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Abstract

When hybridizing a vehicle, new components are added that need to be monitored
due to safety and legislative demands. Diagnostic aspects due to powertrain
hybridization are investigated, such as that there are more mode switches in
the hybrid powertrain compared to a conventional powertrain, and that there
is a freedom in choosing operating points of the components in the powertrain
via the overall energy management and still fulfill the driver torque request. A
model of a long haulage truck is developed, and a contribution is a new electric
machine model. The machine model is of low complexity, and treats the machine
constants in a different way compared to a standard model. It is shown that this
model describes the power losses significantly better when adopted to real data,
and that this modeling improvement leads to better signal separation between
the non-faulty and faulty cases compared to the standard model.

To investigate the influence of the energy management design and sensor
configuration on the diagnostic performance, two vehicle level diagnosis systems
based on different sensor configurations are designed and implemented. It is
found that there is a connection between the operating modes of the vehicle and
the diagnostic performance, and that this interplay is of special relevance in the
system based on few sensors.

In consistency based diagnosis it is investigated if there exists a solution to
a set of equations with analytical redundancy, i.e. there are more equations
than unknown variables. The selection of sets of equations to be included in
the diagnosis system and in what order to compute the unknown variables in
the used equations affect the diagnostic performance. A systematic method
that finds properties and constructs residual generator candidates based on
a model has been developed. Methods are also devised for utilization of the
residual generators, such as initialization of dynamic residual generators, and
for consideration of the fault excitation in the residuals using the internal form
of the residual generators. For demonstration, the model of the hybridized truck
is used in a simulation study, and it is shown that the methods significantly
increase the diagnostic performance.

The models used in a diagnosis system need to be accurate for fault detection.
Map based models describe the fault free behavior accurately, but fault isolability
is often difficult to achieve using this kind of model. To achieve also good fault
isolability performance without extensive modeling, a new diagnostic approach
is presented. A map based model describes the nominal behavior, and another
model, that is less accurate but in which the faults are explicitly included, is used
to model how the faults affect the output signals. The approach is exemplified by
designing a diagnosis system monitoring the power electronics and the electric
machine in a hybrid vehicle, and simulations show that the approach works well.
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Populärvetenskaplig Sammanfattning

Ett diagnossystem övervakar ett system för att fastställa om det är helt eller
trasigt. Ett första steg är att upptäcka ett eventuellt fel, men det är även önskvärt
att kunna peka ut vilken del av systemet som är trasigt. Övervakning av ett
fordons drivlina är viktigt av flera anledningar, bland annat för att uppfylla
lagkrav, säkerhetskrav, hög utnyttjandegrad, och effektiva reparationer. När
ett fordon hybridiseras, i den här avhandlingen genom att förbränningsmotorn
kombineras med en elmaskin för fordonets framdrivning, så ökar systemets
komplexitet och ställer därmed stora krav på det diagnossystem som övervakar
fordonet. Det är vanligt att det finns ett diagnossystem för varje komponent i
fordonets drivlina, men här studeras vilka fördelar det finns med att designa
ett diagnossystem som övervakar ett flertal komponenter i fordonet. En speciell
egenskap hos ett hybridiserat fordon är att det finns en frihet att välja om det
är elmaskinen eller förbränningsmotorn som ska användas för att driva fordonet
framåt. Därför är det intressant att studera hur designen av den övergripande
energistyrningen påverkar möjligheten att felövervaka fordonet.

I avhandlingen används konsistensbaserad diagnos, vilket innebär att en
matematisk modell över fordonet jämförs med sensorsignaler för att fastställa
fordonets felstatus. För att undersöka hur olika designval påverkar diagnos-
prestandan har en modell av en lastbil utvecklats och ett bidrag i avhandlingen
är en ny elmaskinmodell. Det visas att den nya modellen beskriver maskinens
förluster bättre än en standardmodell när dessa utvärderas på mätdata, samt
att modelleringsförbättringen leder till en bättre signalseparation mellan det
felfria fallet och när ett fel har uppstått i systemet. Flera olika diagnossystem
har designats och implementerats i simuleringsmodellen. Simuleringar visar
bland annat att det finns en koppling mellan fordonets arbetspunkter och
diagnosprestandan, samt att den kopplingen är av större betydelse när få sensorer
är tillgängliga.

Grunden i de utvecklade diagnossystemen är att konstruera residualgenera-
torer, som här undersöker om lastbilsmodellen överensstämmer med sensormät-
ningar. Det går att skapa tusentals residualgeneratorer baserat på en modell av
ett komplext fysikaliskt system. Dessa har olika känslighet för att upptäcka fel
i systemet, och därför har en metod som undersöker residualernas egenskaper
baserat på en systemmodell utvecklats. Residualsignalerna i ett diagnossystem
efterbehandlas och metoder för detta har konstruerats. En metod har även
utvecklats för att kombinera en noggrann modell för det felfria fallet med en
annan modell för samma fysikaliska system, men som beskriver hur de olika
felen påverkar systemet. Detta leder till att det är möjligt att upptäcka fel i det
övervakade systemet, och samtidigt även specificera vilken komponent som är
felaktig, utan detaljerad modellering. För att demonstrera dessa metoder har
en simuleringsstudie med lastbilsmodellen utförts där det visas att metoderna
signifikant förbättrar diagnotikprestandan.
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Chapter 1

Introduction

There are possibilities to increase the efficiency of automotive powertrains using
hybrid technology. The largest relative fuel saving can be obtained in city buses
and garbage trucks with many start and stops, but also a small relative saving
in the fuel consumption for long haulage trucks results in a large amount of
saved fuel (Bradley, 2000). When hybridizing a vehicle, new components are
added compared to a conventional vehicle, e.g. electric machines, battery pack,
and power electronics (Husain, 2003; Guzzella and Sciarretta, 2013), and these
components need to be accurately monitored (Diallo et al., 2013).

One reason for monitoring the powertrain is safety. Faults in the electrical
components could be fatal due to the high voltage in the system. Another
issue is to avoid that unintended torque is applied to the vehicle. Such faults
are included in the functional safety of the vehicle, and there is an increased
consideration to this field by the automotive industry. There is a global standard,
ISO 26262, that provides processes and methods for the design, development,
and manufacturing of vehicles, with the goal to determine the Automotive Safety
Integrity Level (ASIL) in a systematic way (ISO, 2011). The ISO 26262 standard
is not mandatory for heavy trucks, but this is likely to be changed by 2016
(Dardar et al., 2012).

In addition to safety, fault detection and isolation is important to decrease
the vehicle ownership cost and to maximize the up-time of the vehicle. Fault
detection can e.g. protect other components from breaking down if a fault occurs
in a powertrain component. It is especially important to protect the battery
that is expensive and may degrade fast (Chen et al., 2013), e.g. if there are large
power flows in the battery. High power in the electrical components could be
caused by a fault in the power electronics or the electric machine. Further, more
efficient repair is possible if a fault is isolated, i.e. it is stated what component
that is broken and to some extent also in what way. This leads to that the
up-time of the vehicle increases, not only due to a minimization of the time
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2 Chapter 1. Introduction

spent at the workshop, but also due to the possibility to implement fault tolerant
control strategies in the vehicle.

Monitoring the powertrain of a hybrid electric vehicle (HEV) leads to new
challenges. One example of this is that there are many different operating modes
in an HEV. These operating modes offer possibilities to increase the performance
of the diagnosis system, since there are at least two energy converters in the
powertrain and thereby there is a freedom in choosing operating points of the
components via the energy management.

1.1 Diagnosis

A diagnosis scheme detects faults in a physical system using measurements, and
there are several approaches to be used. In the process industry often data
driven methods are used (Qin, 2012), while model based approaches e.g. are
used in the automotive industry. Examples of model based approaches used
in the control community are parity equation (Chow and Willsky, 1984), vari-
able elimination (Staroswiecki and Comtet-Varga, 2001), parameter estimation
(Isermann, 2006), state-observer (Frank, 1994), and residual generator (Blanke
et al., 2006) techniques. From the AI field a common approach is consistency
based diagnosis (de Kleer et al., 1992), that can be based on a general diagnostic
engine (de Kleer and Williams, 1987; Struss and Dressler, 1989). An overview of
the theories used in the control and AI communities is found in Travé-Massuyès
(2014).

A diagnosis system using a model based approach uses a model of the
monitored system, including a set of model equations E, describing the connection
between the control and sensor signals for the nominal case. A residual generator
included in the diagnosis system is designed based on a subset of the model
equations, Ē ⊆ E, with analytical redundancy, generically meaning there are
more equations than unknown variables. One basic principle when constructing
a residual generator based on Ē, is that a subset E′ ⊆ Ē of the equations is used
to compute the unknown variables in Ē, and the other equations, i.e. Ē \E′, are
used to investigate the consistency between the model Ē and the observations.
Often the residual generators are based on a set of equations with analytical
redundancy one, i.e. there is one more equation in Ē than there are unknown
variables in Ē. The equations used to investigate the consistency between the
model and the observations is called consistency relation or analytical redundancy
relation (ARR) (Cassar and Staroswiecki, 1997; Staroswiecki and Comtet-Varga,
2001).

The computation of the unknown variables in a residual generator can be done
by finding algebraic expressions for the variables or using numerical techniques,
see e.g. (Brenan et al., 1996). One disadvantage using numerical solvers
in nonlinear systems is that it is generally more computationally demanding
compared to using algebraic expressions. Here, the designed diagnosis systems
are supposed to be able to be implemented in a truck with limited computational
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Figure 1.1: A typical diagnosis system includes several residuals that are post
processed to form test quantities, and a fault isolation scheme to pinpoint which
fault that has occurred.

power, and therefore algebraic expressions are found for the variables in the
residual generators in Papers A-C, while the faults are estimated in state-
observers in Paper D.

A diagnosis system often consists of several residual generators that are
sensitive to different faults (Blanke et al., 2006). To reduce the noise level in the
residual signals, these are post processed to form test quantities, as can be seen
in Figure 1.1. The diagnosis statement is computed in a fault isolation scheme,
where information about what test quantities that have reacted and what faults
each test quantity is expected to react to is used.

Structural analysis

When designing a diagnosis system the well known method called structural
analysis can be used (Dustegör et al., 2006; Blanke et al., 2006; Staroswiecki
and Declerck, 1989). The method is based on that all variables that are used in
every model equation are listed, but no information about how the variables are
included (e.g. linear, exponential, differentiated) is used. Using the structural
analysis method it is possible to determine what detectability and isolability of
the faults that are possible to ideally achieve given a model and a set of sensors
(Krysander and Frisk, 2008).

The information about which variables that are included in each equation
is included in a bipartite graph. Based on this graph a Dulmage-Mendelsohn
decomposition (Dulmage and Mendelsohn, 1958) gives information about what
part of the model that has analytical redundancy, and thereby can be monitored.
There are several efficient tools available to find subsets of the model with ana-
lytical redundancy, and some of these are discussed and compared in Armengol
et al. (2009).

Sets of model equations with analytical redundancy are of special interest
when designing diagnosis systems, since they are used to construct residual
generators, and are denoted ARRs, possible conflicts (Pulido and Gonzalez,
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2004), and minimal structurally overdetermined (MSO) sets (Krysander et al.,
2008) by different authors. A set of equations, M, is structurally overdetermined
if there are more equations than unknowns in M. The set M is an MSO set
if there is no subset of M that is structurally overdetermined. The structural
method used when designing the diagnosis systems in Papers A-C are described
in Krysander et al. (2008); Krysander and Frisk (2008).

Vehicle level diagnosis

The manufacturers of the different components in a vehicle powertrain often also
deliver a diagnosis system monitoring each component. When the components
are connected in a hybrid powertrain it is however possible to design a diagnosis
system monitoring the entire powertrain. This type of overall diagnosis is here
called vehicle level diagnosis, and is the main emphasis of this thesis. There are
several possible benefits of using such a diagnosis system. One benefit is that
the performance of the diagnosis may increase, and another benefit is that it
may be possible to monitor the components by using fewer sensors, compared to
using separate diagnosis systems for each component in the powertrain.

1.2 Outline and Contributions

The aim of this work is to investigate aspects influencing diagnosis on vehicle
level regarding performance, design complexity, and computational complexity.
Examples of such aspects are how the design of a diagnosis system affect
performance, but also the importance of using accurate models for the purpose
of diagnosis. A third example of an aspect is how the sensor configuration
affects the diagnosis system. The aspects mentioned above are generic when
designing diagnosis systems, but an aspect that is important to understand when
monitoring HEVs is how the design of the energy management in combination
with the driving mission either can hide or attenuate a fault. This aspect is of
higher relevance in HEVs compared to conventional vehicles, since there are more
mode shifts in the hybrid system, and there is a freedom in selecting operating
modes of the powertrain components via the overall energy management. The
understanding of such issues is crucial when constructing a diagnosis system on
vehicle level for hybrid trucks.

Diagnostic aspects are investigated in the papers included in the thesis, and
a summary of the contributions in each paper is presented below.

Paper A

A simulation platform is used to evaluate the designed diagnosis systems in
Papers A-D. The platform includes a vehicle powertrain model, possibility to
induce faults in the powertrain, and a diagnosis system. Most of the powertrain
component models are obtained from the existing Matlab/Simulink model
libraries CAPSim (Fredriksson et al., 2006) and QSS (Guzzella and Amstutz,
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1999), but are modified to represent a parallel hybrid truck as well as to include
the possibility to add sensor noise and induce faults in the system. The simulation
platform, with emphasis on the powertrain model, is described in Paper A and
the model equations are given in the appendix of Paper C. In addition to the
model description, in Paper A also two diagnosis systems are designed and
implemented in the simulation platform. The two diagnosis systems are based
on two different sensor configurations to investigate different aspects affecting
the diagnosis of hybrid electric vehicles, such as how the choice of the sensor
configuration affects the model based diagnosis system, but also the connection
between the diagnostic performance and the operating modes of the vehicle. It
is found that all faults are detected in both diagnosis systems, but full fault
isolability is only achieved in the system based on more sensors. Further, there
is a connection between the operating modes of the vehicle and the diagnostic
performance, and this interplay is of special relevance in the system based on
few sensors.

Paper A is a modified version of Sundström et al. (2010) extended with work
presented in Sundström (2011).

Paper B

When comparing the electric machine model used in Paper A, that also is
described in Guzzella and Sciarretta (2013), to measurement data of an electric
rear axle drive, it is found that the model does not capture the characteristics of
the power losses in the machine. Therefore a new model of the electric machine
is presented in Paper B. The model has low complexity to be able to use the
model for on-board applications, such as in a diagnosis system. The new model
treats the machine constants in a different way compared to the model described
in Guzzella and Sciarretta (2013), which results in a different expression for
the power losses. It is shown that the new model describes the power losses
significantly better when adopted to real data compared to the standard model.
The significance of the modeling improvement is demonstrated using a task in
vehicle diagnosis where it is shown that the separation between the non-faulty
and faulty cases is better and the resulting diagnostic performance is improved.

Paper C

There are many residual generator candidates of a physical system, and a few
of these are to be selected to be used in the diagnosis system. In Paper C the
residual generators are based on MSOs, and all but one equation is used to
compute the unknown variables and one equation is used to investigate the
consistency between the model and the observations. A systematic method,
that is based on Svärd and Nyberg (2010), to investigate the properties of
the residual generators is described in the paper. The properties may differ
between different residual generators, even these based on the same set of model
equations, and therefore this kind of analysis is important. It may e.g. be
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possible to find residual generators without algebraic loops, that are unique,
or that either include differentiation or integration of dynamic equations. The
algorithm proposed in Svärd and Nyberg (2010) is in Paper C extended to also
consider the consistency relation in the analysis, and it is shown that only a small
fraction of all residual generator candidates fulfill fundamental requirements, and
thereby proves the value of such systematic methods. In addition, methods are
devised for utilization of the residual generators, such as initialization of dynamic
residual generators. A proposed method, considering the fault excitation in
the residuals using the internal form of the residuals, significantly increases the
diagnosis performance. The hybrid electric vehicle model is used in a simulation
study for demonstration, but the methods used are general in character and
provides a basis when designing diagnosis systems for other complex systems.

Paper C relies partly on work presented in Sundström et al. (2011).

Paper D

High model accuracy directly results in good fault detection performance in a
model based diagnosis system, and can be achieved by the use of a map based
model. However, one drawback using such a model in a diagnosis system is the
difficulty to isolate faults from each other, since internal physical phenomena are
not described by the model. In Paper D a new diagnostic approach is presented
to achieve also good fault isolability performance without extensive modeling.
The map based model describes the nominal behavior of the monitored system,
and another model, that is a less accurate but in which the faults are explicitly
included, is used to model how the faults affect the output signals. The benefit
of this approach is that data for a faulty system is not required, and that the
accuracy demands on the model used for fault modeling are lower than for
designing a diagnosis system without using the map based model. The approach
is exemplified by designing an observer based diagnosis system monitoring the
power electronics and the electric machine used in a hybrid electric powertrain,
and simulations show that the approach works well.

Paper D relies partly on work presented in Sundström et al. (2013).

1.3 Publications

The research work leading to this thesis is presented in the following papers
published by the author.

Journal Papers

• C. Sundström, E. Frisk, and L. Nielsen. Selecting and utilizing sequential
residual generators in FDI applied to hybrid vehicles. Systems, Man, and
Cybernetics: Systems, IEEE Transactions on, 44(2):172–185, February
2014 (Paper C)
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Submitted

• C. Sundström, E. Frisk, and L. Nielsen. A new electric machine model
and its relevance for vehicle level diagnosis. 2014a. Submitted to Jour-
nal (Paper B)

• C. Sundström, E. Frisk, and L. Nielsen. Diagnostic method combining map
and fault models applied on a hybrid electric vehicle. 2014b. Submitted to
Journal (Paper D)

Conference Papers

• C. Sundström, E. Frisk, and L. Nielsen. Fault monitoring of the electric
machine in a hybrid vehicle. In 7th IFAC Symposium on Advances in
Automotive Control, pages 548–553, Tokyo, Japan, 2013

• C. Sundström, E. Frisk, and L. Nielsen. Residual generator selection for
fault diagnosis of hybrid vehicle powertrains. In IFAC World Congress,
Milano, Italy, 2011

• C. Sundström, E. Frisk, and L. Nielsen. Overall monitoring and diagnosis
for hybrid vehicle powertrains. In 6th IFAC Symposium on Advances in
Automotive Control, pages 119–124, Munich, Germany, 2010 (Basis for
Paper A)
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Linköping University, SE-581 83 Linköping, Sweden.

Abstract

Designing diagnosis systems for hybrid vehicles includes new features
compared to conventional vehicles, e.g., additional mode switches in
the system. Aspects affecting diagnosis of hybrid electric vehicles are
to be studied, and a main topic is a study on how the choice of the
sensor configuration affects the model based diagnosis system, but also
the connection between the diagnostic performance and the operating
modes of the vehicle. These aspects are investigated by designing and
implementing two diagnosis systems on vehicle level that are based
on two sensor configurations, one consisting as few sensors as possible
that theoretically achieve full fault isolability, and one having more
sensors. The diagnosis systems detect specific faults, here faults in the
electrical components in a hybrid electric powertrain, but the presented
methodology is generic. It is found that all faults are detected in both
diagnosis systems, but there is a connection between the operating modes
of the vehicle and the diagnostic performance, and this interplay is of
special relevance in the system based on few sensors. This leads to
that it is possible to reduce the number of sensors used in the vehicle,
if the diagnostic performance is considered when the overall energy
management is designed.
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1 Introduction

When hybridizing a vehicle, new components are added compared to a conven-
tional vehicle, e.g. electric machines, battery, and power electronics (Husain,
2003; Guzzella and Sciarretta, 2013). These components need to be monitored
with the same accuracy as the components used in a conventional vehicle, and
one reason for monitoring the system is safety. Other reasons are to minimize
the cost of the vehicle ownership, and to maximize the up-time of the vehicle,
that is especially important in commercial vehicles. Accurate diagnosis leads
to more efficient repair at the workshop and thereby lower cost, but also to the
possibility to protect components, especially the battery that is sensitive and
costly (Reddy, 2011; Chen et al., 2013), from breaking down if a fault occurs.

Monitoring a hybrid electric vehicle (HEV) powertrain leads to new challenges
compared to a conventional powertrain. There are e.g. many different operating
modes in an HEV, and one example is that the electric components are either
active or not. In an HEV there is a freedom in choosing operating points of
the components via the overall energy management of the vehicle, which is not
possible to do in a conventional vehicle.

The objective of this work is to study key topics for vehicle level monitoring
and diagnosis of hybrid vehicles. A main topic is a study on how the choice of
the sensor configuration affects the model based diagnosis system, but also the
connection between the diagnostic performance and the operating modes of the
vehicle, and the influence of using a model of a component that is not valid in
all operating modes. The presentation starts with a thorough description of the
used simulation environment in Section 2, and the vehicle model parameters are
set to represent a long haulage truck. To evaluate the connection between sensor
configuration and diagnosis performance, two different sensor configurations are
assumed available, and these are given in Section 3. Based on these two sensor
configurations, two diagnosis systems are designed in Section 4. The results
from a simulation study are presented in Section 5, and finally the conclusions
are given in Section 6.

2 Simulation Platform

To investigate the interplay between vehicle, controller, and driver with emphasis
on fault monitoring and diagnosis, a simulation platform in Matlab/Simulink
has been developed. The simulation platform includes descriptions of the
truck, driver model, controller and energy management algorithms, and different
diagnosis systems. The diagnosis framework used in the paper is consistency
based diagnosis using precompiled tests, or residuals, see for example Blanke
et al. (2006) or the references therein. For logical foundations of the approach,
see for example de Kleer et al. (1992).

