 has the best perfor-
mance although it is equally sensitive to a pressure bias as method 1
is.

5.4.5 Results and evaluation for fired cycles at OP2

Figure 5.7 displays the results for simulated cycles with combustion,
in terms of mean value and 95 % confidence interval at each integer
compression ratio from 8 to 15.

The estimates for methods 1-3 are poor, and the relative mean error
for all .. is in the order of 10 %. These methods all suffer from the fact
that the pressure corresponding to TDC is not included, since they only
use the data between IVC and SOC. This also yields larger confidence
intervals compared to motored cycles, reflecting a more uncertain es-
timate. Method 4 on the other hand uses all data between IVC and
EVO, and yields an estimate accurate within 0.4 % for OP2. Due to
the poor performance of methods 1-3, an experimental evaluation on
fired data is not pursued. Out of the four proposed methods, method 4
is required to estimate the compression ratio from a fired cycle.

The conclusions from this investigation of how the methods perform
on simulated data is summarized in section 5.6.

5.5 Experimental results

The attention is now turned to the issue of evaluating the methods on
experimental engine data. As mentioned before, the true value of the
compression ratio is unknown. Therefore it is important too see if the
effects and trends from the simulation evaluation are also present when
the methods are applied to experimental data. The performance of the
methods is discussed using one specific operating point, and is then
followed by an evaluation including all operating points.

5.5.1 Experimental engine data

Data is collected during stationary operation at engine speeds N €
{1500, 3000} rpm, intake manifold pressures ppqn € {0.5,1.0} bar alto-
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Figure 5.7: Mean value and 95 % confidence interval of the estimated
compression ratio for fired cycles using the four methods, compared to
the true compression ratio.

gether forming four different operating points, defined in the upper part
of table 5.6. The measurements are performed for actuated compression
ratio values from the lower limit 8.13 to the upper limit 14.66, through
integer values 9 to 14 in between. With actuated compression ratio it
is meant the value commanded from the electronic control unit (ECU).
These values were determined from engine production drawings and
implemented in the ECU, but can be affected by production tolerances
or non-ideal sensors (Amann, 1985), as well as mechanical and thermal
deformation during engine operation (Lancaster et al., 1975).

For each operating point and compression ratio, 250 consecutive
motored cycles with the fuel injection shut-off were sampled with a
crank-angle resolution of 1 degree, using a Kiestler 6052 cylinder pres-
sure sensor. Figure 5.8 displays one measured cycle for each r. at
operating point 2 (OP2). For a given r. the mono-head of the engine is
tilted, see figure 5.1, which causes the position for TDC to be advanced
from 0 CAD (Klein et al., 2003). The lower the compression ratio is,
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Figure 5.8: Experimentally measured cylinder pressures at OP2. The
actuated compression ratios are 8.13, integer values 9 to 14, and 14.66.

the more advanced the position for TDC becomes. This explains why
the peak pressure position for r. = 8.13 in figure 5.8 is advanced com-
pared to r. = 14.66, and not the other way around which would be the
case if only heat transfer and crevice effects were present.

5.5.2 Results and evaluation for OP2

The performance of the estimation methods is first evaluated for op-
erating point OP2, defined in table 5.6. This operating point has an
intake manifold pressure in the midrange of the engine, and a relatively
low engine speed for which the effects of heat transfer and crevices are
significant. OP2 is therefore chosen as a representable operating point.

Estimation results

The estimation results are presented in the same manner as for the
simulated data. Figure 5.9 displays the mean estimate and the mean
95 % confidence interval for 250 consecutive cycles at OP2, where the
estimate has been computed for each individual cycle. Table 5.5 shows
mean computational time and mean number of iterations, as well as the
relative mean error and mean 95 % relative confidence interval. Two
examples of residuals are given in figures 5.10 and 5.11.

Analysis of estimation results

Figure 5.9 shows that method 3 underestimates and methods 1, 2 and
4 overestimate the compression ratio. The spread of the estimates be-
tween the methods is more pronounced than for the simulated data,
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Experimental motored cycles at OP2
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Figure 5.9: Mean value and 95 % confidence interval of the estimated
compression ratio for motored cycles using the four methods, compared
to the actuated compression ratio. The estimate should be as close as
possible to the dotted horizontal line.

compare figures 5.9 and 5.3. This spread increases as the compression
ratio becomes higher, a trend also found for the confidence intervals
of the estimates. The interrelation among methods 1-3 are however
the same, where method 1 always yields the largest estimates, and
method 3 the smallest. The trends and effects in the simulation evalu-
ation are also present in the experimental investigation, which gives a
first indication that the conclusions drawn from the simulation study
are valid.

All methods have approximately the same confidence intervals for
the experimental and simulated data, compare tables 5.5 and 5.2. Again
method 4 yields the smallest confidence intervals followed by method 2.
The difference is most significant for method 4, which had the correct
model structure in the simulation case while here it is an approxima-
tion of the real engine. This is also seen in the residual, figure 5.11,
as a systematic deviation around TDC. This model error thus adds to
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Method r. =8.13 r. = 14.66 all r.
vs. RME RCI| RME RCI | RME RCI std Time Iter
Act. | [%] (%] | [%] (%] | [%] %] [ [ms]  []
1 6.0 2.9 | 5.2 6.1 | 64 53  0.11 89 30.2
2 5.1 2.6 | 2.7 3.7 |36 3.8 0.083 5 37
3 -1.5 6.7 | -6.1 5.8 | -4.2 6.5  0.066 128 5.7
4 3.6 1.6 1.0 1.3 2.2 1.3 0.051 6.6 x10° 14.0

Table 5.5: Relative mean error (RME) and mean 95 % relative confi-
dence interval (RCI) of the estimated r. for extreme values r. = 8.13
and r. = 14.66, and as a mean for all compression ratios for experi-
mental data from OP2. They are computed relative to the actuated
compression ratio. The standard deviation, mean computational time
and mean number of iterations in completing the estimation for one
engine cycle are also given.

the variance of the estimate. It also changes the interrelation between
methods 1-3 and method 4, e.g. method 4 always gives a smaller esti-
mate on experimental data than method 2, while the converse occurs
on the simulated data.

The mean computational time and number of iterations are higher
for the experimental data, as shown in table 5.5. As for the simulations,
method 2 is the most computationally efficient method of them all.

Residual analysis

The residuals corresponding to the cylinder pressures in figure 5.8 are
displayed for all four methods in figure 5.10 for r. = 8.13 and in fig-
ure 5.11 for r. = 14.66, together with their respective root mean square
error (RMSE).

As for the simulations, there is a systematic deviation for methods
1, 2 and 3. This deviation increases with r.. The residuals for method 4
have a comparatively small deviation near TDC. This small deviation
illustrates that the model structure is acceptable but not perfect, since
it is not able to fully capture the measurement data. This is most
evident for the higher compression ratio, r. = 14.66, in figure 5.11. The
relative mean error for r. = 14.66 is however small, less than 0.8 %, and
method 4 can therefore be considered to capture the data well. The
residuals from the experimental data have a higher RMSE compared
to the simulations, but they are still of the same order. The differences
between the methods are due to different formulations of the residuals
and model simplifications. These properties give rise to the systematic
deviations that are visible in both simulated and experimental data.
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Figure 5.10: Difference between estimated and experimental cylinder
pressure for all methods, given the motored cycle in figure 5.8 at r. =
8.13.

5.5.3 Results and evaluation for all OP

The trends shown for OP2 are also present in the full data set, displayed
in table 5.6. This table shows that as the intake manifold pressure
Pman increases, the variance for all methods decreases. A high p,qay, is
therefore desirable. However, the influence of the engine speed has no
clear trend as two of the methods yield higher variance and the other
two lower variance, as the engine speed is increased. For all operating
points, method 4 yields the smallest confidence intervals followed by
method 2. Therefore the conclusions made in the simulation evaluation
with respect to models, residual formulation, methods, heat transfer
and crevice effects are the same for the experimental evaluation.
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Figure 5.11: Difference between estimated and experimental cylinder
pressure for all methods, given the motored cycle in figure 5.8 at r, =
14.66.

OP1 OP2 OP3 OP4
N 1500 rpm 1500 rpm 3000 rpm 3000 rpm
DPman 0.5 bar 1.0 bar 0.5 bar 1.0 bar

Method RME RCI RME RCI RME RCI RME RCI
vs. Act. ] [l [l %] [l  [%] (%] (%]

1 10 6.2 64 53 8 75 3.6 5.9
2 6 46 3.6 3.8 1.3 5.2 -0.083 4

3 -2.3 8.2 4.2 6.5 -39 73 6.2 5.9
4 2.8 20 22 1.3 29 1.6 24 1.2

Table 5.6: Relative mean error (RME) and mean 95 % relative confi-
dence interval (RCI) in estimated .., for four different operating points
defined by engine speed N and intake manifold pressure p,,qn-
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Discussion on compression ratio diagnosis

One application that the proposed methods were developed for was
compression ratio diagnosis. The applicability of the methods will be
illustrated by a short example. Consider the issue of diagnosing the
compression ratio. A possible fault mode is that the compression ra-
tio gets stuck at a too high level, e.g. at r. = 12. A diagnostic test
is then used to detect and alarm when r. gets stuck. This is real-
ized by a hypothesis test, where the null hypothesis is formulated as
HY : r. not stuck. This is illustrated by the following example which
uses the diagnosis framework presented in Nyberg (1999) and Nyberg
(2001):

Example 5.1 — Detecting r,. stuck at 12
Counsider the task of detecting when the compression ratio gets stuck.
Only two fault modes are considered

NF: 7, € [0.9r,%, 1.17,%]

F: or, 0 ¢ [0.9r,%, 1.1r,0, (5.22)

i.e. an estimated r,“* within 10 percent of the actuated r.“* is consid-
ered as no fault (NF). The hypothesis test is then formulated as

H°: NF
. r (5.23)
The test quantity T is based on comparing the actuated r.** and es-
timated r.**, according to

T = |r, " —r . (5.24)

Then if the controller e.g. actuates 7,%“* = 9 and r. is really stuck at
12, the test should alarm with a certain level of confidence. This is
formalized by the power function §(r.5") here defined by

B(rce“) = P(reject HO|rCESt) =P(T> J|7'065t)7 (5.25)

where J is a threshold designed by the user. The significance level of
the test is defined by

o = max B(r.*'|r.%" € NF), (5.26)

which corresponds to the worst case of the false alarm probability. To
be able to make the assumption that H' is true if HO is rejected,
the threshold J must be set to obtain a sufficiently low false alarm
probability.

Based on the estimates and confidence intervals for method 2 using
the experimental results at OP2 in table 5.5, the power function (3 is
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Figure 5.12: Power function § at OP2 for experimental data when 7.
is stuck at 12.

computed and displayed in figure 5.12. In the computations it is as-
sumed that the true r. is stuck at 12 and that linear interpolation can
be used to find the estimates and confidence intervals at compression
ratios where no actual measurements have been performed. When de-
signing a diagnosis system, there is generally a compromise between a
low false alarm probability (FAP) and a low missed detection proba-
bility (MDP), given by (D.6) and (D.7).

The (adaptive) threshold is chosen as J = 0.157,%, and figure 5.12
shows that this results in a significance level of less than 0.2 %, which is
assumed sufficiently low. In this case the false alarm probability comes
to the cost of a low missed detection probability for r.*¢ close to but
not within the NF fault mode, 7" € [10.8, 13.2]. This is illustrated
by the region 7. € [10.5, 10.8] where MDP =1 — 3 > 0.5, i.e. the
error will not be detected in more than 50 % of the cases. But when
r.%" < 10 the missed detection probability goes to zero, indicating
that we will always detect if r. gets stuck if a proper excitation of the
actuated compression ratio is made.
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Example 5.1 illustrates the principle of how a diagnosis system can
be designed and analyzed using method 2 at operating point OP2. This
can be generalized to a diagnosis system for all operating points, and
it is only a matter of design to find an appropriate threshold for all
methods. The diagnostic performance in terms of false alarm probabil-
ity, missed detection probability and computational time are of course
expected to become best for method 2.

Therefore during driving, all methods are able to detect if the com-
pression ratio is stuck at a too high or at a too low level, given an
appropriate number of cycles and an appropriate excitation of .. This
is sufficient both for safety reasons, where the compression ratio can
be too high and engine knock is the consequence, and for fuel eco-
nomic reasons, where a too low compression ratio will lead to higher
fuel consumption.

5.6 Conclusions

Four methods for compression ratio estimation based on cylinder pres-
sure traces have been developed and evaluated for both simulated and
experimental cycles.

Conclusions from the simulation results

The first three methods rely upon the assumption of a polytropic com-
pression and expansion. It is shown that this is sufficient to get a rough
estimate of the compression ratio r. for motored cycles, especially for a
low r. and by letting the polytropic exponent become small. For a high
re it is important to take the heat transfer into account, and then only
method 4 is accurate to within 0.5 % for all operating points. Method 4
is however slow and not suitable for on-line implementation. Method 2
on the other hand is substantially faster and still yields estimates that
are within 1.5 %. The formulation of the residual is also important,
since it influences the estimated r.. For fired cycles, methods 1-3 yield
poor estimates and therefore only method 4 is recommended.

A sensitivity analysis, with respect to crank angle phasing, cylinder
pressure bias, crevice volume, and heat transfer, shows that the third
and fourth method are more robust. They therefore deal with these
parameter deviations better than methods 1 and 2. Of the latter two,
method 2 has the best performance for all parameter deviations except
for an additive pressure bias.

Conclusions from the experimental results

All methods yield approximately the same confidence intervals for the
simulated and experimental data. The confidence intervals resulting
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from method 4 are smallest of all methods, but it suffers from a high
computational time. Method 2 yields smaller confidence intervals than
methods 1 and 3, and is outstanding regarding convergence speed. The
effects and trends shown in the simulation evaluation are also present
in the experimental data. Therefore the conclusions made in the sim-
ulation evaluation with respect to models, residuals, methods, heat
transfer and crevice effects are the same for the experimental evalu-
ation. For diagnostic purposes, all methods are able to detect if the
compression ratio is stuck at a too high or too low level.

Concluding recommendations

The accuracy of the compression ratio estimate is higher for motored
cycles with high initial pressures. Thus if it is possible to choose the
initial pressure, it should be as high as possible. Using motored cycles
assures that all pressure information available is utilized and the high
initial pressure improves the signal-to-noise ratio, while the effects of
heat transfer and crevice flows remain the same.

Two methods are recommended; If estimation accuracy has the
highest priority, and time is available, method 4 should be used. Method
4 yields the smallest confidence intervals of all investigated methods for
both simulated and experimental data. In the simulation case where
the true value of the compression ratio is known, method 4 gave esti-
mates with smallest bias. If computational time is the most important
property, method 2 is recommended. It is the most computationally
efficient of all investigated methods, and yields the smallest confidence
intervals out of methods 1-3.
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USING PRIOR KNOWLEDGE FOR
SINGLE-ZONE HEAT RELEASE
ANALYSIS

Internal combustion engines operate by converting the chemical energy
in the air-fuel mixture into useful work by raising the cylinder pressure
through combustion. The cylinder pressure data itself is therefore a
reflection of the combustion process, heat transfer, volume change etc.
and thus gives important insight into the control and tuning of the
engine. To accurately model and extract information from the cylinder
pressure is important for the interpretation and validity of the result.
Due to the short time scale of the process, a sequence of measurements
from an engine gives huge amounts of data. These large sets of data
have to be analyzed efficiently, systematically, and with high accuracy.
The objective here is therefore to develop a tool for efficient, systematic
and accurate off-line heat release analysis of cylinder pressure data.

Problem outline

The focus is on a single-zone heat release model (Gatowski et al., 1984)
that describes the cylinder pressure accurately and has a low compu-
tational complexity. A low computational complexity is an important
feature when analyzing large data sets. However, this model includes
at most 16 unknown parameters, as shown in section 3.8, among which
there are couplings causing identifiability problems. This is due to that
the estimation problem is on the verge of being over-parameterized. An
example is the clearance volume and the crevice volume, which are hard
to identify simultaneously. This is often solved by setting one of these
parameters to a constant fixed value. The correct value of the constant
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parameter is however unknown, and is therefore most likely set with an
error. This error causes a bias in the other parameter estimates.

Problem solution

Two methods for parameter estimation are developed and compared.
Method 1 is called SVD-based parameter reduction and is summarized
as:

1. Estimate the parameter values and variances using a constrained
local optimizer.

2. Find the most uncertain parameter, i.e. the one that has the
highest variance by using singular value decomposition (SVD) of
the estimated hessian, for the given measured cylinder pressure.

3. Set the uncertain parameter from step 2 constant using prior
knowledge of the parameter and return to step 1.

The uncertain parameters are set constant one-by-one in step 3, which
reduces the variance for the remaining (efficient) parameters when no
modeling error is induced. A recommended number of efficient pa-
rameters is then found by minimizing the Akaike final prediction error
criterion (Ljung, 1999). Step 3 is motivated by the following; The most
uncertain parameters generally drift off from their nominal values. This
nominal parameter deviation will cause a bias even in the most certain
parameters. This motivates why the most certain parameter is not set
constant. However, if the most uncertain parameters are set fixed to
their nominal values, it is believed that this will reduce the bias in the
efficient parameters.

The second method uses prior knowledge of all the parameters ex-
plicitly in the optimization. The parameters x are estimated by mini-
mizing the criterion function:

N

W = %;@(9» —0(0@)’ + (@ —ah) S —a®)  (61)
w.r.t. 2, i.e. by minimizing the standard prediction error (6;,x) =
p(0;) — p(0;, z) using a regularization technique. Method 2 is therefore
named regularization using prior knowledge. The first term in (6.1)
minimizes the difference between the modeled p(6,x) and measured
p(0) cylinder pressure, while the second term pulls the parameters a
towards 27, i.e. towards the nominal values obtained from prior knowl-
edge. The matrix § and vector 2% account for prior knowledge of the
parameters, where § influences how strong the pulling force should be.
This can be interpreted as that all parameters are assigned a prior
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probability density function (pdf), with a nominal mean value x#. If
the pdf is Gaussian, minimizing Wy produces the maximum a posteri-
ori estimate. For example, our prior knowledge of an additive pressure
offset (after pegging with the intake manifold pressure) could be that
the parameter is Gaussian distributed with a nominal mean value of
0 kPa, and a standard deviation of 2.5 kPa. It is however only the inter-
group relation among the parameters, and not the absolute value of the
standard deviation that is important as will be shown later. The nom-
inal vector z# is found from appropriate initial values and the size of
the matrix ¢ is tuned using simulations to give a balanced compromise
between the prior knowledge and the measured cylinder pressure.

A fundamental problem is that the true values of the parameters are
unknown in a real engine, which makes the evaluation of the two meth-
ods on experimental data difficult. This is mainly due to two reasons:
First of all, the chosen model structure is bound to be incorrect since
not every physical process influencing the measured cylinder pressure
is modeled, which will cause inexact parameter values. Secondly the
criterion function can be small for a given data set, although the pa-
rameter estimates are, due to physical reasons, bad. It is therefore not
sufficient to minimize the criterion function on validation data to evalu-
ate the two proposed methods. To overcome these obstacles simulated
pressure traces, with well-known parameter values and a well-known
model structure, are used. In the simulations noise of the same order
as for the experimental data is added to the measurement signal. The
methods are evaluated on simulated data from motored and fired cy-
cles with respect to estimation bias, variance and residual analysis using
both false and correct prior knowledge. The results are also validated
on experimental data from an SI engine.

6.1 Outline

The outline of this chapter and the two following chapters is presented
here. One cylinder pressure is described in section 6.2. It has been de-
rived in chapters 2 and is summarized here for convenience. Then the
problem associated with this parameter estimation application is illus-
trated in section 6.3 by two simple approaches, which are based purely
on either data fitting or parameter prior knowledge, and they are both
unsuccessful. Therefore two methods, referred to earlier in this chapter
as method 1 and 2, that incorporate parameter prior knowledge in the
estimation problem are proposed in section 6.4. These two methods
are then evaluated using simulated and experimental data in chapter 7
for motored cycles, and in chapter 8 for fired cycles. The compiled
conclusions from both evaluations are given in section 9.3. A method
of how to express the prior knowledge is also presented in general terms
in section 6.4, and in chapters 7 and 8 for the specific cases.
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6.2 Cylinder pressure modeling

One single-zone models is used to describe the cylinder pressure trace
and it is referred to as the standard model. Gatowski et al. (1984)
develops, tests and applies a single-zone model for heat release analysis.
See section 2.5 for the derivation and section 3.8 for details on the
parameters and model components. The model is based on the first
law of thermodynamics and maintain simplicity while still including
the well known effects of heat transfer and crevice flows.

6.2.1 Standard model

The most important thermodynamic property when calculating the
heat release rates in engines is the ratio of specific heats, v(T',p, \) =
Z—f (Gatowski et al., 1984; Chun and Heywood, 1987; Guezennec and
Hamama, 1999). In the standard model ~ is represented by a linear

function in mean charge temperature T'

Yin(T) = v300 + b(T — 300), (6.2)

i.e. model By in chapter 4. The standard cylinder pressure model is
simulated by using (3.36)—(3.45).

6.2.2 Cylinder pressure parameters

The parameters used in the standard model and how to find its nominal
values was given in chapter 3. In the standard model, two parameters
(300 and b) are estimated for ~.

6.3 Problem illustration

To illustrate the difficulties associated with parameter estimation given
a cylinder pressure trace, two simple but different approaches are used.
The first approach estimates all parameters in the standard cylinder
pressure model simultaneously by applying a Levenberg-Marquardt
method with constraints on the parameters, which is a local optimizer
described in appendix C.1. The constraints are physically motivated
and are set widely, in order to only influence whenever the parameter
values become physically invalid. Two examples of applied constraints
are a positive cylinder pressure at IVC, pyy ¢, and a mean charge tem-
perature at IVC, Ty ¢, larger than 270 K. Without these constraints
the approach yields e.g. a Ty ¢-estimate that typically is approximately
200 K, i.e. a physically invalid value. The second approach tunes the
parameters manually one at a time until a satisfactory pressure trace
is found, an approach sometimes referred to as “heat release playing”.
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OP1: N=1200 rpm, pman=32.3 kPa
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Figure 6.1: Filtered experimental firing cycle and the modeled cylinder
pressure for the two simple approaches. The residual for approach 1
(dash-dotted) and approach 2 (dashed) are also given in both the upper
and lower plot. The RMSE:s are 1.3 and 5.8 kPa respectively.

This approach requires a lot of patience combined with prior knowl-
edge of nominal values as well as expert knowledge of what influence
each parameter has on the cylinder pressure, and also cross-couplings
in between the parameters.

The results for both approaches are given in figure 6.1, where the
modeled and measured cylinder pressure traces are displayed, and in
table 6.1 where the parameter estimates are given. In fairness of the
second approach, it should be pointed out that less than an hour was
spent on tuning the parameters, thus the result could of course be
better. It however illustrates how time-consuming this approach can
be.

As shown in figure 6.1 approach 1 has a good residual fit, but accord-
ing to table 6.1 the parameter estimates are bad. The small residual
in figure 6.1 also illustrates that the model structure is flexible enough
to describe the cylinder pressure, but that the parameters are hard to
identify. The bad parameter estimates are exemplified by the temper-
ature at IVC, Ty ¢, which is as low as 270 K and also the lower bound



CHAPTER 6. USING PRIOR KNOWLEDGE FOR. ..

122

‘soyorordde odwiis omy) o) 10J S9PRWIISO PUR SON[RA [RUTWON :T°9 9[qR],

0¢¢ 0G¢ 2S¢ [] monsnquoo woay A310Ue posea[or | U}
102 102 102 [DALV Sop| ofSue wmqg-pider | Yy
992 992 97 [DaLv 3op| eidue juowdopasp-ourey | Py
9'z¢- 9'7¢- pIe- [DALy 9op] o[Bue uorusy | g
8¢°0 1240 19°0 [¢wo] ownjoa 9014010 93eF0Id3e o[duls | 24
8'8¢ 8'8¢ 119 [¢wo] ewmioa eowezes | %A
0¥y GLy €9¢ [31] emyerodwoy [rem ueowr | ™
8°88¢ 0°00% 00T [31] DAT e emyerodwoy oSreyd ueowr | OALf
1y 01y LCy [ed] DAT e omssoad zopurdd | OAId
1 T 806°0 [-]ure8 yuemroinseow oanssoxd | dyf
2871~ L€ T1- eI- [ed] syuoweinseowr anssoad ut seiq dvyy
L¥0°0 ¢v0°0 S¥0'0 [DALV Sop] Sutseyd o[3ue yueld oV
e—01°78€¢ | ¢-01-¥C€ | ¢ 01 V1€ -] 1o30urered topsueri-yedy | &)
8¢°C 9G¥y AT [-] o70urered 1ojsueI)-yeoy %9}
¢-0T TFL— | ¢-0T-GFL— | ¢—0T 115~ [ 37]oryex yesry oywads 1oy adofs | q
GeeT GEE'1 GRT'T [-] oryex qeey oymwods Juejsuod | 00EL
[eUTWON ¢ yroaddy | 1 yoeoxddy vonpdroso(] | I




6.4. ESTIMATION METHODS 123

chosen for this parameter, clearly a too low value. This is compen-
sated for by having a higher mean cylinder wall temperature, T,,, and
a smaller v399. Without the constraints the estimation would render an
even smaller T7y . Typically all temperatures drift off to non-physical
values, independent of initial value, when estimating all parameters
at the same time. This is of course unwanted and yields parameter
estimates that are inaccurate and not physically valid. The same be-
havior arise for estimation problems that are either rank-deficient or
ill-posed. As an illustration, the behavior for a simple linear example
of a rank-deficient problem is given in appendix C.2.

For the second approach it is the other way around compared to
the first approach. The second approach gives reasonable parameter
values, see table 6.1, but the residual fit is worse than for the first
approach as shown in the lower part of figure 6.1. This approach can
therefore be said to give physically valid parameter estimates, but not
in a time efficient way. In addition the user’s presumption also plays a
role in the estimation and could result in a bias. The residual error is
however small compared to the measured cylinder pressure, as shown
in the upper part of the figure. However none of these approaches
comply very well with all our demands on the estimation procedure;
efficient, systematic and accurate. To enhance the performance of these
two approaches, their advantages are combined by using the systematic
minimization of the residual from the first approach and the parameter
guess approach based on expert and prior knowledge from the second.
The idea for doing so is to use prior knowledge or information about
the parameters and use it in a central way to enhance the estimation
procedure.

6.4 Estimation methods

Two methods that use prior knowledge of the parameters are presented.
They both estimate the parameters by minimizing the difference be-
tween the measured p(6;) and modeled cylinder pressure p(6;,x), i.e.
by minimizing the prediction error £(6;, x) = p(6;) — p(0;, ). As shown
in figure 6.1 the data is well described by a direct simulation of the
standard model in section 6.2.1. It is therefore reasonable to use direct
simulation as a predictor, which corresponds to an output-error model
assumption.

The first method uses the prior knowledge indirectly by reducing the
number of parameters to estimate. This is done by setting those that
are hardest to estimate to fixed values, given by the prior knowledge.
Method 1 is referred to as SVD-based parameter reduction. The sec-
ond method includes the prior knowledge directly into the optimization
problem. This is achieved by including a parameter deviation penalty
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term in the criterion function, that will help to regularize and thereby
control and attract the estimates to the vicinity of the priorly given
nominal values. This method is therefore called regularization using
prior knowledge.

6.4.1 Method 1 — SVD-based parameter reduction

The first method starts by estimating all parameters & by minimizing

1 N

Vi = = > _(0(0:) — (0, 7)) (6.3)
i=1

w.r.t. . This is done by using a Gauss-Newton method called the
Levenberg-Marquardt procedure, see appendix C.1 for details. The
number of parameters to estimate are then reduced one by one by set-
ting them fixed, starting with the most uncertain parameter. This is
motivated by the following; The most uncertain parameters generally
drift off from their nominal values. This nominal parameter deviation
will cause a bias even in the most certain parameters, as illustrated for
Y300 in table 6.1 for approach 1 where all parameters were estimated
simultaneously. Altogether, this motivates why the most certain pa-
rameter is not set constant. However, if the most uncertain parameters
are set fixed to their nominal values, it is believed that this will reduce
the bias in the efficient parameters.

Method 1 finds these uncertain (spurious) parameters by studying
the SVD of the estimated hessian, which reflects how much a certain
parameter affects the loss function Viy. When the most spurious pa-
rameter is found, it is set constant and the estimation starts over again
with one parameter less to estimate. This systematic procedure of re-
ducing the number of parameters was presented in (Eriksson, 1998) for
motored cycles. A recommended number of parameters was then found
by using the condition number of the hessian. Here all parameter es-
timates & for any given number of parameters are compared, and the
estimate minimizing the Akaike final prediction error (FPE) is the best
parameter estimate, z*.

Efficient and spurious parameters

Method 1 aims at handling the difficulties associated with the first sim-
ple approach in section 6.3 that were due to an over-parameterization
of the problem. The over-parameterization causes the jacobian v to
become ill-conditioned or rank deficient. A rank deficient jacobian can
occur if one or more columns of ¢ are parallel or almost parallel. Here
“almost” means in the order of the working precision of the computer.

This case reflects sets or combinations of parameters that do not
influence the criterion function that much. According to (Sjéberg et al.,
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1995; Lindskog, 1996), the parameters can be divided into two sets:
spurious and efficient parameter sets, where the former corresponds to
parameters with small influence on the criterion function value. Due to
this small influence on the criterion function, it is reasonable to treat
those parameters as constants that are not estimated. This parameter
classification can be made in quite a number of ways, as shown in
Example 6.1.

Example 6.1 — Spurious and efficient parameters

Consider the static model with two parameters
Yy = (1’1 + CUQ). (6.4)

If x5 is set constant and thereby considered as spurious, then xp is
considered to be efficient. The other way around works equally well,
and does not affect the flexibility of the model structure.

