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Abstract

The transmissions of present heavy wheel loaders are in general based on torque
converters. The characteristics of this component suits these machines, espe-
cially in that it enables thrust from zero vehicle speed without risk of stalling the
engine, without active control. Unfortunately, the component also causes losses
which might become large compared to the transmitted power. One approach
for mitigating these losses is to switch to a continuously variable transmission.
Changing to such a system greatly increases the possibility, and the need, for
actively selecting the engine speed, and here a con�ict emerges. A low engine
speed is desired for high e�ciency but a high speed is required for high power.

Heavy wheel loaders often operate according to a common repeating pattern
known as the short loading cycle. This cycle is extremely transient, which
makes the choice of engine operating point both important and di�cult. At the
same time, the repeating pattern in the operation enables a rough prediction
of the future operation. One way to use the uncertain prediction is to use
optimization techniques for selecting the best control actions. This requires a
method for detecting the operational pattern and producing a prediction from
this, to formulate a manageable optimization problem, and for solving this, and
�nally to actually control the machine according to the optimization results.
This problem is treated in the four papers that are included in this dissertation.

The �rst paper describes a method for automatically detecting when the
machine is operating according to any of several prede�ned patterns. The de-
tector uses events and automata descriptions of the cycles, which makes the
method simple yet powerful. In the evaluations over 90% of the actual cycles
are detected and correctly identi�ed. The detector also enables a quick analysis
of large datasets. In several of the following papers this is used to condense
measured data sequences into statistical cycles for the control optimization.

In the second paper dynamic programming and Pontryagin's maximum prin-
ciple is applied to a simpli�ed system consisting of a diesel engine and a gen-
erator. Methods are developed based on the maximum principle analysis, for
�nding the fuel optimal trajectories at output power steps, and the simplicity
of the system enables a deeper analysis of these solutions. The methods are
used to examine and visualize the mechanisms behind the solutions at power
transients, and the models form the basis for the models in the following papers.

The third paper describes two di�erent concepts for implementing dynamic
programming based optimal control of a hydrostatic transmission. In this sys-
tem one load component forms a stochastic state constraint, and the concepts
present two di�erent strategies for handling this constraint. The controller
concepts are evaluated through simulations, in terms of implementability, ro-
bustness against uncertainties in the prediction and fuel savings.

The fourth paper describes the implementation and testing of a predictive
controller, based on stochastic dynamic programming, for the engine and gen-
erator in a diesel electric powertrain. The controller is evaluated through both
simulations and �eld tests, with several drivers, at a realistic work site, thus
including all relevant disturbances and uncertainties. The evaluations indicate
a ∼ 5% fuel bene�t of utilizing a cycle prediction in the controller.
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Populärvetenskaplig sammanfattning

Precis som för andra fordon �nns det en vilja att sänka bränsleförbrukningen för
hjullastare genom att hitta och minska de energiförluster som �nns i systemet.
Drivlinan i dagens tyngre maskiner är uppbyggd kring en momentomvandlare.
Denna komponent gör att momenten i drivlinan anpassas till fordonets och
motorns hastigheter, så att om maskinen t.ex. kör fast så ökar det drivande
momentet på hjulen samtidigt som lasten på motorn inte ökar, helt utan någon
aktiv styrning. Detta gör drivlinan självreglerande och mekaniskt robust, och
gör även att maskinen kan ha hög drivande kraft från stillastående. Tyvärr ger
momentomvandlaren även förluster, som i vissa lägen kan vara mycket stora i
förhållande till den e�ekt som används för att för�ytta maskinen. Andra möjliga
lösningar för drivlinan i dessa maskiner är att använda el- eller hydraulmotorer
för framdrivningen, och att använda en dieselmotor kopplad till en generator
eller hydraulpump för att driva dessa. Transmissionen i en sådan diesel-elektrisk
eller diesel-hydraulisk drivlina fungerar då som en steglös växellåda. Med en
sådan uppstår möjligheten, och kravet på, att aktivt välja motorvarvtal, och här
uppstår en kon�ikt. Lågt varvtal ger låg bränsleförbrukning och högt varvtal
ger bra respons, men det tar tid att byta varvtal. En genomtänkt strategi
behövs därför för att välja varvtal, speciellt vid snabba e�ektförändringar.

Tyngre hjullastare arbetar ofta enligt ett vanligt mönster, där den korta
lastarcykeln upprepas gång på gång. I denna cykel kör maskinen fram och fyller
sin skopa från en källa, backar, kör fram och tömmer skopan i en mottagare,
backar tillbaka och sedan upprepas cykeln. Detta mönster är väldigt transient;
hastigheten och e�ektbehovet är sällan konstant, vilket gör valet av motor-
arbetspunkt extra svårt. Samtidigt innebär regelbundenheten att det �nns en
generell kunskap om hur maskinen kommer att användas i den nära framtiden,
kunskap som bör användas i motorstyrningen. Ett sätt att använda den osäkra
förutsägelsen är att använda optimeringsteknik för att i varje tidpunkt hitta den
bästa styrsignalen. För att göra detta krävs en metod för att hitta mönstren i
hur maskinen används och skapa en prediktion från detta, att formulera opti-
meringsproblemet så att detta blir hanterbart, att lösa detsamma, och slutligen
att faktiskt styra maskinen enligt resultaten från optimeringen. Detta probelm
behandlas i denna avhandling, som i huvudsak är uppbyggd kring fyra artiklar.

Den första artikeln beskriver en detektor som automatiskt registrerar om
maskinen arbetar enligt något av �era förde�nierade mönster. Denna gör det
bland annat möjligt att snabbt analysera stora datamängder och kondensera
dessa till statistiska mönster. Dessa kan, som i �era av de följande artiklarna,
användas för att beräkna optimala styrlagar för varje mönster. Den andra ar-
tikeln undersöker de mekanismer som styr den bränsleoptimala lösningen för ett
enklare system bestående av en dieselmotor kopplad till en generator, och visu-
aliserar dessa. Den tredje artikeln beskriver och utvärderar två olika implemen-
tationer av optimal styrning av en hydrostatisk transmission, med avseende på
implementerbarhet, robusthet mot prediktionsosäkerhet och bränslebesparing.
Den fjärde artikeln beskriver optimal styrning av en diesel-elektrisk drivlina,
med formuleringen av optimeringsproblemet, lösningen av detta, till implemen-
tation och tester utförda i maskin med �era förare på en realistisk arbetsplats.
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Introduction

1.1 Background

The wheel loader is a type of engineering vehicle mainly designed for short
distance handling of bulk material, but also used in a wide range of other appli-
cations. An example of the vehicle type is shown in Figure 1.1. As an o�-road
engineering vehicle it is seldom used for longer transports, but more often in
high force and/or high precision operations at relatively low vehicle speeds. For
this reason, the transmission of the vehicle is designed for being mechanically
robust and to have smooth and predictable low speed/high torque character-
istics. In particular, the transmission has to be able to provide high wheel
torque from standstill up to some speed without gear change jerks, and also
have characteristics that prevents the engine from stalling if the driving resis-
tance increases suddenly, as if the bucket hits an obstacle during a bucket �lling.
The most common solution for heavy loaders is to base the transmission on a
torque converter [51, 52, 53, 54, 55, 56]. Basic descriptions and models of torque
converters can be found in [27] and in [25], and in papers where the devices are
used, such as in [37], [62] and [69]. The characteristics of a torque converter
generally follows, and is usually presented as in, the example in Figure 1.2. In
a hydrodynamic torque converter the propelling connection drives a �ow of oil,
and the �owing oil drives the propelled connection. The propelling connection
is therefore denoted the pump side and the propelled connection is denoted the
turbine side. Figure 1.2 shows the pump torque TP , measured at a speci�c pump
speed which in this case is 1000rpm, and normalized with the torque at ωT = 0.
It also shows the relation between pump torque and turbine torque TT and the
transmission e�ciency η, which is the speed relation multiplied with the torque
relation. All of these are drawn as functions of the output to input speed ratio
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4 Chapter 1. Introduction

φ = ωT /ωP or the slip s = 1− φ. The pump torque is, for a �xed pump speed,
relatively constant up to some speed ratio where it starts to drop and is close to
zero at φ = 1. This means that if the vehicle drives at high slip, a disturbance
in vehicle speed or wheel torque will not increase the load on the engine much.
Thus the engine is prevented from stalling if the vehicle experiences an increase
in driving resistance, and at the same time such a disturbance will cause the
propelling torque to increase according the TT /TP relation. It is important to
note that the torque converter also allows the vehicle speed to go to zero with-
out any active action, such as the releasing of clutches. For wheel loaders these
properties are particularly important, especially during the bucket �lling where
the vehicle drives at a low speed and experiences high and unpredictable forces
from the bucket to ground contact, and this is one reason torque converters are
so common in heavy wheel loaders. The drawback is that the transmission of
torque requires some slip, and there is considerable power lost due to this slip.
In many other applications the high losses can be mitigated by having a lockup
function in the torque converter, as indicated e.g. in the models in [25], in which
the input and output shafts are locked together by a clutch thus negating the
slip and the related losses. This can however only be done if relatively constant
vehicle speed is expected and the available gears places the engine speed in its
allowed speed envelope. For wheel loaders this would only be possible in more
static operations at higher speeds such as in transports, and not in the more
common highly transient and low speed loading operations.

Figure 1.1: An example of a wheel loader, from [18].

Electric and hydraulic motors have very di�erent characteristics as compared
to internal combustion engines, especially in that these can produce torque from
standstill. The electric or hydraulic power required to run the motor can come
from a generator or hydraulic pump, which could be propelled by an internal
combustion engine. For such a system the electric motor and generator, or
hydraulic motor and pump, becomes an in�nitely variable transmission (IVT),
corresponding to a gearbox which has not only in�nitely many gears, but also
in�nite gear ratios [48]. Transmissions of this type has for a long time been



1.1. Background 5

0

0.2

0.4

0.6

0.8

1

1.2

T
P

,1
0
0
0  

 [
−

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η
  
 [
−

]

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2

2.4

T
T
/T

P
  
 [
−

]

φ = ω
T
/ω

P
   [−]

Figure 1.2: An illustration of torque converter characteristics. The black line
shows the pump, or input, torque TP,1000, the gray line shows the output to input
torque ratio TT /TP and the dashed line shows the e�ciency η = ωTTT /ωPTP .

used in some special applications, such as diesel-electric locomotives [28, 31]
and hydraulic drives in excavators [97], and have more recently attracted some
attention as transmissions in regular vehicles [13, 45, 46, 91]. A related transmis-
sion type is the continuously variable transmission (CVT), which corresponds
to a gearbox with an in�nite number of gears but with a limited span of gear
ratios. These drives are more commonly mechanical solutions, such as the belt
type CVTs in [90]. These types of transmissions can also be expanded with a
signi�cant energy storage, such as a battery [16], supercapacitor [17], pressure
vessel [30] or �ywheel [85], to form a series hybrid powertrain. Regardless of
the type of transmission, the in�nite number of gear ratios greatly increases
the freedom in actively selecting the engine speed. In transients, when there
is a non-zero engine speed derivative, the engine speed controller also has to
take into account the power �ow to or from the engine inertia. The problem
of selecting the engine speed for this type of system in transient conditions has
been studied e.g. in [44] and [76], and more recently in [67] and [86]. Since the
engine speed is free, the main characteristic of the load is the power required in
the electric/hydraulic/other connection. For static, or quasi static, load power
the engine speed can be placed at the corresponding static fuel optimal op-
erating point. These operating points, as a function of output power, are in
general located near the maximum torque line of the engine, which means that
there is little margin for handling sudden increases in the demanded output
power. If the engine speed is low and there is a sudden increase in the desired
output power, the engine will have to speed up before supplying this power,
which causes a delay. In case there is a turbo this device will also have to speed
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up, a process that can have a time constant of several tenths of a second [87].
Common delays of this magnitude would not be acceptable in such transient
operation as that of wheel loaders. Another strategy that would not cause such
delays could be to always maintain high engine and turbo speeds, though this
would reduce the average e�ciency of the engine. So, the engine speed should
be low when the requested power is low and high when the power is high, but
due to the time constants in the system this would require a load prediction.

In the most common operation of wheel loaders, which is short distance
loading, the vehicle operation consists of repeating a distinct cycle known as
the short loading cycle, as described in detail in [19]. The distinct and repeti-
tive operation according to this cycle means that at the beginning of a cycle, the
general appearance of the rest of the cycle can be predicted. In case the torque
converter has been replaced with a CVT type transmission, the engine speed
is actively controlled, and in this controller the information obtained through
the cycle prediction should be utilized. There has been a substantial amount
of work done on optimal control against predicted future operating conditions,
in many �elds both theoretical and applied. In most of the work with vehicle
applications the prediction has however been deterministic. Some, like [76], of
these has focused on pure dynamic optimization, without considering online
implementations. Others, such as [29] and [36], have considered, or even imple-
mented, online controllers but still assumed a deterministic prediction in their
optimization. For the wheel loader however, even though the general appear-
ance of the cycle can be predicted, the details of each individual cycle cannot,
and a predictive controller would have to rely on a partly stochastic prediction.
There are some vehicle related papers in which stochastic predictions are used;
[35], [26] and [39] are just some. The controllers presented are in general focused
on systems with dynamics that are considerably slower than the engine speed
dynamics though, such as the battery state of charge in hybrid electric vehicles.
The papers included in this dissertation describe work related to the develop-
ment and implementation of a predictive controller for the engine dynamics in
a CVT (or IVT) based wheel loader powertrain.

1.2 Outline and Contributions

This dissertation describes the development, implementation and testing of dif-
ferent algorithms necessary for utilizing the repetitiveness in the operation for
optimal predictive control of a continuously variable wheel loader transmission.
The dissertation starts with an introduction in three chapters, where the present
chapter, Chapter 1, gives a background to the problem addressed and a sum-
mary of the papers included. Chapter 2 describes and de�nes the concept of
optimal predictive control and its components, and Chapter 3 describes the
particular properties of wheel loader operation that is an enabler for the predic-
tion. This introduction is followed by the main part of the dissertation, which
consists of the four papers [73], [70], [69] and [72]. In the rest of this section
these papers are summarized, and the addressed problems are motivated in the
context of the theme of this dissertation.
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Paper 1: Robust driving pattern detection and identi�cation with a
wheel loader application, [73].

The �rst problem was to �nd a method for obtaining a prediction of future
operation. Two general approaches was identi�ed; to base the prediction on
repetition detection or on pattern detection. While both of the approaches
were promising from a prediction point of view, the second was considered
more practical practical for optimization purposes. The repetition detection is
described further in Section 3.2. More work was put into the pattern detection
track, and the result is presented the appended paper.

Paper 1 presents a framework for o�- and online automatic detection and
identi�cation of operation according to a set of prede�ned wheel loader oper-
ational cycles. In this detector the cycles are constructed from a small set of
discrete events, such as a change of driving direction or a bucket emptying,
forming a unique sequence for each type of cycle. The paper is focused on the
short loading cycle, and the detector is evaluated o�ine and online in handling
of di�erent materials by di�erent drivers. The evaluation shows positive results
of this simple but capable detector, with over 90% of all cycles detected, even
in di�cult operation such as handling of shot rock.

The detector described is highly useful for quickly analyzing and condensing
large amounts of recorded data, by extracting the cycles and relevant informa-
tion for these, so that this information can be summarized into a manageable
cycle description suited for the optimization. In this role the cycle detector has
been used in all the papers [65], [66], [69], [68], [71] and [72]. The substantial
bene�t of having the cycle detector when analyzing large sets of data is the
main contribution of this paper.

Paper 2: Minimizing Fuel Use During Power Transients for Naturally
Aspirated and Turbo Charged Diesel Engines, [70].

The next problem was to construct system models and selecting an optimization
method suited to the problem at hand. The initial study focused on using simple
models and trying to �nd underlying mechanisms in the optimal trajectories
that could be utilized for simplifying the larger optimization problem.

Paper 2 is a technical report based on a section of the licentiate thesis
[63], which in turn is an extension of the papers [64] and [67]. The paper
analyzes the problem of �nding the optimal operating point trajectories for a
naturally aspirated or turbo charged engine connected to a generator, during
output power transients. The problem is a simpli�ed version of optimal control
of the engine and generator in a diesel electric transmission, especially in that
the power trajectory is deterministic. Instead of focusing on application of the
solutions, the optimal engine operating point trajectories are studied in depth
using both dynamic programming and Pontryagin's maximum principle.

The contribution of this paper is a deeper understanding of the mechanisms
behind the fuel optimal solutions for power transients, and a pedagogical exam-
ple of how Pontryagin's maximum principle can be used for �nding the optimal
trajectories for simple problems. The models introduced in this paper are used
in the papers [65], [66], [69], [68], [71] and [72].
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Paper 3: Development of look-ahead controller concepts for a wheel
loader application, [69].

With the general prediction and optimization methods or concepts selected,
the �nal problem was to implement and adapt these for use as an online con-
troller in a wheel loader. In this implementation study a speci�c transmission
was selected, a device presented in the patent [50]. The main problem in the
implementation was how to handle the uncertainties in the prediction.

Paper 3 describes two dynamic programming based controller concepts for
a wheel loader with a three mode hydrostatic continuously variable transmis-
sion. The two concepts present very di�erent strategies for handling prediction
uncertainties, especially in the requested hydraulic �ow, since this �ow intro-
duces a stochastic state constraint. The �rst controller includes uncertainties
in the load description, and is based on the papers [65] and [66]. The second
concept uses the possibility of reducing the vehicle speed, and is based on the
paper [68], supplemented with a small time delay in the hydraulics. The pa-
per [69] focuses on the reformulations required for online implementation of the
concepts, followed by an evaluation of these implementations.

The main contribution is the study into how the stochastic state constraint
introduced by the hydraulic �ow can be handled in the optimization. The paper
also forms a feasibility study for predictive controllers for the transmission con-
cept described, and in case a similarly equipped machine becomes available, the
proposed strategies could form the basis of a predictive engine speed controller.

Paper 4: Predictive control of a diesel electric wheel loader power-
train, [72].

The �nal problem of implementing the selected prediction and optimization
methods was approached again, but with a di�erent transmission layout, based
on the machine presented in [92]. The layout enabled a simpler load description,
and since a machine was available for �eld tests, the controller concept could
be implemented and tested.

Paper 4 treats the implementation and testing of a controller for the engine
operation in a diesel electric wheel loader transmission. The main controller is
based on stochastic dynamic programming, with a load probability distribution
that depends on the distance driven. This controller is evaluated in both simu-
lations and �eld tests against two simpler reference controllers. The optimized
control schemes were �rst evaluated in [71], but only through simulations that
did not include the in�uence of model errors, an uncertain environment and
unpredictable driver feedback. In the included paper, the controllers are also
�eld tested in a realistic operation scenario with three di�erent drivers, thus
including all relevant disturbances and uncertainties.

The main contribution of the paper [72] is an evaluation, which includes
�eld tests, of the possible bene�t of utilizing a cycle prediction in a continuously
variable wheel loader transmission controller. Both simulations and �eld tests
indicate a 5% fuel bene�t of utilizing the cycle prediction in the engine controller.
The paper is also a logical closing of the dissertation in that all the main parts
developed are collected and tested together in a realistic implementation.



2

Optimal predictive control

2.1 Overview and de�nition

This dissertation treats optimal predictive control (OPC) of a continuously vari-
able transmission in a wheel loader. Section 2.1 gives a broad de�nition of the
concept of OPC and relates this to similar concepts such as model predictive
control. Sections 2.2 and 2.3 describes the two components 'prediction' and
'optimization' required for this type of control, with brief introductions to the
concepts, and some background and examples. Section 2.4 relates the described
prediction and optimization methods to wheel loader operation, and motivates
the choices that are made in this dissertation.

Optimal predictive control is here de�ned as a control method in which the
control action at each moment is decided through optimization with respect to a
prediction of future disturbance signals. Denoting the states of the system x, the
control signals u and the disturbance signals w, the problem can be summarized
according to Equation (2.1). It is assumed that there exists a prediction of the
signals in w, although the prediction might include uncertainties, might have
a limited time horizon tϑ and might not become available until the moment tk
when the control action u(tk) should be decided upon.

lim
T→∞

min
u∈U

1

T

∫ T

tk

G(x(t), u(t), w(t, x, u))dt (2.1a)

dx

dt
=F (x(t), u(t), w(t, x, u)) (2.1b)

0 =C(x(t), u(t), w(t, x, u)) (2.1c)

x0 =x(0) (2.1d)

9
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For practical reasons, the cost function (2.1a) is in general replaced with the
truncated cost function (2.2), and the truncation is in general made inside the
prediction horizon, so that N ≤ ϑ.

min
u∈U

{
JN (x(tN )) +

∫ tN

tk

G(x(t), u(t), w(t, x, u))dt
}

(2.2)

In the general control process, at each moment tk, a prediction of w(tk, . . . , tϑ)
is obtained and an optimization is performed based on this prediction to �nd
the minimizing u(tk, . . . , tN ). The �rst control action u(tk) is applied and the
process is repeated at the next time step. This description is very similar
to model predictive control (MPC), as described in detail in [14] and [22], in
that the MPC is also based on a system model, which is used for making a
prediction of the system behavior and �nding the best control action. In its
most classical form the MPC problem is formulated according to equation (2.3).
In this formulation y are measurable outputs, r are references or targets for the
outputs, u are control signals, λ are weighting factors, x are states, A, B, C
and D are matrices and Zu and Zx are control and state constraints.

min
u

=

N∑
j=1

{
(yj − rj)2 + λju

2
j−1

}
(2.3a)

xj+1 = Ajxj +Bjuj (2.3b)

yj = Cjxj +Djuj (2.3c)

Zu,j,l ≤ uj ≤ Zu,j,h, Zx,j,l ≤ xj ≤ Zx,j,h (2.3d)

This control approach is an alternative to classical PID-type controllers, which
is useful if the controlled system has many inputs, outputs or states, or if there
are signi�cant constraints. Further, the method can also utilize a prediction of
reference state changes. There are also several mature software packages for
MPC, such as [7]. Still, the classical formulation in Equation (2.3) is highly
restrictive in that it requires a linear model, a cost that is a quadratic function
of control action and deviation from know references, and is unable to utilize
a prediction of future disturbances. There are however several extensions and
modi�cations of this classical MPC formulation intended for removing these
restrictions. Some of the more known extensions are generalized predictive
control (GPC), robust MPC (RMPC) and nonlinear MPC (NMPC), each of
which mainly address one speci�c de�ciency in the classical MPC formulation.
For these speci�c examples, GPC introduces a prediction of measurable distur-
bances, RMPC considers uncertainties in the models used and NMPC introduces
nonlinearities in the models [14]. There are many more advanced formulations
proposed or used, see for example [79], although there is less consistency in the
notation for these formulations. In this work it was decided not to use MPC re-
lated notations even though the OPC problem could be formulated in the MPC
framework. This was partly because there is no well established notation within
the �eld of MPC for the type of problem studied here, but mostly because the
MPC notation is associated with the classical formulation and control towards
known, and often constant, reference values.
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In the problem studied here, it is assumed that there exists a prediction of
future operating conditions, that this prediction contains signi�cant uncertain-
ties, and that the prediction might change over time. It is also assumed that
there exists a model of the controlled system. At each instant the available pre-
diction and the system model should be used for solving the, possibly truncated,
problem (2.1), so that the optimal control action can be applied. The following
two sections describe some di�erent methods for obtaining a prediction and for
calculating the optimal control action.

2.2 Prediction

It is assumed that there are some external signals w(t), here denoted distur-
bance signals, a�ecting the system and that there exist a prediction of these
disturbance signals. The prediction is an enabler for optimal predictive control,
and its properties are crucial for how the controller could be implemented. The
main properties of the prediction are the prediction horizon tϑ and the level
of uncertainty in the prediction, although there are other important properties
such as the number of components in w. The prediction horizon a�ects the
choice of optimization horizon tN and the required complexity of the residual
cost function JN (tN ), which is the cost associated to each state at the end of
the optimization horizon. The uncertainty in the prediction a�ects which op-
timization methods that are suited to the problem. There are several papers
in the �eld of vehicular control suggesting a wide range of di�erent methods
for obtaining a disturbance prediction, with speci�ed or unspeci�ed purposes.
In the following a few di�erent types of predictions, their properties and some
examples, are listed. This list does by no means purport to be complete, but is
only a selection of some interesting and illustrative examples.

A �rst category of predictions are the deterministic route based predictions,
in which the external disturbances are known functions of some of the states
of the system. One example of this type is the topography information from
road maps used in the optimal predictive controller described in [29]. For this
type of prediction, since the whole w(x) map is known beforehand, there is
in practice no prediction horizon that limits the optimization horizon and the
optimal control actions as functions of the state could in theory be precalculated.
In practice, precalculation of the optimal control actions as a function of the
states is in general not possible though, primarily due to the size of the maps
in the route database.

Another type of predictions are the observations based predictions, in which
there are some type of sensors which are able to 'scan ahead' of the controlled
system. Data, such as topography or the tra�c situation, can be communicated
from other vehicles; this is a novel �eld of research known as cooperative driving,
where [40], [77] and [5] are just a few examples. Using forward looking radars
for adaptive cruise control and collision avoidance or mitigation is becoming
common in new cars, and has been thoroughly investigated [11, 98], and in
later years there has been research and implementations where the radars are
supplemented with, or replaced by, camera based systems [4, 8, 21, 89]. Common
for this type of predictions are that the whole disturbance function is not known
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beforehand, but there is a prediction horizon that gives an upper limit for the
optimization horizon and the control actions can therefore not be optimized
beforehand. These predictions in many cases contain some uncertainties that
usually grow larger the further away the observations are, making the prediction
horizon a somewhat murky concept.

A third type are predictions based on pattern recognition, in which the
patterns can be prede�ned or evolving. In the prede�ned case there is a set
of patterns and the predictor uses sensor data to select that which re�ects the
current operation and base the prediction on that pattern. This type includes
identi�cation or classi�cation of driving type [34, 41] or situation [58, 74]. In
the evolving pattern case the predictor tries to �nd recurring structures in the
data, and base the prediction on these structures. This type is less common since
the detector could produce unexpected results and because just loose enough
assumptions has to be made of what form of recurring structures the detector
should look for. In both of these types the predictions can be expected to contain
relatively large uncertainties, which has to be considered in the optimization.
Just as with the upstream observations, it can be expected that the uncertainties
grow with the prediction horizon, especially in the evolving pattern prediction.

A fourth type of predictions are the stochastic Markov process disturbance
models [24, 80], in which the disturbance signals are described by probability
distributions, where the probability p of a speci�c disturbance at the instant
tk depends only on the state at the same instant, as described by p(wk|x(tk)).
The disturbance at the previous instant wk−1 is however often included as a
state. Since the process is memoryless, and the probability distributions are
time invariant, a prediction of more than one step into the future becomes
meaningless. Since the load descriptions are time invariant, the type should be
considered semi-predictive; the models can describe and predict the evolution
of a transient episode, but not the occurrence of a transient after stationary
operation. Despite the simplicity of the models, from a prediction point of
view, these have found use in several applications such as power split control in
hybrid electric vehicles [42, 59, 81], route prediction [38, 83] and risk assessment
[32, 82, 95]. Just as in the case of map- or database based predictions, since the
whole w(x) map is known beforehand, the optimal control actions as functions of
the state can be precalculated. This approach is used in most implementations
of stochastic dynamic programming, such as in [35], [57] and [39].

