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Abstract
Vehicle powertrain electrification, i.e. combining the internal combustion en-
gine (ICE) with an electric motor (EM), is a potential way of meeting the
increased demands for efficient and low emission transportation, at a price of
increased powertrain complexity since more degrees of freedom (DoF) have been
introduced. Optimal control is used in a series of studies of how to best exploit
the additional DoFs.

In a diesel-electric powertrain the absence of a secondary energy storage and
mechanical connection between the ICE and the wheels means that all electricity
used by the EMs needs to be produced simultaneously by the ICE, whose
rotational speed is a DoF. This in combination with the relatively slow dynamics
of the turbocharger in the ICE puts high requirements on good transient control.
In optimal control studies, accurate models with good extrapolation properties
are needed. For this aim two nonlinear physics based models are developed and
made available that fulfill these requirements, these are also smooth in the region
of interest, to enable gradient based optimization techniques. Using optimal
control and one of the developed models, the turbocharger dynamics are shown
to have a strong impact on how to control the powertrain and neglecting these
can lead to erroneous estimates both in the response of the powertrain as well
as how the powertrain should be controlled. Also the objective, whether time
or fuel is to be minimized, influences the engine speed-torque path to be used,
even though it is shown that the time optimal solution is almost fuel optimal.
To increase the freedom of the powertrain control, a small energy storage can
be added to assist in the transients. This is shown to be especially useful to
decrease the response time of the powertrain, but the manner it is used, depends
on the time horizon of the optimal control problem.

The resulting optimal control solutions are for certain cases oscillatory when
stationary controls would have been expected. This is shown to be neither an
artifact of the discretization used nor a result of the modeling assumptions used.
Instead it is for the formulated problems actually optimal to use periodic control
in certain stationary operating points. Measurements show that the pumping
torque is different depending on whether the controls are periodic or constant
despite the same average value. Whether this is beneficial or not depends on
the operating point and control frequency, but can be predicted using optimal
periodic control theory.

In hybrid electric vehicles (HEV) the size of the energy storage reduces the
impact of poor transient control, since the battery can compensate for the slower
dynamics of the ICE. For HEVs the problem instead is how and when to use
the battery to ensure good fuel economy. An adaptive map-based equivalent
consumption minimization strategy controller using battery state of charge for
feedback control is designed and tested in a real vehicle with good results, even
when the controller is started with poor initial values. In a plug-in HEV (PHEV)
the battery is even larger, enabling all-electric drive, making it it desirable to use
the energy in the battery during the driving mission. A controller is designed
and implemented for a PHEV Benchmark and is shown to perform well even for
unknown driving cycles, requiring a minimum of future knowledge.
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Populärvetenskaplig sammanfattning
Elektrifiering av drivlinan i fordon är ett sätt att möta kraven på transporter
med hög effektivitet och låga utsläpp. Att byta ut förbränningsmotorn mot
en elmotor kan ge vinningar avseende effektivitet, prestanda och utsläpp, men
till en kostnad av lägre mobilitet på grund av eletriska energilagers relativt
låga energitäthet i jämförelse med fossila bränslen. Att istället komplettera
förbränningsmotorn med en elmotor erbjuder möjligheten att kombinera de två
systemens fördelar och samtidigt undvika nackdelarna.

Att använda mer än en motor i drivlinan ökar komplexiteten eftersom fler
frihetsgrader har introducerats. Detta ställer ökade krav på utformningen av
reglersystemet för att få ut det mesta av potentialen i drivlinan. I optimal
styrning använder man matematiska modeller och optimeringsalgoritmer för
att beräkna hur man bäst styr det modellerade systemet. Storleken på det
elektriska energilagret påverkar dock valet av optimal styrnings-metod samt
vilken detaljnivå på modellerna som behövs. I avhandlingen används optimal
styrning i en serie studier av hur man bäst utnyttjar de extra frihetsgraderna
som elektrifieringen har introducerat.

I en diesel-elektrisk drivlina finns det ingen mekanisk koppling mellan motorn
och hjulen, likt en växellåda i ett vanligt fordon, vilket gör att dieselmotorns
varvtal är en frihetsgrad som måste styras. Avsaknaden av elektriskt energila-
ger leder också till att all elektrisk energi till elmotorn måste produceras av
förbränningsmotorn exakt då den behövs. Dessa två egenskaper, i kombination
med den långsamma dynamiken hos turboaggregatet, ställer höga krav på god
transientreglering. För att studera optimal styrning krävs bra modeller med goda
extrapoleringsegenskaper. Med avseende på detta utvecklas två fysik-baserade
modeller som uppfyller dessa krav och dessutom är tillräckligt glatta i det rele-
vanta arbetsområdet för att möjliggöra gradient-baserade optimeringstekniker.
Med optimal styrning och en av de utvecklade modellerna visas turbons dynamik
ha stor påverkan på hur drivlinan bör styras. Att försumma turbodynamiken kan
leda till felaktiga uppskattningar, både av drivlinans responstid, men även hur
den bör styras. Kriteriet, det vill säga om bränsle eller tidsåtgången minimeras,
påverkar också vilken motorvarvtal-motormoment-väg som är optimal, även om
det visas att den tidsoptimala lösningen är nästan bränsleoptimal. För att ytter-
ligare öka frihetsgraden i drivlinan kan ett elektriskt energilager användas för att
assistera i transienterna. Detta visar sig vara särskilt användbart för att minska
responstiden hos drivlinan, men hur det ska använda beror på tidshorisonten på
optimeringsproblemet

De resulterande optimala styrsignalerna är i vissa fall oscillerande där kon-
stanta styrsignaler förväntas. Detta visas vara vare sig en effekt av den använda
diskretiseringen eller modelleringsvalen som är gjorda. Istället är det för de
lösta problemen faktiskt optimalt att använda periodiska styrsignaler för vissa
stationära arbetspunkter. I experiment visas att pumparbetet skiljer sig beroende
på om periodiska eller konstanta styrsignaler används, även om medelvärdet är
detsamma. Huruvida detta ökar effektiviteten eller inte beror på arbetspunkt
och periodtid.

För hybridelektriska fordon (HEV) så minskar batteriets storlek effekten
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av dålig transientreglering då batteriet kan användas för att kompensera för
den långsamma förbränningsmotordynamiken. Istället blir problemet i huvudsak
hur mycket och när batteriet ska användas för att få god bränsleekonomi. En
adaptiv mapp-baserad ekvivalentförbruknings-minimerande styrlag (ECMS) med
återkopplad reglering baserad på batteriets laddningsnivå, utvecklas och testas i
riktigt fordon med gott resultat, även vid dålig initialisering av regulatorn.

För plug-in hybrider (PHEV) är batteriet större och kan dessutom laddas från
elnätet, vilket medför möjlighet till rent elektrisk drift och att det är önskvärt att
använda energin i batteriet under köruppdraget. För att minska energiåtgången
är det däremot ofta lönsamt att blanda energin från bränsle och batteriet
kontinuerligt under köruppdraget och se till att batteriet töms lagom till slutet
av köruppdraget. För att åstadkomma detta måste då även urladdningstakten
bestämmas. En regulator utvecklas för att minimera energiåtgången för en PHEV,
det vill säga som försöker använda lagom av batteriet så det ska räcka hela vägen,
men inte längre. Denna regulator implementeras för ett referensproblem, med
gott resultat även för okända körcykler, trots ett minimum av framtidskunskap.
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1

Introduction

The most common source of power in vehicles is the internal combustion en-
gine (ICE), converting chemical energy from fossil fuels to mechanical force.
Since it’s invention it has undergone continuous development, leading to a
quadrupling of the power output without a significant increase in engine size
in the last 70 years [69]. Key aspects of realizing the seen performance and
efficiency increase are supercharging concepts and downsizing [24, 99]. Using
turbochargers to supercharge the engine is a way of exploiting the energy in the
exhaust to increase the amount of air flowing into the engine. This increases the
power that can be produced by a certain engine displacement, but also intro-
duces a difference between the power that can be produced in transients versus
steady-state, since it takes time to spin up the turbocharger, a phenomenon
normally called turbocharger lag [69]. Further, the mature nature of the ICE
means that additional efficiency increases are getting harder to accomplish, while
the efficiency of the combustion engine at part load is still relatively low [35, 36].