Eigenvector of hessian Hy — finding the spurious parameters

Locally, the estimated hessian Hy (&) gives insight into how sensitive
Vn (&) is to a certain parameter or combination of parameters. To be
able to estimate a certain parameter, that parameter has to have a
clear effect on the output predictions (Ljung, 1999, p.453). This is
reflected in the hessian, which has large values for efficient parame-
ters. Therefore, it is of interest to find the group of parameters that
corresponds to the smallest effect, i.e. the spurious parameters, and
set these parameters to appropriate constant values. This is reason-
able since the spurious parameters are the hardest to estimate with the
given model M(x) and the observed data ZV. The observed data is
defined as ZN = [y(61),u(61),y(02),u(02),...,y(0n),u(0n)], given the
inputs «(#) and outputs y(6).

The spurious parameters are classified by finding the smallest sin-
gular value of Hy (%, ZV), and from the corresponding eigenvector the
group of parameters can be picked out. An algorithm for this is given
by algorithm 6.1. The algorithm assumes that the parameters that
influence this eigenvector of the hessian Hy (%, Z") are the same for
the estimate 2, as for the true solution x!. The use of the algorithm is
illustrated in example 6.2.

Algorithm 6.1 can include an optional preferred ordering of the pa-
rameters, that is used in step 7. The ordering tells us which parameter
is best known a priori, and which parameter we therefore prefer to set
fixed first. This preferably applies to parameters that are similar in
their physical properties, such as two temperatures, which then can be
grouped together and have a relative ordering. This ordering should be
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based on prior knowledge of the parameters, and could be the result
of a pre-estimation of the parameters, knowledge of the measurement
situation and sensor properties, or by expert knowledge. For example,
the cylinder wall temperature T;, and the mean charge temperature at
IVC, Ty e, can be ordered as By = [Ty, Trve] if it is believed that Ty,
is better known than T7y . This means that if the two temperatures
end up in the same group of parameters in the eigenvector from the
hessian and as long as Try ¢ is not totally dominating, T;, will be set
constant prior to Tryc.

A special case for the preferred ordering groups, is when only one
(large) group B; containing all parameters is used. This case is sup-
ported by the algorithm, but not recommended since it could result in
that one spurious parameter is exchanged for another although there
is no physical coupling in between them. As mentioned earlier, it is
preferable if the parameters in the same ordering group are similar in
their physical properties or coupled in the chosen model structure. This
speaks in favor of using multiple ordering groups. An example of this
are the parameters Cy, T, and Tryv¢ which are coupled by the heat
transfer model (3.43b) and the temperature model (3.40).

It is assumed in the algorithm that a parameter only occurs in one
ordering group B;. In the algorithm there are two ad-hoc decision
rules, in step 4 and step 6 respectively. These are motivated after the
algorithm.

Algorithm 6.1 — Determining the spurious parameter using a pre-
ferred ordering

Let 2¢// be estimated parameters from the local optimizer used for
d# efficient parameters and z°P are the spurious parameters.

1.Compute the estimated hessian Hy(#, Z) (C.8), where & =
(i,eff xsp)T_

2.Compute the singular values ¢; > ... > ¢z > 0 and the corre-

sponding eigenvectors vy, ..., v4#, by using singular value decom-
position (SVD).

3.The eigenvector vg# which corresponds to the smallest singular
value ¢ #, is chosen. Then the element in v 4 that has the largest
absolute value is named ey, and is picked out. This element corre-
sponds to the most spurious parameter according to the data.

4.If the element e is dominating, the preferred ordering is overrid-
den. This is realized as if the absolute value of the element e, is
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greater than 0.9, go to step 8.
5.If no preferred ordering exists, go to step 8.

6.Form a group A of elements from the eigenvector vy# correspond-
ing to ¢z#, by using the following strategy: Find the elements in
vg# that have absolute values greater than 1/0.1. Sort these ele-
ments in a descending order of their size in group A.

7.Find the ordering group B; to which e; belongs. The element
in B; that has the highest ordering in B; and at the same time
belongs to group A, is the new e.

8.Return the parameter z; that corresponds to element ey.

Steps 1-3 in algorithm 6.1 are similar to the approach in principal
component analysis, but here a parameter is set fixed rather than a
direction of the eigenvector.

If one parameter dominates the eigenvector vy# substantially (ac-
cording to the data), then this parameter is labeled spurious no matter
what the preferred ordering, i.e. prior knowledge, says. This assures
that the dominating parameter is not exchanged. This approach is im-
plemented in step 4 such that a parameter is classified as dominating if
its absolute value is greater than 0.9, which corresponds to more than
81 percent of the total vector length of v, .

In step 6 another ad-hoc decision rule is used. It is based upon the
assumption that if a parameter xj, is to be exchanged for another z;,
they both have to have an influence on the eigenvector v . In step 6
a parameter is classified as influencing if its absolute value is greater
than v/0.1, i.e. if it constitutes more than 10 percent of the total length
of eigenvector vg#. This assures that a parameter is not exchanged for
one that only constitutes a small part of v .

The numerical values in steps 4 and 6 are ad-hoc choices, and can
therefore be adjusted according to the specific requirements of the user.

Example 6.2 — Determining the spurious parameter using algorithm 6.1

Consider an estimation problem where there are five unknown parame-
ters z1,...,x5. The parameters are ordered relative to each other into
ordering groups B;. For this example they are given by By = [z1, 2]
and By = [x3,24,25]. Algorithm 6.1 is used to find the most spurious
parameter in three different cases, all having different hessians. Fol-
lowing the algorithm, first the estimated hessian is computed (step 1),
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and from this the singular values are found (step 2). The eigenvector
that corresponds to the smallest singular value is vs (step 3). Three
different cases are now illustrated by using different v5 vectors.

a)The elements ej in Group A, are found by

Vs = = A, = {82}

oo o~ Oo

using steps 3—4. The absolute value of this element is greater than
0.9, and therefore x5 is returned by the algorithm using step 8.

b)The elements e in Group A, are found by

0
0.7
Vs = —0.7 = Ab = {627 63}
0.14
0

using steps 3—-6. In step 7 no re-ordering of the elements occurs
since the elements e; and ez belong to different ordering groups
B;, and therefore x, is returned in step 8.

¢)The elements ey, in Group A, are found by

—-0.4
0.65
vy = 0.5 = A. = {ea,e3,e1}
0.2
-0.2

using steps 3—6. In step 7 it is found that the largest element es
belongs to By as well as e;. The ordering tells us that e; should
be picked out before ey, and thus x; is returned in step 8.

Note that without the preferred ordering B;, all three cases would re-
turn parameter xs.

Loss function Vy — finding the number of efficient parameters

The value of the estimated loss function Vi (&, Z") serves not only
as a measure of the model fit to the measured output, but also as
a test quantity for over-parameterization. By increasing the number
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of parameters, and thereby the flexibility of a model, more and more
features in the measured output data can be explained by the model,
and thereby decreasing the value of the loss function. It is therefore
reasonable that the loss function is a monotonically decreasing function
of the number of model parameters. But by adding more and eventually
unnecessary parameters, the parameters adjust themselves to features
in the particular noise realization, and will in fact decrease the loss
function even more. This is known as over-fit (Ljung, 1999, p.501),
and is unwanted since the noise realization is bound to change.

To be able to compare model structures with different numbers of
efficient parameters in a fair way, the Akaike’s Final Prediction Er-
ror (FPE) Criterion (Akaike, 1969) is used. In the derivation of the
Akaike FPE it is assumed that the true system can be described by our
model M(z), and that the parameters are identifiable such that the
hessian is invertible. The expectation value of the loss function Vy is
then found to be (Ljung, 1999, pp.503):

2d
EVn(2) = Vn (&, ZN) + AON, (6.5)

where g is the noise variance (compare (C.18b)), N is the number of
samples and d is the number of parameters for model M(z). The more
parameters the model structure uses, the smaller the first term will
be. Each new parameter contributes with a variance penalty of 2y /N,
which is reflected by the second term. Any parameter that improves
the fit of Viy with less than 2)\¢/N will thus be harmful, and introduce
an over-fit. Such a parameter is termed spurious.

From equation (6.5) and an estimate of Ao (C.18b), the Akaike FPE
VEPE(3,d) is stated as (Ljung, 1999, pp.503)

1+ 4
EVn (%) ~ - QVN(;@, ZNY = VEPE (3, d). (6.6)

N

The equation shows how the loss function Vi (Z) should be modified to
give a fair measure of the number of model parameters.

Algorithm — Method 1

We are now ready to formulate the algorithm.

Algorithm 6.2 — SVD-based parameter reduction
Let """ be the initial values for the parameters x € R4**. The pa-
rameter vector is partitioned as z = [xeffx“‘pf, where z¢// € R47x1

are the efficient parameters and z°? € R(@=9")%1 416 the spurious pa-
rameters. The maximum and minimum number of efficient parameters
are given by d7__ and dr respectively, related by 1 < dt. <dt <

max min min — “max
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1.Initialization: Set the best parameter estimate #* = 2 and the
number of efficient parameters d# = d7

max*®

2.Use the Levenberg-Marquardt procedure (C.11) to estimate the
efficient parameters ¢/f in & = [:%effop]T. The vector z™% is
used as initial values for ¢/ and fixed values for 7.

#

3.If there are more than d7, = efficient parameters left, i.e. d# >

# i sp eff
dr ... compute the most spurious parameter ;2 out of x us-

ing Algorithm 6.1. Then move 232, from 2°// to 2°P and reduce
the number of efficient parameters by one, i.e. d# = d# — 1. Re-

turn to step 2.

4.Compute the Akaike FPE VEPE (3¢/f d#) from (6.6) for all d7.
Find the number of efficient parameters d* that minimizes
VEPE(3¢/T d#). The best estimate is then given by

i = @7 (d").

5.Return the best parameter estimate z*.

The algorithm can be made more computationally efficient, either by
reducing the maximum number of efficient parameters d7.,. in step 1,
i.e. by making more parameters spurious from the start, or by increasing
the minimum number of efficient parameters dﬁm for the criteria in
step 4. Both these simplifications of course rely upon some kind of
prior knowledge. Another improvement in computation time can be
achieved if several parameters are made spurious at the same time in
step 4. A test for this is to consider only parameters for which the
ratio ¢f/s? is larger than the machine precision. If d¥ . < d, ie.
the maximum number of efficient parameters are less than the number
of parameters, the initial partitioning of the parameter vector = into
efficient and spurious parameters has to be done by the user. For the
sake of completeness, the number of efficient parameters in chapters 7
and 8 are set to dﬁlm =1and d¥, _=d.

max
6.4.2 Method 2 — Regularization using prior knowl-
edge
The second method uses prior knowledge of the parameters explicitly in
the optimization. The drive for this is to regularize the solution of the

estimation problem, and this is done by including a parameter penalty
term in the loss function.



6.4. ESTIMATION METHODS 131

Regularization through prior knowledge of the parameters

As mentioned earlier, a regularization technique can be used to avoid
an ill-conditioned jacobian i and thereby avoiding a singular or almost
singular hessian Hy. In the Levenberg-Marquardt procedure, this was
done by adding v > 0 to (C.10) and thereby a positive definite Hy is
guaranteed. A regularizing effect is also imposed by adding a penalty
term to the criterion function Vi (z, ZV) (C.2) resulting in

Wi (z,2#,ZN,8) = &SN 1220;,2) + (x — a#)T6(z — 2#)

= Vn (2, ZN) + 6, V3 (z, 2%, 9).
(6.7)
It differs from the basic criterion Vy by also penalizing the squared dis-
tance between = and %, where z# are the nominal parameter values.
It is divided into two terms, where V corresponds to the residual er-
ror introduced by the measurement and Vﬁ, corresponds to the nominal
parameter deviation. The scalar term d, is named regularization factor
and will be returned to later. The main reason for using this criterion
is: If the model parameterization contains many parameters, it may
not be possible to estimate several of them accurately. There are then
advantages in pulling the parameters towards a fixed point % (Ljung,
1999, pp.221). This definitively applies to an ill-posed problem. The
penalty term V3 in (6.7) will effect the parameters with the smallest
influence on Vy, i.e. the spurious ones, the most. This forces the spuri-
ous parameters to the vicinity of 27%. The regularization matrix J can
be seen as a tuning knob for the number of efficient parameters. A
large 6 simply means that the number of efficient parameters d” be-
comes smaller and that more parameters are locked to the vicinity of
x#. It can also be seen as the weighted compromise between residual
error £ and nominal parameter deviation 7 = x — 2. A large § thus
corresponds to a large confidence in the nominal parameter values.
The impact of the prior on the final estimate will now be illustrated
in the following example.

Example 6.3 — Impact of prior z# and § on final estimate x

Again, consider the static model
Y= (xl + Z‘Q), (68)

which formed the base for example 6.1. Here, 1 = x5 = 1 are the true
values of the parameters, the nominal values are given by :vf& and x;#
respectively, the measurement is y and the regularization matrix § is
given by 0 = diag(d1,02). The residual € is then formed as

(@) =y —y(x) =y — (21 + 22). (6.9)
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The criterion function Wy (x, 2%, ZV,§) (6.7) is thereby given as
Wi (z,2#,ZN8) = (y — 21 — 20)® + (x — 2)T6(x — 27).  (6.10)

It is minimized analytically by differentiating Wy partially w.r.t. each
parameter and setting the partial derivative to zero, resulting in the
following set of equations

(14261)21 + 29 = y + 26,127, (6.11a)

xr1 + (1 + 262)$2 =y + 2(52%‘#. (6.11b)

There are two solutions of (6.11), one for § = 0 and the other for § # 0.
For the 6 = 0 case, which corresponds to no prior knowledge of the
parameters, the solution is given by

1+ x2 =Y, (6.12)

i.e. a parameterized solution which has an infinite number of solutions.
For § # 0, the solution is given by

y—(@f +27) 4

=5
O S 010, 1

, (6.13a)
_ (o #
Ty = 51y (xl + Lo )

01 + 0o + 0102

In the special case when the measurement y is fully captured by the
model (6.12) and the prior parameter values xfé, ie. if y = x? + xf,

+a¥. (6.13D)

then the estimates z; are given by the nominal values x? However,
when the prior does not exactly match the measurement, i.e. when
y # xf& + xf, the estimates z; are biased from their nominal values.
Equation 6.13 illustrates that J can be seen as a tuning knob; the
larger the components §; are, the more the estimates x; are drawn to

the nominal values x? In the case when §; > do, x1 is more attracted

to x? than z» is to xf

Minimizing the criterion function Wy

The regularizing effect imposed by the penalty term in Wy (6.7) re-
quires that the optimization search method is reformulated. The ex-
pressions for the gradient and the hessian of Wy (6.7) are therefore
given here. For comparison, references to the derivation of a local op-
timizer without regularization (appendix C.1) are given. The gradient
Vn(z,ZN) (C.4) and the hessian approximation Hy (C.8) for such
an optimizer have to be rewritten when the parameter penalty term
in (6.7) is included. It is here assumed that there are no cross-couplings
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between the parameter prior knowledge, i.e. the regularization matrix
0 is assumed to be diagonal. The gradient is then written as

W (.0, 2%,0) = £ TN, ot 0)e(t,2) + 25 — o)
(6.14)
= Vi (z, ZN) + 26(x — o),

where as before the jacobian vector ¥(t,z) = “Le(t, z) is given by (C.5).
The hessian W (z, Z"V,§) is then computed as

~ Hy(x, ZN) 426 = HY (z, ZN, 6), :
and its approximation is given by H (z,Z"V,8) = Hx(z,ZN) + 20.
The estimate & is found numerically by updating the estimate of the
minimizing point ¢ iteratively as

G CLV AN
= @' (a#, 2N, 8) — pi[HY (3, 2N, 6) Wi (&, 2%, 2N, 5)
= P, ZN 6y 4+ di(@t, a7, ZN,6), (6.16)

where i is the ith iterate, in which d’ is the search direction and Hj‘i}i
is the approximate hessian in (6.15).

Prior distribution of parameters

Both z# and § in (6.7) can represent prior knowledge of the parame-
ters. If a gaussian probability distribution can be assigned as a prior
probability density function (pdf) to the parameters x with mean x7#
and covariance matrix ﬁ, the maximum a posteriori estimation is
made when the noise is gaussian distributed with zero mean (Ljung,
1999, pp.221). However, since no restrictions are made considering the
scaling of the two terms Vy and V]{S,, they can differ quite substantially
in size and can therefore be hard to compare in a fair way. This is
solved by introducing a regularization factor ¢, in the regularization
matrix § according to

0 =0, diag(0;), i =1,...,d, (6.17)

where 0; are called regularization elements. The factor d, is then used
as a tuning knob to find a good compromise between residual error ¢
and nominal parameter deviation 7. In (6.17) no cross-terms in the
covariance matrix are considered. The methodology could however be
extended to cover the case of non-zero cross-terms, with slight modi-
fications of the expressions in (6.14), (6.15) and (6.17) by exchanging
the diagonal matrix § for a symmetric positive semi-definite matrix 6.
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The diagonal elements §; in § are given by

1
_ _ 1
0 2Ng.2’ (6.18)

K3

where o; is the standard deviation for parameter x; and it is assumed
that there are no cross-terms in the covariance matrix. From hereon
the nominal value z# and the regularization elements d; are referred to
as the prior knowledge, and the tuning parameter d, is referred to as
the regularization parameter.

How to determine the regularization parameter 0,7

The best way to determine J,, would be to find the ¢, that minimizes
the size of the true parameter error, e, = z — z'. However the true
parameter values x! are only available in simulations, and this approach
is therefore not applicable for experimental data. It can however be
used for evaluation of simulated data.

A systematic method for finding d, that gives a good compromise
between the measures Vy and VJ{S, is therefore sought. In order to find
an unequivocal ¢, it is important that Vy and VJ{S, are monotonic. The
two measures Vyy and V; are directly related to ¢ and €7 according to

1
RMSE(e) = 5 \%N (6.19a)
1
RMSE(L’ ) = 4/ y Vi (6.19D)

where L° = diag(8;)'/? and d is the number of parameters. The two
measures in (6.19) are also monotonic whenever Vy and V3 are.

Figure 6.2 shows an example of the dependence between RMSE(e)
and RMSE(L® ¢#). For large values of d,, the regularized estimates
2° are pulled towards the nominal values 7, i.e. a small RMSE(L°
7). The matrix L° serves as a weighting function and determines how
strong the pulling force is for the individual parameters. The form on
which the prior is given is therefore important for the shape of the
resulting curve. The notation z° is used for the estimate #(§) from
hereon. For small values of d,, the pulling force is small and the esti-
mates are no longer suppressed by the prior and therefore free to adjust
to the measurement data. This results in an RMSE(e) that is approx-
imately the same as the noise level. These two cases are the extremes
concerning confidence in the prior knowledge and measurement data
respectively.

For moderate 0, in between the two extremes, there is a sharp
transition where the residual error ¢ falls while the nominal parame-
ter deviation z# remains basically constant. Due to that the upper
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Figure 6.2: Example of a L-curve. The dashed-dotted lines correspond
to the noise level and parameter deviation 2t — z# used in the simula-
tion.

part of the graph resembles the letter “L”, the curve is called an L-
curve (Hansen and O’Leary, 1993). The noise level and the parameter
deviation 2% — z! are known in simulations, and are therefore included
in figure 6.2 as dashed lines. The cross-over point of these two lines
is close to the corner of the L. It is therefore natural to expect that
the corresponding ¢, is a good compromise between data fitting and
penalizing the parameter deviation (Engl et al., 1996).

Note that the L-curve is computed in a set of discrete points that
can be connected by e.g. a cubic spline. Typically there is a wide
range of d,:s corresponding to the points on the L-curve near its cor-
ner. Therefore, the location of the corner should be found by some
numerical optimization routine, and not by visual inspection (Hansen
and O’Leary, 1993; Engl et al., 1996), especially if one wants to autom-
atize the search procedure.
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Routines for determining J,
Three optimization routines for determining 9, are presented here:

1. Millers a priori choice rule for §, (Miller, 1970). Consider com-
puting an estimate & for which

RMSE(s(z, 27,6, ZY)) < me, (6.20a)
RMSE(L’ ¥ (&,27,8, ZV)) < ms. (6.20b)
Then Miller showed that
m
by = m—5 (6.21)

yields a regularized estimate 2 such that RM SE (e (2%, 2%, 6, ZV))
< v2m. and RMSE(L’ sf(m‘;,x#j, ZN)) < v2ms. The result
is valid for linear systems. Then if m. and mgs are good estimates
of RMSE(n) and RMSE(L® ¢#) respectively, the regularization
parameter §, from (6.21) yields a solution close to the L-curve’s
corner (Hansen, 1998).

2. Morozovs discrepancy principle (Morozov, 1984). The regulariza-
tion parameter J, is the solution to the problem

RMSE(e(z,2%,6,ZN)) = a.RMSE(n), (6.22)

where 7 is the noise level and a. > 1 is a constant chosen by the
user. Typically this routine overestimates d,, (Hansen, 1994), and
therefore gives a solution which is regularized to hard.

3. Maximum curvature of Hansen’s L-curve (Hansen and O’Leary,
1993). The curvature 7 is defined as

7(0y YR (6.23a)
(¥£(02)2 + 5(6.)2)

11216(5513) = log||€(w,x#7(5, ZN)HQa (623b)

V5(82) = log|| Lo (z, 27,6, ZN)| 2. (6.23c)

The L-curve is approximated by a 2D spline curve given the set of
discrete points for which it is computed, and from which 9§, cor-
responding to the point of maximum curvature 7 is determined.

The first two routines require knowledge of the noise level 7, while the
third does not. The latter is thus categorized as error-free in Engl et al.
(1996).

If the noise level is changed and an approximative value for the
new J, is sought for routines 1 and 2, the following example gives an
approximation if the new noise level is known.
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Example 6.4 — Impact of measurement noise on regularization param-
eter 0,

The objective is to keep the ratio between the residual loss function
Vy and the prior loss function V3 constant. Assume that measure-
ment noise is white and described by €1 (¢) and that this results in the
residual loss function V(1) and the prior (or nominal parameter) loss
function V{(e1). Now assume a second noise realization such that it
can be described by e5(t) = aeq(t), i-e. the first one is multiplied by a
factor a. This means that the standard deviation o is increased by a
factor a and yields a residual loss function Va(e2)

N

Vn(es) = %Z(a £,2 = a*Vi (e1). (6.24)

i=1
Keeping the ratio between Viy(s2) and V(e2) constant results in

VN(El) o VN(€2) o CI,QVN(€1)

Vi) Vi) Vi) Vi(es) = a®Vi(er)  (6.25)

which is realized by setting the prior factor d,(e2) = a%d,(g1). Thus if
the standard deviation of the measurement noise is increased by a factor
a, the prior factor §, should be increased by a? as a first approximation.
This is natural since the regularization parameter J, is related to the
variance through (6.17)—(6.18).

Special case: Equal §;

In the special case when all elements §; are equal, the matrix L’ =
diag(6;)'/? is given by the identity matrix times a constant. This as-
sures that RMSE(e7) is monotonic whenever V7 is, and thus the mea-
sure RMSE(e#) can be used in the L-curve plots instead of RMSE(L%<#).
The advantage is that RMSE(e7) corresponds directly to the nominal
parameter deviation. This will be used in chapters 7 and 8 whenever
all ¢;:s are equal.

Algorithms — Method 2

Algorithms for three versions of method 2 are now given. They differ
in how they find the regularization parameter §, based on the three
optimization routines described earlier, and are labeled M2:1, M2:2 and
M2:3 respectively. In all cases when the criterion function Wy (6.7) is
minimized, the initial values 2" are given by the nominal values z7.
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Algorithm 6.3 — Millers a priori choice rule (M2:1)

1.Assign a prior x? and §; to each of the parameters z € RI*1.

The regularization matrix is then formed as § =, diag(d;).
2.Compute boundaries m. and m; in (6.20), that give d,, from (6.21).
3.Minimize Wy (6.7) w.r.t. z using J, from step 2.

4.Return the estimate z%*.

Algorithm 6.4 requires an investigation for finding the search region
for 0, in which the corner is always included. This region is denoted
A, and it only needs to be computed once for each application.

Algorithm 6.4 — Morozovs discrepancy principle (M2:2)

1.Assign a prior x? and §; to each of the parameters z € RI*1.
The regularization matrix is then formed as § = J, diag(9;).

2.Assign the parameter a. (6.22) a numerical value slightly larger
than 1.

3.Compute the RMSE(n) by minimizing the criterion function Wy
(6.7) with §, = 0.

4. Minimize the criterion function Wy (6.7) for the discrete points
0, € A, equally spaced in a logarithmic scale.

5.Find the ¢, for which (6.22) is fulfilled, by using a cubic spline
interpolation.

6.Minimize Wy (6.7) w.r.t. z using J, from step 5.

7.Return the estimate 2:9*.
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A quicker version of algorithm 6.4 is to reuse an estimation of the noise
level made earlier in step 3. Another alternative to make the algorithm
faster is to start with the lowest value of d, in step 4 and compute
for as long as RMSE((6,)) < ac:RMSE(n). A third alternative is to
use nearest neighbor interpolation in step 5, in which step 6 becomes
obsolete. This is an option worth to consider if relatively many discrete
points are used in A,. This will be further investigated in chapters 7
and 8.

Algorithm 6.5 also requires an investigation for finding the search
region A, for J, in which the corner is always included.

Algorithm 6.5 — Hansen’s L-curve (M2:3)

1.Assign a prior xfé and §; to each of the parameters z € RI*1.

The regularization matrix is then formed as § = §, diag(d;).

2.Minimize the criterion function Wy (6.7) for the discrete points
0, € A,, equally spaced in a logarithmic scale.

3.Find the ¢, for which (6.22) is fulfilled, by using a cubic spline
interpolation.

4. Minimize Wy (6.7) w.r.t. x using d, from step 3.

5.Return the estimate z%*.

An alternative is to use nearest neighbor interpolation in step 3, in
which step 4 becomes obsolete. This is an option worth to consider if
relatively many discrete points are used in A,. This will be further
investigated in chapters 7 and 8.

Note that in step 1 for all versions of method 2, the parameters
r € R¥1 could be assigned a Gaussian distributed prior, as x; €
N(:Uf, 0;). The matrix § is then formed as 6 = §, diag(J;), where §; is
given by (6.18). As mentioned earlier, this results in the maximum a
posteriori estimate.

6.4.3 How to determine the prior knowledge?

The prior knowledge is used for more reasons than to give the best
parameter estimates. It should primarily be used to reflect the insight
and knowledge the user has of the system at hand, and to give physically
reasonable parameter values.
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Nominal parameter values z#

The nominal prior parameter values z# can be determined in at least
three alternative ways:

1. By using the parameter initialization methods described in chap-
ter 3 for every parameter x;.

2. By using expert prior knowledge of what the numerical value of
x# should be.

3. A combination of alternative 1 and 2.

Depending on the validity of the prior for parameter x;, it has to be
updated at certain events. For the cylinder pressure models described
in section 6.2 this can be exemplified by the following; Consider the two
parameters: pressure sensor offset Ap and clearance volume V.. The
former is assumed to be constant during one engine cycle according
to section 3.1, and therefore has to be updated for every engine cycle.
On the other hand, in section 3.2 the latter parameter is assumed to
be engine dependent. It therefore only needs to be updated once a
different engine is used.

Regularization elements §;

The element §; in the regularization matrix § reflects the uncertainty of
the nominal parameter value x; and is related to the standard deviation
o; of the prior pdf, as pointed out earlier. As for z# there are three
corresponding alternatives to determine §;. If the first alternative is
used, the standard deviation of xf is computed directly from the pa-
rameter initializations given in chapter 3. This value does however not
reflect how uncertain the model approximation is when computing x?
If the nominal value z# is unsure, 6; should be chosen small to give a
large parameter flexibility and a small penalty on the criterion func-
tion Wi (6.7). On the other hand when xf is determined with a high
confidence, this should be reflected in large value of ¢; (compared to
d;). This corresponds to penalizing |z; — xjﬂ harder in Wy (6.7), and

thereby exercising a strong pulling force on z; towards xf The param-
eter uncertainty is generally different for the individual parameters in
the case of cylinder pressure modeling. In this case it is therefore more
suitable to base §; upon the second alternative, i.e. expert knowledge
of the uncertainty.

Also, from (6.17) it can be concluded that it is only the relative
intergroup size of §; that is relevant, since the regularization parameter
0, compensates for contingent scalings. It is therefore not vital for the
performance of method 2 that the best value in a £/ -sense for d; is used,
as long as the relative size to the other parameters stands. This also
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speaks in favor for the second alternative. It also suggests that other
probability density functions can be assigned to the parameters, as long
as they are of the same kind.

Note that only the nominal value, and not the uncertainty of 7
that is related to ¢;, is used in method 1. The prior values z# and §
are determined for each specific application, and this issue is therefore
returned to in chapters 7 and 8.

6.4.4 Summarizing comparison of methods 1 and 2

Both methods use prior knowledge of the parameters in the estimation
problem, but they differ in how they use it. Method 1 only uses the
nominal value z7# indirectly when setting the spurious parameters fixed,
while method 2 is more flexible and uses both the nominal value 27
and the parameter uncertainty § directly in the criterion function to
regularize the solution. If the prior knowledge in method 2 is Gaussian
distributed, the estimation method yields the maximum a posteriori
estimate (Ljung, 1999, pp.221).
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7

RESULTS AND EVALUATION FOR
MOTORED CYCLES

Method 1 and method 2 described in section 6.4 will now be evaluated
for motored cylinder pressure data. The evaluation covers both simu-
lated and experimental data. As mentioned earlier in chapter 6 this is
due to that the true value of the parameters are unknown in the exper-
imental data. The experimental data is collected on a turbo-charged
2.0L SAAB engine, whose engine geometry is given in appendix C.4.