2.3 Optimization

Assuming that a prediction of some sort is available, the optimal predictive
controller would at each stage select and apply the optimal control action. This
implies that an optimization has been performed, either beforehand for all rele-
vant state and load combinations, or as part of the selection of a control action
at each stage. Both of these strategies have bene�ts and challenges. Performing
the optimization beforehand requires �rst of all that the complete disturbance
signal prediction is available before the process is started. This can be the
case if the disturbances are either a limited number of deterministically known
trajectories or can be formulated as uncontrollable states with stochastic tran-
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sitions, such as Markov chains. Still, even if this holds, the number of state and
load combinations that would require a precalculated control action might be
unmanageable. Performing the optimization online on the other hand requires
that the optimization is quick compared to the time constants of the controlled
system, or the optimal control action will no longer be optimal when it has
been calculated. Just as in the o�ine optimization, the load description highly
a�ects the calculatory e�ort. A deterministic prediction would only require a
single trajectory to be optimized, while a stochastic prediction would require a
more complex load alternative handling or load description for managing the
branching tree of possible load trajectories. Both the o�- and online strategies
have been implemented in di�erent forms, with di�erent load descriptions and
optimizers. The rest of this section gives brief descriptions of the three main
classes of optimization algorithms, and relates these to the deterministic or
stochastic, o�ine or online, optimization problem in optimal predictive control.
The three classes are the dynamic programming or Hamilton-Jacobi-Bellman
approach, the indirect methods, and the direct methods.

Dynamic Programming

Dynamic programming (DP) is a structured method for making a complete
search of the entire discretized state and control space. The recursion, as de-
scribed in [6] and [9], used can be formulated according to Equation (2.4).

Jk(xk) = min
u∈U

{
g(xk, uk, wk) + Jk+1(xk+1(xk, uk, wk))

}
(2.4)

Since a complete search is made, this method guarantees global optimality.
Furthermore, since the method is based on testing and not an iterative trajectory
improvement, no derivatives are required. These properties together means that
the method is not sensitive to non-convex or 'ugly' models containing switches,
discontinuities, stochastic components, mixed discrete and continuous states
and controls etc., in the same way as the indirect and direct methods are. The
complete search however means that simulations has to be performed for all
allowed controls from all allowed states for all possible disturbance signals, at all
time steps, along with interpolations or other means required in the connecting
of all the sub-trajectories. This ensures a high computational load, even for
well posed problems, that grows exponentially with the number of states and
controls. The method cannot manage problems with a combined number of
more than about ten states plus control signals, and often problems with a far
lower dimension become unmanageable. The method therefore in general suits
problems where the calculation time is not critical, such as if the optimization
can be done beforehand, with a low dimension and where there exist stochastic,
nonconvex or nondi�erentiable components. In [29] DP is used for control of
vehicle speed and gear selection in a long haulage truck. The optimization is
performed online with GPS data as input, and the method might be motivated
by the discrete gears. There is a range of papers, such as [35], [57] and [39] that
uses stochastic DP in vehicular controllers. In these cases the load is described
by Markov models, and these stochastic predictions motivate the use of DP.
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Indirect Methods

The indirect methods are based on Pontryagin's minimum principle (PMP) [78].
The optimality conditions are formulated using the Hamiltonian (2.5).

H = G(x(t), u(t), w(t)) + λ(t)F (x(t), u(t), w(t)) (2.5)

PMP then states that the minimizing state and control trajectories also mini-
mizes this Hamiltonian. By di�erentiating the Hamiltonian with respect to the
states and controls, a set of conditions necessary for optimality is obtained. The
main conditions are (2.6), and the minimization problem is thus rephrased as
a two point boundary value problem. The indirect methods are methods for
solving this boundary value problem [10, 94].

∂H

∂x
= −dλ

dt
= −λ̇ (2.6a)

∂H

∂u
= 0 (2.6b)

∂JN
∂x

= λ(tN ) (2.6c)

The set of optimality conditions can be regarded as a generalization of the
zero derivative condition in static one dimensional minimization. Just as in
that simple case however, the conditions are only necessary but not su�cient
conditions for optimality, unless the problem is convex, and if there are equal-
ity or inequality constraints the basic derivative conditions must be expanded
with other terms. These other terms lead to state dependent switches and the
system must therefore be continuously checked during the simulations to �nd
any possible active constraint. Further, the extended system f̃ = [ẋ, λ̇] forms a
Hamiltonian system which means that, according to Liouville's theorem [43], the
volume in the phase space of [x, λ] is preserved [15, 61]. This means that unless
all states are close to the instability border, the problem will become unstable,
which complicates the solving of the two point boundary value problem. Last
but not least, if there are stochastic components in the system and the cost in
the objective function is written as an expected value, the optimality conditions
might not be well de�ned. The primary bene�t of the indirect approach is that
the formulation of the optimality conditions might reveal underlying structures
in the solution to the optimization problem. In some very special problems the
conditions might even lead to an analytical solution. One of the most impor-
tant examples in the vehicular control area is probably the ECMS approach for
controlling the power split in hybrid electric vehicles, as described in [75] and
[84]. Other problems suited for indirect methods are marginally stable systems
with few state constraints, such as space �ight trajectory planning [49]. The
indirect methods are otherwise in general suited for the same types of problems
as the direct methods, and in later years the direct methods has taken over as
being the most popular.
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Direct Methods

In the direct methods the original problem is discretized and the �nite discrete
problem is directly solved as a nonlinear optimization problem. In contrast to
the indirect methods, there is no formulation of optimality conditions but an
iterative search, using cost related derivatives, is performed for �nding trajecto-
ries with increasingly low value of the cost function (2.2) [10, 94]. One drawback
compared to the indirect methods is that the direct cannot give an explicit so-
lution, regardless of the problem. The direct methods also require that the cost
function, the state dynamics equations and the constraints can be di�erenti-
ated, at least once, at least with respect to the controls, which means that the
methods are not suited for 'ugly' models, with switches, discrete states, etc. Nor
can the methods, just as with the indirect methods, guarantee global optimal-
ity or easily handle stochastic models. There are however several bene�ts with
using direct methods, as compared to the indirect methods. The simulation of
the system is simpler and more stable since the constraints are not formulated
as switching conditions and a stable system is not made unstable by co-state
dynamics. Since there is no need for formulating co-state dynamics or similar,
setting up the problem is simpler than in the indirect methods. The e�ective
solving of problems with these methods instead relies heavily on the e�ective
calculation and handling of derivatives [93], for which there exist many mature
software packages such as [3]. The increased simplicity, in general along with
faster and more stable convergence, are reasons why the direct methods have
become more popular than the indirect lately.

2.4 Optimal predictive control for wheel loaders

The characteristics of wheel loader operation opens up some di�erent possibil-
ities for prediction, related to the prediction types mentioned in Section 2.2.
The nature of the operation, being o�-road in a complex environment and with
a human driver, does not provide for using route maps or similar for obtaining
a prediction suited for optimization. Sensors such as cameras, radars or lidars
can be added to the machine, as has been done as part of work focused on
autonomous wheel loaders, e.g. in [2], [12], [23] and [47], to provide a close
range awareness and prediction. The information obtained from such sensors
would be of high reliability, but with a highly limited prediction horizon and
only including information about the environment and not the intentions of the
driver. The residual cost function JN (x) would be important, due to the rela-
tively short prediction horizon as compared to the time constants of the turbo
charged engine, but di�cult to construct. Although this sensor based prediction
possibility could be bene�cial for component control, the available prediction
horizon does not suit the intended application, while the uncertainties in the
necessary time frame complicates the implementation of an optimizer.

As mentioned in Section 1.1, and described in greater detail in Section 3.1,
the most common wheel loader operation consists of repeating a distinct cycle.
This repetitive and pattern bound operation provides for some other means
for obtaining a prediction. Two main approaches can be identi�ed, where the
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choice of approach has a major impact on the requirements on the optimiza-
tion method used, and so that this largely decides which approach that can be
used. The �rst approach is to utilize the repetitiveness of the operation, and in
the predictor try to detect if there is a repeating pattern in the operation, and
build the prediction on an assumption of the detected pattern continuing into
the future. Since such a detector would try to �nd repetition, it could be able
to make predictions in a wide range of operations, with relatively little data
prede�ned, making the detector highly versatile. While the detector would of-
ten be able to provide a prediction, this prediction would only become available
to the optimizer when repetition is detected, and it would contain signi�cant
uncertainties. The optimizer would therefore need to run online and be able
to handle stochastic predictions. Despite the versatility of this prediction type,
and because of the di�culty of setting up and solving the resulting optimization
problem, it was decided that this approach would not be the focus of the work
presented in this dissertation. The implementation of a simple repetition based
predictor for wheel loader operation is however described in Section 3.2. The
second approach is to utilize the pattern bound operation, and in the predic-
tor try to detect if the wheel loader is operating according to any of a set of
prede�ned patterns, and build the prediction on an assumption of the detected
pattern continuing into the future. This type of detection and prediction relies
on the assumption that there is a limited number of patterns, or cycles, which
the machine usually operate according to, and that these are known beforehand.
If this assumption holds true, and the patterns are speci�c enough for an opti-
mization, it is not necessary to perform the optimization online but it can be
performed beforehand. For wheel loaders there exist a few common operation
types, such as the short loading cycle described in Section 3.1. While this very
broad operation description is common, it is in itself not detailed enough for
optimization. On the other hand, it is common for this type of machine to
operate at the same site, in the same environment, with the same tasks over
longer times. In such a situation, the prediction and corresponding optimized
controller can be based on the details of the operation performed over the pre-
vious hours or days, and the online controller can use a pattern detector for
selecting the proper optimized control strategy. The predicted operational pat-
terns would contain signi�cant uncertainties but these would also be available
to the optimizer early, and the time available for controller optimization would
be in the order of hours. Because of the signi�cant uncertainties in this type
of prediction and the availability of time for calculation, it was decided that
the dynamic programming methods were the most appropriate tools for the
controller optimization. This last concept of prediction according to prede�ned
uncertain cycles and optimization using dynamic programming is the main ap-
proach studied in this dissertation, for utilizing the speci�cs of wheel loader
operation for optimal predictive control.
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Wheel loader operation

3.1 Overview and the Short Loading Cycle

The wheel loader is a versatile machine that comes in a wide variety of sizes,
ranging from compact loaders at around 5 tonnes up to the heaviest machines
at several hundred tonnes. The smaller machines are often a base tool used
for a wide variety of tasks, such as handling of pallets, hay bales or other unit
material, use as a snow plow or blower, or a carrier of various engineering tools
such as hydraulic drills or brush cutters. The machines are however designed
mainly for the purpose of bucket handling of bulk material, such as snow, soil,
gravel, ore, wood chips or waste. For heavier loaders in particular, this is also
the by far most common type of application, usually handling soil or granular
minerals. Although bucket handling can involve dozing and moving of material,
longer transports are less common due to the relatively low carrying capacity
of these vehicles. The most common type of operation, and in particular the
most common pattern of operation, is cyclic loading from a source to a nearby
receiver, which is often next to the material source. Each cycle in this type of
operation is denoted a 'short loading cycle'. This common cycle type forms the
framework for the prediction in the optimal predictive controller, as de�ned in
Section 2.4, that is the theme of this dissertation.

In the short loading cycle the loader moves material from a source to a
nearby receiver. Figure 3.1 presents the general pattern of the cycle. Referring
to the designations used in this �gure, the cycle begins with the machine at
the starting position at marker 4. The machine moves forward and picks up
a load at the source at position 1, and reverses back to the starting position.
Next the machine moves forward and leaves the load at the receiver at position
6, and �nally it reverses back to the starting position where the cycle ends.

17
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Figure 3.1: An overview of the short loading cycle, from [20].

The duration of, and distances in, the cycles vary with the type of material
handled, the size of the machine and the experience of the driver, but for the
loading cycle to be short, the two switches from backward to forward driving
should be at roughly the same position and the machine should not travel
a distance of more than about �ve times the circumference of the wheels in
each leg of the cycle. A typical cycle for heavier loaders handling granular
material can have a duration in the order of 5s for each leg and an additional
5s for �lling the bucket at the source. The tool movement hydraulics, or bucket
hydraulics, are separately controlled by the driver, but the pressure and required
power trajectories generally follows a common pattern in the short loading cycle.
During the bucket �lling the bucket is usually both lifted and tilted while being
pushed through the source pile. This produces high forces, both vertical and
longitudinal, usually requiring very high powers both in the propulsion and the
hydraulics. After the �lling, the bucket is usually lifted more or less continuously
during the second and third leg of the cycle, requiring signi�cant power. The
bucket emptying and the lowering of the same, during the fourth leg of the
cycle, does in general not require signi�cant power input. This cycle is repeated
many times over, often with pauses or other operations between some of the
cycles. The load receiver is often a dump truck or an articulated hauler, and
the pauses occur when the truck has been �lled and is replaced or emptied. The
other operations that might occur primarily include operations for cleaning the
working site from dropped material and preparing the source pile for faster
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loading when a load receiver becomes available.
The intention in this work is to utilize the characteristics of this operation

for optimal predictive control. This requires a method for analyzing the opera-
tion, that �rst of all �nds the patterns in the operation, and second enables a
prediction that is useful for predictive control. Two potential prediction types
were described in Section 2.4; pattern detection and repetition detection. The
main di�erence is whether the operational patterns are pre-speci�ed or not. The
pattern detection concept is investigated in the appended paper 1, [73], and the
repetition detection concept is described further in Section 3.2.

3.2 Repetition detection

The intention with analyzing the operation is to �nd a method for obtaining a
prediction for some use in some suitable optimization method. The operation
is often highly repetitive, as illustrated by the example in Figure 3.2. There is
therefore a real possibility of producing a prediction from such repetition, if the
repetition can be detected. The simplest method for detecting repetition might
be to compare a piece of the recent history of a signal to the earlier history of
the same signal, e.g. by the sum of the square of the di�erence. Tn the rest of
this section the approach is explained and demonstrated through two examples.
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Figure 3.2: A set of data from wheel loader operation, represented by vehicle
speed vs, bucket lift angle θ1 (solid) and tilt angle θ2 (dashed). The set contains
34 short loading cycles and is an example of the highly repetitive operation.

Figure 3.3 shows a cutout of the bucket lift angle, θ1, data from Figure 3.2.
In this example the process is at 590s, as marked with a vertical gray line, and
a repetition detector is running. The detector picks the last �fteen seconds, as
indicated by the darker line in the �gure to the left, to use as a reference. This
reference is then compared to the signal history. In the �gure in the middle
several such comparisons are made at about ten second intervals, and the best
�t, which is at about −27.5s, is indicated in black. In the �gure to the right a



20 Chapter 3. Wheel loader operation

550 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

θ
1
 [
−

]

550 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]
580 600 620

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

Figure 3.3: Comparison of the last 15s of the signal θ1 to the earlier history of
the signal, and a signal prediction based on the best �t, applied to data from
the example in Figure 3.2.

prediction is constructed according to the dashed line, from the assumption that
the operation is repeating with the detected 27.5s period, by shifting the latest
signal history 27.5s into the future. Here the shifted signal is dashed and the
actual signal is shown in gray. In this example the predicted signal trajectory
agrees well to the actual trajectory. In the examples presented here, the �t in
the comparisons are measured in the sum of the square of the di�erence between
the two signals over the intervals, according to Equation (3.1).

J =

H∑
i=0

(yk−i−τ − yk−i)2 (3.1)

where y is the signal scanned for repetition, k is the instant of the scan, τ is
the position in the signal history where the �t is evaluated, H is the size of the
signal window used in the comparison and J is a measure of the �t. If J is low
only for some values of τ and these τ -values are large enough, this indicates
that the signal is repeating. Figure 3.4 shows the inverse of J from the data
in Figure 3.2, where dark indicates a good �t, along with the output from a
simple detector which marks the �rst peak in 1/J with a dashed gray line. In
this example a time window of 15s is used and the data is scanned 120s back
in time. The operation is highly repetitive and the time scales in the repeating
cycle �ts the size of the time window used in the detection, and therefore a clear,
unambiguous and consistent detection of a repetition with ∼ 25s cycle time is
achieved, all without any prede�ned information. Another example of a highly
repetitive set of data with longer cycle times is presented in Figure 3.5. In the
later part of this second example, some longer cycles are driven. In these cycles
there is a short transportation between each bucket �lling and emptying. The
same detector with the same parameters is applied to this data, and the result
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is presented in Figure 3.6. In this example correct and consistent detections are
made in the �rst 1000s of the data. In this part the detector quickly adopts to
changes in the period caused by switches between di�erent cycle types, which in
this case are the short loading cycle and some working site preparation through
a cleaning cycle. In the later part of the data the detector is however unable
to pick out a period, even though the signal is clearly repetitive, as shown in
Figure 3.5. The reason for the bad result in the later part is that the signal
window used in the signal used in the comparison in general contains little
information, especially during the transportation phases and thus the �t will
almost always be good. Since there is not a distinct �t, a clear cycle time will
not be found, as shown in Figure 3.6.

Figure 3.4: The output from a repetition detector applied to the data presented
in Figure 3.2. Darker shade indicate similarity of historical data to recent data
and the dashed line following the ∼ 25s dark band indicates the �rst repetition.
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Figure 3.5: A set of data recorded in wheel loader operation. The set contains
both short loading cycles, long loading cycles and some cleaning operation, and
is an example of repetitive operation with longer time scales.



Figure 3.6: The output from a repetition detector applied to the data presented
in Figure 3.5. Darker shade indicate similarity of historical data to recent data
and the dashed line indicate the �rst repetition.

In the examples presented here a simple sum of squares �t is used, and
only one signal is used in the �t calculation and repetition scan. Still, is some
cases this very simple method produces a very clear and consistent detection of
repetition. Figure 3.3 indicates that such a detection would also be useful for
producing a prediction. The second example does however show that the simple
least squares �t used here would not be su�cient for making predictions in all
operating conditions. There are several more advanced methods for detecting
repetition, such as those used in e.g. [1], [33], [60], [96] and [88], that could be
expected to improve the detection. The positive results from the simple detector
described here indicate that a practical repetition detector can be constructed.
The implementation of such a detector would mean that a prediction would
become available, although the accuracy of this would have to be thoroughly
evaluated. The detector would be highly versatile since it could detect a wide
range of driving cycles, with very little information speci�ed beforehand. On the
other hand, the resulting predictions would have uncertainties that would grow
with the prediction horizon, and the prediction would only become available at
the moment the detector �nds a repetition. Any control optimization would
therefore have to be performed online, and due to the relatively quick dynamics
of the engine, especially in the engine speed, the optimization would have to
be very fast. Any controller based on this type of prediction would also have
to be able to handle changes in the repeating pattern. The combination of
an uncertain prediction and a requirement for quick optimization pose a very
di�cult problem to solve, and this approach has therefore not been pursued
further as part of the work presented in this dissertation. The approach followed
is instead to, in advance, de�ne one or a few operational patterns and perform
control optimization against these patterns. The online controller then monitors
the system for operation according to the prede�ned patterns, and when a
detection is made, the controller can apply the corresponding control strategy.
A framework for a cycle detector is presented in the appended paper 1, [73].
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Paper 1

Robust driving pattern detection and

identi�cation with a wheel loader

application†

Tomas Nilsson, Peter Nyberg, Christofer Sundström, Erik Frisk,
and Mattias Krysander

Vehicular Systems, Department of Electrical Engineering,

Linköping University, S-581 83 Linköping, Sweden.

Abstract

Information about wheel loader usage can be used in several ways to
optimize customer adaption. First, optimizing the con�guration and
component sizing of a wheel loader to customer needs can lead to a sig-
ni�cant improvement in e.g. fuel e�ciency and cost. Second, relevant
driving cycles to be used in the development of wheel loaders can be ex-
tracted from usage data. Third, online usage identi�cation opens up for
the possibility of implementing advanced look-ahead control strategies
for wheel loader operation.

The main objective of this paper is to develop an online algorithm
that automatically, using production sensors only, can extract informa-
tion about the usage of a machine. Two main challenges are that sensors
are not located with respect to this task and that signi�cant usage dis-
turbances typically occur during operation. The proposed method is
based on a combination of several individually simple techniques using
signal processing, state automaton techniques, and parameter estima-
tion algorithms. The approach is found to be robust when evaluated on
measured data of wheel loaders loading gravel and shot rock.

†This is a formatted version of �Robust driving pattern detection and identi�cation with a wheel
loader application� by Tomas Nilsson, Peter Nyberg, Christofer Sundström, Erik Frisk, and Mat-
tias Krysander, International Journal of Vehicle Systems Modelling and Testing, 2014 Volume 9,
Number 1, pages 56-76. c©InderScience Publishers 2014. Reproduced with the permission of Inder-
Science Publishers. The original paper can be found at http://www.inderscience.com, and by using
the Digital Object Identi�er (DOI): 10.1504/IJVSMT.2014.059156. The formatting is restricted to
changing the article into a single-column format, adjusting sizes of �gures and tables, and adjusting
the referencing style.
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32 Paper 1. Robust driving pattern detection and identi�cation ...

1 Introduction

Wheel loaders are used for a wide variety of tasks, ranging from use as snow-
plows to loading gravel or pallets onto trucks. This work concerns character-
ization of a speci�c customer's vehicle usage. For example, experience shows
that proper matching of machine con�guration, such as sizing of the thermal
management system [1], to the customer pro�le can have signi�cant in�uence on
machine e�ciency and reduce fuel consumption. Since many customers operate
their wheel loaders mainly for speci�c tasks throughout the entire lifespan, there
is a potential for signi�cant e�ciency improvement. Other motivating examples
where knowing the driving behavior is bene�cial are advanced predictive engine
control and automatic gear shifting algorithms. Good estimates of future power
trajectories can be utilized in controls to further improve e�ciency resulting in
lower purchase cost, higher productivity, and lower fuel consumption. A third
area where knowing the customers usage pro�le is bene�cial is during develop-
ment and evaluation of control algorithms. Good knowledge of customer usage
makes it possible to simulate representative driving cycles and thereby obtaining
more relevant evaluation results.

Today, a common situation is that only rough estimates, typically aver-
aged quantities over long periods of time, about customer usage is available.
Therefore, for example, customer adaption is based on quali�ed guesses and
test drive experience and little adaptation to a particular customer's needs is
possible. This situation is the main motivation for this work; to develop an
algorithm that, using production sensors only, automatically extracts detailed
information from customers vehicles during operation. The output of the algo-
rithm should support improved matching of vehicle con�guration and customer
usage, provide driving information for online adaption of engine control and
automatic gear shifting, and provide data for generating relevant driving cycles
to simulate during product development, such as ride comfort considerations
[2]. For the control application, it must be possible to run the algorithm in real
time on board the vehicle. Main challenges are to �rst de�ne what information
that is relevant and then to perform online usage identi�cation robust against
signi�cant usage disturbances.

Related works for on-road automotive vehicles are for example [3, 4, 5], show-
ing a potential to increase vehicle e�ciency by using driving pattern knowledge.
For construction machines this task is more complicated since, for example, the
vehicle does not follow a given road. Control algorithms for hybrid electric vehi-
cles based on pattern recognition are developed in [6] and [7]. A main di�erence
is that the key objective of this work is to analyze usage patterns, not to de-
sign a control algorithm. The key contribution of this paper is an algorithm,
seamlessly integrating techniques from automata theory [8, 9] and system iden-
ti�cation [10], for detecting wheel loader operating patterns, which is robust
against large usage disturbances that inherently a�ects vehicle operation.
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Figure 1: A view of a short loading cycle [11].

2 Problem formulation and challenges

Before the main problem is formulated together with some of the main chal-
lenges, a brief introduction to typical wheel loader usage and sensor con�gura-
tion will be given.

2.1 Wheel loader usage

Figure 1 illustrates common usage of a wheel loader, where gravel is loaded onto
an articulated hauler.

This loading mission consists of repeating the cycle of �lling the bucket at
the pile and emptying it at the receiving hauler. In the �gure, the loader is
starting from point 4, driving towards the pile for �lling the bucket at point
1. The bucket is pushed into the pile, lifted and tilted up at loading. After
reversing the loader to point 4 it approaches the receiver at point 6. The loaded
bucket is lifted during the re-positioning from the pile to the hauler. After
emptying the bucket the loader reverses to point 4 while lowering the bucket.

The load receiver is often, just as in Figure 1, a truck or a hauler. In this
case, when the hauler is full, there will be a pause in the loading. During this
pause the machine is often cleaning the working site or waiting in a dormant
state for a new hauler to arrive for loading.
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Figure 2: The con�guration of the vehicle powered by the internal combustion
engine, ICE. The pressure in the lift cylinder of the bucket pθ and the Ls pressure
pLs are two pressures in the system where only pLs is known in production
loaders. The bucket lift and tilt angles, and the angular speed of the drive shaft
are denoted θ, φ, and |ωds|, respectively.

Figure 3: Side view of a wheel loader, indicating the lift angle θ and the bucket
tilt angle φ.

2.2 Sensors con�guration and measurement data

Figure 2 shows a schematic view of the vehicle where important measured signals
are included. The production sensors used here are measuring the lift angle θ
and the tilt angle φ of the bucket, as de�ned in Figure 3, the pressure pLs in
the load sensing hydraulic pump and the angular speed |ωds| of the drive shaft.
The vehicle has a four speed gearbox and a forward/reverse gear in series, and
both selected gear and gear direction is known. Finally, the driver inputs, such
as hydraulics controls usage, are available. The sensor measuring pressure pθ in
the lift cylinder of the bucket is not a production sensor and will therefore only
be used as a reference.

Figure 4 shows an example of measured vehicle velocity and bucket lift and
tilt angles during typical wheel loader operation. The data has been collected
during a sequence of loading cycles, similar to the one described in Section 2.1,
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Figure 4: Data collected during typical wheel loader operation. in this case
there are six loading cycles and four cleaning cycles.

and cleaning cycles in which dropped gravel is moved back to the pile. This
type of data is the input to the cycle identi�cation algorithm.

It is common that a signi�cant part of the total energy consumption is re-
quired for lifting the bucket with its load and knowledge of load mass is therefore
important for engine control. Also, since moving material is the purpose of the
operation illustrated in Figure 1, relevant e�ciency measures are the mass of
the material moved divided by the time needed or the fuel used. It is therefore
important to keep track of the amount of material handled. The bucket load
is not measured directly, and estimating the load is not trivial, especially if no
additional sensors can be introduced.

2.3 Problem formulation

This paper treats the development of an algorithm for online cycle detection
and identi�cation using only production sensors. The intended output of the
algorithm is illustrated in Figure 4 where cycle detection has been performed.
In addition to the identi�ed cycles, important usage parameters such as the
bucket load are also automatically estimated.

2.4 Challenges

The cycle identi�cation problem is challenging because the speci�cation of di�er-
ent types of cycles are based on what the driver think is done in a given mission.
Figure 4 shows six loading cycles which all perfectly match the description, but
have signi�cantly di�erent signal trajectories with respect to amplitudes and
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lengths in parts of the cycle. In this case the di�erences are caused by the op-
erator not driving fully repetitive, but in general also the driving style di�ers,
di�erent material handled such as shot rock or gravel requires di�erent oper-
ations and the geometry of the site of operation di�ers. For successful cycle
identi�cation the algorithm must be robust against these types of disturbances.

The bene�ts of the cycle detector in parameter estimation will be exempli�ed
with bucket load estimation. Figure 5 shows a loading cycle, according to
Figure 1, with a 50s transportation between points 4 and 6. The �rst peak in pLs
is caused by the bucket �lling and the second peak is caused by the raising of the
bucket before emptying. Estimating the bucket load from the pressure pθ in the
bucket lift cylinder when the machine carries a load would be straightforward,
but the pressure pθ is not measured in production vehicles which means that
the estimation algorithm can only use the load sensing pressure pLs. This
makes the estimation problem more challenging since pLs supplies pressure to
all hydraulics including lifting and tilting. Furthermore, the pressures pθ and
pLs are only similar at speci�c operating modes, as illustrated in Figure 5. This
indicates that intelligent partitioning of the measurements are needed to extract
exactly those parts that are useful for bucket load estimation.