Electric motors (EM) on the other hand have significantly higher effi-
ciency [28], and also the potential to recuperate kinetic energy when braking,
making them a promising technology for efficient and low emission transporta-
tion. The energy density of the electric energy storages, e.g. batteries and
supercapacitors, is however substantially lower than that of fossil fuels [36],
decreasing the range of the vehicle.

Combining an ICE and an EM seems to be a good compromise both ensuring
range and increasing efficiency at the price of increased cost of the vehicle. There
are several ways, both with and without electrical energy storage, the two can
be combined. If the vehicle has more than one source of energy, e.g. battery
and fuel, it is denoted a hybrid. Several different hybrid architectures exist but
the main delimitation is if the ICE is mechanically connected to the wheels,
together with an EM this is called parallel hybrid, see Fig. 1.1-a, or if it is only
used together with a generator to produce electrical power, i.e. series hybrid,

3



4 Chapter 1. Introduction

(a) Architecture of a parallel hybrid electric vehicle

(b) Architecture of a diesel-electric powertrain, or in the presence of battery, a series
hybrid electric vehicle.

Figure 1.1: Main architectures of a electrified powertrain.

Fig. 1.1-b. There also exist combinations of the two denoted series-parallel or
power split hybrids.

In a diesel-electric powertrain the architecture is that of a series hybrid,
but without an energy storage, see Fig. 1.1-b. This means that a generator is
mounted on the output shaft of the diesel engine and that the ICE-generator
combination (GenSet) produces electrical power to the motors that propel the
vehicle. These complex powertrains all have in common that they have at least
one extra Degree of Freedom (DoF) compared to the conventional powertrain,
EM torque in a parallel hybrid, generator power and engine speed for series
hybrid and engine speed for the diesel-electric powertrain. In order to realize the
full potential of the powertrain this DoF needs to be exploited, which requires a
sophisticated control system optimizing the energy flow [70].

The size of the battery has a strong impact on the energy management of a
vehicle. For a hybrid electric vehicle (HEV) a typical goal is to minimize the
amount of fuel used while maintaining the battery state of charge (SOC), which
is a measure on how much energy is left in the battery, around a prescribed level,
see for instance [20, 50, 64, 71]. In a plug-in HEV (PHEV) the battery is larger
and rechargeable from the power grid meaning that the vehicle can be driven
as an electric vehicle for parts of, or entire, driving missions. Then, due to the
higher efficiency and lower emissions of the EM, it is desirable to make use of the
energy stored in the battery and deplete it during the driving mission, see for
instance [45, 68, 93, 97]. In a diesel-electric powertrain the energy driving the
vehicle needs to be produced simultaneously by the GenSet, any delay in power
production, for instance due to turbocharger lag, will be a delay experienced by
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the operator. The difference in energy paths also impacts the complexity of the
ICE. In an HEV the ICE can be made quite small since the EM and battery can
assist when high power is demanded. In order to decrease cost, the ICE can also
be of simpler type, and is therefore seldom turbocharged. In a diesel-electric
powertrain on the other hand, the ICE has to be dimensioned for the maximum
power of the powertrain.

The complexities of the discussed systems lead to that it is not obvious how
they should be controlled in order to best exploit the benefits and avoid the
drawbacks of the powertrains. Optimal control is an interesting tool that can
be used to gain insights into how to best control the powertrain, and which
effects are important, but also to implement in the powertrain controller. Even
though the common goal for the control of all the discussed powertrains is to
increase efficiency and/or decrease emissions, the difference in architectures and
components lead to different types of models and optimal control techniques
being suitable.

1.1 Outline
The first three introductory chapters aim at introducing the topics covered in the
dissertation, relating the contributions to the research field and finally describing
the experimental setups used.

In Chapter 2 the contributions in the dissertation are related to the research
field. In Section 2.1 energy management of HEVs is discussed and related to
what is done in Paper 9-11. Section 2.2 discusses modeling of diesel engines, the
topic of Paper 5. Section 2.3 summarizes the related field of optimal control of
diesel engines and relates it to Paper 1-4 and Paper 7-8. Section 2.4 discusses the
different optimal control strategies and solvers used in the dissertation, which
is the motivation for Paper 6. Chapter 3 discusses the experimental setups
used in dissertation. The appended papers then cover the contributions in the
dissertation regarding modeling and optimal control of electrified powertrains.
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1.2 Summary andMain Contributions of the Pa-
pers Included in the Dissertation

This section summarizes the eleven papers included in the dissertation and
highlights the main contributions. Unless specifically noted the author performed
the study and wrote the majority of the paper.

In Paper 1 [89] optimal control of a diesel-electric powertrain in transient
operation is studied. The main contributions are the presented model, how to
formulate the optimal control problem to receive relevant solutions, and also the
nature of the optimal control when only engine properties are considered. The
paper demonstrates both the influence of the turbocharger dynamics as well
as how the criteria and constraints affect the solution, both for simple steps in
requested power, but also for a more complex sequence of steps.

Paper 2 [90] continues on Paper 1 and contributes with a study of how a
non-ideal generator model as well as adding an energy storage to assist in the
transients changes the results from Paper 1. Further contributions are a detailed
study of how the energy storage efficiency influences the optimal solution and
insights into optimal sizing of the energy storage, and also what the limiting
factors are. Finally the trade-off between the minimum time and minimum fuel
solutions, and how it changes with the presence of an energy storage, is studied.

The contribution in Paper 3 [52] is a quantitative and qualitative study of
the impact of turbocharger dynamics on the optimal control of diesel powered
powertrains. Two different applications, wheel loader and diesel-electric, are
studied where the author contributed with the diesel-electric study. It is shown
that the turbocharger impact is dependent on the architecture of the powertrain,
but for a diesel-electric powertrain the optimal trajectories differ substantially,
and that neglecting the turbocharger dynamics can underestimate the optimal
transient duration and consumption.

In Paper 4 [83] the potential performance of different control strategies using
the control principles used in industry is studied and evaluated, i.e. the SAE
J1939-standard for engine control. Two main approaches are discussed and
implemented with the control parameters tuned for minimum fuel or minimum
time. This is then performed for several cases and the results are related to
the previously presented optimal results, investigating the potential for optimal
control. As a further contribution the controllers are extended and it is shown
that it is possible to control the diesel-electric powertrain in an optimal manner
using the SAE J1939-standard.

Paper 5 [85] contributes with a model of a diesel-electric powertrain. The
developed model is a four state, three control physically based mean value engine
model that is smooth in the region of interest and provided fully parametrized
to the research community. This provides researchers without engine models or
data with a relevant and validated open source model on which control design
or optimization can be performed. A further contribution is the methodology
how to model and parametrize a model of a diesel-electric powertrain, using
measurements that are conducted without a dynamometer, the only requirements
are a diesel-electric powertrain and sensors.

The contribution of Paper 6 [86] is the formulation and solution of an optimal
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control problem to serve as a benchmark on which to evaluate optimal control
tools. The considered problem is the optimal control of the power response
of a diesel-electric powertrain. The intent of the benchmark is to provide the
research community with a relevant problem of reasonable complexity on which
to benchmark optimal control tools. The benchmark is provided together with a
simultaneously developed model, both available for download. To ensure that the
benchmark is relevant for tools at different stages of development the problem is
provided both with and without path constraints as well as with and without
time as a parameter.

The resulting optimal control trajectories for diesel-electric powertrains are in
certain operating conditions oscillatory, when stationary controls would have been
expected. In Paper 7 [88] the model and discretization impact on the oscillating
optimal control of a diesel-electric powertrains is presented. More specifically it
studies whether the seen oscillations are an artifact of the discretization or if the
oscillations can be explained by the models used and whether or not extending
the model impacts the oscillating solutions. The paper also contributes with
a computationally fast and accurate residual gas model suitable for use in an
optimal control context.

Paper 8 [87] continues on Paper 7 and studies whether or not gains can
be made by controlling the wastegate in a periodic manner in an otherwise
stationary operation of a diesel engine. Experiments are conducted on an actual
powertrain for several wastegate controls, both periodic and fixed, showing
how the wastegate control strategy affects the efficiency and pumping torque of
the engine. Further the model from Paper 5, built using measurements on the
same powertrain, is used in an simulation and optimal control study, showing
the operating point dependence of the seen phenomenon as well as that the
oscillating controls under certain circumstances can be predicted by optimal
periodic control theory. Further, the effect of the time constant of the wastegate
actuator on the optimal controls is shown.