The structure of the platform is given in Figure 1. The vehicle model is
based on models of the components with a fixed interface to be able to easily
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driver
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and decision
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Figure 1: The structure of the implemented platform. Above the upper horizontal
line the faults are modeled, between the lines the models of the vehicle, driver,
and environment, and the lowest level contains the diagnosis system described
in Sections 3 and 4.

change a component model without modifying the rest of the vehicle model.
The diagnosis systems consist of two parts. First residuals, r, are computed,
which are signals that ideally are zero in the fault free case and non-zero in
a faulty case. To detect whether a residual significantly differs from zero, i.e.
there is a fault in the system, the residual signals are post processed. Different
residuals are sensitive to different faults, and the pattern of which residuals that
are significantly non-zero and zero is used to state what part of the system that
is faulty. In Figure 1, the lower dashed line has a special meaning in that the
levels above are simulated as a time-continuous system, whereas the level below
is simulated at a fix sample rate to represent vehicle on-board execution of the
diagnosis system. In the platform, the models of the vehicle, environment and
driver are based on the model libraries developed in the Center for Automotive
Propulsion Simulation, CAPSim, (Fredriksson et al., 2006) and QSS (Guzzella
and Amstutz, 1999). Modifications to these models are carried out to model a
truck instead of a passenger car, but also to include the possibility to induce
faults in the models and to add sensor noise. The components in Figure 1 that
are above the lower dashed line are described in this section, and the diagnosis
systems in Sections 3 and 4.

2.1 Environment

The environment contains information about the driving cycle, i.e. the speed
profile and the road gradient. The driving cycles used are presented in Section 2.5,
where also simulations of the vehicle are carried out.



18 Paper A. Overall Monitoring and Diagnosis for Hybrid . . .

2.2 Driver model

The model of the driver is a PI-controller using the information from the actual
speed and the reference speed from the driving cycle, to set the position of the
accelerator and brake pedals. The gear shifting strategy depends on the vehicle
speed (see Sundström (2011) for details), and when to engage or disengage the
clutch is also handled by the driver model.

2.3 Vehicle model

The vehicle modeled is a long haulage truck with a total weight of 40.000 kg, and
the configuration of the powertrain is a parallel hybrid according to Figure 2.

Fuel tank
Combustion
engine

Clutch

Buffer
Electric
machine

Mechanical
join

Gear
box

Chassis

Figure 2: The modeled truck is a parallel hybrid with the connection of the
electrical and conventional parts of the powertrain between the clutch and the
gearbox.

Since the objective with this work is to study the interaction between the
components in the vehicle, it is preferable to use basic component models. It
is however easy to add more advanced models of the components. The used
models of the components in the powertrain is briefly described below, and a
more detailed description is given in Sundström (2011).

Battery

The battery is modeled as a voltage source, Uoc, and an inner resistance, Rb,
connected in series (Reddy, 2011). The battery current, Ib, is expressed as

Ub = Uoc(SoC)−RbIb (1)

and Uoc, varies with the state of charge, SoC, that is defined by

SoC = SoC0 −
1

Qb

∫
Ib dt, SoC ∈ [0, 1] (2)

where SoC0 is the initial state of charge and Qb is the battery capacity.
The Coulombic efficiency is assumed to be negligible since this efficiency

is close to one in lithium-ion batteries (Valøen and Shoesmith, 2007). The
storage capacity is 9 kWh and Uoc is assumed to be constant, 256 V, when
SoC ∈ [0.2, 0.8].



2. Simulation Platform 19

Electric machine

The electric machine is able to convert electric power to mechanical power and
vice verse. A voltage, Uem, is applied on the component, resulting in a torque
on the outgoing shaft. The torque, Tem, is modeled to be proportional to the
armature current, Iem, with the torque constant ka

Tem = Iemka (3a)

The speed constant, ki, is used to model the electromotive force, and Rem is the
armature resistance of the machine

Iem =
Uem − kiωem

Rem
(3b)

The model is parametrized as a 33 kW separately excited DC machine with
constant magnetic flux, and the parameter values of Rem, ka, and ki are set to
0.044 Ω, 0.50 Nm/A, and 0.51 Vs/rad, respectively. In an ideal machine, ka and ki
are equal, and are defined by KΦ, where K is a machine constant that depends
on the design parameters of the machine, and Φ is the magnetic flux produced
by the stator (Guzzella and Sciarretta, 2013).

Local controller of the electric machine

The controller of the machine sets a requested voltage Uem,ctrl to be applied
on the machine by the power electronics. This is done by using a feed forward
controller based on the model of the machine presented above. The voltage
required to achieve the requested torque, Tem,req, set in the energy management
is computed by

Uem,ctrl =
Rem

ka

(
Tem,req +

kika
Rem

ωem

)
(4)

that is based on (3a) and (3b), and Tem is replaced by Tem,req.

Power electronics

The power electronics is modeled to deliver the requested voltage from the local
controller of the electric machine, i.e.

Uem = Uem,ctrl (5)

The component is assumed to be ideal

Pb = Pem ⇐⇒ IbUb = IemUem (6)

where Pb and Pem are the electrical powers from the battery and the machine.
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Fuel tank

In the model of the fuel tank the mass of the fuel in the tank, mf , is computed
by integrating the fuel mass-flow, ṁf , to the engine. The integrator is initialized
with the mass of the fuel at the beginning of the driving cycle, mf,0

mf =

∫
−max{0, ṁf} dt+mf,0 (7)

The weight reduction of the vehicle when fuel is consumed is also computed and
is used to compute the weight of the vehicle used in the model of the chassis

mf,r =

∫
max{0, ṁf} dt (8)

Engine

The engine model is a mean value model that computes the delivered torque,
Te, by using the mean brake effective pressure, pme. The mean brake effective
pressure is defined as

pme =
4πTe

Vd
(9)

where Vd is the displacement of the engine. The pressure pme is calculated using
Willans approximation (Guzzella and Sciarretta, 2013; Rizzoni et al., 1999). The
indicated engine efficiency, ηe,i, i.e the efficiency of the transformation from
chemical energy to pressure inside the cylinders, and the pumping and friction
losses, pme0, are considered

pme = ηe,ipmφ − pme0 (10)

The pressure pme0 can be divided into the the pumping losses, pme0,g and the
friction losses, pme0,f

pme,0 = pme0,f + pme0,g (11)

where the pumping losses are assumed to be constant. The friction losses, pme0,f ,
are modeled using a friction model given in Guzzella and Onder (2004), that is
a simplified model of Inhelder (1996). In the expression, k{1,2,3,4} are constants,
B and S the bore and stroke, and Πbl the boost layout of the engine that affects
the dimensioning of e.g. bearings

pme0,f = k1(k2 + k3S
2ω2

e)Πbl

√
k4
B

(12)

The parameters are based on Volvo’s D16 that produces 700 hp. General
parameters in the Willans approximation such as the indicated efficiency are the
same that are used for a diesel engine in QSS (Guzzella and Amstutz, 1999).
Some of the parameters used are presented in Table 1.



2. Simulation Platform 21

Table 1: Some key parameters used in the internal combustion engine
Parameter Value Unit
Number of cylinders 6 [-]
Stroke 0.165 [m]
Bore 0.144 [m]
Indicated efficiency 0.50 [-]
Max torque (speed) 3150 (1250) [Nm (rpm)]
Max power (speed) 515 (1700) [kW (rpm)]
Mass 800 [kg]

Clutch

There is a model of the clutch to handle starts and gear shifts. The model
is included in CAPSim, and when the clutch is engaged or disengaged, the
component is modeled as an ideal component. A flywheel is included in the
model and the difference in angular speed of the flywheel and the outgoing shaft
is computed. This difference in speed is used to find the outgoing torque from
the component when the clutch is not fully engaged.

Mechanical joint

The mechanical joint in Figure 2 connects the shafts from the electric machine,
the clutch, and the gearbox. The torque delivered from the component, which is
the torque on the input shaft to the gearbox, is denoted Tmj . There is a gear
ratio, uem, that is applied between the shaft connected to the electric machine
and the other shaft connected to the clutch and gearbox.

Tmj = Te + Temuem (13)

The inertia is calculated using

Jmj = Je + Jemu2
em (14)

where Je and Jem are the inertia of the engine and electric machine used to
compute the acceleration of the vehicle in Section 2.3.

Gear box

A fix step manual gearbox is used in the powertrain. The used gear is an input
signal to the gearbox and is set in the vehicle driver model. Based on this signal
the gear ratio, ugb, is achieved. The losses in the gearbox are modeled using an
affine dependency between the input and output torques. The torque consumed
at idle is denoted as Tgb,l, and the proportional coefficient is denoted as ηgb, and
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how ηgb is included in the expression depends on the sign of the delivered torque,
Tgb from the gearbox

Tgb =

{
ugb (Tmj − Tgb,l) ηgb Tmj − Tgb,l ≥ 0
ugb (Tmj − Tgb,l)

1
ηgb

Tmj − Tgb,l < 0 (15)

The efficiency ηgb depends on the selected gear, and Tgb,l depends on the in-going
speed and the selected gear. The inertia from the input shaft is compensated
for the gear ratio when the inertia of the vehicle is calculated

Jtot = Jgb + u2
gbJmj (16)

The gearbox model is parametrized to represent Volvo’s Ishift with 12 gears.
The gear ratios vary between 11.73 (1st gear) and 0.78 (12th gear), and the
efficiency ηgb = 0.975.

Chassis

In the vehicle, that has a mass mv, the output shaft from the gearbox is connected
to the final gear and finally to the wheels. The vehicle mass is computed by
reducing the initial mass of the vehicle, mv,0 with the consumed fuel, mf,r

mv = mv,0 −mf,r (17)

The road slope is used to calculate the change in potential energy, but is not
used in the expression for the rolling resistance. The rolling resistance is modeled
using the coefficient Cr

Fr = mvgCr (18)

and g is the gravity constant. To be able to handle low velocities and stand still,
the torque due to the rolling resistance, Tr, is modeled to be proportional to the
angular speed of the wheels, ωw, at low speeds. If the vehicle is reversing, Tr

changes sign in the model

Tr =





Frrw, 1000ωw > Frrw
1000ωw, −Frrw ≤ 1000ωw < Frrw
−Frrw, 1000ωw ≤ −Frrw

(19)

The expression for the air drag torque includes the air density, ρ, the air drag
coefficient, Cd, the frontal area of the vehicle, Af , the vehicle speed, v, and the
wheel radius

Td =
1

2
ρCdAfω

2
wr

3
w (20)

The torque due to the road slope, θ, and thereby change in potential energy of
the vehicle is modeled as

Tg = mvgrw sin θ (21)
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Table 2: The parameters used in the model of the chassis.
Parameter Value Unit
mv,0 40000 [kg]
Tire specification 315/80R22.5 [-]
Cr 0.007 [-]
Cd 0.8 [-]
Af 10 [m2]
uf 3.21 [-]

The torque due to mechanical brakes is denoted as TB , and the gear ratio in the
final gear is denoted as uf . The net torque acting on the wheels is computed by

Tnet = Tgbuf − Td − TB − Tr − Tg (22)

The effective inertia and the mass of the vehicle are used to calculate the angular
acceleration of the wheels

ω̇w =
Tnet

Jtotuf
2 +mvrw2

(23)

Some of the chassis parameters used in the simulations in Section 5 are given in
Table 2.

2.4 Controller and energy management

There are several design approaches of the energy management, e.g. the global
optimal solution using dynamic programming (Lin et al., 2003), model predictive
control (Borhan et al., 2009), or finding equivalent-consumption minimization
strategies (ECMS) (Sciarretta and Guzzella, 2007; Sivertsson et al., 2011). In
this study a heuristic approach is used since it is less complex than the above
mentioned methodologies, and the focus is here on the design of the diagnosis
systems.

The basic idea in the developed energy management is to charge the battery
via the electric machine instead of using the mechanical brakes and later use this
energy as a complement to the combustion engine. To be able to store as much
energy as possible during a retardation, it is preferred to have a low state of
charge, SoC, in the battery before the retardation. This is achieved by primarily
propel the vehicle via the electrical machine if SoC is larger than a predefined
threshold, SoClow. The details in the design of the energy management are
given in Sundström (2011).

2.5 Driving cycles and simulation results

Simulations of the vehicle are carried out to verify the model and to evaluate the
diagnosis systems designed in Section 4. Two driving cycles are used, FTP75 and
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a velocity profile collected from real driving between Linköping and Jönköping.
FTP75 is a driving cycle including many starts and stops (see Figure 3), while
the collected data represents highway driving. As seen in Figure 4, the truck
is driving at constant speed during most of the time at Linköping-Jönköping,
but at a few times the vehicle decreases the velocity. At a few downhill slopes
of the road the vehicle brakes to keep constant speed. When this occurs the
battery is charged, which can be seen in the figure. The fuel consumption is
39 l/100km when driving from Linköping to Jönköping, which is a reasonable fuel
consumption for a fully loaded long haulage truck (Bradley, 2000).

Diagnosis of the electrical parts of the powertrain is of high interest in this
paper. With the designed energy management, these components are only active
if there are some energy to recuperate, or there are energy stored in the batteries.
The electrical components are frequently active when FTP75 is used, since
this driving cycle includes many starts and stops. When diagnosis systems are
evaluated using the simulation model, it may be preferable to use a driving cycle
that frequently excites the components that are to be monitored, and FTP75 is
mainly used for this purpose. The recorded data from Linköping to Jönköping
is used to verify that the results are valid for a long haulage truck also in more
standard highway driving.

2.6 Sensors

The truck is assumed to be equipped with sensors measuring voltages, currents,
rotational speeds, and torques. The sensors measure the signals at 80 Hz, and
noise is added to the sensor signals. The noise is assumed to be additive inde-
pendent and identically distributed (i.i.d.) Gaussian with a standard deviation
σi, and is denoted ν̃ ∈ N (0, σi). The measurement signal y is given by the noise
free signal y∗, added with ν̃ as

y = y∗ + ν̃ (24)

2.7 Faults

To model that the battery, power electronics, or the electric machine may break
down, two parameter values and two voltages in these models have the possibility
to be modified. Note that these faults are only examples of how a fault in these
components can be represented in the model. The following modifications of the
signals are introduced to model the faults and the nominal signals are denoted
by the superscript nom:

fem,ka : ka = (1 + fem,ka) k
nom
a (25a)

fem,R : Rem = (1 + fem,R)R
nom
em (25b)

fpe : Uem,ctrl = (1 + fpe)U
nom
em,ctrl (25c)

fb,sc : Ub = (1 + fb,sc)U
nom
b (25d)
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Figure 3: The reference velocity and the velocity of the vehicle when FTP75 is
used, are given in the first plot. The engine, brake, and electric machine torques,
as well as the SoC of the battery are also presented.
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Figure 4: The velocity of the truck and road slope when driving from Linköping
to Jönköping are presented in the upper plots. The engine, brake, and electric
machine torques, as well as SoC are also shown. The electric machine is not
used during long periods in this driving scenario.
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Table 3: Values of faults induced in the model. The voltage Uem varies in the
range 0− 200 V, Ub ≈ 250 V and ωgb < 50 rad/s.

Faults Value
fem,ka -0.5
fem,R -0.5

fpe -0.5
fb,sc -0.5

fb,U,sens 20 V
fem,U,sens 20 V
fω,gb,sens 20 rad/s

where fb,sc models that not all cells in the battery are used due to an internal
short circuit, fpe is a fault in the power electronics, and fem,ka and fem,R are
two faults in the electric machine.

Three sensor faults are modeled as an offset fault, e.g. for the voltage sensor
in the electric machine

Uem,sens = Uem + fem,U,sens (25e)

where fem,U,sens possibly is time variant. The other sensor faults are fb,U,sens,
and fω,gb, that are faults in a battery voltage sensor and the speed sensor in the
gearbox respectively.

When a fault is induced in the model, the value of the fault is given in
Table 3.

3 Sensor configurations and theoretical max-
imum fault isolability

To analyze how the choice of sensor configuration affects the performance
and complexity of the diagnosis system, two systems using different sensor
configurations are developed. One set of sensors is chosen to achieve a diagnosis
system that is easy to design, and the other set is chosen to use as few sensors
as possible. The sensor configurations will also be investigated to see how the
sensor noise affects the diagnostic performance.

3.1 Sensor configuration 1

The faults to be detected and isolated in the first diagnosis system are the four
faults described in (25a)-(25d), and the sensor fault described in (25e). This di-
agnosis system uses sensors that measure signals close to the components that are
to be monitored, i.e. the battery, electric machine and power electronics:

• ωgb,sens - gear box outgoing speed
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• Ib,sens - battery current
• Iem,sens - electric machine current
• Tem,sens - electric machine torque
• Uem,sens - electric machine voltage

Note that in this system a torque sensor in the electric machine is used. Torque
sensors are normally not used in series production vehicles, but in this case the
torque sensor is included in the system to investigate its impact on the diagnostic
performance.

Given a model and a set of sensors it is possible to determine what de-
tectability and isolability of the faults that are theoretically possible to achieve.
In Krysander and Frisk (2008) this is done by a structural analysis (Dustegör
et al., 2006; Blanke et al., 2006) of the model. The method is based on that all
variables that are used in every equation are listed. How the variables are in-
cluded (e.g. linear, exponential, differentiated) is not considered in this analysis.
The structural model using the above described sensor configuration is shown
in Figure 5, where the last five equations represent the sensor equations and
are modified if a different sensor configuration is used. Given the set of sensors
described above it is possible to structurally achieve full fault isolability of the
faults described in Section 2.7.

3.2 Sensor configuration 2

In the second diagnosis system the faults given in (25a)-(25d), in addition to
faults in all used sensors, are to be detected and isolated. The number of sensors
used to achieve this is minimized to be able to analyze the impact this choice has
on the performance of the diagnosis system. To find this set of sensors, a sensor
placement algorithm (Krysander and Frisk, 2008) is run using the structural
model. Three sensors are required to isolate these faults, but there are several
different sets with three sensors that structurally achieve full fault isolability. In
the diagnosis system the following sensor configuration is used:

• ωgb,sens - gearbox outgoing speed
• Ub,sens,a - battery voltage
• Ub,sens,b - battery voltage

As seen there are two sensors measuring the battery terminal voltage. This
is required to be able to achieve full fault isolability, since if only one battery
sensor is used, it is not possible to isolate a fault in the battery sensor to all
possible faults in the system given by (25a)-(25d).

4 Diagnosis systems design

Two model based diagnosis systems using the sensor sets described in Sections 3.1
and 3.2 are implemented in the platform (Figure 1). The systems should detect
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Figure 5: The structural model of the truck when five sensors are used in the
model. Each row represents an equation, each column a variable, and the circles
indicate which variables that are included in each equation. The variables to
the left of the dashed lines are unknowns, between the lines are possible faults,
and to the right the known variables, i.e. the control signals and sensor signals,
but also the road slope angle θ.

and isolate the faults given in (25a)-(25d) in addition to one respectively three
sensor faults according to Sections 3.1 and 3.2. Information about only what
model equation each fault affects is assumed in the design of the diagnosis
systems, i.e. it is not known if the faults are e.g., additive or multiplicative to
the signals in (25). The advantage of this is that the diagnosis systems react to
any variation to the fault free model, and the system is thereby more generic.

A model based diagnosis system consists of one or several tests, and each
test is based on a subset of model equations with analytical redundancy of the
system to be monitored. A set of equations, M, is structurally overdetermined
if there are more equations than unknowns in M. The set M is a Minimal
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Table 4: Number of equations in the residual generators in Diagnosis system 1
and Diagnosis system 2. The total number of equations is 43 respectively 41 for
the two systems.

# tests # sensors # equations
System 1 4 5 2,9,14,12
System 2 6 3 2,15,29,35,35,36

Structurally Overdetermined (MSO) set if there is no subset of M that is
structurally overdetermined (Krysander et al., 2008). There are several efficient
tools available to find the MSOs of a model, and some of these tools are discussed
and compared in Armengol et al. (2009).

The diagnosis systems designed in this paper are based on MSOs. Based
on the vehicle model described in Section 2.3 and the sensor configuration
given in Section 3.1, it is possible to construct 65 MSOs, and using the sensor
configuration in Section 3.2 it is possible to construct 14 MSOs. These sets of
equations are sensitive to different sets of faults, and a selection of the MSOs
to be used in the diagnosis systems is made to structurally achieve full fault
isolability.

4.1 Diagnosis system 1

In the first diagnosis system, five sensors are used as described in Section 3.1.
There are several combinations of residual generators that require four residual
generators to structurally achieve full fault isolability, and one of these combina-
tions is chosen as the basis to Diagnosis system 1. The residual generators in this
diagnosis system are relatively small (see Table 4), as 2-14 equations are used
in each residual generator. The sets of equations that are used in the residual
generators form substitution chains, and there are no algebraic loops that need
to be solved. This leads to that it is easy to design the residual generators.

To illustrate how the residual generators used in the diagnostic tests are
constructed, the first residual generator in the diagnosis system is presented. It
is based on two equations and one unknown variable Uem. This voltage is first
computed as

Uem = Uem,ctrl (26)

and voltage sensor is then used to compute the residual

r = Uem,sens − Uem (27)

and the residual is sensitive for fpe and fem,U,sens. The information about
which residual generators, or tests, that are expected to react on each fault is
summarized in a decision structure in Table 5. Test 1 reacts for example on fpe
and fem,U,sens, which also can be seen in (25c), (25e), (26) and (27).
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Table 5: Decision structure in Diagnosis system 1.
fem,ka fem,R fpe fb,sc fem,U,sens

T1 X X
T2 X X X
T3 X X
T4 X X X

If Test 1 alarms this is explained by either fpe or fem,U,sens. Here a single
fault assumption is made, leading to that if also e.g., Test 2 alarms the only
possible explanation for this is that the power electronics is broken since this is
the only fault that makes both Test 1 and Test 2 alarm according to Table 5. Full
fault isolation is possible since each fault influences different sets of tests (Blanke
et al., 2006).