1060 1080 1100 1120 1140 1160 1180 1200N
o

rm
a

liz
e

d
 a

n
g

le
s

θ

φ

1060 1080 1100 1120 1140 1160 1180 1200

time [s]

P
re

s
s
u

re

 

 

t
b

t
u

pLs

pθ

Figure 5: The load sensing pump and lift cylinder pressures, pLs and pθ, during
a transport. The bucket is loaded during the �rst pressure peak and unloaded
at the second pressure peak. Time t = tb corresponds to where the wheel loader
starts backward motion and t = tu when the bucket is unloaded.
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3 Modeling

The objective of this section is to introduce a simple way of modeling opera-
tion of the wheel loader. Key properties of such a model are 1) it should be
possible to model cyclic behavior and 2) support the extraction of important
operation parameters such as bucket load mass and distance traveled etc. This
paper propose modeling the cycles as sequences of discrete events, in which the
events are at a low enough complexity for robustly being detected while diverse
enough to uniquely describe the driving cycles. This structure of building cycles
from events enable using standard automata theory [8] to devise cycle detection
methods in Section 4. Automatic extraction of models directly from measured
data would be interesting, for example using symbolic data mining techniques
[12]. Here, it is assumed that the models are made by hand using engineering
knowledge. Due to the high level of abstraction of the models, this has proven
to be a relatively easy task. The models presented here are focused on bucket
handling, but the methodology has also been used for other types of cycles, e.g.,
timber and pallet handling in [13], by additional modeling of events and cycles.

3.1 Events

The principal modeling object that is used is called an event which represents a
speci�c occurrence in time. First a set of events need to be introduced. These
should be simple enough to be robustly, with respect to usage disturbances,
detected using measurement data and still diverse enough to describe the cycles.

The primary operation described in this paper is handling of gravel and
shot rocks using a bucket. An analysis indicates that six events can be used to
describe the driving cycles in this type of operation. These are:

? transition from dormant to action - a

? transition from action to dormant - d

? transition from backward to forward motion - f

? transition from forward to backward motion - b

? bucket loading - l

? bucket unloading - u

In the illustration shown in Figure 1, event f happens at point 4, and point 1
and 6 are positions where event b happens. Event l occurs near point 1, and
event u near point 6. The events a and d usually occur when the receiver has
been �lled, and the wheel loader is dormant while waiting for a new receiver to
arrive.

3.2 Event descriptions

For the formal statement of the models, the notation zk = z(tk) is used, and
the time intervals are denoted Ilk = {tk, · · · , tl}.
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If the velocity v is 0 and if the lift angle θ and the tilt angle φ are constant
during the ε+1 last time samples ti ∈ Ikk−ε, then a transition dk−ε from action to
dormant operation is detected at time tk. The parameter ε is a model parameter
and will be discussed in Section 4.1. Formally, an event dk−ε is generated if

(vj = 0 and θi = θj and φi = φj)∀ti, tj ∈ Ikk−ε, (1)

Note that the dormant event dk−ε is detected in the end of the interval, i.e. at
time tk, but time stamped with the starting time tk−ε.

An activation event ak is detected if the vehicle has been dormant according
to the de�nition in (1) and starts to move, i.e. if (1) holds for Ik−1

k−ε−1 and

vk 6= 0 or θk−1 6= θk or φk−1 6= φk. (2)

The events f and b are straightforward to de�ne since v is a processed signal
that has no zero-crossing noise. An event fk is generated if there exists an
interval Ikj , where the velocity is negative at the start of the interval, positive at
the end of the interval, and 0 in the, possibly empty, time in between. Formally,
this translates into

vj < 0 and vj+1 = · · · = vk−1 = 0 and vk > 0, (3)

where v is the vehicle velocity, computed from the drive shaft angular speed |ωds|
and if a forward or reverse gear is selected. Note that the length of the interval
is not �xed, but will depend on the number of consecutive time instances with
0 velocity. A corresponding condition for bk is then

vj > 0 and vj+1 = · · · = vk−1 = 0 and vk < 0. (4)

A bucket unloading event u is detected when the tilt angle φ is small enough,
i.e.

uk is generated if φk−1 ≥ ξ and φk < ξ, (5)

where ξ is a model parameter. As can be seen in Figure 4, the tilt angle φ is
given in discrete levels and not a�ected by noise which means that only a single
unloading event is generated when the tilt angle is monotonously decreased.

The bucket loading event l is a bit more complex and is assumed to have
happened if both the lift angle θ and the tilt angle φ has increased signi�cantly
over a time window while the machine is moving forward, i.e.

lk−L is generated if θk − θk−L > α and

φk − φk−L > β and vk−L > 0, (6)

where α and β are model constants and L the length of the time window. Note
that this event is time-stamped at the start of the time window and not at the
end. In contrast to the unloading event, the loading event can be generated
multiple times during one bucket loading.

With the event descriptions (1)-(6) measurement data of velocity v(t), lift
angle θ(t), and tilt angle φ(t) can be transformed into a sequence of symbols
from the alphabet Σ = {a, b, d, f, l, u} with corresponding time stamps.
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3.3 Cycles

As discussed in Section 2, repetitive behavior called cycles is of special impor-
tance. Here, cycles will be modeled using the events de�ned in Section 3.1 as
a state automaton. The start time, tc,s, of a cycle is determined by the �rst
event and the end time, tc,e, is determined by the event following the last event
in the cycle.
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Figure 6: Transition diagram of the automata describing a loading cycle. The
initial state is q0 and the accepting state is q7.

It is possible to model any number of cycles using automatons and here
three common types of behavior will be modeled, loading cycle, cleaning cycle,
and dormant operation. A loading cycle is intuitively described by the sequence
of events flbfub which is accepted by the automaton in Figure 6 by going
through the states q0, q1, q2, q3, q4, q5, and q7. The rationale behind the
model can be realized by going through the event sequence typically generated
in the loading cycle shown in Figure 1. The event f is generated at point 4,
l at point 1, b at point 1, f at point 4, u at point 6, and �nally b at point 6.
However if we only search for the ideal sequence flbfub, the order of events are
crucial to get a �t. Due to minor changes in operator behavior, the events ub
become bu and the reason is that these events occur near each other in time
and small cycle-to-cycle variations a�ect the order of the events. For example,
in Figure 1 this is common at point 6. Also possible multiple bucket loading
events, l, generated at point 1 stresses that the patterns need to be robust
against these disturbances. Due to the automaton modeling language used,
regular expressions, it is straightforward to take such variations into account as
is depicted in the full automata in Figure 6. The model for a cleaning cycle is
slightly smaller but follows a similar structure as shown in Figure 7 and dormant
operation is modeled as in Figure 8.
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Figure 7: Transition diagram of the automata of the cleaning cycle. The initial
state is q0 and the accepting state is q4.
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Figure 8: Transition diagram of the automata describing dormant operation.
The initial state is q0 and the accepting state is q2.

4 Method

In this section it is described how the models from the previous section can be
used in an online algorithm for identifying wheel loader usage including cycle
detection and usage parameter estimation. An overview of the di�erent parts
and the information �ow of the algorithm is shown in Figure 9. The input to the
algorithm is measurement data and the high-level cycle descriptions provided as
automata like the ones given in Figures 6-8. The algorithm can be divided into
three main parts: low-level event detection, cycle identi�cation, and parameter
estimation.
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Figure 9: Data comes from sensors. The events are generated from the rules
(1)-(6). The high-level description are the patterns that are fed to the cycle iden-
ti�cation along with the generated events. Finally, parameters are estimated
and stored together with cycle information in a usage database.

4.1 Event detection

The event detectors (1)-(6) take measurement data as input and generate a
sequence of time-stamped events. The event sequence is then used, instead
of whole data series of measurements, in the cycle identi�cation to achieve
robustness against user disturbances. In order to achieve reliable detection there
are a few parameters in the event detectors that must be tuned. The choice of
the parameter values is made with the aim of robustness in the detection of the
events. The tuning is made by manually comparing video recorded sequences
of wheel loader usage to the corresponding sensor data.

The time needed to robustly decide that the vehicle is dormant is determined
by the parameter ε in (1). If ε is set low it means a risk of detecting dormant
events in for example loading cycles and thus missing detection of these cycles.
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A large value of ε implies that a short period of dormant operation would not
be detected.

The value of ξ in (5) should be set at about the angle at which load would
slide out of the bucket. The recorded data show no example of drivers tilting
the bucket this low except when emptying and in that case the angle is usually
much lower since this makes the emptying quicker. The sensitivity to the value
of ξ is therefore low.

The values of α, β, and L, used in the bucket loading event as de�ned in
(6), can be set according to common values in the recorded data. However,
variations in these signals are large, which increase the risk of missed loading
events. This is primarily handled by increasing the sensitivity of the loading
event detector by decreasing α, β, and increasing L.

4.2 Cycle identi�cation

The inputs to the cycle identi�cation algorithm is an event sequence and a
set of automata each describing a cycle type. The cycle identi�cation is then
performed each time a new event is detected.

Recall that events such as the loading event l and the dormant event d are
not immediately detected. This means that when a new event is detected it is
not sure that it will be the last one in the generated event sequence. In order
to handle the non-causal behavior of incoming events all events after the latest
matched cycle are the input to the cycle identi�cation algorithm. The output
is the set of states in the di�erent cycles that is consistent with the considered
event sequence. Consider as an example if the input event sequence is flbfb
then the output will be q3 and q6 in the loading cycle automaton in Figure 6
and q3 in the cleaning cycle automaton in Figure 7. The string matching is
done similar to the algorithms given in [14, 15].

There are words matching the loading cycle automaton such that the last
part of the word also matches the cleaning cycle automaton and this causes a
non-unique identi�cation of cycles. To illustrate this, consider the word flbfub
which matches the loading cycle automaton in Figure 6. The last part of this
word, i.e. the three events fub also match the cleaning cycle automaton in
Figure 7. To get a unique identi�cation, the patterns are ordered according to
a priority. Patterns with higher priority is matched �rst and for example, here
the loading cycle has higher priority than the cleaning cycle, i.e., if the cleaning
cycle is part of a longer sequence that can be interpreted as a loading cycle the
latter interpretation is preferred. In this way matching coverage is maximized
in this case.

User disturbances can lead to di�erent event sequences, or variations of the
sequences, for repetitions of the same type of cycle. To get a match even with
cycle variation the automaton of the loading cycle in Figure 6 is made with
this variation in mind. However, if the sequence of events does not match the
automaton the algorithm regard this as a mismatch even if there is just a single
di�erence between them. It works for this application but if there would be
more and stochastic variations, approximate string matching techniques would
be of interest [16, 17].
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4.3 Parameter estimation

There are several parameters that are of interest in the analysis of how the
vehicle is operated. Most of these are trivial, such as vehicle speed and gear
selection, and need not be treated further. In this paper a suggested parameter
for separation between short and long loading cycles and an estimation of the
bucket load mass are presented since these require some additional analysis.

Separation between short and long loading cycles

The trivial way of estimating whether the loading cycle is short or long is to use
the cycle time. If the time is above a threshold, the cycle is a long loading cycle,
otherwise it is short. With this criteria a short loading cycle including a stop in
the middle or with a toggle between the states q3 and q4 in Figure 6 could be
classi�ed as a long loading cycle. To get a more robust classi�cation parameter
for distinguishing between short and long cycles the longitudinal distance from
the time tl of the �rst loading event to the time tu of the unloading event is
used, i.e. if v(t) is the velocity of the vehicle the classi�cation parameter is

r =

∫ tu

tl

v(t) dt. (7)

In a short loading cycle the loader reverses approximately the same distance as
it is driving forward and r is close to zero. In a long loading cycle the wheel
loader is driving longer distance forward than backward and r is a positive
number. Therefore, r is calculated for every loading cycle and is compared to
a threshold, ψ, and the classi�cation of short and long cycles is determined
according to

short loading cycle: r ≤ ψ
long loading cycle: r > ψ.

Here the threshold is set to ψ = 30 m.

Bucket load estimation

The bucket load mass is estimated once for each loading cycle. When estimating
the load in the bucket, an a�ne relation between the pressure in the lift cylinder,
pθ, and the mass, mload, relation is used

mload = f(pθ) = aθpθ + bθ, (8)

where aθ and bθ are constants obtained by minimizing the least-squares error
between the model (8) and a measured pressure-mass map. This simple relation
between lift cylinder pressure and loaded mass has proven to work su�ciently
well for our purposes but it is straightforward to use a more accurate description
of the relation between pressure and load, e.g., as in [18]. If the machine operates
at a signi�cant ground slope angle, the accuracy of f(pθ) increases if this angle
is considered.
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As stated previously, there is no sensor in series production loaders for mea-
suring pθ, but only the system pressure, pLs, at the hydraulic pump is known.
The bucket load only a�ects pLs when the valve connecting the lifting cylinder
to the pump is opened, i.e. during transient operation of the bucket. This can
be seen in Figure 5, where these two pressures are given for a loading cycle,
and at the two peaks in pressure, pLs is a good approximation of pθ. However,
it is bene�cial to only base the load estimation on the second pressure peak
where the bucket is lifted before it is unloaded. The reason is that when the
bucket is lifted during loading, the pressure varies depending on if there are,
e.g., roots in the pile or the material handled. The event and cycle identi�cation
algorithm is used to �nd the time interval to use in the estimation of the lift
cylinder pressure, that later is used in the estimation of the bucket load. The
time period of interest is stated to be after the �rst backward event after the
loading event is generated in the loading cycle, tb, and the unloading event is
generated, tu. The equality pLs = pθ in the time interval t ∈ [tb, tu], is assumed
to be valid when two conditions are ful�lled. The �rst condition is based on
that the driver lifts the bucket. The estimated angular velocity, ˆ̇

θ, is used and
the signal is smoothed by a low-pass Butterworth �lter. The interval of interest
is de�ned as

I1 =

{
ti :

ˆ̇
θ(ti) > γ · max

tk∈[tb,tu]

{
ˆ̇
θ(tk)

}}
, (9)

where γ < 1 is a tuning parameter. The condition uses a relative threshold
to achieve as good performance as possible of the estimated pressure in the
lift cylinder, p̂θ, for di�erent driving situations. Due to robustness the second
condition for the assumption pθ = pLs is the interval

I2 =

{
ti : pLs(ti) > δ · max

tk∈[tb,tu]
{pLs(tk)}

}
, (10)

where δ < 1 is a tuning parameter. For time points in I1 ∩ I2, the pressure pθ
is estimated according to

p̂θ =
1

|I1 ∩ I2|
∑

tk∈I1∩I2

pLs(tk). (11)

The bucket load estimate is then

m̂load = f(p̂θ) = aθp̂θ + bθ. (12)

The samples where conditions I1 and I2 are ful�lled are marked with stars in
Figure 5. Both γ and δ are used for removing data that is less accurate due
to low signal amplitudes. Values close to 0 means most data is accepted and
close to 1 that most data is rejected. As long as these extremes are avoided the
sensitivity to the values is small. Here γ = 0.65 and δ = 0.50 have been used.
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5 Evaluation

It is hard to quantify how well the algorithm ful�lls the requirements since it
may be subjective which operation a wheel loader is performing in a particular
situation. In addition, it is not obvious what should be considered to be usage
disturbances within a speci�c cycle type and what should be considered to be
completely di�erent cycles. For example, it is common to adjust the position
of the machine and/or shake the bucket during unloading, but the amount of
deviation that should be allowed within a cycle is subjective. The proposed
algorithm has been evaluated against real data where several drivers have used
a machine, handling di�erent materials, while being �lmed. The resulting data
and �lms have been used for evaluation of the algorithm. The drivers have been
given a driving scenario, such as loading shot rock onto an arti�cial hauler, and
instructed to drive as they would on a regular working day. The drivers have in
most cases operated the vehicle in a cyclic behavior as described in Section 3,
with occasional cleaning of the working site. Visual examination of these �lms
has been used for creating a reference which can be compared to the result of
the algorithm.
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Figure 10: A data sequence with generated events and a detected loading cycle.
The beginning and end of the loading cycle are marked with vertical lines in
the lowest plot.

Figure 10 shows a close-up of one of these datasets. It shows the generated
events and an identi�ed loading cycle. In this particular case, the visible se-
quence of events is ubflbfubflb, and in this sequence a loading cycle flbfub has
been identi�ed. Figure 11 shows the full 3, 600 seconds of the same dataset. The
light-gray segments indicate identi�ed loading cycles, the dark-gray segments
indicate identi�ed cleaning cycles, and the white segments correspond to the
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parts that do not match any of the prede�ned cycles. The examination of this
and the other datasets shows that the accuracy is in general very good. There
are however some exceptions.
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Figure 11: A cycle-partitioned dataset. White = no cycle, light gray = loading
cycle, dark gray = cleaning cycle.

The �rst type is cases where the operator deliberately tries to drive in a
peculiar way. The other type is at occasions, especially when handling shot
rock, when the driver shakes the bucket at loading. It would be easy to adjust
the loading cycle automata in Figure 6 to accept this behavior. Therefore, the
main issue in these cases is to decide whether or not the cycle speci�cations are
supposed to include the observed behavior as well. Without any adjustments
of the models, the results are still valuable, since most of the operation is parti-
tioned into cycles resulting in an accurate overview of the usage. The algorithm
can therefore help directing attention to data regions with unusual operation.

5.1 Robustness of cycle identi�cation algorithm

Nine datasets have been collected to evaluate the performance and robustness
of the cycle identi�cation algorithm to di�erent drivers and driving missions. A
summary of the analysis of these datasets is shown in Table 1. The loader is
operated by three di�erent drivers with di�erent experiences; one is experienced,
one is intermediate, and one is a beginner. Each driver performs the following
three driving missions; one including short loading cycles handling gravel, one
including short loading cycles handling shot rock, and one including long loading
cycles handling gravel. The drivers were instructed to drive the loader as they
would during a normal working day including cleaning of the working site. In
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Table 1: The number of loading cycles the algorithm identi�es for di�erent
drivers with di�erent missions. The values in parenthesis represent the number
of cycles in each case.

Material Operator
Short
loading
cycles

Long
loading
cycles

Cleaning
cycles

Detection
ratio

gravel
experienced 14 (15) 0 (0) 1 (0) 93%
intermediate 15 (15) 0 (0) 0 (0) 100%
beginner 11 (12) 0 (0) 1 (0) 92%

shot
rock

experienced 17 (18) 0 (0) 1 (0) 94%
intermediate 11 (11) 0 (0) 6 (6) 100%
beginner 10 (10) 0 (0) 0 (0) 100%

gravel
experienced 0 (0) 9 (13) 4 (0) 69%
intermediate 0 (0) 15 (15) 0 (0) 100%
beginner 0 (0) 5 (6) 1 (0) 83%

gravel � 18 (18) 7 (10) 10 (10) 92%
96 (99) 36 (44) 24 (16) 93%

addition to these cases, data is collected from a mission combining long and
short loading cycles and cleaning cycles, all handling gravel and using a di�erent
wheel loader. The numbers of cycles detected by the algorithm are presented
in the table, along with the actual numbers of cycles that the drivers have
completed in parenthesis. The last row in the table summaries all missions in
the evaluation.

The dataset on the second last line in the table is also presented in Figure 11,
and in this dataset all cleaning and short loading cycles are detected, but three of
the long loading cycles are not detected. These cycles can be seen in Figure 11
starting at 500 seconds, 650 seconds, and 1100 seconds. The reason for not
being classi�ed as loading cycles is that after the second forward event in each
cycle, see Figure 6, a dormant d and an activation event a are generated. The
generated sequence of events will then neither match the automata given in
Figure 6 nor the one in Figure 7. In the �rst nine datasets presented in Table 1,
the eight missed loading cycles have been wrongly classi�ed as cleaning cycles.
In seven of these cases a loading event is not generated, and in one case the
transition from backward to forward motion is not detected. The reason for not
detecting the direction change is that v is calculated from |ωds|, as mentioned in
Section 3.2, using the selected gear direction. In this case the loader is operating
at a slope and starts to reverse with a forward gear selected. In all, a total of
93% of the 159 cycles in the evaluation datasets are correctly detected and
classi�ed. This corroborates that the algorithm is robust to di�erent drivers,
driving missions and wheel loaders.

5.2 Parameter estimation

As described in Section 4.3, a parameter r that separates short and long loading
cycles is computed, and an estimation of the bucket load is performed. A
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Figure 12: Histogram of r, as de�ned in (7), for the dataset presented in Fig-
ure 11.

histogram of the measure r that separate short and long loading cycles, as
de�ned in (7), for the dataset presented in both Figure 11 and in the second
last line in Table 1, is found in Figure 12. It can be seen that there is a clear
distinction between the values from short loading cycles (r < 0 m), and long
loading cycles (r > 60 m), which indicate that this classi�cation parameter can
be used to separate the two cycle types.

The mass estimator described in Section 4.3 gives an acceptable accuracy,
even though an a�ne relation is used since the main objective was to investi-
gate whether the event and cycle identi�cation would aid the mass estimation.
Figure 13 shows a comparison between the estimated and actual load mass
normalized with the maximum load mass mmax of the loader. As stated in
Section 2.2, the hydraulic pressure in the lift cylinder, pθ, is not measured in
production wheel loaders, but can be estimated from the pump pressure, pLs,
when the driver lifts the bucket. In �nding the time interval when pLs can
be used as an approximation for pθ, it is advantageous to use the results from
the event and cycle identi�cation algorithm. The load estimation is based on
the averaged pressure from (11) and an a�ne relation between the bucket load
and the pressure using (8). As discussed in Section 4.3, knowledge of the ma-
chine geometry and ground slope can be used to improve the accuracy of the
function f(pθ) in (8), and thereby increase the accuracy in the load estimation.
Still, using the machine geometry would not reduce the importance of �nding
a good estimation of the pressure pθ, and it is shown that the event and cycle
identi�cation algorithm gives valuable information to achieve this.

5.3 Summing up

Based on the cycle identi�cation and the parameter estimation it is possible
to summarize how the wheel loader is used for a long period of operation. In
Figure 12 this is done by a histogram of the classi�cation parameter stating
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Figure 13: This �gure shows the bucket load estimation, normalized with the
maximum load of the wheel loader. The estimated normalized masses are given
on the vertical axis and the sensor values on the horizontal axis.

whether the loading cycle is short or long, and in Figure 14 the time spent
in each cycle type is shown. Both these two �gures are based on the dataset
presented in Figure 11. In the pie-chart there is a signi�cant part of the time
that is unspeci�ed. The reason for this can be seen in Figure 11. The driver
does not drive according to any of the modeled cycles in the beginning, at
around 2000 seconds, and at the end of the driving mission. These parts are
correctly classi�ed as unspeci�ed operation and represents more than half of
the time spent in unspeci�ed operations. Further, as stated earlier, there are
three long loading cycles that are not classi�ed in this dataset. Even though
a signi�cant part of the time is stated to be unspeci�ed, 92% of the cycles in
the dataset are correctly classi�ed according to Table 1. This illustrates that
in realistic operation, the proposed algorithm is successful in detecting and
identifying the pre-de�ned cycles. Based on the table it is shown that the cycle
identi�cation algorithm is robust, since 148 of the 159 cycles in the evaluation
datasets collected from di�erent drivers, driving missions and wheel loaders are
correctly classi�ed.

Other values of interest to summarize over long time operation relates to
fuel consumption and productivity, see Table 2 for an example. These values
are based on the load mass estimation, that is shown to bene�t in accuracy by
using the event and cycle algorithm, and thereby avoid the use of additional
sensors.

6 Conclusions

A framework for characterizing wheel loader operation has been developed. Two
types of cycles, loading cycles and cleaning cycles, have been considered, but the
framework is generic and it is possible to also include models for other cycles.
It has been shown that the developed cycle identi�cation algorithm is robust to
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Table 2: The load handled by the loader per time unit and the load handled
normalized with fuel consumption for the three drivers and the nine �rst datasets
used in Table 1. The results are for the total of the three driving missions for
each driver in Table 1.

Driver Mass/time
[ton/hr]

Mass/fuel
[ton/l]

experienced 326 15.3
intermediate 269 14.3
beginner 138 10.2

Short
loading cycle

Long
loading cycle

Cleaning
cycle

Unspecified  

Figure 14: An example of a usage summary.

di�erent drivers, machines, material handled, and the working site layout. Ten
datasets were used in the evaluation, in which four di�erent drivers perform
sequences of di�erent loading and cleaning cycles. In total the ten datasets
contain 159 cycles, out of which the algorithm correctly detects and identi�es
148 cycles (93%). This is a high detection rate, especially considering the low
theoretical complexity of the algorithm and the diversity of the operation.

It is shown that a proposed classi�cation parameter to separate short and
long loading cycles works well, since there is a clear distinction in the value of
the parameter in the two types of cycles. Further, it has been shown that the
use of the cycle and event detection algorithm is bene�cial in the estimation of
the bucket load mass.
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A Nomenclature

a action event
aθ, bθ parameters of the load mass model
b backward event
d dormant event
f forward event
I a set of sampling times
l bucket loading event
mload bucket load mass
mmax maximum bucket load mass
pLs pressure in load sensing hydraulic pump (Ls pressure)
pθ pressure in the lift cylinder of the bucket
qi state of an automaton
r longitudinal distance with load
t time
tb time at backward event
tc,s start time of a cycle
tc,e end time of a cycle
tl time at �rst loading event
tu time at bucket unloading event
u bucket unloading event
v wheel loader velocity
x̂ estimated value of x
ẋ time derivative of x
α, β, L tuning parameters in the loading event detector
γ, δ tuning parameters in the lift cylinder pressure estimator
ε tuning parameter in the dormant event detector
θ lift angle of the bucket
ξ approximate angle at which load slides o�
φ tilt angle of the bucket
ψ threshold for classifying short/long loading cycles
ωds angular speed of the drive shaft
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Abstract

Recent development has renewed the interest in drivetrain concepts
which gives a higher degree of freedom by disconnecting the engine
and vehicle speeds. This freedom raises the demand for active control,
which especially during transients is not trivial, but of which the qual-
ity is crucial for the success of the drivetrain concept. In this work the
fuel optimal engine operating point trajectories for a naturally aspirated
and a turbocharged diesel engine, connected to a load which does not
restrict the engine speed, is derived, analysed and utilized for �nding a
suboptimal operating point trajectory. The analysis and optimization
is made with dynamic programming, Pontryagin's maximum principle
and a suboptimal strategy based on the static optimal operating points.
Methods are derived for using Pontryagin's maximum principle for �nd-
ing the optimal operating point trajectories, for simple load cases. The
time needed for computation is reduced a factor 1000− 100, depending
on engine layout, compared to dynamic programming. These methods
are only applicable to very simple load cases though. Finally, a subopti-
mal calculation method which reduce the time needed for computation
a factor > 1000 compared to dynamic programming, while showing a
< 5% increase in fuel consumption compared to the optimal, is pre-
sented.

†This is a formatted version of �Minimizing Fuel Use During Power Transients for Naturally
Aspirated and Turbo Charged Diesel Engines� by Tomas Nilsson, Anders Fröberg and Jan Åslund,
previously published as the technical report number �LiTH-R-3077�, which is based on a chapter
from the Licentiate Thesis �Optimal Engine Operation in a Multi-Mode CVT Wheel Loader�, 2012,
Tomas Nilsson. The formatting is restricted to changing the article into a single-column format,
adjusting sizes of �gures and tables, and adjusting the referencing style.

53
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1 Introduction

1.1 Background and motivation

Faster, smaller and cheaper computers have created the opportunity for more
intricate control of mechanical systems, or even the introduction of new mechan-
ical solutions that would have been unfeasible without a high level of control.
In the �eld of vehicle engineering this can be seen in the recent diversi�cation of
drivetrain architectures [1]. The motivation for altering the drivetrain is often
to reduce the fuel consumption, for environmental or economical reasons. It is
easy to realize that the fuel consumption also depends on the driving cycle in
which the vehicle operates [2].

The study presented in this report is motivated by wheel loader operation,
and the distinct properties of the operation of such machines. For wheel loaders
there are no standardized driving cycle, but it is clear that the common opera-
tion is highly transient [3] both in power requirement and in vehicle speed. This
is exempli�ed by the scaled engine output in Figure 1, which has been recorded
during two consecutive loading cycles.
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Figure 1: Power consumption of a wheel loader performing two short loading
cycles

The drivetrain of the in-production reference vehicle uses a diesel engine,
a torque converter and an automatic gearbox. This solution has the advan-
tage that it is mechanically robust since the torque converter provides some
disconnection of the wheels from the engine, and that it automatically adapts
to changes in torque. The drawback is that there is always some slip in the
converter, which reduces the e�ciency. The low e�ciency is the motivation for
investigating other types of transmissions for these machines. Any alternative
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transmission must be able to handle all the distinct features of the operation.
The frequent operation at very low speeds indicates that some type of con-
tinuously (or in�nitely) variable transmission (CVT), such as a diesel-electric
solution might be suitable. The introduction of such a layout increases the de-
gree of freedom in the control, and especially allows for a free choice of engine
speed, independent of the vehicle speed. The choice of engine speed during
transients however, is not trivial. The extremely transient operation of wheel
loaders, along with new possibilities of realizing optimal operation, motivates
further examination of optimal and predictive control. This report therefore
focuses on the derivation of the fuel optimal engine speed trajectories during
power transients.