In Paper 9 [91] an adaptive Equivalent Consumption Minimization Strategy
(ECMS) for the energy management problem of a HEV, is developed, imple-
mented and experimentally tested in a real HEV. The optimal torque distribution
is calculated offline and stored in tables and the effects of discretization on the
fuel consumption is shown. Two ways of adapting the control to maintain the
SOC within the desired limits are investigated and due to it’s robustness to
unknown driving missions one is suggested and implemented in a real vehicle.

Paper 10 [72] presents a benchmark PHEV energy management problem, on
which to evaluate different control strategies, and analyzes a set of solutions.
The benchmark was developed for a special session of the IFAC Workshop on
Engine and Powertrain Control, Simulation and Modeling (E-COSM ’12), held
in Rueil-Malmaison, France, in October 2012. The author participated in the
writing of the paper and also designed and implemented the best performing
controller for the benchmark, analyzed at length in the paper.

Paper 11 [84] presents the design, implementation, and analysis of the best
performing controller for the benchmark in Paper 10. The contribution of the
method proposed in the paper is an efficient way of solving and implementing
the ECMS control strategy for a PHEV that is also self-contained, using driving
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distance and average speed to estimate the initial equivalence factor and then
adapting it continuously throughout the driving mission to ensure that it is
robust to unknown driving missions and that the desired discharge profile is
followed. Further the performance in the benchmark is evaluated, the influence
of some of the design choices is discussed, and finally, the controller is extended
to incorporate topology information from GPS to improve the performance in
the presence of altitude variations in the driving missions.

1.3 Other publications by the author
This section summarizes research publications that the author has been involved
in, but that is not included in the dissertation.

A Lars Eriksson and Martin Sivertsson, Computing optimal heat release rates
in combustion engines, 2015, SAE International Journal of Engines. [26]

B Lars Eriksson and Martin Sivertsson, Computing optimal heat release rates
in combustion engines, Technical paper 2015-01-0882, 2015, SAE World
Congress & Exhibition, Detroit, Michigan, United States [25]

C Vaheed Nezhadali, Martin Sivertsson and Lars Eriksson, Turbocharger
Dynamics Influence on Optimal Control of Diesel Engine Powered Systems,
Technical paper 2014-01-0290, 2014, SAE World Congress & Exhibition,
Detroit, Michigan, United States [51]

D Martin Sivertsson and Lars Eriksson, Generator Effects on the Optimal
Control of a Power Assisted Diesel-Electric Powertrain, 2013,IEEE Vehicle
Power and Propulsion Conference, Beijing, China [82]

E Martin Sivertsson and Lars Eriksson, Optimal Transient Control and
Effects of a Small Energy Storage for a Diesel-Electric Powertrain, 2013,
Advances in Automotive Control, Tokyo, Japan [81]

F Bernhard Bachmann, Lennart Ochel, Vitalij Ruge, Mahder Gebremedhin,
Peter Fritzson, Vaheed Nezhadali, Lars Eriksson, and Martin Sivertsson,
Parallel Multiple-Shooting and Collocation Optimization with OpenModel-
ica, 2012, International Modelica Conference, Munich, Germany [7]

G Martin Sivertsson and Lars Eriksson, Optimal Short Driving Mission
Control for a Diesel-Electric Powertrain, 2012, IEEE Vehicle Power and
Propulsion Conference, Seoul, Korea [80]

H Martin Sivertsson and Lars Eriksson, Time and Fuel Optimal Power
Response of a Diesel-Electric Powertrain, 2012, IFAC Workshop on Engine
and Powertrain Control, Simulation and Modeling, Paris, France [78]

I Martin Sivertsson, Adaptive Control Using Map-Based ECMS for a PHEV,
2012, IFAC Workshop on Engine and Powertrain Control, Simulation and
Modeling, Paris, France [77]
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J Martin Sivertsson and Lars Eriksson, Optimal Step Responses in Diesel-
Electric Systems, 2012, The 13th Mechatronics Forum International Con-
ference, Linz, Austria [79]

K Martin Sivertsson Optimization of Fuel Consumption in a Hybrid Power-
train, 2010, Masters Thesis, LiTH-ISY-EX-10/4376-SE, Linköping Univer-
sity [76]

The author’s contributions to these publications are indicated by the author
list, where the first author is the main contributor to a publication.

In the optimal heat release in combustion engines studies in A and B, the
author contributed to the modeling and also performed the free combustion
study and wrote that part of the paper. In C the author performed the diesel-
electric study, a publication preliminary to Paper 3 in the dissertation [52].
Publications D and E are preliminary to Paper 2 in the dissertation [90]. In
publication F the author contributed with the modeling and problem formulation
and also assisted in the solution of the optimal control problems. Publications G,
H, and J are preliminary to Paper 1 in the dissertation [89]. In publication I,
describing the controller for the PHEV benchmark in Paper 10 [72], the author
did all the work, a publication preliminary to Paper 11 in the dissertation [84].
Publication K is the author’s masters thesis that contains work preliminary to
Paper 9 in the dissertation [91].
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2

Background

This chapter gives an introduction to modeling and optimal control of electrified
vehicles. The aim is to give a short overview of the models and optimization
methods commonly used and the previously published research and it’s relation
to the dissertation.

2.1 Modeling and Optimal Control of Hybrid
Electric Vehicles

In HEVs and PHEVs the main energy management control problem is how
and when to use the battery in order to minimize energy consumption and
emissions. The models of the energy converters, ICE and EM, are normally
simplified either to polynomials, [49, 59], or the efficiency/fuel consumption
map [45, 71, 73]. Thus, only stationary operating points are assumed, leading to
a quasistatic approach. The underlying assumption is that the dynamic effects
of the components are faster than that of the energy flows to be optimized, [70].
Following this assumption, the state-space can be kept small and if the driving
profile is known before-hand the optimal solution can be found using for instance
Dynamic Programming (DP), [12], as in [1, 65, 66, 71], Pontryagin’s Maximum
Principle (PMP), [67], as in [19, 73], Convex Optimization, [14], as in [49], or a
combination of dynamic programming and convex optimization as in [59].

For real-time energy management of hybrid powertrains there exist several
solutions, for an overview see, [70] and [66]. A common choice for HEVs is the
equivalent consumption minimization strategy (ECMS), going back to [63], used
by for instance [20, 50]. ECMS is a convenient realization of PMP [73] and is
normally expressed as that an equivalent consumption of both electrochemical
power in the battery, Pech, and fuel power, Pf , is minimized, and that the

11
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applied controls is the argument that minimizes this sum according to (2.1).

u∗ = arg min (Pf + λPech) (2.1)

λ in (2.1) is called equivalence factor, or sometimes costate, relating the two costs.
Other costs can also be included, like emissions and battery ageing, however
each additional state introduced requires an additional equivalence factor [74]. If
λ is known, the optimal controls can be found [19]. Thus, estimating λ is the key
aspect of the controller [18, 20, 50], which is complicated by the driving mission
dependency of the optimal λ. Paper 9-11 contribute to this field. Paper 9
and Paper 11 are focused on the efficient solution and implementation of the
energy management problem for power split hybrids, using no, or a minimum
of, information about the future driving conditions. Paper 10 instead presents
a benchmark energy management problem for PHEVs on which to evaluate
different control strategies, something also performed in the paper.

In the real-time control the motors are normally modeled using either simple
polynomials or efficiency maps, as in the offline case. For parallel HEVs using
naturally aspirated spark ignited ICEs, the engine speed is is a fixed function
of the wheel speed, the torque response of the ICE is fast, and the emissions
are handled by the three-way catalyst. For compression ignited ICE parallel
hybrids, especially if turbocharged, both the emissions and response time of
the engine needs to be considered and there are publications where effects of
transient fuel consumption as well as emissions are included in the optimal
control problem (OCP) [58, 98, 100].