Model not valid

In the second test, ωem is computed via the angular speed sensor at the outgoing
shaft of the gearbox, ωgb,sens, and the gear ratio, ugb, according to

ωem = ugbωgb,sens (28)

The noise in ωgb,sens is amplified with the gear ratio when ωem is computed that
later is used in the residual. To get equal test significance for all gears, varying
noise levels has to be considered. Here a simple approach is adopted and the
test quantity is not updated for gears 1-4, where ugb is large.

CUSUM

Due to sensor noise and model errors, the residuals will be nonzero even in
the fault free case. To handle this a standard algorithm called CUSUM (Page,
1954; Gustafsson, 2000) is used. The algorithm is based on that a signal, s, is
constructed to have a negative expectation value in the fault free case and a
positive expectation value when a fault has occurred. The trend of a cumulative
sum, g, of s will then contain information about the status of the monitored
system. The test quantity, T , is calculated as

s(t) = |r(t)| − ν (29a)
g(t+ 1) = g(t) + s(t) (29b)

T (t) = g(t)− min
0≤i<t

g(i) (29c)

where ν is an offset that ensures that E{s(t)} < 0 in the fault free case. The
size of ν reflects the model error and noise in the model. The system alarms if
T > J , where J is a threshold and a design parameter, that is set to avoid false
alarms and still achieve fast fault detection.
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Table 6: Decision structure in Diagnosis system 2.
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4.2 Diagnosis system 2

The second diagnosis system uses as few sensors as possible to structurally
achieve full fault isolability in the system. This choice is made to investigate
the impact regarding performance of the system, but also the complexity in
designing the system. All three sensors are monitored, resulting in that there
are seven fault modes considered in Diagnosis system 2.

To achieve full fault isolability six tests are needed in this diagnosis system
compared to four in Diagnosis system 1. It is common that models are not
accurate or valid in all operating modes of the system. To investigate how
this influence the diagnostic performance, the model of the clutch used in the
diagnosis design is only valid when the clutch is fully engaged. The models of
the clutch and combustion engine are included in four of the residual generators
in Diagnosis system 2 (see Figure 2 for the vehicle configuration). These four
residual generators include a differentiated signal, which may lead to problems
since the signal is noisy.

The tests in this system are in general based on more model equations than
the tests in Diagnosis system 1. Up to 36 equations, of the in total 41 equations
describing the truck, are used in the tests (see Table 4). The decision structure
for Diagnosis system 2 is given in Table 6.

Algebraic loops

In five of the six sets of equations, one equation is used to compute one of the
unknown variables at the time in the computation sequence of the unknown
variables. However, in Test 4 an algebraic loop has to be solved since the
following two equations are included in the computation sequence and based on
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these two equations Iem and Uem are to be computed

Iem =
Uem − ωemka

Rem
(30a)

Uem =
IbUb

Iem
(30b)

These two equations are only a small part of the residual generator, and the
entire consistency relation is given in Sundström (2011). The equation system
above has two solutions for Iem

Iem = −ωemka
2Rem

±
√(

ωemka
2Rem

)2

+
IbUb

Rem
, (31)

and both solutions are valid, but in different operating modes of the electric
machine. In this case, the consistency based diagnosis approach is to alarm
when none of the solutions are consistent with measurement data. Thus, two
residuals are computed and the residual with the lowest magnitude is used in
CUSUM to calculate the test quantity. The disadvantage with this is that the
computational burden increases compared to compute only one residual per test
quantity.

Model not valid

The model of the clutch in the diagnosis system is only valid when the clutch is
fully engaged. In this operating mode, the model is that the torques and speeds
on both sides of the clutch are equal. This results in that when the clutch is
disengaged or there is a slip in the clutch, the four tests that include the clutch
model are not valid. After the clutch pedal is fully released by the driver, the
residuals in the corresponding tests are not updated in 3 seconds.

Tests 5 and 6 are noise sensitive for small Uem, so voltages close to zero needs
to be handled. Therefore the tests are not updated when |Uem| < 1 V.

Dynamic residual generators

As stated above, four of the six residual generators in Diagnosis system 2
include dynamics. These residual generators use the same consistency relation,
0 = aω̇gb+b where a is a constant and b is an arbitrary function of known signals,
but the signals a, b, and ωgb are computed in different ways in the different
residual generators. The differentiated variable, ωgb, is computed from control
inputs and sensor signals, but since sensor signals include measurement noise,
also ωgb includes noise. Therefore the residuals, r̃, are filtered to obtain the
residual r

r =
α

p+ α
(aω̇gb + b)︸ ︷︷ ︸

r̃

(32a)

where p is the differentiation operator and α > 0 for stability.
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It is possible to compute r in (32a), without computing a differentiated signal
using a variable transformation. Conditions for this to be possible is that the
residual generator can be written on the form r̃ = aω̇gb + b as above, where
a is a constant and b a function of known signals, and the residual is filtered
as in (32a) (Frisk and Nyberg, 2001). By introducing the state Γ, the variable
transformation is

Γ = r − αaωgb (32b)

We obtain that the residual generator in (32a) can be expressed as

Γ̇ = −αΓ− α2aωgb + αb (32c)
r = Γ + αaωgb (32d)

The filter parameter α can be modified in the design of the low pass filter of the
residual, where a smaller α filters the signal more. The disadvantage with this
is that if there is an error in the initialization of the signal, it will take longer
time before the error has faded out. On the other hand, it may be difficult to
detect faults using a faster filter, since the noise in r̃ is more apparent in r in
such a case.

When no gear is selected or the clutch is not engaged, the residual as well
as the test quantity are not updated as stated above. When the model in the
diagnosis system is getting valid, Γ is reinitialized. This is needed since the state
will drift during the time the model was invalid. When Γ is initialized, it is
assumed that the vehicle is fault free, i.e. r = 0 in (32b). The expression for Γ
when the model is getting valid at time t0 is therefore

Γ(t0) = −αaωgb(t0) (33)

Using this expression in the initialization is not a good idea, since it is sensitive
to noise in ωgb at one sample. This can lead to a significant offset in the residual
before the transient has faded out. To reduce the problem, the right hand side
of (33) is filtered. It is possible to filter the signal since the parts of the model
that is used to compute ωgb is valid even when the entire model used in the
residual generators is not valid. Figure 6 shows the signal of αaωgb for one
residual generator in addition to the signal αaωgb filtered with different time
constants, τr. The filter reduces the above described problem in the initialization
of the state. The signal is still noisy, but if it is more filtered there are significant
errors during transients since a causal filter is used. The chosen time constant
for the four dynamic residual generators in this diagnosis system is 0.1 seconds.

To further reduce the issues when reinitializing the state in the residual
generator, the CUSUM algorithm is not updated for the first 10 seconds after the
model is getting valid. During this time, most of the error in the initialization
of Γ will fade out. The drawback is that the test may be inactive a significant
part of the time, and thereby reducing the performance of the system.
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Figure 6: Three time constants in the filter of αaωgb, in addition to the unfiltered
signal, are included in the figure. The filter with small time constant is more
noisy than the others, while the filter with large time constant has a time delay
during the transient. The time constant is set to 0.1 seconds in the diagnosis
systems.

5 Results and discussion

The designed diagnosis systems achieve full fault isolability according to the
structural analysis. To evaluate the performance of the diagnosis systems when
noise is added to the sensor signals, simulations of the long haulage truck are
carried out. The type of issues handled are e.g. the impact of the number of
sensors on the performance of the diagnosis systems, and the interplay between
diagnosis and the energy management. These issues are of interest, since they
will also occur in reality when developing diagnosis systems. The size of the
considered faults are given in Table 3, and the faults are induced one by one in
the simulation model to evaluate the diagnostic performance.

The test quantities achieved from the simulations of the diagnosis systems
are normalized with the threshold used in the CUSUM algorithm, see Section 4.1
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Figure 7: Normalized test quantities in Diagnosis system 1 when Rem = 0.5Rnom
em

at 400 seconds and the driving cycle used is FTP75. The tests alarm when the
normalized test quantity is larger than one, and Test 2 and Test 3 react on the
fault as expected.

for details,

Tnorm =
T

J
(34)

and the test alarms if Tnorm > 1.

5.1 Diagnosis system 1

The diagnosis systems based on five sensors detects and isolates all faults in a
few seconds. As an illustration, Figure 7 shows Tnorm when fem,R is induced
in the model after 400 seconds and the driving cycle used is FTP75. Test 2
and Test 3 react on this fault, as expected according to the decision structure in
Table 5. The performance of the system detecting fem,R, is representative for
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Figure 8: Normalized test quantities in Diagnosis system 1 when Rem = 0.5Rnom
em

and the route used is Linköping to Jönköping. The shaded fields indicate when
|Iem| > 40A, and it is clearly shown that the performance in the diagnosis system
is dependent on the operating points in the electric machine. Both Test 2 and
Test 3 react on the fault as expected.

all faults that are to be detected.
A simulation using the driving profile from Linköping to Jönköping and the

resistance in the electric machine is modified after 400 seconds, is carried out
and the result is shown in Figure 8. Test 2 and Test 3 react and isolate the fault
in this realistic driving scenario. The reason for that the tests do not react at all
times on the fault, is that the electric machine is not used during long periods.
The shaded areas in the figure indicates when |Iem| > 40A, which is the current
when |Tem| > 20 Nm for the nominal value of ka according to (3a). If the test
quantities would only be updated when the condition |Iem| > 40A is fulfilled,
the test quantities in Test 2 and Test 3 would, as expected, be increasing after
the fault is induced.
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Table 7: Isolability matrix of Diagnosis system 2 based on the results from the
simulations of the vehicle model. The fault isolability performance is the same
when either of FTP75 or Linköping-Jönköping is used.
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fem,ka X X
fem,R X X
fpe X
fb,sc X

fb,U,sens,a X
fb,U,sens,b X
fω,gb,sens X

5.2 Diagnosis System 2

As stated above, all faults are fully isolable in Diagnosis system 2 according to
the structural analysis. However, the results from the simulation study show
that two of the faults are not fully isolable, as can be seen in the isolabilty
matrix in Table 7, where the columns and rows correspond to the faults. An
’X’ at position (i, j) indicates that fault i is not isolable from fault j, see e.g.,
Gelso et al. (2008). In Table 7 it can be seen that the diagnosis system does
not isolate fem,ka from fω,gb,sens, and that fem,R is not isolated from fpe. The
reasons are as follows. When the torque constant in the electric machine has
changed, i.e. the fault fem,ka, Tests 3-5 react, and Test 6 does not react as
expected from the structural analysis and the decision structure in Table 6. This
means that fem,ka can not be isolated from fgb,ω,sens, since both these faults
can be diagnosis statements when Tests 3-5 have reacted, see Table 6. Further,
when the resistance in the electric machine has changed, i.e. fem,R, Test 4 is not
affected as expected. This is the case in both FTP75 and Linköping-Jönköping,
and is shown in Figure 9 for FTP75. Due to that Test 4 does not react on
the fault, fem,R is not isolated from fpe. Improvements can be sought by using
variable parameters in the CUSUM algorithm, that changes with the operating
points of the vehicle to adapt to the varying fault sensitivity.

For the five faults that are fully isolable, the result is obtained within
100 seconds. One of the reasons that it takes longer time than for Diagnosis
system 1 to reach full fault isolability for these faults is that more of the tests
are not valid at all times, here because the model of the clutch is not valid in
all operating modes, |Uem| is small, or that no gear is selected. A test quantity
based on a dynamic residual generator that only is valid when |Uem| > 1 V,
is e.g. updated during 30% of the simulation time when FTP75 is used. In
the four tests based on dynamic residual generators, the states in the filters are
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Figure 9: The figure shows the normalized tests when there is a fault in the
resistance in the electric machine. Test 4 does not react on the fault as it should
do according to the structural analysis.

reinitialized when the system is reactivated. The assumption that the system is
fault free is used in the reinitialization of the state. An alternative to this, which
possibly increases the diagnostic performance, is to instead use the previous
valid value of the residual in the initialization of the state.

6 Conclusions

The influence of e.g., sensor configuration and operating modes on vehicle level
diagnosis has been studied by designing and implementing two diagnosis systems.
According to the structural analysis of the model used in these systems, full fault
isolability is possible to achieve in both sensor configurations. A simulation study
of the implemented diagnosis systems is done and both FTP75 and the realistic
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driving scenario Linköping to Jönköping is used. The diagnostic results are
similar based on these two driving missions, and the simulation study shows that
all faults are fully isolated in the first diagnosis system, that is based on several
sensors measuring signals on the components to be monitored. In the second
diagnosis system, that is based on a minimal number of sensors to structurally
achieve full fault isolability, all faults are not fully isolated in the implemented
system, as can be seen in Table 7. The discrepancy between the structural
analysis and the performance of the implemented diagnosis system, stems from
the influence of the faults on the system in relation to the sensor noise level.

It is shown in Figure 8 that the diagnosis performance is affected by the
operating points of the vehicle, which depends on the driving mission and the
overall energy management control strategy. This interaction is most significant
in the system based on few sensors, and especially in the dynamic residual
generators. One main reason for this is that the test quantities are not updated
for some time after the model has become valid to reduce the impact of the
transient in the reinitialization of the states used in the filters of the residuals.
Therefore it is preferable to avoid many deactivations and activations of the
tests, and this can be achieved in a well designed energy management.

The overall conclusion is that the performance in the diagnosis system based
on several senors performs better compared to the system based on few sensors.
This is an expected result, but if the diagnosis performance is considered when
designing the overall energy management, the performance of the latter diagnosis
system would be significantly improved. Therefore, by considering the impact of
the energy management on the diagnosis system, it may be possible to reduce
the number of sensors used in the vehicle to achieve the required diagnostic
performance.
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Abstract

With the electrification of society, especially transportation, the control
and supervision of electrical machines become more and more important
due to its bearing on energy, environment, and safety. To optimize
performance in control and supervision, appropriate modelling is crucial,
and this regards both the ability to capture reality and the computational
complexity to be useful in real time. Here a new low complexity model
of the electric machine is proposed and developed. The new model
treats the machine constants in a different way compared to a previous
standard model, which results in a different expression for power losses.
It is shown that this increases model expressiveness so when adopted
to real data the result is significantly better. The significance of this
modelling improvement is demonstrated using a task in vehicle diagnosis
where it is shown that the separation between the non-faulty and faulty
cases is better and the resulting performance is improved.
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1 Introduction
A hybrid vehicle is more complex than a conventional vehicle since it has more
components e.g., electric machine, battery, and power electronics (Husain, 2003;
Guzzella and Sciarretta, 2013), and it is important to monitor these components
due to safety issues and to avoid damage. Following a model based diagnosis
approach, the engineering steps are to devise component models and their
interconnections, to design residuals and test quantities, to choose thresholds,
and finally to state diagnostic decisions (Blanke et al., 2006). In practice, these
steps are interlinked and good engineering is needed in each step. Regarding the
models, they should of course describe reality sufficiently well, and at the same
time be computationally effective to be able to execute the diagnostic system
on-board the vehicle.

The main contribution in this paper is a new model for the electric machine.
The model has low computational complexity to be able to execute it in real
time on-board a vehicle, e.g., in a diagnosis system. Further, the number of
parameters in the model is small, which is advantageous in model calibration as
well as e.g., in initial studies in powertrain configurations. The proposed model
is a modification of a standard model in Guzzella and Sciarretta (2013) keeping
the same order of computational complexity. Nevertheless, the principal ability
to fit real data is significantly better in the new model, which is demonstrated
in Section 2. To demonstrate the value of the new model in vehicle level
diagnosis, in Section 4 two diagnosis systems monitoring the electric machine
in a hybrid powertrain are designed based on the new model and the standard
model respectively. A main result is better separation between the non-faulty
and faulty cases in the diagnosis system based on the new model.

2 Electric machine model
In hybrid electric vehicles (HEV) mainly permanent magnet synchronous ma-
chines (PMSM) are used, despite their high costs related to the permanent
magnets (Husain, 2003), since this type of machine in general has higher effi-
ciency and power density compared to other machine types (Zhu and Howe,
2007; Chau et al., 2008). Typical efficiency maps for an induction machine and
a PMSM are shown in Mellor (1999).

A PMSM consists of a stator with windings, and a rotor with permanent
magnets. The magnets are either mounted on the outside of the rotor, or are
integrated inside the rotor (Chau et al., 2008). By applying a voltage that results
in a current in the stator, the rotor starts to move. A PMSM is an AC machine,
but it is possible to use a DC source, e.g., a battery, and use power electronics to
achieve an alternating current. The torque generation principle in a PMSM and
brushless DC (BLDC) machine is the same (Fitzgerald et al., 2003). The main
difference between the two machine types is that the waveform of the stator
current is rectangular in the BLDC, but sinusoidal in the PMSM. In a hybrid
electric vehicle it is common to use the notation PMSM for both these two types
of machines, and therefore this notation is also used here.
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Two models of electric machines are presented and evaluated using measure-
ments of the power losses. The first model is a standard model described in
Guzzella and Sciarretta (2013), and the second model is a new model that is a
modified and extended version of the first model. Both models are static, which
is sufficient for the purpose here, but it is straightforward to include, e.g., an
inductance and thereby add dynamics to the model.

2.1 Standard model
A BLDC or a PMSM can be seen as an inside out DC machine, i.e., with
field windings on the rotor and where the stator is electronically commutated
using power electronics Fitzgerald et al. (2003). BLDCs are often modelled as
separately excited DC machines with constant magnetic field, while PMSMs
often are modelled as synchronous machines using the direct and quadrature
transformation. The model in this section is recalled from Guzzella and Sciarretta
(2013), and the machine is modelled as a separately excited DC machine. The
model is denoted as standard model, with superscript std in some of the variables.
The magnetic flux φ is constant in a PMSM, and the torque, T std

em , is modelled to
be proportional to the current Iem with the torque constant ka (Wang et al., 2011;
Yildiz, 2012). With K as a machine constant depending on design parameters
of the machine, the equations become

T std
em = kaIem (1)
ka = Kφ. (2)

The current in the stator, Iem, is calculated using the voltage, Uem, supplied by
the power electronics, and the electromotive force (emf), that depends on the
speed of the machine, ωem, as

Iem =
1

Rem
(Uem − ki ωem︸ ︷︷ ︸

emf

) , (3)

where Rem is the resistance in the electric machine and ki the speed constant.
Ideally ka = ki, but here ka < ki to model the losses in the machine in addition
to the resistive losses. Combining (1) and (3) results in

T std
em =

ka
Rem

Uem − kaki
Rem

ωem. (4)

The power losses in the machine are computed by
P std
em,l = IemUem − T std

em ωem. (5)

Substituting Uem and Iem using (1) and (3) results in the power loss for the
standard model as

P std
em,l =

(
T std
em

ka︸ ︷︷ ︸
Iem

)2

Rem +

(
ki
ka

− 1

)
T std
em ωem. (6)
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2.2 New model

In the new model, the current is modelled in the same way, i.e. (3), but in the
torque model (1), ka is modelled differently and losses are explicitly included.
The losses in electric machines are resistive losses, friction and windage losses,
and iron losses (Udomsuk et al., 2011). The resistive losses are considered in
the previous model. Here, in the new model, the friction and windage losses
are lumped and are modelled as friction losses. The torque due to friction is
modelled to be proportional to ωem (Zhu et al., 2000) by the friction constant
cem,f as

Tf = cem,f ωem. (7)

The output torque is computed similar to (1), but also considering Tf as

Tnew
em = kaIem − cem,f ωem. (8)

Substituting the current with the expression in (3), which is the same for both
models, gives

Tnew
em = ka

(
Uem

Rem
− ki

Rem
ωem

)
− cem,fωem. (9)

In the standard model all losses are described as resistive losses and by
ka < ki, see (6). In the new model the friction and windage losses are considered
in (9), and the resistance is included in the model. The iron losses, PFe, are
included in the new model by using different values for the parameters ka and
ki. The iron losses can be separated in hysteresis losses, Ph, and eddy-current
losses, Pe, and are commonly modelled (Mi et al., 2003) as

PFe = Pe + Ph = khB
βωs + keB

2ω2
s (10)

where kh and ke are constants, β the Steinmetz constant that often is a value
between 1.8 and 2.2, and B the magnetic field that varies with the angular
speed ωs. It is assumed that the magnetic material in the stator is unsaturated,
resulting in that B can be modelled to be proportional to Iem. This assumption
in combination with (10) results in that the delivered torque by the machine
is smaller than what the torque would be without considering the iron losses
of the machine, see the schematic illustration in Figure 1. To achieve this
characteristics of Tem an efficiency ηem,0 < 1 is used in the new model as

ka =

{
kiηem,0, Iem ≥ 0 A

ki

ηem,0
, Iem < 0 A.

(11)

In this equation ka < ki in motor mode and ka > ki in generator mode, i.e.
Tem < 0. As mentioned above, losses are in the standard model described by
ka < ki, and using this leads to the non-physical result of a curve in Figure 1
that is above the ideal (dashed) curve in generator mode.