In this and the following chapter, it is worth noting that all numer-
ical calculations have been made for normalized values of the param-
eters, while the individual parameter values that are given in tables
are not normalized if not explicitly stated. The purpose of the nor-
malization is to yield parameters that are in the order of 1, and the
normalization is described in appendix C.1.

7.1 Simulation results — motored cycles

First the simulated engine data will be described, followed by a discus-
sion on the parameter prior knowledge used. The focus is then turned
to evaluating the performance of method 1, followed by method 2.

7.1.1 Simulated engine data

Cylinder pressure traces were generated by simulating the standard
model from section 6.2.1 with representative single-zone parameters,
given in appendix C.5. Eight operating points were selected with
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Simulated motored data; OP1-8
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Figure 7.1: Simulated cylinder pressures for the different operating
points OP1-8.

engine speeds N € {1500, 3000} rpm, mean charge temperatures at
IVC Trve € {310,370} K and cylinder pressures at IVC pryo €
{50, 100} kPa, where table C.3 defines the individual operating points.
For each operating point a cylinder pressure trace was simulated and
ten realizations of Gaussian noise with zero mean and standard devi-
ation 3.8 kPa were added, forming altogether 80 motored cycles. The
chosen noise level is the same as the one used in chapter 5, and thus
reflects the level seen in experimental data. The data was sampled with
a resolution of 1 crank-angle degree (CAD). In figure 7.1, one motored
cycle is shown for each operating point. The cylinder pressures corre-
sponding to OP1 and OP8 differ the most, and will therefore be the
two extremes in the investigation.

7.1.2 Parameter prior knowledge

The simulations are evaluated using simulated pressure traces with
known parameter values and a known model structure. To resemble
the experimental situation, both a false and a correct prior knowledge
of the nominal parameter values 2# will be used. For method 1, a
preferred ordering of the parameters can be assigned and this will be
done later in section 7.1.3. For method 2, the regularization elements
0; needs to be assigned. In the simulations a gaussian distributed prior
x € N(z%,0) is assumed, where §; are given by (6.18), i.e. as

1
- ZNJZ-Q'

5; (7.1)

When (7.1) was stated it was assumed that there are no cross-terms in
the covariance matrix.
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Two different setups of nominal parameters z# will be used, and
for each of these setups two cases of regularization elements §; will be
investigated for method 2.

Two cases (of ¢;)

In the first case, the standard deviation o; for each parameter z; is
chosen as ; = 0.01z!. This choice is made for two reasons; As men-
tioned earlier the absolute value of d; is not interesting in itself, rather
it is the relative size of d; compared to J; that is. This was due to the
regularization parameter d,. By choosing the same ¢; for all parame-
ters, this allows for a direct measure of the nominal and true parameter
deviations, e# and €! respectively, in the plots of an L-curve. Secondly,
since each parameter is assigned the same parameter uncertainty, this
results in a parameter guiding of the estimates towards the nominal
values but it does not give any joint ordering of the parameters. This
case can therefore be seen as the first and simplest approach. It will
from hereon also be referred to as §; = ¢, where ¢ is a constant.

In the second case the regularization elements are determined by
our prior knowledge of the parameter uncertainty, and it illustrates the
application of the methods to an experimental situation. It can be
seen as the more advanced case of the two, and typically yields regu-
larization elements that are not the same. This case is referred to as
0; # c. For this particular application the standard deviation o; for
each parameter are given in table 7.1. These values are not verified
experimentally, they are merely chosen since they are physically rea-
sonable. To illustrate the principle of how the uncertainties are set,
consider that the nominal value for the crevice volume V,, is 1 em?
which is approximately 1.5 percent of the clearance volume V.. Ac-
cording to section 3.4 a reasonable region for V., is [1, 2] %V.. Now
if the standard deviation for V., is chosen as o; = 0.15 em?, this cor-
responds to that 95 percent of the values belongs to that region. The
two parameters Ap and Af are set to their expected uncertainty, and
results in relative mean errors (RME) that are 50 %.

Two setups (of z7)

The first setup uses an equal relative parameter deviation. These nom-
inal parameter deviations from the true parameter values, i.e. e~ =
x# — x!, are chosen to be {0,1,2.5,5} %x'. This will from hereon be
referred to as the false prior (FP) at the specified level. This setup is
chosen in order to investigate what influence the prior knowledge has
on the individual parameters.

The second setup is based upon a relative parameter deviation di-
rectly related to the relative uncertainty for each parameter. This is
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Zi Ve Ci1 Trve prve 7300 b
Unit | [em®] [ K| [kPal [ [K]
o 0.5 0114 10 2.5 0.005 1-107°
RME [%] | 09 50 27 50 04 100
T; Tw Ver Ap AO K,
Unit K] [em?®] [kPa] [deg] [-]
T, 10 0.15 2.5 0.05  0.005
RME [%)] 2.5 15.0 50.0 50.0 0.5

Table 7.1: Assigned standard deviation o; of the model parameters x;
used for second case of J;:s. The relative mean error (RME) corre-
sponding to one standard deviation from the true value (for OP1) is
also given.

implemented as a nominal parameter deviation from the true values of
one standard deviation of the prior knowledge, i.e. 2 = (1 + 0;)a?,
where the individual standard deviations o; are given in table 7.1.

7.1.3 Method 1- Results and evaluation

First method 1 is evaluated for setup 1 using no preferred ordering
of the parameters, i.e. the algorithms rely fully upon the measured
data and include no prior knowledge of the parameters. Secondly, a
preferred ordering is introduced and it is investigated how this effects
the estimation problem.

The evaluation starts by determining in which order the parameters
are set fixed. Then the minimizing number of efficient parameters using
Akaike’s FPE is given, followed by a recommendation of how many
parameters to estimate. After that an investigation of the estimation
accuracy is performed, followed by a residual analysis.

Evaluation without a preferred ordering — setup 1

First of all, the order in which the parameters are set fixed for setup 1
when using algorithm 6.2 without a preferred ordering is investigated.
This corresponds to keeping track of the spurious parameters z;2, in
step 3. In this case all parameters need to be included, and therefore
the maximum and minimum number of efficient parameters are given
by d#,, = dand d”., =1, where d = 11 is the number of parameters.

The resulting parameter order without a preferred ordering is given

by

b=<prve = Ver <Trve < A0 < Ap < C1 < Ty < Ve < Kp < 73005
7.2)
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Figure 7.2: Minimizing number of parameters d* for method 1, when
using no preferred ordering.

which reflects a typical average case. Here b < pry ¢ means that b is
set fixed prior to pryvc. The underlined parameters are invariant in
position to the investigated noise realizations, false prior levels and dif-
ferent operating conditions. The other parameters however differ in a
few number of cases and out of the three variations, mostly from differ-
ent noise realizations. The differences in order appear almost without
exception as permutations of two groups, namely [C1, Trve, Ty and
[Kp, prve]. This means that prye is sometimes replaced by K, and
that Ty ¢ is at some instances replaced by either C; or Ty,. It is also
worth to mention that 7300 is the most efficient parameter of them all,
according to (7.2).

The minimizing number of parameters using algorithm 6.2 are given
in figure 7.2 for OP1 and OPS8, which are the two extremes in the
simulation-based investigation. Ten different noise realizations corre-
sponding to ten engine cycles have been used, as well as four different
cases of false prior. The corresponding results for all eight operating
points are given in table 7.2, but now as a mean value for the ten cycles.
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Operating point (OP)

FP [%] | 1 2 3 4 5 6 7 8
0 5.3 5.4 6.1 6.1 5.5 5.3 6.1 6.0
1 5.3 4.9 6.1 6.1 5.2 4.9 6.1 6.0
2.5 5.2 4.9 6.1 6.1 5.2 4.9 6.1 6.0
) 5.1 5.0 6.2 6.0 5.1 5.2 6.1 5.9
Fe s L8 &8 48 &8 48 47 [ 8§

Table 7.2: Minimizing number of parameters d* for method 1, without
a preferred ordering. Four false prior levels are used and the range of
d* is given for each operating point.

Table 7.2 shows that the average numbers of d# are between 4.9 and
6.1, but figure 7.2 and table 7.2 indicate that d# € [4, 8]. The variation
in d# depending on the level of false prior FP is comparatively small,
but the variation is larger depending on the operating point. This
makes it hard to determine how many efficient parameters in (7.2) to
use.

Estimation accuracy

Tables 7.3 and 7.4 show the parameter estimates for the entire range of
d”, i.e. from 11 to 1 parameter, for one engine cycle. For this specific
cycle (OP1, cyclel), the Akaike FPE is minimized by four parameters,
i.e. d* = 4. The false prior level used is 0 % in table 7.3 and 5 % in
table 7.4 respectively. The parameters are set fixed using algorithm 6.1,
i.e. in accordance with (7.2), and this corresponds to the emphasized
values in two tables. For instance when pry ¢ is set fixed at 50.0 kPa
for d# = 9, this is indicated in the tables by emphasizing the nominal
value. The parameter values for p;yc are then fixed for d# € [1, 8] as
well, but to increase the readability these values are left out.

Table 7.4 shows that the parameter estimates are clearly biased
when a false prior is present. As expected the individual parameter
estimates depend upon the number of efficient parameters d#, as well
as the false prior level. The estimates of course also depend upon what
parameters that are classified as efficient. In order to have a &, <1 %,
a maximum of three parameters in combination with a false prior level
of 0 % is required, see table 7.3. For FP =5 % (table 7.4), the same
limit on d# is found if the true parameter deviation should be less or
equal to the false prior level, i.e. & < 5 %. This means that for d# > 4,
the parameter estimates deviate more from z* than z# does.

However, by considering the individual estimates it is notable that
the Ci-estimate has the largest normalized bias in general. Until C
is fixed the other parameters, especially K, Trvc, 300 and to some
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extent T, compensate for the bad C;-estimates. This results in biased
estimates for these parameters as well. When (1 is fixed, the pressure
gain K, still has a considerable bias, especially in the presence of a large
false prior. It is however believed that K, is known more accurately a
priori through calibration, compared to the other parameters. There-
fore if a preferred parameter ordering is to be used, it is recommended
that K, and C; are set fixed at an early stage.

As mentioned earlier, the bias in the individual parameters depend
upon d# and FP. This is exemplified by the two parameters V, and
Y300, which have their smallest biases for five parameters for both cases
of the false prior level, according to tables 7.3 and 7.4. These two
parameters have already been shown to be important in the sensitivity
analysis in table 3.2. This illustrates that if £, or individual parameters
are monitored to find the best d#, this can result in different numbers
of recommended parameters, depending on the specific application. For
the specific application considered in chapter 5, where the focus was on
estimating V., it is appropriate to settle for five efficient parameters in
method 4.

To summarize, method 1 does not yield a unequivocal number of
efficient parameters, as it fluctuates in between four and eight. Using a
mean value of d# is not optimal either since it does not correspond to
the best parameter estimates, especially in the presence of a false prior.
This is however not unexpected, since the minimization of Vi (6.3) is
only based upon the residuals, and is therefore not influenced directly
by the parameter estimates.

Residual analysis

In figure 7.3 the residuals for two cases of false prior offset at OP1 are
shown. The upper plots show the residual corresponding to minimiza-
tion of the Akaike criterion, in these cases d* =4. The middle plots
display the difference between the modeled pressure for 4 and 1 param-
eter, while the lower plots show the difference for 4 and 11 parameters.

The data is well described by both 11 pars and 4 pars, for both 0
and 5 % false prior offset. However for less than four parameters the
residual becomes larger, reflecting that too few parameters are used to
describe the data. This effect is more pronounced for FP = 5 %, as the
difference between the modeled pressure for d# =4 and d# =1 becomes
larger.

The parameter values for d#* =4 and d# =11 are however not the
same, see table 7.4, and this reflects that it is not sufficient to have a
small residual error for an accurate parameter estimate.
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Figure 7.3: Upper: The residual for four parameters when the false
prior is 0 and 5 %. Middle: Difference between the cylinder pressure
for four parameters and one parameter. Lower: Difference between
the cylinder pressure for eleven and four parameters. The scales are
different for 0 and 5 %.

Evaluation with a preferred ordering — setup 1

To include parameter prior knowledge and to gain a more unequivo-
cal order in which the parameters are set spurious, the aforementioned
permutations of the parameters are used in our case when a preferred
ordering is used. The preferred ordering is given by the following
ordering groups: By = [b, Ty, C1, Tivc], Ba = [Ky, prve, A6, Ap),
B3 = [V, Vo] and By = [y300]- The order of the parameters in each
group B; is set according to what is believed to be known a priori of
the parameters. For instance, for group B; the slope coefficient b for -,
is well known from the chemical equilibrium program used in chapter 4
and is therefore set first in the group. The order given here should
by no means be interpreted as the best one, rather as a fully-qualified
suggestion.

This results in the following parameter order with a preferred or-
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dering used

b= Ky <Ver <Trve < A0 < Ap < T, < C1 < Ve < prve < Y300

(7.3)
The difference in orders between (7.2) and (7.3) occurs for two locations;
Firstly for K, and pry ¢, and secondly for C; and T,,. The permutations
however still exist, but are reduced in their number of occurrences and
would extinguish if the ad-hoc decision rules corresponding to step 4
and step 6 in algorithm 6.1 were set to 1 and 0 respectively. The
parameter Ty is set fixed prior to T, and C; although its relative
order in B, which also is an effect of the ad-hoc decision rules in
algorithm 6.1.

The minimizing number of parameters d* at OP1 and OPS8 are
given in figure 7.4, and the mean value of d* is given in table 7.5 for
all operating points and false prior levels. The individual parameter
estimates for one engine cycle are given in tables 7.6 and 7.7 for FP =
0 % and 5 % respectively.

Compared to the case with no preferred ordering, the spread of d* is
smaller, especially for OP8 as shown in figure 7.4. This is also reflected
in table 7.5, where the mean values are more focused. However, as
tables 7.6 and 7.7 both indicate, the estimates are not significantly
improved compared to tables 7.3 and 7.4.

Due to the unsuccessful results of method 1 for setup 1, the evalu-
ation for setup 2 is left out.

Summary of method 1

To summarize, using method 1 to estimate the parameters in the pres-
ence of a false prior has not been successful. Minimizing the Akaike
FPE criterion gives a recommended number of parameters between 4
and 8, but this number fluctuates with both operating point and noise
realization. If we instead just consider the true parameter deviation, a
maximum of three parameters can be used in order to yield &, <1 % in
the case of no false prior. In the case of a false prior it gets even worse.
Method 1 is therefore in itself not recommended to use for estimation,
and is therefore not investigated further for the simulation part of the
chapter.

It can however be used for a specific application, like compression
ratio estimation in chapter 5. In this case only the V_.-estimate is mon-
itored when deciding upon the efficient number of parameters to use,
and this results in that five parameters are used.

Method 1 has also given valuable insight in which parameters that
are most efficient. For instance it has been shown that 7309 is the
most efficient parameter, given the structure of the standard model in
section 3.8.
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Figure 7.4: Minimizing number of parameters d* for method 1, when
using a preferred ordering.

Operating point (OP)
FP [%] 1 2 3 4 5 6 7 8
0 5.1 5.6 5.5 5.3 5.9 5.6 5.3 5.3
1 5.2 5.6 5.3 5.3 5.9 5.5 5.3 5.3
2.5 5.1 5.6 5.3 5.3 5.9 5.5 5.1 5.1
5 5.7 5.5 5.1 5.1 5.5 5.5 5.1 5.1
de | 3,7 1[4, 7 5 8 [5 7 [4,6] [4, 7 [5,7 [5 7]

Table 7.5: Minimizing number of parameters d* for method 1, when
using a preferred ordering. Four false prior levels are used and the
range of d* is given for each operating point.
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Figure 7.5: Values of the regularization parameter 6, used in the in-
vestigations.

7.1.4 Method 2— Results and evaluation

First some important implementation details are given. Then the three
versions of method 2 are evaluated using the two setups described in
section 7.1.2.

Implementation details

First the interesting search region for the regularization parameter J,
is discussed, followed by a motivation for the implementation choices
that can be made for each specific version of method 2.

The search region A, for the regularization parameter d, is chosen
as 0, € [10711) 105], which is found by testing to assure that the L-
shape corresponding to figure 6.2 occurs for all examined cases. The
region is then divided into three intervals, where ¢, is equally spaced in
a logarithmic scale for each interval. The middle interval is where the
corner of the L-curve is expected to appear, and this interval is therefore
more densely sampled. The limits of the intervals are 10°, 10, 10~8
and 10!, and the number of samples are 14, 50 and 5 respectively.
The regularization parameter is plotted in figure 7.5. These numerical
values are all based upon that the residual € is computed in bars, and
should therefore be altered if a different unit is used.

Millers a priori choice rule, see algorithm 6.3, will from hereon be re-
ferred to as M2:1. It requires that the constants m. and ms from (6.20)
are set. The drive for setting these values is twofold; First of all the
regularization parameter §, from (6.21) must be assured to be on the
horizontal plateau of the L-curve (see figure 6.2), preferably as close
to the leftmost corner as possible. Secondly, the same equations for
me and ms should be used for all operating points and setups. The
constant m. is therefore chosen as m. = 1.01RMSE(n), and corre-
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sponds to a data fitting which is 1 % above the estimated noise level.
The other constant is chosen as a nominal parameter deviation of 1 %,
which is then weighted with the uncertainty matrix L°. This results in
ms = RMSE(0.01 L%), and assures that both requirements are fulfilled
for all the investigated cases.

The second version M2:2 is called Morozovs discrepancy principle
(algorithm 6.4), where the constant a. needs to assigned. Due to the
same reasons as for M2:1, it is chosen as

In(a.) = 0.05In(RMSE(s(x™))) + 0.95 In(RMSE(n)), (7.4)

where RMSE(s(x%)) is the RMSE of the residual for the nominal pa-
rameter values 7. Including RMSE(e(z%)), which corresponds to
0, — 00, assures the flexibility to different false prior levels.

Algorithm 6.5 is the third version and is named Hansen’s L-curve or
M2:3. It uses a 2D cubic spline function of order four (Hansen, 1994) to
find the position of maximum curvature. Apart from that, no choices
are required.

An example of an L-curve is given in figure 7.6 for one engine cycle
at OP1 and FP = 5 %. It also shows the true parameter deviation &,
and the false prior level, as well as the results for the three versions
of method 2 and the optimal choice of §,. The optimal choice of §,, is
determined as the one minimizing &}, = RMSE(c!), for the §,:s used in
the computation. It is hereon referred to as §7.

Evaluation for setup 1

Method 2 is now evaluated for setup 1, where the nominal values are
given by z# = (1 + FP)z! for FP € {0,1,2.5,5} % and the assigned
standard deviation o = 0.01x! is equal for all parameters, which yields
equal regularization elements d;, i.e. case 1 of §; (§; = ¢). In section 6.4.2
it was shown that in the special case of equal &;:s, &7 = RMSE(c?)
could be used in the L-curve plots.

Figure 7.6 shows that as d, is decreased, &%, becomes smaller until it
reaches its optimal value. This means that the estimate is a compromise
between the data and the prior knowledge, and it lies in between the
true value and the nominal (false) value, which is good. The figure also
illustrates that all three versions of method 2 find positions close to the
corner of the “L”, at least visually.

Evaluation for OP1 and OP8: The focus will now be on evaluating
the performance of method 2 for the two extreme operating points OP1
and OP8. Figure 7.7 displays the optimal §; at ten consecutive cycles,
for which only the noise realization differs. The false prior level is
indicated by the figure legend, and the corresponding mean value for
0% are given within the parentheses. The values for FP = 0 % are left
out since they all correspond to the highest value of §,.
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Figure 7.6: L-curve (solid line) for one engine cycle at OP1 with
FP=5 % (dotted line) for setup 1. The results for the three versions
of method 2 and the optimal choice of regularization parameter are
indicated by the legend. The mean true parameter deviation &%, (dash-
dotted line) is also given.

The figure shows that there is a difference in optimal §; depending
both on the false prior level and the operating point. There is also
a smaller difference depending on the cycle number, which is most
pronounced for OP1 at FP = 5 %. A general trend for J} at a given
operating point, is that ; decreases with FP. This is expected since a
lower d,, is required when £7 is larger, for the two terms Vy and 6$V]‘\5,
in Wy (6.7) to become well balanced. It does however not say anything
about the estimation accuracy.

The estimation accuracy is investigated in figure 7.8, where the true
parameter deviations corresponding to the optimal §,:s in figure 7.7 are
given. Again, the false prior level is indicated by the figure legend and
the corresponding mean value for &% are given in percent within the
parentheses.

Figure 7.8 illustrates that the resulting &% is less than the specified
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Figure 7.7: Value of optimal regularization parameter §; in method 2

for ten cycles when minimizing &%, for setup 1.
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Figure 7.8: Mean true parameter deviation &, = RMSE(e!) corre-
sponding to figure 7.7 for setup 1.
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False prior (FP) [%]
OP 0 1 2.5 5
1 1-10° 0.0030 0.00093 0.00022
2 1-10° 0.0024 0.00072 2.6-107°
3 1-10° 0.0011 0.0044  0.0024
4 1-10° 0.0011 0.0024  0.00098
5 1-10° 0.0024 0.00098 1.0-107°
6 1-10° 0.0024 0.00072 0.00022
7 1-10° 0.0011 0.0044 0.0024
8 1-10° 0.0077 0.0025  0.0013

Table 7.8: Value of optimal regularization parameter J;, for operating
points OP1 to OP8 for setup 1. For FP = 0 %, d7 is the highest value
used in the computation.

Operating point (OP)
FP [%] 1 2 3 4 5 6 7 8
0 107 1007 10=7 1077 107 10=7 107" 10"
1 0.78 076 0.77 076 0.77 0.76 0.77 0.76
2.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
5 3.7 37 38 3.8 3.8 3.8 3.8 3.8

Table 7.9: Mean true parameter deviation &%, [%] corresponding to
optimal 67 in table 7.8, for setup 1 and operating points OP1 to OP8.

false prior level FP. This renders an estimate in between the true and
nominal value, i.e. a compromise between data and prior knowledge,
although the estimate is more biased towards the nominal value. The
figure also shows that for a given FP, the true parameter deviation &%, is
fairly constant from cycle-to-cycle. In the worst case (OP1, FP = 5 %),
the difference between the estimates are within 0.2 %. This suggests
that it is not vital to find exactly the optimal J}, to get good estimates.

Evaluation for all OP:s: The focus is now turned to evaluating
method 2 for all operating points. The optimal ¢ is given in table 7.8
for all operating points and false prior levels used in setup 1. The cor-
responding true parameter deviations ¢!, are summarized in table 7.9.
The numerical values in tables 7.8 and 7.9 are given as mean values for
ten cycles.

Table 7.8 shows that the optimal ¢ differs for the FP level and
operating point used, and the effect is most pronounced for changes in
the FP level. This is in accordance with what was pointed out earlier.
Table 7.9 shows that the true parameter deviation £, is less than the
false prior level used for FP > 0 %. The table also illustrates that even
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OoP 0r 0y (M2:1) 0, (M2:2) 6, (M2:3)  muw(dk)
1 3.7 3.8 4.1 4.0 3.9
2 3.7 3.8 4.1 4.0 3.9
3 3.8 3.9 3.9 3.9 3.8
4 3.8 3.8 3.9 3.9 3.8
b) 3.8 3.8 4.1 4.0 3.9
6 3.8 3.8 4.1 4.0 3.9
7 3.8 3.9 3.9 3.9 3.8
8 3.8 3.9 3.9 3.8 3.8
Max Diff 0 0.092 0.35 0.31 0.21
Mean Diff 0 0.040 0.19 0.15 0.094
Time [s] 2579 32 1333 2579 57

Table 7.10: True parameter deviation &, for the optimal §* in table 7.8,
the three versions of method 2 and as mean value for the optimal 4}
corresponding to table 7.8. The numerical values are given in percent
and are evaluated for FP =5 % for setup 1. The mean computational
time for completing the estimation for one engine cycle is also given.

though the optimal §; varies depending on the operating point at a
given FP level, this has almost no effect on the estimation accuracy.
It therefore seems probable that the estimation accuracy is relatively
insensitive to variations in 6.

This is further investigated by computing the mean value of the op-
timal 07 in table 7.8, discarding FP = 0 %. This value is from hereon de-
noted mv(07), and is used together with the three versions of method 2
to compute the true parameter deviation in table 7.10. The &!-values
in table 7.10 are computed as a mean value of ten cycles for all op-
erating points at FP = 5 %. The maximum and mean difference are
computed relative to 0. All of these values are given in percent. The
mean computational time is also given, where the following assump-
tions have been made; For §; and algorithm M2:3 all §, in the search
region A, are used, and are therefore included in the computational
time. Algorithm M2:2 starts by estimating the noise level n, and then
increases the §, € A, until the criterion (6.22) is fulfilled, see steps 4
and 5 in algorithm 6.4. Thus the computational time for this algorithm
can differ quite extensively from cycle to cycle, depending on when a §,
resulting in RMSE(e(d,)) > a. RMSE(n) is found. For algorithm M2:1
and mv(0}) the computational time is based on one value of d, i.e. it
is assumed that these values are found priorly.

Table 7.10 shows that the estimation accuracy in terms of &% is not
as good for the approximative methods as for the optimal one, since
the true parameter deviation &%, increases for all four approximations of
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0,. However the mean difference is small, especially for M2:1 and the
mean-value based muv(d7) as the table indicates. The latter is however
not an option when considering experimental data, since then 47 is not
available, and is therefore not included in the tables from hereon. An
alternative is to use the mean value for ¢, (M2 : 3), which is available.
The performance of M2:3 itself is however not better than that of M2:1,
according to the mean difference in table 7.10. It is therefore expected
that using the mean value of 0,(M?2 : 3) instead does not result in
better results than for M2:1.

There is a disadvantage of M2:1 compared to M2:3 when changing
operating conditions, in that it might require some ad-hoc tuning of
one of the parameters m. and mg to assure good performance. This
has however not been required in the simulations. However if it would
be required, one should instead consider using M2:3 which is flexible
to changing operating conditions and is the second best choice with
respect to estimation accuracy, given that the required computational
time is available. The third choice would be M2:2, but like M2:1 it
might require some ad-hoc tuning, in this case for the parameter a..

The two algorithms M2:2 and M2:3 both tend to give too high
values of ¢, compared to d;, as illustrated in figure 7.6. This results
in estimates closer to the nominal values, i.e. estimates that are over-
smoothed by the regularization. For M2:2, this is due to the restrictive
choice made when determining the ad-hoc constant a. in M2:2. This

effect has already been pointed out for M2:2 by Hansen (1994).

Concerning computational time, algorithm M2:1 and mw(d%) are the
fastest and they differ merely due to that they use a different number
of iterations to minimize the loss function Wy. Compared to M2:3,
M2:1 is approximately 80 times faster according to table 7.10.

Estimation accuracy for x;: Now the attention is turned to the esti-
mation accuracy for the individual parameters z;. Tables 7.11 and 7.12
show the individual parameter estimates and the corresponding mean
true and nominal parameter deviations &% and £# at OP1 and OP8
respectively for FP = 5 %. These parameter values are computed as
mean values for ten consecutive cycles. The tables also entail the rel-
ative mean estimation error (RME) in percent, as well as numerical
values for the true and (emphasized) nominal values.

Both tables show that the estimates for Cy, Tryvo, Tw, Ap, A0,
and especially for V., and b, are regularized to the vicinity of their re-
spective nominal value :Uf, indicated by an RME close to 5 %. These
seven parameters corresponds fairly well with the order in which the
parameters are set spurious for method 1 when no preferred ordering is
used, compare (7.2). The difference is p;y ¢, otherwise it corresponds
to the seven most spurious parameters. The estimates for the other
parameters, i.e. Ve, prve, 300 and K, ends up close to their true val-
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ues especially for OP8. This is due to the higher p;y ¢, which results
in a higher cylinder pressure and therefore a better excitation of the
parameters and a better signal-to-noise ratio. For both cases the esti-
mates for pyy ¢ has the overall smallest RME (< 0.4 %) closely followed
by K,, while the accuracy for V.. and ~309 are within 3.1 % and 1.5 %
respectively for all versions. The estimates of the two latter parameters
are significantly better for OP8 compared to OP1.

The estimation accuracy also depend upon the routine used to de-
termine the regularization parameter J,. From table 7.10 it was found
that routine M2:1 gave the smallest overall mean error, followed by
M2:3 and M2:2. When considering the individual estimates of the four
parameters, the same relative ordering is found if both operating points
are considered. In the case for M2:1, the accuracy for the four param-
eters is high; The estimates are within 0.5 %. The other estimates end
up as a compromise in between the true value and the (false) nominal
value, except for T,,. In the case of the two parameters V., and b, these
two estimates coincides with the nominal values.

In the presence of a false prior of 5 %, the estimates for method 2
are equally or more accurate compared to method 1 for all number
of efficient parameters, as shown by comparing the &% -columns in ta-
bles 7.4 and 7.11. This illustrates that method 2 is more robust to a
false prior than method 1 and this results in better estimates.

Evaluation for setup 2

Method 2 is now evaluated for setup 2, where the nominal values are
given by :vf& = (1 + oy)z!, for which the standard deviations are given
in table 7.1. The assigned regularization elements are given for two
cases; The first case is §; = ﬁm, i.e. all elements are equal, and
based on the second case from now on use the weighted versions of the
nominal parameter deviation RMSE(L? ¢%) and so on. The two cases
are abbreviated as §; = ¢ and §; # ¢ respectively, where c is a constant.