For series hybrids the engine speed of the GenSet is a DoF that needs to
be controlled. Normally the same approach is used, i.e. using the stationary
efficiency maps when solving the OCP. This means that the stationary map is
used to generate setpoints for the GenSet, see [8, 37, 75, 101]. This approach
does not account for the transient cost of switching operating point and how
to actually control the GenSet to the setpoints in an optimal manner is rarely
studied. In [16, 101] the assumption is that the GenSet should not deviate too
far from the optimal operating line, both stationary and during the transients.
In [101] this is achieved by limiting the power after the setpoint generation,
whereas in [16] the possible setpoint candidates are restricted, but both solutions
mean that the battery is used to compensate for the GenSet dynamics. In [37],
where a model for a turbocharged diesel GenSet is used, this leads to the engine
not being able to produce the requested power, due to the time constant of the
diesel engine. This power therefore has to be produced by the supercapacitor,
an effect not accounted for in the optimization. The only paper known to the
author studying optimal engine speed control for the GenSet of a series-hybrid
is [56]. The considered problem is that a certain energy is required in a fixed
amount of time. The engine of the GenSet is naturally aspirated and in the
optimization the systems stationary efficiency maps are used. For a turbocharged
diesel-electric powertrain, lacking energy storage to compensate for any power
deficits, but incorporating turbolag, the question how to control the GenSet is
highly relevant. Paper 1-4 contribute to this field by studying optimal transient
control of turbocharged GenSets.
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2.2 Modeling of Diesel-Electric Powertrains
To study optimal control of GenSets, control oriented models describing the
dynamics are necessary. Since the model is evaluated a large number of times the
model evalution needs to be fast, but still capture the qualitatitive phenomenons,
be quantitatively accurate as well as have good extrapolation properties [3].
Further in order for gradient based optimization techniques to work well the
model needs to be smooth in the region of interest. This leads to models of
the Mean Value Engine Model (MVEM) type [38, 42]. MVEMs, 0-D, or lumped
parameter models, ignore in-cycle events that occur on a crank angle basis, and
instead average these effects over one or several cycles [24]. The MVEMs can
be divided into two groups: data driven black-box models and physics based
grey-box models [15, 33, 34]. For more information on modeling of combustion
engines the reader is referred to [24, 35, 39].

Black-box models rely on auto-regression techniques to identify the model
from data, [27, 62]. The advantages of this approach is it’s relative simplicity,
both in that no prior knowledge of the system is required and also that the
resulting models are often very fast, [21, 33]. The resulting states often have
no physical meaning, making analysis difficult [15, 62]. Further, the model is
only valid around the operating conditions for which it was tuned, leading to
questionable extrapolation properties and putting high requirements on training
data [21].

Grey-box models are models based on physical properties, using tuning
parameters to increase their fit to data. Due to the physical motivation the
analysis and extrapolation properties are good, but the parametrization and
derivation requires high effort and prior knowledge about the system [21, 62].
Further, the resulting model might be too complex for direct implementation
in a control framework [15, 34, 62]. Discussions on grey-box MVEMs can be
found in [23, 95]. Paper 1 and Paper 5 contribute with two grey-box MVEMs of
two different engines that are smooth in the region of interest. Further, Paper 7
studies modeling extensions to the model presented in Paper 5, investigating
whether the seen characteristics of the optimal control solutions depend on the
modeling assumptions used.

2.3 Optimal Control of Diesel Engines
How to optimally control the GenSet in transients has received very little
attention, especially for turbocharged GenSets. The related field of optimal
control of diesel engines has gotten more attention, especially in diesel engines
with variable geometry turbines (VGT) and exhaust gas recirculation (EGR).
Unless specifically noted, a grey-box MVEM is used in the discussed study. In [6]
optimal control of a VGT-EGR diesel is studied for fixed output power and
engine speed. The fuel consumption is minimized subject to limits on emissions.
A lot of attention is given to formulating and solving the problem, a topic also
studied in [5], investigating effects of different discretization techniques as well
as different nonlinear program (NLP) solvers. The optimal solutions are also
validated on a real engine. In [10] sequential quadratic programming (SQP)
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together with single shooting is used to minimize pollutants during different load
steps at constant speed. [60, 61] uses a quasi-Newton algorithm to minimize a
trade-off between smoke and produced power for a VGT diesel engine over a
specified torque and speed trajectory. In [44, 46] the torque and speed responses
of VGT-EGR diesel engines are studied. In [46] fuel and time optimal trajectories
from low to high output torque are studied and in [44] the final speed of vehicle
is maximized.

None of the discussed studies above study optimal control, using the engine
speed as a DoF. To the author, the only known publications where the freedom
to select engine speed is considered, are [53, 54, 56] where very simplified models,
one to two states, are used. Papers 1-7 contribute to this field, studying how to
control the engine speed of a diesel powered powertrain in transients.

In [6] it is mentioned that the optimal results seen exhibit oscillations in
the control signals. There exists some theory concerning optimal periodic
control [11, 13, 17, 31] where it is actually better to oscillate the control than to
use constant controls [30, 48]. Papers 7-8 contribute to this field by studying
if it is optimal to use periodic control in an otherwise stationary operation of
diesel engines.

For real-time implementation of optimal control a couple of different methods
have been suggested. One method is implementing the optimal controls as
transient compensation maps together with the normal stationary calibration.
This approach is advocated in [4, 32, 47]. Another approach along the same lines,
i.e. using a fixed mapping, is [61] where the optimal results are used to train an
artificial neural network that is then used to control the engine. More flexible
approaches are [27, 96], implementing model predictive control (MPC) where
an optimization problem is solved online in real-time, or [55] where stochastic
DP is used, and the optimal feedback laws are extracted and implemented in a
real vehicle. Paper 4 studies how to use the framework common in industry to
approximate the optimal trajectories extracted from the optimal control studies
in Papers 1-2.

2.4 Selecting the Appropriate Solver
This section provides a short summary of the optimal control techniques used in
in the dissertation and related research. For an overview on numerical optimal
control and numerical optimization the reader is referred to [22, 57].

The model complexity is strongly related to which optimal control technique
algorithm is most suitable. For instance in the HEV case a common choice for
offline studies is DP, since the state-space is small and the curse of dimensional-
ity [9] is not as severe. However even for PHEVs DP becomes impractical. This
is since the battery is large to allow for all-electric drive and the SOC dynamics
are slow, resulting in a very fine SOC grid and long computation times [65]. In
Paper 9 only one state is used, making the offline problem very suitable for DP
and the PMP related control strategy ECMS for the real-time control. This
real-time control strategy is also used in Paper 11.

When studying optimal control of diesel engines and the number of states is
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larger, the common choice is instead to use a direct method. There exists several
software packages implementing different direct methods. In this dissertation
three of them are used. In Paper 1 and Paper 6 ACADO Toolkit [40] is used,
which is an open source software implementing shooting algorithms and SQP.
Papers 1-4 and Paper 6 uses PROPT [92] a commercial software implementing
pseudospectral collocation and SQP. In Papers 7-8 CasADi [2] a symbolic
framework for algorithmic differentiation is used together with direct collocation
and IPOPT, a large-scale interior point algorithm for nonlinear optimization [94],
with the MA57 linear solver from the HSL package, [41], for solving the resulting
NLPs.

The evolution during the thesis is that larger OCPs with more complex
constraints are solved, therefore the method and solver suitable has changed.
Both ACADO and PROPT are packages that simplify defining the problem to
be solved, however this also introduces a drawback, since the problem definition
has to follow a certain format. With CasADi the user has to define the problem
more on his own which is both a benefit and drawback. The coding requirements
increase but it gives the user full control over defining the problem, which
increases the complexity of problems that can be solved.