The power losses for the new model are finally computed as in (5), where
Uem and Iem are found by using (3) and (8) respectively.
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Tem

ωem

Ideal
With losses

Figure 1: Schematic illustration of the torque delivered by the machine ideally
(dashed lines) and when considering the iron losses (solid lines) given some
currents and voltages.

Pnew
em,l = IemUem − Tnew

em ωem (12a)

=(Tnew
em +cem,fωem)

1

ka
(IemRem+kiωem)−Tnew

em ωem

=
Rem

k2a
(Tnew

em )
2
+

(
c2em,fRem

k2a
+

ki
ka

cem,f

)
ω2
em+

+

(
2
cem,fRem

k2a
+

(
ki
ka

−1

))
Tnew
em ωem (12b)

2.3 Parametrization of the models

The parameters in the models described in Sections 2.1 and 2.2 are identified
using measurement data of the power losses of a 59 kW PMSM included in an
electric rear axle hybrid vehicle. The map describing the losses, Pmap

em,l , takes
Tem, ωem, and the battery voltage, Ub, as inputs, leading to

Pmap
em,l = f(Tem, ωem, Ub). (13)

The efficiency map of the machine is given in Figure 2.
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Figure 2: The efficiency of the permanent magnet synchronous machine based on
measurements for Ub=250 V, and the thick blue lines show the torque limitation
of the machine.

Parametrization of the standard model

For the standard model given in Section 2.1, the power losses of the expression
given in (6) are to be fitted to the measured losses given in (13). There are three
parameters to be identified, ka, ki, and Rem. However, these are only included
in two terms in the expression (6), leading to that all parameters cannot be
identified. Using

kem,1 =
Rem

k2a
(14)

kem,2 =
ki
ka

(15)

instead gives

P std
em,l =

(
T std
em

)2
kem,1 + (kem,2 − 1)T std

em ωem. (16)
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Figure 3: The power losses [W] of the electric machine. The dashed lines are
the parametrized model described in Section 2.1, and the solid lines the losses
in the map.

The battery voltage is not included in (16), but is required in the map based
model. In the parametrization of the model, the battery voltage is assumed
to its open circuit voltage, i.e. 250 V. The values of the parameters kem,1

and kem,2 in (16) are identified by minimizing the squared error between P std
em,l

in (16) and the data from the map. The values of the parameters found are
kem,1 = 0.27 ΩA2

/N2m2 and kem,2 = 0.99, and the power losses in the electric
machine in the map and the parametrized equation (16) are shown in Figure 3.
The characteristics of the losses are not captured in the model, since the contour
lines of the modelled losses (dashed lines) are almost straight lines while the
contour lines of the measured losses (solid lines) have a peak at Tem = 0 Nm.
Further, since the estimated value of kem,2 < 1 then ka > ki and not ka < ki as
expected by (Guzzella and Sciarretta, 2013).
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Figure 4: The power losses [W] of the electric machine. The dashed lines are
the parametrized model described in Section 2.2, and the solid lines the losses
in the map.

Parametrization of the new model

Values for the parameters used in the new model are found by finding the least
square error for Pnew

em,l in (12b) using the measured data. The values for ki,
ηem,0, Rem, and cem,f are found to be 0.498 Nm/A, 0.97, 0.039 Ω, 0.0021 Nm/s,
respectively. The power losses computed in (12b) for these parameter values are
shown in Figure 4, where also the measured data is shown. As seen in Figure 4,
(12b) captures the characteristics of the losses, which was not the case in the
standard model, and the modelled losses accurately fit the measured losses.

3 Vehicle Model

The use of the new electric machine model in the design of a diagnosis system is
illustrated in Section 4, and the application is the powertrain of a long haulage
hybrid electric truck. It is important to evaluate the diagnosis system of a
component in the powertrain under realistic operating speeds and torques, and
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Figure 5: The configuration of the modelled vehicle.

therefore a vehicle model is used in combination with a driving cycle. The
powertrain model used in the evaluation is described in this section and is a
mean value model suitable for vehicle level diagnosis.

3.1 Powertrain model

The connection of the electrical and conventional parts of the powertrain is
located between the clutch and the gearbox, see Figure 5. The model of the
powertrain, except for the electric machine, is described in Sundström et al.
(2014), where also the model equations are given. The component models of
interest for the analysis to come in the next section is recalled below. The vehicle
model is implemented in Matlab/Simulink and is based on the model libraries
developed in the Center for Automotive Propulsion Simulation (Fredriksson
et al., 2006) and the QSS toolbox (Guzzella and Amstutz, 1999). Modifications
to these models are carried out to model a truck instead of a passenger car,
and to include the possibility to induce faults in the models as well as to add
sensor noise. The energy management is based on a heuristic control strategy,
and the basic idea is to charge the battery when the vehicle is braking and use
this energy as soon as the vehicle requires tractive power (see Sundström et al.
(2010) for details). The internal combustion engine is modelled using a Willans
line (Guzzella and Sciarretta, 2013; Rizzoni et al., 1999).

Battery

The battery is modelled using a Thévenin equivalence circuit, i.e. a voltage
source, Uoc, that in this case depends on the state of charge, SoC, and an inner
resistance, Rb, connected in series (Reddy, 2011). The battery voltage, Ub, on
the terminals for a current Ib is

Ub = Uoc(SoC)−RbIb (17)
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and the state of charge is based on Ib and the capacity of the battery, Qb, is
computed by

SoC = SoC0 −
1

Qb

∫
Ib dt, SoC ∈ [0, 1], (18)

where SoC0 is the initial state of charge of the battery.
The modelled battery pack is based on 200 cells, and the cells used are

denoted as the “10-Mile PHEV” in Nelson et al. (2007). For the battery pack
the resistance is assumed to be a constant, the Uoc(SoC = 0.5) is 250 V, and
the capacity is 33.6 Ah, or approximately 8.3 kWh.

Power electronics

The efficiency in the power electronics, ηpe is assumed to be constant, thus

Pb = η−sign{Pem,e}
pe Pem,e (19)

where Pb and Pem,e are the electrical powers from the battery and machine.
Using Pb = IbUb gives the following expression for the battery current

Ib = η−sign{Pem,e}
pe

Pem,e

Ub
. (20)

Electric machine

The map based model used in the parametrization of the electric machine in
Section 2.3 is used in the simulation model of the truck. Note that the two
models presented in Sections 2.1 and 2.2 are used in the design of residuals to be
used in a diagnosis system (see Section 4). The map based model is based on the
map describing the power losses of the machine, Pmap

em,l , described in (13). The
requested torque, that is equal to the delivered torque as long as the machine
can deliver the torque, the speed of the machine, and the battery voltage are
input signals to the model, see Figure 6. The mechanical power delivered by the
machine is expressed as

Pem,m = Temωem (21)

and is used to calculate the electrical power as

Pem,e = Pem,m + Pmap
em,l , (22)

that is used to compute Ib by using (19).

Vehicle

In the vehicle, that has a mass mv and a lumped inertia Jtot, the output shaft
from the gearbox is connected to the final gear and finally to the wheels. The
gear ratio in the final gear is denoted γf , and the angular acceleration of the
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Figure 6: Schematic overview of the signal flow in the map based model, that
also includes the model for the power electronics described in Section 3.1.

wheels is calculated based on the resulting torque, Tnet, acting on the wheels,
whose radius is rw, by

Tnet = Tgbγf − Td − Tr − TB − Tg (23a)

ω̇w =
Tnet

Jtotγ2
f +mvr2w

, (23b)

where Tgb, Td, Tr, TB , and Tg are the torques from the gearbox, air drag, rolling
resistance, mechanical brakes, and slope of the road, respectively. The input
torque to the gearbox is the sum of the torques from the electric machine and
the clutch, i.e. the internal combustion engine torque when the clutch is engaged
(see Figure 5).

3.2 Sensors

Several sensors are used for control of the vehicle, but only Tem and ωem are
used in the residuals used in the diagnosis systems presented in Section 4. A
measurement signal, y, is given by the noise free signal, y∗, added with noise, ν̃

y = y∗ + ν̃. (24)

If a torque sensor is not available it is possible to use other sensors and an
observer as a virtual torque sensor. Here, a torque sensor is used to demonstrate
the general principle behavior since the main contribution in this paper is the new
electric machine model, and the vehicle model is used to quantify the diagnostic
improvement of the increased model performance in a realistic operating scenario.
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4 Evaluation on diagnosis system

The diagnostic benefit of the new model is illustrated in this section by using
the simulation model of the hybrid truck described in Section 3. Two residuals,
rstd and rnew, that should be zero in a fault free case and non-zero in a faulty
case, are compared. The first residual is based on the standard model of the
electric machine, and the latter is based on the new model.

4.1 Induced fault

The faults induced in this evaluation are changes in the inner resistance Rem

and the speed constant ki of the machine expressed by

fem,R : Rem = (1 + fem,R)R
nom
em (25a)

fem,ki : ki = (1 + fem,ki) k
nom
i , (25b)

where Rnom
em and knomi are the nominal values of the resistance and the speed

constant, and fem,R and fem,ki the sizes of the corresponding faults. In the map
based model that is used to represent the electric machine in the simulations,
Rem and ki are not explicitly included. Therefore the map of the power losses
and the delivered torque of the machine are modified when there is a fault in
the machine, as described in Sundström et al. (2013). In brief, this means that
the nominal values for Tem and Pem,l are given by the map based model, and
the modifications due to the faults in (25) are computed using the new model.
It is important to note that the map based model is thus assumed to be the
truth, and this model is not available in the diagnosis system design.

4.2 Residuals

In the residuals, the signal from a torque sensor in the electric machine, Tem,sens

is compared to a computed torque, T std
em and Tnew

em , respectively

rstd = Tem,sens − T std
em (26a)

rnew = Tem,sens − Tnew
em . (26b)

The computed torque in rnew is based on the model described in Section 2.2
and is calculated using the substitution chain given in (27). The gear ratios in
the gearbox and the mechanical joint are γgb and γem respectively, the output
angular speeds from the mechanical joint and gearbox are denoted as ωmj and
ωgb respectively, and the requested voltage from the power electronics is denoted
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as Uem,ctrl. The substitution chain used in rnew is

ωgb = ωgb,sens

γgb = f(gear)
ωmj = γgbωgb

ωem = γemωmj

Uem = Uem,ctrl

ka =

{
kiηem,0, Tem,sens+ cem,fωem ≥ 0

ki

ηem,0
, Tem,sens+ cem,fωem < 0

(27a)

Tnew
em = ka

(
Uem

Rem
− ki

Rem
ωem

)
− cem,fωem. (27b)

The modification in the substitution chain used in rstd is that ka is set to a
constant instead of (27a), and that (27b) is replaced by (4), see Section 2.1.

An alarm is generated when the absolute value of a residual is above a
specified threshold, J , as

|r| ≥ J ⇒ Alarm
|r| < J ⇒ No alarm.

Ideally, the residual r is zero in the fault-free case but due to noise and model
uncertainties the threshold J has to be selected to obtain a suitable trade-off
between probability for detection P (detection) and probability for false alarm
P (false alarm). A small J results in a high false alarm rate, while a high J
results in a low fault detection rate.

4.3 Simulation results

The residuals are post processed using a low pass filter to reduce the noise level.
The driving cycle used in the simulations is FTP75 which is 1877 seconds long,
i.e., defined on τ = [0, 1877]. The errors are induced one by one in the vehicle
model, are constant in the entire simulations, and are set to fem,R = −0.6 and
fem,ki = −0.03 respectively, corresponding to similar errors in torque.

Illustration of separation properties

Figures 7 and 8 zoom in on the time interval [1633, 1639], where rstd and rnew
are plotted in the non-faulty case and for the faulty cases fem,R = −0.6 and
fem,ki = −0.03 respectively. Some interesting differences in separation properties
between rstd and rnew are found. In Figure 7 it can be seen in the upper plot
that rnew is close to zero in the fault free case, which is not the case in rstd seen
in the middle plot. The reason for that rstd is non-zero is that the modelled
torque T std

em does not accurately represent the delivered torque of the machine,
see (26a). The figure also shows that the separation is larger in rnew compared
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Figure 7: Residuals when Rem = 0.4Rnom
em . There is a larger separation between

the residuals in the faulty and fault free cases in the new model. The value of
the residual based on the standard model in the fault free case, is dependent on
the delivered torque Tem.

to rstd, see e.g., at time 1635 seconds. Relating the lower plot to the upper two
plots, it can be seen that the residuals depend on the delivered torque from
the machine, but rnew is close to zero in the fault free case independent of Tem.
Also in Figure 8 rnew is close to zero independent of Tem in the fault free case.
However, compared to when fem,R has occurred, rnew when fem,ki has occurred
is less dependent on the operating point of the vehicle. Comparing the lower
plots in Figure 7 and Figure 8 it is found that the delivered torque from the
machine is more affected by fem,ki than fem,R.

Detection performance

In this section the detection performance of the residuals in the entire driving
cycle is analyzed. The analysis is presented for fem,R, and the results are similar
for fem,ki. In Figure 7 it is clear that the fault sensitivity in the residual depends
on the torque level in that a higher torque gives a clearer fault response in both
residuals. Therefore, the residuals are only computed when the torque is above a
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Figure 8: Residuals and delivered torque from the machine when ki = 0.97knomi .

threshold, and simulations are carried out for many different torque levels used
for residual activation to detect a modification in the resistance of the machine.
For illustration, the results based on two of these torque levels, β = 50, 80 Nm,
are included in the paper, which leads to the active time intervals

τβ = {t ∈ τ : |Tem(t)| ≥ β} , β = 50, 80 Nm. (28)

Now, to study the detection performance for the two residuals, the receiver
operating characteristic (ROC) curve is used (Kay, 1998). The ROC curve is the
probability for detection, P (detection), plotted against the probability of false
alarm, P (false alarm). The curve is parameterized by different thresholds, i.e.,
each point on the curve corresponds to a specific threshold J . Since it is wanted
to achieve a low false alarm rate and a high fault detection rate, a curve that is
close to the upper left corner is wanted. Figure 9 shows the ROC curves for the
two cases β = 50, 80 Nm, upper and lower plot. In both cases, it is seen that the
solid line, corresponding to the residual rnew, is more to the upper left corner
than the dashed line, corresponding to the residual rstd. Thus, the performance
of rnew is better than the performance of rstd, since the detection rate is higher
for the same false alarm rate. The same result is obtained for any value of the
parameter β.
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Figure 9: ROC functions for the residuals in Figure 7, where fem,R is considered,
for two different values of β in (28). The curves show that the performance is
better for the new model, and this holds for any value of β.

5 Conclusions

The diagnosis task for hybrid vehicles is complex with several interlinked aspects.
Here it has been demonstrated that a new low complexity model of the electric
machine better describes the component itself and, furthermore, improves di-
agnostic performance. Compared to the standard model, the new model treats
the machine constants in a different way. With this modification, the expression
for the power losses becomes different, see (6) and (12b), and these different
expressions have different principle capability to model real power losses, as
clearly demonstrated in Figures 3 and 4. To investigate the significance of this
modelling improvement, a task in vehicle diagnosis is presented and evaluated.
The conclusion from Figures 7-9 is that the new model leads to more separated
residual signals in the faulty and non-faulty cases compared to the standard
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model, as well as less dependence on the operating point of the machine. In
conclusion, without increasing complexity, a new useful model of an electric
machine has been presented.
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A Notation
cem,f Friction constant
ka Torque constant
kem,1 Used in parametrization of standard model
kem,2 Used in parametrization of standard model
ki Speed constant
fem,ki Fault in the machine (ki modified)
fem,R Fault in the machine (Rem modified)
mv Vehicle mass
rnew Residual based on the new model
rstd Residual based on the standard model
Ib Battery current
Iem Electric machine current
J Threshold for decision making of residuals
Jtot Lumped vehicle inertia
K Machine constant
Pb Battery power
Pem,e Electric machine power (electrical)
Pem,m Electric machine power (mechanical)
Pmap
em,l Power losses in the map

Pnew
em,l Power losses in the new model

P std
em,l Power losses in the standard model

Qb Battery capacity
Rb Battery resistance
Rem Electric machine resistance
SoC State of charge
SoC0 Initial state of charge
Td Torque due to air drag
Tnew
em Delivered torque in the new model

T std
em Delivered torque in the standard model

Tem,sens Torque sensor in electric machine
Tg Torque due to road slope
Tgb Torque from gearbox
Tnet Resulting torque acting on the wheels
Tr Torque due to rolling resistance
Tf Friction torque
TB Brake torque
Ub Battery terminal voltage
Uem Electric machine voltage
Uem,ctrl Requested voltage from machine controller
Uoc Battery open circuit voltage
β Residual activation threshold
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γem Mechanical joint gear ratio
γf Final drive gear ratio
γgb Gearbox gear ratio
ηem,0 Efficiency to model iron losses
ηpe Power electronics efficiency
φ Magnetic flux
ωem Electric machine speed
ωgb Gearbox output angular speed
ωmj Mechanical joint output angular speed
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Abstract

For a realistic model of a complex system there will be thousands
of possible residual generators to be used for diagnosis. Based on
engineering insights of the system to be monitored, certain algebraic
and dynamic properties of the residual generators may be preferred, and
therefore a method for finding sequential residual generators has been
developed that accounts for these properties of the residual generator
candidates. It is shown that only a small fraction of all residual generator
candidates fulfill fundamental requirements, and thereby proves the value
of systematic methods. Further, methods are devised for utilization of the
residual generators, such as initialization of dynamic residual generators.
A proposed method, considering the fault excitation in the residuals using
the internal form of the residuals, significantly increases the diagnosis
performance. A hybrid electric vehicle is used in a simulation study
for demonstration, but the methods used are general in character and
provides a basis when designing diagnosis systems for other complex
systems.

69
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1 Introduction
Design of a diagnosis system for a non-trivial real application is a complex
engineering task involving many aspects (Blanke et al., 2006; Gentil et al., 2004;
Cordier et al., 2004). Physical and semi-physical modeling will typically lead to
a set of equations where some are algebraic and some are differential equations.
Based on such a model of differential-algebraic equations (DAE), it is typically
possible to construct many residuals to be used for fault detection and isolation
(Blanke et al., 2006). How to select which of these residual generators to use is a
non-trivial task, and further, before a diagnostic decision is made the residuals
are often post-processed to form test quantities, e.g., by using the well-known
CUSUM algorithm (Page, 1954).

When hybridizing a vehicle (Guzzella and Sciarretta, 2007), new components
are added compared to a conventional vehicle, e.g. electric machines, battery,
and power electronics. It is important to monitor these components due to
safety issues and to avoid damaging components, especially the battery that is
sensitive and costly. From the viewpoint of needed methodology for diagnosis
design, it is fundamental that these systems by their very nature switch between
combustion engine and electrical motor, and under these two main modes there
are many sub-modes. This may typically result in that different residuals are
switched on and off, resulting in design questions on e.g. reinitialization when
being turned on.

The contributions in the paper concerns the selection of the residual genera-
tors to be used in the diagnosis system, and methods for utilizing these residual
generators to make diagnostic decisions. The method used for generating residu-
als is based on computation sequences of the unknown variables (Staroswiecki
and Declerck, 1989), and is called sequential residual generators by Svärd and
Nyberg (2010). To this method, one would like to add engineering insights
where intuition regarding noise properties may make a dynamic computation
sequence leading to integration preferable compared to a sequence resulting
in differentiation. Different computation sequences leads to different results
regarding algebraic loops and uniqueness, which is exploited in the diagnosis
design. Furthermore, in non-linear systems the fault excitation often depends on
the operating mode of the system to be monitored, and a method for exploiting
this when designing the test quantities is proposed. The method, that is one
of the main contributions in the paper, is based on the internal form of the
residual generators and is exemplified for the CUSUM algorithm. Finally, all
these aspects, i.e. the investigation of all sequential residual generator candidates
and utilization of a set of these, are illustrated on an industrial example in a
simulation study for a hybrid electric vehicle.

2 Residual generator construction
The objective of this section is to introduce, and make slight modifications to,
the model based residual generation technique that is analyzed further in the fol-
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lowing sections. Examples of proposed techniques to generate residuals are parity
equations (Chow and Willsky, 1984), variable elimination (Staroswiecki and
Comtet-Varga, 2001), parameter estimation (Isermann, 2006), and state-observer
(Frank, 1994) techniques. As stated above, sequential residual generators are
used here and the basic principle is straightforward (Staroswiecki and Declerck,
1989; Svärd and Nyberg, 2010). A sequential residual generator consists of a
set of equations with analytical redundancy where a subset of the equations are
used to solve for the unknown variables included in these equations, and then
the redundant equations are used to check consistency between the observations
and the set of model equations. The basic principle is illustrated with a small
example.

Example 1. Consider the model

e1 : x1 = g1(x2)

e2 : x2 = g2(u)

e3 : y = x1

with 3 equations, 2 unknown variables x1 and x2, known input variable u,
measurement variable y, and non-linear functions gi. Here, both e1 and e3 can
be chosen as the consistency relation, or analytical redundancy relation (ARR)
(Staroswiecki and Comtet-Varga, 2001), resulting in the two residual generators

x2 := g2(u) x2 := g2(u)

x1 := y x1 := g1(x2)

r1 := x1 − g1(x2) r2 := y − x1.

respectively.

In the simple example above, the different choice of consistency relation
resulted in equivalent residual generators. However, in general the choice may
strongly affect the performance of the diagnosis system, which is shown in
Sections 4 and 6 using the hybrid vehicle as an example.