The L-curves based on one engine cycle for each case at OP1 are
given in figures 7.9 and 7.10 respectively. For completeness, the cor-
responding L-curves at OP8 are given in figures C.5 and C.6 in ap-
pendix C.7. The individual parameter estimates are given in tables 7.14—
7.17, and corresponds to the form used in table 7.11. Tables 7.14
and 7.15 represent case 1 (0; = ¢), while the corresponding tables for
case 2 (0; # ¢) are given in tables 7.16 and 7.17. Note that the optimal
regularization parameter §; now is determined as the one minimizing
the weighted true parameter deviation, i.e. RMSE(L°&!). The nom-
inal and true parameter deviations £, and % for both cases at OP1
and OP8 are then summarized in table 7.13.

in the second case §; = Therefore some of the plots and tables
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Figure 7.9: L-curve (solid line) for one engine cycle at OP1 with false
prior RMSE(s%~*) (dotted line), when using setup 2 and case 1 of the d;
(6; = ¢). The results for the three versions of method 2 and the optimal
choice of regularization parameter are indicated by the legend. The true
parameter deviation RMSE(c!) (dash-dotted line) is also given.

57; =cC 57, 7é C
OP1 OP8 OP1 OP8

St g e | g et | & gt | & eF

(2] (%] | 1% (%] | 1% (%] | [%] [%]
5 141 228 (149 182 6.1 203 6.5 20.1
S.(M2:1) | 221 1.4 [ 221 0.7 | 62 20.7| 6.6 209
6.(M2:2) | 206 5.8 |205 57 | 105 27.6 | 10.7 27.3
6.(M2:3) | 221 09 [221 03 | 94 189 | 94 184
ia 221 0.0 [221 0.0 [ 221 0.0 [ 221 0.0
xt 00 221 00 221| 00 221 00 221

Table 7.13: Mean true and nominal parameter deviation for method 2
using two cases of §; at OP1 and OP8 for setup 2.
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Figure 7.10: L-curve (solid line) for one engine cycle at OP1 with
weighted false prior RMSE(L® e#~*) (dotted line), when using setup 2
and case 2 of the §; (6; # c¢). The results for the three versions
of method 2 and the optimal choice of regularization parameter are
indicated by the legend. The weighted true parameter deviation
RMSE(L? ') (dash-dotted line) is also given.

Evaluation for individual estimates x;: When considering the four
parameters V;, prve, Y300 and K, the estimates are again better for
the second case as shown in tables 7.14-7.17. It is also notable that the
estimates for the case of §; # ¢ do not necessarily end up in between
the true and nominal value, see for instance the negative RME:s for
prve and A#@ in table 7.16. This reflects a more flexible solution, than
the one for the case of §; = c.

Evaluation for all OP:s. Table 7.13 shows that the mean true pa-
rameter deviation is smaller when §; # ¢ than for §; = ¢, for all three
versions of method 2 and for the optimal choice of §,. It is also worth
to mention that the mean nominal parameter deviation &% is relatively
small for d; = ¢ and significantly higher for §; # ¢. This together with
the smaller £ reflects that the second case is more robust to a false
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prior, which of course is preferable.

Now the focus is turned to finding which version of method 2 that
performs the best. In the case of §; = ¢ both M2:1 and M2:3 are
restrictive and yield estimates close to the nominal values. This is,
as pointed out previously, reflected by a relatively low value of &7 in
table 7.13. M2:2 actually performs better than these two, but the
difference is small and the estimation bias is still significant as reflected
by the &% -columns.

In the case of §; # ¢, all three versions render weighted parameter
deviations RMSE(L’ €%,) and RMSE(L° %) that are virtually the same,
see tables 7.16 and 7.17. The only difference is in RMSE(L’ ¢7#) for
M2:2, which is due to the relatively large error in Af. However when
considering ¢, for all investigated operating points, it is lowest for M2:1
and fairly close to the optimal, followed by M2:3 at most instances as
shown in table 7.13. If computational time is crucial and therefore
needs to be taken into account, M2:1 is outstanding as shown earlier in
table 7.13 and would therefore unequivocally be the first choice.

7.1.5 Summary for simulation results

Method 1 resulted in parameter estimates that are significantly biased
in the presence of a false prior, since the bias is larger than the false
prior level used. It is therefore in itself not recommended to use for
estimation of all parameters in the given formulation. For a specific
application such as for example compression ratio estimation it can
however serve as a guideline of how many parameters to use.

Method 2 outperforms method 1 since it is more robust to a false
prior level and yields more accurate parameter estimates. The drive for
method 2 was to regularize the solution such that the parameters that
are hard to determine are pulled towards their nominal values, while
the efficient parameters are free to fit the data. This has shown to be
the case in the simulations. Method 2 is systematic and accurate, and
therefore fulfills two of the requirements for the estimation tool.

The user can chose between two cases of the parameter uncertainty,
namely §; = c and §; # c¢. The former is directly applicable once nomi-
nal values of the parameters are determined and yields good estimates.
However, they can be too restricted by the nominal values, as seen in
setup 2. Instead it is recommended to use the second case. It requires
more effort to decide upon the uncertainty for each parameter, but
pays off in better estimates that are more robust to a false nominal
parameter value.

Method 2 is given in three versions, and the version M2:1 followed
by M2:3 give the most accurate results for changing operating condi-
tions, false prior levels and noise realizations. M2:1 is also computa-
tionally efficient and outstanding compared to the other versions. It
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Experimental motored data; OP1-4
10 ‘ ‘ ‘

Pressure [bar]

-100 -50 0 50 100
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Figure 7.11: Experimentally measured motored cylinder pressures at
operating conditions OP1-4.

can therefore be stated that the third requirement is also fulfilled. For
the simulated motored cycles, M2:1 is therefore recommended as the
best choice.

7.2 Experimental results — motored cycles

The attention is now turned to the issue of evaluating the methods
on experimental engine data. As mentioned before, the true model
structure and parameter values are unknown. Therefore it is important
too see if the effects and trends from the simulation-based evaluation are
also present when the methods are applied to experimental data. First
the experimental engine data will be described, followed by a discussion
on the parameter prior knowledge used. The focus is then turned to
evaluating the performance of method 1, followed by method 2.

7.2.1 Experimental engine data

Data is collected during stationary operation at engine speeds N €
[2000, 5000] rpm, intake manifold pressures p,qan € [32, 43} kPa alto-
gether forming four different operating points. These operating points
are defined in the upper part of table 7.18.

For each operating point 101 consecutive motored cycles with the
fuel injection shut-off were sampled for two cylinders with a crank-angle
resolution of 1 degree, using an AVL GU21D cylinder pressure sensor.
Figure 7.11 displays one measured cycle for each operating point.
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7.2.2 Parameter prior knowledge

The parameter prior knowledge used in the experimental evaluation is
based on different strategies to set the nominal parameter values x7
and the regularization elements &;.

Nominal parameter values z#

The nominal parameter values z# are set based on a combination of
the parameter initial methods described in chapter 3 and expert prior
knowledge of what the numerical value of z# should be. The values
for x# for each operating point are given as the emphasized values in
table 7.19. Of these parameters it is only the nominal value for Ap
that is updated for each cycle, while the others are updated for each
operating condition.

Regularization elements J;

Two cases of regularization parameter elements are used in method 2
and they correspond to the two cases used in the simulation-based
evaluation done previously. The first case, again denoted d; = ¢, sets

the standard deviation o; for each parameter as o; = 0.0lif, where
jfé is the mean value of xfé for one operating point. It is used to
assure that o; does not fluctuate in size from cycle-to-cycle. In the
simulation-based evaluation x! was used instead of Z7.

The second case (§; # ¢) is based on expert knowledge of the un-
certainty for each parameter and it is therefore subjectively chosen by
the user. The standard deviation used here in the experimental eval-
uation coincides with the one used for the simulation-based evaluation
in table 7.1.

The first case is updated for each operating point, while this is not
required for the second case.

7.2.3 Method 1- Results and evaluation

Method 1 is evaluated only without a preferred ordering, since no gain
was found in the simulation-based evaluation by using one. The pa-
rameter order for all four operating points is given by

C1 =K, <A0 <Trve < Ver < Ap <b < Ty < Ve < prve < 7300,
(7.5)
which reflects the average case. This parameter order differs somewhat
from the corresponding order found in simulations (7.2), but ~3q is still
the most efficient parameter. The underlined parameters in (7.5) are
invariant in position for the investigated operating conditions cycle-to-
cycle variations. The other parameters differ in order as permutations
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OP1  OP2 OP3 OP4
N [rpm] 2000 3000 4000 5000
Pman [KPa] | 43 32 35 37
mean(d*) 95 103 104 104
d* e [9,10] [9,11] [9,11] [9, 11]

Table 7.18: Mean number and region of d* for 101 experimental cycles
at OP1-4.

of the three groups [T1vc, Tw), [Ap, b] and [K,, C4]. These groups are
not exactly the same as the ones for the simulation-based evaluation.

The minimizing number of parameters d* using algorithm 6.2 are
given in table 7.18 as a mean over the 101 cycles at all four operating
points. The range of d* for each operating point is also given. The
table shows that the mean values of d* are larger and the variation is
smaller in the experimental case, compared to the simulations given in
table 7.2.

The mean value, standard deviation, and relative mean error for
the individual estimates are given in table 7.19. The relative mean
error is computed relative to the nominal parameter value at each cycle
and is given in percent. All parameters give reasonable values except
for C1, Trve, and Ty, that yield unreasonably large parameter values.
In accordance with the simulation-based evaluation in section 7.1.3,
method 1 is not recommended to use for parameter estimation in the
given formulation. The attention is therefore turned to method 2.

7.2.4 Method 2— Results and evaluation

The same implementation settings, as for the simulation-based evalua-
tion in section 7.1.4, are used and are therefore not repeated here.

Results for case 1 (§; = ¢) and case 2 (J; # ¢)

The results are first described for case 1. An example of an L-curve is
given in figure 7.12. A fourth version, M2:3+, is also included in the
figure. The algorithm is motivated and fully described in appendix C.3.
This version is an extension of M2:3, and uses a smaller search region
A, of §, as compared to the original form. Version M2:3+ uses the
regularization parameter J, from M2:1 as a mid-value of the search re-
gion A, for a A, given by 25 samples of ¢, from figure 7.5. The usage
of M2:3+ is only needed for experimental cycles and is due to problems
occurring when searching for the maximum curvature of the L-curve.
For simulated cycles this problem has not occurred, and therefore re-
sults in the same value of §, for M2:3 and M2:3+.
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Experimental OP1: 5i:c

Zoomed version
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Figure 7.12: L-curve (solid line) for one engine cycle at OP1, when
using case 1 of the §; (§; = ¢). The results for the four versions of
method 2 are indicated by the legend.

OP1 OP2 OP3 OP4
N [rpm)] 2000 3000 4000 5000
Prman [kPa] 43 32 35 37

6, (M2:1) mean | 3.8-107° | 4.1-107° | 6.5-107° | 4.2-107°
Oest | 6.3-107° 1 39-107° | 1.5-107% | 4.8-107°
6.(M2:2) mean [ 23-107°% [ 7.5-107° [ 9.6-107° | 6.3-107°
Oest | 1.9-107% | 81-107% | 6.6-10"% | 4.3-1078
5. (M2 : 3) mean | 42-107%[3.9-100% [ 04-107% | 2.1-10°%
Oest | 1.5-107% | 34-107% | 0.8-107% | 4.1-10°8
6,(M2:3+) mean | 5.1-107° | 92-107° | 9.0-107° | 3.4-107°
Oest | 1.6-107° | 4.3-1076 | 5.8-107° | 3.4-107°

Table 7.20: Mean value and standard deviation (oes:) of d, for the four
versions of method 2 using case 1, evaluated for 101 experimental cycles

at OP1-4.
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Table 7.20 summarizes the mean value and standard deviation of
the computed regularization parameter §, for 101 experimental cycles.
This is done for all four operating points and for each of the four ver-
sions of method 2. The corresponding individual parameter estimates
are given as mean values for 101 cycles at each operating point in ta-
ble 7.21, as well as the corresponding (emphasized) nominal values x7
and the nominal parameter deviation 7. More detailed results for
OP1 are given in table C.6, where also the standard deviation and
the relative mean error with respect to the nominal parameters z# are
given.

The corresponding figures and tables for case 2 are given in fig-
ure 7.13, table 7.22, table 7.23 that now also include the weighted
nominal parameter deviation RMSE(L® €#), and table C.7 respectively.

Evaluation for case 1 (J; = ¢)

Case 1 is considered first. Figure 7.12 illustrates that the L-curve does
not have as sharp transition as in the corresponding simulated case
given in figure 7.9. The difference is believed to be due to that the
model structure is not correct. Figure 7.12 also shows that the four
versions yield different regularization parameters d,. The two versions
M2:2 and M2:3 render approximately the same §,, which is confirmed
in table 7.20 for all operating points. M2:1 and M2:3+ result in higher
0z:8 in the mean, and therefore relies more on the prior knowledge
compared to M2:2 and M2:3.

For all four operating points table 7.20 shows that the regularization
parameter for the four versions are ordered in size according to

0p(M2:34) > 6,(M2:1) > 0,(M2:2) > 6, (M2 :3), (7.6)

with two exceptions. For OP1 it is the other way around for M2:2 and
M2:3, and the same goes for M2:1 and M2:3+ at OP4. As expected the
difference between d,, (M2 : 1) and 0,(M?2 : 3+) is smaller than between
0z(M2 : 1) and 6,(M2 : 3). Unlike M2:1, M2:3+ is assured to find a
convex corner of the L-curve. For the investigated operating points,
M2:3+ gives a higher value of J,, than for M2:1, M2:2 and M2:3. For
M2:3 this corresponds to the high value of the left-most curvature found
in figure C.4. Table 7.20 also shows that the mean value of §, depends
upon operating condition, and that for a given version of method 2 4,
is in the same order of magnitude for all four operating points.

The different d,:s result in different nominal parameter deviations
and individual estimates, as shown in table 7.21 for OP1-4. In general
M2:2 and M2:3 yield similar parameter estimates, especially for OP1.
This is due to that d,, is approximately the same. These estimates are
however unreasonably large, see e.g. Trv ¢, T, and K, while b is unrea-
sonably small. All parameters except V. and 399 deviate significantly
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from their respective nominal value. This is reflected in the relatively
large nominal parameter deviation £7, and is due to a small d,.

The individual estimates for M2:1 and M2:3+ are all reasonable,
which is expected since they end up close to their nominal values. The
estimates are in general closer to 27 for all parameters (except for V..
and 7y300), than for M2:2 and M2:3. Out of M2:1 and M2:3+, the latter
has a smaller nominal parameter deviation 7 for all operating points
except OP4. This corresponds to the ordering given in (7.6). The
maximum deviation occurs for the parameters C;, Trve and T, for
both versions.

To summarize the evaluation for d; = ¢, using M2:1 or M2:3+ yield
estimates that deviate less than 6 and 11 percent from the nominal
values in the mean.

Evaluation for case 2 (J; # ¢)

Now the second case will be evaluated. Figure 7.13 displays that the
four versions yield approximately the same §,, which is confirmed by
table 7.22 for OP1-4. In general, the mean values and standard devia-
tions of the regularization parameter for the three versions M2:1, M2:3
and M2:3+ are basically the same for all operating points, as shown in
table 7.22. The reason that M2:3 and M2:3+4 do not coincide is that
the former finds a corner at a smaller §,, in some instances. The second
version (M2:2) yields a d, that has a lower mean value than the other
three, which reflects a higher confidence in the data.

Concerning the individual parameter estimates in table 7.23, all
four versions render estimates that are reasonable. An exception is the
Woschni heat transfer coefficient C'y, which can be considered to be too
large for M2:2. A trend for all versions is that the estimated pry ¢ is
smaller than the nominal p;y ¢, which is partly compensated by Ap
and Try ¢ that are larger than their nominal values.

As for the simulation-based evaluation the parameters V., K, and
b are attracted to the vicinity of their nominal values, while others
like V. and 399 are adjusted to the data. Out of the four versions,
M2:3+ closely followed by M2:1 yields the smallest weighted nominal
parameter deviations for all OP:s, as indicated by table 7.23.

Compared to case 1, the estimates for M2:2 and M2:3 are much
closer to their nominal values, which is reflected by the £#-columns in
tables 7.21 and 7.23. For M2:1 and M2:3+ it is the other way around.
This is mostly due to the Ap-estimate, which yields a large normalized
nominal deviation and therefore contributes very much to £7.

To summarize the evaluation for d; # ¢, using M2:1 or M2:3+ yield
weighted nominal parameter deviations that are less than 15 percent
in both cases.
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Figure 7.13: L-curve (solid line) for one engine cycle at OP1, when
using case 2 of the §; (§; # c¢).
method 2 are indicated by the legend.

The results for the four versions of

OP1 OP2 OP3 OP4
N [rpm)] 2000 3000 4000 5000
Prman [kPa] 43 32 35 37

6. (M2:1) mean | 3.3-107° | 3.5-10=° | 5.5-107° | 3.6-10~°
Oest | 1.1-107° | 9.6-107% | 2.6-107° | 1.3-107°
5. (M2 :2) mean | 7.8-107% [ 44.10°°[3.0-10° | 2.1-10°
Oest | 3.7-107° | 27-107° | 1.0-107% | 8.1-107°
5. (M2 : 3) mean | 2.8-107° [ 5.9-107° | 5.6-107° | 3.2-10°°
Oest | 2.0-107° | 5.1-107° | 2.7-107° | 2.1-107°
6,(M2:3+) mean | 3.4-107° | 6.3-107° | 6.6-10=°> | 3.5-107°
Oest | 21-107° | 2.1-107° | 2.6-107° | 2.0-107°

Table 7.22: Mean value and standard deviation (oes:) of d, for the four
versions of method 2 using case 2, evaluated for 101 experimental cycles

at OP1-4.
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Summary of method 2

In the simulations the gain in choosing case 2 instead of case 1 was
not distinct. However in the experimental situation the gain in using
case 2 is stronger, especially for M2:2 and M2:3 since all estimates are
physically reasonable. It has also been shown that M2:1 and M2:3+
give more reasonable estimates, compared to M2:2 and M2:3. Version
M2:3+ is more flexible to changes in operating condition than M2:1,
since it finds a convex corner of the L-curve. For motored cycles, this
flexibility has not been shown to be necessary for the examined oper-
ating points. To conclude, the argumentation speaks in favor of using
version M2:1 and case 2 of §; for motored cycles.

7.3 Summary of results for motored cycles

Both the simulation and experimental studies showed that method 1
did not render accurate estimates. It was even hard to decide upon
the number of efficient parameters to use. However, method 1 allows
for the parameters to be ordered in how efficient they are for the given
estimation problem and data. It was also shown that 309 is the most
efficient parameter.

Method 2 outperforms method 1 since it is more robust to a false
prior level and yields more accurate parameter estimates, according to
the simulation-based evaluation. In the experimental situation method
2 was found to give reasonable estimates for all parameters. The drive
for method 2 was to regularize the solution such that the parameters
that are hard to determine are pulled towards their nominal values,
while the efficient parameters are free to fit the data. This has shown
to be the case in the simulations.

The user can chose between two cases of the parameter uncertainty,
namely §; = c and §; # ¢. The former is directly applicable once nomi-
nal values of the parameters are determined and yields good estimates,
almost as good as for the second case when considering only the sim-
ulations. However, when also considering the experimental evaluation
the gain in using the second case is stronger. Thus it is recommended
to use the second case. It requires more effort to decide upon the un-
certainty for each parameter, but pays off in better estimates that are
more robust to a false nominal parameter value.

Method 2 was originally given in three variants, and variant M2:1
gives the most accurate results for changes in operating condition, false
prior levels and noise realizations for simulated cylinder pressure data.
In the experimental evaluation a fourth variant, M2:3+, was included
to cope with unreasonably high curvature for low d, that can occur for
experimental data. It was found that the two variants M2:1 and M2:3+
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both yield reasonable estimates, and that the flexibility of M2:3+ for
a change in operating condition was not necessary. Since M2:1 is also
computationally efficient and outstanding compared to the other vari-
ants, usage of M2:1 together with §; # c is therefore recommended as
the best choice for motored cycles.
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RESULTS AND EVALUATION FOR
FIRED CYCLES

Method 1 and method 2 described in section 6.4 will now be evalu-
ated for fired cylinder pressure data. These methods were evaluated
for motored cycles in chapter 7 and the evaluation in this chapter fol-
lows the same structure. The evaluation covers both simulated and
experimental data.

It is worth noting that all numerical calculations have been made
for normalized values of the parameters, while the individual parameter
values that are given in tables are not normalized if not explicitly stated.
The purpose of the normalization is to yield parameters that are in the
order of 1, and the normalization is described in appendix C.1.

8.1 Simulation results — fired cycles

First the simulated engine data will be described, followed by a discus-
sion on the parameter prior knowledge used. The focus is then turned
to evaluating the performance of method 1, followed by method 2.

8.1.1 Simulated engine data

Cylinder pressure traces were generated by simulating the standard
model from section 6.2.1 with representative single-zone parameters,
given in appendix C.6. Six operating points were selected with en-
gine speeds N € {1500, 3000} rpm, mean charge temperatures at IVC
Trve € {370, 414} K, cylinder pressures at IVC pyy ¢ € {50, 100} kPa

187



188 CHAPTER 8. RESULTS AND EVALUATION FIRED...

Simulated fired data; OP1-6
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Figure 8.1: Simulated cylinder pressures for the different operating
points OP1-6.

T Ve ¢ Twve prve Y300 b Tw Ver
Unit [em?®] ] (K] [kPa] -] (K7 K] [em?]
o 0.5 0.114 10 2.5 0.005 1-107° 10 0.15
RME [%] 0.9 5.0 2.4 5.0 0.4 14.3 2.1 15.0
T A[) Al Kp CQ QH’L Qig Aé‘d A&b
Unit [kPa] [deg] [[] [m/(sK)]  [J] [deg]  [deg] [deg]
o; 2.5 0.05 0005 1.62-107* 25 1 2 2
RME [%] | 50.0 50.0 0.5 5.0 5.0 6.7 10.0  10.0

Table 8.1: Assigned standard deviation o; of the model parameters
x; used for the second case of ¢;:s. The relative mean error (RME)
corresponding to one standard deviation from the value (for OP1) is
also given.

and different heat release traces, where table C.5 defines the individual
operating points. For each operating point a cylinder pressure trace
was simulated and ten realizations of Gaussian noise with zero mean
and standard deviation 3.8 kPa were added, forming altogether 60 fired
cycles. The chosen noise level is the same as the one used in chapter 5
(and chapter 7), and thus reflects the level seen in experimental data.
The data was sampled with a resolution of 1 crank-angle degree (CAD).
In figure 8.1, one fired cycle is shown for each operating point. The
cylinder pressures corresponding to OP1 and OPG6 differ the most, and
will therefore be the two extremes in the investigation.

8.1.2 Parameter prior knowledge

The setting of parameter prior knowledge for fired cycles is based on
the same principles as for motored cycles, see section 7.1.2, and most
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details are therefore not repeated here. The standard model for fired
cycles entails 16 parameters, i.e. five more than for the motored cycle.
This has consequences for the second case of §;, i.e. §; # ¢, where the
expected parameter uncertainty for the five extra parameters must be
assigned. For this particular application the standard deviation o; for
each parameter are given in table 8.1.

8.1.3 Method 1- Results and evaluation

First of all, the order in which the parameters are set fixed when using
algorithm 6.2 without a preferred ordering is investigated. This corre-
sponds to keeping track of the spurious parameters x;2  in step 3.
In this case all parameters need to be included, and therefore the
maximum and minimum number of efficient parameters are given by
d# .. = d and dﬁm =1, where d = 16 is the number of parameters.
The resulting parameter order without a preferred ordering is given

by

Cy=C1 =<K, <Ty <A< Ap <V <Trvc
<b=<0iy < Ve <prve < Ay < Qin < Abg < 7300, (8.1)

which reflects a typical case. As before, the underlined parameter is
invariant in position to the investigated noise realizations, false prior
levels and different operating conditions. The other parameters differ
in position, and compared to the simulated motored case the permuta-
tion groups are larger and as well as the variation in position. At many
instances the difference in order occurs as permutations of the three
groups b, C1, Ca, Trve, prve, Tw)s [Kp, prve, Qin) and [0y, Abg], but
this is not the case as frequently as in the motored case. The first
group is expected since these parameters are coupled to temperature
through Woschni’s heat transfer correlation (3.43) and the linear model
of v (3.44), and corresponds well to the motored case described in (7.2)
except for b which is now included. All parameters in the second group
have a multiplicative effect on the cylinder pressure, although @Q;,, has
no effect on the compression phase prior to ignition. Comparing the
parameter order for motored (7.2) and fired (8.1) cycles, the order is
changed for most positions. However 309 is again the most efficient
parameter, given the structure of the standard model.

The minimizing number of parameters using algorithm 6.2 are given
in figure 8.2 for OP1 and OP6, that are the two extremes in the
simulation-based investigation. Ten different noise realizations corre-
sponding to ten engine cycles have been used, as well as four different
cases of false prior. The corresponding results for all six operating
points are given in table 8.2, but now as a mean value for the ten
cycles.



190 CHAPTER 8. RESULTS AND EVALUATION FIRED...

OP1 OP6
16 ‘ 16 ‘
® * k% x
14+ 14 O - ® 0 0O -0 %
— 12} — 12} o o o 4
ll;' ‘I;‘ u} ® o o %
o 101 8 *-8 g 10 * *
0] ]
5 s S s
g [ ® ¥ B % O g
uc—> 6 XXX ® - ® X ¥ \5 6»
(@] 0] 0] o) X
Z 4 0 ol % 4
0 O e) o0 o o o
2 2
0 0
0 10 0 10
o 0% (3.6) o 0% (11.8)
x 1% (6.2) x 1% (12.8)
* 2.5% (7.4) * 25%(13)
0 5% (7.6) o0 5% (12.6)

Figure 8.2: Minimizing number of parameters d* for method 1, when
using no preferred ordering.

Table 8.2 shows that the number of efficient parameters d# range
from 3 to 16, which is also illustrated in figure 8.2. The table also
illustrates that for a high load, i.e. OP2, OP4 and OP6, the number
of efficient parameters d” increases. Compared to the motored cycles
the variation in d# depending on the level of false prior FP is larger,
but again the variation is larger depending on the operating point. The
large range of d# makes it hard to use the Akaike FPE to determine
how many of the parameters in (8.1) that are efficient.

Estimation accuracy

Table 8.3 shows the parameter estimates for the entire range of d#, i.e.
from 16 to 1 parameter, for one engine cycle in the presence of a false
prior level of 5 %. For this specific cycle (OP1, cyclel), the Akaike FPE
is minimized by seven parameters, i.e. d* = 7. The results for a false
prior level of 0 % is given in appendix C.7, see table C.8.

Table 8.3 shows that the parameter estimates are biased when a
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Operating point (OP)
FP [%] 1 2 3 4 5 6
0 3.6 10.2 4.2 12.6 3.8 11.8
1 6.2 15.8 5.6 11.0 5.6 12.8
2.5 74 15.6 5.4 134 5.6 13.0
5 7.6 14.0 6.0 12.2 6.4 12.6
e | [B 10] [3,16] [3,8 4 16] [3, 9 [3, 16]

Table 8.2: Minimizing number of parameters d* for method 1, without
a preferred ordering. Four false prior levels are used and the range of
d* is given for each operating point.

false prior is present, which was also found for motored cycles in ta-
ble 7.4. As expected the individual parameter estimates depend upon
the number of efficient parameters d#, the false prior level and what
parameters that are classified as efficient. In order to have a true pa-
rameter deviation that is smaller than the false prior level, a maximum
of eight parameters should be used according to the &’ -column. For the
motored case, this number was as low as three according to table 7.4.
The &% -column also shows that &% is minimized by seven parameters,
which is also the minimizer of the Akaike FPE for this particular cycle.
This is more of a coincidence than a pattern.

If the individual estimates are considered, it is notable that the
C1-estimate has the largest normalized bias in general, which was also
the case for the motored cycles. Until ] is fixed the other parameters,
especially Ty ¢ and b, and to some extent Q;,,, K, and T,,, compensate
for the bad Ci-estimates. This results in biased estimates for these
parameters as well. When C is fixed, the pressure gain K, and the
mean wall temperature Ty, still have considerable biases.

The two parameters 309 and V. was shown to be important in the
sensitivity analysis in table 3.2. If the estimation accuracy of these
two parameters would decide how many parameters to use, the answer
would be eight parameters. This motivates why eight parameters are
used for compression ratio estimation on firing cycles in chapter 5.

Due to the unsuccessful results of applying method 1 to setup 1
without a preferred ordering of the parameters, as well as the unsuccess-
ful results for a preferred ordering for the motored case in section 7.1.3,
the investigations concerning a preferred parameter ordering as well as
setup 2 are left out.

Summary of method 1

To summarize, the usage of method 1 for estimating all the parameters
in the presence of a false prior has not been successful, which confirms
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the results found for the motored cycles in chapter 7. Minimizing the
Akaike FPE criterion gives a recommended number of parameters be-
tween 3 and 16, which fluctuates with both operating point and noise
realization and therefore hardly gives any guidance at all. If we in-
stead just consider the true parameter deviation, a maximum of eight
parameters can be used in order to yield a true parameter deviation
that is less than the applied false prior level. For a specific application,
like compression ratio estimation in section 5.3.4, eight parameters are
recommended to be used.

Method 1 has also given valuable insight in which parameters that
are most efficient. For instance it has been shown that ~3gp is the
most efficient parameter, given the structure of the standard model in
section 3.8.

8.1.4 Method 2— Results and evaluation

Now the focus is turned to evaluating method 2. First the results are
presented and then the performance of the three versions M2:1, M2:2
and M2:3 are evaluated using the two setups described previously in
section 7.1.2.

Implementation details

The implementation details described in section 7.1.4 for motored cy-
cles apply here as well and are therefore only repeated in a summarized
manner. The interesting search region A, for the regularization pa-
rameter J, is again chosen as &, € [107!, 10%], see figure 7.5, to assure
that the L-shaped corner is included for all examined cases. When it
comes to the three versions of method 2, the constants m. and mg for
M2:1 and a. for M2:2 are computed in the same manner for both fired
and motored cycles, see section 6.4.2 for details. Version M2:3 requires
no choices to be made.