1.2 Previous work

There have been some work done on advanced wheel loader transmission control,
but mainly in the �elds of low level actuator control [4], autonomous vehicles [5]
[6], and hybrid-electric powertrains with heuristic controls [7] [8]. There is also
a vast amount of research on similar drivetrains for on-road passenger vehicles.
Most of these use heuristic control laws [9] [10] or some variant of the ECMS
[11] approach [12] [13]. Apart from these, there are articles such as [14] and [15]
in which optimal trajectories are derived, but not thoroughly explained. In [16]
a thorough investigation of the optimal solution is made, but only for a fully
stochastic future load.

Since it in general is optimal to operate at a stationary point during static
conditions, the online optimization might only require prediction at transients,
and then with a short horizon. Some proposals on how to achieve this can be
found in [17] [18] [19]. In case the vehicle is made autonomous, as proposed by
[5] [6], the controller may also inform the optimizer about upcoming actions.

1.3 Problem outline

Transmissions that enables higher e�ciency through higher controllability are
for example belt type CVTs or hydrostatic or electric drives. These can all be
con�gured in numerous ways to emphasize desired properties. This makes it
impossible to make a general analysis that includes any detail of the transmis-
sion. Since transients are a fundamental part of wheel loader usage, this report
is made to provide deeper understanding of the mechanisms behind the fuel
optimal solutions during transients, without obscuring these by including any
possible restrictions imposed by the transmission. This is done by subjecting
the engine model to a load in the form of a non-stationary output power, and
use di�erent methods for analyzing the fuel optimal solution.

2 System setup

As a �rst approximation the powertrain of a CVT vehicle can be divided into one
power producing and one power consuming part. In a diesel electric transmission
the partitioning could be made at the electric connection by using electric power
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instead of voltage and current, in a hydraulic hybrid it could be made by using
hydraulic power instead of pressure and �ow, and in a belt type CVT it could
be made by using belt power instead of belt force and speed. It is assumed here
that the device has no maximum or minimum gear ratio. If such a partitioning
can be made, any driving cycle can be translated, including e�ciencies on the
power consuming side, to an output power trajectory Pload(t). The e�ciencies
in the power producing side of the transmission, see Figure 2, can be included
in the engine e�ciency.

Pload

Figure 2: The system consists of an engine, the engine side of an in�nitely
variable transmission (e.g. an electric generator) and an output power.

This report is based on the papers [20], [21] and [22], which use engines with
di�erent maximum output powers. In this report the engine from [22] is used.
The report treats both a naturally aspirated and a turbocharged engine. The
di�erences between the setups are mentioned as they appear. The naturally
aspirated engine is referred to as the NA-engine, while the turbocharged is
referred to as the TC-engine.

2.1 Engine model

The engine speed ωe dynamics is modeled as an inertia Ie which is a�ected by
the engine torque Te and a load power Pload.

dωe(t)

dt
· Ie = Te(t)−

Pload(t)

ωe(t)
(1)

The engine torque Te depends on fuel mass per injection mf and engine speed
ωe according to a quadratic Willan's model, as described in [23]. Introduce the
lower heating value qlhv, the number of cylinders ncyl, the number of strokes per
injection nr and the parameters ηe00, ηe01, ηe02, ηe10, ηe11, ηeL0, ηeL2 and de�ne

A =
qlhvncyl

2πnr
(2a)

ηe = ηe0 − ηe1mf (2b)

ηe0 =ηe00 + ηe01ωe + ηe02ω
2
e (2c)

ηe1 = ηe10 + ηe11ωe (2d)

ηeL = ηeL0 + ηeL2ω
2
e (2e)

The Willan's model, expanded with an additional torque loss Tt caused by lack
of air intake pressure, can then be described by Equation (4). The torque loss Tt
is introduced for the modeling of the turbocharged engine, and for the naturally
aspirated engine this loss is zero Tt = 0.

Te = A · ηe ·mf − ηeL − Tt (3)
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The engine is also subject to the state and control restrictions

ωe,min ≤ ωe
0 ≤ mf

Te ≤ Te,max(ωe)
(4)

2.2 Turbocharger model

The torque loss Tt is caused by low air intake pressure, a pressure which de-
pends on the rotational speed of the turbocharger. The turbocharger speed is
assumed to be a �rst order dynamic system with the time constant τt(ωe) and
an asymptotic speed that is a function of ωe,mf . The dynamic relations are
expressed in the corresponding asymptotic and dynamic air intake pressures.
Denote the asymptotic intake pressure by pt,set and the time dependent pres-
sure by pt. Introduce the model and e�eiciency parameters ξτ0, ξτ1, ξt1, ξt2,
ξt3, ηt10, ηt11, ηt20 and ηt21 and de�ne

τt = ξτ0 + ξτ1ωe (5a)

pt,set = ξt1ωe + ξt2mf + ξt3 (5b)

ηt1 = ηt10 + ηt11ωe (5c)

ηt2 = ηt20 + ηt21ωe (5d)

The pressure dynamics can then be described by

dpt(t)

dt
· τt(ωe) = pt,set(ωe,mf )− pt(t) (6)

By de�ning pt,off = pt,set(ωe,mf )−pt the torque loss can then be described by

Tt =

{
ηt1(ωe) · p2

t,off + ηt2(ωe) · pt,off if pt,off > 0

0 if pt,off ≤ 0
(7)

2.3 E�ciency de�nitions

The quasi-static peak e�ciency points Σ are de�ned as the (ωe, Te) that maxi-
mize (8a) as a function of Pload under the restrictions (4) and dωe

dt = dpt
dt = 0 as

described by the Equations (8).

ηe,static =
Pload
Pmf

=
Teωe
ωeAmf

(8a)

ωe,Σ(Pload) = argmax
ωe

ηe,static(Pload) (8b)

mf,Σ(Pload) = argmax
mf

ηe,static(Pload, ωe,Σ) (8c)

The Equations (8) also de�ne Te,Σ = Te(ωe,Σ,mf,Σ). Individual points along
the line Σ is referred to as (quasi) static optimal operating points or SOOPs.
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3 Problem statement

The problem studied is the minimization of the total amount of fuel used, ac-
cording to Equation (9)

min

∫ T

0

Aωemfdt (9)

while ful�lling the engine dynamics Equation (1), the constraints (4) and, in
case the engine is turbocharged, the turbo dynamics (5). This also means that
no deviations from the output load trajectory Pload(t) is allowed.

3.1 Load cases

In Equation (1) the time dependent load Pload(t) is introduced. In this report
two di�erent types of loads are used. The �rst type is from measurements in
a short loading cycle, 'DDP sc' and a long loading cycle, 'DDP lc'. The total
output power is calculated from the measured wheel torque and speed, and
hydraulic pressure and �ow. These load cases are presented in Figure 3.
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Figure 3: The output power trajectories in the load cases 'DDP sc' and 'DDP
lc'.

The other type is arti�cial load cases, and consists of the four pulse and step
cases presented in Table 1. The 'DDP sc' and 'DDP lc' load cases are applied
to both engine setups while the pulse load cases are used for the NA-engine
and the steps load cases are used for the TC-engine. In all four arti�cial load
cases the time before the �rst and after the last steps are selected so that an
increase in any of the times would not a�ect the transient optimization result.
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The time scales in the pulse load cases are selected so that in the slow pulse
the engine has time to settle at the static optimal operating point (SOOP) of
the intermediate output power, while in the quick step it does not. Due to the
increased complexity of the TC-engine, this is only subjected to the single step
load cases. The power levels in these load cases are selected so that the low
step is between two SOOPs on the minimum engine speed limit, while both of
the SOOPs of the high step are above this limit (∼ 85kW ).

Table 1: Stylized load cases for engine-generator set.
Name Load case: Power(Duration)
Slow pulse 100kW (5s)-180kW (5s)-100kW (5s)
Quick pulse 100kW (5s)-180kW (0.8s)-100kW (5s)
Low step 50kW (5s)-80kW (5s)
High step 100kW (5s)-180kW (5s)

4 Optimization Methods

4.1 General problem statement

Introduce the states x(t) of the system, the decision variables, or control signals,
u(t) and the time dependent, non-controllable, disturbance signals w(t). Here
the only disturbance signal is the applied load. The problem studied in this
report can then be stated as

min
u∈U

{
JN (x(T )) +

∫ T

0

G(x, u, w)dt
}

ẋ = F (x(t), u(t), w(t)) (10)

x(0) = x0

along with posible state and control constraints. This problem is, regardless of
the timespan, equivalent to an in�nite dimension optimization problem. The
problem is in general discretized for computerized numerical solving, transform-
ing the problem into a large, but �nite, dimensional optimization problem

min
u∈U

{
JN (x(T )) +

N−1∑
k=0

gk(uk, xk, wk)
}

xk+1 = f(xk, uk, t), k = 0, . . . , N − 1 (11)

4.2 Dynamic programming (DP)

Dynamic programming is a recursive method for solving optimization problems
which develop in stages, such as a discrete time. According to [24] and [25] the
recursion can be stated as

Jk(xk) = min
u∈U

{
g(xk, uk, wk) + Jk+1(xk+1(xk, uk, wk))

}
(12)
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The implementation of the recursion as an algorithm includes a strategic choice.
Denote the discretized states x ∈ X. The 'cost-to-go', Jk+1, is then only calcu-
lated and stored at the grid points xk+1 ∈ X, and is not explicitly known for
xk+1 /∈ X. The method selected for handling this highly a�ects the calculatory
e�ort. Three possible choices are presented here.

If the function xk+1(xk, uk, wk) is invertible, that is if uk(xk, wk, xk+1) is
well de�ned, then g + Jk+1 can be evaluated for each {xk, xk+1} ∈ X com-
bination. With this choice the calculatory e�ort increase with the square of
the size of X but is independent of the controls. If inverting xk+1(xk, uk, wk)
is not possible or desirable (for example if X is large) xk+1(xk, uk, wk) can
be calculated for the discretized u ∈ U , not requiring that xk+1 ∈ X. Then
ũk(xk, wk, xk+1 ∈ X) can be found by interpolation among these uk, followed by
the calculation of g(xk, ũk, wk). Another option is to make the same calculation
of xk+1(xk, uk, wk), but to determine J̃k+1(xk+1(xk, ukwk)) by interpolation
among the Jk+1(xk+1 ∈ X). In this case the calculatory e�ort increase linearly
with the number of possible state and control combinations. In this thesis the
third option is used, producing the following algorithm
1: For xN ∈ XN , declare JN (x) = JN
2: for k = N − 1, . . . , 1 do
3: For each xk ∈ Xk, simulate dx

dt for tk to tk+1 for all u ∈ U to �nd
xk+1(xk, u, wk)

4: For each xk ∈ Xk

Jk(xk) = min
u∈U

(
g(xk, u, wk) + J̃k+1(xk+1(xk, u, wk))

)
(13)

with J̃k+1(xk+1) interpolated from Jk+1(xk+1 ∈ X)
5: end for
This �rst part establishes a cost-to-go map J(x ∈ X, t). In the following part
the optimal trajectory x∗(t), u∗(t) is calculated
1: Select an initial state x∗0 = x0

2: for m = 1, . . . , N do
3: For x∗m−1, simulate

dx
dt for tm−1 to tm for all u ∈ U to �nd xm(x∗m−1, u)

4: Select

u∗m−1 = argmin
u∈U

(
g(x∗m−1, u, wm−1)dt+ ...

+J̃m(xm(x∗m−1, u, wm−1))
)

(14)

with J̃m(xm) interpolated from Jm(xm ∈ X)
5: x∗m = xm(x∗m−1, u

∗
m−1, wm−1)

6: end for
This second part also indicates how DP can be used to implement an optimal
state feedback scheme. In each repetition of the for-loop the optimal control
action u∗m−1 is calculated, depending on the state x∗m−1. Here the state x

∗
m−1

is found by simulation, but in a feedback application the actual state of the
system at t = m−1 would be used instead. If there is then an unexpected state
disturbance so that x̂m−1 6= x∗m−1, in which x̂ is the actual state of the system,
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the algorithm will �nd the control that minimizes the cost-to-go from this state
x̂m−1. Apart from this attractive property, the method also guarantees that if
a solution is found, this is the global optimum. This does however require that
the grids are su�ciently dense, not least to avoid in�nite cost spread [26]. A
well written introduction to dynamic programming can be found in [27], which
also mentions some tricks and pitfalls.

4.3 Pontryagin's maximum principle (PMP)

Pontryagin's maximum (or minimum) principle is a condition necessary for op-
timality. Before the condition is stated, a function called the Hamiltonian is
introduced

H = G(x(t), u(t), w(t)) + λT (t)F (x(t), u(t), w(t)) (15)

in which G and F is the cost and dynamics functions from (10) and λ is a set
of continuous functions with one component corresponding to each of the com-
ponents of x. Then the Pontryagin's maximum principle, which was presented
in [28] and is described and used in [29], state that for x∗, u∗ to be optimal, λ∗

must exist and

H(x∗, u∗, w, λ∗) ≤ H(x∗, u, w, λ∗) ∀u, t ∈ [t0, T ] (16)

along with boundary conditions for λ∗, which depend on whether the �nal
time T is �xed or subject of optimization, must be ful�lled. By di�erentiating
H this condition can be rewritten as a set of necessary conditions. For the
unconstrained problem (10)

∂H

∂u
= 0 (17a)

∂H

∂x
= −λ̇ (17b)

∂H

∂λ
= ẋ (17c)

x(0) = x0, λ(T ) =
∂JN
∂x

(x∗(T )) (17d)

must be ful�lled for x∗, u∗ to be optimal. Condition (17c) is trivially ful�lled,
as can be seen by di�erentiating (15). If the problem includes state or control
constraints the Hamiltonian must be expanded, but the conditions (17) are
su�cient for the analysis in Section 7.

4.4 Application of optimization

The application of dynamic programming to this problem is straightforward.
The cost to be minimized is the total amount of fuel used. In general this
cost formulation will cause all energy stored in the system to be drained at
the end of the cycle. Here this would be seen as the terminal engine speed
approaching ωe,min, regardless of the terminal output power. Especially for
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output power steps and pulses, it is instead desired that the engine settles at
the SOOP corresponding to the terminal output power. Since the energy in the
system increase with increasing ωe(T ), pt(T ), introducing a JN with a su�cient
penalty for ωe(T ) < ωe,Σ(T ), pt(T ) < pt,set(ωe,Σ(T ),mf,Σ(T )) is su�cient for
bringing the end state toward the static optimal operating point. In this work
the terminal cost

JN =

{
0 for xN ≥ Ω
∞ else

(18)

is used, with Ω being equal to xΣ(Pload(T )) except when stated otherwise. The
states and controls for the two engine setups are collected in Table 2.

Table 2: Standalone engine states and controls.
NA-engine TC-engine

States X ωe ωe, pt
Controls U mf mf

Also recapitulate the PMP conditions for these two setups. For the uncon-
strained TC-engine the Hamiltonian become

H = Aωemf +
λ1

Ie
(Te −

Pload
ωe

) +
λ2

τt
(pt,set − pt) (19)

in which λ1 is the adjoint variable related to the engine speed dynamics (1) and
λ2 is the adjoint variable related to the turbo pressure dynamics (5). This gives
the following conditions necessary for optimality

∂H

∂mf
= Aωe + λ1

∂

∂mf

dωe
dt

+ λ2
∂

∂mf

dpt
dt

= 0 (20a)

∂H

∂ωe
= Amf + λ1

∂

∂ωe

dωe
dt

+ λ2
∂

∂ωe

dpt
dt

= −dλ1

dt
(20b)

∂H

∂pt
= λ1

∂

∂pt

dωe
dt

+ λ2
∂

∂pt

dpt
dt

= −dλ2

dt
(20c)

The optimality conditions for the unconstrained NA-engine can be retrieved by
using λ2 = 0 and disregarding equation (20c).

5 Engine map and static optimal solution

The quasi-static optimal line Σ is de�ned in (8). The Σ for the turbo engine is
identical to that of the naturally aspirated engine, since ṗt = 0⇒ Tt = 0. This
is a simple problem which can be solved either direct as the problem (8) or by
solving the PMP problem with d

dt [ωe, λ1, pt, λ2] = 0. The later is valid only when
the solution ful�lls ωe,min ≤ ωe though, since the state and control constraints
is not included in the presented PMP formulation. The engine e�ciency map
is presented in Figure 4 along with ωe,min, Te,max, output power (Teωe) lines
and the Σ-line.
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Figure 4: Engine map showing e�ciency curves, output power lines with kW
markings, state and control restrictions according to (4) and the quasi-static
optimal line which for output powers below ∼ 85kW coincide with ωe,min and
above ∼ 240kW with Te,max.

6 DP derived optimal trajectories

The optimal engine map trajectories for the pulse load cases for the NA-engine
are presented in Figure 5. In both these cases the operating point moves in
a counter clockwise direction; before the output power increase the operating
point diverges toward high speed. When the step occur, the operating point mo-
tion changes direction toward the new static optimum by reducing the speed and
increasing the torque. Before the power reduction the engine speed decreases,
and at the step the motion changes direction and the speed increases while the
torque falls and the operating point converges to the new static optimum.

The optimal engine map trajectories for the steps load cases for the TC-
engine are presented in Figure 6. Just as for the NA-engine, the engine speed
increases before the step, and when the step occurs the direction of movement
of the operating point changes. After the step the engine speed drops while
the torque increases, converging toward the new static optimum. Both the
trajectories displayed in Figure 6 are less smooth than those for the NA-engine.
This is caused by a somewhat sparse discretization, which is motivated by the
increase in calculation time caused by the added state.

In Figure 7 the engine operation trajectories of the NA- and TC-engines
are compared. Figure 3.7(a) shows the engine speed and torque during the
�rst 10s of the slow pulse load case for the NA-engine and Figure 3.7(b) shows
the engine speed and turbo-pressure during the high step load case for the
TC-engine. The load case parts are identical, apart from that the NA-engine
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Figure 5: Engine map trajectories for the naturally aspirated engine in the slow
(3.5(a)) and quick (3.5(b)) pulse load cases.
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Figure 6: Engine map trajectories for the turbocharged engine in the low
(3.6(a)) and high (3.6(b)) step load cases.

does not need to remain at the higher SOOP at 10s. The NA-engine starts
changing its state about one second before the step, while the TC-engine starts
about three seconds before the step. Note that while both setups cause a speed
overshoot, this is substantially larger for the TC-engine. Figure 3.7(b) shows
that before the step, the increasing engine speed alters the turbo set-pressure
so that it is roughly at the new static optimal level when the step occur. The
actual pressure starts to increase as soon as the set pressure starts to change,
but at the time of the step it still is far from the new static level. After the step,
the pressure keeps increasing while the set pressure remains fairly constant and
the engine speed falls back toward the new static optimum.

Figure 8 shows the engine map trajectories for the two engine setups in
the short loading cycle. These trajectories should be compared to those in
Figures 5 and 6. The movement is still counter clockwise, and the patterns of
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Figure 7: Engine operation during steps for the NA- and TC-engines.

the movement remain, though the direction changes are less pronounced than
in the solutions for the steps and pulses load cases since the output power
changes are more ramped. The engine speed is generally higher for the TC-
engine (972rpm mean) than for the NA-engine (861rpm mean), which is caused
by the need for keeping the turbo pressure up. It should be noted that this is
despite having access to perfect prediction of future load. Note that the initial
operating point for the TC-engine is at a much higher engine speed than for the
NA-engine. The initial conditions x(t0) are selected so that the results could be
readily used for evaluation of the suboptimal methods described in Section 8.
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Figure 8: Engine map trajectories for the naturally aspirated (3.8(a)) and the
turbocharged (3.8(b)) engine in the 'DDP sc' cycle.
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7 PMP trajectory derivation

The solution to a DO problem must ful�ll the conditions stated by Pontryagin's
maximum principle (PMP). Section 7.1 analyze the NA-engine step/pulse re-
sults presented in Section 6 using these conditions. In Section 7.2 this analysis
is utilized for developing a method for deriving the same optimization results.
Section 7.3 expands this method for application on the TC-engine.

The PMP formulation in Section 4.3 does not include the constraints (4). A
solution to the unconstrained problem (9) for a speci�c load Pload(t) is optimal
also for the constrained problem if and only if it does not violate the constraints
(4). It is obvious that solutions for the unconstrained problem for steps to or
from loads with ωe,Σ(Pload) = ωe,min will violate these constraints. Therefore
this section only treat load cases with ωe,Σ(Pload) > ωe,min.

7.1 Analysis of optimization results

This analysis treats the high step load case, which is identical to the �rst part of
the slow pulse load case, applied to the NA-engine. The DP result for the slow
pulse load case is presented in Figure 3.5(a), and the part used is presented again
in Figure 3.9(a). Equation (20a) can be used for transformation of positions in
an ωe-Te engine map into an ωe-λ1 engine map. For the NA-engine this relation
can be rewritten as

λ1 =
ωeIe

2ηe1mf − ηe0
(21)

Figure 3.9(b) shows such a transformation of the map of Figure 3.9(a), including
e�ciency curves, output power lines with kW markings, the static optimal line
Σ, the constraints (4) and the DP derived optimal operating point trajectory. In
Figure 3.9(a) the trajectory starts at the lower left, moving toward the upper
right, and when the step occur the direction of motion changes so that the
maximum engine speed occur at the instant of the step. In Figure 3.9(b) this
translates to initial movement toward the lower right and a change of direction
of motion at the instant of the step.

The dynamics of the adjoint variable λ1(t) is described by Equation (20b)
(with λ2 = 0). This equation can for the NA-engine be rewritten as

λ̇1 = −Amf −
λ1

Ie

(
∂Te
∂ωe

+
Pload
ω2
e

)
(22)

in which
∂Te
∂ωe

= (ηe01 + 2ηe02ωe − ηe11mf )Amf − 2ηeL2ωe (23)

Since Equation (21) eliminates the only degree of freedom, all dynamics of the
optimal solution is governed by Equations (1) (the engine speed) and (22) (the
adjoint variable). The properties of a two dimensional autonomous dynamic
system can be visualized by phase planes. The time dependent load means this
system is not autonomous, though for piecewise constant loads, such as steps
or pulses, the system can be regarded as piecewise autonomous. The phase



7. PMP trajectory derivation 67

800 850 900 950 1000 1050 1100 1150 1200 1250
900

1000

1100

1200

1300

1400

1500

1600 0.4

0.4

0.405

0.405

120

150

Engine speed [rpm]

E
n

g
in

e
 t

o
rq

u
e

 [
N

m
]

(a)

800 850 900 950 1000 1050 1100 1150 1200 1250
−2000

−1900

−1800

−1700

−1600

−1500

−1400

−1300

0.10.2
0.3
0.34

0.36

0.38

0.39

0.39

0.4

0.4

0.405

0.405

20

40

60

90

120

150

180

210

Engine speed [rpm]

λ
1

(b)

Figure 9: DP derived Optimal solution for the high step load case in ωe-Te
(3.9(a)) and ωe-λ1 (3.9(b)) engine maps.

planes for the system (1),(22) at the two output power levels of the high step
load case are presented in Figure 10. The �gure also shows the constraints (4),
the static optimal line Σ and the DP-derived optimal trajectory, as shown in
Figure 3.9(b).
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Figure 10: DP derived Optimal solution for the high step load case along with
the 100kW (3.10(a)) and 180kW (3.10(b)) ωe-λ1 phase planes.

Figure 10 shows the dynamics behind the optimal solution for the high
step load case. The �rst segment, the movement toward the lower right, occur
when Pload = 100kW and is therefore governed by the 100kW phase plane
(Figure 3.10(a)), while the second segment, the approach of the second SOOP,
is governed by the 180kW phase plane (Figure 3.10(b)). Section 7.2 starts with
these phase planes and presents a method not only for visualizing but also for
deriving the optimal solutions for similar load cases.
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7.2 Optimal trajectory derivation for the NA-engine

This section shows how the reasoning in the previous section can be reversed
and optimal trajectories be derived from the PMP conditions. The phase planes
shown in Figure 10 indicate that, for each constant Pload, the SOOP is a sad-
dle point of the corresponding autonomous system (24). This is con�rmed by
the eigenvalues of the Jacobian of this system, evaluated at the corresponding
SOOP, since one is positive and the other is negative.

d

dt
[ωe, λ1]T (Pload) (24)

The unstable and stable manifolds of the autonomous system can, in a small
region near the SOOP, be approximated by the eigenvectors of the Jacobian.
The stable (dashed) and unstable (dotted) eigenvectors and the previously pre-
sented phase-planes corresponding to Pload = 100kW and Pload = 180kW are
shown in Figure 11. More accurate approximations of the manifolds, valid out-
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Figure 11: Phase planes along with stable (dashed) and unstable (dotted)
eigenvectors of the Jacobian of the dynamic system (24) with Pload = 100kW
(3.11(a)) and 180kW (3.11(b)).

side the vicinity of the SOOP, can be obtained by simulations backward in time
for the stable manifolds and forward in time for the unstable manifolds initiated
from the SOOP with small, ε, disturbances in the directions of the eigenvectors.
The result of such simulations, corresponding to the situations of Figure 11, are
displayed in Figure 12.

The optimal operating point trajectory for an output power step (in this
example 100kW − 180kW ) which starts and ends at the SOOPs of the initial
and terminal output powers, must start by leaving the �rst SOOP along a path
in the unstable manifold of the earlier autonomous system. At the instant of
the step the operating point must switch to a path in the stable manifold of the
later autonomous system. Since the trajectory must be continuous the operating
point must be at an intersection of these manifolds at the instant of the step.
In general there is only one such intersection, which is easily found from the
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Figure 12: Simulation derived stable (dashed) and unstable (dotted) manifolds
of the system (24) with Pload = 100kW (3.12(a)) and 180kW (3.12(b)).

simulated paths. When the point of intersection is found the excess parts of the
simulated paths are cropped of and the time-scales of the simulations behind
Figure 12 are adjusted so that a single, continuous, ωe(t),λ1(t) trajectory is
obtained. This trajectory is then the optimal solution. Graphically, this solution
can be found by simply superposing Figure 3.12(a) with Figure 3.12(b) and
cropping of excessive parts of the paths. Figure 13 shows the results as derived
with this method (continuous) and with dynamic programming (dashed) for the
upward and downward steps of the slow pulse load case. This solution can then
be translated into an ωe(t),Te(t) trajectory by Equation (21).

This method can be expanded to somewhat more complicated load cases. If
the case starts and ends with episodes of constant power, the optimal ωe(t),λ1(t)
trajectory must start with a leaving of the SOOP of the initial output power
along the corresponding unstable manifold, and end with an approach of the
SOOP of the terminal output power along the stable manifold. This is illus-
trated in Figure 14 by the solving of the quick pulse load case. This case consists
of 5s at 100kW , 0.8s at 180kW and �nally 5s at 100kW . The optimal trajec-
tory must therefore start with a leaving of the 100kW SOOP along a path in
the corresponding unstable manifold (dotted) and end by approaching the same
SOOP along the stable manifold (dashed). Solving the quick pulse optimiza-
tion problem therefore translates to �nding a path in the 180kW phase plane,
as shown in the �gure, that starts on the dotted line, ends on the dashed line
and has a transition time tT = 0.8s. If the starting point of the transition is at
ti from the initial SOOP along the unstable manifold, the problem can be for-
mulated as minti |tT − 0.8|, which is locally convex, making the problem easily
solved. The resulting transition trajectory is indicated in Figure 3.14(a) by the
gray line. In Figure 3.14(b) this solution (continuous) is translated to an ωe,Te
map and compared to the solution derived with DP (dashed).
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Figure 13: PMP (continuous) and DP (dashed) derived optimal solutions for
the slow pulse load case.
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Figure 14: Illustration of the PMP-method for solving the quick pulse load case.
Figure 3.14(a) shows the stable and unstable 100kW manifolds along with the
180kW phase plane and the 0.8s, 180kW transition path. In Figure 3.14(b) the
PMP (continuous) and DP (dashed) derived optimal solutions are compared.