2.1 Sequential Residual Generation by Structural Anal-
ysis

This presentation will be based on the notation in Svärd and Nyberg (2010)
and a brief outline of the approach is included here. The system model is
denoted by M(E,X,Z) where E = {e1, e2, . . . , em} is the set of equations,
X = {x1, x2, . . . , xn} the set of unknown variables, and Z = {z1, z2, . . . , zr} the
set of known variables. It is assumed that the set of equations is expressed as a
semi-explicit DAE, i.e.

ẋd = f(xd, xa, z) (1a)
0 = g(xd, xa, z) (1b)
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where z is a vector of known variables and xd are the dynamic variables and xa

the algebraic variables, both vectors of unknown variables xi. The semi-explicit
form leads to that no more than one differentiated variable is included in each
equation.

In accordance with the example above, a sequential residual generator is
based on a set of equations Ē ⊆ E with analytical redundancy where the set
of unknown variables in Ē is denoted by X ′ ⊆ X. In this presentation, subset
minimal sets of equations with structural redundancy 1 will be considered, i.e.,
|Ē| = |X ′|+ 1 and no proper subset Ẽ ( Ē has structural redundancy > 0. A
sequential residual generator based on M(Ē,X ′, Z) then consists of a consistency
relation ei ∈ Ē and the just-determined set of equations E′ = Ē \ {ei} that
is used to solve for the unknown variables X ′. The key steps in the residual
generator design is the choice of consistency relation and the solving procedure
for the just-determined set of equations.

Structural methods analyze the model structure, i.e., only information about
which variables that are included in each equation. This is typically represented
by the incidence matrix of a bi-partite graph with node sets E and X ∪ Z, and
each edge in the graph corresponds to a variable dependency in an equation. As
an example, the structure of the model in Example 1 can be represented by the
incidence matrix

x1 x2 y u
e1 X X
e2 X X
e3 X X

For the first step in finding a sequential residual generator, efficient methods
from structural analysis (Krysander et al., 2008) exists to, based on the model
structure, find all minimal sets of equations with redundancy 1. Such sets are
referred to as a Minimally Structurally Overdetermined (MSO) set of equations,
i.e., a set of equations with 1 more equation than variables and where no proper
subset of the equations is structurally overdetermined.

In the second step, when a consistency relation has been selected, the square
non-linear system of equations E′ need to be solved. Also here tools from
structural analysis is useful. A matching in a bi-partite graph is a subset of
edges with no common nodes, i.e., a pairing of equations and variables. From a
maximal matching, a computation sequence for the unknown variables X ′ can
be obtained.

Definition 1 (Computation sequence). A computation sequence for M(E′, X ′, Z)
is an ordered set C = {(V1, E1), . . . , (Vn, En)} where Vi ⊆ X ′ and Ei ⊆ E′. The
order to compute the unknown variables, X ′, in the set of equations, E′, is
defined by the order of appearance in the set.

For example, the computation sequence for the second case in Example 1 is

C = {({x2}, {e2}) , ({x1}, {e1})} (2)
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indicating that x2 is computed from e2 and x1 is then computed from e1. In
case of computational loops, i.e., cases where several variables has to be solved
for concurrently, sets Ei and Vi are nonsingletons.

2.2 An Algorithm

The methodology of investigating all residual generator candidates is used
in this paper, and the function FindResidualGenerators that finds and
investigates the properties of these in Svärd and Nyberg (2010) is recalled
below. The input variables to the function are the model equations, E, the
unknown variables, X, and an algebraic equation solver, T . T solves an equation
system, and T (C) gives the expressions to be used to compute the unknown
variables. For example, consider C in (2), T (C) = {x2 := g2(u), x1 := g1(x2)}.
A sequential residual generator rj ∈ R consists of a computation sequence and a
consistency relation, i.e., rj = (T (C), ei). The call varX

(
Ē
)

returns the variables
included in Ē, the function FindAllMSOs finds all MSOs given E and X, and
FindComputationSequence investigates the properties of the computation
sequence of the unknown variables (see Svärd and Nyberg (2010) for details).
This is done by (1) using the structural model to find a computation sequence,
(2) investigate how dynamic equations are used in the computation sequence
(see Section 2.3 for details), and (3) investigate if the algebraic solver T is able
to find expressions for the unknowns variables. If there is no realizable algebraic
solution the computation sequence, C, is empty.

1: function FindResidualGenerators(E,X,T )
2: R := ∅;
3: MSOs :=FindAllMSOs(E,X);
4: for all Ē ∈ MSOs do
5: X ′ := varX

(
Ē
)
;

6: for all ei ∈ Ē do
7: E′ := Ē\ei
8: C := FindComputationSequence(E′, X ′, T )
9: if C ≠ ∅ then

10: R := R ∪ {(T (C) , ei)}
11: end if
12: end for
13: end for
14: return R
15: end function

2.3 Dynamic Models

The model used in this investigation is based on equations in the form (1). To
make analysis of dynamic models explicit, relations between a variable xi ∈ X
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and ẋi is included in the model using an equation

d

dt
xi = ẋi (3)

Such an equation can, in a particular computation sequence, be solved in either
of two directions (Blanke et al., 2006; Frisk et al., 2012)

• derivative causality is when xi in (3) is differentiated to obtain ẋi, i.e.,
ẋi :=

d
dtxi.

• integral causality is when ẋi in (3) is integrated to obtain xi, i.e. xi :=∫
ẋi dt+ x0, where x0 is the initial value of xi.

A computation sequence is said to be in derivative causality if all dynamic
constraints are solved in derivative causality and similar for integral causality. If
both derivative and integral causality is used in the computations, the sequence
is said to be in mixed causality.

2.4 Modification to the Algorithm to Handle Dynamic
Consistency Relations

The algorithm used to find the properties of the residual generator candidates
is described in Section 2.2 and (Svärd and Nyberg, 2010). To also consider
dynamics in the consistency relation, a modification is made to the original
algorithm.

An illustrative example is given below to exemplify the case when there is
dynamics in the set of equations to be used to construct the residual generator.

e1 : ẋ1 − u = 0 (4a)
e2 : x1 − y = 0 (4b)

If e2 is selected to be the consistency relation, i.e. ei = e2, then e1 is used to
compute x1, and integral causality is used since ẋ1 is included in e1. If, on the
other hand, e1 is selected as the consistency relation, i.e. ei = e1, then e2 is used
to find x1, and the algorithm given in Section 2.2 gives that neither integral or
derivative causality is used since there is no dynamic equation included in the
computation sequence (i.e. e2 in this case). However, to be able to use e1 as the
consistency relation, x1 has to be differentiated, and to also consider this case
and achieve the causalities given in Table 1, a slightly modified algorithm is now
presented below. There, the call varD(ei) returns the differentiated variable, if
there is any, in equation ei. For example, the call varD(e1), where e1 is given
in (4a), results in ẋ1. Due to that the model is given in semi-explicit form,
a differentiated variable is only included once in the set of equations. This
implies that if a differentiated variable is included in the consistency relation,
this variable is only known in its undifferentiated form from the computation
sequence. Therefore derivative causality is used in such a case. The function
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Table 1: The causalities returned from the algorithms described for the example
presented in (4).

Consistency relation Original Modified
e1 Static Derivative
e2 Integral Integral

IsDerivativePermitted(D) is true if derivative or mixed causality is to be
used, otherwise false. The parameter D is an input parameter and includes
information about what causality that is permitted to solve dynamic equations.

In FindResidualGenerators all realizable residual generators are saved in
R, but in the modified algorithm only the realizable residual generators fulfilling
the constraint regarding the causality is to be stored in R. If C fulfills the
requirements in D is investigated in the function IsCausalityOK(C,D).

1: function FindResidualGeneratorsMod(E,X,T ,D)
2: R := ∅;
3: MSOs :=FindAllMSOs(E,X);
4: for all Ē ∈ MSOs do
5: X ′ := varX

(
Ē
)
;

6: for all ei ∈ Ē do
7: if IsDerivativePermitted(D) or varD(ei)=∅ then
8: E′ := Ē\ei
9: C := FindComputationSequence(E′, X ′, T )

10: if C ≠ ∅ and IsCausalityOK(C,D) then
11: R := R ∪ {(T (C) , ei)}
12: end if
13: end if
14: end for
15: end for
16: return R
17: end function

3 Vehicle Model
A model of a hybrid electric vehicle (HEV), 32 equations, is used together with
sensor models, five equations, and fault models, five equations. The complete
model consisting of the truck model, sensor models and faults are described in
Appendix A, Sections 3.2 and 3.3, respectively. For the sake of the analysis
to come, relevant parts of the vehicle model in Appendix A are pointed at in
Section 3.1.

3.1 Powertrain model
The modeled vehicle is a long haulage electric parallel hybrid truck, with the
connection of the electrical and conventional parts of the powertrain located
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Figure 1: The configuration of the modeled vehicle. The arrows and signals
indicate the sensors used in the diagnosis systems described in Sections 4.2 and 6.

between the clutch and the gearbox, see Figure 1. The models of the components
in the vehicle are based on the model library developed in the Matlab/Simulink
based Center for Automotive Propulsion Simulation (Fredriksson et al., 2006)
and the QSS toolbox (Guzzella and Amstutz, 1999). Modifications to these
models are carried out to model a truck instead of a passenger car, and to include
the possibility to induce faults in the models as well as to add sensor noise. The
energy management is based on a heuristic control strategy (see Sundström
(2011); Sundström et al. (2010) for details), and a Willans model is used for
the combustion engine (Guzzella and Sciarretta, 2007; Rizzoni et al., 1999). All
model equations for the powertrain are given in Appendix A and are described
in Sundström (2011).

Battery

The battery is modeled using a Thévenin equivalence circuit, i.e. a voltage
source, Uoc, and an inner resistance, Rb, connected in series (Reddy, 2011). The
battery voltage on the terminals for a current Ib is

Ub = Uoc(SoC)−RbIb (5)

and the state of charge, SoC, is based on Ib and the capacity of the battery, Qb

SoC = SoC0 −
1

Qb

∫
Ib dt, SoC ∈ [0, 1] (6)

where SoC0 is the initial state of charge of the battery.
The modeled battery pack is based on 200 cells. There are two chains of

cells connected in parallel, and the cells used are denoted as the “10-Mile PHEV”
in Nelson et al. (2007). The resistance for the battery pack is assumed to be
a constant based on the tabulated resistance at 50% SoC (Rb = 0.023Ω). The
total capacity of the battery pack is 33.2 Ah, the Uoc(SoC = 0.5) is 250 V,
leading to an energy storage capacity of approximately 8 kWh. The weight of
the battery is 150 kg, of this the weight of the cells is 129 kg.
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Power electronics

The model of the power electronics is assumed to be an ideal component

Pb = Pem ⇔ IbUb = IemUem (7)

where Pb and Pem are the electrical powers from the battery and motor, and Ub,
Ib, Uem, and Iem the battery and electric machine voltages and currents.

Electric machine

The electric machine is able to convert electric power to mechanical power and
vice verse. A voltage, Uem, is applied on the component, resulting in a torque
on the outgoing shaft. The torque, Tem, is proportional to the armature current,
Iem, with the torque constant ka, except for the frictional losses that are assumed
to be proportional to the speed of the machine, ωem, with the gain cem,f . The
speed constant ki is used to model the electromotive force

Iem =
Uem − kiωem

Rem
(8a)

Tem = Iemka − cem,fωem (8b)

where Rem is the resistance.
In an ideal Permanent Magnet Synchronous Machine (PMSM), that is a

common machine type in HEVs due to its high efficiency (Chau et al., 2008), ki
and ka are equal. These constants are defined by Kφ, where K is a machine
constant that depends on design parameters of the machine, and φ is the magnetic
flux produced by the stator. One way to model the losses of the machine is to
use ka ̸= ki (Guzzella and Sciarretta, 2007). This is here done by

ka = kiη
sign{Iem}
em,0 (8c)

where ηem,0 is the efficiency and sign{·} the signum function.
The model is parametrized as a 59 kW DC machine with constant magnetic

flux.

Clutch

There is a model of the clutch to handle take off and gear shifts. The clutch
model is modified compared to the model presented in e.g. Eriksson (2001), to
decrease the stiffness of the simulation model when there is slip in the clutch.
The delivered torque from the clutch is given by

Tc = ucTe (9)

where uc is the position of the clutch and Te is the delivered torque from the
engine. The engine speed is assumed to be

ωe =

{
ωe,idle, ωmj < ωe,idle

ωmj , ωmj ≥ ωe,idle
(10)
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where ωe, ωe,idle, and ωmj are the engine speed, engine idle speed, and speed in
the mechanical joint, respectively.

Vehicle

In the vehicle, that has a mass mv and a lumped inertia Jtot, the output shaft
from the gearbox is connected to the final gear and finally to the wheels. The
gear ratio in the final gear is uf , and the angular acceleration of the wheels
is calculated based on the resulting torque, Tnet, acting on the wheels, whose
radius is rw

Tnet = Tgbuf − Td − Tr − Tb − Tg (11a)

ω̇w =
Tnet

Jtotu2
f +mvr2w

(11b)

where Tgb, Td, Tr, Tb, and Tg are the torques from the gearbox, air drag, rolling
resistance, mechanical brakes, and slope of the road, respectively.

3.2 Sensors

The five sensors available for the diagnosis system used in the analysis of the
model in Section 4.2 and the simulation study described in Section 6 are shown
in Figure 1. The engine speed is ωe, and ωgb is the speed of the outgoing shaft
from the gearbox. The naming convention of a sensor signal is the name of the
measured variable with the extension sens in the subscript, e.g. ωgb,sens.

The measurement signal, y, is given by the noise free signal, y∗, added with
noise, ν̃

y = y∗ + ν̃ (12)

3.3 Induced faults

To model that the battery, power electronics, and the electric machine may break
down, two parameter values and two voltages in these models have the possibility
to be modified. Note that these faults are only examples of how a fault in these
components can be represented in the model. The following modifications of the
signals are introduced to model the faults where the nominal signals are denoted
by the superscript nom:

fb,sc : Ub = (1 + fb,sc)U
nom
b (13a)

fpe : Uem = (1 + fpe)U
nom
em (13b)

fem,η : ηem,0 = (1 + fem,η) η
nom
em,0 (13c)

fem,R : Rem = (1 + fem,R)R
nom
em (13d)

where fb,sc models that all cells in the battery are not used due to an internal
short circuit, fpe is a fault in the power electronics, and fem,η and fem,R are
two faults in the electric machine.
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Table 2: Values of the faults induced in the model.
Faults Value
fem,η -0.5
fem,R -0.5

fpe -0.5
fb,sc -0.5

fem,U,sens 20 V

In addition to the four faults modes described in (13a)-(13d), the voltage
sensor in the electric machine is modeled to possibly include an offset fault,
fem,U,sens

Uem,sens = Uem + fem,U,sens (13e)

When a fault is induced in the model, the value of the fault is given in
Table 2.

4 Selection of Consistency Relation

Each equation in an overdetermined set of equations can be selected as the
consistency relation used to construct a sequential residual generator. However,
as described above, the algebraic and dynamic properties of the residual generator
may vary with the choice of consistency relation, even though they are based
on the same set of model equations. These properties will now be studied. The
HEV model in Section 3 is used, but general conclusions will be made. The
presentation is structured so that, first, a simplified but realistic example is
used to illustrate the possibility to avoid algebraic loops by consistency relation
selection. Secondly, all residual generator candidates based on all MSOs for the
vehicle are analyzed regarding algebraic loops and uniqueness, as well as how the
causality of the dynamic equations are used. In the latter case, a quantitative
analysis shows that the number of possible residual generators differs significantly,
thus demonstrating the advantages of the systematic approach.

4.1 Avoiding algebraic loops by consistency relation
selection

Algebraic loops, as well as multiple solutions of the unknown variables, may
occur in computation sequences (Blanke et al., 2006; Katsillis and Chantler,
1997). There are several numerical and analytical methods available to solve
algebraic loops. Linear loops are e.g. easily solved, but non-linear algebraic
loops may demand a large computation effort to solve and a solution is not
always obtained. Thus, it is sensible to avoid algebraic loops if possible and here
the computation sequences are analyzed with respect to algebraic loops.
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The possibility to find a unique residual generator given a set of equations in
an MSO varies with the chosen consistency relation. To illustrate this an MSO
based on the vehicle model presented in Section 3.1 is used, and since the MSO
consists of many equations three simplifications are made in this example:

• the torques due to losses in the vehicle are lumped and denoted Tl

• the torques Te and Tl are assumed to be known

• the angular speeds in the powertrain are equal and are denoted ω

resulting in the following set of equations

e1 : Te + η
sign{Iem}
em,0 kiIem − cem,fω︸ ︷︷ ︸

Tem

−Tl(ω)− Jtotω̇ = 0

e2 :
Uem − ωki

Rem
− Iem = 0

e3 : IbUb − IemUem = 0

e4 : Uoc − Ub −RbIb = 0 (14)

e5 :
d

dt
ω − ω̇ = 0

e6 : Ub − y1 = 0

e7 : ω − y2 = 0

where y1 and y2 are sensor signals, and ω, ω̇, Ub, Ib, Uem, and Iem are the six
unknown variables.

If e1 in (14) is selected as the consistency relation, the permuted structural
model of the just-determined part, i.e. {e2 − e7}, is given in Table 3. The
corresponding computation sequence is

C = {({ω}, {e7}), ({Ub}, {e6}), ({ω̇}, {e5}),
({Ib}, {e4}), ({Iem, Uem}, {e2, e3})} (15)

The pair ({Iem, Uem}, {e2, e3}) indicates that there is an algebraic loop, that
also can be seen in Table 3. This loop has the non-unique solution

Iem = − ωki
2Rem

±
√(

ωki
2Rem

)2

+
IbUb

Rem
(16)

If one of e2, e3, or e4 is used as consistency relation instead of e1, there is no
algebraic loop in the just-determined part. The key to avoid the algebraic loop
in this example is to find a computation sequence where Iem is computed in e1.
The computation sequence of the unknown variables if e.g. e2 is used as the
consistency relation will be

C = {({ω}, {e7}), ({Ub}, {e6}), ({ω̇}, {e5}),
({Ib}, {e4}), ({Iem}, {e1}), ({Uem}, {e3})} (17)
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Table 3: Permuted structural model of the system given in (14) except e1 that is
chosen to the consistency relation. Equations e2 and e3 form an algebraic loop
for Iem and Uem.

ω Ub ω̇ Ib Uem Iem
e7 X
e6 X
e5 X X
e4 X X
e3 X X X X
e2 X X X

Since the equations in the substitution chain are uniquely solvable, a unique
residual generator is found.

Remark 1. Note that since consistency based diagnosis is used, it is possible to
construct a test that is based on a residual generator with several solutions. As
long as at least one of the possible residuals, r1, r2, . . . , rn where n is the number
of solutions, is close to zero, the residual will not react on the fault

|r(tk)| = min{|r1(tk)|, |r2(tk)|, ..., |rn(tk)|}, n ≥ 2

However, the computation complexity of the system increases if more than one
residual are to be evaluated in a diagnostic test.

Remark 2. Sensor equations are often selected to be the consistency relation,
but with respect to algebraic loops it is in general preferable to include such an
equation in the computation sequence. The reason is that a sensor equation only
includes one unknown variable, and therefore can never be part of a loop in the
computation sequence. This is exemplified above, where algebraic loops occur if
any sensor equation is selected as consistency relation.

Series wound electric machine

In the example above the magnetic field, φ, created by the stator or armature in
the electric machine is assumed to be constant. This is the case in permanent
magnet synchronous machines, which is the machine type mainly used for vehicle
propulsion in HEVs. But if a series wound machine is used instead, that e.g. is
used in starter motors (Hambley, 2005), then e1 and e2 in (14) are modified to

e1 : Te + η
sign{Iem}
em,0 kiI

2
em − cem,fω︸ ︷︷ ︸

Tem

−Tl(ω)− Jtotω̇ = 0

e2 :
Uem

Rem + ωki
− Iem = 0

(18)
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due to that φ increases linearly with the current in the rotor and stator according
to

φ = kaIem = ηsign{Iem}
em kiIem (19)

The same variables are included in each equation in (14) and (18), and therefore
the structural models are the same for the two machine types. It is however not
possible to chose a consistency relation that results in a unique expression for
the residual generator for the latter machine type. There are three equations,
e1, e2, and e3, that can be used to find a matching for Iem. If e2 or e3 is used
to compute Iem there is a non-linear algebraic loop that has multiple solutions
(similar to (16)), and Iem is quadratic in e1.

4.2 Properties of the sequential residual generators
candidates

Now return to the task of finding candidates for sequential residual generators.
Given the powertrain model presented in Section 3.1 and the five sensors available
when designing the diagnosis systems (see Figure 1), 99 MSOs are found. For
these MSOs there are 2667 sequential residuals generator candidates that are
investigated using the algorithm described in Section 2.4. The number of these
residual generator candidates that fulfill different causality requirements, i.e.
mixed, integral, derivative, and static, are presented in Figure 2. In the figure the
white bars indicate the number of model equations, i.e. the number of residual
generator candidates, included in each MSO. All equations are not invertible and
the number of residual generators that are realizable and using corresponding
causality are given by the gray bars. The black bars represent how many of
the equations that can be selected as a consistency relation to achieve a unique
residual generator for each causality. Note that static residual generators are
included in Figures 2a-2c, and that pure derivative or integral causality residual
generators are included in Figure 2a.

For MSOs 15-99 there is only a small fraction of the equations that can be
used as a consistency relation if only derivative or integral causality is used, and
there are five MSOs that it is not possible to construct a unique residual generator
by using mixed or integral causality (see the non-black bars in Figure 2a and 2b).
However, if the constraint regarding unique residual generators is relaxed to
allow multiple solutions, as for example in (16), it is possible to design tests
based on all MSOs if integral or mixed causality is used (all MSOs in Figures 2a
and 2b contain black or gray bars).