Results for setup 1

The results of method 2 are now given for setup 1, where the nominal
values are given by x# = (1 + FP) 2! for FP € {0,1,2.5,5} % and the
assigned standard deviation ¢ = 0.01z' is equal for all parameters,
yielding equal regularization elements d;, i.e. case 1 of ¢; (J; = ¢).

An example of an L-curve is given in figure 8.3 for one engine cycle
at OP1 and FP = 5 %. It also shows the true parameter deviation &%,
and the false prior level, as well as the results from the three versions
of method 2 and the optimal choice of d,. As before, the optimal J} is
determined as the one minimizing &, = RMSE(cl), for the d,:s used in
the computation.
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Figure 8.3: L-curve (solid line) for one engine cycle at OP1 with
FP=5 % (dotted line) for setup 1. The results for the three versions
of method 2 and the optimal choice of regularization parameter are
indicated by the legend. The mean true parameter deviation &%, (dash-
dotted line) is also given.

The optimal §; is given in table 8.4 for all operating points and
false prior levels used in setup 1. The corresponding true parameter
deviations &, are summarized in table 8.5. The numerical values in
both tables are given as mean values for the ten cycles.

Table 8.6 summarizes the results for all six operating points in terms
of the true parameter deviation & in percent as mean values of ten
cycles at FP=5 %. The results are similar for the other false prior
levels used. The mean and maximum difference compared to J; are
also given, together with the mean computational time for completing
the estimation of one engine cycle.

Table 8.7 shows the individual parameter estimates and the corre-
sponding mean true and nominal parameter deviations £, and % at
OP1 for FP = 5 %. The corresponding table for OP6 is given in ta-
ble 8.8. These parameter values are computed as mean values for ten
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FP [%] | 1 2 3 4 5 6
0 1-10° 1-10° 1-10° 1-10° 1-10° 1-10°
1 0.085 0.091 0.095  0.56 0.15  0.0081
2.5 | 0.0062 0.011 0051 0.0013 0.02 0.0033
5 0.002 0.0044 0.008 0.00098 0.019 0.0044

Table 8.4: Value of optimal regularization parameter §}, for setup 1
and operating points OP1 to OP6. For FP = 0 %, ¢ is the highest
value used in the computation.

FP[%] | 1 2 3 4 5 6
0 10-7 107 10~ 10" 10~7 107"
1 08 08 08 08 08 0.7
2.5 1.9 1.9 1.9 1.6 1.8 1.6
5 34 35 34 30 33 32

Table 8.5: Mean true parameter deviation &!, [%] corresponding to
optimal 67 in table 8.4, for setup 1 and operating points OP1 to OP6.

consecutive cycles. The tables also entail the relative mean estimation
error (RME) in percent, as well as numerical values for the true and
(emphasized) nominal values.

Evaluation for setup 1

Evaluation for OP1: Figure 8.3 is very similar to figure 7.6 in that &,
becomes smaller for a decreasing J, until it reaches its optimal value,
and that all three versions of method 2 visually find positions close
to the corner of the “L”. Note that the estimate lies in between the
true value and the nominal (false) value, and therefore is a compromise
between the data and the prior knowledge.

The placement order on the L-curve in figure 8.3 in which the ver-
sions occur is however somewhat altered compared to the motored case.
As for the motored case, the approximative versions are a little more
conservative than the optimal ¢%, resulting in higher values of §, and
estimates that are closer to the nominal values. This is however prefer-
able to a situation where ¢, is too low, which would result in parameter
estimates that have drifted away from the nominal ones.

Just as for the motored case, the optimal regularization parameter
0y is approximately the same for different noise realizations, but de-
pends upon the operating point and false prior level used. Concerning
the estimation accuracy, the true parameter deviation &, is fairly con-
stant from cycle-to-cycle and different operating points, for a given FP
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0)5 or 0, (M2:1) 0, (M2:2) ¢, (M2:3) mv(d,)
1 3.4 4.1 4.1 4.0 4.0
2 3.5 4.0 4.0 3.9 3.9
3 34 4.1 4.1 4.0 4.0
4 3.0 4.0 4.0 4.0 4.0
b) 3.3 4.0 4.0 3.9 4.0
6 3.2 3.9 3.9 3.6 3.8
Max Diff 0 0.98 1 0.95 0.95
Mean Diff 0 0.69 0.69 0.58 0.65
Time [s] | 21275 296 9109 21275 358

Table 8.6: True parameter deviation &, for the optimal ¢ in table 8.4,
the three versions of method 2 and as mean value for the optimal ¢
corresponding to table 8.4. The numerical values are given in percent
and are evaluated for FP =5 % for setup 1. The mean computational
time for completing the estimation for one engine cycle is also given,
where the assumptions made are the same as for the motored cycles in
section 7.1.4.

level. These statements are not shown, but are in accordance with the
motored cycles and are based on the similarity of figures 7.8 and 7.9
for the motored cycles.

Evaluation for all OP:s. The focus is now turned to evaluating
method 2 for all operating points. Table 8.4 shows that the optimal
0y changes with the FP level and operating point, and the effect is
most pronounced for changes in the FP level. However the estimation
accuracy is approximately the same although the optimal 6 varies
depending on the operating point at a given FP level, as shown in
table 8.5. The table also shows that the true parameter deviation &,
is less than the false prior level used for FP > 0 %. This is all in
accordance with what was concluded earlier for motored cycles.

Table 8.6 shows that the true parameter deviation is larger for the
approximative versions of J, as compared to the optimal choice §7.
However all estimates are a compromise between the true and nominal
(false) values, and are somewhat biased towards the nominal ones. As
illustrated earlier for figure 8.3, the approximative versions resulted in
conservative d,:s, which in turn results in estimates that are close to
the nominal ones, i.e. estimates that are over-smoothed by the regu-
larization. The mean difference in &!, compared to ¢ is in the order
of 0.6-0.7 % as indicated in the table. The difference in between the
approximative versions is however relatively small. Compared to the
corresponding motored case in table 7.10 the estimation accuracy for §;
is higher for fired cycles, while the approximative versions yield approx-



8.1. SIMULATION RESULTS — FIRED CYCLES 197

imatively the same accuracy. Algorithm M2:3 however has the overall
highest accuracy of the three versions, and is in the mean 0.1 % more
accurate than M2:1 and M2:2 for all the examined operating points.
These two versions yield approximately the same estimate and they
could both be trimmed to give better estimates, which would however
require ad-hoc tuning. This is therefore not pursued here since the goal
has been to compute the values for the constants m., mgs and a. in the
same way, regardless of operating point.

As pointed out in section 7.1.4, M2:1 (and M2:2) could have a disad-
vantage compared to M2:3 when changing operating conditions which
could either result in some loss in estimation accuracy or requires an
ad-hoc tuning of the parameters in M2:1. The former effect is seen in
table 8.6 by comparing the columns for M2:1 and M2:3, especially for
OP6. For the motored cycles this effect did not show up, which could
be due to the simpler model of cylinder pressure, but is more likely due
to that the changes in thermodynamic properties are larger when an
operating point is changed for the firing cycles.

The computational time given in table 8.6 again shows that algo-
rithm M2:1 and muv(d}) are the fastest and they differ merely due to
that they use a different number of iterations to minimize the loss func-
tion Wy . Compared to M2:3, M2:1 is approximately 70 times faster
according to table 8.6, while M2:2 is approximately 30 times slower
than M2:1. As expected the computational time increases significantly
for fired cycles as compared to motored, the increase is approximatively
a factor eight in the mean. The increase is due to the more complex
model, more parameters to estimate and more iterations performed
before convergence of the local optimizer for each specific J,.

Estimation accuracy for x;: Now the focus is turned to the esti-
mation accuracy for the individual parameters z;. Tables 8.7 and 8.8
show that the estimates for C1, Ty ¢, b, Ty, Ap, and especially for V.,
A0 and Cs, are regularized to the vicinity of their respective nominal
value xf, indicated by an RME close to 5 %. These eight parame-
ters correspond fairly well with the order in which the parameters are
set spurious for method 1 when no preferred ordering is used, com-
pare (8.1). The difference is K, otherwise it corresponds to the eight
most spurious parameters. The estimates for the other parameters, ex-
cept for 0;; and K, yield estimates that are in between the true and
(false) nominal value. For all examined operating points the estimation
accuracy is highest for 7399, which has an overall RME within 1.5 %,
closely followed by A8, (1.6 %), prve and @y, (within 1.8 %). The
accuracy for V, is within 3.2 %.

The estimation accuracy also depends upon the routine used to de-
termine the regularization parameter d,. From table 8.6 it was found
that routine M2:3 gave the smallest overall mean error, followed by
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M2:1 and M2:2. When considering the individual estimates of the
five parameters, the same relative ordering is found if all six oper-
ating points are considered. In the case for M2:3 the accuracy of the
estimates for the five parameters is within 3 %. This value is larger
than the 0.5 % which was found for the corresponding motored case,
and is probably due to the more complex model structure and harder
estimation problem in the fired case. The other estimates end up as a
compromise in between the true value and the (false) nominal value,
except for 0;, and K. In the case of the two parameters Ap and C,
these two estimates coincide with the nominal values for all cases of d,
in table 8.7. For the two parameters V., and A# the estimates coincide
with the nominal ones for the approximative versions, but not for the
optimal choice of §,.

As pointed out for the motored case, in the presence of a false prior
of 5 % the estimates for method 2 are equally or more accurate com-
pared to method 1 for all number of, except seven, efficient parameters,
as shown by comparing the &% -columns in tables 8.3 and 8.7. This again
illustrates that method 2 is more robust to a false prior than method 1
and this results in better estimates. The difference between method 1
and method 2 are however smaller in the fired case.

Results for setup 2

The results for method 2 is now presented for setup 2, where the nom-
inal values are given by :vf = (1 + oy)al, for which the standard de-
viations are given in table 8.1. The assigned regularization elements

are given for the two cases §; = ¢ and d; # c¢. The first case is
6; = ﬁ (0.011mt)2’ i.e. all elements are equal, and in the second case
0; = ﬁ The tables and figures follow the same structure as for the

corresponding motored case in section 7.1.4.

The L-curves based on one engine cycle for each case at OP1 are
given in figures 8.4 and 8.5 respectively. The individual parameter
estimates are given in tables 8.10-8.13, and corresponds to the form
used in table 8.7. Tables 8.10 and 8.11 represent case 1 (d; = ¢) for OP1
and OP6, while the corresponding tables for case 2 (d; # ¢) are given
in tables 8.12 and 8.13. It is worth to mention again that the second
case uses the weighted versions of the nominal parameter deviation
RMSE(L £#) and so on in the tables and figures. Therefore the optimal
regularization parameter §; is now determined as the one minimizing
the weighted true parameter deviation, i.e. RMSE(L? ¢%). The nominal
and true parameter deviations &% and &% for both cases at OP1 and
OP6 are then summarized in table 8.9.
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Figure 8.4: L-curve (solid line) for one engine cycle at OP1 with false
prior £# =% (dotted line), when using setup 2 and case 1 of the §; (6; =
¢). The results for the three versions of method 2 and the optimal
choice of regularization parameter are indicated by the legend. The
true parameter deviation &%, (dash-dotted line) is also given.

Evaluation for setup 2

Evaluation for OP1: Figures 8.4 and 8.5 both illustrate the L-shaped
curve which was also found for the corresponding motored case. The
three approximative versions of method 2 all yield estimates that are
close to the corner of the “L”. This is however not the case for the
optimal regularization parameter. Figure 8.4 (6; = ¢) shows that the
optimal 0% is not as close to the corner as in the approximative ver-
sions. This is directly reflected in the parameter estimates for ¢} that
are close to the true values. They are closer than the estimates from
the approximative versions, as seen in the &.- and £7-columns in ta-
bles 8.10 and 8.11. For §; # ¢ the optimal §7 is closer to the corner as
shown in figure 8.5, which is also reflected in a better consistency be-
tween the optimal and approximative versions. It also reflects a better
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Figure 8.5: L-curve (solid line) for one engine cycle at OP1 with
weighted false prior RMSE(L® ¢#~*) (dotted line), when using setup 2

and case 2 of the §; (§; # ¢).

The results for the three versions

of method 2 and the optimal choice of regularization parameter are

indicated

by the legend.

The weighted true parameter deviation

RMSE(L? ') (dash-dotted line) is also given.

(57‘, =C (Si 75 C
OP1 OP6 OP1 OoP6

St g et | & &t | & gt | & e

(2] 1% | [%] (%] | [%] [%] | [%] [%]
ox 6.5 166 | 6.2 177 | 5.8 152 | 11.2 16.0
6(M2:1) | 183 3.8 | 183 3.2 | 11.1 127|143 11.7
6.(M2:2) | 183 4.1 | 183 3.3 | 128 104 | 138 86
6,(M2:3) | 182 4.3 182 39 | 114 125|126 11.9
7 188 0.0 | 187 0.0 | 188 0.0 | 187 0.0
xt 00 188 | 00 187 | 0.0 188 | 0.0 18.7

Table 8.9: Mean true and nominal parameter deviation for method 2
using two cases of §; at OP1 and OP6 for setup 2.
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(weighted) compromise between L55§c and L‘sz, as they are equal in

size in tables 8.12 and 8.13. This speaks in favor of using J; # c.

Evaluation for the individual estimates x;: Now consider the es-
timation accuracy of the individual parameters z;, and especially the
estimates produce by M2:1, M2:2 and M2:3. Tables 8.10 and 8.11 show
that the estimates for the parameters Cq, b, and especially for V..., Ap,
A0 and Cy are regularized to the vicinity of their respective nominal
value x?, indicated by an RME that is close to the one for the nominal
parameter values. Most of the remaining parameters end up in the
region between the true and nominal values, except for the estimates
of C1, Ve, 7300 and K. These parameters end up just outside of the
region with estimates that are within 6 % for the worst case (K)).

For §; # ¢, tables 8.12 and 8.13 show that C1, Trve, v300, Tw, Ver,
A0 and C5 end up near their respective nominal value, while the burn
angle parameters 6;,, Ay and Ay, and the released energy @, yield
estimates within 2.3 %. The estimates of the four parameters V., vs300,
Qin and Af, are again better for d; # ¢ than §; = ¢, while the accuracy
of prv ¢ is approximately the same.

The conclusion from tables 8.10-8.13 is that the regularization is
used to pull parameters that are hard to estimate toward their nominal
values, while the efficient parameters are free to fit the data. This was
the drive for using method 2, and it works as intended.

Evaluation for all OP:s: Table 8.9 shows that for §; = ¢ the true
parameter deviation €% is almost as large as the false prior level used,
while for §; # c the true and nominal parameter deviations &, and &7
are approximately equal in size. This is also illustrated in the weighted
true and nominal parameter deviations, L¢!, and L°c¥, in tables 8.12
and 8.13. As pointed out earlier, it reflects a better compromise be-
tween prior knowledge and measurement data for the second case. From
table 8.9 it can also be concluded that the true parameter deviation £,
is smaller for the second case for all three versions of method 2, which
also was the case for evaluation based upon motored cycles, see ta-
ble 7.13. As for the corresponding motored case the mean nominal
parameter deviation £7 is relatively small for §; = c and significantly
higher for §; # c. This together with the smaller £, reflects that the
second case is more robust to a false prior, which of course is preferable.
Note that the false prior level for the fired cycles is smaller than for the
motored cycles, which is due to the larger number of parameters and
that the RME of the false prior in setup 2 for Ap and A6 are 50 %, see
table 8.1.

Now the attention is turned to finding which version of method 2
that performs the best. In the case of §; = c¢ all three versions are
restrictive and yield estimates close to the nominal values. This is,
as pointed out previously, reflected by a relatively low value of &7 in
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table 8.9. Out of these three, M2:3 performs best, but the difference
is small and the estimation bias is still significant as reflected by the
gl -columns.

In the case of §; # ¢, all three versions render weighted parame-
ter deviations RMSE(L® e!) and RMSE(L® £#) that are approximately
the same and fairly close to the optimal, see tables 8.12 and 8.13. Ta-
ble 8.9 shows that &, is smallest for M2:1 at OP1 and for M2:3 at OP6.
However when considering &, for all investigated operating points, it is
lowest for M2:3 followed by M2:2 and M2:1 for all six operating points
except OP1.

8.1.5 Summary for simulation results

Method 1 resulted in parameter estimates that are significantly biased
in the presence of a false prior, since the bias is larger than the false
prior level used. It is therefore in itself not recommended to use for
estimation of all parameters in the given formulation. When the true
parameter deviation is available, the number of efficient parameters can
be determined for a specific application such as for example compression
ratio estimation.

Method 2 outperforms method 1 since it is more robust to a false
prior level and yields more accurate parameter estimates. The drive for
method 2 was to regularize the solution such that the parameters that
are hard to determine are pulled towards their nominal values, while
the efficient parameters are free to fit the data. This has shown to be
the case in the simulations for both fired and motored cycles.

The user can chose between two cases of the parameter uncertainty,
namely §; = ¢ and §; # c¢. The former is directly applicable once nomi-
nal values of the parameters are determined and yields good estimates.
The second case is however more robust to false prior as seen in setup 2,
and it is therefore recommended since it pays off in better estimates.

Method 2 is given three versions; For the fired cycles it has been
shown that M2:3 yields the best estimates in terms of estimation accu-
racy. For motored cycles it was shown that M2:1 could be used in all
the examined operating points without any noticeable loss in estima-
tion accuracy. This has not been the case for the fired cycles, where a
change in operating conditions changes the thermodynamic properties
more significantly and results in larger biases for M2:1 than for M2:3.
The difference in estimation accuracy between M2:1 and M2:3 is how-
ever small, within 0.3 % and 2 % for setup 1 and 2 respectively, while
the difference in computational time is more significant. Thus if time
is available the recommendation is to use M2:3, while if computational
time is an important feature M2:1 is recommended.
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8.2 Experimental results — fired cycles

The methods will now be evaluated on experimental engine data. The
structure of the section is similar to the corresponding motored case, i.e.
section 7.2. Thus first the experimental engine data will be described,
followed by a discussion on the parameter prior knowledge used. The
focus is then turned to evaluating the performance of method 1, fol-
lowed by method 2.

8.2.1 Experimental engine data

Data is collected during stationary operation at engine speeds N €
[1200, 3500] rpm, intake manifold pressures p,qn € [32, 130} kPa and
ignition angle 6;, € [—33, —5] deg ATDC, altogether forming six differ-
ent operating points. These operating points are defined in the upper
part of table 8.14, and are also given in table C.9 in appendix C.7.

For each operating point 101 consecutive fired cycles were sampled
for two cylinders with a crank-angle resolution of 1 degree, using an
AVL GU21D cylinder pressure sensor. But due to the longer compu-
tational time for firing cycles as compared to motored, especially for
M2:3 as shown in table 8.6, only the first 40 cycles will be considered in
the evaluation. Figure 8.6 displays one measured cycle for each oper-
ating point. The operating points are numbered in an ascending order
of their maximum cylinder pressure.

8.2.2 Parameter prior knowledge

The parameter prior knowledge used in the experimental evaluation is
based on different strategies to set the nominal parameter values 2%
and the regularization elements J;.

Nominal parameter values 27

The nominal parameter values z# are set based on a combination of
the parameter initial methods described in chapter 3 and expert prior
knowledge of what the numerical value of 2# should be. The values
for «# for each operating point are given as the emphasized values
in table 8.15. The nominal values are also given in table C.10 in ap-
pendix C.7. Of these parameters it is only the nominal values for Ap,
Af; and A, that are updated for each cycle, and therefore for these
three, their respective mean value is given in the table. The other
parameters are updated for each operating condition.
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Experimental fired data; OP1-6
70 ‘ ‘ ;

60 <—|OP6

50

40

30

Pressure [bar]

20

10

-100 -50 0 50 100
Crank angle [deg ATDC]

Figure 8.6: Experimentally measured fired cylinder pressures at oper-
ating conditions OP1-6.

Regularization elements §;

Two cases of regularization parameter elements are used for method 2
and they correspond to the two cases used in the simulation-based
evaluation done previously. The first case (§; = ¢) sets the standard
deviation o; for each parameter as o; = 0.01z7, where z7 is the mean
value of x? for one operating point. It is used to assure that o; does not
fluctuate in size from cycle-to-cycle. In the simulation-based evaluation
x! was used instead of z7.

The second case (d; # ¢) is based on expert knowledge of the un-
certainty for each parameter and it is therefore subjectively chosen by
the user. The standard deviation used here in the experimental eval-
uation coincides with the one used for the simulation-based evaluation
in table 8.1.

The first case is updated for each operating point, while this is not
required for the second case.
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OP1  OP2 OP3 OP4 OP5  OP6
N [rpm] 1200 1500 1500 2000 3000 3500
Pman [kPa] 32 55 130 123 103 120
0;g[deg ATDC] |  -33 -26 5 -12 -28 -24
mean(d*) 13.2 132 131 118 13.6 14.3
d* e [11,16] [12,16] [9,16] [10,15] [11,16] [L1, 16]

Table 8.14: Mean number and region of d* for 40 experimental cycles
at OP1-6.

8.2.3 Method 1- Results and evaluation

Method 1 is evaluated without a preferred ordering, since no gain was
found in the simulation-based evaluation by using one in section 7.1.3.
The parameter order for all six operating points is given by

Ap < Cy < Ty < prve <= A0 < V.. <C1 < Trve
< Al0g <b=<Qin < K, < Al <V, < 97‘,9 < Y300, (8.2)

which reflects the most common case. This parameter order differs
somewhat from the corresponding order found in simulations (8.1), for
instance 6;, and Af; have changed places, but -39 is still the most
efficient parameter and invariant in position for the investigated oper-
ating conditions and cycle-to-cycle variations. The other parameters
differ in order at most instances as permutations of the three groups
b, C1, C2, Trve, prves Tw, Verl, [Kp, prve, Qin, A6y and [0;4, Aby].
The same groups were found in the simulation-based evaluation in sec-
tion 8.1.3 except for V., and A#f, that are now included in the first and
second group respectively.

The minimizing number of parameters d* using algorithm 6.2 are
given in table 8.14 as a mean over the 40 cycles at all six operating
points. The range of d* for each operating point is also given. The
table shows that the mean values of d* are more stable between oper-
ating points and that the variation is smaller in the experimental case,
compared to the simulation given in table 8.2. The trend of more effi-
cient parameters for high loads seen in table 8.2 does not show up in
table 8.14.

The mean value, standard deviation, and relative mean error for the
individual estimates are given in table 8.15. The relative mean error
is computed relative to the nominal parameter value at each cycle and
is given in percent. All parameters give reasonable values except for
Ty and V., that yield unreasonably large parameter values, while T7y ¢
and to some extent also V, yield small values. The parameter C; yields
estimates that are either too small, reasonable or too large. Especially
for OP3 and OP4 the C1-estimate becomes too small, while at the same
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time a high prv e, an advanced ignition angle 0;, and a prolonged burn
delay angle Af, as compared to the nominal values is notable. The lack
of accuracy for the estimates is due to the high mean number of efficient
parameters found in table 8.14. These high numbers are probably due
to that the Akaike FPE assumes that the system considered is covered
by the model structure used. All models are approximations and this
is the case here, especially for firing cycles, since not every physical
process influencing the measured cylinder pressure is modeled. The
combination of modeling error and the measurement noise makes the
Akaike criterion become minimized for a high value of d*.

In accordance with the simulation-based evaluation in section 8.1.3,
method 1 is not recommended to use for parameter estimation in the
given formulation. The attention is therefore turned to method 2.

8.2.4 Method 2— Results and evaluation

In the experimental evaluation of method 2 for motored cycles in sec-
tion 7.2.4, a fourth version called M2:3+was included. The algorithm
was motivated and fully described in appendix C.3, and it will also be
studied here in the experimental evaluation for firing cycles.

First the results are presented for the two cases of §;:s, §; = ¢ and
0; # ¢, and then the performance of the four versions M2:1, M2:2,
M2:3 and M2:3+ are evaluated. The same implementation settings, as
for the simulation-based evaluation in section 8.1.4, are used and are
therefore not repeated here.

Results for case 1 (§; = ¢) and case 2 (J; # ¢)

The results are first described for case 1. An example of an L-curve is
given in figure 8.7. Table 8.16 summarizes the mean value and standard
deviation of the computed regularization parameter §, for 40 experi-
mental cycles. This is done for all six operating points and for each
of the four versions of method 2. The individual parameter estimates
are given as mean values for 40 cycles at each OP in table 8.18, as well
as the corresponding (emphasized) nominal values 27 and the nominal
parameter deviation 7.

The corresponding figures and tables for case 2 are given in fig-
ure 8.8, table 8.17, table 8.19 that now also include the weighted nom-
inal parameter deviation RMSE(L® e#).

Evaluation for case 1 (J; = ¢)

Case 1 is considered first. Figure 8.7 illustrates that the L-curve does
not have as sharp transition as in the corresponding simulated case
given in figure 8.4. The difference is believed to be due to that the
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Figure 8.7: L-curve (solid line) for one engine cycle at OP1, when using
case 1 of the §; (§; = ¢). The results for the four versions of method 2
are indicated by the legend.

Oyt OP1 OP2 OP3 oP4 oP5 or6
0,(M2:1) mean | 1.8-10 2 | 4.0-10° T | 3.9-10° | 6.7-10 " | 7.3-10" 1 | I.1-10°
Oest | 20-1072 | 88-1072 | 1.4-10° | 1.5-10° | 7.1-107"' | 4.2-107!
0,(M2:2)  mean | 49-1077 [ 2.9-1077 [ 95-107% | 1.1-107 | 3.4-107° | 8.8-10~7
Oest | 2.2-1076 [ 1.2.1077 | 1.0-107° | 1.2-107® | 3.7-107* | 2.0- 1076
0,(M2:3)  mean | 28-107° [ 7.3-10°° [ 7.3-10°° | 62-107° [ 8.0-107° | 1.5-107°
Oest | 4.9-107% [ 3.3-107° | 1.3-107* | 2.6-107° | 1.5-107* | 1.2-107°
0,(M2:3+) mean | 32-107° [ 9.7-107° [ 881072 | 6.3-10"2 [ 4.1-1072 | 4.8-1072
Oest | 3.8-1073 [ 20-107% | 3.1-1072 | 1.8-1072 | 1.1-1072 | 1.1-102

Table 8.16: Mean value and standard deviation (oes) of d, for the four

versions of method 2 using case 1, evaluated for 40 experimental cycles
at OP1-6.
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model structure is not correct. Figure 8.7 also shows that the four
versions yield different regularization parameters 6,. Version M2:1 is
the most conservative of them all and yields the highest §,, closely
followed by M2:3+. Then there is a gap to the two versions M2:2 and
M2:3, which in turn render approximately the same §,. Both M2:3 and
M2:3+ correspond to corners on the L-curve, although the corner for
M2:3 is hardly visible to the eye.

For all six operating points table 8.16 shows that the regularization
parameter for the four versions are ordered in size according to

0p(M2:1) > 0,(M2:3+) > 5,(M2:3) > 0,(M2:2), (8.3)

except for OP3 where it is the other way around for M2:2 and M2:3. As
expected the difference between 6, (M2 : 1) and 0, (M2 : 3+) is smaller
than between 6, (M2 : 1) and 6,(M2 : 3). Version M2:3+ is more
flexible to changes in operating condition than M2:1, since it finds a
convex corner of the L-curve. For the examined operating points, M2:1
yields a higher 6, than M2:3+. Using M2:3 in its original form or M2:2
results in lower values of §,. For M2:3 this corresponds to the high
value of the curvature found in figure C.2. Table 8.16 also shows that
the mean value of §,, depends upon operating condition, and that for a
given version of method 2 4, is in the same order of magnitude for all
six operating points.

The different d,:s result in different nominal parameter deviations
and individual estimates, as shown in table 8.18 for OP1-6. The &7-
column shows that M2:1 yields the smallest nominal parameter devia-
tion of all versions, closely followed by M2:3+. The nominal deviations
g7 are within 2.2 % and 4.4 % respectively for all operating points con-
sidered. The other two versions, M2:2 and M2:3, render a significantly
larger éf, where the parameters b, v300 and 17y ¢ give unreasonable
values. Of these parameters, b is the largest contributor to the nom-
inal deviations. At some instances the ignition angle 6;, is advanced
compared to the nominal value, and this is compensated by a longer
flame development angle A6y, see e.g. OP2. In the experimental eval-
uation for motored cycles it was found that K, yielded unreasonable
estimates, see table 7.21, but this is not the case for the firing cycles.
Of the other parameters pryc, K, C2, Qin and Af, all end up within
5 % of their nominal values for all operating points.

The individual estimates for M2:1 and M2:3+ are all reasonable,
which is expected since they end up close to their nominal values. The
maximum deviation occurs for the parameters 6;, and Afy for both
versions, the others are all within 5 %.

To summarize the evaluation for d; = ¢, using M2:1 or M2:3+ yield
estimates that deviate less than 3 and 5 percent in the mean.
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Method 2; OP1 Zoomed version

X

=

o
T

RMSE(L® €% []

M2:2

» 0O * O

M2:1
10 1 1

10° 10" 107 10"
RMSE( ¢ ) [bar] RMSE( €) [bar]

Figure 8.8: L-curve (solid line) for one engine cycle at OP1, when using
case 2 of the §; (§; # ¢). The results for the four versions of method 2
are indicated by the legend.