Evaluating the performance of the solver is not straight forward and often
one has to rely on the provided solved examples to get an estimate on how good
the solver is. These problems generally have in common that the solution is
well known, typically meaning that they are simple and can be solved by most
solvers, as for instance the Bryson-Denham problem, see [43]. However during
the work on this thesis, problems have been encountered that were not indicated
by looking at the solved example list of the used solver. Paper 6 contributes to
this field, suggesting a benchmark problem on which to evaluate OCP solvers,
as well as presenting the solutions using two different solvers. The intent of
this benchmark is to provide developers of optimal control tools with a more
challenging problem that can not be analytically solved, but where the solution
is still available for comparison.
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Experimental setups

This chapter describes the measurement setups used in Papers 1, 2, 5, 7, and
8 in the dissertation. In Paper 9 the vehicle speed, SOC and equivalence ratio,
λ, are measured, however they are signals reported by the powertrain control
system and not discussed further. For the diesel-electric studies measurements
on two different powertrains are conducted. The first powertrain is the one
modeled and used in Papers 1-2 where the measurements were conducted to
validate the developed model. Measurements from a different powertrain is used
in Papers 5, 7 and 8. In Papers 5 and 7 the measurements are used to build and
validate a model over the powertrain. In Paper 8 the measurements are used to
study optimal wastegate control. In this chapter the sensors used to measure
the relevant quantities are briefly described, for a more thorough text on sensors
and their characteristics the reader is referred to [29]. In Table 3.1 all signals
measured in the different papers are shown. The quantities of interest in the
measurements are:

• Engine Speed
• Pressures
• Turbocharger speed
• Generator power
• Wastegate position
• Massflow through compressor
• Fuel flow
• Temperatures
• Air/fuel equivalence ratio

17
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The engine speed is measured with the internally mounted OEM sensor and
accessed via the engina CAN bus and not discussed further. The signals measured
with external sensors are discussed below.

3.1 Pressures
All pressures in Paper 1, 2, 5, 7 and 8 are measured using Dynisco PT130-50
Pressure Transducers. They have a range of 0-345 kPa and an accuracy of
±1.72 kPa including linearity, hysteresis and repeatability.

3.2 Turbocharger Speed
In Paper 1, 2, 5, 7 and 8 the turbocharger speed is measured with Acam PicoTurn
PT2G Turbocharger Speed Sensor. The Digital-Out option is used, giving one
pulse per revolution. The speed range is 390-400000 rpm and the precision is
390 rpm. The time constant is small, allowing for sampling rates in the range of
1-3 MHz.

3.3 Generator power
In Paper 1, 2, 5, 7 and 8 the generator and power electronics are lumped together
so what is actually measured is the output voltage and current from the DC-
converter and from these measurements the output power can be computed. The
voltage is measured using a Tektronix P5200 High-voltage Differential Probe,
having a bandwidth of up to 50 MHz and the current is measured using a LEM
IT 1000-S High Performance Current Transducer with a linearity error less than
3ppm and a response time to 90% of full scale of less than 1 µs.

3.4 Wastegate Position
In Paper 1, 2, 5, 7 and 8 the wastegate position is measured with Firstmark
Controls Series 170 Subminiature Position Transducer with a maximum inde-
pendent linearity error ±0.5% per VRCI-P-100A, output smoothness 0.1% max,
Resolution infinite signal, and an operating temperature of -65◦C to +125◦C.

3.5 Massflow
In Paper 5 and 7 the massflow through the compressor is measured with a
ABB FMT500 Thermal Massflow Meter. The measuring error is less than
0.009 · ṁmeas + 2.78 · 10−4 kg/s. Reproducibility error less than 0.2% and time
constant 0.5 s. The time constant is relatively long therefore this measurement is
only used for stationary operating points in the submodel tuning and validation.
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Figure 3.1: Measured fuel weight and the linear approximation.

3.6 Fuel Flow
In Paper 5 and Paper 8 the fuel weight is measured using a Kern IFS60K0,5DL
Counting scale with a linearity of 2 g, reproducibility of 500 mg and a specified
stabilisation time of 3 s. The stabilisation time in the specification is rather
long, however the scale also reports when the measurement is stable which is
a lot faster. To get an accurate approximation of the fuel flow a first order
polynomial is fitted to the weight over time series, that minimizes the error in
a least squares sense, using only the stable measurements, see Fig. 3.1. The
slope of this polynomial is the fuel flow in kg/s. Due to the recirculating fuel
flow of the diesel engine as well as response time of the scale and system itself,
this technique only suitable for stationary points and therefore only used in
stationary operating conditions.

3.7 Temperature
The temperatures in Paper 5, 7 and 8 are measured with TC 1.5mm mineral
insulated type K thermocouples. The sensor has a measurement tolerance of
±0.0075|T | and response time of 0.3 s when plunged into boiling water from
air at 20◦C. The time constant in air or exhaust gas can be expected to be
substantially longer and therefore the temperature measurements are only used
in the tuning and validation of stationary models.

3.8 Air/fuel equivalence ratio
In Paper 8 the equivalence ratio, λ is measured with ETAS 636 Lambda module
using Bosch LSU4.9 Wide Band Lambda Sensor mounted after the turbine. The
measurement is only used as a reference since the instantaneous fuel flow into
the cylinder is not measured.



20 Chapter 3. Experimental setups

Table 3.1: Quantities measured and used in Paper 1, 2, 5, 7 and 8

Name Description
Measurements used in Paper 1, 2, 5, 7 and 8
pamb Ambient pressure
pim Intake manifold pressure
pem,f Exhaust manifold pressure, front
pem,r Exhaust manifold pressure, rear
ntc Turbine rotational speed
uwg Wastegate position
IDC DC current
UDC DC voltage
ne Engine rotational speed
Extra measurements used in Paper 5 and 7
pes Pressure after turbine
pc,b Pressure before compressor
pc,a Pressure after compressor
Tamb Ambient temperature
Tim Intake manifold temperature
Tem,f Exhaust manifold temperature, front
Tem,r Exhaust manifold temperature, rear
Tc,b Temperature before compressor
Tc,a Temperature after compressor
ṁc Massflow through compressor
MF Fuel weight

Extra measurements used in Paper 8
λ Air-fuel equivalence ratio
MF Fuel weight
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Abstract
A non-linear four state-three input mean value engine model, incorpo-
rating the important turbocharger dynamics, is used to study optimal
control of a diesel-electric powertrain during transients. The optimiza-
tion is conducted for the two criteria, minimum time and fuel, where
both engine speed and engine power are considered free variables in the
optimization. First, steps from idle to a target power are studied and
for steps to higher powers the controls for both criteria follow a similar
structure, dictated by the maximum torque line and the smoke-limiter.
The end operating point, and how it is approached, is however different.
Then the power transients are extended to driving missions, defined as,
that a certain power has to be met as well as a certain energy has to
be produced. This is done with both fixed output profiles and with the
output power being a free variable. The time optimal control follows
the fixed output profile even when the output power is free. These
solutions are found to be almost fuel optimal despite being substantially
faster than the minimum fuel solution with variable output power. The
discussed control strategies are also seen to hold for sequences of power
and energy steps.
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Introduction
In a diesel-electric powertrain, such as the BAE Systems TorqE™shown in Fig. 1,
there is only an electric link between the diesel engine and the electric load. The
absence of a mechanical link between the engine and the load introduces an extra
degree of freedom, since the engine speed can be chosen freely. This extra degree
of freedom offers potential for increasing the performance of the powertrain,
due to the torque characteristic of the electric machine, as well as a potential
reduction in consumption, due to the freedom of choosing the operating point of
the diesel engine. During stationary operation the desired operating point can
be found from the combined efficiency map of the engine-generator combination
(GenSet). An open question is how to optimally control the GenSet between
two power levels, especially when the diesel engine is turbocharged. In transient
operation the turbocharger dynamics limits the changes in load and speed that
can be achieved, often referred to as turbocharger lag, see [15]. The absence of
an energy storage also makes the system more restricted and difficult to manage,
compared to a series hybrid, that can use the energy storage to compensate for
the dynamics of the engine.

Since the generator is mounted on the output shaft of the engine, a change
in generator power has to be coupled with a change in engine torque and engine
speed. Otherwise increasing the generator load might lead to the engine stalling.
This is since the generator power has to be sustainable by the engine, which
is limited by its maximum torque, but most of all, by the smoke-limiter. This
raises the question of how to, in an optimal way, control the powertrain to be
able to meet the requested power, either as fast as possible or as fuel efficient as
possible. This paper, which is part one of a two part study, investigates optimal
control of a turbocharged diesel-electric powertrain during transients, using the
extra freedom of selecting engine speed and incorporating the transient effects
and the turbocharger dynamics of the diesel engine.

Several applications use a diesel-electric powertrain, for example cranes [10],
vehicles [3], ships [8], excavators [11], and trains [5]. Little has however been
done to study how to control the GenSet in transients. The GenSet is often
augmented with an energy storage, making it a series hybrid. This hybridization
does not answer the question of how to control the GenSet between power levels.