When derivative causality is used to solve the dynamic equations, it is found
that only 43 MSOs can be used to construct diagnosis tests (the black bars
in Figure 2c). Additional investigations show that this leads to that full fault
isolability is not achieved. However, full fault isolability is structurally achieved
when mixed or integral causality is used.

Table 4 includes the same type of results as Figure 2, but instead gives
aggregated numbers. The numbers in parenthesis is the result, when adequate,
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(a) Mixed causality.
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(b) Integral causality.
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(c) Derivative causality.
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(d) Static residuals.

Figure 2: The white bars indicate the number of equations in each MSO in the
diagnosis systems, the black bars the number of equations that can be selected
to consistency relations to fulfill the causality constraint and that a unique
sequential residual generator is to be found, and the gray bars if the constraint
regarding unique residual generators is relaxed to that a residual generator is to
be found (i.e. unique or multiple solutions of the unknown variables).

from the original algorithm FindResidualGenerators described in Section 2.2
to be compared with the results from FindResidualGeneratorsMod de-
scribed in Section 2.4, and it is clear that including the consistency relation
in the analysis affects the results. I, D, and S indicate that integral causality,
derivative causality, and static expressions are used.

4.3 Summary and discussion

In the illustrative example in Section 4.1 it was shown that the occurrence of
algebraic loops varies with the selection of consistency relation. It was also
shown that the possibility to find a unique residual generator depends on the
model the residual generator is based on, where in this specific case it is possible
to find a unique residual generator using a permanent magnet electric machine,
but not if a series wound electric machine is used.

For selection of sequential residual generators, the main result so far is
Figure 2 and Table 4. The analysis of the entire vehicle model gives that there
is a small fraction of the residual generators that uses integral and derivative
causality (compare the black and white bars in Figures 2b and 2c). In general
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Table 4: The number of MSOs and sequential residual generators with different
algebraic and dynamic properties. In total there are 2667 residual generator
candidates. Combinations of S, D, and I occur, and e.g. SI indicates that both
static expressions and integral causality may be used. The figures in parenthesis
is the result, when adequate, from the original algorithm described in Section 2.2.

Algebraic constraint Causality # MSO sets # res. gen.
SDI 94 1374

Unique SI 94 (94) 334 (414)
residuals SD 43 70

S 6 (6) 33 (33)
SDI 99 1520

Realizable SI 99 (99) 373 (458)
residuals SD 43 70

S 6 (6) 33 (33)

there are few choices of consistency relations when designing a sequential residual
from an MSO to achieve certain properties regarding algebraic solutions and
causality. Therefore it can be stated that systematic methods are valuable to
investigate the properties of the sequential residual generator candidates.

5 Methods for Utilization of Residual Gener-
ators and Test Quantities

There are several important issues when using the residual generators and test
quantities in a diagnosis system, and in this section three particular topics
are discussed. First a technique is presented to avoid differentiation in the
consistency relation, secondly reinitialization of dynamic residual generators,
and finally a way to increase test performance by taking fault sensitivity into
consideration. The residual generators are constructed using the algorithm given
in Section 2.4, and a general model given as a semi-explicit DAE is considered.

5.1 Avoid differentiating in the consistency relation
using a state transformation

There are several ways of numerically differentiating a signal, see e.g. Barford
et al. (1999); Frisk and Åslund (2005). However, here a method is described that
leads to that no differentiated variable needs to be computed in the redundant
equation.

Since the model is given as a semi-explicit DAE, see (1), the differentiated
variable is included linearly in the consistency relation. This leads to a residual
generator that can be expressed in the general form

r̃ = ẋi + b(z) (20a)
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where xi is the variable that occurs in the consistency relation in its differentiated
form and b(z) an arbitrary function of known signals. Residuals including
differentiated variables are often filtered, and by filtering r̃ in (20a) the residual
r is obtained

r =
α

p+ α
r̃ =

α

p+ α
(ẋi + b(z)) (20b)

where p is the differentiation operator and α > 0 for stability.
Now, it is possible to compute r in (20b), without calculating a differentiated

signal using a transformation and state the residual generator in state-space form.
The conditions for this to be possible is that b a function of known variables,
and the residual is filtered as in (20b) (Frisk and Nyberg, 2001). Using the state

Γ = r − αxi (20c)

we obtain that the residual generator in (20b) can be expressed as

Γ̇ = −αΓ− α2xi + αb (20d)
r = Γ + αxi (20e)

which is a computational form that does not include a differentiation of variable
xi. By using this methodology it is possible to always avoid differentiating a
variable in a sequential residual generator if a signal only is to be differentiated
in the consistency relation.

Drift in the state, that is a common issue when using integral causality, is
not an issue using this methodology since the filter is asymptotically stable.
This is the reason that this residual generator is not considered as using integral
causality, even though a signal is integrated in the residual generator.

Remark 3. Another possibility to avoid differentiating a variable to be used in
the consistency relation, is by integrating the consistency relation. The residual
instead of (20a) would e.g. be

r̄(t)=

∫ t

t0

r̃(τ)dτ+r(t0)=ax(t)+

∫ t

t0

b(z(τ))dτ+b(z(t0)) (21)

where b(z(t0)) is the initial value of b(z). In this case the residual generator has
the properties of integral causality, i.e. the initial value of the state has to be
available and drift may occur in the integrators due to modeling errors.

Note that it is only differentiated variables in the consistency relation, and not
in other parts of the MSO, that always can be avoided to compute by integration.
To illustrate, consider the example MSO

e1 : x2 − u1 = 0 (22a)
e2 : ẋ2 − x1 = 0 (22b)
e3 : sin(x1)− y1 = 0 (22c)
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Residual
Generator

Test
Quantity
Formation

ry T

Figure 3: The residuals are computed from residual generators based on known
signals y. The residuals are post processed to form test quantities, T , that are
compared with thresholds to state if the tests have reacted.

Assume that integral causality is to be used in the residual generator, and that e3
is used as the consistency relation. It is not possible to find a sequential residual
generator that fulfills this requirement, since

∫
x1dt is computed from e2 in order

to not differentiate x2, but x1 needs to be known in the consistency relation.

5.2 Initialization of states

When a dynamic residual generator is started or re-started, the states ω ∈ Rn

needs to be initialized. It is assumed that the residual generator is given in state
space form

ω̇ = f(ω, z) (23a)
r = h(ω, z) (23b)

where z is a vector of known variables. When the states ω are initialized the
residual and its derivatives should ideally be zero in the fault free case. This
leads to that the initial states ω(t0) should be chosen such that

r(t0) = ṙ(t0) = . . . = r(t0)
(n−1) = 0 (24)

where t0 is the time the residual is started.
The state in the first order system given in (20d) and (20e) is initialized

using (24) as
Γ(t0) = r(t0)− αxi(t0) = −αxi(t0) (25)

5.3 Consider fault excitation when computing test quan-
tities

To increase robustness of decision, residuals are often post processed by comput-
ing to what is here referred to test quantities, T , see Figure 3. A well known
algorithm is CUSUM (Page, 1954; Gustafsson, 2000), that in this specific case
can be stated as

T (tk) = max {0, T (tk−1) + |r(tk)| − ν} (26)

where ν is a design parameter that corresponds to the noise and model uncertainty
in the residuals. The test reacts when T is above a threshold J .
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The sensitivity of the residuals often varies with the operating condition of the
system to be monitored. One way to improve the performance of the diagnosis
system is to consider this aspect when computing the test quantities. A small
academic example is used to illustrate the basic principle, and in Section 6.4
the approach is applied to the HEV model described in Section 3. Consider the
system

x = u (27a)
y = (1 + f)x (27b)

where u and y are known signals, x an unknown signal, and f a fault. One
residual generator of (27) is

r = y − u (28)
and the internal form, i.e. how the faults affect the residual, of the residual
generator is

r = u+ f · u− u = f · u (29)
From the internal form it is obvious that the residual sensitivity on the fault
depends on the value of u.

To achieve good performance in the diagnosis system it is beneficial to
only update T , as in (26), when the residual is excited by the fault. Figure 4
exemplifies this based on (27)-(29) where

u(t) = 10 sin(t) (30)

and f is a constant. In the figure it can be seen that the test does not react
on the fault if T is updated also when there is low excitation in the residual,
i.e. when r is close to zero even though there is a fault in the system. However,
if T only is updated when the magnitude of y, that is assumed to be a good
approximation of u, is above a threshold the fault is detected.

The offset parameter ν is here set to a fixed value. Instead of not updating
T when there is low excitation in the residual, there is a possibility to modify
ν. The disadvantage of this is that e.g. when x = 0, ν > 0 in order to avoid
false alarm due to sensor noise, leading to that T is decreasing for this operating
point.

The conclusion from this simple example is that it is advantageous to use
fault models to find the internal form of the residual generator, and to use this
internal form to design the strategy for not updating the test quantity when
there is low excitation in the system.

6 Illustrative Designs and Simulation Study

Two diagnosis systems, one based on mixed causality and one on integral causality,
of the HEV described in Section 3 are evaluated to investigate the impact of
different choices in the design of a diagnosis system. The general methodologies
described in Section 5, e.g. initialization of the states and the internal form of
the residual generators, are utilized.
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Figure 4: The variable u(t) is a sinus function with amplitude 10 and f=0.3.
For the selected ν and J = 200 the diagnostic test does not react on the fault
if the test quantity, T , is updated all the time. However, if T only is updated
when |y| > 6, the test reacts on the fault.

6.1 Properties of diagnosis systems used in simulation
study

The two diagnosis systems use information from five sensors, see Figure 1, and are
found using the algorithm FindResidualGeneratorsMod from Section 2.4.
If the original algorithm FindResidualGenerators were used, both these two
systems would be classified to use integral causality, since the differentiation
occurs in the consistency relation itself. Thereby these two systems illustrate
the difference between the algorithms as discussed in Section 2.4.

MCDS

The diagnosis system based on mixed causality is denoted mixed causality
diagnosis system, or MCDS for short, and the equations in the computation
sequences are uniquely solvable in the residual generators. The diagnosis system
consists of four tests that achieves full structural single fault isolability (Krysander
and Frisk, 2008) of the five faults. Each test is based on an MSO that is used
to construct a sequential residual generator, that are given in Appendix B in
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(47), (48), (51), and (52). Test 1 is static, Test 2 is based on integral causality,
and Tests 3 and 4 are based on mixed causality. In the mixed causality tests the
mass of consumed fuel, mf , is solved by

mf (t) =

∫ t

t0

ṁf (τ)dτ +mf (t0) (31)

Equation (11) is used as consistency relation, but the different torques are
computed based on different sensors in the two tests. In the consistency relation
wgb is differentiated to compute ω̇gb, resulting in that derivative causality is
used.

For the computation of the residual, the reformulation in (20) is used and
the residual is expressed in the form

r̃ = ω̇gb + b (32a)

The residual generators are filtered and transformed according to (20b)-(20c),
that results in

Γ̇ = −αΓ− α2ωgb + αb (32b)
r = Γ + αωgb (32c)

The algebraic loop for Iem and Uem considered in Section 4.1 is not an issue in
these two residual generators, since Uem is known without using any of e2 and
e3 in (14). The required voltage from the power electronics is known in Test 3,
and the sensor measuring Uem is available in Test 4.

ICDS

A diagnosis system based on integral causality and unique expressions of the
unknown variables in the computation sequences is designed, and this system
is denoted integral causality diagnosis system, or ICDS for short. It is
possible to use the same sets of equations that are used in MCDS, and using the
same MSOs the structural isolability properties are the same. Tests 1 and 2 in
MCDS can also be used in ICDS, see (47) and (48) for corresponding residual
generators, while different consistency relations are to be selected in Tests 3
and 4 in the ICDS since the consistency relations selected in MCDS result in
mixed causality.

Tests 3 and 4 are based on MSOs with 29 and 32 equations respectively,
but only two of these, e32 and e37 in Appendix A, are possible to select as
consistency relations in this system

e32 : ωw =
ωgb

uf
(33)

e37 : ωgb = ωgb,sens (34)
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When using any of these as a consistency relation, ω̇w is calculated using (11),
and ωw by integrating this signal

ωw(t) =

∫ t

t0

ω̇w(τ)dτ + ωw(t0) (35)

In the residual generators used in both Tests 3 and 4, (33) is used as the
consistency relation

r = ωgb,sens − ωwuf (36)

and the residual generators are presented in (49) and (50). Note that the only
difference between these residual generators and the ones used for Tests 3 and 4
in MCDS are the last four equations in the computation sequences and the con-
sistency relations. In the residual generators in MCDS the consistency relation
is e30 and the last part of the computation sequence ({ωw}, {e32}), ({Td}, {e25}),
({Tr}, {e26}), ({Tnet}, {e29}), while e32 is used as the consistency relation in
Tests 3 and 4 in ICDS and there is a dynamic loop in the computation sequence
({Td, Tr, Tnet, ωw}, {e25, e26, e29, e30}).

Due to that it is only Tests 3 and 4 that are different in MCDS and ICDS,
only these two tests are considered in the simulation study.

6.2 Model used in the diagnosis system

The model of the vehicle powertrain used in the diagnosis systems is the same
as the model presented in Section 3.1 and in Appendix A, except for the clutch
model. To investigate the consequences of not having a valid model in all
operating modes of the system to be monitored, it is assumed that the model of
the clutch only is available when the clutch is fully engaged. This results in that
when the clutch is disengaged or there is slip in the clutch, corresponding test
quantities are not updated and no faults are to be detected in these tests.

6.3 Initialization of states when restarting residual
generators

The time it takes for a transient in a dynamic residual generator to fade out after
it is initialized decreases if the states in the residual are accurately initialized.
When the model is not valid in all operating points it is therefore more important
to accurately initialize the states since the residual is restarted when the model
becomes valid. The basic idea when initializing the states is to use (24). There
are several possibilities to reduce the sensor noise impact on the initialization
of the state. In e.g. Krysander et al. (2010) this is done by assuming Gaussian
noise and finding the initial value of the state using a least square estimate
over a time window. A less complex method is to filter the signal to be used in
the initialization using a time constant, τ . This method is used here, and the
state ww calculated from (35) and (11) in ICDS is reinitialized in the residual
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generators when the vehicle model used in the diagnostic tests is becoming valid
using r(t0) = 0 in (36)

ωw(t0) =
1

τwp+ 1

ωgb,sens(t)

uf

∣∣∣∣
t=t0

(37)

The fuel consumed, mf , is a state in addition to ωw in Test 3, while there are
two additional states in Test 4; mf and SoC. The states except ωw have slow
dynamics and are therefore not reinitialized when the diagnostic model becomes
valid. Instead the states are only updated when the model is valid.

The state used in the transformation in MCDS is reinitialized when the
model used in the diagnosis system is getting valid by using (25), where xi =
ωgb according to (32). It is assumed that the powertrain is fault free in the
initialization of Γ, i.e. r(t0) = 0, and ωgb,sens is used instead of ωgb

Γ (t0) = − 1

τΓp+ 1
αωgb,sens (t)

∣∣∣∣
t=t0

(38)

6.4 Two approaches for when to update dynamic test
quantities

As stated above, it is assumed that the monitored system is fault free and the
residual is zero in the initialization of the states in both MCDS and ICDS. If the
equations used in the expression for the signal to be integrated are inconsistent
with the monitored system, the integrated signal will drift from the true value.
To increase the fault sensitivity of corresponding test quantities, it is preferable
to only update the test quantities when the residuals are non-zero even though
the estimation of the signal to be integrated is inconsistent (see Figure 4). Two
approaches to find updating conditions for the test quantities are presented
below.

Fixed time

The first approach is to not update the dynamic test quantities in the diagnosis
system before a time, td, after a test has been valid in order for the fault to have
time to affect r. This means that the test quantity is updated when

t > t0 + td (39)

where t0 is the time of the latest reinitialization of the states.

Internal form

The second approach requires fault models that are used to investigate how the
faults affect the residuals by finding the internal form of the residual generators,
see Section 5.3. This approach is implemented and compared with the fixed
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time approach given above using Test 4 in ICDS. The test is expected to react
on fem,η, fb,sc, and fem,U,sens, but for simplicity only fem,η and fem,U,sens are
considered here. These faults lead to different internal forms of the residual
generator and therefore several test quantities are constructed that use different
updating conditions.

First, the internal form of Test 4 in ICDS when there is a fault in the voltage
sensor in the electric machine is found by the substitution chain given by the
computation sequence (50)

r(t) =
fem,U,sens

fem,U,sens + 1
· C
∫ t

t0

ugbIem(τ)η
sign{Iem(τ)}
em,0 dτ (40)

where C is a constant and ugb the gear ratio in the gearbox. Due to (40) it is
obvious that the fault excitation is dependent on the magnitude of the integral.
This leads to that a condition for when to update the test quantity to achieve
good fault detection performance is

∣∣∣∣
∫ t

t0

ugb(τ)Iem(τ)η
sign{Iem(τ)}
em,0 dτ

∣∣∣∣ > J1 (41)

where J1 is a design parameter. A comparison of the conditions in (39) and (41)
is shown in Figure 5. As expected, the test quantity that is updated using (41)
does not decrease in the second time interval the model is valid and there is low
fault excitation in the residual. Note that there is low fault excitation in the
residual at this time interval even though the electric machine is used. This is
due to that the machine frequently switches from generator to motor mode, see
Figure 5.

The internal form of the residual generator for fem,η

r(t) = C

∫ t

t0

ugb(τ)Iem(τ)η
sign{Iem(τ)}
em,0 ·

·
(
(1+fem,η)

sign{Iem(τ)} − 1
)
dτ (42)

Finding the times τ ∈ {t0, t} when Iem(t) ≥ 0A and Iem(t) < 0A

t+ = {τ ∈ {t0, t} : Iem(t) ≥ 0A} (43a)

t− = {τ ∈ {t0, t} : Iem(t) < 0A} (43b)

leads to that (42) can be written as

r(t) = fem,η · C
∫

t+
ugbIem(τ)ηem,0dτ+

+
fem,η

1 + fem,η
· C
∫

t−
(−)ugb

Iem(τ)

ηem,0
dτ (44)
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Figure 5: The residual and test quantities for Test 4 in ICDS when fem,U,sens has
occurred, and the shaded areas indicate when the model used in the diagnosis
system is valid. Two different conditions, (39) and (41), for when the test
quantity is to be updated are compared, using td = 10s and J1 = 10000As. The
torque Tem is almost proportional to Iem, see (8b), and the operating points of
the electric machine thereby affect how long time the test quantity is updated
when (41) is used as the update condition.

Under the condition that fem,η ∈] − 1, 0], which is a reasonable assumption
according to (8c) and (13c), ṙ < 0 for both positive and negative Iem. This
leads to the following condition for when to update the test quantity

∫ t

t0

ugb

∣∣∣Iem(τ)η
sign{Iem(τ)}
em,0

∣∣∣ dτ > J2 (45)

where J2 is a design parameter. The difference between (41) and (45) is that
the latter test quantity is updated as long as the electric machine is used, even
though it changes operation mode between generator and motor. Figure 6
presents the test quantities achieved using the updating conditions in (39), (41),
and (45) when fem,η has occurred. It can be seen that the test quantity updated
when (45) is true reacts better than the test quantity updated when (41) is
used, since the first is updated in both time intervals the model is valid and the
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Figure 6: Test quantities for Test 4 in ICDS based on the same residual but
different updating conditions, when fem,η has occurred. The test quantities
are updated with the conditions given by (39), (41) and (45). In contradiction
to when fem,U,sens has occurred (see Figure 5), ṙ < 0 both when the machine
operates as motor and generator, as indicated in (44).

specific fault excite the residual at these times.

Remark 4 (Several test quantities based on the same residual). Based on
Figures 5 and 6, two different conditions are derived for when to update the test
quantity, i.e. (41) and (45), in order for Test 4 to react on both fem,U,sens and
fem,η in a good way. Thus, it makes sense to compute several test quantities
based on the same residual. The drawback is the increase in computational
complexity.

6.5 Simulations on driving cycle

A simulation study is carried out to evaluate the designed diagnosis systems.
The faults described in (13) are induced in the vehicle model one by one. The
driving cycle used is FTP75 and the speed profile can be found in e.g. Guzzella
and Sciarretta (2007).
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Figure 7: The residual used in Test 3 in ICDS is more affected to fem,η

compared to corresponding residual in MCDS. The residuals are normalized so
the standard deviation in the fault free case is one, and the shaded areas indicate
when the model used in the diagnosis system is valid, i.e. from 1594 seconds to
1677 seconds.

Normalized test quantities

Test quantities are computed using the CUSUM algorithm presented in Sec-
tion 5.3. To compare the performance of different diagnosis systems, normalized
test quantities, Tnorm, are calculated based on the maximum value, Tmax,NF,
of T in the fault free case when FTP75 is used. An alarm is generated when
Tnorm > 1 and the design parameter Φ ∈ [0, 1] states the margin to false alarm
for the specific driving cycle.

Tnorm =
T

Tmax,NF
Φ (46)

Residual responses

Residuals for the diagnosis systems are compared, and in Figure 7 the residuals
used in Tests 3 in MCDS and ICDS are shown for the fault free case as well as
when fem,η has occurred. The residuals are normalized so the standard deviation
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Figure 8: Normalized test quantities for Test 4 in MCDS and ICDS when
there is a short circuit in the battery after 400 seconds. The test quantities are
normalized according to (46) with Φ = 0.5, and Tnorm using integral causality is
larger than Tnorm using mixed causality after the fault has occurred.

of the residuals in the fault free case is one. The residual used in ICDS is more
affected by the fault compared to the residual in MCDS, and this is the general
result in the simulation study when the different faults are induced in the vehicle
model.