7.3 Optimal trajectory derivation for the TC-engine

This section expands the method derived in the previous section for use with
the TC-engine. The optimal solutions for the TC-engine is governed by the
four dynamics Equations (25) and the static control relation (20a). The four
dimensions of this problem means that phase planes can no longer be drawn
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and the problem can therefore not be solved graphically.

d

dt
[ωe, λ1, pt, λ2](Pload) (25)

The formulation of the torque loss Tt in Equation (6) may cause discontinu-
ities in the optimality conditions (20) due to the di�erentiation, which severely
complicates simulation. One solution may be to approximate the discontinuities
with a tangent function. In a step however it can instead be assumed that the
intake pressure will not cross the discontinuity; pt will ful�ll pt < pt,set in an
upward step and pt,set < pt in a downward step, so that for steps the discon-
tinuity can be disregarded. In this section, just as in the previous, the upward
high step load case is studied.

In the same way as for the NA-engine, the Jacobian of the system (25)
is evaluated at the SOOPs of, in this example, Pload = 100kW and Pload =
180kW and the eigenvalues are calculated. These show that the SOOPs are
saddle points, since two of the four eigenvalues are positive while the other
two are negative. For the NA-engine, the optimization problem is easily solved
since the trajectories simulated and presented in Figure 12 covers the entire
stable and unstable manifolds within the reasonable engine operating region,
and the point of intersection is easily found. For the TC-engine however, each
of the manifolds are two dimensional. Calculation of the complete unstable
manifold would therefore require in�nitely many simulations, initiated from the
SOOP with small disturbances in all directions that are combinations of the
eigenvectors corresponding to the positive eigenvalues, and vice versa for the
stable manifold. Recall however that the objective is not to �nd the manifolds,
but only the trajectories within these manifolds that connect the SOOPs of
the initial and terminal Pload. Since the manifolds are two dimensional and
the state space is four dimensional, there is in general a single point at which
these manifolds intersect, and therefore only one combination of eigenvectors
that produce trajectories that intersect. Since the location of the intersection is
unknown, the problem is reformulated as a problem of �nding the combination
of eigenvectors that minimizes the minimum distance between the simulated
trajectories. Similar problems are treated for example in [30]. Denoting the
initial and terminal output powers P1 and P2 and using the notation v1,1, v1,2

for the unstable eigenvectors corresponding to P1 and v2,1, v2,2 for the stable
eigenvectors corresponding to P2 the problem is formulated as

min
s1,t1,s2,t2

‖X1(P1, t1)−X2(P2, t2)‖2 (26)

0 < [t1,−t2]T , 0 ≤ [s1, s2]T ≤ 2π (27)

in which

Xn = [ωe, λ1, pt, λ2]T (Pn, tn), n = 1, 2 (28)

are simulated from tn = 0 forward and backward in time with initial conditions
that are small, ε, perturbations from the SOOPs according to

Xn(tn = 0) = XΣ(Pn) + ε
(

sin(sn)vn,1 + cos(sn)vn,2
)
, n = 1, 2 (29)
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and the components of Xn in (26) being scaled with the average of the values
of the component at the two SOOPs. Numerically this is solved as one external
and one internal minimization problem. The external minimizes ‖X1 − X2‖2
over the disturbance direction combination s1, s2. Inside this, with s1, s2 given,
X1(0<t1),X2(t2<0) is simulated and the minimum distance between the tra-
jectories is determined by minimizing ‖X1 −X2‖2 over t1, t2. Each of the two
internal simulations start at t1 = t2 = 0 and proceed until some state leave a
prede�ned reasonable operating range. If a solution to the problem is found,
the result of (26) should approach 0. The resulting point X1(t1) ≈ X2(t2) is
then the intersection of the manifolds. This is the point at which the output
power step occur and the operating point movement switch from one manifold
to the other. Finally the times are shifted so that t1 and t2 coincide with the
instant of the step. The result is a continuous operating point trajectory that
start at XΣ(P1), ends at XΣ(P2) and has the step correctly placed in time.

The method is illustrated by the high step load case. Figure 15 shows the
static optimal line (gray), the SOOPs (markers), the unstable (dotted) and
stable (dashed) trajectories and a dark gray line which indicate the position
of the minimum distance between the trajectories. Figure 16 shows the ωe,Te
translated trajectories in an engine map. Figure 17 shows the time-adjusted
unstable and stable engine speed and turbo pressure trajectories along with the
DP-derived solution (gray). Typical calculation times experienced for �nding
this solution have been around 30s, which is considerably faster than the more
than 2500s needed for �nding the solution with dynamic programming. On the
other hand, this method works only for load steps and, since the engine speed
overshoots are larger for the TC-engine than for the NA-engine, at a narrow
output power range.
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Figure 15: Intersecting stable (dashed) and unstable (dotted) trajectories for
the high step load case in ωe,pt (Figure 3.15(a)) and λ1,λ2 (Figure 3.15(b))
maps. The minimum distance between the trajectories is marked with gray.
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Figure 16: Intersecting stable (dashed) and unstable (dotted) trajectories for
the high step case in an ωe,Te map. Note the minimum distance marker (gray).
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Figure 17: PMP-derived (dotted & dashed) compared to DP-derived (gray)
solution for the high step load case. The dark gray lines indicate XΣ(Pload(t)).



74 Paper 2. Minimizing Fuel Use During Power Transients ...

8 Suboptimal method development

Method for the NA-engine:

As mentioned, DP has several advantages but is slow while the PMP methods
presented above are fast but very restrictive in which load cases can be treated.
Another method which is fast and works for all load cases is desired, even if
the resulting trajectories become suboptimal. Using ωe(t) = ωe,Σ(Pload(t)) is
not possible, since output power steps would then imply engine speed steps.
Inspiration for a method can instead be found in the optimal trajectories, for
example in Figure 8. The operating point of the NA-engine seldom move far
from the static optimal line Σ. A natural suboptimal strategy is to keep the
operating point exactly on the line Σ at all times. Such a trajectory can be found
by adding a large cost for deviation from this line to the DP algorithm, but
solving this problem would be as computationally costly as solving the original
problem. Instead start by rede�ning the static optimal line by introducing
a small inclination in the minimum engine speed, so that at high torque the
minimum speed is somewhat higher, to make Te,Σ(ωe) well de�ned. The rule

Te(t) = Te,Σ(ωe(t)) (30)

then de�ne the control signal, and thereby eliminate the only degree of freedom.
The problem is therefore reduced from an optimization problem to �nding the
state and control trajectories that correspond to a set of admissible boundary
conditions. Observe that as long as Te,Σ(ωe) · ωe increase with increasing ωe
applying (30) will make the system unstable. This means that at the instant of
an output power step the engine must already have exactly reached the terminal
stationary operating point by a preceding divergence from the initial stationary
operating point, initiated by a small disturbance. Since the system is always
unstable it can easily be simulated backward in time from an arbitrary terminal
engine speed, for example using the Euler method according to Equation (31).

ωe,k−1 = ωe,k −
(
Te,Σ(ωe,k)ωe,k − Pload

ωe,kIe

)
dt (31)

This method works well, as illustrated by Table 3, for all cases tested. The
table shows fuel usage in the solutions derived with DP and the suboptimal
method, along with typical calculation times experienced. The same x(T ) is
used in both methods and the x(0) from the suboptimal method is used as
initial condition for the DP solving. The last row shows the relative increase in
fuel consumption and reduction of calculation time for the suboptimal method
compared to DP. Figure 18 shows the suboptimal and optimal engine speed and
torque trajectories. The ωe,Σ(Pload(t)), Te,Σ(Pload(t)) trajectories that would
have been applicable and indeed optimal for an engine with zero inertia Ie are
included as a reference. The �gure shows that the engine speed reacts somewhat
later to upcoming load changes in the suboptimal solution than in the optimal.
The example is a cutout from the 'DDP sc' load case.
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Table 3: Calculation e�ort and fuel usage with the suboptimal method.
Fuel usage [ml] Calculation time [s]

DDP 'sc' DDP 'lc' DDP 'sc' DDP 'lc'
DP 152.8 675.9 1270 6480
Suboptimal 152.9 676.5 0.38 1.89
Relation +.086% +.099% 1 : 3340 1 : 3430
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Figure 18: Engine speed and torque. Gray is static optimum
(ωe,Σ(Pload(t)),Te,Σ(Pload(t))), continuous is suboptimal and dashed is optimal.

Method for the TC-engine:

The expansion to the TC-engine is not trivial. The turbocharger stable in the
forward direction, so it appears unstable in the backward direction and cannot
be included in the simulation (31). It is tempting to derive an ωe(t), Te(t)
trajectory while disregarding pt(t), and then simulate (5) forward in time while
compensating for Tt with increased mf . Unfortunately this is not possible
for a general load case for this engine. This is most obvious for an upward
step between two SOOPs with ωe,Σ = ωe,min. With this method, and with a
neglectable minimum speed inclination, a step in Pload requires a step in Te,
and thereby in mf . Equations (5)-(6) indicate that the pt dynamics prevents
making arbitrarily big steps in Te simply by steps inmf . It is therefore necessary
to increase pt in preparation for upcoming output power steps and/or to use
power from the engine inertia Ie. Preparatory increasing of pt has to be done
by altering the engine speed and torque trajectories, possibly deviating from
the static optimal line. The following algorithm is therefore proposed:
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1) Find ωe(t),mf (t) either by backward simulation of (1) assuming pt,off = 0
or by assuming Ie = τt = 0⇒ ωeTe = Pload, pt,off = 0 with Te = Te,Σ(ωe).

2) Using ωe(t),mf (t) from 1), simulate (5) forward in time to �nd a �rst
estimate of pt(t), and thereby also of Tt(t).

3) Update ωe(t),Te(t) by simulating (1) backward in time while adding the
result form 2) to the load; Te(t) = Te,Σ(ωe)− Tt(t) = Pload

ωe
− dωe

dt Ie.

4) Update mf (t),pt(t),Tt(t) by simulating pt forward in time, in each step
solving Equations (1)-(5) for mf so that Te = Pload

ωe
− dωe

dt Ie.

If Ie=τt= 0 is assumed in step 1), this step can be performed inside step 2).
After step 4) a feasible ωe(t),pt(t),mf (t) trajectory has been found. This method
works well for all cases tested, as illustrated by Table 4. The table shows the fuel
usage in the trajectories derived with DP and the suboptimal method, along
with typical calculation times experienced. The same x(T ) is used in both
methods and the x(0) from the suboptimal method is used as initial condition
for the DP solving. This is also the cause of the high initial engine speed in
Figure 3.8(b). The last row shows the relative increase in fuel consumption and
reduction of calculation time for the suboptimal method compared to DP.

Table 4: Calculation e�ort and fuel usage with the suboptimal method.
Fuel usage [ml] Calculation time [s]

DDP 'sc' DDP 'lc' DDP 'sc' DDP 'lc'
DP 154.8 701.0 6800 38500
Suboptimal 157.2 725.2 2.10 10.2
Relation +1.54% +3.46% 1 : 3240 1 : 3800

An example of resulting engine speed and turbo pressure trajectories are
compared to the optimal in Figure 19. The example is a cutout from the 'DDP
sc' load case. The �gure shows that while the suboptimal engine speed di�ers
signi�cantly from the optimal, the suboptimal turbo pressure trajectory is close
to the optimal. Since the operating point is forced to leave the static optimal
line, the engine map trajectories for the low and high steps load cases are also
presented in Figure 20. In the high step load case the suboptimal and optimal
trajectories are close. In the low step load case, just as in the 'DDP sc' case, the
engine speed reacts later in preparation for upcoming loads in the suboptimal
solution.

9 Discussions and comments

9.1 Dynamic programming

The dynamic programming optimization in this report is fairly straight-forward.
The result for the naturally aspirated engine is a bit unexpected though; before
output power steps it is optimal to accelerate or decelerate past the upcoming
static optimal engine speed, and approach the new static optimum from the
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Figure 19: Engine speed and turbo pressure. Gray is static optimum
(ωe,Σ(Pload(t)),pt,Σ(Pload(t))), continuous is suboptimal and dashed is optimal.
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Figure 20: Suboptimal (continuous) and optimal (dashed) trajectories for the
TC-engine in the low (3.20(a)) and high (3.20(b)) step load cases.

'wrong' direction after the step. The motion of the engine operating point is
counter clockwise in all cases studied, so that it travels toward higher engine
speeds below the static optimal line and toward lower speeds above this line.
This di�ers from the result presented in [31], in which the initial operating point
movement is in a clockwise direction. The main operating point motions in [31]
however seems to be caused by a bad choice of initial and terminal states. In
this paper the engine is forced to start and �nish at the static optimal points
corresponding to the initial and terminal output powers, and given su�cient
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time to move between these so that the trajectories would not change if more
time were added to the beginning or the end of the load cases. The primary
problem with DP, which is encountered in both engine setups but especially for
the turbocharged engine, is the high calculatory e�ort. The most obvious way
of countering this is to reduce the discretization grid densities, though care has
to be taken to avoid large simulation errors and faulty in�nite-cost spread (as
mentioned in Section 4.2).

9.2 PMP based methods

The phase planes in Section 7.1 is used to validate the results derived with
dynamic programming and to provide insight into the the mechanisms behind
the trajectories. This insight is enhanced by the actual derivation of optimal
trajectories in Section 7.2, and the expansion in Section 7.3 which show that
the reasoning is valid also for the TC-engine. The actual solving of the dynamic
optimization problems in this section is also fast, compared to dynamic pro-
gramming. The treatment therefore provide an excellent pedagogic example of
optimization with Pontryagin's maximum principle. The methods are however
highly restrictive in the load cases which can be treated. The PMP formulation
used does not include the state and control constraints (4) and the methods are
only practically usable for output power steps or, for the NA-engine, slightly
more complicated cases.

9.3 Suboptimal methods

The developed methods for �nding suboptimal solutions works well for both of
the engine setups. In both cases the time for �nding a solution is reduced by
a factor > 3000, while the amount of fuel required only increase by < 0.1%
for the NA-engine and < 5% for the TC-engine. It should be noted that in
both cases, and in particular for the TC-engine, �nding even a feasible solution
is not a trivial problem. The developed methods does not require analytic
expressions neither for the engine e�ciency nor for the static optimal line. The
only requirements for the NA-engine are that Te,Σ(ωe) is well de�ned for all
ωe and that Te,Σ(ωe) · ωe is strictly increasing with increasing ωe, so that the
rule (30) makes the system unstable.
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Abstract

This paper presents two conceptual methods, based on dynamic pro-
gramming, for one step look-ahead control of a continuously variable
transmission (CVT) in a wheel loader. The �rst method developed,
designated Stochastic Dynamic Programming or SDP, uses a statisti-
cal load prediction and stochastic dynamic programming for minimizing
fuel use. The second method developed, designated Free-Time Dynamic
Programming or FTDP, has vehicle speed as a state and introduces a
�xed 0.1s delay in the bucket controls in a combined minimization of
fuel and time.

The methods are evaluated using a set of 34 measured loading cycles,
used in a 'leave one out' maner. The evaluation shows that the SDP
method requires about 1/10:th of the computational e�ort of FTDP and
has a more transparent impact of di�erences in the cycle prediction. The
FTDP method on the other hand shows a 10% lower fuel consumption,
which is close to the actual optimum, at the same cycle times, and is
able to complete a much larger part of the evaluation cycles.
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1 Introduction

1.1 Background

Wheel loader operation is often highly transient and contains episodes of low
speed and high tractive e�ort, while the engine has to deliver power to both
the transmission and the working hydraulics. The most common general trans-
mission layout of heavy wheel loaders is presented in Figure 1. The engine is
connected to the hydraulics through a variable displacement pump and to the
drive shaft through a hydrodynamic torque converter and an automatic gearbox.

Q,p

T,ω
GBX

Figure 1: Reference vehicle drivetrain setup

In this setup the torque converter is a crucial component, since it provides
some disconnection between the engine and vehicle speeds. This disconnection
makes the system mechanically robust but the solution is also prone to high
losses. High thrust is achieved by high torque converter slip, which produces
losses. High hydraulic �ow requires high engine speed, which also produces
transmission torque which, if increased speed is not desired, is balanced by the
brakes causing losses in both the torque converter and the brakes. This lack of
e�ciency is the reason for a desire to �nd other transmission concepts for wheel
loaders.

1.2 On the choice of a hydraulic multi-mode CVT

Any alternative transmission has to enable increased e�ciency at the typical
operation conditions mentioned. The low speeds at which the machine often
operate makes it impractical to use a stepped gearbox without a torque con-
verter. One alternative is to consider in�nitely variable transmissions, such as
the diesel-electric used in [1] or the hydrostatic used in [2]. The drawback with
this type of transmission is that the repeated power conversions reduce the peak
e�ciency. This is addressed by power-split constructions such as those described
by [3] and by [4], in which some part of the power is mechanically transmit-
ted. Multi-mode continuously variable transmissions (CVTs) are constructed
so that several power-split layouts can be performed with the same device, thus
enabling high e�ciency at widely spaced gear ratios. In this paper, just as in
[5], the transmission is based on a hydrostatic CVT since this solution has a
favorable cost and torque rating.
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1.3 CVT control in a wheel loader

The introduction of a CVT increases both the possibility for fuel saving and
the risk of poor operability. The performance depends to a high degree on the
implemented controller. Some work has been done on CVT control in wheel
loader applications, e.g. in [6] and in [7]. The focus is often on actuator control
though, and there is a lack of work on higher level control, including the choice
of engine operating point. This choice is highly complicated by the operation
often being extremely transient.

The most common operating pattern for wheel loaders is the short loading
cycle. In this cycle the loader approaches a pile and �lls the bucket, reverses,
approaches a load receiver and empties the bucket, reverses and starts over.
The operation is described in detail in [8] and in [9]. This easily described
and highly repetitive operation may form the basis of a rough prediction of
the future load. Because of the extremely transient operation, the bene�ts of
utilizing the prediction in the controller can be expected to become high. Look-
ahead control for on-road vehicles has been implemented e.g. in [10], [11] and
[12]. In the wheel loader application, the potential bene�t has been explored
in [13], but so far there has been no implemented look-ahead controller for
wheel loaders. The main di�culties, as compared to the on-road application,
are the increase in system complexity and the uncertainties in the future load
prediction. This paper introduces and evaluates two di�erent conceptual look-
ahead controller implementations for this system, both of which are based on
dynamic programming.

1.4 Problem formulation

The goal of this paper is to develop and test, through simulations, conceptual
dynamic programming based look-ahead controllers for use in a multi-mode
CVT wheel loader. The controllers should be focused on the short loading
cycle, and may therefore use future load predictions derived from data collected
during measurements in a number of loading cycles. The aim should be to
minimize, or at least to reduce, the fuel consumption without having a negative
impact on drivability or performance of the machine.

2 Models

2.1 Machine operation

One of the most common operating patterns for wheel loaders is the short
loading cycle (SLC), as described in [8] and in [9]. This cycle is also the basis
for the prediction used in this work.

In the SLC de�nition used here, and referring to position designations in
Figure 2, the cycle starts at position (2) and consists of four separate phases.
In the �rst phase the machine drives forward to position (1), and during the �nal
part of this phase the bucket is �lled. The �lling of the bucket often requires
high tractive force combined with tilting and some lifting of the bucket. The
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Figure 2: A view of a short loading cycle [8].

second phase is reversing back to position (2) and the third is forward driving to
the load receiver at position (3). During these two phases, the bucket is raised,
and at the end of the third phase it is emptied. The fourth and �nal phase is
reversing back to position (2) while lowering the bucket. In a typical cycle the
total duration is around 30s and the distances between the driving direction
changes are around 10m.

In this paper a measurement sequence which includes 34 short loading cycles
is used. The measurement setup is presented in Figure 3. The basic load
components, related to the load components used in the system description in
Figure 1, are vehicle speed vw, tractive force Fw, hydraulic pressure pH and
hydraulic �ow QH . The main di�erence from the description in Figure 1 is that
Fw does not include inertia forces. These load components are derived as follows.
The hydraulic pressure pH is assumed to be equal to the measured hydraulic
pump pressure pLs. The hydraulic �ow QH is calculated from the volumes in
the lift and tilt cylinders, which are calculated from the lift and tilt angles θ1

and θ2. Lowering the bucket generally does not require pressurized hydraulic
�uid, and this is therefore not supplied through the pump. The vehicle speed
vw is derived from the torque converter output speed ωct and the selected gear
rc, which include the selected driving direction. The tractive force Fw during
the bucket �lling is calculated from the torque converter output torque Tct and
the selected gear rc. The torque converter output torque is calculated from the
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Figure 3: A view of the measurement setup indicating the signals available.
Solid lines are mechanical connections and dashed lines are hydraulic connec-
tions. The system setup corresponds to that presented in Figure 1.

torque converter input and output speeds, ωcp and ωct, according to

νc =
ωct
ωcp

(1a)

Tcp = MP (νc)

(
ωcp

ωcp,ref

)2

(1b)

Tct = µ(νc)Tcp (1c)

in which MP and µ are scalable maps that have been measured at the reference
speed ωcp,ref . The tractive force when not �lling the bucket is modeled as a
constant rolling resistance according to

Fw = sign(vw)mgcr (2)

These basic load components are used in constructing the load cases w(t) or
w(s), according to the requirements of each dynamic programming implemen-
tation. One of the measured SLCs, as described by the four presented load
components, is displayed in Figure 4.

Due to adjustments made in the following load case creations, it is of interest
to view the times and distances in the measured cycles. These are displayed in
Figure 5. The average unadjusted cycle time is 26.5s and the average unadjusted
distance driven is 35m.

2.2 Vehicle model and system layout

The vehicle is modeled as a mass m, for which the speed dynamics depend on
the propulsive torque TW , the brake torque Tb and the tractive force Fw. The
factor r includes the �nal gear ratio and the wheel radius.

dvw
dt
·m = r−1TW − r−1Tb − Fw (3)

The layout of the system is presented in Figure 6. The main components,
which are described in the following sections, are the engine, the multi-mode
CVT transmission and the variable displacement hydraulics pump.
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Figure 4: An example of a short loading cycle expressed in the four basic load
components vehicle speed vw, tractive force Fw, hydraulic �ow QH and hy-
draulic pressure pH .

2.3 Engine model

The engine is modeled as an inertia Ie which is a�ected by the engine torque
Te, the transmission torque TT and the hydraulic pump torque TH .

dωe
dt
· Ie = Te − TT − TH (4)

The relation between fuel use and engine torque is described by a quadratic
Willan's e�ciency model, as presented in [14], expanded with a torque loss due
to lack of intake manifold pressure

Te = e(ωe,mf ) · qlhvncyl
2πnr

·mf − TL(ωe)− Tpt (5)

in whichmf is fuel mass per injection, ωe is engine speed, e and TL are e�ciency
functions, qlhv, ncyl and nr are constants and Tpt is torque loss due to lack of
air intake pressure poff = pt − pset(ωe,mf ). Here pt is the actual pressure and
pset is a static setpoint map. The turbocharger speed dynamics is assumed to
be a �rst order system. The dynamics model is expressed in the corresponding
intake air pressure

dpt
dt
· τ(ωe) = −poff (ωe,mf ) (6)
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Figure 5: Overview of cycle durations expressed as time-in-cycle and as distance-
in-cycle. The mean values are indicated by the dashed lines.
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Figure 6: Overview of the layout of the system studied. The transmission is
presented in detail in Figure 8.

and the torque loss from low pressure is described by

Tpt =

{
k1(ωe) · p2

off − k2(ωe) · poff if poff < 0

0 if poff ≥ 0
(7)

The fuel per injection is related to the fuel �ow according to

dMf

dt
= mf

ncyl
2πnr

ωe (8)

Figure 7 presents the e�ciency map of the engine used. The gray lines
indicate allowed operating region (minimum speed and maximum torque) and
the black line indicates the static optimal operating points for each output
power. The �gure also shows e�ciency levels and output power lines with kW
markings.
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Figure 7: Engine map with static optimal operation line (black), speed and
torque limits (thick gray), e�ciency curves and output power lines with kW
markings (thin gray).

2.4 Transmission model

The transmission used is the three mode (mT ∈ ±[1, 2, 3]) CVT described in
the patent [15], and which has a structure similar to devices used in [5] and
[16]. The layout is presented in Figure 8. In this �gure the box to the left
represents a Ravigneaux planetary gearset and the box to the right represents
a regular planetary gearset. The driving direction and the transmission mode
is selected by applying the corresponding clutches CF or CR, and C1, C2 or C3.
The CVT functionality is provided by the two hydraulic machines H1 & H2,
which together form a 'variator'. Changing gear ratio within a mode is done
by altering the displacement ratio between the hydraulic machines. The engine
side connection is marked with 'IN' and the wheel side connection is marked
with 'OUT'. The transmission torque at the engine side is designated TT and
the torque at the wheel side is designated TW .

The main source of losses in this concept is the variator, which is modeled
according to Equations (9) and (10). This model is based on a model used in
[6].

ψ1Dvω1 ± pv(Ca + (ω1 + ω2)Cb)− ψ2Dvω2 = CvT ṗv (9)

ψnDvpv − Tn ± (Ccωn + Cdpv) = 0 (10)

The index n = 1, 2 denotes the two machines, Dv is maximum displacement,
ψn ∈ (0, 1) is relative displacement, ωn is axle speed, pv is variator hydraulic
pressure, Tn is torque and Ca,Cb,Cc and Cd are e�ciency parameters. The signs
in the equations depend on the power �ow direction. Equation (9) describes
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Figure 8: Layout of the multi-mode CVT. The box to the left is a Ravigneaux
planetary gearset and the box to the right is a regular planetary gearset. H1

and H2 are hydraulic machines and the �ve C's are clutches. Regular gears are
not shown.

hydraulic �uid �ow and Equation (10) describes torque at each machine. The
variator is constructed so that ψ1 + ψ2 = 1. The variator pressure dynamics is
assumed to be fast compared to other dynamics of the system, i.e. it is assumed
that the time constant CvT can be set to zero. Mode shifts are performed at
the extremals of the variator displacement, and mode shifts at these points do
not change the overall gear ratio for a lossless transmission. At mode shifts the
speed di�erences over the involved clutches are close to zero, and the clutch
losses are therefore small. This model can be summarized by the two functions

TT (mT , ψ1, ωe, vw) (11)

TW (mT , ψ1, ωe, vw) (12)

2.5 Hydraulics model

The bucket and boom are hydraulically driven. Pressure and �ow of the hy-
draulic �uid are supplied by a hydraulic pump connected to the engine axle.
This pump has variable displacement, so that the same pressure and �ow can
be provided at di�erent engine speeds. Equations (13) and (14) describe the
hydraulic pump

QH = ψHDHωe (13)

QHpH = ηHTHωe (14)

DH is maximum displacement, ψH ∈ [0, 1] is relative displacement and ηH(pH , ψH)
is pump e�ciency. Lowering of the bucket does not require �ow from the hy-
draulic pump.
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3 Methods

3.1 Basic dynamic programming algorithm

Both of the control concepts to be presented are based on the dynamic program-
ming recursion. This method description therefore starts with a recapitulation
of this recursion, as used in the following methods. Denote the discretized �ow
variable s ∈ sk with k = 0, . . . , N − 1, states x ∈ X and controls u ∈ U . The
notation xk = x(sk) is used. The optimization problem can be formulated, with
E referring to the expected value if wk is stochastic, as

min
uk∈U

E
{
JN (xN ) +

N−1∑
k=0

gk(uk, xk, wk)
}

xk+1 = f(xk, uk, t), k = 0, . . . , N − 1 (15)

along with equality and inequality constraints. According to [17] and [18] the
dynamic programming recursion can, for this problem, be stated as

Jk(xk) = min
u∈U

E
{
g(xk, uk, wk) + Jk+1(xk+1(xk, uk, wk))

}
(16)

JN (xN ) = gN (xN ) (17)

This recursion is solved according to the following algorithm, expressed for a
deterministic load wk, as previously presented in [19].