A common approach is to use the stationary map to generate setpoints for
the GenSet, see [23, 2, 6, 16]. How to actually control the powertrain to the
setpoints is rarely studied. In [23] and [2] the assumption is that the GenSet
should not deviate too far from the optimal operating line, both stationary
and during the transients, and therefore the energy storage is used to limit the
change in power requested from the GenSet. In [6] on the other hand the energy
storage is used to support the output power due to the time constant of the
turbocharged diesel engine.

Three examples where transient effects of the diesel engine are included in
the optimization are [22, 14, 7]. In [22] the torque split of a parallel hybrid is
optimized over a known output torque trajectory and the torque response of the
diesel engine is modeled as a first order system together with a smoke-limiter
limiting the maximum fuel flow into the engine. In [14] the optimal control
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trajectories for the GenSet of a series-hybrid are studied. The considered problem
is that a certain energy is required in a fixed amount of time. Only the engine
speed dynamics of the naturally aspirated GenSet are considered and in the
optimization the systems stationary efficiency maps are used. In [7] a model for
the fuel consumption increase from the stationary map, due to the transients, is
used in the optimization to account for transient losses.

In related articles, concerning optimal transient control of diesel engines,
different optimization methods are used to minimize pollutants during transient
operation for known engine speeds, see [1, 12] or, as in [13] the optimal engine
operating point trajectory for a known engine power output trajectory is derived.
The diesel engine is modeled as an inertia with a Willans-line efficiency model
with a first order delay torque reduction representing the turbocharger dynamics.
The optimal solution is found using dynamic programming and Pontryagins
maximum principle.

Of the discussed papers only two papers study fuel or time optimal control
of the diesel engine in transient operation, with the freedom to select engine
speed. [14] studies the control of a naturally aspirated diesel engine and use the
stationary maps to model the efficiency. While [13] studies fuel optimal control
of a turbocharged engine using a simple model and with the output trajectory
fixed. In this paper time and fuel optimal control is studied with both engine
speed and output power free variables in the optimization, using a model that
incorporates both engine and turbocharger dynamics as well as emptying and
filling of the manifolds.

1 Contributions

The contributions of this paper are the study of optimal control of a diesel-electric
powertrain in transient operation and also how to formulate such problems to
receive relevant solutions. First the selection of criteria are discussed, then the
findings in [18] are summarized. There optimal control to a target power for two
different criteria with the engine output power and engine speed considered free
variables during the transient is studied.

Then the problem formulation is extended to driving missions. Augmenting
the previously studied problem formulation, going from idle to a terminal power,
with that a required terminal power as well as required energy has to be produced.
This is studied both with output power as a free variable as well as with a fixed
output power for both criteria for different required powers and energies. It
also studies the optimal control for a sequence of requested output powers and
energies, which emulates the drivers request in a driving cycle.

For these studies a nonlinear, four state, three input mean value engine model
(MVEM) is used in the study and provided, fully parametrized in the paper.
This MVEM incorporates the important turbocharger dynamics as well as the
nonlinear multiple input-multiple output nature of the diesel engine. The model
also has continuous derivatives in the operating region which enables the solvers
to calculate gradients and hessians in the non-linear program solvers used.
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Figure 1: BAE Systems TorqE™ diesel-electric powertrain

2 Outline
In Section 3 the model used in the study is presented. The model is the same as
in [17] but provided here for completeness. In Section 4.1-5 the power transient
study from [18] is summarized, with Section 4.1 formulating the problem and
Section 5 presenting the solution method and the results. In Section 6 the
problem is extended to driving missions. First the addition to the problem
formulation is presented and then the numerical solution path is presented
in Section 6.2. Then time and fuel optimal energy transients are studied in
Sections 6.3 and 6.4, before the quantitative results as well as the differences due
to the criteria are studied in Section 6.5. In Section 7 a sequence of requested
powers and energies are studied, emulating a driving cycle, before the concluding
remarks in Section 8-9.

3 Model
This paper studies optimal control of diesel-electric transients. However the focus
is on how the control depends on the diesel engine and turbocharger dynamics,
using the extra freedom introduced by the powertrain architecture. Therefore the
generator model is simplified, i.e. the generator efficiency is assumed constant
and equal to unity, i.e. Pmech = Pgen. The generator time constant is also
assumed to be much faster than the time constant of the engine. Furthermore
the generator is assumed to only be limited by the maximum power of the power
electronics, implemented as a constant. The modeled powertrain consists of a
6-cylinder 12.7-liter SCANIA diesel engine with a fixed-geometry turbine and a
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wastegate for boost control, equipped with a generator and energy storage. The
model is a nonlinear, four state, three input mean value engine model (MVEM).
The diesel engine model is a modified implementation of the well validated model
found in [21], with minor modifications, ensuring that the model is continuously
differentiable and further, only uses a subset of the modeling language so that
the software can symbolically differentiate the expressions. In particular this
means removal of potentially discontinuous operators as abs, max, min, and
sign. The motivation for this is that these modifications enable the software to
efficiently solve the formulated problems using higher order search methods.

The states of the MVEM are engine speed, ωice, inlet manifold pressure,
pim, exhaust manifold pressure, pem, turbocharger speed, ωtc. The controls
are injected fuel mass, uf , wastegate position, uwg, and generator power, Pgen.
The engine model consists of two control volumes, intake and exhaust manifold,
and four restrictions, compressor, engine, turbine, and wastegate. The control
volumes are modeled with the standard isothermal model, using the ideal gas
law and mass conservation. The engine and turbocharger speeds are modeled
using Newton’s second law. The governing differential equations of the MVEM
are:

dωice
dt

= 1
JGenSet

(Tice −
Pmech
ωice

) (1)

dpim
dt

= RaTim
Vim

(ṁc − ṁac) (2)

dpem
dt

= ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

= Pt − Pc
ωtcJtc

− wfricω2
tc (4)

Where ṁc/ac/f/t/wg denotes massflow, Tim/em manifold temperatures, JGenSet/tc
inertias, Vim/em manifold volumes, Ra/e gas constants, Pt/c turbine/compressor
powers, Tice engine torque, and Pmech mechanical generator power, with con-
nections between the components as in Fig 2. For values of the parameters used
and a complete nomenclature see Appendix.

For more in-depth information on the structure and details of the diesel
engine model see [4, 21], from where the equations are collected. The diesel
engine model is tuned to correspond to the validated model in [21] with the
EGR-valve closed and the VGT locked in a fixed position.

3.1 Component Models

The model consists of nine submodels, connected as seen in Fig. 2. The sub-
models are models for compressor massflow and power, intake manifold pressure,
engine torque and exhaust temperature, exhaust manifold pressure, wastegate
massflow, turbine massflow and power, and generator and energy storage losses,
all described in the following subsections.
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Figure 2: Structure of the MVEM. The modeled components as well as the
connection between them.

Compressor

The compressor model consists of two sub-models, one for the massflow and one
for the power consumption. In order to avoid problems for low turbocharger
speeds and transients with pressure ratios Πc < 1 a variation of the physically
motivated Ψ Φ model in [4] is used.

Πc,max =
(
ω2
tcR

2
cΨmax

2cpTamb
+ 1
) γa
γa−1

(5)

ṁc,corr =ṁc,corr,max

√
1−

(
Πc

Πc,max

)2
(6)

ṁc =ṁc,corrpamb/pref√
Tamb/Tref

(7)

Pc =
ṁccpaTamb

(
Π
γa−1
γa

c − 1
)

ηc
(8)

The full compressor model has three tuning parameters Ψmax, ṁc,corr,max, and
ηc.
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Engine Gas Flow

The engine gas flow model consist of two sub-models, one for air flow and one
for fuel flow.

ṁac =ηvolpimωiceVD
4πRaTim

(9)

ṁf =10−6

4π ufωicencyl (10)

λ =ṁac

ṁf

1
(A/F )s

(11)

To avoid problems for ṁf = 0 a new variable is defined
φλ = ṁac − λminṁf (A/F )s (12)

where λmin is the lower limit set by the smoke-limiter. The gas flow model has
one tuning parameter, ηvol.

Engine Torque

The net torque of the engine, Tice, is modeled using three torque components,
and one efficiency model.