The method used to reinitialize the states in the residuals when the model is
getting valid is working properly, since the values of the residuals are close to
zero after the initialization.

Test quantity responses

The residuals are post processed as described above, and all faults are isolated
in both MCDS and ICDS. The test quantities generally react stronger in ICDS
even though the tests in the two systems are based on the same sets of model
equations. In Figure 8 the test quantities are shown when there is a short circuit
in the battery after 400 seconds.

The different updating conditions for the test quantities are implemented in
ICDS to evaluate the impact of these different design selections using the entire
driving cycle. As indicated in Figures 5 and 6, the tests generally react stronger
on the fault if the internal form of the residual is considered when designing test
quantities. In Figure 9 this is exemplified when fem,U,sens has occurred and the
test quantity that is updated using the condition based on the internal form for
the specific fault, i.e. (41), reacts better than the other test quantities.

6.6 Summing up

The method used to initialize the states in the diagnosis systems is straight
forward and is working properly, i.e. the residuals are close to zero after the



7. Conclusions 97

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

time [s]

T
n
or
m

f
em,U,sens

 T4

 

 

td = 10 seconds∣∣∣
∫ T

t0
ugb(τ )Iem(τ )η

sign{Iem(τ)}
em,0 dτ

∣∣∣
∫ T

t0
ugb(τ )

∣∣∣Iem(τ )η
sign{Iem(τ)}
em,0

∣∣∣dτ

Figure 9: The test quantities for Test 4 in ICDS using different conditions for
when to update the test quantities and there is a fault in the voltage sensor
in the electric machine at t = 0s. The shaded areas indicate when the model
used in the diagnosis system is valid. At t = 840s the system is excited and
the diagnostic tests react on the fault (see Figure 5). Note that it is only the
test quantity that is updated using the internal form of the fault, i.e. (41), that
reacts from this time till the end of the driving cycle.

initialization. The use of the internal form is demonstrated to be advantageous,
according to (41), (45) and Figures 5, 6, and 9. Note that in order for Test 4
to react on both fem,U,sens and fem,η in a good way, two test quantities based
on the same residual using different updating conditions are used, since the
faults affect the residual in different ways. Since the uncertainties in the study
predominantly relate to disturbances rather than model inaccuracies, then it is
reasonable that ICDS performs better than MCDS. Therefore it is valuable to
use the modified algorithm FindResidualGeneratorsMod that singles out
such systems.

7 Conclusions

A reduced HEV model was used to illustrate how the selection of consistency
relation affects the occurrence of unique expressions of the unknowns and
algebraic loops in sequential residual generators. All sequential residual generator
candidates of the vehicle model were investigated with respect to algebraic and
dynamic properties, and it was found that in general there are few selections of
consistency relations in an MSO that achieves predefined properties. Thereby it
can be stated that systematic methods analyzing the properties of the residual
generator candidates are valuable.

Having selected the residuals, important aspects remain when utilizing them
in a diagnosis system. A straight forward method, given in (24) and e.g. (37),



98 Paper C. Selecting and Utilizing Sequential Residual Generators . . .

to reinitialize the states in the residual generators was shown to work properly.
It was also shown that the method to update the test quantities based on the
internal form of the residual generators, significantly increased the diagnosis
performance. Simulations verified that it is beneficial to use several test quantities
based on the same residual using different updating conditions when a residual
is sensitive for several faults.

All in all, it has been shown that the engineering support the used methods
gives was a key to design well behaved diagnosis systems. The methods are
general in character and provides a useful methodology when designing diagnosis
systems for HEVs or other complex systems.
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A Powertrain Model

e1: ṁf = icectrl ωe
4πqLHV

e2: Te =
(
icectrl

4ηe,i
NcylπSB2 − pme0,f − pme0,g

)
Ncyl

SB2

16

e3: pme0,f = k1
(
k2 + k3S

2ω2
e

)
Πbl

√
k4
B

e4: ˙SoC = − 1
Qb

Ib

e5: Uoc = f1(SoC)

e6: Ub = Uoc −RbIb

e7: Uem = Uem,ctrl

e8: Iem = Uem−kiωem
Rem

e9: ka = kiη
sign{Iem}
em,0

e10: Tem = Iemka − cem,fωem

e11: Ib =
IemUem

Ub

e12: Tc = ucTe

e13: ωe =

ωe,idle, ωmj < ωe,idle

ωmj , ωmj ≥ ωe,idle

e14: Tmj = Temuem + Tc

e15: Jmj = Jemu2
em + Jc + Je

e16: ωem = 1
uem

ωmj

e17: Jgb = f2(gear)

e18: ugb = f3(gear)

e19: ηgb =

ηpos, Tmj > Tgb,l

ηneg, Tmj ≤ Tgb,l

e20: Tgb,l = f4(gear, ωe)

e21: Tgb = (Tmj − Tgb,l) ηgbugb

e22: Jtot = u2
gb (Jgb + Jmj)

e23: ωmj = ugbωgb

e24: mv = mv,0 −mf

e25: Td =
1
2
ρCdAfω

2
wr

3
w

e26: Tr =


mvgCrrw, 1000ωw > mvgCrrw

1000ωw, −mvgCrrw≤1000ωw<mvgCrrw

−mvgCrrw, 1000ωw ≤ −mvgCrrw

e27: Tg = mvgrw sin θ

e28: Tb = Tb,ctrl

e29: Tnet = Tgbuf − Td − Tb − Tr − Tg
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e30: ω̇w = Tnet

Jtotu
2
f
+mvr2w

e31: v = ωwrw

e32: ωgb = ωwuf

e33: Ib,sens = Ib

e34: Uem,sens = Uem

e35: Iem,sens = Iem

e36: ωe,sens = ωe

e37: ωgb,sens = ωgb

B Residual generators

B.1 Same tests in ICDS and MCDS
Test 1:

CT1 = {({Uem}, {e7})} (47a)

ARRT1 = e34 (47b)

Test 2:

CT2 = {({Ib}, {e33}), ({Iem}, {e35}), ({ωgb}, {e37}),
({ugb}, {e18}), ({ωmj}, {e23}), ({ωem}, {e16}), ({SoC}, {e4}),

({Uoc}, {e5}), ({Ub}, {e6}), ({Uem}, {e8})} (48a)

ARRT2 = e11 (48b)

B.2 ICDS
Test 3:

CT3,I = {({ωe}, {e36}), ({ωgb}, {e37}), ({ugb}, {e18}),
({ωmj}, {e23}), ({ωem}, {e16}), ({Uem}, {e7}), ({Iem}, {e8}),
({ka}, {e9}), ({Tem}, {e10}), ({pme0,f}, {e3}), ({Te}, {e2}),
({mf}, {e1}), ({Jgb}, {e17}), ({Jmj}, {e15}), ({Jtot}, {e22}),
({Tgb,l}, {e20}), ({Tc}, {e12}), ({Tmj}, {e14}), ({ηgb}, {e19}),
({mv}, {e24}), ({Tg}, {e27}), ({Tgb}, {e21}), ({Tb}, {e28}),

({Td, Tr, Tnet, ωw}, {e25, e26, e29, e30})} (49a)

ARRT3,I = e32 (49b)
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Test 4:

CT4,I = ({Ib}, {e33}), {({Uem}, {e34}), ({ωe}, {e36}),
({ωgb}, {e37}), ({ugb}, {e18}), ({ωmj}, {e23}), ({ωem}, {e16}),
({SoC}, {e4}), ({Uoc}, {e5}), ({Ub}, {e6}), ({Iem}, {e11}),
({ka}, {e9}), ({Tem}, {e10}), ({pme0,f}, {e3}), ({Te}, {e2}),
({mf}, {e1}), ({Jgb}, {e17}), ({Jmj}, {e15}), ({Jtot}, {e22}),
({Tgb,l}, {e20}), ({Tc}, {e12}), ({Tmj}, {e14}), ({ηgb}, {e19}),
({mv}, {e24}), ({Tg}, {e27}), ({Tgb}, {e21}), ({Tb}, {e28}),

({Td, Tr, Tnet, ωw}, {e25, e26, e29, e30})} (50a)

ARRT4,I = e32 (50b)

B.3 MCDS
Test 3:

CT3,M = {({ωe}, {e36}), ({ωgb}, {e37}), ({ugb}, {e18}),
({ωmj}, {e23}), ({ωem}, {e16}), ({Uem}, {e7}), ({Iem}, {e8}),
({ka}, {e9}), ({Tem}, {e10}), ({pme0,f}, {e3}), ({Te}, {e2}),
({mf}, {e1}), ({Jgb}, {e17}), ({Jmj}, {e15}), ({Jtot}, {e22}),
({Tgb,l}, {e20}), ({Tc}, {e12}), ({Tmj}, {e14}), ({ηgb}, {e19}),
({mv}, {e24}), ({Tg}, {e27}), ({Tgb}, {e21}), ({Tb}, {e28}),

({ωw}, {e32}), ({Td}, {e25}), ({Tr}, {e26}), ({Tnet}, {e29})} (51a)

ARRT3,M = e30 (51b)

Test 4:

CT4,M = ({Ib}, {e33}), {({Uem}, {e34}), ({ωe}, {e36}),
({ωgb}, {e37}), ({ugb}, {e18}), ({ωmj}, {e23}), ({ωem}, {e16}),
({SoC}, {e4}), ({Uoc}, {e5}), ({Ub}, {e6}), ({Iem}, {e11}),
({ka}, {e9}), ({Tem}, {e10}), ({pme0,f}, {e3}), ({Te}, {e2}),
({mf}, {e1}), ({Jgb}, {e17}), ({Jmj}, {e15}), ({Jtot}, {e22}),
({Tgb,l}, {e20}), ({Tc}, {e12}), ({Tmj}, {e14}), ({ηgb}, {e19}),
({mv}, {e24}), ({Tg}, {e27}), ({Tgb}, {e21}), ({Tb}, {e28}),

({ωw}, {e32}), ({Td}, {e25}), ({Tr}, {e26}), ({Tnet}, {e29})} (52a)

ARRT4,M = e30 (52b)
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Abstract

A common situation in the automotive industry is that map based
models are available. In general these models accurately describe the
fault free system, and are therefore suited for fault detectability in a
diagnosis system. However, one drawback using such a model is that
fault isolation then requires that measurements of the faulty system
is done, which is costly. Another approach is to use a model of the
system where the faults are explicitly included. To directly achieve good
diagnostic performance such a model needs to be accurate, which also is
costly. Therefore, in the new approach taken here, two models are used
in combination to achieve both good fault detectability and isolability in
a diagnosis system; one is a map based model, and one is describing how
the faults affect the system. The approach is exemplified by designing
a diagnosis system monitoring the power electronics and the electric
machine in a hybrid electric vehicle. In an extensive simulation study it
is shown that the approach works well and is a promising path to achieve
both good fault detectability and isolability performance, without the
need for neither measurements of a faulty system nor detailed physical
modeling. In the designed diagnosis system all faults are fully isolated,
and the size of the faults are accurately estimated.
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1 Introduction

Fault monitoring and diagnosis is used to detect and isolate faults in a system.
Several approaches can be used, and one common is consistency based diagnosis
de Kleer et al. (1992) using residual generators Blanke et al. (2006). Such
diagnosis systems compare the consistency between observations and a model
of the system to be monitored. The models are developed to different level of
detail, and a common approach in the automotive industry is map based models
directly calibrated from measurements. These models are straightforward to
design using measurements, and one benefit of using such a map based model
is that it accurately describes the outputs. The high model accuracy directly
results in good fault detection performance, but one drawback with a map based
model is the difficulty to isolate faults from each other, since internal physical
phenomena are not described by the model. One way to achieve fault isolability
using a map based model is to collect data when the faults have occurred in
the system to be monitored, which is a costly solution due to the many fault
cases. Another approach to achieve good fault isolability is to use models that
explicitly describes how different faults affect the system to be monitored. To
achieve good diagnostic performance using only such a model, it needs to be
accurate including detailed physical modeling, which also is costly.

1.1 Contributions and outline

The main idea here is an approach to combine two models, which means using a
map describing the fault free system in combination with a model describing
how the faults affect the system. A preliminary version of this idea is presented
in Sundström et al. (2013). Compared to that paper, the concepts have been
clarified and generalized, but most important is that analysis and an extensive
simulation study show the importance and performance of the diagnostic method.
It is demonstrated that the benefit of the proposed approach is that measurements
of a faulty system is not needed, and that the accuracy demands on the model
used for fault modeling are lower than for designing a diagnosis system without
using the map based model.

The proposed approach is used in the design of a diagnosis system monitoring
the power electronics and the electric machine used in a hybrid electric vehicle
(HEV), where monitoring of the components is important in order to achieve
high up-time of the vehicle. Further issues are safety and component protection,
especially the battery that is sensitive and costly Chen et al. (2013). The models
used in the diagnosis design of the electric machine are described in Section 2,
and in Section 3 these models are combined to include fault models in the map
based model. The value of using this combined model in the diagnosis system is
evaluated in Section 5, and finally the conclusions are given in Section 6.
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2 Models of the electric machine

In HEVs mainly permanent magnet synchronous machines (PMSM) are used
since this type of machine in general has higher efficiency compared to other
machine types Zhu and Howe (2007); Mellor (1999). A PMSM is an AC machine,
but it is possible to use a DC source, e.g. a battery, and use power electronics
to achieve an alternating current.

Two models of a PMSM are presented, that later are used to illustrate the
approach in the design of the diagnosis system. The first model includes a map
that describes the power losses in the machine and is presented in Section 2.1. To
model how faults affect the machine and power electronics, which is not captured
in the map based model, the second model is based on analytical expressions
and is presented in Section 2.2.

2.1 Map based model

The map based model describe the power losses in the machine and the power
electronics, and is based on measurements to find the difference between the
electrical and mechanical powers. The map of the power losses, Pmap

em,l , is three
dimensional taking the delivered torque, Tem, motor speed, ωem, and battery
voltage, Ub, as inputs

Pmap
em,l = f(Tem, ωem, Ub) (1)

and the power losses are given in Figure 1. There are limitations in the delivered
torque from the machine, denoted Tem,min in generator mode and Tem,max in
motor mode, that are functions of ωem and Ub. The limited torque, Tem,lim,
is equal to the requested torque, Tem,req, if the requested torque is within the
limitations of what the machine is able to deliver

Tem,lim =





Tem,min, Tem,req < Tem,min

Tem,req, Tem,min ≤ Tem,req < Tem,max

Tem,max, Tem,req ≥ Tem,max

(2)

The delivered torque is computed by filtering Tem,lim

Tem =
1

τems+ 1
Tem,lim (3)

and the mechanical power delivered by the machine

Pem,m = Temωem (4)

is used to calculate the electrical power

Pem,e = Pem,m + Pmap
em,l (5)

The power electronics is included in the model and is assumed to be an ideal
component. The battery current, Ib, is computed by dividing Pem,e with the
battery terminal voltage, Ub

Ib =
Pem,e

Ub
(6)
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2.2 Analytical model

A PMSM can be modeled as a separately excited DC motor with constant
field Guzzella and Sciarretta (2007), since the stator of a PMSM consists of
windings, and the armature of permanent magnets. This is done in the model
based on analytical expressions, where the resistive and frictional losses are
modeled to represent the losses of the machine. The torque Tem is modeled
to be proportional to the current, Iem, except for the frictional losses that are
modeled to be proportional to ωem Zhu et al. (2000). The output torque from
the machine is

Tem = kIem − cfωem (7)

where cf is a friction constant and k is a machine constant. The current is
calculated using the voltage, Uem, supplied by the power electronics and the
electromotive force (emf), that depends on the speed of the machine, ωem

Iem =
1

Rem
(Uem − kωem︸ ︷︷ ︸

emf

) (8)

where Rem is the resistance in the electric machine. The power losses in the
machine are computed using

P a
em,l = UemIem − Temωem (9)

Substituting Uem and Iem from (7) and (8) gives

P a
em,l=Rem

(
T 2
em

k2
+
2cf
k2

ωemTem+
c2f
k2

ω2
em

)
+ cfω

2
em (10)

This model is fitted to the measured data of the losses given used in the map
based model in Section 2.1. The parameters in the analytical model are found
by minimizing the least square error between (1) and (10), and the parameters
k, Rem, and cf are found to be 0.50 Nm/A, 0.065 Ω, and 0.0029 Nm/s, respectively.
The battery voltage is assumed to be the open circuit voltage, i.e. 250 V ,
when using the map to find the losses. The power losses computed in (10) are
compared with the measured losses in Figure 1.

The power electronics is assumed to be an ideal component also in this model,
and the expression for the battery current is given by

Ib =
IemUem

Ub
(11)

Controller

A torque from the electric machine is requested from the energy management
operating on vehicle level. The controller of the machine computes a requested
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Figure 1: The power losses [W] of the machine and power electronics. The solid
(thin) red lines show the measured losses in the map described in Section 2.1,
the dashed lines the losses in the model described in Section 2.2, and the solid
(thick) blue line the torque limitation of the machine.

voltage, U ctrl
em , from the power electronics in order for the machine to, if possible,

deliver this torque. The controller is an open loop controller and Uem,ctrl is
computed by

U ctrl
em =

(
Tem,req

k
+

cf
k
ωem

)
Rem + kωem (12)

The model for the power electronics supplies this voltage to the machine
when the component is fault free, i.e.

Uem = Uem,ctrl (13)

3 Combining the map and analytical models
for fault modeling

As stated above, the map based model presented in Section 2.1 is beneficial to
model the nominal behavior of the machine due to its high accuracy. However,
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+
+

×

Pem,l ×
÷

Tem,req

ωem

Ub

∆Tem

Tem,lim

∆Pem,l

Ib

Tem

Pem,m

Map based model

Figure 2: The map based model includes a limitation in the torque signal, since
the machine has limitations in the torque it is capable to deliver, and the battery
current is calculated from the mechanical power and the power losses. The map
based model is extended with ∆Tem and ∆Pem,l to add the possibility to model
faults in the machine. Note that the dynamics in the model in (3) is not included
in the figure.

the model has the disadvantage that the parameters affected when a fault has
occurred are not explicitly included in the model. In the fault free case, the
map based model of the machine delivers the requested torque, as long as the
machine is capable of delivering the torque, as can be seen in the schematic
structure of the model in Figure 2. The battery current, Ib, is calculated using
the mechanical power, Pem,m, and the power losses, Pem,l, that is a map and
depends on the operating points of the machine, as described in Section 2.1.

The two main ways to model faults in a map based model is to modify the
input or output signals of the map. The model is here extended to modify the
delivered torque from the machine when a fault has occurred, by modifying the
requested torque using ∆Tem according to Figure 2. This results in that the
power losses of the machine changes when there is a fault affecting the delivered
torque. A fault affecting the power losses of the machine affect the battery
current, and is modeled using ∆Pem,l. Expressions for ∆Tem and ∆Pem,l are
derived in Sections 3.1 and 3.2 respectively.

It is three fault modes that are considered in the design of the diagnosis
systems described in Section 5, and these faults are also used to evaluate the
diagnosis system in simulations. Two of the faults affect the electric machine,
by modifications in the resistance of the machine and the lumped torque and
speed constant k used in the analytical model. A fault in the power electronics
is modeled to result in that the applied voltage on the electric machine is not
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the requested voltage. The faults are modeled as

k = knom(1 + fem,k) (14a)
Rem = Rnom

em (1 + fem,R) (14b)

Uem = UNF
em (1 + fpe) (14c)

where knom and Rnom
em are the nominal values of the parameters, and UNF

em the
delivered voltage from the power electronics in the fault free case. These faults
are important to monitor since they affect the delivered torque from the electric
machine, as can be seen by combining (7) and (8) for the analytical model

T a
em = k

(
Uem

Rem
− k

Rem
ωem

)
− cfωem (15)

In the analytical model of the electric machine described in Section 2.2, it is
straightforward to induce the faults described in (14) since these parameters are
included in the model. The accuracy is however generally lower in this category
of models compared to the map based model. Therefore, the map based model
is used to model the fault free case, and the analytical model is used to model
the influence of the faults on the electrical machine.