Oyt OP1 OP2 OP3 oP4 oP5 or6
0,(M2:1) mean | 7.7-10 % [ 1.4-102 [ 1.7-10° " | 35-10°2 [ 32-102 | 5.3-10 2
Oest | 6.1-107% 1 3.0-107% | 3.8-1072 | 5.2-1072 | 2.1-1072 | 2.3-1072
0,(M2:2)  mean | 43-107° | 5.6-107° [ 3.8-107% | 1.4-10-* [ 1.9-1072 | 7.1-10~ ¢
Oest | 3.4-107* [ 3.0-107° | 2.9-1073 | 8.0-107* | 6.7-107% | 1.5-102
0,(M2:3)  mean | 1.5-107° [ 58-1077 [ 85-107° | 7.3-10°6 [ 1.2-107* [ 8.7-107F
Oest | 1.8-107° | 6.4-1077 | 1.3-1073 | 9.5-107° | 1.9-1072 | 3.6-10~*
0,(M2:3+) mean | 22-107% [ 4.6-107% | 1.3-10° | 7.1-107* [ 1.6-107> | 1.8-1072
Oest | 7.9-107%* | 3.0-107% | 2.4-10° | 1.8-107% | 1.5-1073 | 1.1- 10"

Table 8.17: Mean value and standard deviation (oes:) of d, for the four
versions of method 2 using case 2, evaluated for 40 experimental cycles
at OP1-6.



8.2. EXPERIMENTAL RESULTS — FIRED CYCLES 217

Evaluation for case 2 (J; # ¢)

Now the second case will be evaluated. The L-curve in figure 8.8 is sim-
ilar to the corresponding L-curve for the simulated case in figure 8.5,
although it is not as sharp in the transition. As for case 1, both M2:3
and M2:3+ correspond to corners on the L-curve, although the corner
for M2:3 is hardly visible to the eye. Figure 8.8 also displays that the
three versions M2:1, M2:2 and M2:3+ yield approximately the same ¢,
for OP1, while M2:3 yields a smaller §,.. This observation is confirmed
by table 8.17. However the variation in §, for M2:1, M2:2 and M2:3+ is
larger for the other five operating points, and thus reflect that the ver-
sions typically are a little more spread out on the L-curve as compared
to OP1.

Table 8.17 shows that for all six operating points the regularization
parameter for the four versions are ordered in size according to

5o(M2:1) > 0, (M2:3+) > 6,(M2:2) > 6,(M2:3),  (8.4)

except for OP3 where it is the other way around for M2:1 and M2:3+.
Compared to (8.3), the ordering is the same apart from M2:2 and M2:3
which now have changed places. As for the first case, M2:3 results in
low values of §,, due to the same reason. It is also found that the mean
value of J, depends upon operating conditions, and that for a given
version of method 2 §, is in the same order of magnitude for almost all
six operating points. The only exception is OP3 for version M2:3-+.

As expected, the different ¢,:s result in different nominal parameter
deviations and individual estimates, as shown in table 8.19 for OP1-6.
The column for weighted parameter deviation, L‘sz, shows that M2:1
and then M2:3+ yield the smallest nominal parameter deviations of
all versions, except for OP3 where it is the other way around. This
corresponds to the ordering given in (8.4). The other two versions,
M2:2 and M2:3, render a significantly larger L%¢#, mainly due to low
estimates of 300 and Tryc as seen for OP2. Considering the &7-
column, these values are larger than the corresponding column for ¢; =
¢, see table 8.18. This is mainly due to the relatively large contribution
of nominal deviation in A@ for 6; # c. The nominal deviations &7
for M2:1 and M2:3+ are within 67 % and 76 % respectively for all
operating points considered.

Now consider the individual estimates in table 8.19; Just as for
d; = c¢, the ignition angle 0;, is advanced compared to the nominal
value, and this is compensated by a longer flame development angle
Afy. Another trend is that A# is larger than the nominal value for all
operating points. For M2:2 and M2:3 the parameters prvc, Ver, Kp,
Cs, Qin and Ay all end up within 5 % of their nominal values. These
parameters are the same as for §; = ¢, but now also includes V,,.. For
M2:3+the estimates of C1, prve, V300, Tw, Vers Kp, Co, Qin, Aby, and
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for M2:1 also the parameters V. and T7y ¢, are all within 5 % of their
nominal value. Compared to §; = ¢, fewer parameters are within this
limit, but as before all the estimates are still reasonable.

To summarize the evaluation for §; # ¢, using M2:1 or M2:3+ yield
weighted nominal parameter deviations that are less than 10 and 17
percent respectively.

Summary of method 2

To summarize, case 1 and 2 yield different estimates and for the ver-
sions M2:2 and M2:3 almost the same parameters are close (within
5 %) of their nominal values. For M2:1 and M2:3+ more parameters
are within this limit, especially for case 1. It can however not be deter-
mined which case that gives the best estimates, since the true values are
unknown. But it has been shown that the extension of M2:3 to M2:3+
has resulted in a more robust algorithm. It has also been shown that
M2:1 and M2:3+ give more reasonable estimates, compared to M2:2
and M2:3. This is in line with the results from the simulation study.
The simulation study also showed that case 2 (6; # ¢) is to be preferred,
and therefore this is the recommended choice.

Unlike M2:1, M2:3+ finds a convex corner of the L-curve. This
makes M2:3+ more flexible to changes in operating condition. There-
fore if time is available, M2:3+ is preferable to M2:1.

8.3 Summary of results for fired cycles

For method 1 the same conclusions as for the motored cycles in sec-
tion 7.3 can be drawn; Both the simulation and experimental studies
showed that method 1 did not render accurate estimates. It was even
hard to decide upon the number of efficient parameters to use. How-
ever, method 1 allows for the parameters to be ordered in how efficient
they are for the given estimation problem and data. It was also shown
that 7300 is the most efficient parameter.

According to the simulation-based evaluation, method 2 is more ro-
bust to an introduced false prior than method 1 since it yields more
accurate parameter estimates. The difference in accuracy is however
smaller between method 1 and 2 for firing cycles compared to the mo-
tored case. Just as for the motored case, the simulation study showed
that the regularization pulls some of the parameters towards their nom-
inal values, while the efficient parameters are free to fit the data.

Method 2 was originally formulated for three variants. For the
simulation-based evaluation variant M2:3 is the most accurate one, fol-
lowed by M2:2 and M2:1. From the experimental evaluation it was
found that an extension of variant M2:3, called M2:3+, was needed to
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cope with unreasonably high curvature for low ¢, that can occur for
experimental data. With this extension, the two variants M2:1 and
M2:3+ both give reasonable estimates, and where M2:3+ is more flex-
ible to changes in operating condition of the two.

Considering the two cases of parameter uncertainty, ; = ¢ and
d; # ¢, it was found in the simulations that the second case was rec-
ommended since it pays off in better estimates that are more robust
to a false nominal parameter value. The experimental evaluation can
neither confirm or decline this observation, since both cases yield rea-
sonable estimates, at least for variants M2:1 and M2:3+.

Thus if computational time is available, variant M2:3+ of method 2
is recommended due to its accuracy. However if computational time is
an important feature variant M2:1 is the best choice. The chosen vari-
ant should preferably be combined with case 2 (d; # ¢), i.e. individually
set parameter uncertainty.

The compiled conclusions from the evaluations of motored and fired
data are given in section 9.3.

8.4 Future Work

It would be interesting to include a multi-zone cylinder pressure model
as a reference model in the simulation study done in section 8.1. Such a
study would shed more light on what happens when the chosen model
structure is not covered by the cylinder pressure data, while the true
value of the parameters are known. It would therefore resemble the
situation for the experimental firing cycles better. The study could
also include the model of the specific heat ratio developed in chapter 4.
This extended model, in chapter 4 named model Dy, is simulated by
using (3.36)—(3.43), (4.28), (A.9) and algorithm A.1. This inclusion
would allow for a direct performance comparison of the standard and
extended cylinder pressure models.
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SUMMARY AND CONCLUSIONS

The theme of the thesis is cylinder pressure modeling and estimation.
The results from part I are given in section 9.1, which repeats the
conclusions from section 4.7. In the same way, the results for part IT
are given in section 9.2, which repeats the conclusions from section 5.6.
The compiled conclusions for part III are then given in section 9.3.

9.1 A specific heat ratio model for single-
zone heat release models

The first part of the thesis is on single-zone heat release modeling, where
the specific heat ratio model constitutes a key part. Chapter 2 gives
an overview of single-zone heat release models, while chapter 3 gives
a more thorough description of the model components. In chapter 4
various specific heat ratio models are investigated. The conclusions
from chapter 4 are now given here.

Based on assumptions of frozen mixture for the unburned mixture
and chemical equilibrium for the burned mixture, the specific heat ratio
is calculated, using a full equilibrium program, for an unburned and a
burned air-fuel mixture, and compared to several previously proposed
models of 7. It is shown that the specific heat ratio and the specific
heats for the unburned mixture are captured to within 0.25 % by a
linear function in mean charge temperature 7" for A € [0.8, 1.2]. Fur-
thermore the burned mixture is captured to within 1 % by the higher-
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order polynomial in cylinder pressure p and temperature T' developed
in Krieger and Borman (1967) for the major operating range of a spark
ignited (SI) engine. If a linear model is preferred for computational
reasons for the burned mixture, then the temperature region should be
chosen with care which can reduce the modeling error in v by 25 %.

With the knowledge of how to describe v for the unburned and
burned mixture respectively, the focus is turned to finding a v-model
during the combustion process, i.e. for a partially burned mixture. This
is done by interpolating the specific heats for the unburned and burned
mixture using the mass fraction burned x;. The objective was to find a
model of 7y, which results in a cylinder pressure error that is lower than
or in the order of the measurement noise. It is found that interpolating
the linear specific heats for the unburned mixture and the higher-order
polynomial specific heats for the burned mixture, and then forming the
specific heat ratio

cp(T,p,xp) b cff + (1= ap) lin

Cv(Tvpa xb) B Ty 61[;(7[;3 + (1 - xb) Ci)i,z

V(T p,xp) = (9.1)

results in a small enough modeling error in . This modeling error
results in a cylinder pressure error that is lower than 6 kPa in mean,
which is in the same order as the cylinder pressure measurement noise.

It was also shown that it is important to evaluate the model error
in v to see what impact it has on the cylinder pressure, since a small
error in v can yield a large cylinder pressure error. This also stresses
that the y-model is an important part of the heat release model.

Applying the proposed model improvement D; (9.1) of the specific
heat ratio to the Gatowski et al. (1984) single-zone heat release model is
simple, and it does not increase the computational burden immensely.
Compared to the original setting, the computational burden increases
with 40 % and the modeling error introduced in the cylinder pressure
is reduced by a factor 15 in mean.

9.2 Compression ratio estimation

Four methods for compression ratio estimation based on cylinder pres-
sure traces are developed and evaluated for both simulated and exper-
imental cycles in chapter 5. The conclusions are given here.

Conclusions from the simulation results

The first three methods rely upon the assumption of a polytropic com-
pression and expansion. It is shown that this is sufficient to get a rough
estimate of the compression ratio r. for motored cycles, especially for a
low r. and by letting the polytropic exponent become small. For a high



9.2. COMPRESSION RATIO ESTIMATION 225

re it is important to take the heat transfer into account, and then only
method 4 is accurate to within 0.5 % for all operating points. Method 4
is however slow and not suitable for on-line implementation. Method 2
on the other hand is substantially faster and still yields estimates that
are within 1.5 %. The formulation of the residual is also important,
since it influences the estimated r.. For fired cycles, methods 1-3 yield
poor estimates and therefore only method 4 is recommended.

A sensitivity analysis, with respect to crank angle phasing, cylinder
pressure bias, crevice volume, and heat transfer, shows that the third
and fourth method are more robust. They therefore deal with these
parameter deviations better than methods 1 and 2. Of the latter two,
method 2 has the best performance for all parameter deviations except
for an additive pressure bias.

Conclusions from the experimental results

All methods yield approximately the same confidence intervals for the
simulated and experimental data. The confidence intervals resulting
from method 4 are smallest of all methods, but it suffers from a high
computational time. Method 2 yields smaller confidence intervals than
methods 1 and 3, and is outstanding regarding convergence speed. The
effects and trends shown in the simulation evaluation are also present
in the experimental data. Therefore the conclusions made in the sim-
ulation evaluation with respect to models, residuals, methods, heat
transfer and crevice effects are the same for the experimental evalu-
ation. For diagnostic purposes, all methods are able to detect if the
compression ratio is stuck at a too high or too low level.

Concluding recommendations

The accuracy of the compression ratio estimate is higher for motored
cycles with high initial pressures. Thus if it is possible to choose the
initial pressure, it should be as high as possible. Using motored cycles
assures that all pressure information available is utilized and the high
initial pressure improves the signal-to-noise ratio, while the effects of
heat transfer and crevice flows remain the same.

Two methods are recommended; If estimation accuracy has the
highest priority, and time is available, method 4 should be used. Method
4 yields the smallest confidence intervals of all investigated methods for
both simulated and experimental data. In the simulation case where
the true value of the compression ratio is known, method 4 gave esti-
mates with smallest bias. If computational time is the most important
property, method 2 is recommended. It is the most computationally
efficient of all investigated methods, and yields the smallest confidence
intervals out of methods 1-3.
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9.3 Prior knowledge based heat release anal-
ysis

The objective in part III, as stated in the beginning of chapter 6, was
to develop an estimation tool that is accurate, systematic and efficient.
For this purpose two methods that incorporate parameter prior knowl-
edge in a systematic manner are presented in chapter 6. Method 1
is based on using a singular value decomposition (SVD) of the esti-
mated hessian, to reduce the number of estimated parameters one-by-
one. Then the suggested number of parameters to use is found as the
one minimizing the Akaike final prediction error. Method 2 uses a
regularization technique to include the prior knowledge in the criterion
function. The compiled conclusions from the evaluation of the methods
on motored (chapter 7) and fired (chapter 8) are given here.

Method 1 restrains the estimation problem, since not all parame-
ters are estimated simultaneously. More importantly, it introduces an
estimation bias in the efficient parameters since the uncertain parame-
ters are almost unavoidably false. Method 2 enables estimation of all
parameters simultaneously, which is an important feature when a pa-
rameter’s prior knowledge is false. Compared to method 2, method 1
yields more biased parameter estimates in the case of a false prior.

It has also been shown by using method 1 that, given the Gatowski
et al. cylinder pressure model, the constant 309 in the linear y-model
is the most important parameter.

The drive for method 2 was to regularize the solution such that the
parameters that are hard to determine are pulled towards their nominal
values, while the efficient parameters are free to fit the data. This has
shown to be the case in the simulations for both fired and motored
cycles.

The user can chose between two cases of the parameter uncertainty,
either equal (in a normalized sense) or individually chosen. The for-
mer is directly applicable once nominal values of the parameters are
determined and yields good estimates in the simulations. For exper-
imental motored cycles it has been shown that the second case gives
more accurate and reasonable parameter estimates, while this can not
be determined from the firing cycles. The conclusion is still to use the
second case. It requires more effort to decide upon the uncertainty
for each parameter, but pays off in better estimates that are more ro-
bust to a false nominal parameter value. Once a choice of parameter
uncertainty has been done, no user interaction is needed.

Method 2 was originally formulated for three versions. The versions
differ in how they determine how strong the regularization should be.
For the simulation-based evaluation version M2:1 and M2:3 where found
to be the most accurate one for motored and fired cycles respectively.



9.3. PRIOR KNOWLEDGE BASED HEAT RELEASE ANALYSIS227

From the experimental evaluation it was found that an extension of
version M2:3, called M2:3+, was needed. With this extension, the two
versions M2:1 and M2:3+ both give reasonable estimates, and where
M2:3+ is more flexible to changes in operating condition of the two, a
feature which is more required for firing cycles than for motored cycles.
Method 2 can therefore be said to be systematic and accurate, and
therefore fulfills two of the requirements for the estimation tool.

Thus if computational time is available, version M2:3+ of method 2
is recommended due to its accuracy. However if computational time
is an important feature version M2:1 is the best choice. The chosen
version should preferably be combined with individually set parameter
uncertainties, i.e. case 2. In this formulation the third requirement is
also fulfilled.

To summarize, the proposed tool for heat release analysis is efficient,
systematic and accurate, and can be used for engine calibration, as a
diagnostic tool or as an analyzing tool for future engine designs.
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A

A SPECIFIC HEAT RATIO MODEL
— FURTHER DETAILS

Additional details and argumentation for the results in chapter 4 are
given in this appendix. Each section is referenced from various sections
in chapter 4, and this appendix is therefore a complement.

A.1 Temperature models

Two models for the in-cylinder temperature will be described, the first
is the mean charge single-zone temperature model. The second is a
two-zone mean temperature model, used to compute the single-zone
thermodynamic properties as mean values of the properties in a two-
zone model.

A.1.1 Single-zone temperature model

The mean charge temperature T for the single-zone model is found
from the ideal state equation pV = my, RT, assuming the total mass of
charge my,; and the mass specific gas constant R to be constant. These
assumptions are reasonable since the molecular weights of the reactants
and the products are essentially the same (Gatowski et al., 1984). If all
thermodynamic states (pres,Tref,Vres) are known/evaluated at a given
reference condition ref, such as IVC, the mean charge temperature T’
is computed as

__Twve V. (A.1)

prveVive

This model has already been described in section 3.3.1.
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A.1.2 Two-zone mean temperature model

A two-zone model is divided into two zones; one containing the un-
burned gases and the other containing the burned gases, separated by
a infinitesimal thin divider representing the flame front. Each zone is
homogeneous considering temperature and thermodynamic properties,
and the pressure is the same throughout all zones, see e.g. (Nilsson and
Eriksson, 2001). Here a simple two-zone model will be used to find the
burned zone temperature 7}, and the unburned zone temperature 7,
in order to find a more accurate value of (T as an interpolation of
the thermodynamic properties for burned and unburned mixtures. The
model is called temperature mean value approach (Andersson, 2002),
and is based on a single-zone combustion model and polytropic com-
pression of the unburned charge. The single-zone temperature can be
seen as a mass-weighted mean value of the two zone temperatures.

Prior to start of combustion (SOC), the unburned zone temperature
T, equals the single-zone temperature 7"

Tuw.soc =Tsoc. (A.2)

The unburned zone temperature T, after SOC is then computed assum-
ing polytropic compression (2.11) of the unburned charge according to:

P 1-1/n D 1-1/n
Ty =Tusoc ( ) =Tsoc ( ) . (A.3)
pPsoc pPsoc

The crank angle position for ignition 6;, is assumed to coincide with
SOC, and then the unburned zone temperature T, is given by:

7.(0) ={ . R (A)
T(0) (58) 0> 0.

Energy balance between the single-zone and the two-zone models yields:

(mp + my) e T = mpcy T + My Cy o T (A.5)
In order to have a fast computation it is assumed that c, = ¢, p = cy,u,
i.e. a caloric perfect gas, which ends up in
mpdy + my Ty
My + My,

T = = a1y + (1 — Z‘b)Tu, (AG)
where x;, is the mass fraction burned. The single-zone temperature T’
can be seen as the mass-weighted mean temperature of the two zones.
If a temperature and pressure dependent model of ¢, would be used,
the weight of Tp, in (A.6) would increase, resulting in a lower value for
Ty since ¢y p > Cyq. From (A.6), Tp is found as

T—(1—mx)T,
Ty '

T, = (A7)
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The burned zone temperature is sensitive to low values of the mass frac-
tion burned, x,. Therefore T} is set to the adiabatic flame temperature
for z, < 0.01. The adiabatic flame temperature 7,4 for a constant
pressure process is found from:

hu(Tu) = hb(Tadvp) (A8)
where h,, and h; are the enthalpy for the unburned and burned mixture

respectively. An algorithm for computing the zone temperatures is
summarized as:

Algorithm A.1 — Temperature mean value approach

1.Compute the single-zone temperature 7" in (A.1).

2.Compute the mass fraction burned z;, by using the Matekunas
pressure ratio concept (2.21)—(2.22).

3.Compute the unburned zone temperature T,, using (A.4).

4.If 2, > 0.01 then; Compute the burned zone temperature T
from (A.7).
else; Compute the burned zone temperature T}, from (A.8).

5.Return T', T,, and T5.

In step 2 the Matekunas pressure ratio concept could be exchanged for
any of the single-zone heat-release models given in chapter 2, but the
Matekunas concept is used due to its computational efficiency.

As an illustration, the zone temperatures for the cylinder pressure
trace displayed in figure 4.8 are shown in figure A.1.

A.2 SAAB 2.3L NA — Geometric data

A SAAB 2.3L NA engine is for simulated and experimental data in
chapters 2—4. The geometric data for the crank and piston movement
are given in the following table:
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Temperatures using 2-zone mean value
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Figure A.1: Upper: Single-zone temperature T' (=T ,one), unburned T,
and burned T} zone temperatures for the cylinder pressure given in fig-
ure 4.8. Bottom: Corresponding mass fraction burned trace calculated
using Matekunas pressure ratio.

Property Abbrev. Value Unit
Bore B 90 [mm]
Stroke S 90 [mm]
Crank radius ap =% 45 [mm]
Connecting rod l 147 [mm]
No. of cylinders Neyl 4 [-]

Displacement volume V; 2290  [cm?]
Clearance volume Ve 62.9 [cm?]
Compression ratio Te 10.1 [

A.3 Parameters in single-zone model

The nominal parameters used in the single-zone model (3.36)—(3.45)
are summarized in table A.1 for operating point 2. The parameter
values for Q;,, prvc and Ty differ for all the nine operating points
according to table A.2. All the other parameters remain the same.
The difference between the v-models is expected to be largest during
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Par Description Value
Y300 | constant ratio of specific heat [-] 1.3678

b slope for ratio of specific heat [K 1] —8.13-107°
Cy | Woschni heat transfer parameter [-] 2.28
Cy | Woschni heat transfer parameter [m/(s K)] | 3.24-107%
Af | crank angle phasing [deg] 0
i | ignition angle [deg ATDC] -15
04 | flame development angle [deg] 20
Op rapid burn angle [deg] 40
V. clearance volume [cm?] 62.9
Ver | single aggregate crevice volume [% V| 1.5%
Ap | pressure bias in measurements [kPal 0
T, | mean wall temperature [K] 440

Trve | mean charge temperature at IVC [K] 341

prve | cylinder pressure at IVC [kPa] 50
Qin | released energy from combustion [J] 760
K, | pressure sensor gain [-| 1

Table A.1: Nominal parameter values for OP2 in the single zone model.

OP | prve [kPa] | Tive [K] | Qin [J]
1 25 372 330
2 50 341 760
3 100 327 1620
4 150 326 2440
5 200 325 3260
1 25 372 330
6 50 372 700
7 100 372 1420
8 150 372 2140
9 200 372 2850

Table A.2: Operating points (OP) for the simulated cylinder pressure.

combustion, therefore a slow burn rate is used to extend the period
when the models differ. Compared to table 3.1 the following parameters
are changed; The burn related angles 0,4, 64 and 6, are changed, to
reflect a slower burn rate. The offsets A and Ap are both set to zero
since they do not have an effect on the investigation.
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A.4 Crevice energy term

The energy term v’ — w in (2.26) describes the energy required to heat
up a unit mass that enters the cylinder from the crevice volume. The
term depends on which y-model is used and therefore has to be stated
for every v-model except By, which is already done in (2.32) for the
original setting in the Gatowski et al.-model.
For model Dy, the energy term v’ — u in (2.32) is:
u—u = fg ¢, dT
=y [y KPAT+ (1 - ) [} indT

v

L (TH—1
=y (uP(T",p) = uP(Ty,p)) + (1 — 2p) 5+ In (%) :

(A.9)

lin i the second equal-

where we have used that ¢, = :vbcfff +(T—zp)ey

ity, and in the third equality that ¢, = (%)V for the burned mixture
and equation (2.31) for the linear approximation of the unburned mix-
ture. The first term in (A.9) is given directly by the Krieger-Borman
polynomial in its original form (4.9). The second term is easily com-
puted when knowing the coeflicient values ~3,, and b" for the linear
unburned mixture model, i.e.

Viin = Y300 + 0" (Tu — 300), (A.10)

where the coeflicients 5, and b" are given in table 4.2.

Different modeling assumptions in terms of single-zone or two-zone
models result in different temperatures 7. In these cases the temper-
ature T’ is as follows: For the single-zone model

| Ty dme <0
T = { T dm,. >0, (A.11)
for the burned zone
;| Ty dme <0
= { Tb dmcr Z Oa (A12)
and according to
T = { % Zﬁ ig (A.13)

for the unburned zone. Note that (A.9) is zero whenever 77 = T, i.e.
when the mass flows to the crevice volume.

Now the attention is turned to the crevice energy term u' — u for
the y-models (4.19)—(4.31). For Cy, C3 and C4 approximations are made
during the combustion phase. In order to see if a modeling error in u’'—u
has a large impact on the cylinder pressure, a sensitivity analysis will
be performed after all models have been described. Model B; (4.19):

_ R i'rL(T,)_l
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according to (2.32). Model Bz (4.20):

u—u =up,(T") —ug,(T). (A.15)

Model B3 (4.21):
u—u =up,(T',p) —ug,(T,p). (A.16)

Model By (4.22):
u'—u = (T =T)5k (A.17)

Model C; (4.23):

u —u :f;:/ E g7

C
’7/ 1

_ T R
- RfT/ 07800+ (L= ) 7500+ 0% (T —300) + (1 —a5)b* (Tr, —300) dr

ar

~ RfT Lid

T zb'y§00+(1715)7§‘00+/(:1:bbb+(lfzrb)b“)(Tf?)OO)
_ R o (e (1)1
T rpb+(1—xzp)b® v, (Ty,Tu)—1 )

(A.18)
where the approximation is an equality whenever x;, = 0, ;, = 1 or
dme, > 0. The coefficients for the unburned mixture ~5,, and b* are
given in table 4.2 and the values for 74, and b® are taken from table 4.3
for temperature region E (7' € [1200, 3000] K).

Model Cs (4.24):

w—u =uc,(T") — uc,(T). (A.19)
Model C3 (4.25):
W —u = fTT/ % ar
_p T R
o RfT rpyr B+H(1—2p)7),, dT

T’ T’
~ R(w [r, 75 dT + (1= ) [z, 5 dT)

2o (uP(T,p) = uKB (T, p)) + (1 — ) In (Hf1 )
(A.20)
where the approximation is an equality whenever x;, = 0, ;, = 1 or
dmer > 0. The approximation made for Cs yields the same energy
term as for Dy (A.9).
For model C4 (4.26) the energy term is approximated in the same way
as for Cs, i.e.

T R
/7 _
u—u = [, e dT

~ xy(up(T',p) — up(Ty,p)) + (1 — ) (uu(T") — wu(Tw))
(A.21)
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where the internal energies for burned, u’, and unburned mixture, u*,
are computed from CHEPP (4.3), and the approximation is an equality
whenever x, = 0, z, = 1 or dm,, > 0. The approximation made for Cy4
yields the same energy term as for the reference model Dy (A.25).
Model C5 (4.27):

T’ R

/ —
w=u = ves (Tyzp) T
(T',0)—1
s In (f;f@,oﬁ_l ) 2, < 0.01 (4.22)
= (" -T)24 0.01 <, < 0.99 '
R ~eg (T',1)—1
pexp In ( "/CC5 (T,l)fl_) Ty > 0.99

The energy term corresponding to z; < 0.01 is at most instances equal
to zero, but not when the start of combustion occurs after TDC.
Model DQ (429)

u —u = azp,(uSB(T p) — uBB(Ty,p)) + (1 — ) (ue(T7) — uy(T)).
(A.23)
Model Dg (430)

W= = ay(un(T,p) — w(Th,p) + (1 = o) In (alfd=1).
(A.24)
Model Dy (4.31):

W —u = xp(uw(T,p) — up(Ty,p)) + (1 — ap) (wu(T") — uu(Tw)).
(A.25)

Crevice term sensitivity

An investigation of what impact a modeling error in the crevice term
has on the cylinder pressure is now performed. The same sensitivity
analysis as in section 3.9 is made, but this time the crevice volume
V., is set to 0 in the nominal cylinder pressure. The results from the
simulations are summarized in table A.3.

The investigation shows that the RMSE(p) is higher for all parame-
ters except Ty, Trve and Ap when V. = 0, suggesting that the crevice
volume has a dampening effect on the cylinder pressure error. The
change in all the measures RMSE, maximum residual value and sensi-
tivity .S are small, when compared to table 3.2. Although the sensitivity
analysis is performed in a specific operating point and therefore only
valid locally, this result indicates that a correct crevice-term modeling
is not crucial for the single-zone heat-release models. It also indicates
that the crevice effect has a small impact on the resulting cylinder pres-
sure. Therefore a modeling error in «’ —u such as for models Cy, C3 and
C4 will not have not a crucial effect on the final result and conclusions
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Par. Nominal & perturbation value RMSE | Max Res S
|kPa] [kPa] [-]
Y300 1.3678 0.137 -] 542.0 | 1471.10 | 5.40
Aby 15 5 [deg] 282.5 | 1081.2 0.60
Oig -20 5 [deg ATDC] | 248.3 904.0 0.74
V. 62.9 6.29 [em?] 217.5 632.2 1.80
K, 1 0.1 [-] 188.4 477.2 1.56
Tw 440 44 (K] 108.7 283.5 0.86
Qin | 1500 150 [7] 103.6 271.9 0.81
AB, 30 5 [deg] 105.2 412.7 0.46
prve | 100 10 [kPa] 97.5 221.5 0.77
Trve | 340 44 K] 62.8 175.2 0.35
b -8.13-.107°  -8.13:107¢ [K7!] 27.0 82.7 0.20
Af 0.4 0.2 [deg] 10.6 32.7 0.2
Ap 30 10 [kPa] 10.0 10.0 0.2
Co 3.24 1073 3.24 107 [m/(s K)] 4.1 8.8 0.3
o 2.28 0.228 -] 1.7 210 | 0.1

Table A.3: Nominal and perturbation values, where the perturbations
are performed by adding or subtracting the perturbation from the nomi-
nal value. The root mean square error (RMSE), maximal residual (Max
Res) and sensitivity function S (3.46) are computed for the worst case
for each parameter.

drawn. It is important to note that the y-model is very important for
the cylinder pressure model. This is primarily through its direct influ-
ence by coupling the pressure, temperature and volume changes to each
other. The crevice effect is also directly dependent on the y-model, but
here 7 only has a secondary effect on the total cylinder pressure model.