Tice =Tig − Tfric − Tpump (13)

ηig =ηig,ch
(

1− 1
r
γcyl−1
c

)
(14)

Tig =uf10−6ncylqHV ηig
4π (15)

Tfric =VD
4π 105 (cfr1ω2

ice + cfr2ωice + cfr3
)

(16)

Tpump =VD
4π (pem − pim) (17)

The net torque, Tice is limited by the maximum torque of the engine, Tice,max(ωice),
shown in Fig. 10. The torque model has five tuning parameters, ηvol, cfr,i,
i ∈ [1, 2, 3], and ηig,ch.

Exhaust Temperature

The engine out temperature model is based on ideal gas Seiliger cycle. The
engine out temperature and exhaust manifold temperature are assumed to be
equal.

qin = ṁfqHV
ṁf + ṁac

(18)

xp =1 + qinxcv

cvaTimr
γa−1
c

(19)

Tem =ηscΠ1−1/γa
e r1−γa

c x1/γa−1
p(

qin

(
1− xcv
cpa

+ xcv
cva

)
+ Timr

γa−1
c

)
(20)
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The engine out temperature model has two tuning parameters ηsc, and xcv.

Turbine

The turbine model consists of submodels for the turbine massflow and turbine
power production. The turbine massflow model is modeled with the standard
restriction model and using that half the expansion occurs in the rotor and the
other half in the stator, see [4]:

Π∗t = max
(√

Πt,

(
2

γe + 1

) γe
γe−1

)
(21)

The optimization tools rely heavily on derivatives, therefore functions such as
abs and max are not desirable. Therefore Π∗t =

√
Πt is used which is valid down

to Πt = 0.30 corresponding to an exhaust manifold pressure of pem ≈ 3.3pamb,
which is sufficient for the transients studied. The massflow model is now given
by:

Π∗t =
√

Πt (22)

Ψt (Π∗t ) =
√

2γe
γe − 1

(
(Π∗t )

2
γe − (Π∗t )

γe+1
γe

)
(23)

ṁt = pem√
ReTem

ΨtAt,eff (24)

Pt =ṁtcpeTemηt

(
1−Π

γe−1
γe

t

)
(25)

The tuning parameters of the complete turbine model are At,eff , and ηt.

Wastegate

If the standard restriction model is applied to the wastegate, see for instance [4],
choking would occur for exhaust manifold pressures of pem ≈ 1.8pamb which is
well within the normal operating region. This would require a max expression in
the model, which has a discontinuity in the derivative, so instead the following
non-physical model is used:

Ψwg =cwg,1
√

1−Πcwg,2
wg (26)

ṁwg = pem√
ReTem

ΨwguwgAwg,eff (27)

The tuning parameters of the wastegate model are cwg,1−2 and Awg,eff .

3.2 Model validation
The parameters of the engine model are tuned to correspond to the validated
model in [21] with the EGR-valve closed and the VGT locked in a fixed position.
The modeled engine is basically the same, with the difference that it has a
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Table 1: Relative error of the model vs. measurements

State Mean 800 rpm 1000 rpm 1250 rpm 1500 rpm 1800 rpm
pim 6.8 2.2 3.3 5.6 7.5 10.7
pem 8.7 2.2 3.7 7.4 11.3 11.6
ωtc 4.6 5.6 5.8 4.5 3.1 6.8

wastegate equipped fixed geometry turbine and no EGR. To ensure that the
model is a valid description of the modeled powertrain, the model is validated
against five different datasets of measured data, measurements conducted on the
modeled powertrain. Each dataset is 100-270 s long and consists of 9-10 steps in
generator power of different magnitudes as well as stationary phases in between
for different constant engine speeds. Since engine output torque is not measured
the torque model is inverted in the validation, resulting in almost no errors in
the engine speed tracking. The relative model error vs. measurements for each
dataset as well as the mean error over all datasets is shown in Table 1.

There it is seen that the mean relative error of the important intake manifold
pressure dynamics are 7 % for all datasets, however the model fit increase with
decreasing engine speed, being as low as 2 %, i.e. en par with the original model.

4 Optimal control scenarios
In Fig. 3 a performance test for one of the considered applications of the BAE
Systems TorqE™is shown. This test is a step from idle to constant output power,
an output power that is then held. This test is conducted on a conventional
powertrain, gear shifts can be seen around 4s and 8s. Due to the coupling of the
vehicle and engine speed the change from idle to requested power takes up to
3-4s. Based on this, several scenarios are studied to gain knowledge about how
one can characterize an optimal trajectory in the engine map.

The basic scenario is the same as in Fig. 3, i.e. the engine is at idle when
the operator applies a step in requested output power. In order to study how to
fully exploit the freedom in the powertrain the output power of the conventional
vehicle is not tracked, instead the output power is a variable to be optimized
and the operators request should be met as fast or as fuel efficient as possible.
Another scenario is that the powertrain should provide an amount of energy
and power, for example to lift a container, without any restrictions on time and
energy trajectory. This is the most free driving mission possible. These scenarios
allow extreme solutions and is used to give insight into how the freedom built
into the powertrain can be utilized. In the final scenario the drivers input is
interpreted as a power request, a power that has to be followed. This is also
done for a sequence of steps, mimicking a real-world driving mission, where a
sequence of tasks are performed.

The performed scenarios are:

1. Section 5: Optimal steps to requested power.
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Figure 3: Cardan power for a step from idle measured on one of the considered
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Figure 4: Generator actuation for different criteria. Circles mark the end points.

(a) Steps from idle to high output power.
(b) Transient to the fuel optimal operating point.

2. Section 6: Optimal steps to requested power and energy.

(a) With output power a free variable.
(b) With fixed output power.

3. Section 7: Optimal control for a sequence of power and energy steps.

4.1 Mathematical Problem Formulation
The aim is to use optimal control in order to gain insight into how to control the
powertrain, and also to get bounds on the performance, for the scenario in Fig. 3.
That is, how to control the engine speed, engine torque, and generator power,
using the actuators on the powertrain, when the operator requests a step in
output power. In the optimization problem, in order to retrieve relevant solutions,
the power has to be met in the final time step, it also has to be a power the engine
can sustain. A straight forward approach is to minimize the deviation from the
requested power, i.e. either

∫ T
0 (Preq−Pgen)2 or

∫ T
0 (Preq−Pgen), s.t Pgen ≤ Preq.

However, using such a formulation hides the potential of the powertrain. Looking
at Fig. 4 it is seen that minimizing fuel or time, with the added constraints
that the final operating point has to be stationary, results in that the requested
power is met and sustainable 73 % more fuel efficient, in the case of minmf , or
64% faster in the case of minT .
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In order to study how to control the powertrain, two optimal control problems
are formulated, minimum time and minimum fuel, as follows:

min
u(t)

∫ T

0
ṁf (x(t), u(t)) dt or min

u(t)
T

s.t. ẋ(t) = f(x(t), u(t))
(x(t), u(t)) ∈ Ω(t)

(28)

where x is the state vector of the MVEM, ẋ is defined by Eqs. (1)-(4), and
u = [uf , uwg, Pgen]. The studied transients are steps from idle to a target
power subject to time varying constraints imposed by the components, such
as maximum torque and minimum speed, as well as environmental constraints,
i.e. a limit on φλ set by the smoke-limiter. The time varying constraints
(x(t), u(t)) ∈ Ω(t) are:

x(0) = x0, ẋ(T ) = 0
0 ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
Pgen(T ) = Preq, φλ(x(t), u(t)) ≥ 0
Tice(x(t), u(t)) ≤ Tice,max(ωice(t))

(29)

In most vehicles the accelerator position can be interpreted as a power request.
The problem defined by Eqs. (28)-(29) is thus how to control the GenSet in
order to be able to satisfy the operators power request, either as fast as possible,
or as fuel efficiently as possible. The initial state, x0, corresponds to idle, that
is an engine speed of 525 rpm and Pgen = 0 W with the wastegate open, i.e.
uwg = 1. The end constraint on the state derivatives is to avoid solutions where
the optimal control ends in an operating point that cannot be maintained. This
is to avoid under- or overshoots in the control strategies. For example specifying
ω̇ice(T ) ≥ 0 requires that the engine can deliver the torque necessary for the
generator, see Eq. (1). Removing this requirement will lead to the engine stalling
since the optimal solution will be to apply Pgen = Preq at t = 0, a power the
engine can not sustain. For a more detailed discussion on the end constraints
impact on the optimal solution, see [17].