1: For each xN ∈ XN , declare JN (x) = JN
2: for k = N − 1, . . . , 1 do
3: For each xk ∈ Xk, simulate dx

dt for sk to sk+1 for all uk ∈ U to �nd
xk+1(xk, uk, wk)

4: For each xk ∈ Xk

Jk(xk) = min
uk∈U

(
g(xk, uk, wk)+

+ J̃k+1(xk+1(xk, uk, wk))
)

(18)

with J̃k+1(xk+1) interpolated from Jk+1(xk+1 ∈ X)
5: end for
If the load is stochastic, step 3 is performed for each possible load combination
wl ∈Wk, and Equation (18) is altered to

Jk(xk) = min
uk∈U

∑
wl∈Wk

p(wl)
(
g(xk, uk, wl)+

+ J̃k+1(xk+1(xk, uk, wl))
)

(19)

in which p(wl) is the probability of the load being wl. This �rst part is used to
establish a cost-to-go (CTG) map J(x ∈ X, s). In the following part, this map
is used for calculating the optimal trajectory x∗(s), u∗(s).
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1: Select an initial state x∗0 = x0

2: for m = 1, . . . , N do
3: For x∗m−1, simulate

dx
dt for sm−1 to sm for all u ∈ U to �nd xm(x∗m−1, u)

4: Select

u∗m−1 = argmin
u∈U

(
g(x∗m−1, u, wm−1)+

+ J̃m(xm(x∗m−1, u, wm−1))
)

(20)

in which J̃m(xm) is interpolated from Jm(xm ∈ X)
5: x∗m = xm(x∗m−1, u

∗
m−1, wm−1)

6: end for

3.2 Dynamic programming as a one step look-ahead con-
troller

The second part of the DP algorithm presented in the previous section can
be seen as a one step look-ahead simulation. In this case the load wk, k =
0, . . . , N − 1, used in the second part is the actual load, which will di�er from
the load used in the cost-to-go map calculation, unless there is a perfect pre-
diction of future loads. This type of control, assuming a perfect but limited
horizon prediction, is used e.g. in [10] and in [20]. If there are di�erences in
the loads in the two parts of the dynamic programming algorithm, the result-
ing state and control trajectories will in general not be optimal for the second
load trajectory. It can however be expected that a well designed CTG-map will
result in state and control trajectories with a low associated cost for a range of
actual loads. In some controllers, such as the one presented in[21], a distance
independent CTG-map can be created through assuming distance independent
load probabilities. In the problem treated in this paper, a position dependent
load prediction is available, but there are considerable uncertainties in this pre-
diction. The problem is therefore translated to a problem of selecting states and
control signals and constructing a load case for the CTG-map calculation, so
that the look-ahead control in the second part gives low cost even when the load
is altered. Two di�erent concepts have been developed and these are presented
in Sections 3.3 and 3.4.

This section discusses the implication of uncertainties, and the impact of
disturbances, in each load component as compared to the values predicted in
the CTG-map calculation. It is assumed that in the one step look-ahead simula-
tion, the load components represent the desired trajectories derived from driver
inputs and the resulting forces experienced by the machine. The components
are vehicle speed vw, longitudinal force Fw, hydraulic �ow QH and hydraulic
pressure pH .

Component vw: The load component vw is part of Equations (3) (vehicle
speed dynamics) and (11) and (12) (transmission input and output torque).
Note that the vehicle speed dynamics limit the derivative of the possible dis-
turbance. In Equation (3) the impact of changing vw can be treated as an
additional disturbance in Fw. In Equations (11) and (12), the CVT mode and
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variator displacement ratio can be changed fast. Changes in vw can therefore
be transferred through Tw and TT to the engine speed dynamics (1).

Component Fw: The load component Fw is part of Equation (3) (vehicle
speed dynamics). This component includes longitudinal forces on the bucket,
which can change rapidly, e.g. if the bucket hits a rock. According to the
reasoning for the component vw, a change in Fw can be transfered through Tw
and TT to the engine speed dynamics (1).

Component QH : The load component QH is part of Equations (13) (hy-
draulic �ow) and (14) (hydraulic power). In the actual vehicle, the hydraulic
�ow is related to bucket lifting speed, so the bucket inertia should limit dQH

dt .
This limitation however is lessened by the possibility of forces created through
the vehicle pitch dynamics. Therefore, it is assumed thatQH can change rapidly.
Further, the desired hydraulic �ow along with the maximum pump displacement
ψHD causes a lower limit for the engine speed ωe,H , according to Equation (13).
It is not uncommon that ωe,H(tk) > ωe,min, and during these instances the limit
is often active.

Component pH : The load component pH is part of Equation (14) (hydraulic
power). This component is related to vertical forces on the bucket, which can
change rapidly, e.g. if the bucket hits a rock. Changes in this component are
transferred through TH to the engine speed dynamics (1).

The engine torque can be altered instantaneous, though the turbo speed may
restrict the magnitude of the change. The component QH causes a limitation
that is often active, and uncertainties in this load component is therefore the
primary obstacle to using dynamic programming as a look-ahead controller. To
recapitulate, the limit comes from the relation

QH =
dVH
dt

=
dVH
ds

vs = ψH(t)DHωe(t) (21)

which if QH

ωe
becomes high enough requires ψH > 1. Since this is not allowed,

other solutions must be found. Since ψH is limited, the alternatives identi�ed
are to introduce margins through ωe and vw, allow for deviation from VH(s) or
introduce a short horizon prediction. These three alternatives are discussed in
the following part.

The inertias of the states ωe and vs can be seen as the cause of the problem.
An instantaneous increase in QH would require and instant increase in ωe or
decrease in vs, both of which are prevented by their inertias. The �rst alternative
is therefore to keep ωe, as a function of vs, at such a level that ψH will never have
to go above 1. Since the actual QH is not available a worst case scenario must be
used in the CTG-map calculation. The drawback is that both the engine and the
hydraulic pump are most e�cient at low speeds, so using a preventive increase of
the engine speed can be expected to increase fuel consumption. This approach is
the motivation and foundation of the 'stochastic dynamic programming' method
presented in Section 3.3.

In an actual vehicle, deviating from the desired bucket trajectory is a natural
response to an unachievable desired trajectory. In the simulation however this
approach becomes complicated by several factors. First, each of the measured
cycles consists of a bucket trajectory along with corresponding forces. Deviat-
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ing from the bucket trajectory would produce new forces, and calculating these
would require a gravel pile model, which is not readily available. Second, allow-
ing deviations in bucket height corresponds to introducing a freedom in VH(s),
which would require at least one additional state in the system. This is highly
undesired in dynamic programming. For these reasons, this approach is not
studied further in this paper.

The availability of a short horizon prediction of future hydraulic �ow might
seem implausible. In an implementation though, the desired hydraulic �ow
would be an input from the driver. If a small delay is introduced between driver
input and actual �ow, this would be equivalent to a short horizon prediction
of future hydraulic �ow. If a constant time delay is used, no additional state
is needed. This approach is the motivation and foundation of the 'free-time
dynamic programming' method presented in Section 3.4.

A measurement sequence with 34 short driving cycles is available for the
evaluation of the methods. In each evaluation, one cycle is used as the actual
cycle in a simulation. In each case it is assumed that the other 33 cycles are
available for the CTG-map creation. Further, in the second stage the present
load is assumed to be known, so that in the simulation, at s = sk, the load wk
is available.

3.3 Stochastic dynamic programming

The method presented here is an extension of an algorithm previously presented
in [22] and in [23].

Concept description

This concept includes the prediction uncertainties in the load cases used in
the CTG-map creation, by describing the load wk as a Markov process. In
this description there are at each stage some di�erent alternatives for the load,
along with a probability distribution. By assigning an in�nite cost to states from
which the vehicle cannot complete the cycle, and include a worst case scenario
with a low probability, the cost-to-go map will correspond to a minimization
of the cost under the condition that the vehicle always must be able to handle
the worst case future load. This method is designated the Stochastic Dynamic
Programming, or SDP, method.

Implementation

The problem is formulated as a minimization of expected total amount of fuel
Mf required for performing a short loading cycle. This can be expressed as

minE {Mf (T )} (22)

and the cost function therefore becomes

g(xk, uk, wk) =
∑

wl∈Wk

(
p(wl)

dMf

dt

)
(23)



94 Paper 3. Development of look-ahead controller concepts ...

in which Wk is the set of possible loads wk at t = tk and p is the probability of
that load being wl. The terminal cost is set to be JN = 0 for all states xN .

Since ωe(ψ1) is always invertible for this concept either ωe or ψ, along with
mT , can be used as state. Since the speed will increase for one of the hydraulic
machines when ψ1 gets close to 0 or 1, the losses increase in these regions.
Therefore it is desirable to have high state grid density near the extremes of ψ1,
which implies using ψ1 as state. The possibility of restrictions on

dψ1

dt , especially
during mode shifts, also points toward using ψ1 as state. Since the dynamics are
described in terms of ωe this would imply the following computational scheme:

ψ1,k+1ωe,k+1
Wκωe,k

dωe

dt
ψ1,k

Wk

In the �rst and last steps the load is required, since ωe(ψ1) depends on
the load. At the last step a choice has to be made whether to use κ = k
or κ = k + 1. Using κ = k is equivalent to making a change of variables in
Equation (1) from dωe

dt to dψ1

dt . This choice of κ does not guarantee continuity
in ωe, which makes it possible for the optimizer to draw a net power from the
engine inertia. κ = k+1 on the other hand guarantees continuous ωe and works
well for a deterministic load, but in the stochastic case this causes a quadratic
increase in load combinations, since ψ1,k+1 would have to be calculated for
all combinations of Wk,Wk+1. This would cause an unacceptable increase in
calculation time. This means that for SDP it is not practical to use ψ1 as a
state, and instead ωe is used. ωe(ψ,mT ) may only be non-invertible in small
regions near ψ1 = {0, 1}, so instead of using mT as a state, the mT which give
highest e�ciency is used in ambiguous cases.

The independent, or �ow, variable in this calculation is the time t, the states
are the engine speed ωe and the turbo pressure pt, and the sole control signal is
the fuel mass per injection mf , as summarized in Table 1. The same state and
control signals are used in both the CTG-map calculation and the look-ahead
control simulation.

Table 1: States and control signals in the SDP method.
Flow States Controls
t ωe,pt mf

Load case creation for the SDP method

Using SDP in look-ahead control applications has been studied e.g. in [24] and
[21]. In these papers the load has the Markov property and the probability
distribution of the load is also independent of time. In the application at hand
the load is modeled as a Markov process, but since the intention is to utilize the
fact that the vehicle operates in a well known cycle, the probability distribution
of the load does depend on the time, forming a probabilistic short loading
cycle. As described in Section 2.1, the operation of a wheel loader can be
described by the load components ωw = vwr

−1, Tw, QH and pH , which are
also the components used here. The torque Tw can be calculated, using the
measured vehicle speed, from Equation (3). Describing the vehicle speed ωw as
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a Markov process is deemed unrealistic, as discussed in Section 3.2, and this
component is therefore regarded as deterministic. The load components are
calculated from the set of measured loading cycles. First, the time scales in all
cycles are adjusted so that the driving direction changes at the same instances
in all cycles. The four driving phases are set to be 10s for the forward and
loading phase, and 5s each for the other three phases. The vehicle speed vw is
adjusted so that the distances driven between each direction change agree with
those speci�ed in the FTDP method, for a fair comparison in the subsequent
evaluation. All four load components are calculated for each cycle. The mean
µ and standard deviation σ of each component over a set of cycles, as functions
of time, are calculated. The load Wk for the CTG-map calculation consists of
all load component combinations, according to Table 2, making a total of 36
possible loads at each instant tk. This is repeated for all cycles in the measured
sequence, producing 34 CTG-map load cases, each time excluding one of the
basic loading cycles from the set of cycles used in the calculation of µ and σ.

Table 2: Load case components and corresponding probabilities for the SDP
cost-to-go map calculation.

ωw Tw QH ph
µ (1) µ− σ (.25) µ− σ (.25) µ− σ (.25)

µ (.5) µ (.5) µ (.5)
µ+ σ (.25) µ+ σ (.2) µ+ σ (.25)

µ+ 2σ (.05)

The load case that was excluded in each CTG-map load case creation is
later used as the load applied in the corresponding simulation, allowing for 34
method evaluations.

3.4 Free-Time Dynamic Programming

The CTG-map calculation in the method presented here is partly based on an
algorithm previously presented in [25].

Concept

This method reduces the sensitivity to disturbances in QH by introducing a
short horizon prediction of this load component, and to uncertainties in the
prediction of Fw and pH by introducing a freedom in time. The prediction of QH
should prevent the vehicle from entering a situation in which the engine speed is
to low to allow for the desired hydraulic �ow. The freedom in time is introduced
through a freedom in vehicle speed. This freedom allows for using the energy
stored in the vehicle speed to compensate for temporary high Fw or pH and
for reducing the tractive and hydraulic power by slowing down the �ow of time
through reducing the vehicle speed. Since a freedom in time is introduced, the
components of the load w are rede�ned as functions of the distances calculated
from the vehicle speeds in the measured cycles. This method is designated the
Free-Time Dynamic Programming, or FTDP, method.
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Implementation

CTG-map calculation

Since a freedom in time is introduced, the problem is reformulated as a com-
bined minimization of total amount of fuel Mf and time T for performing a
short loading cycle. The factor β is introduced to weigh time to fuel in the
minimization. This can be expressed as

min {Mf (T ) + βT} (24)

and the cost function therefore becomes

g(xk, uk, wk) =
dMf

dt
+ β (25)

in which, introducing the vehicle speed vs = |vw| and distance driven s =
∫
vsdt,

the time steps ∆t = ∆s/vs,k or, if vs,k ≈ 0, ∆t = 2∆s/(vs,k + vs,k+1), are used.
The terminal cost is set to be JN = 0 for all states xN .

By reformulating the cost function and system dynamics to depend on po-
sition rather than time, a freedom in time can be introduced without the need
to have time as a state of the system. The dynamics for a state x is rewritten,
using the chain rule, according to

dx

dt
=
dx

ds

ds

dt
=
dx

ds
vs = f(x(s), u(s), w(s))⇒ (26)

dx

ds
=

1

vs
f(x(s), u(s), w(s)) (27)

During the general driving cycle, the vehicle changes driving direction several
times. At these instances the vehicle speed vs has to go to zero. The state
derivatives will then, according to the formulation (27), not be well de�ned.
For the vehicle speed dynamics this can be solved by changing the state from
speed to kinetic energy according to the description in Section 3.5. Similar state
changes would not solve the problem for the engine speed and turbo pressure
dynamics though. Hence the approximation

∆s = v̄s∆t, v̄s =
vs,k + vs,k+1

2
(28)

is instead used when the initial vehicle speed is close to zero, just as in the cost
function. In the engine dynamics this approximation is supplemented with a
correction of TT to assure that this approximation does not push the transmis-
sion e�ciency to above 100%. When the approximation is active a constant
transmission e�ciency of α = 0.8 is used. The reformulated minimization cri-
terion becomes

min

∫ Sf

0

(
dMf

dt
+ β

)
ds

vs
(29)

The independent variable in the CTG-map calculation is the distance driven
s and the states are the vehicle speed vs (= |vw|), the engine speed ωe and the
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turbo pressure pt. The control signals are the fuel mass per injection mf , the
CVT-mode MT , the variator displacement ratio ψ1 and the brake torque Tb.
The vehicle speed is forced to zero at the positions of the driving direction
changes s = sm by assigning in�nite cost to non-zero vehicle speeds at these
instances J(sm, vs > 0) = ∞. For calculation e�ort reasons, zero speed is not
allowed at any other instance. For the same reason, and since braking is a waste
of energy and should be avoided, using non-zero brake torque is only considered
if Tb = 0 gives in�nite cost for all mf , ψ1. The gain from the variator ratio ψ1 to
the torques TT and TW , according to the functions (11) and (12), is very high
and a high density ψ1 control signal grid must therefore be used. This would
however have a severe e�ect on the calculation e�ort. For this reason, a ψ1 with
high grid density but a narrow range centered around ψ1(mT , ωe, vs) such that
TT (mT , ψ1, ωe, vs) = 0, is used.

Look-ahead control simulation

In the one step look-ahead simulation, the time t is used as �ow variable, and the
time step corresponds to the hydraulic �ow delay/short horizon prediction. In
the evaluation, a 0.1s time step, and hence delay/prediction, is used. This way,
an in�nite cost can be assigned to controls which give ψH > 1 at tk+1, and thus
state - load combinations which would require ψH > 1 are avoided. This change
of �ow variable, from that used in the CTG-map calculation, means that the
positions tk will not correspond to positions in the grid s. The interpolations
in the simulations must therefore be done also over the �ow variable, which
increases the dimension in the interpolation. This increases the computational
load, but the most severe e�ect occurs at the driving direction changes.

The driving direction changes are included in the CTG-maps as in�nite cost
for all vehicle speeds vs > 0 at the corresponding positions. Say that the vehicle
speed must be zero at s = sm. Interpolation will then render J̃(s) = ∞ for all
sm−1 < s < sm+1 except s = sm, vs = 0. The direction changes therefore need
special treatment, both in approaching and in leaving these positions. The
complete procedure of approaching and leaving a direction change position is
illustrated by Figure 9.

Approaching a direction change is detected when sk < sm−1−κ and sm−1−
κ < sk+1(u), with κ being a small value which acts as a minimum ∆t for the
next simulation step. When this detection occurs, ∆t is adjusted for those u so
that sk+1(u) = sm−1 and J̃ is interpolated among J(sm−1). In the next step
those ∆t, u that give sk+1 = sm, vs,k+1 = 0 are used and the J̃ interpolation
is performed among J(sm, vs = 0). The vehicle has now reached the direction
change position.

When the vehicle leaves the direction change position, that is, as long
as sm < s(tk+1) < sm+1, J̃ is interpolated from the temporary CTG-map
[J(sm, vs,1), J(sm+1, vs,n)], n = 2, . . . , N in which N is the size of the vs-grid.

Apart from the change of �ow variable, the states and controls are the same
in the look-ahead control simulation as in the CTG-map calculation. Also, the
same calculation e�ort saving measures are taken for the control signals in the
simulation. The �ow, state and control signals in the two parts of the algorithm
are summarized in Table 3.
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sm-1sm-2 sm+1sm sm+2

vs

Figure 9: Illustration of the FTDP method simulation at a driving direction
change. White nodes represent states with J(x, s) = ∞ and black represent
states with J(x, s) < ∞. The arrows and gray nodes represent the simulated
trajectory through the region. The light gray node is one for which ∆t is reduced
until s(tk + ∆t) = sm−1.

Table 3: States and control signals in the FTDP method.
Flow States Controls

CTG-calculation s vs,ωe,pt mf ,mT ,ψ1,Tb
Simulation t vs,ωe,pt mf ,mT ,ψ1,Tb

Load case creation for the FTDP method

The basic load components are functions of time, and these need to be refor-
mulated into functions of distance driven. The distance driven must be mono-
tonically increasing for these functions to be well de�ned. Since the machine
drives in reverse direction part of the time, the velocity vw is divided into speed
vs = |vw| and direction ds = signvw which enables the de�nition of the distance
driven as s =

∫
vsdt.

The positions at which the vehicle change the driving direction are speci�ed
by the driving cycle, which makes ds(s) a load component, while vs is a state
of the system. The driving direction changes must occur at the same positions
in both the CTG-map calculation and the simulation. Therefore the distance
scales are adjusted in all cycles so that each driving phase is 10m. The tractive
force Fw(t) and the hydraulic pressure pH(t) can be directly shifted to depend
on position rather than time Fw(s), pH(s). The hydraulic �ow QH , that is
the hydraulic �uid volume per time, is transformed to a hydraulic volume per
distance, or a hydraulic volume as function of distance driven VH(s).

VH =

∫ sN

0

QH
vs

ds (30)

This hydraulic volume is the integrated �ow of hydraulic �uid to the lift and tilt
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cylinders as a function of distance driven while the force Fw and pressure pH
specify the wheel and bucket forces caused by this trajectory. This is repeated
for each of the basic loading cycles, producing a total of 34 FTDP load cases.
Each load case consists of the components direction of driving ds, longitudinal
force Fw, hydraulic volume VH and hydraulic pressure pH .

3.5 Simulations and energy balance

The choice of dynamic programming for optimization method, combined with
the complexity of the system, makes e�cient simulation of the functions xk+1(xk, uk, wk)
decisive. The Euler forward method is the simplest method for this simulation,
and using this method is therefore desirable. Direct application of this method
on the aforementioned states however does not preserve energy. In fact, using
the engine speed dynamics as an example, the Euler step is

ωe,k+1 = ωe,k + ∆t
T

Ie
(31)

and during this step the work performed by the torque is

W1 = Tωe,k∆t (32)

while the change in kinetic energy is

W2 =
Ie
2

(ω2
e,k+1 − ω2

e,k) = Tωe,k∆t+
(T∆t)2

2Ie
(33)

and correspondingly for the vehicle speed dynamics, and also if formulated as
functions of distance driven. There is obviously a discrepancy between the
input and output energy. The optimization algorithm has been observed to
exploit this discrepancy by fast switching between high positive and negative
forces. Similar behavior has also been seen in e.g. [10] as oscillating controls
in the solution. In the system at hand the gain from the control signal ψ1

to the torques TT and TW is very strong, and the optimizer will therefore be
highly inclined to using this shortcut by fast switching between high and low
ψ1, especially in the FTDP method since the discrepancy can be exploited by
moving kinetic energy between the engine and vehicle speeds with higher than
100% e�ciency. In some cycles, the magnitude of the discrepancy became large
enough for the vehicle to be propelled by this false input alone, requiring no fuel
for completing an entire driving cycle. This problem can be prevented by using
energy formulations for both vehicle and engine speed dynamics, according to

d

dt

mv2
s

2
= vs(r

−1TW − r−1Tb − Fw) (34)

d

dt

Ieω
2
e

2
= ωe(Te − TT − TH) (35)
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The Euler method simulation steps can be formulated as

vs,k+1 =

√
v2
s,k +

2vs∆t

m
ΣF (36)

ωe,k+1 =

√
ω2
e,k +

2ωe∆t

Ie
ΣT (37)

and correspondingly when distance driven, s, is used as independent variable,
which guarantee the balance of energy. This energy formulation is used in all
simulation steps in both the CTG-map calculation and the look-ahead control
simulation, in both of the methods.

4 Evaluation

Section 3 describes the one step look-ahead controller concepts and the corre-
sponding load case creations. In this section, the controllers are evaluated by
performing CTG-map calculations and subsequent simulations.

4.1 Stochastic Dynamic Programming

In each evaluation of the Stochastic Dynamic Programming (SDP) method, one
loading cycle is used in the simulation and all other cycles from the measurement
sequence are used in the CTG-map calculation. The measurement consists of 34
basic load cases, and the SDP method is therefore evaluated using 34 simulation
loading cycles, each with a corresponding CTG-map calculated from the other
33 cycles, according to the description in Section 3.3.

Out of the 34 evaluations, 25 rendered a �nite cost, which corresponds to
74% of the evaluations being successful. In three of the nine cases of in�nite
cost, this was caused by low engine speed compared to the minimum required
by the hydraulic �ow requirement. Most of the other six cases were caused
by relatively high vehicle speed, related to the distance driven adjustment as
described in Section 3.3. Figure 10 illustrates the fuel needed for performing
each of the 34 cycles. The light gray bars represent the in�nite-cost cycles, as
the fuel used up until the encountering of the in�nite cost, and the dashed line
shows the average fuel use of 130g, in the cycles with a �nite cost. The average
optimal fuel use over the 34 cycles, that is the fuel required if the simulated
cycle is also used for the corresponding CTG-map calculation, is 119g. The
4:th evaluation from the left is used as an example to illustrate the simulation
results. Completing this particular cycle required 130g of fuel.

The CTG and simulation loading cycles for evaluation 4 are shown in Fig-
ure 11. The dotted lines are the load alternatives for the CTG-map calculation,
as speci�ed in Section 3.3, and the solid line is the load used in the simulation.
This shows that there are signi�cant di�erences in all components between the
simulated cycle and the CTG cycle. In the vehicle speed, the positions of the
driving direction changes coincide because of the design of the cycles. The load
components in the simulated cycle are more transient than those in the CTG
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Figure 10: Fuel use in the SDP solutions. The light gray bars indicate cycles
not completed due to in�nite cost.

alternatives, since the CTG cycle has been constructed as an average over sev-
eral cycles. Note that in this example, the hydraulic �ow in the simulation is
always lower than the highest alternative in the CTG cycle.

Figure 12 shows the state, ωe and pt, and control signal, mf , trajectories
from the simulation in evaluation 4. The ωe state �gure also shows the minimum
engine speeds speci�ed by the static limit (dotted line), and the hydraulic �ow
in the CTG load alternatives (four dotted curves) and in the simulation load
(dashed curve). This shows that the engine speed is always higher than needed
for the highest possible hydraulic �ow in the CTG load. This keeps the engine
speed higher than required by the actual desired hydraulic �ow, which prevents
in�nite cost. In three of the simulation cases, this was not achieved, but the
hydraulic �ow in the simulated cycle was higher than the highest alternative in
the CTG cycle at a time when the engine speed was close to this limit. This is
illustrated by Figure 13 which shows the same signals as in Figure 12 but for the
8:th evaluation as referred to Figure 10, in which in�nite cost is encountered at
t = 17s, as indicated by a vertical gray line. In both �gures, the intake pressure
pt is plotted along with the static pressure setpoint pset (gray).

One of the main issues in using dynamic programming is the computational
e�ort, especially when the number of states or control signals increases. Table 4
shows the experienced times needed for calculating the CTG-maps and for the
look-ahead control simulations. The simulation times only include the cycles
for which the cost is �nite. All calculation times are highly dependent on the
method implementation and state and control signal grid densities, and should
therefore only be considered an indication and are only intended for comparison
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Figure 11: Illustration of the loads used for the 4:th evaluation. The dotted
lines are the loads used in the CTG-map calculation (see also Table 2) and the
solid lines are the cycle used in the simulation.
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Figure 12: State and control signal trajectories in evaluation 4 (solid). The
engine speed ωe is plotted along with the minimum speeds given by the hydraulic
�ows in the CTG (dotted, see also Table 2) and simulation (dashed) cycles.
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Figure 13: State and control signals in evaluation 8 (solid). The engine speed is
plotted along with the minimum speeds given by the hydraulic �ow in the CTG
(dotted) and simulation (dashed) loads. In�nite cost is encountered at t = 17s

to the FTDP method. The discretizations have been made as sparse as possible
without signi�cantly a�ecting the optimization results.

Table 4: Experienced times for CTG-map calculation and look-ahead simula-
tion, using the SDP method.

tmin[s] tmean[s] tmax[s]
CTG 877 974 1055
sim 0.30 0.30 0.32

4.2 Free-Time Dynamic Programming

In the Free-Time Dynamic Programming (FTDP) method, the creation of a
load case for the CTG-map calculation only requires a single basic load case.
An FTDP load case is therefore created from each of the 34 basic load cases,
according to the description in Section 3.4. In the evaluation, the CTG-map is
calculated using one FTDP load case and in the look-ahead control simulation
any other FTDP load case can be used. The dataset contains a total of 34 cycles,
making a total of 1122 combinations evaluated. The time to fuel weighting
parameter is selected as β = 0.5g/s, since this gives cycle times similar to the
25s speci�ed for the SDP method.

Figure 14 summarizes the result of these simulations. The gray markings
indicate combinations that rendered a �nite cost, while the black markings
indicate combinations that rendered an in�nite cost. In total, 1116 combinations
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Figure 14: Illustration of success of the simulations in FTDP with β = 0.5g/s.
The light gray markers indicate cycle combinations with perfect prediction, dark
gray markers indicate successful simulations and black markers indicate cycle
combinations which render in�nite cost.

were successful while 6 rendered in�nite cost, which translates to success in
99.5% of the combinations. Figure 15 shows the same result, but for β = 10g/s.
In this case, 96.1% of the combinations were successful. It is clear though that
some cycles were less suited for use in the CTG-map calculation. The most
prominent of these are cycles 23 and 31. Disregarding these gives a total of
98.8% successful combinations.