3.1 Finding an expression for ∆Tem

From (15) it is seen that all three fault modes in (14) affect the delivered torque
of the electric machine, and is here modeled according to

Tem = Tem,lim +∆Tem (16)

where ∆Tem is the difference between T req
em and Tem due to a fault in the system

when Tem,req = Tem,lim. To find the expression for ∆Tem, the torque delivered
by the faulty machine is computed using (15), and the delivered torque in the
fault free case, T a,NF

em , is also computed using (15), but with the nominal values
of the parameters in the machine. The parameters k and Rem, and the voltage
Uem used to calculate T a

em, include models for the faults according to (14), and
∆Tem is expressed by

∆Tem = T a
em − T a,NF

em

=
k

Rem
(Uem − kωem)− knom

Rnom
em

(
UNF
em − knomωem

)
(17)

The voltage U ctrl
em needs to be calculated to find Uem and UNF

em used in (17).
This voltage is however not modeled in the map based model, and is therefore
computed using the controller in analytical model given in (12). Information
about if the system is faulty or fault free is not assumed to be known in the
controller of the machine where U ctrl

em is set, and therefore Rem and k in the
expression are the nominal values even if there is a fault in the machine affecting
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these parameters. The expression for U ctrl
em used to compute ∆Tem and ∆Pem,l

is thereby

U ctrl
em =

(
Tem,req

knom
+

cf
knom

ωem

)
Rnom

em + knomωem (18)

3.2 Finding an expression for ∆Pem,l

The expression for the power losses in the analytical model is given in (10), and
the expression states that fem,k and fem,R affect the power losses in the model.
The losses in the map based model are modeled as

P̃map
em,l = Pmap

em,l +∆Pem,l (19)

where Pmap
em,l is the original map and ∆Pem,l describes the difference in the power

losses in the machine in the fault free and faulty cases of the machine. The
losses in the faulty case are computed by (10), and the losses in the fault free
case, P a,NF

em,l , are also computed by (10), but with the nominal values of the
parameters Rem and k. The torque used in the computations of P a

em,l and
P a,NF
em,l is the delivered torque Tem from the machine in the map based model,

see Figure 2. The modifications in the power losses is computed by

∆Pem,l = P a
em,l − P a,NF

em,l

= Rem

(
T 2
em

k2
+

2cf
k2

ωemTem +
c2f
k2

ω2
em

)
+ cf,emω2

em−

−
[
Rnom

em

(
T 2
em

(knom)2
+

2cf
(knom)2

ωemTem+
c2f

(knom)2
ω2
em

)
+cf,emω2

em

]

=

(
Rem

k2
− Rnom

em

(knom)
2

)
(
T 2
em + 2cfωemTem + c2fω

2
em

)
(20)

4 Isolability gain by combining models

In this section the maximum theoretical isolability performance of a diagnosis
system based on the map based model is discussed. Firstly, the isolability
performance using only the map based model is considered, i.e. the results
from Section 3 are assumed not to be known. Secondly, the performance when
combining the map based model with the fault models obtained in Section 3 are
considered.

4.1 Theoretical fault isolability using map based model

First, consider the case when using only the map based model, without any fault
models. There are three fault modes to be monitored, see (14), and a single-fault
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assumption is made in the diagnosis system design. On the basis of using only
the map based model, it is reasonable that all three faults affect the delivered
torque

Tem = g1(fem,k, fem,R, fpe) (21)

while the power losses only depend on the fault modes in the electric machine

Pem,l = g2(fem,k, fem,R) (22)

Note that g1 and g2 also depend on other variables.
When equation (22) for Pem,l is not consistent, this can be explained by

either of the two faults fem,k or fem,R. The fault fpe can not be the cause since
it does not affect the power losses and a single fault assumption is made. If the
equation for Tem is inconsistent, this can be explained with any of the faults
according to (21). Therefore a fault in the electric machine can be isolated from
a fault in the power electronics, but not vice versa. Further, it is not possible to
isolate the fault modes in the electric machine from each other when no fault
models are used, since both these faults affect the same model equations.

4.2 Theoretical fault isolability using a combined model

Now consider the case where fault models are used in combination with the map.
As stated in Section 4.1, fault models are required to isolate the fault modes
from each other in the diagnosis system. Here the faults’ influence on ∆Tem

and ∆Pem,l described in (17) and (20) are used in the diagnosis system. It is
assumed that the faults are constant or slowly varying, and is modeled as ḟ = 0.
Note that the parameters k and Rem, and the voltage Uem all are included in
the expression for Tem, and that the faults affect the torque in different ways.
This means that full fault isolability can be achieved using only information
about how Tem is modified i.e. by only using (14) and (17). The information
from how the faults affect ∆Pem,l is however also used in the estimation of the
faults using observers in the next section.

5 Design of a diagnosis system

A diagnosis system monitoring the power electronics and the electric machine of
the HEV is designed based on the models presented in Sections 2 and 3. The
model used, including the fault models, is first transformed into state space form
in Section 5.1. In Section 5.2, observers are designed based on the combined map
and analytical model, but also based on only the analytical model. Based on
the estimated faults from the observers, residual generators and test quantities
are finally designed and evaluated in Section 5.3.
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5.1 State space formulation of the model

The model considered below is the combined map and analytical model of the
electric machine. The model used in the design of the diagnosis systems is static
since the dynamics in (3) is fast and is here assumed instantaneous. In the
model used, the faults are included as states that are estimated in the observers.
In its original form the model is a DAE of differential index one Petzold and
Ascher (1998), but is reformulated as an ODE to be able to use standard observer
techniques. The model is in the form

x1,t+1 = x1,t + ωt (23a)
0 = g(x1,t, x2,t, ut) (23b)
yt = h(x1,t, x2,t, ut) (23c)

where x1 is the vector of the dynamic variables, which is equal to the three faults,
x2 is the vector of algebraic variables, u is the vector of known input signals, and
ω noise describing the model uncertainty. The expression g(x1, x2, u) includes
the model equations, and, since the DAE has differential index one, the algebraic
variables x2 can be computed from g(x1, x2, u) by

x2,t = g−1(x1,t, ut) = G(x1,t, ut) (24)

leading to the ODE

x1,t = x1,t−1 + ωt (25a)
yt = h (x1,t, G (x1,t, ut) , ut) (25b)

which has the same solution set as (23). The algebraic variables x2 and G(x1, u)
are given by




k
Rem

Tem,lim

U ctrl
em

Uem

UNF
em

∆Tem

Tem

Pem,m

∆Pem,l

Pmap
em,l

Pem,e

Ib




︸ ︷︷ ︸
x2

=




knom(1 + fem,k)
Rnom

em (1 + fem,R)
min {max {Tem,min, Tem,req} , Tem,max}
Rnom

em

knom (Tem,lim + cfωem) + knomωem

U ctrl
em (1 + fpe)

U ctrl
em
k

Rem
[Uem−kωem]− knom

Rnom
em

[
UNF
em −knomωem

]

Tem,lim +∆Tem

Temωem[
Rem

k2 − Rnom
em

(knom)2

][
T 2
em+2cfωemTem+c2fω

2
em

]

f(Tem, ωem, Ub)
Pem,m + Pmap

em,l +∆Pem,l
Pem,e

Ub




︸ ︷︷ ︸
G(x1,u)

(26)
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The input signals are the requested torque, angular speed, and the battery
voltage. Of these the angular speed and battery voltage are sensor signals

u =




Tem,req

ωem

Ub


 (27)

The output signals are the delivered torque and the battery current, that are
calculated in (23c) and are given by

h(x1, x2, u) =

[
Tem

Ib

]
(28)

5.2 Fault estimation

The designed diagnosis systems are based on state-observers estimating the
considered faults in (14). Several ways of doing this is performed and evaluated
in this section, and the straightforward approach is to estimate all three faults
in one observer.

One observer

The observer is an Extended Kalman Filter (EKF) Kailath et al. (2000) and
the model equations are given by (26). The observer is denoted as Oall, and is
described by

Oall :

{
x̂1,t+1 = x̂1,t +K (yt − ŷt)
yt = h (x̂1,t, G (x̂1,t, ut) , ut)

(29)

where x1 = [fem,k fem,R fpe]
T . These states are observable since the faults

affect the output signals in different ways, see the model in (26) and (28).
The sensors used in the feedback term in the observer are a machine torque

sensor and a battery current sensor. The sensor model includes Gaussian
distributed white noise, νTem

and νIb respectively, that is added to the signal
the sensor measure

y =

[
Tem,sens

Ib,sens

]
=

[
Tem + νTem

Ib + νIb

]
(30)

The torque sensor is used for simplicity, but if it is not available it is possible to
use other sensors and extend the model used in the observers, see e.g. Sundström
(2011), where also the observer design is given.

To evaluate the designed observer, the faults in (14) are induced one by one
in the vehicle model and the observer estimates the faults. The faults are induced
after 400 seconds in the simulation, and the sizes of the induced faults are fem,k =
−0.03, fem,R = −0.03, and fpe = −0.01. The driving cycle used is FTP75
and the estimated faults when fem,k has occurred, i.e. x1 = [−0.03 0 0]

T ,
are presented in Figure 3. As can be seen in the figure, all faults are nonzero
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Figure 3: Estimated faults when k = 0.97knom using Oall.

after the fault is induced, and the estimated faults have converged to almost
constant values that are x̂1 = {f̂em,k, f̂em,R, f̂pe} = {−0.0067, 0.049, 0.024}.
Due to the erroneous estimation of the states in the observer presented in
Figure 3, that appear even though the faults are observable as stated above, the
difference in the output signals Tem and Ib based on x̂1 and the true fault values,
x⋆
1 = [−0.03 0 0]

T is investigated. The output signals computed based on x̂1

are denoted as T̂em and Îb, and the output signals based on x⋆
1 are denoted as

T ⋆
em and I⋆b . The difference between the outputs T̂em and T ⋆

em, and Îb and I⋆b
are computed as

∆Tem = T̂em − T ⋆
em (31a)

∆Ib = Îb − I⋆b (31b)

and the differences are shown in Figure 4. Note that the maximum magnitudes
of ∆Tem

and ∆Ib are 0.002 Nm and 0.01 A respectively, which corresponds to
as small values as 0.01‰ of the maximum magnitude of both output signals.
Thereby it can be stated that it is difficult to estimate the correct value of the
faults using this observer.
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Figure 4: The differences ∆Ib and ∆Tem
computed in (31). The difference in

delivered torque and current is small, and therefore it is difficult to correctly
estimate the faults.

Three observers estimating one fault each

Since the faults are almost not observable using one observer, the single-fault
assumption is here used and three observers are designed to estimate one fault
each. In each observer it is assumed that the other two faults are zero, and
the three observers estimating fem,k, fem,R, and fpe, are denoted Oem,k, Oem,R,
and Ope respectively. The basic idea to achieve fault detection and isolation
based on these observers is described in Section 5.3, but first the observers are
briefly described.

All three observers Oem,k, Oem,R, and Ope use the same model equations,
except for which fault that is to be estimated, and the used model equations are
given by (26). As stated above, two faults in (26) are assumed to be zero in the
observers, and x1 in (25a) only includes the fault that is to be estimated in the
observer. The observer used to estimate the fault fem,k is e.g.

Ofem,k :





f̂em,k,t+1 = f̂em,k,t +K (yt − ŷt)

yt=h






f̂em,k,t

0
0


, G






f̂em,k,t

0
0


, ut


, ut


 (32)
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Figure 5: The estimated faults in the three observers Oem,k, Oem,R, and Ope

when k = 0.97knom.

since x̂1 = [f̂em,k 0 0]T . The sensors used are given by (30). Note that it is only
one of the three estimated faults in the observers that ideally estimates a correct
value of the fault. E.g. when fem,k has occurred, f̂em,R and f̂pe estimated in
Oem,R and Ope respectively, will possibly take any value even though the actual
faults fem,R = fpe = 0.

The faults are induced one by one in the vehicle model to evaluate the
designed observers. The estimated faults using the three observers when
{fem,k, fem,R, fpe} = {−0.03, 0, 0} are given in Figure 5. In the upper plot,
f̂em,k is shown and it can be seen that the fault is accurately estimated using
Oem,k. The lower two plots present f̂em,R and f̂pe, and since the induced fault
in the simulation is fem,k and the three faults affect the model (26) differently,
f̂em,R and f̂pe do not converge to constant values. The reason is that f̂em,R and
f̂pe varies with the operating point of the machine to achieve the same outputs
of the system as the measurements do. The information about what estimated
faults that converge to constant values will later be used in the diagnosis system
design to pinpoint what fault that has occurred. The results when inducing any
of fem,R and fpe in the vehicle model are similar to the results in Figure 5 when
fem,k is induced.
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Three observers based on only the analytical model

In the previous two sections the combined map and analytical model, as described
in Section 3, is used in the observers. In Figure 1 it is found that the analytical
model does not accurately describe the power losses of the machine. How this
modeling error affect the diagnosis performance is here investigated by designing
three observers based on only the analytical model described in Section 2.2.
The inputs u and outputs y are the same as in (27) and (28) respectively. The
algebraic variables are denoted as xa

2 , and these are computed from a set of
equations Ga(x1, u) as




k
Rem

U ctrl
em

Uem

Iem
Tem

Ib




︸ ︷︷ ︸
xa
2

=




knom(1 + fem,k)
Rnom

em (1 + fem,R)
Rnom

em

knom (Tem,req + cfωem) + knomωem

U ctrl
em (1 + fpe)
1

Rem
(Uem − kωem)

kIem − cfωem
UemIem

Ub




︸ ︷︷ ︸
Ga(x1,u)

(33)

Three observers are designed estimating one fault each, and the observers are
denoted as Oa

em,k, Oa
em,R, and Oa

pe. The estimated faults when fem,k = −0.03
are seen in Figure 6.

By comparing Figures 5 and 6 it is clear that the different models used in
the observers results in different values of the estimated faults. Note especially
that the fault that is induced, fem,k, is more accurately estimated in Ofem,k

compared to Oa
fem,k, see the upper plots in Figures 5 and 6. The reason for that

the estimated fault f̂em,k is less accurately estimated in Ofem,k compared to
Oa

fem,k when the fault fem,k is induced, is that the analytical model does not
describe the model outputs Tem and Ib as good as the combined model.

5.3 Design of residual generators and test quantities

When an estimated fault is nonzero the system is assumed faulty. Based on the
estimated faults in the observers presented above it is thereby easy to detect a
fault in the monitored system since the estimated faults clearly becomes nonzero
fast after the fault is induced in the vehicle. However, to pinpoint what fault
that has occurred is more difficult since the faults can not be simultaneously
accurately estimated using one observer, Oall. Therefore, to be able to isolate
the faults, residual generators based on the estimated faults in Oem,k, Oem,R,
and Ope are used in the diagnosis system. To increase the diagnosis performance,
the residuals are post processed to form test quantities as described below.
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Figure 6: The estimated faults in the three observers based on the analytical
model when fem,k = −0.03.

Residual generators and test quantity formation

The faults affect the system to be monitored in different ways, see (26). This, in
combination with the assumption of constant faults, is used in the design of the
residual generators and the basic idea is illustrated by an example.

Example 1. When a constant fault has occurred in the power electronics result-
ing in that Uem ̸= U ctrl

em , the estimate f̂pe is constant, but the estimated faults
f̂em,k and f̂em,R calculated in Oem,k and Oem,R, are dependent on the operating
point of the electric machine. The reason for this is illustrated by an example
using the expression for ∆Tem in (17). In this expression it is only T a

em, and not
T a,NF
em , that is affected when there is a fault in the component. Combining (14)

and (15) leads to

T a
em = −cfωem + knom(1 + fem,k)·

·
(

UNF
em (1 + fpe)

Rnom
em (1 + fem,R)

− knom(1 + fem,k)

Rnom
em (1 + fem,R)

ωem

)
(34)
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Figure 7: Residuals based on f̂em,k from the observer based on only the analytical
model, Oa

em,k, in the upper plot and the observer based on the combined model,
Oem,k, in the lower plot. The residuals are computed both for the non-faulty
case and when one fault at the time is induced in the vehicle model.

A fault affecting the resistance is e.g., included in two terms in the expression,
one that is proportional to UNF

em and one that is proportional to ωem. The fault
in the power electronics is only included in the term that is proportional to the
voltage. This leads to that when there is a constant fault in the power electronics,
the value of f̂em,R varies with ωem to achieve the same value for T a

em as fpe
does. This information is used to construct residual generators in the diagnosis
system. �

The residual generators are designed based on that if an observer estimates
a fault fi, f̂i converges to fi when this fault occurs, and that f̂i,t = f̂i,t−1 since
fi is assumed to be constant, i.e. fi,t = fi,t−1. However, if a fault mode fj ̸= fi
occurs it is not possible to state anything about the value f̂i will take. Therefore,
if f̂i,t ̸= f̂i,t−1, this can only be explained with that there is a fault in the system
and that this fault is not fi. This idea is used in the design of three residual
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Table 1: Decision structure for the diagnosis system including fault models. Full
fault isolability is structurally achieved, since a unique set of tests ideally react
for each fault.

fem,k fem,R fpe
T1 X X
T2 X X
T3 X X

generators that are based on the change in the estimated faults in the observers
between two time steps

rt = f̂i,t − f̂i,t−1 (35)

The residual generator based on f̂em,k estimated in Oem,k is denoted as rem,k,
and this signal is presented in the lower plot in Figure 7 for different faults
induced in the vehicle. As can be seen in the figure, rem,k reacts in a similar
way in the fault free case and when fem,k = −0.03. When any of the faults
fem,R and fpe occurs the signal is clearly separated from the fault free case, and
therefore the residual has reacted, and this is as expected.

In Section 5.2 it is stated that the faults are more accurately estimated
using the observers Oem,k, Oem,R, and Ope, compared to Oa

em,k, Oa
em,R, and

Oa
pe, see Figures 5 and 6. To evaluate the influence of this in the diagnosis

system, the corresponding residual to rem,k based on Oa
em,k is presented in the

upper plot in Figure 7, and is denoted as raem,k. This residual is not expected
to react to the fault fem,k, but as can be seen in the figure, the residual when
fem,k = −0.03 is significantly separated from the fault free case. To achieve
a correct diagnostic decision there is a need to investigate what causes this
separation, and to compensate for the difference in the residual. The results are
the same for all three residuals based on the analytical model, and therefore it
is verified that it is more time consuming to design a diagnosis system based on
Oem,k, Oem,R, and Ope, compared to Oa

em,k, Oa
em,R, and Oa

pe. Due to this result,
the residuals used in the further diagnosis system design process are based on
the combined map and analytical models.

To reduce the impact of noise in the residuals in the decision making, the
residuals are post processed to form test quantities. This is here done using the
CUSUM algorithm Page (1954); Gustafsson (2000)

Tt = max {0, Tt−1 + |rt| − ν} (36)

where ν is a design parameter that corresponds to the noise and model uncertainty
in the residuals. A test reacts when T is above a threshold J . To evaluate
the performance of a diagnosis system, normalized test quantities, Tnorm, are
calculated based on the maximum value, Tmax,NF, of T in the fault free case. An
alarm is generated when Tnorm > 1 and the design parameter Φ ∈ [0, 1] states
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Figure 8: Test quantities based on the estimated faults presented in Figure 5
when fem,k = −0.03.

the margin to false alarm, and is here set to 0.5

Tnorm =
T

Tmax,NF
Φ (37)

The decision structure includes information about which faults the different tests
are expected to react to and is shown in Table 1. If e.g. T1 has reacted this
can be explained by fem,R or fpe, but if also T2 has reacted the only single fault
diagnosis is a fault in the power electronics. The tests T1, T2, and T3 are based
on Oem,k, Oem,R, and Ope respectively.

The normalized test quantities based on Oem,k, Oem,R, and Ope when fem,k

is induced as a step in the vehicle model after 400 seconds are presented in
Figure 8. As can be seen in the upper plot, Tnorm > 1 when the fault is induced
at 400 seconds. When a fault occurs in the system, the assumption fi,t = fi,t−1

is not valid. This may lead to that a residual that is not expected to react on
the fault according to Table 1 becomes non-zero, and the corresponding test
quantity reacts. To avoid this behavior it is needed to identify the time interval
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Figure 9: Illustration of the times used to state when to not update the test
quantity exemplified with Ofem,k when fem,k = −0.03.

after a fault has occurred till the estimated state in the observer estimating the
fault that has occurred has converged, in this case f̂em,k, to the new, faulty,
value. During this time period the test quantity is not to be updated.

Not update test quantity during transients

The start time of the time period where the test quantities are not updated
is denoted as tu,s, the end time is denoted as tu,e, and the time when the test
quantity should not be updated is defined by τu = {tu,s, tu,e}. Define all times
in the driving cycle where the considered residual computed as in (35) changes
sign as τr. To find the times tu,s and tu,e, the first time the magnitude of the
estimated fault is above a threshold Jf is used

tu,f = min{t : |f̂i,t| > Jf} (38a)

It is wanted to start to update the test quantity when the estimated fault in the
observer has converged to a the correct value of the fault. The residual is either
positive or negative before f̂i has converged to the actual value of the fault, and
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Figure 10: The test quantities based on the estimated faults in Figure 5, but
the test quantities are not updated when the fault is induced in the model.

therefore the times tu,s and tu,e are computed by

tu,s = max{τr < tu,f} (38b)
tu,e = min{τr > tu,f} (38c)

In Figure 9 the estimated fault f̂em,k is shown, as well as the corresponding
residual and test quantities. In the figure the times tu,f , tu,s, and tu,e are also
shown.

Figure 10 shows the test quantities when these are not updated according to
(38). As can be seen in the upper plot there is no false alarm when the fault is
induced in the system, and the other two tests react on the fault as expected.

5.4 Summing up

In the case study the value of using a combination of two models, one that
accurately describes the nominal behavior of the machine and one that describes
how the faults affect the outputs, in a diagnosis system is demonstrated. Further,
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a scheme of using several observers estimating one fault each is used to isolate
the faults, and the scheme is based on the single-fault assumption and that ḟ = 0.
At the time instant when a fault occurs in the system the fault is obviously not
constant, and an approach to avoid false alarm due to this by not updating the
test quantities is used, compare Figures 8 and 10. The method is successful even
though the faults are induced as steps and not slowly increasing, which would
be easier to handle since this is closer to the assumption ḟ = 0.

6 Conclusions

A method combining two models, one with good fault free accuracy and one that
models how the faults affect the system, is used in the design of a diagnosis system
for the power electronics and the electric machine in an HEV. An extensive
simulation study shows that the whole approach works well including the specific
scheme of using several observers estimating one fault each. Thus, a promising
path to achieve both good fault detectability and isolability performance is
presented, without the need for neither measurements of a faulty system nor
detailed physical modeling.
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