A.5 Simple residual gas model

my

An approximative model for finding the residual gas fraction z, = e
and temperature T, cited in Heywood (1988, p.178) is used to find
Trve. The residual gas mass is given by m, and the total cylinder gas
mass by my.:. The residual gas is left behind from the exhaust process
and fills the clearance volume V. at pressure p.,, and temperature Tg,
where pe,p is the exhaust manifold pressure and Tg is the mean charge
temperature at ¢ = 360 [deg ATDC], i.e. at the end of the exhaust
stroke. The intake manifold contains a fresh air-fuel charge at pressure
Pman and temperature T),q,. As the intake valve opens, the residual
gases expand according to the polytropic relation (2.11) to volume V.
and temperature 7, according to

v, = Vc(“—f”h)l/", (A.26a)

pman,
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T, = TG(]M) ”‘1. (A.26b)
Pexh

The rest of the cylinder volume V,; is filled with fresh air-fuel charge,

ie. Voy =V — V.. The ideal gas law is then used to compute the

residual gas fraction x,. as

PmanVr
2 o My o RT, _
r maf + My pmanvaf Pman Ve U
RTman RT)

(n—1)/n\ \ 7!
TT pman (pman)
= 1+ Te - , (A.27
< Tran < Pexh Pexh ( )

and the mean charge temperature at IVC is then computed as

TIVC == TT’I“ch (pman) 5 (A28)

exh

where T, = 1400 K and (n—1)/n = 0.24 are appropriate average values
to use for initial estimates (Heywood, 1988, p.178).

A.6 Fuel composition sensitivity of ~

So far, the focus has only been on iso-octane CsHig as the fuel used.
Since the actual fuel composition can differ over both region of country
and time of year, it is interesting to see what happens with the specific
heat ratios when the fuel composition is changed. Consider the general
fuel C,HyO,, which is combusted according to

1
Ala+b/4—c/2)
Y10 + 4202 + ysH + ysHo + ysOH

+y6 H20 + y7CO + ysCO2 + yoNO + y190Na, (A.29)

CoHyOp 4 (O2 4+ 3.773N3) —

where a, b and ¢ are positive integers.

First our attention is turned to the properties of hydrocarbons and
then to a few alcohols, when considering burned mixtures. Then a
similar investigation is made for unburned mixtures. Finally the prop-
erties of partially burned mixtures and their influence on the cylinder
pressure are examined.

A.6.1 Burned mixture — Hydrocarbons

Considering hydrocarbons C, H}, only (¢ = 0), the hydrocarbon ratio
y = b/a will determine the properties of the air-fuel mixture, since
the a and b are only relative proportions on a molar basis (Heywood,
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1988)[p.69]. The specific heat ratio is computed using CHEPP for
the fuels given in table A.4. Gasoline 1 and 2 are commercial fuels
listed in Heywood (1988)[p.133]. The fuels methane and gasoline 2 are
extreme points for the hydrocarbon ratio y in the study, a region which
covers most hydrocarbon fuels. In the upper plot of figure A.2 the
specific heat ratio for the fuels at A = 1 and p = 7.5 bar are displayed.
They are computed using model Dy (4.31). The difference between the
fuels is hardly visible. Therefore, the fuels are compared to iso-octane,
and the difference in v is plotted in the lower part of figure A.2.

The difference is small, and smallest for the commercial gasoline as
expected, since the hydrocarbon ratio y is closest to that of iso-octane.
The NRMSE(~) are found in table A.4, for p; = 7.5 and ps = 35 bar
respectively. Compared to table 4.5, the fuel composition introduces a
smaller error in v than the Krieger-Borman polynomial. Therefore the
iso-octane v can be used as a good approximation for a burned mixture
for the hydrocarbon fuels used in this study.

A.6.2 Burned mixture — Alcohols

Considering more general fuels such as alcohols, the specific heat ratio
of methanol CH3OH is computed and compared to the ones found for
iso-octane and methane respectively. The comparison with methane
shows what influence the extra oxygen atom brings about, and the
comparison with iso-octane yields the difference to the fuel used here as
a reference fuel. The specific heat ratios are computed using Dy (4.31).
The results are displayed in figure A.3, where the upper plot shows
~ for the three fuels listed in table A.5. The lower plot shows the
difference in « for methanol when compared to iso-octane and methane
respectively. In figure A.3 and table A.5 the results for the fuels are
compared to methanol instead of iso-octane due to three reasons; First
of all this allows for a direct comparison of the results for methane
and methanol. Secondly, it allows for a comparison of methanol and
iso-octane. Thirdly ~ for methane and iso-octane have already been
compared in figure A.2 and table A.4.

Surprisingly, the difference in v is smaller between iso-octane and
methanol than between methane and methanol as shown in figure A.3,
which is also concluded by comparing the NRMSE:s from table A.5.
These NRMSE:s are in fact quite large, which is found by comparing
them to the ones found in table 4.4. This suggests that the error intro-
duced by using iso-octane 7 to describe methanol ~ is almost as large
the error introduced by the linear model yl”m. If a better approximation
of the methanol ~ is needed, one should use CHEPP (Eriksson, 2004)
to compute the thermodynamic properties for methanol and then esti-
mate the coefficients in the Krieger-Borman polynomial (4.9) in a least
squares sense.
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Burned mixture @A=1, p=7.5 bar
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Figure A.2: Upper: Specific heat ratio for various fuels. Lower: Dif-
ference in « for methane C'H, and gasoline 2 C7 76 H13.1, compared to
iso-octane CgHisg.

Fuel C. H, y | NRMSE @ p; | NRMSE @ p,
A B A B
Methane CHy 41 0.19 % 0.17 %| 0.16 %| 0.15 %
Iso-octane| CgHig | 2.25 0 0 0 0
Gasoline 1| CgoH1s.5 1.88 0.06 %| 0.05 %| 0.05 %| 0.04 %
Gasoline 2 C7.76H13‘1 1.69 0.09 % 0.07 % 0.07 % 0.07 %

Table A.4: Burned mixtures: Different fuels and their chemical com-
position. The NRMSE(«) is formed as the difference compared to iso-
octane, and evaluated at A\ = 1 and temperature regions A and B, for
p1 = 7.5 and po = 35 bar respectively.
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Burned mixture @A=1, p=7.5 bar
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Figure A.3: Upper: Specific heat ratio for various fuels. Lower: Dif-
ference in v for methanol C HsOH compared to iso-octane CgHyg and
methane C' Hy.

Fuel | C,H,0.] NRMSE @ p; | NRMSE @ p,
A B A B
Methanol| CH,O 0 0 0 0
Methane CH, | 0.80 %| 0.75 %| 0.81 %| 0.72 %
Iso-octane| CsHyg | 0.73 %| 0.60 %| 0.70 %| 0.60 %

Table A.5: Burned mixtures: Different fuels and their chemical compo-
sition. The NRMSE is formed as the difference for methanol compared
to methane and iso-octane respectively, and evaluated at A = 1 and
temperature regions A and B, for p; = 7.5 and ps = 35 bar respec-

tively.
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A.6.3 Unburned mixtures

The specific heat ratios for both unburned hydrocarbons and alcohols
are analyzed in a similar manner as for the burned mixtures presented
earlier. The results are summarized in table A.6. All fuels but methane
are captured fairly well by the reference fuel iso-octane. Comparing
gasoline 1 with the linear model of the unburned mixture given in ta-
ble 4.2, one see that it introduces an NRMSE which is of the same order.
A trend in the results shows that for hydrocarbons, the specific heat ra-
tio is more accurately determined for burned mixtures than unburned.
This conclusion can be drawn by comparing tables A.4 and A.6. For
the alcohol methanol it is the other way around, compare tables A.5
and A.6.

Fuel C.HO,. y=>b/a | NRMSE
Methane CHy 4 2.57 %
Iso-octane CsHqg 2.25 0

Gasoline 1 | Cgo5His.5 1.88 0.18 %
Gasoline 2 C7,76H13,1 1.69 0.39 %
Methanol CH30OH 4 0.50 %

Table A.6: Unburned mixtures: Different fuels and their chemical
composition. The NRMSE(7) is formed as the difference compared
to iso-octane, and evaluated at A = 1 for temperature region T €
[300, 1000] K.

A.6.4 Partially burned mixture — influence on cylin-
der pressure

The cylinder pressure at OP 2 given in figure 4.8 is used to exemplify
the impact a certain fuel has on the cylinder pressure, given that all the
other operating conditions are the same. The reference model (4.18) is
used to model v for each fuel. The impact is displayed as the RMSE
for the pressure in table A.7, as well as the NRMSE and MRE for ~.
Iso-octane is used as the reference fuel. Compared to table 4.6, the
cylinder pressure impact (RMSE(p)) of the fuels listed in table A.7 are
larger than the impact of Di, see the RMSE(p) column in table 4.6,
for all fuels except gasoline 1. However for all fuels but methane, the
RMSE(p) introduced is increased with less than 75 % compared to
iso-octane, which is acceptable.

The goal is to find a model that approximates the actual v well.
Model D, is computationally efficient and will therefore be used in the
evaluation. Table A.8 evaluates the impact the use of the polynomials
in model D; has on a specific fuel, in terms of MRE(y), NRMSE(~)
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Fuel MRE: | NRMSE: | RMSE:
v1% | (%] | plkPa
Methane | 2.8 2.0 36.6
Iso-octane | 0.0 0.0 0.0
Gasoline 1 | 0.20 0.12 2.2
Gasoline 2 | 0.40 0.29 5.3
Methanol | 0.85 0.63 5.1

Table A.7: Evaluation of the impact on cylinder pressure and specific
heat ratio for various fuels using iso-octane as reference fuel, for the
simulated cylinder pressure at OP 2 in figure 4.8.

Fuel MRE: | NRMSE: | RMSE:
v1% | (%] | plkPa
Methane 2.7 1.9 34.3
Iso-octane | 0.27 0.10 2.8
Gasoline 1 | 0.27 0.15 1.5
Gasoline 2 | 0.47 0.29 3.3
Methanol | 1.1 0.70 5.4

Table A.8: Evaluation of the impact on cylinder pressure and specific
heat ratio for various fuels by using model Dy, for the simulated cylinder
pressure at OP 2 in figure 4.8.

and RMSE(p). In the evaluation model D4 has been used for a specific
fuel to generate the thermodynamic properties of the mixture, from
which a cylinder pressure simulation has been performed. This refer-
ence pressure and specific heat ratio has then been compared to the
ones given by model D; for the same operating conditions at OP 2.
The table shows that the RMSE(p) for gasolines 1 and 2 are close to
the one found for iso-octane. In fact, the RMSE(p) is only increased by
20 %. It can therefore be concluded that model D; can be used for fuels
that have a hydrocarbon ratio close to 2, at least within [1.69, 2.25]
and still have a modeling error in the order of the noise. Note that
the closer y is to 2, the smaller RMSE(p) is. This is due to that the
hydrocarbon ratio for the Krieger-Borman polynomial used in D; is 2.
This also explains why the RMSE(p) are smaller in table A.8 compared
to table A.7.
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Iso—octane; Burned mixture @A=1, p=7.5 bar
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Figure A.4: Specific heat ¢, for burned stoichiometric mixture using
CHEPP, the corresponding linear function ciffg and cfff found using
the Krieger-Borman polynomial.

Region| T € iy ey
MRE | NRMSE MRE | NRMSE
11068% | 020%|042% | 0.21 %
500, 3000] | 0.68 % | 0.23 % | 0.09 % | 0.03 %
]
|

|
[500,2700] | 0.68 % | 0.27 % | 0.04 % | 0.02 %
[
[

500, 3500

500,2500] | 0.68 % | 0.30 % | 0.04 % | 0.02 %
1200, 3000]| 0.38 % | 0.20 % | 0.09 % | 0.04 %

HOQwe

Table A.9: Maximum relative error (MRE) and normalized root mean
square error (NRMSE) of specific heat ¢, for different temperature
regions at A =1 and p = 7.5 bar.
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A.7 Thermodynamic properties for burned
mixture

This section entails further details on thermodynamic properties for the
burned mixture. The focus is on approximative models for the specific
heats. As mentioned in section 4.6, there is a potential of improving
the Krieger-Borman polynomial. Here it will be shown why. Figure A.4
displays the reference specific heat c,; as well as the two approxima-
tions, i.e. the linear and the Krieger-Borman model respectively. The
linear approximation has poor performance over the entire tempera-
ture region, and does not, capture non-linear behavior of the reference
model very well. The Krieger-Borman polynomial fits the reference
model quite well for T < 2800 K, but for higher temperatures the fit
is worse. This is reflected in table A.9, which displays the maximum
relative error (MRE) and normalized root mean square error (NRMSE)
for a number of temperature regions.

For temperature regions B-E, the NRMSE for ¢/ is immensely
lower than for region A, which verifies that the Krieger-Borman poly-
nomial works well for temperatures below 3000 K. Actually the Krieger-
Borman polynomial has poorer performance than the linear model for
high temperatures, as seen by comparing the NRMSE:s for tempera-
ture region A. This shows that there is a potential of enhancing the
Krieger-Borman polynomial, at least for temperatures above 3000 K.
If a better model approximation is sought, one should first increase
the polynomial order in T' of (4.10) with at least 1, to better catch
the behavior for 7" > 3000 K in figure A.4. The thermodynamic prop-
erties can then be computed using CHEPP (Eriksson, 2004), and all
coefficients estimated in a least squares sense.

The corresponding results for specific heat ¢, are shown in fig-
ure A.5 and table A.10, from which the same conclusions as for ¢, ; can
be drawn.

Region| T € cﬁ}fg c{ff

MRE | NRMSE MRE | NRMSE
500,3500] | 0.51 % | 0.17 %| 0.39 % | 0.19 %
500,3000] | 0.51 % | 0.19 % | 0.08 % | 0.03 %

[ |

[ |

[500,2700] | 0.51 % | 0.23 %| 0.03% | 0.02 %
[ ]

[

500,2500] | 0.51 % | 0.25 % | 0.03% | 0.02 %
1200, 3000]| 0.31 % | 0.17 % | 0.08 % | 0.03 %

HoQwe

Table A.10: Maximum relative error (MRE) and normalized root mean
square error (NRMSE) of specific heat ¢, ; for different temperature
regions at A = 1 and p = 7.5 bar.
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Figure A.5: Specific heat ¢, for burned stoichiometric mixture using
CHEPP, the corresponding linear function ¢ and ¢ found using
the Krieger-Borman polynomial.

A.8 Thermodynamic properties for partially
burned mixture

The operating points (OP) for the simulated cylinder pressure traces
used to evaluate the proposed «-models are given in table A.2. In op-
erating points 1-9 the mean charge temperature at IVC, T7y ¢, is com-
puted as a function of exhaust pressure p..;, (A.28), see appendix A.5.
The released energy Q;, is computed as in (3.27), where the residual
gas ratio x, is determined from (A.27). The cylinder pressure at IVC,
prve, here ranges from 25 kPa up to 200 kPa, i.e. from low intake pres-
sure to a highly supercharged pressure. The values of the parameters in
the single-zone heat release model are given in tables A.1 and A.2. The
corresponding cylinder pressures during the closed part of the cycle are
shown in figure A.6, where the upper figure shows the cylinder pressure
for operating points 1-5, and the lower plot displays operating point 1
and 6-9.

The results from applying operating points 1-9 to the approxima-
tive v-models are summarized in the following tables and figures; Ta-
bles A.11 and A.12 summarizes the maximum relative error and nor-
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Figure A.6: Upper: Simulated cylinder pressure for operating points
1-5. Lower: Simulated cylinder pressure for operating points 1 and
6-9.

malized root mean square error in specific heat ratio 7, table A.13
summarizes the root mean square error for the cylinder pressure p. Fig-
ures A.7 to A.10 display the approximative y-models and the reference
~v-model as function of crank angle degree and single zone temperature
respectively, for the cylinder pressure trace given in figure 4.8. In those
figures, the reference model v¢p is the dashed line and the solid line
corresponds to each specific model. Figures A.11 and A.12 illustrates
the corresponding cylinder pressure errors introduced by the model er-
ror each y-model brings along.
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OP [ By [Bo [Bs [Bs[[Ci[Co[Cs[Ci[Cs ]| D [ D2 ] Ds
1 41[59[52[77]23]73]22][21]81]0.29]0.28]0.049
2 4115952 [78]23[73[24][23][84]0.27]0.26 ] 0.039
3 36|55 [47 [74][19[69[23][21][86][ 0.26]0.25]0.036
4 3351|4472 18[65[21][1.9]86] 0.26]0.25]0.036
5 314941 7 |[21][63] 2 | 1.8]87[0.26]0.25]0.036
1 41]59 52|77 23][73[22][21]81]0.29]0.28]0.049
6 3553|4672 1767181781 0.26]0.25]0.049
7 3 [48[41]67[[14]62][15][15]81]0.24]0.24] 0.05
8 2.7 453864 | 1759141381 024]023] 0.05
9 254236 [62] 2 [57[13]12]81[023]022] 005

[Mean [[34 [52[45[71][1.9]6.6[1.9[1.8[83]0.26]0.25]0.044 |

Table A.11: Maximum relative error (MRE) [%)] for ~.

opr Bl BQ Bg B/1 Cl CQ C3 C,1 Cr, Dl DQ Dg
I |14 26184206241 05905215 011 | 0.1 |0.016
2 [[13]27[18[45]069]41]065] 058 |15 [0.098]0.094]0.014
3 12261746082 4 [ 06205516 | 0.095 | 0.091 | 0.014
4 12241645 09339058 05 | 1.7 || 0.09 | 0.091 | 0.014
5 |[11]24|16 |44 1 |38]0.56 | 047 | 1.7 | 0.097 | 0.092 | 0.014
I |14 26|18 4206241059 |052]|15] 011 | 0.1 |0.016
6 | 12]24[17[41] 057 4 [0.51 04416 || 0.098 | 0.092 [ 0.017
7 |[11]23]1.6] 4 [[069]38 044 038 | 1.6 | 0.094 | 0.088 | 0.017
8 [[11]22[15[39 08138 04 [034]1.7 [[0.092 | 0.086 | 0.017
9 1 [21]15][39]091]37]038]0.32]1.8]0.092 | 0.086 | 0.017

| Mean [[ 1.2 [ 2.4 [ 1.7 [ 4.2 ]| 0.77 | 3.9 [ 0.53 [ 0.46 | 1.6 [] 0.097 | 0.092 | 0.016 |

Table A.12: Normalized root mean square error (NRMSE) [%] for ~-

models.
OP| Bi| Bo| Bs| Ba|| Ci| Co| Cs] Ca| C5 ]| Di| Dy] Ds
1 ] 26.1] 37.3] 33.3] 29.5|] 17.2[ 61.6] 9.7] 8.6] 34.2[ 1.3] 1.2[ 0.1
2 || 52.3] 85.8] 76.0] 62.8] 39.8] 140.7 25.4 22.8] 82.9] 2.8 2.6] 0.3
3 || 98.4] 172.5 152.9 125.7] 74.1] 289.4] 53.3 47.3] 192.3 5.9] 5.3] 0.7]
4 ][ 135.1] 248.8 221.0 180.3] 98.4] 427.0] 76.7 67.3 305.4] 9.2 8.2] 1.0
5 || 168.1 321.7 286.3 232.3 118.9 561.7 99.0 86.0] 422.8| 12.5] 11.2] 1.4
1 || 28.7] 37.3] 33.3] 295 17.2] 61.6] 9.7 86] 342]| 1.3] 1.2[ 0.1
6 || 42.0] 70.0] 62.7] 49.6] 28.5] 120.0 17.5 15.2] 75.2] 2.5[ 2.2] 0.3
7 || 73.1]130.9 117.7 91.5]| 45.3] 233.2 31.4] 26.9) 163.5] 4.9] 4.3] 0.7]
8 || 100.3 188.4] 169.8 130.7] 58.0| 343.9) 44.3 37.5 256.4| 7.4| 6.4 1.1
9 ][ 125.1] 243.7 220.2 168.4] 68.2] 453.0 56.6| 47.4] 352.2] 9.9[ 8.5] 1.5

| Mean[| 84.9] 153.6] 137.3] 110.0] 56.6] 269.2] 42.4] 36.7] 191.9] 5.8] 5.1] 0.7

Table A.13: Root mean

sure.

square error (RMSE) [kPa] for cylinder pres-
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Figure A.7: Specific heat ratio v for models By to Ca(solid line) at
operating point 2 given in table A.2. The dashed line corresponds to
the reference model Dy found by CHEPP.
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Figure A.8: Specific heat ratio v for models C3 to Ds(solid line) at
operating point 2 given in table A.2. The dashed line corresponds to
the reference model D, found by CHEPP.
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Figure A.9: Specific heat ratio v for models By to Co (solid line) at
operating point 2 given in table A.2. The dashed line corresponds to
the reference model Dy found by CHEPP.
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Figure A.10: Specific heat ratio v for models C3 to D3 (solid line) at
operating point 2 given in table A.2. The dashed line corresponds to
the reference model Dy found by CHEPP.
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Figure A.11: Cylinder pressure error for models B; to Cy (solid line)

at operating point 2 given in table A.2, as compared to the reference

model.

The reference cylinder pressure is given in figure 4.8.
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Figure A.12: Cylinder pressure error for models Cs to D3 (solid line)
at operating point 2 given in table A.2, as compared to the reference
model. For convenience, the sign of the pressure error for model Cs is
changed.



B

COMPRESSION RATIO
ESTIMATION — FURTHER DETAILS

Further details and argumentation for the results found in chapter 5 are
given in this appendix. Each section is referenced from various sections
in chapter 5 and this appendix is therefore a complement.

B.1 Taylor expansions for sublinear approach

This section presents the calculations that support the algorithm de-
velopment in section 5.3. In particular the relation between the two
residuals

£1a(C1,n) =Inp(0) — (C1 — nIn(Vig(0) + Vo)) (B.1)

and
e1(Ca, Vo) = Via(0) — (Cap(0) /"™ = V) (B.2)

is investigated. By using that C; = InC and Cy = C''/", the following
relation is obtained

c1a = nlnp"™ —InCy" + nin(Vig(8) + Vo)
Oy p(9)1/n>

—nl
"\ V) + v,

Via(0) — (Cap(0)~Y/™ — Vc))
Via(0) + Ve

Il

|

S

5
NN Y

I

1_L>
Via(0) + Ve )

263
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If the residuals are small, i.e. e1p, < V.. < Vj4(0) + V., then the Taylor
expansion gives

€1b n
—nln{1-— ~ £1p- B.3
( wd(e)+w> Via(0) + Ve ¥ (B.3)
It then follows that
n
J0,2) 7 —————— 0,x), B.4
1a0,2) = e 6. 7) (B.4)

which is the sought relation.

B.2 Variable Projection Algorithm

A computationally efficient algorithm described in Bjorck (1996, p. 352)
is summarized here.

Algorithm B.1 — Variable projection
Partition the parameter vector z such that z = (y 2)7, where &(y, 2)
is linear in y. Rewrite (y, z) as

e(y,2) = F(2)y — g(2) (B.5)

Let xx = (yk, 2x) be the current approximation.

1.Solve the linear subproblem

min | F () — (9(20) = Flayo)l3 (B.6)

and set Thy1/2 = (yk + 0yk, 2k)-

2.Compute the Gauss-Newton direction py at zp11/2, i.e. solve
U;in ||C($k+1/2)pk +5(yk+1/27zk)||§ (B.7)

where C(241/2) = (F(zk), %s(ykﬂ/z,zk)) is the Jacobian ma-
trix.

3.5et Tx11 = Tpq1/2 + agpr, do a convergence test and return to
step 1 if the estimate has not converged. Otherwise return zj11.

The polytropic model in (5.8) is rewritten as
Inp(0) = Cy — nIn(V4(0) + Vo). (B.8)

This equation is linear in the parameters Cy = In C' and n and nonlinear
in V. and applies to the form given in (B.5). With the notation from the
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algorithm above, the parameters are x = (Cy n V)T, with y = (Cy n)T
and z = V.. The measurement vector is formed as ¢ = —Inp and the
regression vector as F' = [—1 In(V, + Vy(0))].
Another possibility is to rewrite the polytropic model (5.8)to the
following
Va(0) = Cip(6) /™ — V. (B.9)

This equation does also fit into the form of (B.5). However this for-
mulation is not as appropriate as (B.8), due to that the parameters
Ci = C'Y" and n are coupled.

B.3 SVC - Geometric data

The SVC engine is used for simulated and experimental data in chap-
ter 5. The geometric data for the crank and piston movement are given
in the following table:

Property Abbrev. Value Unit
Bore B 68 [mm)]
Stroke S 88 [mm]
Crank radius ar = g 44 [mm)]
Connecting rod l 158 [mm]
No. of cylinders Neyl 5 [-]

Displacement volume Va 1598 [em?]
Maximum compression ratio 7, ™" 14.66 [-]

Minimum compression ratio  7,™" 8.13 [-]

Pin-off Toff [2.2, 4.7] [mm]
Tilting angle v [0, 4] [deg]

B.4 Parameters in single-zone model

The nominal parameters used in the single-zone model (5.4) are sum-
marized in the table B.1. For motored cycles the numerical values of
Ty and Ty are 400 K and 310 K respectively, while for fired cycles
Tw = 440 K and Trye = 340 K have been used. Compared to ta-
ble 3.1 the following parameters are changed; The clearance volume
V. is altered since a different engine is simulated. The crank angle
offset Af and pressure offset Ap are both set to zero since their ef-
fect is investigated explicitly in section 5.4.4. The pressure at IVC
prve € {0.5,1.0,1.8} bar depends on the operating point.
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Par.  Description Value

Y300  constant ratio of specific heat [-] 1.3678

b slope for ratio of specific heat [K '] —8.13-107°

Ci1  Woschni heat transfer parameter [-] 2.28
Cs  Woschni heat transfer parameter [m/(s K)] 3.24-107*
A crank angle phasing [deg] 0
0iy  ignition angle [deg ATDC]| -20

Af; flame development angle [deg] 15

A6,  rapid burn angle [deg] 30
V.  clearance volume [cm?] 22.8-45.7
V.-  single aggregate crevice volume [cm?] 1.5% Ve(r. = 11)
Ap  pressure bias in measurements [kPal 0

T,  mean wall temperature [K] 440

Trve  mean charge temperature at IVC [K] 340

prve  cylinder pressure at IVC [kPa] 100

Qin  released energy from combustion [J] 500

K,  pressure sensor gain [-] 1

Table B.1: Nominal parameter values in the single-zone model.
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PRIOR KNOWLEDGE APPROACH
— FURTHER DETAILS

Further details and argumentation for the results found in chapters 6-8
are given in this appendix.

C.1 Levenberg-Marquardt method

The parameters x are estimated by minimizing the difference between
the measured cylinder pressure and the modeled cylinder pressure, i.e.
by minimizing the prediction error. A Gauss-Newton method called
the Levenberg-Marquardt procedure is used to find the parameter es-
timate & for methods 3 and 4 in chapter 5 and for methods 1 and 2 in
chapters 6-8 for any given number of parameters.

A thorough presentation of system identification is given in Ljung
(1999), from which most of the material presented in the subsequent
subsections are from. The material is included here for two reasons:
First to describe how the parameter estimation is performed when us-
ing the Levenberg-Marquardt procedure. Secondly as a comparison to
the expressions given in section 6.4.2 for method 2, where a regular-
ization term is included in the criterion function. The first subsection
states the equations used when minimizing the prediction error for a
nonlinear estimation problem. The Levenberg-Marquardt procedure is
then presented as a special case. The next subsection concerns issues
such as stopping criteria, local minima, scaling of the parameters and
asymptotic variance of the estimate.

267
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C.1.1 Minimizing prediction errors using a local op-
timizer

When the estimation problem is non-linear in the parameters, typ-
ically the minimum of the loss function can not be computed an-
alytically as in the linear case. Instead, numerical search routines
must be used (Bjorck, 1996). Given an observed data set ZV =
[y(1),u(1),y(2),u(2),...,y(N),u(N)] of inputs u(t) and outputs y(t),
a good model M(x) describing the data set Z% is found by minimizing
the prediction error

et,z) = y(t) — y(t|x), t=1,2,...,N (C.1)

where y(t) is the output of the system and §(t|z) is the predicted output
of the model M(z). The prediction error is also termed residual. The
prediction error is minimized by using a norm on (¢, z) and minimize
the size of it. A quadratic norm is our choice here and it can be written

as
1N
N_ E

t=1

e2(t (C.2)

MlH

The term Vy is a measure of the validity of M(z) and is often called
loss function or criterion function. A problem on this form is known
as the nonlinear least-squares problem in numerical analysis (Ljung,
1999, pp.327) and can be solved by an iterative search for minimum, a
number of methods are described in e.g. (Bjorck, 1996). The estimate
# is defined as the minimizing argument of (C.2):

#(ZN) = argmin Vy (z, ZV). (C.3)

Minimizing the criterion function Vy(z, ZV)

To find the solution to (C.3) numerical methods are employed and these
methods use the gradient and hessian, or approximations of them. The
gradient of (C.2) is

N
Vilz, ZN) = Z (C4)

where (¢, x) is the jacobian vector given by

0 N T
U(t,x) = %s(t,x) - _%QW) _ {_%;'f) L a%(;Lx)
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where d are the number of parameters. For our problem, the jacobian
¥ (t,x) is computed numerically with a forward difference approxima-
tion, as

e(t, ) - e(t,x + Axj) —e(t, :v) (C.6)

8l‘j Al‘j

Computing the central difference approximation instead of the forward
one, would double the amount of computations. Differentiating the
gradient with respect to z yields the hessian of (C.2) as

V(xZN—%Z (t, x)T (¢, ) Z Tt,2), (C.7)

where ¢/ (t,xz) = —j—;@(ﬂx). It is however computationally heavy to
compute all d? terms in 9’(¢,z). An approximation is therefore desir-
able and it is made reasonable by the following assumption; Assume
that at the global minimum x*, the prediction errors are independent.
Thus close to z* the second sum in (C.7) will be close to zero, and the
following approximation can be made close to optimum (Ljung, 1999,
p.328):

Vil sz/; (t,2)¢T (t,2) = Hy(z, ZV). (C.8)

By omitting the second sum in (C.7), the estimate Hy(z, Z") is as-
sured to be positive semidefinite, which guarantees convergence to a
stationary point.