Figure 16 shows the fuel and time required for completing each of the 1116
successfully simulated cycles. The average fuel use is 116g and the average time
use is 24.7s. The average optimal fuel use over the 34 cycles, which corresponds
to the diagonal of Figure 14, is 115g and the corresponding average time use is
24.3s. In the following part, the combination of the 4:th cycle for the CTG-map
calculation and the 12:th cycle for the simulation, as referred to Figure 14, is
used as an example to illustrate the simulation results. This combination will be
referred to as evaluation 4-12. Completing this particular combination require
24.6s and 115g of fuel.

The CTG and simulation loadcases for this cycle are shown in Figure 17.
The dotted lines are the CTG load, as speci�ed in Section 3.4, and the solid lines
are the load used in the subsequent simulation. The positions of the driving
direction changes are the same in the two cycles, as speci�ed in the design of
the cycles. The other components are similar in appearance, though there are
signi�cant di�erences in amplitudes, durations and timing.

Figure 18 shows the state, vs, ωe and pt, and time step ∆t trajectories from
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Figure 15: Illustration of success of the simulations in FTDP when time is
prioritized by using β = 10g/s. See Figure 14 for explanation.
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Figure 16: Summary of fuel and time use in the cycle combinations evaluated.
The combinations with perfect prediction and those which rendered in�nite cost
are excluded.
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Figure 17: Illustration of the loads used in evaluation 4-12. The dotted lines
are cycle 4, which is used for the CTG-map calculation, and the solid lines are
cycle 12, which is used in the look-ahead control simulation.

evaluation 4-12. The ωe �gure also shows the minimum engine speed speci�ed
by the static limit (dotted line), and the hydraulic �ow in the simulation load
(dashed curve). This shows that the vehicle is able to keep the engine speed
higher than required by the simulation hydraulic �ow, which prevents in�nite
cost without maintaining a large ωe margin. The intake pressure pt is plotted
along with the static pressure setpoint pset (gray). The ∆t �gure clearly shows
the adjustments of ∆t made near the driving direction changes.

Figure 19 shows the control, mf , mT , ψ1 and Tb, signal trajectories from
evaluation 4-12. The mf �gure shows that the highest fuel �ow is experienced
during bucket �lling. The mT �gure shows that around half the time is spent
in CVT mode 1 and half of the time in CVT mode 2, while the ψ1 �gure shows
that at mode changes, the variator displacement ratio is near its maximum or
minimum, as required by the transmission model. The Tb �gure shows that in
this cycle, the vehicle never uses the brakes.

Figure 20 shows the state and control signals from an unsuccessful β =
10g/s example. The example is the result from the combination of using the
23:rd cycle for the CTG-map calculation and the 12:th cycle in the subsequent
simulation, as referred to Figure 15. Figure 21 shows the �rst part of the load
case combination from this example, with the instant of the in�nite cost marked.
Typical for the cycles which produced CTG-maps which commonly rendered
in�nite cost in the subsequent simulations is that the increase in tractive force
Fw related to the �lling of the bucket is comparatively late and steep.

Table 5 shows seven examples of time and fuel use in evaluation 4-12, per-
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Figure 18: State trajectories in evaluation 4-12, along with the time steps used.
The engine speed ωe is plotted along with the minimum speed given by the
hydraulic �ow in the simulated cycle (dashed). The intake pressure pt is plotted
along with the set pressure pset (gray).
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Figure 19: Control signal trajectories in evaluation 4-12.
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Figure 20: State and control signals before encountering in�nite cost in evalu-
ation 23-12 with β = 10g/s. See Figures 18 and 19 for explanations.
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Figure 21: Illustration of the loads in the unsuccessful evaluation 23-12 with
β = 10g/s. The dashed lines are the load used in the CTG-map calculation, the
solid lines are the load used in the simulation and the vertical gray line shows
the instant of in�nite cost.
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formed with di�erent values of the time to fuel weighting parameter β. In the
evaluations above, β = 5 · 10−4 was used, since this give an average cycle time
similar to the cycle time speci�ed for the SDP method.

Table 5: Impact of di�erent β values in evaluation 4-12.
β [g/s] T [s] Mf [g]

5 20.9 124.7
2 22.1 119.6
1 23.2 116.9

0.5 24.6 115.0
0.2 25.9 114.7
0.1 26.3 114.4
0.05 26.4 114.2

Table 6 shows the experienced times needed for calculating the CTG-maps
and for the look-ahead control simulations. The simulation times only include
the cycles for which the cost is �nite. All calculation times are highly dependent
on the method implementation and state and control signal grid densities, and
should therefore only be considered an indication and are only intended for
comparison to the SDP method. The discretizations have been made as sparse
as possible without signi�cantly a�ecting the optimization results.

Table 6: Experienced times for CTG-map calculation and look-ahead simula-
tion, using the FTDP method.

tmin[s] tmean[s] tmax[s]
CTG 13005 13365 14035
sim 8.28 9.09 10.6

4.3 Methods discussion and comparison

Two methods are created for using dynamic programming as a one step look-
ahead controller in a wheel loader application. Each of these use a di�erent
approach for increasing the robustness of the look-ahead controller to devia-
tions from the predicted load. This section discusses and compares the two
methods, not only with regards to the performance as described in the previous
section, but also properties that a�ect the possibilities of implementing any of
the methods as an actual online controller.

CTG-map creation

In both of the methods, the �rst part of the algorithm is the creation of a cost-
to-go (CTG) map J(x, k). The appearance of this map will depend on the load
used in the calculation.

In the SDP method, the creation of a load case for use in the CTG calcu-
lation can be automated. A dataset containing previously driven cycles, which
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might e.g. be from the previous working day, is screened for cycles. A Markov
probabilistic cycle is created from the detected cycles, using average and stan-
dard deviations of the load at each instance, along with assigned probabilities.
The combination of possible loads and the corresponding probabilities are design
parameters. The combination used in this evaluation is presented in Table 2.
The impact of the combination and probabilities is quite transparent, especially
in the impact on robustness to changes in actual hydraulic �ow QH , while Sec-
tion 3.2 states that uncertainties in this load component are the most important
for the ability to complete the simulation. In the CTG-map calculation, engine
speeds lower than required by the maximum possible QH , according to (21),
renders in�nite cost. In the simulation, the result is that the engine speed never
drops below that which correspond to the highest predicted QH and maximum
hydraulic pump displacement ψH = 1, as shown in Figure 12. Adding even
higher possible alternatives for QH in the CTG-map calculation will therefore
increase robustness to high hydraulic �ow in the simulation, but will also in-
crease fuel consumption through maintaining a high engine speed even if this is
not required by the actual hydraulic �ow.

In the FTDP method a single driving cycle is used as load in the CTG-map
calculation. In the evaluation, each of the cycles used in the simulations were
also used in the CTG-map calculation, but in a real application a particular, and
perhaps designed, cycle would be used. When low cycle-time was prioritized,
some cycles were less suited for use in the CTG-map calculation, which shows
that the cycle used has a real impact on the performance in the subsequent
simulation. Some care should therefore be put into the selection or creation
of the CTG driving cycle. Unfortunately, the impact of the appearance of the
CTG cycle is less transparent in the FTDP method than in the SDP method,
since the hydraulic volume VH gives a limit to the combination of the vehicle and
engine speeds, rather than to the engine speed alone. The FTDP uses one state
more than the SDP method, the vehicle speed, which is directly related to the
time needed for completing a driving cycle. Completing a cycle faster generally
requires more fuel, and the weighting of cycle time to fuel use is governed by
the weighting parameter β. Increasing β increases the vs dependency in J(x, k),
which pushes the vehicle toward higher speeds in the simulation. Predicting the
impact of di�erent β in the CTG-map calculation, on the simulation of a speci�c
cycle, is not trivial and deciding upon a suitable value may require iteration of
CTG-map calculations and look-ahead simulations.

Performance

In evaluating the performance of each of the methods, the �rst requirement is
that the vehicle should be able to perform the speci�ed driving cycles. This is
ful�lled if the simulation is completed without the system violating any bound,
deviating from the desired trajectory or going into an in�nite cost region in
the CTG-map. This requirement was not ful�lled in all cycles for any of the
two methods, but the ratio of successful to unsuccessful simulations di�ers for
the two, and can therefore be considered a �rst performance measure. In the
SDP method 73.5% of the simulations were successful, compared to 99.5% in
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the FTDP method. These numbers depend on the design parameters used in
the CTG-map calculations though. Some of the failed SDP simulations did hit
the minimum engine speed needed for ful�lling the hydraulic �ow requirement
while most fails were related to the vehicle speed adjustment made for obtain-
ing the same distances driven in both method evaluations. The robustness to
hydraulic �ow uncertainties could have been increased through adding an even
higher hydraulic �ow component in the CTG load case. But as long as the
highest hydraulic �ow component in the CTG load case does not require max-
imum engine speed at all times, there will always be a possibility of a higher
requirement in the simulation. In the FTDP method the cause of each unsuc-
cessful simulation was less clear. The number of these simulations increases
when speed is prioritized, and in this case the success of a simulation was more
related to the cycle that was used in the CTG-map calculation than that used
in the simulation. Many of the unsuccessful simulations occurred when cycles in
which the longitudinal force increase related to bucket �lling occurs late, were
used in the CTG-map calculation.

Another requirement is low fuel consumption, and the fuel use is therefore
the second performance measure. In the SDP method evaluations the average
fuel use was 130g and the pre-speci�ed cycle time was 25s. If the robustness
to hydraulic �ow is increased through increasing the maximum predicted �ow,
the average fuel use can be expected to increase. In the example of Figure 10,
the fuel use is already noticeably higher than the optimal (119g), because of
the implemented margin towards high hydraulic �ow. In the FTDP method
evaluations, with β = 0.5g/s, the average fuel use was 116g and the average
time use was 24.7s. Changing β so that the FTDP average time increases to
closer to 25s might reduce the average fuel consumption somewhat, but Table 5
indicate that this reduction would be small. The fuel use in the FTDP method is
close to that achieved with perfect prediction (115g), though there is a di�erence
in time use (24.3s). The optimal fuel use is lower for the FTDP method because
of the addition of another state, or degree of freedom. The actual fuel use is
also closer to the optimum for the FTDP method since this method does not
need to maintain a power margin through the engine speed, causing a reduction
of the e�ciency.

Implementation

If any of the two proposed methods is to be used in an online application, there
are a few issues still to be addressed.

Both methods rely on the actual position, as referred to the �ow variable,
being known and the length of the cycle, including the points of driving direction
change, being �xed. In a real application this will not be the case, as illustrated
by Figure 5. In both methods the position can be reset when a driving direction
change occurs, but after these, disturbances in time or position, depending on
method, must be handled.

In the simulations it is, at each instant tk, assumed that the present load wk
is known and constant during each interval. Neither of these assumptions can
be expected to hold in a real implementation, and an expected, and possibly
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probabilistic, load must therefore be used in the one step look-ahead choice of
control signals performed in the simulations. The need for preventing the states
of moving into regions with in�nite cost-to-go will require over-estimating the
load, which can be expected to cause higher fuel consumption.

The time required for calculating a new CTG-map restricts the adaptability
of the controllers, regardless of the method used. In the implementations evalu-
ated here, the CTG-map calculation time corresponds to around 50−500 times
the length of each loading cycle, depending on method used. It will therefore
not be possible to quickly create a new CTG-map if the general driving cy-
cle changes, but the CTG-map, or maps, must be created beforehand. This
must be addressed if the working site changes from day to day or if di�erent
drivers operate the machine. The most critical calculation e�ort however is in
the look-ahead control simulations. This part must be completed online and
using a computer much less powerful. The simulations of the 25s cycles re-
quired around 0.3s using the SDP method and around 10s using the FTDP
method. Despite requiring shorter time than the length of the cycle, the calcu-
lation e�ort is too high for an implementation. Improvements might be possible
through approximation of the true CTG-map and improvement of the method
for searching for the optimal control action in the one step look-ahead, or even
by calculation of an u∗(x, t, P )-map in advance.

5 Summary and Conclusions

Wheel loader operation is often highly repetitive. This repeating of similar mo-
tions may be used as the basis of a prediction of future operation. If a prediction
of the future load trajectory is available, this can be used in an optimization of
engine and transmission operation. In this paper a wheel loader with a three
mode CVT is studied. Predictions of future loads have been used in actual
control systems before, e.g. in [26], but only for on-road vehicles. A predic-
tion based only on repetition however will become approximate and contain
uncertainties. The complexity of the wheel loader system and its operation,
along with the introduction of considerable uncertainties in the load prediction,
makes it necessary to expand previously presented methods. Two conceptual
methods, based on dynamic programming, for one step look-ahead control of a
wheel loader transmission are developed and presented in this paper.

A wheel loader driving cycle can be represented by a bucket trajectory and
the corresponding vertical and longitudinal forces. A measurement sequence
which contains 34 short loading cycles, described by vehicle speed, hydraulic
�ow (change of bucket height), hydraulic pressure (vertical force) and tractive
(longitudinal) force, is used throughout the paper. The most important pre-
diction uncertainties are in the hydraulic �ow. The two controller concepts are
evaluated through their performance in each of these 34 cycles, in each case
having the other 33 cycles available for use as a load prediction. Deviating
from the desired trajectory is not allowed, since this would require introducing
another state in the optimization and a gravel pile model for calculating new
forces, a model which is not readily available.
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The �rst method presented is based on stochastic dynamic programming and
is designated SDP. In this method the 33 cycles available for the prediction are
condensed into a statistical cycle with several possible loads at each instant in
time, and an estimated cost-to-go (CTG) map is calculated from this cycle. The
second method, designated FTDP, has vehicle speed as a state of the system,
and introduce a �xed 0.1s delay from driver input to bucket movement, a delay
equivalent to a prediction of bucket movement. Again, a cost-to-go map is
calculated. The CTG maps are in both methods used in a one step look-ahead
controller for, at each instant, selecting the control action that can be expected
to minimize the cost for completing the driving cycle.

The SDP method implementation turns out to require about 1/10:th of the
computational time of the FTDP method, both in the CTG-map calculations
and in the subsequent simulations. The lower time is because the SDP method
has two states while the FTDP method has three, and even though the SDP
method has several load alternatives at each instant. The most important per-
formance measure is the ratio of cycles for which the look-ahead simulation
could be completed without violating any bound, deviating from the desired
trajectory or going into an in�nite cost region in the CTG-map. These simula-
tions are regarded as successful. In the SDP method evaluation 74% of the 34
simulations were successful. In the FTDP method evaluation the ratio of suc-
cessful simulations depends on the value of the time to fuel weighting parameter
β. Using a β which gives cycle times similar to that speci�ed in the SDP solving
rendered 99.5% of 1122 evaluations successful. Increasing the weight on time
in the CTG-map calculation increases the importance of the choice of cycle to
use in the CTG-map calculation and reduces the ratio of successful simulations.
The second performance measure is the fuel use. In the SDP method evalua-
tions the average fuel use was 130g and the pre-speci�ed cycle time was 25s. In
the FTDP method evaluations, with β = 5 ·10−4, the average fuel use was 116g
and the average time use was 24.7s.

The driving cycle used in the CTG-map creation a�ects the result of the
one step look-ahead simulation. In the SDP method the impact is relatively
transparent, especially with respect to robustness to di�erent hydraulic �ows.
The CTG load can be used to trade increased robustness to hydraulic �ow for
higher fuel consumption. The FTDP method seems to be less sensitive to the
load used in the CTG-map calculation, unless cycle time is prioritized. In any
case, the impact of the CTG cycle is less transparent in FTDP than in SDP.

In all, this evaluation shows that both methods may have a potential for
use in a one step look-ahead controller for a wheel loader transmission, but
that there are still issues to be addressed before implementation, especially the
treatment of uncertainties in the prediction of distance driven. In the evaluation,
the SDP method required about 1/10:th of the computational e�ort of the
FTDP method and has better transparency of the impact of the CTG load.
On the other hand, the vehicle was unable to complete the cycle in 26% of the
evaluations when using the SDP method, as compared to a fail rate of less than
1% for the FTDP method, while the FTDP method also showed a 10% lower
fuel consumption.
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Abstract

Wheel loaders often have a highly repetitive pattern of operation, which
can be used for creating a rough prediction of future operation. As
the present torque converter based transmission is replaced with an
in�nitely variable device, such as an electric or hydraulic transmission,
a freedom in the choice of engine speed is introduced. This choice is far
from trivial in the extremely transient operation of these machines, but
the availability of a load prediction should be utilized.

In this paper, a predictive engine and generator controller, based on
stochastic dynamic programming, is described, implemented and eval-
uated. The evaluation is performed against non-predictive controllers
in the same system, to lift out any possible bene�ts of utilizing the
repetition based prediction. Simulations and �eld tests show that the
controllers are able to handle disturbances introduced from model er-
rors, the machine environment and the human operator, and that the
predictive controller gives around 5% lower fuel consumption than the
non-predictive reference controllers.

†This is a formatted version of �Predictive control of a diesel electric wheel loader powertrain�
by Tomas Nilsson, Anders Fröberg and Jan Åslund, submitted to Control Engineering Practice.
The formatting is restricted to changing the article into a single-column format, adjusting sizes of
�gures and tables, and adjusting the referencing style.
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1 Introduction

1.1 Background

Wheel loader operation is highly transient and repetitive, and contains periods
of high tractive force at low speeds, while the engine delivers power to both
the transmission and to the hydraulics. The most common layout of heavy
wheel loader powertrains is presented in Figure 1. The engine is connected to a
hydraulic pump and a torque converter. The torque converter is connected to
an automatic gearbox, which connects to the drive shaft.

ICE
Auxiliary
Loads

Torque
Converter

Gearbox,
Wheels

Hydraulic
Pump

Lift, Tilt

Figure 1: The reference vehicle powertrain setup. Solid lines are mechanical
connections and dashed lines are hydraulic connections.

In this setup the torque converter is a crucial component since it provides
some disconnection between the engine and vehicle speeds. This disconnection
makes the system mechanically robust but it also causes high losses. Just as
for most other vehicles, substantial work is ongoing for reducing emissions and
increasing fuel e�ciency. One approach for reducing fuel consumption is to
replace the torque converter based transmission with another solution. The
combination of low speeds, high forces and transient operation motivates the
use of some type of continuously variable transmission (CVT).

The repetitiveness of the operation may form the basis of a prediction of
future operation, which might be used in a predictive controller. This paper
studies such repetition based predictive control of the engine and generator in
a diesel electric wheel loader.

1.2 Problem formulation

The problem studied in this paper is the minimization of the expected amount of
fuel needed for completing a series of loading cycles, using a CVT wheel loader.
This problem was studied in the paper [1], though only through simulations. In
this paper the developed control strategy is implemented and �eld tested, using
the series hybrid electric vehicle described in [2].

The machine is operated by a human driver, which introduces major un-
certainties in the power trajectories. The machine is also operated in an en-
vironment which is di�cult to model. This is particularly evident in the pile
of material from which the machine �lls its bucket. The tests are designed
to investigate the performance of the controller under such severe prediction
uncertainties.
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1.3 Previous work

There is a substantial amount of work done on di�erent types of advanced drive-
trains for construction equipment. An evaluation of the minimum fuel consump-
tions of the standard and a CVT vehicle is made in [3]. Several other papers,
such as [4], [5], [6] and [7] study the use of hydrostatic CVTs in wheel loaders,
though the focus is on component control. In [8] and [9] several advanced driv-
etrains are presented. In [2] a series electric hybrid and the hydrostatic device
studied in [3] are presented. Neither [8], [9] nor [2] describe any controllers
though. An electric transmission is used in this paper since hydrostatic trans-
missions has much slower component dynamics, which cannot be neglected. The
series hybrid described in [2] is used for the online tests described in this paper.

An investigation into di�erences in driver performance and style in tradi-
tional machines can be found in [10].

A few heuristic CVT control strategies can be found in [11]. These control
concepts however do not fully utilize the potential of the transmissions. Con-
versely, there are some papers, such as e.g. [12], [13] and [14], treating optimal
transient engine operation. These, on the other hand, are based on perfect
predictions and do not present solutions for handling disturbances. There are
other areas in which optimal control without perfect prediction has been imple-
mented. For on-road vehicles, and apart from ECMS, as described in [15], there
have been several proposals, e.g. [16] and [17], for utilizing increased availability
of information, such as road maps and GPS data, for predictive control. This
type of information is in general not available for o�-road applications. Wheel
loader operation is often highly repetitive and often follows one of a few com-
mon patterns, which might enable a prediction based on pattern recognition,
such as that presented in [18] or in [19]. In [20], [21], [22] and [23] stochastic
dynamic programming (SDP) is used for optimal control based on an uncertain
prediction, though these all treat on-road vehicles. The paper [1] analyses three
di�erent SDP implementations for use in a CVT wheel loader. This last paper
forms the basis for the controllers implemented and tested in the work presented
here.

2 System and concept overview

This paper investigates the bene�t of utilizing the repetitiveness of wheel loader
operation for making a load prediction, and controlling the engine speed in a
diesel electric transmission based on this prediction. This section describes the
operation, the vehicle and the transmission, and the optimization involved in
building the controller. The main controller, the two reference controllers and
some auxiliary controllers are described in Section 3.

2.1 The Short Loading Cycle

One of the most common operational patterns for wheel loaders is the short
loading cycle (SLC). In this cycle, the machine loads material from a source,
a pile, to a receiver, often a dump truck. Figure 2 gives an overview of a
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short loading cycle. In the de�nition of the SLC used here the cycle consists
of four legs which are de�ned by the driving direction changes. Refering to the
notations in Figure 2, the �rst leg starts when the vehicle leaves point 4 and
ends when the vehicle has �lled the bucket at point 1. The second leg is the
movement from point 1 to point 4, the third is the movement from point 4 to
point 6 and the fourth is the movement from point 6 to point 4. The bucket
is raised during leg two and three and emptied at point 6. Each leg commonly
have a duration of 5−10s, with another 5−10s for �lling the bucket. After some
cycles, usually around four, the reciever is full and has to be replaced. During
this the machine is usually resting in a dormant state. The dormant state is
not included in this paper since it is easily detected and handled. Details about
this operation can be found e.g. in [24], [25] and [26].

Figure 2: Overview of the short loading cycle, from [8]

2.2 Test vehicle description

The control strategies of this paper are designed for an arbitrary in�nitely vari-
able transmission (IVT), such as a diesel electric or hydrostatic system. The
vehicle available for the testing was the supercapacitor series hybrid vehicle pre-
sented in [2], and which is based on a production Volvo wheel loader [27], and
this is controlled so to avoid using the supercapacitor, making a diesel electric
powertrain.

The layout of the test vehicle powertrain is presented in Figure 3. To the
left is the engine-generator set, and to the right are the electrically powered
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hydraulic pumps for the bucket and arm and the electric propulsion. The auxil-
iary loads consist mainly of the fan and hydraulic steering. The auxiliary loads,
engine and generator are together denoted the 'genset'. The driver has supe-
rior control of the propulsion and the bucket lift and tilt, along with some of
the auxiliary loads, especially the steering. In this project the right hand side
of the system is seen as a set of power consumers, controlled by the driver to
produce a requested power. Because of this, only the genset is modeled, and
the right hand side is seen as an external power demand. There is however an
important right hand side controller, that should be noted, known as the ma-
chine balance, which governs the partitioning of power between the hydraulics
and the propulsion, especially when the available power is lower than the total
requested power. This controller has the available power as one of its inputs
and the actual power used as one of its outputs. The genset controller therefore
has the instantaneous actual consumed power available as an input, and can
have the maximum allowed power consumption as an output. The auxiliary
loads are however not available for the controller.
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Figure 3: The test vehicle powertrain setup. Solid lines are mechanical connec-
tions and dashed lines are electric connections.

The vehicle is equipped with a dSpace Autobox which holds the genset
controller. This is connected to a laptop running dSpace ControlDesk, from
which the controller is loaded. The controller itself is implemented in Simulink,
compiled and loaded into ControlDesk.

2.3 System models

The complete system studied is presented in Figure 3. Any relevant dynamics
and e�ciencies in the power consuming parts are included in the requested
power of the driving cycle, since these devices are controlled by the driver. The
auxiliary loads are neglected in the modelling since these cannot be measured
in the evaluation vehicle. The following model, which describes the genset, is
identical to that used in [13], apart from parameter values and that a smoke
limiter and a generator e�ciency model is added. The system consists of a
turbo charged diesel engine and an electric machine. Apart from the inertia,
the dynamics of the electric machine is assumed to be fast compared to the
other dynamics of the system.

The genset is modeled as an inertia Ie which is a�ected by the engine torque
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Te and the generator torque Tg.

dωe
dt

Ie = Te − Tg (1)

The generator torque is modeled as the electric power from the generator, which
is the same as the load power PL, along with a quadratic loss function according
to

Pg,loss = g1T
2
g + g2|ωe|+ g3 (2)

PL = Tgωe ± Pg,loss (3)

The relation between injected fuel and engine torque is described by a quadratic
Willan's e�ciency model, as presented in [28], expanded with a torque loss due
to low intake manifold pressure

Te = e(ωe,mf )
qlhvncyl

2πnr
mf − TL(ωe)− Tpt (4)

Here mf is fuel mass per injection, ωe is engine speed, e and TL are e�-
ciency functions. Tpt is torque loss due to low air intake pressure poff =
pt − pset(ωe,mf ) caused by low turbo charger speed. The actual pressure is
pt and pset is a static setpoint map. The turbo dynamics is modeled as a �rst
order delay for the intake air pressure

dpt
dt
τ(ωe) = −poff (ωe,mf ) (5)

The torque loss from low pressure is described by

Tpt =

{
k1(ωe)p

2
off − k2(ωe)poff if poff < 0

0 if poff ≥ 0
(6)

The fuel per injection is related to fuel �ow according to

dMf

dt
= mf

ncyl
4π

ωe (7)

and �gure 4 presents the e�ciency map of the engine used. The gray lines
indicate allowed operating region (minimum speed and maximum torque) and
the black line indicates the static optimal operating points for each output
power. The �gure also shows e�ciency levels and output power lines with kW
markings.

2.4 Formal problem formulation

The problem studied here is the minimization of the expected average amount
of fuel needed for completing each cycle in a long series of loading cycles. For
a �xed time or distance cycle, this can be formulated as a minimization of the
expected average fuel �ow. With U representing a set of control signals andMf

the total fuel used, this can be expressed as

min
U(t)

lim
T→∞

E
1

T

∫ T

0

dMf

dt
dt (8)
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Figure 4: Engine map with e�ciency curves, output power with kW markings,
minimum speed and maximum torque bounds and the static optimal line.

while obeying the system dynamics and constraints, which includes the load
power PL. The driving cycles consist of a stochastic requested power PR as a
function of distance driven, and a deterministic vehicle speed vs used to give
a distance to time relation. If it would have been required that the genset
should always be able to supply any possible requested power, even when the
corresponding probability is low, the large uncertainties and spread in PR would
force the controller to always select high engine speeds. Since this would be
detrimental to the e�ciency, a limiter Pmax for the actual electric load PL is
introduced according to

PL = min(PR, Pmax) (9)

This limiter should only be used if the fuel gain of reducing Pmax is large and
the probability of PR > Pmax is low. Since Pmax does not hold any natural
penalty, an arti�cial penalty function G(Pmax) is introduced and added to the
objective function. In the optimization it is also assumed that this limiter will
be used sparsely and that the rest of the cycle will therefore not be a�ected by
any usage.

2.5 Control concept overview

The objective for the genset controller is to minimize the fuel use while also
minimizing the restriction imposed on the power consumers through the power
limitation. The genset controller can a�ect the engine speed and the intake
pressure through the injected fuel and the available power limiter. A set of
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previously driven cycles is assumed to be available, and from these a proba-
bilistic cycle is created. This cycle consists of a requested power probability
distribution as a function of distance driven. Optimization performed against
this probability distribution produces a state feedback control scheme which is
used in the vehicle. The optimization is time consuming and cannot be done
online, but rather on a day to day basis. Since the available vehicle has not
been operated as an IVT vehicle, two reference control schemes are also created.
The optimization is described in Section 2.6 and the controller implementations
are described in Section 3. The choice of controller concepts is based on the
investigation in [1].

2.6 Control optimization

The optimization problem is formulated as an average cost per stage problem.
In this paper, stochastic dynamic programming (SDP) and the relative value
iteration algorithm, as described in detail in [29] and in [30], is used for solving
this problem. This approach is also used in [21] and [23]. The controller can be
summarized as follows.

Denote the discretized state x ∈ X, control u ∈ U and load w ∈W with the
corresponding probability p, all with subscripts to denote the instant k. Select
arbitrary values for J1, an arbitrary state x∗, and an optimality condition ε.
Now, update J according to
1: while ρ > ε do
2: For each x ∈ X, calculate

J i+1(x) = min
u∈U

∑
wl∈W

p(wl)
(
g(xk, u, wl) + ...

+J̃ ixk+1(xk, u, wl)
)

(10)

in which J̃ i is interpolated from J i(x ∈ X)
3: set J i+1 ← J i+1 − J i+1(x∗)
4: calculate ρ = sup(J i − J i+1)
5: end while
Since selecting a proper ε value is not trivial, in this work the iterations are
instead repeated until the resulting simulated state trajectories ceases to change.
The result of the algorithm is a map which assigns a value to each state, J(x ∈
X). This map can be directly used in a controller which at each instant selects
the control action which minimizes the function

ûk = argmin
u∈U

∑
wl∈Wk

p(wl)
(
g(x̂k, uk, wl) + J̃xk+1(x̂k, uk, wl)

)
(11)

in which x̂ and û denote the actual state and control and J̃ is interpolated
among J(x ∈ X). Since p(wl) depends on the state x̂, the control û will be a
function of the state, and this function û(x ∈ X) can therefore be precalculated
to save online computational complexity, as is done in this work. For states
x /∈ X the control action is interpolated from û(x ∈ X). In this interpolation it
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is assumed that û(x ∈ X) is su�ciently smooth. If this is not the case, and there
are e.g. switching regions, some other solution should be found. The proper
solution is to go back to solving (11) if x̂k appears to be in such a region,
e.g. if |∇(û(x̂k))| > κ. Another, simple, solution is to use nearest neighbor
interpolation in such cases. In this work though, only linear interpolation is used
even though there are switching regions, since speed and simplicity are essential
and the nearest neighbor solution caused severe control signal oscillations at
some occasions in simulations.

A major part of the design of an SDP controller is to select states to include
inX and to formulate the probability functions. The states used here are the two
essential engine states ωe and pt and the distance driven s. The loadW consists
of a constant PR vector and state dependent probability distributions p. The
probabilities could be based on e.g. previous power, as in [21], acceleration or a
position related state. [20] implements two of these for on-road vehicles. This
paper evaluates the bene�t of utilizing rough cycle information in a predictive
controller. The prediction is based on previously driven cycles and can best be
formulated as a probabilistic load as a function of distance driven, p(PR,k|sk).
In this formulation the probabilities are assumed normally distributed due to
the low number of measurements available at each distance sk. The vehicle
speed is described as deterministic, not only because this reduces the number of
possible load combinations, but also because s can then be discretized so that
sk+1 is always on the grid, even though a �xed time step of 0.1s is used in the
optimization. The interpolations of J̃ can therefore be made two dimensional
in the J map calculation. Since there is a distinct �ow direction in the p(PR|s)
concept, J̃ i in (10) is replaced with J̃ i+1 except in the last s state, and the
calculation is proceeded in a backwards s-direction, thus making this more
similar to classic dynamic programming. This has a profound impact on the
number of iterations until the solution settles, reducing the number from > 25
to 2 or 3. To make a fair evaluation of this truly predictive control scheme,
a non-predictive scheme is created from the same set of data from previously
driven cycles. In this scheme the load probability is assumed independent of all
states, p(PR,k|−). This later control scheme is selected as a reference based on
the results presented in [1].

A natural choice of control signals for this system is fuel �ow mf , or engine
torque Te, along with Pmax. The large span in PR does however mean that for
any given mf , some of the ωe,k+1(xk, u, PR) will always be outside the valid op-
erating region, causing in�nite expected cost. The only valid solution is for the
controller to always keep Pmax near zero. Since this is not acceptable, another
control signal setup is proposed. It is assumed that there exist an engine speed
controller which is fast compared to the update frequency of the SDP controller.
By inverting the engine model, dωe

dt can then be used as control signal instead
of mf . The control signals in U are therefore selected to be dωe

dt and Pmax,
and the fuel �ow is calculated from the engine model (4). The signal Pmax
does not carry any natural penalty, and arti�cial penalties GPmax are there-
fore introduced. These penalty functions are described with the corresponding
controllers in Section 3.
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2.7 Simulation models

The control schemes created through the optimization are �rst evaluated in basic
simulations, which use the same models as used in the optimization. These
simple simulations, along with directly studying the û(x) maps, can give an
initial indication of the properties of a new control scheme, but they do not
catch the impact of model errors, the auxiliary controllers nor the feedback
from the driver.

A more complex Simulink simulation model was also available along with the
test vehicle and is used here for more complete pre-evaluations of new control
schemes. This model includes the actual controller that is later compiled and
loaded into the dSpace Autobox in the machine. The Simulink model consists of
more complete models of the supercapacitor and the components of the genset,
including simple models of the auxiliary loads, as presented in Figure 3. It does
not include models of any of the power consuming parts of the machine though,
nor does it include models of the driver or the environment.

3 Controller descriptions

The optimization produces control schemes with desired engine speed derivative
and maximum available power as outputs. The available controller framework
does not agree with this description though. The framework, which includes
the machine balance controller and lower level engine and generator controllers,
requires engine and generator torque references and a maximum available power
for the machine balance controller. Auxiliary controllers are therefore needed for
controlling the engine speed, for suppressing the impact of the supercapacitor,
and for making necessary adjustments to the maximum available power. These
auxiliary controllers are identical in each of the three genset controllers.

The outputs from the genset controller are engine torque reference Te, gen-
erator torque reference Tg and total available power Pmax. The inputs used
in the genset controller are actual engine and vehicle speeds, ωe,act and vs,act,
actual engine torque Te,act (from an external model), actual output power PL
(complies with Pmax) and the supercapacitor state of charge SOC. The intake
manifold pressure is not available but is reconstructed from the turbocharger
model (5), with the actual engine speed and torque as inputs. The layout of the
control system, with the genset controller, turbocharger model and the auxiliary
controllers, is presented in Figure 5.

This section describes the auxiliary controllers, followed by the implemen-
tations of the evaluated control schemes.

3.1 Auxiliary controllers

Generator controller

The generator should be controlled so that it produces the same electrical power
as drawn by the power consumers. The lower level control of the generator is
made for torque control, and not for electric power control though, and the
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Figure 5: Overall genset control system layout. The 'evaluated controller' block
is the location of the main controllers; the two reference controllers and the
predictive controller, that are the subject of this paper.

produced and consumed powers will therefore not exactly match. Since the
vehicle used in the tests has a supercapacitor �tted at the electrical connection
between the genset and the power consumers, this device will absorb any di�er-
ence as a change of state of charge, but since this paper treats IVTs this must
be prevented.

A PI-feedback from the supercapacitor state of charge produces a power to
charge or discharge the capacitor, and this power is added to the consumed
power PL. The sum of these is fed to the generator model (3), to calculate a
generator reference torque which is an output from the genset controller. The
charging power is also fed to the available power estimator since this reduces
the power available for the power consumers.

Engine speed controller

The role of the engine speed controller is to decide for an engine torque refer-
ence so to produce a desired engine speed, in the �rst (constant speed) control
concept, and a desired engine speed derivative in the other two (optimized)
controllers. The engine speed is governed through applying generator and en-
gine torque, according to (1). The desired engine torque is calculated from the
load torque and desired speed derivative according to the same engine dynamics
model (1). This model does not include the torques from the auxiliary loads
since the actual torques from these auxiliary loads are not measured neither
for the optimization nor in the online controller. A representative constant
auxiliary load is however added to the generator torque when calculating the
desired engine torque. In the case of an engine speed reference, which is the
case mainly for the �rst controller, a PI-feedback part is added to the engine
torque to hold the engine speed at its desired value. In case of an engine speed
derivative reference, this derivative corresponds to the inertia torque of (1). In-
cluding a feedback component for the engine speed derivative has been deemed
impractical due to the rapid changes in the loads and in the quick shifts in the
derivative reference. Because of the relatively small inertia torque, compared
to the model errors and the unmeasured auxiliary loads, it cannot be expected
that the desired engine speed derivative will be achieved. Nevertheless, since
these components are the only part that separates the di�erent controllers, apart
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from the maximum power, any di�erence in fuel consumption and/or driveabil-
ity must be referred to this control output.

Available power

Since the controllers described above alter the output from the optimized control
schemes, and there are highly relevant limitations in the system, the maximum
available power must also be lowered if necessary. An actual limit evaluation is
performed, in which the static maximum torques for the engine and generator
and a smoke limiter are checked, the powers required for the engine speed con-
trol, except for the generator torque and supercapacitor control, are subtracted
at the proper positions, and a constant generator e�ciency is assumed. The
remaining maximum power is assumed available for the driver controlled power
consumers. This available power limit is compared to the output from the active
control scheme and the lower limit is the output from the genset controller.

3.2 Controller 1, ωe = k, (reference)

The �rst controller which is evaluated uses a constant engine speed reference
and imposes no arti�cial limitation on the available power. The engine speed
reference value is selected based on simulations and there is no optimization
involved. All of the auxiliary controllers described above are however used
also here. This control scheme is included as a very simple reference for the
optimized schemes.

3.3 Controller 2, p(PR|−), (reference)
The second control scheme which is evaluated consists of maps with engine
speed derivative and maximum power as functions of engine speed and turbo
pressure, along with the auxiliary controllers. The maps are calculated from the
state independent probability function, p(PR|−), which is the PR distribution
from earlier measurements. The data only includes the power during active
cycle driving.

Simple simulations were used to select proper state discretizations and �nd
a proper cost function associated to the use of Pmax, along with parameters for
this function. The best results were found when using the function

GPmax = β2Pmax (12)

with β2 = 3 · 10−9.
In the controller, the desired engine speed derivative and maximum power

are found by linear interpolation in the control maps û(x), from ωe and pt. The
state signals are clipped at the limits of the maps. The engine speed derivative
a�ects the desired engine torque both through the inertia torque and through
the engine speed reference. The speed reference is set to be the actual speed
plus the desired speed derivative, with a gain. This later component is added
to increase the impact of the controller relative to the disturbances from the
auxiliary loads. Adding a low pass �lter on the actual engine speed, to provide



3. Controller descriptions 129

some stabilization, has also been considered and tested in simulations but is not
used in the actual tests. Identical ωe and dωe

dt reference signal calculations from
the map outputs are used in the implementation of Controller 3.

3.4 Controller 3, p(PR|s), (predictive)
The third control scheme which is evaluated is identical to the second controller,
apart from the maps with engine speed derivative and maximum power, espe-
cially in that these also depend on the distance driven. The maps are calculated
from a distance dependent requested power probability function, p(PR|s). The
probability function is calculated as a normal distribution adapted to the PR
distribution at each distance from a set of previous measurements. In the opti-
mization data, the length of the legs in each cycle are normalized according to
a pre-speci�ed leg size, so that the driving direction changes occur at the same
distance in each cycle. The average speed as a function of distance is used for
discretizing the distance with a �xed time interval, as described in Section 2.6.

Simple simulations were used to select proper state discretizations and �nd
a proper cost function associated to the use of Pmax, along with parameters for
this function. The best results were found when using the function

GPmax = α3p(Pmax < PR) + β3Pmax (13)

with α3 = 10−3 and β3 = 10−12.
In the controller, the desired engine speed derivative and maximum power

are found through linear interpolation in the control maps û(x), from s, ωe and
pt. Just as in controller 2, the state signals ωe and pt are clipped at the limits
of the maps. The distance driven in each cycle requires some more in depth
description.

The distance input to the map has the range [1,5), where the integer part
is the active leg and the fractional part is the normalized distance driven in
that leg. The active leg is incremented at each driving direction change until
leg 4. The distance driven in the active leg is reset at each change of driving
direction, integrated from the vehicle speed, normalized by the leg size used in
the optimization, and clipped at [0, 1].

Since there is no automatic detection of a cycle start, this had to be indicated
by the driver. The cycle detector substitute is implemented as a push-button in
the GUI of the dSpace ControlDesk controller. When this button is pushed, the
detector becomes active, and when active the next change to forward driving is
considered the start of a new driving cycle, and the leg counter is set to leg 1.
Leg 2 of the cycle is used as a reset signal for the detector, making it inactive
until the next pressing of the button. During continuous cycle operation the
cycle detector button could therefore be pressed during leg 3 and 4.

Apart from the leg and distance counter, and the maps having this as a third
input, all components and parameter values are identical to those of controller
2, especially including all auxiliary controllers.
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4 Measurements

There are two general types of data used in this project. The �rst type is some
data that was available before the start of the project and which is used in
the optimizations and simulations. The second type are that collected in the
controller �eld tests. This section describes the previously available data and
the �eld tests measurement setup.

4.1 Previously available data

In the initial controller development, presented in [1], a set of 34 loading cycles
are used. These were collected as a single sequence using a production Volvo
L180E machine, with only production sensors. The power and position trajec-
tories are calculated from the torque converter input and output speeds, the
hydraulic pressure and the arm and bucket angle (θ1 & θ2) derivatives, and
the powers are scaled according to the maximum engine power, to �t the series
hybrid machine used in the tests presented in this paper. The procedure is pre-
sented in detail in [1]. Finally, the loading cycles are separated using the cycle
detector presented in [19] and the distances in the cycles are adjusted to �t in
the optimization in Controller 3 (p(PR|s)), in particular the driving direction
changes should occur at the same distances in each cycle. The resulting cycles
were used in the optimization that produced the maps used in the �eld tests.
The cycles were also used in the controller development, which included tuning
of the Pmax cost parameters, in the initial evaluation by simulating a single
cycle from the separated set and in the Simulink evaluation, but in the last case
using the entire sequence. The scaled but not separated sequence is presented
in Figure 6.

Some datasets from earlier operation with the series hybrid were also made
available. The set deemed to be the most representative of real operation con-
sists of 20 loading cycles divided into four sets with pauses in between. The
pauses are episodes where the load receiver is being replaced or emptied. This
dataset was used as a more realistic scenario for the Simulink evaluation, be-
fore testing the controllers in the actual machine. For this reason, the cycles in
this dataset are not separated. Observe though that these datasets have been
collected running the vehicle as a series hybrid, utilizing the supercapacitor,
thus not being restricted by the maximum torque or power of the engine or
generator. The sequence is presented in Figure 7.

4.2 Collection of evaluation data

The main evaluation of the developed controllers is based on data collected in
�eld tests. The operation performed in the tests are intended to represent real
world operation, and especially be the result of driving performed by real drivers
in a realistic external environment. For this reason, a speci�c site was made
available for the tests.

The site consisted of a pile of coarse gravel positioned next to a ramp, and
an articulated hauler capable of carrying 4-5 bucket loads. The hauler was
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Figure 6: Previously available data, derived from data collected using a pro-
duction Volvo L180E machine
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Figure 7: Previously available data, data collected using the series hybrid ma-
chine

positioned next to the pile, similar to the layout in Figure 2. When the hauler
had been loaded with 4-5 bucket loads, it moved around the site onto the ramp,
emptying its load back onto the original pile. This way, a realistic sequence
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of similar cycles could be performed. The unusually long pauses between each
subset of cycles are of less importance since the predictive controller is only
to be used in active cycle driving, and the pauses can easily be detected and
handled. The evaluation therefore includes all of the relevant disturbances or
uncertainties imposed by the driver and the environment along with the model
errors.

5 Results

5.1 Optimization

To make the evaluation as fair as possible, identical state and control signal
discretizations were used in the p(PR|−) and p(PR|s) controllers. The leg sizes in
the later was set to 4x8m. The experienced calculation times, using a standard
desktop computer, have been in the order of 10s per iteration for the p(PR|−)
method, with about 25 iterations required before the solution ceases to change,
and in the order of 1h per iteration for the p(PR|s) method, with 2 iterations
before the solution ceases to change. The results are cost to go maps J(x), and
a �nal iteration is required for �nding the corresponding control maps û(x),
making a total calculation time of about 5m for the p(PR|−) concept and 4h
for the p(PR|s) concept.
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Figure 8: The probability function p(PR|s) used in the optimization for the
predictive controller.

The velocity pro�le and probability function used in the optimization for the
predictive controller are presented in Figure 8. The corresponding probability
function p(PR|−) can be constructed from the time average of the probabilities
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in Figure 8. The û(x) maps used in the p(PR|−) controller are presented in
Figure 9 and slices, taken at s ≈ 5m, of the maps used in the p(PR|s) controller
are presented in Figure 10. As these �gures show, there are switching regions
in these maps, where linear interpolation might not produce the same results as
a solving of (11), and nearest neighbor interpolation might be more adequate,
as discussed in Section 2.6. Since the main result of using nearest neighbor
interpolation was highly oscillatory control signals and a simple solution was
required for the online implementations, linear interpolation was used through-
out the û(x) maps. Figure 10 also indicates that the discontinuities in the dωe
map are related to the discretization of Pmax.
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Figure 9: The optimized control maps dωe/dt and Pmax for the p(P |−) con-
troller. Darker shades indicate lower values.
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Figure 10: The optimized control maps dωe/dt and Pmax for the p(P |s) con-
troller. In both �gures darker shades indicate lower values. It can be seen that
the dark bands in dωe/dt correspond to the the changes in the levels in Pmax.
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5.2 Simulation results

The optimized control maps were �rst evaluated using simple simulations. An
example of data from a simulation of a cycle from the L180E dataset using
the p(PR|s) controller is presented in Figure 11. This �gure shows the states
ωe and pt, the requested power PR and the control signal Pmax. The control
signal dωe/dt can be found from the ωe �gure, since there are no model errors
in these simulations. In this cycle the leg sizes are set to 4x8m and the leg
limits are marked with gray lines. The fuel data from this cycle with the three
controllers, described in Section 3, are presented in Table 1. The values are
fuel use, e�ciency η, which is fuel use divided by actual output power PL, and
energy not delivered, de�ned by WU =

∫
(PR − PL). The WU value is now a

measure for how big impact Pmax has had on the operation, and by adjusting the
parameters in the GPmax functions fuel can be traded for WU . In these cycles,
the fuel values are similar, but the energy not delivered falls with increasing
controller complexity.

Table 1: Controller performance in the initial simulations.
const p(PR|−) p(PR|s)

Mf [g] 60.9 63.1 60.9
η [%] 27.8 27.2 28.5
WU [kWs] 61.3 50.1 40.1
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Figure 11: Illustration of the results from the initial simulations using the
p(PR|s)-controller. The dashed line is PR.

The controllers were further evaluated using Simulink simulations. Two
examples of data from such simulations, using the p(PR|−) and p(PR|s) con-
trollers, are presented in Figure 12. The example is a cutout from simulations
using the series hybrid machine data presented in Figure 7. The driving direc-
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tion changes are marked with gray lines. It can be seen that, despite the leg
sizes being shorter than in the optimization data (the leg sizes are presented
in Figure 13), the engine speed varies with the load, specially in the p(PR|s)
case, as intended. The average fuel data from all cycles in both the L180E
data (data 1) and the series hybrid data (data 2) simulations with the three
controllers, described in Section 3, are presented in Table 2. The values are
fuel use, e�ciency η, which is fuel use divided by actual output power PL, and
energy not delivered, de�ned by WU =

∫
(PR − PL). In both of the datasets

the fuel consumption values are similar although slightly lower for the p(PR|s)
controller, but the undelivered energies di�er. In the second case WU is big-
ger for the p(PR|s) controller, and this is due to the legs being shorter in this
dataset, thus leading to a mismatch between the locations of the predicted and
simulated high power regions at the end of the �rst leg. In the L180E data, in
which the leg sizes are closer to those in the optimization data, the WU value
is instead signi�cantly smaller for the p(PR|s) controller.

Table 2: Controller performance in the Simulink simulations.
Data 1 const p(PR|−) p(PR|s)
Mf [g] 104.2 106.7 100.5
η [%] 23.7 23.1 25.1
WU [kWs] 117.1 117.5 90.6
Data 2 const p(PR|−) p(PR|s)
Mf [g] 69.2 70.6 67.2
η [%] 24.1 23.6 24.4
WU [kWs] 29.8 25.8 37.6
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Figure 12: Illustration of the results from the Simulink simulations using the
p(PR|−) (dotted) and p(PR|s) (solid) controllers in a cycle from the L180E data.
The dashed line is PR.
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5.3 Field test results

The controller �eld tests were performed with three di�erent drivers, each oper-
ating the machine for about an hour, producing a total of about twenty cycles
using each of the three controllers.

Figure 13 shows the average leg sizes in the optimization, simulation and
measurement datasets. The data is divided into the four legs, with the �rst
leg at the bottom. This �gure shows that the distances in the measurements
are similar to those in the optimization data but that there are signi�cant and
realistic di�erences.

O S1 S2 C I P
0

10

20

30

40

le
g
 s

iz
e
  
 [
m

]

Figure 13: Average leg sizes in the datasets. Designations: O=optimization (ad-
justed L180E), S1=unadjusted L180E, S2=series hybrid, C=const, I=p(PR|−),
P=p(PR|s).

The Figures 14, 15 and 16 each shows one short loading cycle and illus-
trates the data collected in the measurements, using the constant engine speed,
p(PR|−) and p(PR|s) controllers, respectively. The �rst part shows vehicle speed
vs, which also gives the distance driven and especially the active leg. The sec-
ond part shows maximum and requested power, Pmax (solid) and PL (dashed).
Observe that unlike in the simulations, where the PR signal was available, only
the PL signal which is an output from the machine balance controller is avail-
able, and de�ning a measure of the impact of Pmax, such as WU , is therefore
nontrivial. The third part shows engine speed ωe and turbo pressure pt, where
pt is replaced by the state of charge in Figure 14. The vehicle speeds and de-
sired powers are similar in these three cycles, though vs is somewhat lower in
the p(PR|s) cycle. The pause early in leg four in Figure 16 is an impact of the
driver having to push the cycle detection button. The control computer was
mounted beside the driver, so that he had to take his eyes and concentration
o� the driving to press the cycle detection button. Such pauses in or before
the last leg were therefore common when operating with the p(PR|s) controller.
Pmax mainly follows ωe but is also a�ected by pt. The pressure pt acts as a
low pass �ltered combination of the PL and ωe. The state of charge does start
on a level o� target in this example and has some ripple which is caused by
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generator model errors. Initial o�sets were common since one driver switched
to a backup controller in the longer pauses, and the level of the ripple was sim-
ilar in each measured cycle. The biggest di�erence between the outputs of the
three controllers are in the engine speeds. In the �rst case, the speed should be
constant. As Figure 14 shows, it varies, but this is to a lesser extent than in the
other two cases and the variations can be regarded as random. In the second
case, ωe is controlled, but only from the actual ωe and pt. This can best be seen
at 490− 495s, where ωe follows pt, which in turn follows PL. In the third case,
ωe increases mainly in the end of the �rst leg since there is a high probability
for high PR at that position, and there is less correlation between PL and the
engine speed.
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Figure 14: An example, from the measurement results, of a cycle operated with
the constant engine speed reference controller.

Table 3 presents average data from the measurements. The values are fuel
use per cycle, electric energy consumed including change of supercapacitor state
of charge, e�ciency η (fuel use divided by actual output power PL), leg size,
cycle time and number of cycles of each type. There are about 20 cycles of each
type, which is few but still enough to make a �rst analysis. The cycle times are
somewhat higher when using the optimized controllers, though the leg sizes are
not. The energy consumed varies due to small di�erences in the operation, and
are somewhat higher when using the optimized controllers. The energy from the
∆SOC is of course included when calculating the fuel to output power e�ciency
η. In the simulations, the PR trajectory was the same for the controllers so that
the fuel per cycle and e�ciency are near equivalent. This is not the case in the
�eld test data, and selecting a proper fuel measure for the controller comparison
is not trivial. The fuel per cycle values are similar under the const and p(PR|s)
controllers, and higher under the p(PR|−) controller. Due to the di�erences
in cycle times and distances driven, partly caused by the pauses for pressing
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Figure 15: An example, from the measurement results, of a cycle operated with
the p(PR|−) controller.
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Figure 16: An example, from the measurement results, of a cycle operated with
the p(PR|s) controller.

the cycle detection button in the p(PR|s) cycles, the fuel per cycle values is
not an appropriate measure for a controller comparison. The most appropriate
measure is instead the e�ciency values η, which includes the di�erences in used
energy and changes in supercapacitor state of charge. The e�ciency increases
slightly with the complexity of the controller, so that there is a 3− 4% relative
improvement when using the p(PR|s) controller, compared to the other two.
Since the PR signal is not available, a proper comparison of the impact of Pmax
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such as through WU , is not trivial. However, since PL and Pmax only coincide
when the power limiter is active, a comparison of these two signals, as can be
done in Figures 14, 15 and 16, can give an indication of the impact of Pmax.
Such comparisons indicate similar impacts in the two optimized controllers and
slightly lower impact in the constant engine speed controller. Observe though
that this only indicate the frequency, and not the magnitude, of Pmax having
an impact.

Table 3: Controller performance in the measurements.
const p(PR|−) p(PR|s)

Mf [g] 93.2 101.8 91.8∫
PLdt [kWs] 779 856 794

η [%] 19.4 19.5 20.2
avg leg size [m] 6.92 7.74 6.80
avg cycle time [s] 40.5 43.5 44.3
no. of cycles [−] 21 20 26

6 Discussion and Conclusions

The aim of the work presented in this paper was to investigate the possible
bene�t of utilizing the repetitiveness of wheel loader operation for optimal pre-
dictive control of of CVT based transmission in such a vehicle. The predictive
controller was constructed using stochastic dynamic programming with a load
power probability distribution dependent on distance driven, p(PR|s). This
predictive controller was evaluated through both simulations and �eld tests, in
which the machine was operated with the predictive and two less complicated
controllers. The combined results measured in fuel use Mf and impact of the
power restriction WU , in simulations and measurements, show a slight advan-
tage for the predictive p(PR|s) controller. In simulations the p(PR|s) controller
in general gave both lower Mf and WU values. The exception was when cycles
with shorter legs were simulated. In this case the p(PR|s) controller gave higher
WU values, since the high power bucket �lling occurs at a position that di�ers
from that in the optimization data. In the measurements, the WU value cannot
easily be de�ned, and the cycles recorded when using the di�erent controllers
di�er somewhat in both duration and average power. Due to the di�erences,
the most proper fuel value to compare is the fuel to output power e�ciency.
This value indicate a fuel bene�t of 3 − 4% of the p(PR|s) controller over the
reference controllers, which agree well with values seen in simulations. The
di�erences between the cycles from the di�erent controllers are partly caused
by the distraction of having to press a cycle detection button in the p(PR|s)
controller, but are mainly di�erences that occur normally because of the human
operator.

An important part of this evaluation, and the part that distinguishes this
work from the previous paper [1] on which the controllers are based, is the
introduction of real world disturbances. These include a real environment and,
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most importantly, human drivers. All of these disturbances are present in the
measurements. The machine operates on a realistic work site and there were
three di�erent drivers operating the machine. Despite severe model errors,
especially in the lack of a model for the auxiliary loads, the main controller
studied (p(PR|s)) produced the expected general state trajectories, increasing
the engine speed in anticipation of the high power during bucket �lling and
lowering of the speed during the rest of the cycle.

In all, this paper shows that the conceptual predictive controller can be used
for controlling the genset in a diesel electric wheel loader. Tests are performed in
which all relevant disturbances are present. The fuel improvement in simulations
and �eld tests, based on the fuel to output power e�ciency, is in the order of
3− 4%, as compared to the results from the reference controllers.
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