The estimate Z can be found numerically by updating the estimate
of the minimizing point &' iteratively as

FHUZY) = @(ZY) - pi[Ry (@, ZN)) TV (a2
= 2(ZN)+di@t, ZN), (C.9)

where i is the ith iterate, in which d’ is the search direction and RY, is
the approximate hessian Hy in (C.8). Finding the estimate & in this
manner is known as a Gauss-Newton method.

Regularization — Levenberg-Marquardt procedure

If the model M(x) is over-parameterized or the data ZV is not infor-
mative enough, this causes an ill-conditioned jacobian which results in
that the approximative hessian Hy (z, Z") may be singular or close to
singular. This causes numerical problems when computing the iterative
estimates in (C.9), when inverting Hy. One way to avoid this is the
Levenberg-Marquardt procedure, which uses

R (2%, 2N v) = Hy (2", ZV) +vI (C.10)
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to regularize the approximation of the hessian. The iterative parameter
estimate 2° then becomes

BNz v) = @(2Y) - (R 2N )TV (@, ZY)
#(ZNY +di(@t ZN,v). (C.11)

For v > 0, the hessian approximation R% (2%, ZV v) is guaranteed to
be positive definite. With v = 0 this is the Gauss-Newton method and
by increasing v the step size is reduced and the search direction d' is
turned towards the gradient, resulting in the steepest descent direction
as v — oo.

Generally it can not be guaranteed that d'(2*, ZV,v) in (C.11) is
a descent direction. This can happen if the prediction errors are large
or if (C.6) is not a good approximation (close to the optimum) (Eriks-
son, 1998). The approach here is to start up with a v > 0, and if
Va (271, ZN) > Vn (2%, ZN) occurs, v is increased and new values of
d'1 and 2! are computed until d**t! is a descent direction.

Stopping criteria

A stopping criterion must be stated in order for the optimization pro-
cedure to terminate. In theory this should be done when the gradient
VJ; is zero, so an obvious practical test is to terminate once ||V is
small enough. Another useful test is to compute the relative differ-
ence in loss function Vi between two iterations, and terminate if this
difference is less than a given tolerance level. The algorithm can also
terminate after a given maximum number of iterations.

Local minima and initial parameter values

Generally, the optimization procedures converge to a local minimum of
Vn(x, ZV). This is due to that although the stated optimization prob-
lem may only have one local minimum, i.e. the global one, the function
Vn(z, ZV) can have several local minima due to the noise in the data
ZN . To find the global minimum, there is usually no other way than to
start the iterative optimization routine at different feasible initial val-
ues 2" and compare the results (Ljung, 1999, p.338). Therefore, the
initial values should be chosen with care by e.g. using prior knowledge.
Good initial values generally pays off in fewer iterations and a faster
convergence of the optimization procedure. For instance the Newton-
type methods have good local convergence rates, but not necessarily
far from optimum.

Scaling of parameters

The optimization procedure works best when the size of the unknown
parameters are all in the same order (Gill et al., 1981, p.346). From
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table 3.1, where the unknown parameters are summarized, it can be
concluded that the nominal parameter values range over 10 decades.
Therefore a scaling in terms of a linear transformation of the parameters
is introduced,

z® = Dz, (C.12)

where D is a diagonal matrix with D;; = 1/z;, z; # 0. It is of
importance for the implementation that the initial guess of z;, z!",
is assured to be non-zero. The gradient of Vy(z*,Z%) in the scaled

parameters is given by
Vi (0, 2V) = D" p(@)eT (x) = D~V (. 2V, (C.13)

since ¥(t,2%) = D~T4(t,z). The linear transformation matrix D is
diagonal and invertible, and therefore D=7 = D~!. The hessian of
Vn (2%, ZN) is given by

Vi(x®, ZN) = DTV (x, ZN) D71, (C.14)
since ¢/ (t,x*) = D~ TaD~1.

Scaling of parameters — regularized case

This subsection deals with the issue of scaling the parameters when
using method 2 in section 6.4.2, i.e. regularization using prior knowl-
edge. Whenever the parameters = are rescaled with D from (C.12),
the nominal values z# and the regularization matrix must be rescaled
as well. The rescaled nominal values z#° are defined by

x%% = Da?, (C.15)

where D is a diagonal matrix with D; ; = 1/z;, x; # 0. The elements
07 in the diagonal scaled regularization matrix ¢° is thereby defined by

S B (C.16)
" T2N(£5)2 0 2No2 '

Qi 7

Asymptotic variance and parameter confidence interval

Consider the case when our model M(z) has the correct model struc-
ture and is provided with data ZV, such that the measured output can
be predicted correctly by the model. This would mean that there is no
bias in the parameter estimate z, and thus £ — &* asymptotically as
the number of data N goes to infinity. It can then be shown (Ljung,
1999, pp.282) that the probability distribution of the random variable
VN (& — &*) converges asymptotically to a Gaussian distribution with
zero mean and covariance matrix P. This is formalized as

(& — &%) € AsN(0, %). (C.17)
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For a quadratic prediction-error criterion the covariance matrix P is
estimated by

N —1
Py = AN <% >t 2" (¢, ;@)) = An (Hn(#,2Y)) 7", (C.18a)
. 1S,
Av = ;s (t,2), (C.18Db)

for the parameter estimate & and N data points, where Ay is the es-
timated noise variance and Hy (%, Z") is the approximated hessian
in (C.8). When using scaled parameters according to (C.12), one has
to re-scale the hessian using (C.14) in a straight forward manner.

The result in (C.18) has a natural interpretation. The more data
or the less noisier measured output, the more accurate the estimate.
Also, since 1 is the gradient of ¢, the asymptotic accuracy of a certain
parameter is related to how sensitive the prediction is with respect to
this parameter. Therefore, the more or less a parameter affects the
prediction, the easier or harder respectively it will be to determine its
value (Ljung, 1999, p.284).

The asymptotic covariance in (C.18) can be used to compute con-
fidence intervals for the parameter estimates Z, and thereby give a
reliability measure of a particular parameter #*. When (C.17) is valid,
the (1 — a)-confidence interval for the true parameter 2*¢ is formed
as (Ljung, 1999, p.302)

P(|3" — 2% > a) ~ PiHdy,  (C.19)

ﬂ/ exp(—y2N/2
\/27r15ﬁ ly]>a

where P is the i-th diagonal element of Py. From this, it can be
stated that the true parameter value 2** lies in the interval around the
parameter estimate &’ with a certain significance 1 — a. The size of
the interval is determined by «, and for a 95 % confidence interval the
limits for parameter &° are

i

1 PN
i 1,96\ (C.20)

C.2 Linear example

According to Hansen (1998), a rank-deficient or an ill-posed estimation
problem can be solved by the same methods. Therefore, the main
difficulties with an ill-posed problem is illustrated by the following rank-
deficient example partly from Hansen (1994);
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Example C.1 — Linear rank-deficient problem
Consider the following least-squares problem
min ||Az — bl|z2, (C.21)

where A and b are given by

0.16 0.10 0.27
A=]017 011 |, b= 025 |. (C.22)
2.02 1.29 3.33

The true solution is #' = [1 1]7, and the measurement vector b is found
by adding a small noise perturbation according to:

0.16 0.10 1.00 0.01
b= | 0.17 0.11 { 1'00 } + 1 —=0.03 |. (C.23)

2.02 1.29 ' 0.02
The A-matrix of this linear problem has a condition number of 1.1-103,
i.e. it is ill-conditioned and thus potentially sensitive to noise. Indeed,
solving the ordinary least-squares problem as it is formulated in (C.21)
ends up in an estimate x5 = [7.01 —8.40]7, which is far from the true
solution z* = [1 1]7.
The large condition number implies that the columns of A are nearly
linearly dependent. One approach could therefore be to merge the two
parameters into one, and replace A = [a; ag] with either [a; 0] or [0 as],
since they are well-conditioned independently. This results in the two
solutions

Ta, = [1.65 0], 2,4, = [0 2.58]7, (C.24)

which are better than xg but still far from the true solution.
Introducing constraints on the parameters results could result in bet-
ter estimates, however the difficulty now lies in how to chose the con-
straints. When setting the constraints to |z — zt| < a, for a equal to
0.02, 1 and 10, the estimates becomes

To.02 = [1.02 0.98]7, 1 = [1.65 0.00)], 19 = [7.01 —8.40]" = 215,
(C.25)
i.e. the solution lies on the boundary as long as xs is not included in
the interval.

This example illustrates three main difficulties with ill-posed prob-
lems (Hansen, 1994):

1. The condition number of A is large.
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2. Replacing A with a well-conditioned matrix derived from A does
not necessarily lead to a useful solution.

3. Care must be taken when imposing additional constraints.

C.2.1 Linear example for methods 1 and 2

We now return to example C.2 for the two methods presented in sec-
tion 6.4.

Example C.2 — Linear rank-deficient problem, cont.

Methods 1 and 2 are now applied to the estimation problem described
in Example C.1 by using prior knowledge of the parameters x. The
true values are given by x' = [1 1]7, and the nominal values 27 are
given in four cases; 2% = [1 17, 2# = [1.05 1]T, 2% = [1 1.05]T and
x# = [1.05 1.05]7. The first case corresponds to a true prior knowledge
and the remaining three involves a false prior knowledge. The results
of the estimations are given in table C.1. For method 1, either x;
or zo could be set spurious and therefore both cases are given. For
method 2, the estimate is a function of the regularization parameter
0. This is illustrated in figure C.1, where the compromise between the
residual error Vv and the nominal parameter error V3 is obvious. The
estimate corresponding to the L-corner of the curve, which is the best
compromise between Vy and V](S,, is the one given in table C.1.

Nominal 2% M1 (z; fixed) M1(zy fixed) M2

117 [11.01]7 [1.01 1] [1.01 1.00]"

1.05 1]7 [1.05 0.94] [1.01 )7 [1.02 0.98]7
[1.01 1.01]T
[ ]

[
[1 1.05]T 11017 [0.98 1.05]T
[

1.05 1.05]7  [1.050.94]7  [0.98 1.05]T  [1.00 1.01]7

Table C.1: Parameter estimates for methods 1 and 2, in four cases of
prior knowledge. The true values are [1 1].

Table C.1 shows that when the prior is true, the estimate is close
to the true estimate and approximately the same for methods 1 and 2.
This is also the case for method 1, as long as the prior is true for all
spurious parameters, in which case a better estimate is found than for
method 2. However, in the presence of a false prior in the spurious
parameters, method 2 yields a smaller estimation bias than method 1.
This highlights one of the features with method 2, namely the com-
promise between the data fitting and the parameter prior knowledge.
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Figure C.1: L-curves for linear example corresponding to true prior
(0 %) and false prior (5 %), i.e. case 1 and 4 in table C.1. The circles
correspond to the estimates in the corners of the L-function.

Note also that the bias depends upon which parameter that has the
false prior, as illustrated by comparing rows 2 and 3 for method 2.
In this case the false prior in x5 results in a smaller estimation bias,
compared to if the false prior is in x1.

C.3 Motivation for M2:3-+

This section gives a motivation for why the version M2:3 needs to be
extended, or at least handled with care. Note that the focus of the
section is on firing cycles, while the results and conclusions are valid
for the motored cycles as well.

Consider figure C.2 where the upper plot displays the L-curve cor-
responding to OP1 for experimental firing cycles using method 2 and
d; = ¢, i.e. the same L-curve as in figure 8.7. In the lower plot the cor-
responding positive, i.e. convex, curvature 7 (6.23) from algorithm 6.5
is given. The corresponding figures for a simulated fired cycle and an
experimental motored cycle are given in figures C.3 and C.4. They cor-
respond to the L-curves presented earlier in figure 8.4 and figure 7.12.
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Figure C.2: Upper: L-curve for ezperimental firing cycles using
method 2 and §; = ¢ at OP1. The four versions are indicated by
the legend. Lower: Corresponding positive curvature 7 from (6.23).
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Figure C.3: Upper: L-curve for simulated firing cycles using method 2

and §; = c¢ at OP1. Lower: Corresponding positive curvature 7
from (6.23).
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Figure C.4: Upper: L-curve for ezperimental motored cycles using
method 2 and §; = ¢ at OP1. The four versions are indicated by
the legend. Lower: Corresponding positive curvature 7 from (6.23).

Figure C.2 shows that the curvature 7 is maximized for a relatively
low value of §,, as shown for M2:3. The corresponding curvature does
not show up in the simulated case in figure C.3, and is thus believed
to correspond to a “false” corner. Such a corner is believed to be due
to that the measurement noise causes a jump in RMSE(e) between two
different local minima. The same behavior occurs for case 2. It will be
shown in the evaluation of case 1 and 2 for experimental fired cycles, see
section 8.2.4, that the estimates for experimental cycles for M2:3 are
less accurate than the estimates for M2:1. This is shown in tables 8.18
and 8.19 for case 1 and 2.

The correct corner is instead close to M2:1, here exemplified by
both figure C.2 and figure C.3. Therefore the extension of M2:3 is to
use a smaller region A, of J,. Since M2:1 is both fast and close to
the correct corner in the L-curve, the regularization parameter ¢, from
M2:1 is used as a mid-value for this region. The lower and upper limit
of this region A, is then chosen as to assure that a convex curvature is
included. This is done by assuring that the curvature 7 is positive for
at least one sample of 0., and that the position for maximum 7 is an
interior point of the region A,.
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For this application the §,:s are distributed according to the 69
samples in figure 7.5, and it has proved to be sufficient to use +12
samples of d,,, starting from 0, (M2 : 1). This typically yields a region of
0, that covers four orders of magnitude. This choice of A, also reduces
the computational time approximately by a factor % for M2:3+ as
compared to M2:3. Applying these modifications to M2:3 renders the
corner shown for M2:3+ in figure 8.7, and therefore M2:3+ performs
as intended for both case 1 and 2.

The algorithm for M2:3+ is given by:

Algorithm C.1 - Hansen’s L-curve with Miller initialization (M2:3+)

1.Assign a prior x? and §; to each of the parameters z € RI*1.
The regularization matrix is then formed as § =, diag(d;).

2.Compute boundaries m. and m; in (6.20), that give d, from (6.21).

3.Compute the region A, with J, from step 2 as the mid-value, and
the upper and lower limit as chosen relative to the same J,.

4. Minimize the criterion function Wy (6.7) for the discrete points
0, € A, equally spaced in a logarithmic scale.

5.Find the ¢, for which (6.22) is fulfilled, by using a cubic spline
interpolation.

6.Minimize Wy (6.7) w.r.t. z using J, from step 5.

7.Return the estimate 2:%*.

Steps 1 and 2 in algorithm C.1 correspond to steps 1 and 2 in al-
gorithm 6.3 (M2:1), step 3 computes the region A,, while steps 4-7
correspond to steps 2-5 in algorithm 6.5 (M2:3).
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C.4 L850 — Geometric data

The L850 engine is used for simulated and experimental data in chap-
ters 6-8. The geometric data for the crank and piston movement are
given in the following table:

Property Abbrev. Value Unit
Bore B 86 [mm]
Stroke S 86 [mm]
Crank radius ar =3 43 [mm]
Connecting rod l 145.5 [mm]
No. of cylinders Neyl 4 [-]

Displacement volume Vg 1998  [cm?]
Clearance volume V. 58.8  [em?]
Pin-off Toff 0.8 [mm]
Compression ratio Te 95  []

C.5 Parameters in single-zone model — mo-
tored cycles

The nominal parameters used in the single-zone model (3.36)—(3.45)
are summarized in table C.2 for operating point 1. The parameter
values for N, pyyvc and Try o differs for all the eight operating points
according to table C.3. All the other parameters remain the same.

Compared to table 3.1 the following parameters are changed; The
constant 300 is set to 1.40, since this is the value for pure air. The
slope coefficient b is changed accordingly. The crank angle offset Af
is set to 0.1 CAD, a smaller value than in table 3.1, since 0.1 CAD is
the approximate value for a well-calibrated measurement system. The
clearance volume V, is altered due to the changed engine geometry.
The crevice volume is now altered to 1 ¢m?, which is approximately
the same V., as for table 3.1 in absolute numbers. The pressure offset
is now set to 5 kPa.

C.6 Parameters in single-zone model — fired
cycles

The nominal parameters used in the single-zone model (3.36)—(3.45) are
summarized in table C.4 for operating point 1. The parameter values
for Qin, prve, Trve, Tw and the burn related parameters 6;,, A0y and
Af,, differs for all the eight operating points according to table C.5. All
the other parameters remain the same.
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Par. | Description Value
Y300 | constant ratio of specific heat [-] 1.40
b slope for ratio of specific heat [K '] | —1-107*
Cy | Woschni heat transfer parameter [-| 2.28
A | crank angle phasing [deg] 0.1
V. clearance volume [cm?] 58.8
V.. | single aggregate crevice volume [cm?] 1
Ap | pressure sensor bias [kPa] 5
T, | mean wall temperature [K] 400
Trve | mean charge temperature at IVC [K] 370
prve | cylinder pressure at IVC [kPa] 50
K, | pressure sensor gain [-] 1

Table C.2: Nominal parameter values for motored cycles at OP1 in the
single-zone model.

OP | Trve [K] | prve [kPa] | N [rpm]
1 370 50 1500
2 310 50 1500
3 370 100 1500
4 310 100 1500
5 370 50 3000
6 310 50 3000
7 370 100 3000
8 310 100 3000

Table C.3: Operating points (OP) for the simulated motored cylinder
pressure.

Out of these, the following parameters are changed compared to
table 3.1; The constant 7390 and the slope coefficient b are set to lower
values, although the difference is small. The crank angle offset A# is
set to 0.1 CAD, a smaller value than in table 3.1, since 0.1 CAD is
the approximate value for a well-calibrated measurement system. The
clearance volume V, is altered due to the changed engine geometry.
The crevice volume is now altered to 0.588 ¢m?. The pressure offset is
now set to 5 kPa.
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Par Description Value
Y300 | constant ratio of specific heat [-] 1.35

b | slope for ratio of specific heat [K ! —7-107°
Cy | Woschni heat transfer parameter [-] 2.28
Co | Woschni heat transfer parameter [m/(s K)] | 3.24-10~*
A | crank angle phasing [deg] 0.1
;g | ignition angle [deg ATDC] -15
Afy | flame development angle [deg] 20
Af, | rapid burn angle [deg] 20
V. clearance volume [cm?] 58.8
V.. | single aggregate crevice volume [cm?] 0.588
Ap | pressure sensor bias [kPa] 5
T, | mean wall temperature [K] 480

Trve | mean charge temperature at IVC [K] 414

prve | cylinder pressure at IVC [kPa] 50
Qin | released energy from combustion [J] 503
K, | pressure sensor gain [-] 1

Table C.4: Nominal parameter values for fired cycles at OP1 in the
single-zone model.

Parameter OP1 OP2 OP3 OP4 OP5 OP6
N [rpm] 1500 3000 1500 3000 1500 3000
prve [kPal 50 100 50 100 50 100
Trve K| 414 370 414 370 414 370
Ty [K] 480 400 480 400 480 400
Qin [I] 503 1192 503 1192 503 1192
0;y [dleg ATDC] | -15 -15 20 20 -25  -25
Af, [deg] 20 20 15 15 15 15

AB, |deg] 20 20 30 30 30 30

Table C.5: Operating points (OP) for the simulated fired cylinder pres-

sure.
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C.7 Complementary results for prior knowl-
edge approach

This section contains the complementary figures and tables that are
referenced from chapters 7 and 8.

Complementary results for simulations — motored cycles

Figures C.5 and C.6 show the L-curve for one motored cycle at oper-
ating point OP8 for setup 2 using d; = ¢ and §; # ¢ respectively.

Complementary results for experiments — motored cycles

Tables C.6 and C.7 show the mean value, standard deviation, and rela-
tive mean error for the individual estimates at OP1 for method 2, using
0; = ¢ and 0; # c respectively. The relative mean error is computed
relative to the nominal parameter value at each cycle and is given in
percent.

Complementary results for simulations — fired cycles

Table C.8 shows the individual parameter estimates for the entire range
of d#, i.e. from 16 to 1 parameter. The numerical values are given for
one engine cycle at OP1 in the presence of a false prior level of 0 %.

Complementary results for experiments — fired cycles

Table C.9 defines the operating points used in experimental evaluation.
The corresponding nominal values are given in table C.10.
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o Method 2; OP8 Zoomed version
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Figure C.5: L-curve (solid line) for one (motored) engine cycle at OP8
with false prior RMSE(e#~*) (dotted line), when using setup 2 and
case 1 of the 9; (§; = ¢). The results for the three versions of method 2
and the optimal choice of regularization parameter are indicated by the
legend. The true parameter deviation RMSE(e!) (dash-dotted line) is
also given.

OP1 OP2 OP3 OP4 OP5 OP6
N [rpm] 1200 1500 1500 2000 3000 3500
Prman [kPa] 32 55 130 123 103 120
f]deg ATDC] | -33 26 -5 -12 -28 -24

Table C.9: Operating point conditions for experimental cycles at OP1—
6.
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0 Method 2; OP8 o Zoomed version
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Figure C.6: L-curve (solid line) for one (motored) engine cycle at OP8
with weighted false prior RMSE(L® ¢#~t) (dotted line), when using
setup 2 and case 2 of the d; (0; # ¢). The results for the three ver-
sions of method 2 and the optimal choice of regularization parameter
are indicated by the legend. The weighted true parameter deviation
RMSE(L? ') (dash-dotted line) is also given.
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NOTATION

The parameters are given in appendix D.1, and the abbreviations are
summarized in appendix D.2. In the thesis various evaluation criteria
are used, and they are summarized in appendix D.3.

D.1 Parameters

In system identification literature, e.g. (Ljung, 1999), the convention
is to name the parameters by 6. However throughout this thesis, the
parameters are instead named x. This in order to assign 6 as the crank
angle degree, which is common in engine literature, see e.g. (Heywood,
1988).

D.1.1 Heat transfer

C1  constant in Woschni’s correlation -
Cy constant in Woschni’s correlation [m/(s K)]

h.  convection heat transfer coeflicient [W / (m? K)]
P cylinder pressure for firing cycle [Pa]

po  cylinder pressure for motored cycle [Pal

T  mean gas temperature K]

Tp mean gas temperature for motored cycle [K]

T, wall temperature K]

up,  mean piston speed [m/s]

w  characteristic velocity [m / 9]
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D.1.2 Engine geometry

A instantaneous surface area [m?]
Acn, cylinder head surface area [m?]
Aj.:  instantaneous lateral surface area [m?]
Apc  piston crown surface area [m?]
ay crank radius [m]
B cylinder bore [m]

l connecting rod length [m]
e compression ratio index [-]

S piston stroke [m]
0 crank angle [rad]
Vv instantaneous cylinder volume [m?]
V. clearance volume [m3]
V..  aggregate crevice volume [m3]
1% displacement volume [m3]
Via  instantaneous displacement volume [m3]
v tilt angle [deg]
Zoff  pin-off [m]

D.1.3 Engine cycle

K, pressure measurement gain  [-]
N engine speed [rpm]
D cylinder pressure [Pa]
Ap pressure bias [Pa]
Pexh  €xhaust manifold pressure [Pa]
Dm measured cylinder pressure [Pa]
Pman  intake manifold pressure [Pa]
Tinan  intake manifold temperature [K]
Tw mean wall temperature K]
0 crank angle [rad]
Af crank angle offset [rad]
Big ignition angle [rad]
Oppp  Deak pressure position [rad]



D.1. PARAMETERS

D.1.4 Thermodynamics and combustion

(7)s
b

Mtot

Qch

Agcd

stoichiometric air-fuel ratio

Vibe parameter

slope in linear model of v (2.30)
mass specific heat at constant volume
mass specific heat at constant pressure
mass flow into zone ¢

mass flow into crevice region
mass specific enthalpy

molar mass of specie i

Vibe parameter

air mass

air-fuel charge mass

burned charge mass

fuel mass

residual gas mass

total mass of charge

polytropic exponent

transported heat

chemical energy released as heat
heat transfer to the cylinder walls
released energy from combustion
specific heating value of fuel
specific gas constant
temperature in burned zone
residual gas temperature
temperature in unburned zone
internal energy

residual gas volume

mechanical work

mass fraction burned

mass fraction of specie i

mole fraction of specie i

residual gas fraction z, = m,/m.
CHEPP coefficient for specie i
specific heat ratio

constant value in linear model of v (2.30)
~ for burned mixture

~ for unburned mixture
combustion efficiency

rapid burn angle

total combustion duration

flame development angle
(gravimetric) air-fuel ratio
(gravimetric) fuel-air ratio
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D.1.5 Parameter estimation

Qe Morozov coefficient (6.22)

d number of parameters in M (z)

d* descent direction for iteration k

FP false prior level

Hy approximative Hessian in (C.8)

Lo weighting matrix, L% = (§)'/2

M(x) model for x

ms Miller coefficient (6.20b)

Me Miller coefficient (6.20a)

P covariance matrix

PN estimate of covariance at &

Vn(x, ZN) loss (criterion) function based on residual error
Vﬁ, penalty term based on nominal parameter deviation
v eigenvector

Wi loss function using prior knowledge

T vector used to parameterize model

T parameter estimate

z* parameter estimate at optimum

a0 parameter estimate when using regularization
0" regularized parameter estimate at optimum
xelt efficient parameter

gelt estimate for the efficient parameters

T; parameter 7

ik estimate of parameter k

xinit initial values of parameters

fid scaled parameters z° = Dz

P spurious parameters

xt true value of the parameters

xz# nominal value of parameters

xS scaled nominal value of parameters

y(t) measured output

J(t|x) predicted model output

ZV data set [y(1), u(1),y(2), u(2), .., y(N), u(N)]
« significance level

1) regularization matrix

0; diagonal element in &

O regularization parameter

A, search region for §,

€ prediction error y(t) — §(t|x) or residual

el true parameter deviation (D.8)

g mean true parameter deviation (D.9)

e# nominal parameter deviation (D.10)

il mean nominal parameter deviation (D.11)
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e#~t  nominal parameter deviation from true values (D.12)

n noise level

Ao noise variance

A N estimated noise variance

L step size for optimization algorithm

v regularization parameter for Levenberg-Marquardt
S singular value

o standard deviation

T curvature of L-curve

P Jacobian vector, defined in (C.5)

D.2 Abbreviations

AFR Air-Fuel equivalence Ratio

AHR Accumulated Heat Release

ATDC After TDC

CAD Crank Angle Degree

CHEPP  CHemical Equilibrium Program Package(Eriksson, 2004)
CI Compression Ignited

PDF Probability Density Function
ECU Electronic Control Unit
EVO Exhaust Valve Opening

FAP False Alarm Probability
FAR Fuel-Air equivalence Ratio
FP (level of) False Prior

FPE Final Prediction Error

GDI Gasoline Direct Injected
IvC Inlet Valve Closing

MAP Maximum A Posteriori

MDP Missed Detection Probability

MFB Mass Fraction Burned

MRE Maximum Relative Error

NRMSE Normalized Root Mean Square Error

RCI Relative (95 %) Confidence Interval

RE Relative estimation Error

RME Relative Mean estimation Error

RMSE Root Mean Square Error

SI Spark Ignited

SOC Start Of Combustion

SVC Saab Variable Compression

SVD Singular Value Decomposition

TDC Top Dead Center, engine crank position at 0 CAD

TWC Three-Way Catalyst
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D.3 Evaluation criteria

The evaluation criteria used in the thesis are summarized here, and
given in a general form. Here 3* denotes the true value, § denotes the
estimated or modeled value, y is the nominal value and j is the sam-
ple number.

Root mean square error (RMSE):

M
1 .
RMSE = i ‘5:1(y§ — ;)% (D.1)

Normalized root mean square error (NRMSE):

t N

A —
NRMSE = Z Yi yﬂ 2. (D.2)

Maximum relative error (MRE):

t g
MRE = max |2, (D.3)
J yj
The relative mean error (RME):
1 <Ayl — 4
i~ Yi
RME =+ > S (D.4)
j=1 i
Mean 95 % relative confidence interval (RCI):
1 1.96
RCI = %, (D.5)
M ot
j=1 J

where o is computed using (C.18) and (C.20) in appendix C.1.
False alarm probability (FAP):

FAP = P(reject H|r %" € NF) = P(T > J|r.,*" €¢ NF). (D.6)

The variables and nomenclature used are defined in example 5.1.
Missed detection probability (MDP):

MDP = P(not reject H|r %" ¢ NF) = P(T < J|r.%" ¢ NF).
(D.7)
The variables and nomenclature used are defined in example 5.1.



D.3. EVALUATION CRITERIA

True parameter deviation £:

eh=9-1y",

which is closely related to the mean true parameter deviation:

1 M
= RMSE() = Z 9 —yt)?

Nominal parameter deviation 7 :

el =9 -y,

295

(D.10)

which is closely related to the mean nominal parameter deviation:

M
1 .
ef = RMSE(Y) = \| 37 D (05 —v))?

j=1

Nominal parameter deviation from true values % ~*:

et = y# —yt.

=Y

(D.11)

(D.12)
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