4.2 Solution methods and tools

Due to the detailed and complex non-linear model used in this paper methods
as dynamic programming aren’t feasible. In Section 5 the problem is solved
using the ACADO Toolkit, an open-source framework for automatic control
and dynamic optimization, that uses multiple shooting together with sequential
quadratic programming, see [9], and in Section 6-7 the problem is solved using
Tomlab/PROPT, see [20], which uses pseudospectral collocation methods to
solve optimal control problems. Such methods only guarantee a local minimum.
Care has therefore been taken to ensure that the resulting solutions are at least
good local minima.
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Figure 5: Time and fuel optimal solutions to different load transients. The time
and fuel optimal transients have similar structures but differ in how they meet
the end constraints. Since several trajectories are plotted the smoke-limit for
unloaded engine acceleration is clearly visible.
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5 Power transients
The optimal torque and speed trajectories to problem Eqs. (28) are shown in
Fig. 5. In Fig. 5 the maximum torque line of the engine is also shown as well
as, for convenience, the constant power lines for the different requested powers.
The solutions are very similar despite the criteria being different, both solutions
following the smoke-limiter. The main difference is the end operating point,
marked with circles, and how it is approached. It can be seen that the optimal
solutions can be divided into two cases. One where the time optimal and fuel
optimal paths end in the same operating point (Preq ≤ 100 kW), and another
where they don’t (Preq ≥ 125 kW). For details on the case where they coincide,
see [18]. The time and fuel optimal control trajectories for Preq ≥ 125 kW all
follow the same pattern as the transients in Fig. 6 where Preq = 170 kW. The
time optimal and fuel optimal control strategies are rather similar for the first
phase of the transient. The optimal solution for both criteria is to put as much
energy as possible into the system in order to build intake manifold pressure and
turbo speed, the difference lies in the fine tuning to meet the end constraints.
This becomes even more apparent when looking at Fig. 5, where both fuel and
time optimal torque-engine speed paths for different required powers are shown.

5.1 Time optimal high power transients
The time optimal solution approaches the stationary point from a higher torque,
whereas the fuel optimal solution approaches the stationary point from a lower
torque. In the first phase the optimal solution follows the maximum torque
line and the smoke-limiter of the engine. The time optimal solution follows the
smoke-limiter until the end and actuates the wastegate to get stationarity. When
the wastegate is actuated to control the turbocharger speed to its target speed
the pumping work decreases and the net torque of the engine increases and the
path thus approaches the end point from a higher torque.

5.2 Fuel optimal high power transients
The fuel optimal solution approaches a different stationary point, one that has a
higher pim, pem, and ωtc but lower ωice, and consequently higher efficiency. This
stationary point is near the operating point with maximum obtainable efficiency
without using the generator to restrain the engine speed from increasing as it
builds turbocharger speed. In Fig. 7 it is shown how much energy is stored as
kinetic energy in the turbocharger and engine at the end of the transient. The
fuel optimal control builds less kinetic energy in the engine, but more kinetic
energy in the turbocharger than the time optimal control. This reduces the total
amount of kinetic energy necessary to be able to meet Preq.

This energy difference scaled with the average efficiency of the engine is
roughly of the same size as the difference in consumption between the criteria.
Seeing that the kinetic energy in the engine is roughly 20 times larger than
that in the turbocharger a lot can be gained by instead increasing the kinetic
energy in the turbocharger and thus decrease the kinetic energy in the engine.
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Figure 6: Time and fuel optimal solutions to a load transient from idle to
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Figure 7: Top: Kinetic energy in the engine as well as the total kinetic energy in
the system at time T . Bottom: Kinetic energy in the turbocharger at time T .

The time constant of the turbocharger is however larger than that of the engine.
When limited by the smoke-limiter, the kinetic energy in the turbocharger
increases with roughly 10kJ/s, whereas the kinetic energy of the engine increases
with 100kJ/s, causing the two criteria to approach different stationary points.
The difference in control of the turbocharger dynamics can be seen in Fig.6 ,
t ∈ [0.28, 0.4].

Where the time optimal control follows the smoke-limiter until the end and
fully opens the wastegate to release the excess exhaust pressure as it approaches
its stationary point, the fuel optimal control decreases and stops the fuel injection
with the wastegate closed in order to build/maintain backpressure to convert to
turbocharger speed and consequently intake manifold pressure. The transient
ends with the wastegate being actuated to control the exhaust manifold pressure
to ensure stationarity in pem, ωtc and pim together with the final value of uf .

In Fig. 8 the change in end time and fuel consumption as a function of
Preq for the fuel optimal versus the time optimal transients is shown. In the
studied interval the fuel economy of the fuel optimal solution, compared to the
time optimal solution, improves with Preq and is between 3 % and 12 %. The
corresponding time penalty however decreases with Preq and is between 21%
and 9%.
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Figure 8: Change in time and consumption as a function of Preq.

5.3 Transients to the fuel optimal operating point
As seen in Fig. 5 none of the fuel optimal transients end in the fuel optimal
operating point for that power. To reach the more efficient region of the engine
map, more kinetic energy has to be stored in the turbocharger without increasing
the kinetic energy in the engine. To accomplish this the engine needs to be
braked by the generator, that is, energy has to be removed from the system. This
is clearly not optimal if the aim is just to go from idle to a target power. However
it does raise the question of how to, in a fuel optimal way, go to the fuel optimal
operating point, and also how much it costs. In Fig. 9 fuel optimal transients are
compared to fuel optimal transients to the fuel optimal operating point. These
transients take roughly twice as long as the fuel optimal transients, and consume
roughly three times the fuel. This comparison is however not entirely valid since
the generated energy is also roughly 200 times larger. Whether this is optimal
or not depends on what happens after the transient. To assess the optimality of
such transients the requirements should be target energy and not target power,
which is studied in Section 6.

6 Extending the Transients to Driving Missions
In Section 5 the optimal trajectories for steps in requested power is presented.
A driving mission doesn’t normally end when the requested power has been met,
output power is usually requested for a period of time. Instead a driving mission
for off-highway vehicles is often to move something between two locations. The
most general definition of a driving mission is that a certain amount of energy
has to be produced, as well as meeting the requested power. This is achieved by
extending the problem defined in Eqs. (28)-(29) with Eq. (30).∫ T

0
Pgen dt = Ereq , Pgen ≤ Preq (30)

The output power is allowed to vary, as long as it does not exceed the power
requested. The end controls have to fulfill the requested power. Ereq can thus
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be viewed as a measure of how large portions of the transients can be optimized
when the operator applies a step in requested power before this power has to
be met. In this study the results for three different requested powers, Preq, and
five different requested energies, Ereq, are discussed.

6.1 Fixed output transients
Allowing the output power to deviate from the requested may not always be
desirable and therefore to study fixed power optimal control the problem is also
solved as a two-phase problem. Where in the first phase Pgen = 0 and in the
second phase Pgen = Preq according to:

Phase 1: Egen(T ) = 0, Pgen = 0
Phase 2: Egen(T ) = Ereq, Pgen = Preq

Since Pgen, Ereq are fixed in the second phase, the duration of this phase is
fixed, however the switching time between the two phases is optimized.

An interesting property of the problem, is that the fixed output power
solution, i.e. 2-phase solution, is qualitatively the same for both minimum time
and minimum fuel. It is however also the same as the minimum time free output
power solution, and thus follows the discussion for minimum time in Section 6.3.

6.2 Energy transients: Solution path
When solving minimum fuel required energy problems with PROPT the solution
is often very oscillatory. Therefore the sum of the squared state derivatives with
the weight w is added to the cost function, see Eq. (31). The problem is first
solved with w = 0 to benchmark the later solutions. Then the problem is solved
iteratively first with a large w which is then decreased, with the solution for the
last w hot-starting the next. In the ideal case w is decreased all the way to zero,
and a smooth solution is obtained. This does not always work, and when not, a
smooth solution with the lowest fuel consumption is selected.

minmf + w

∫ T

0
ẋT ẋ dt (31)

An interesting property of the minimum time formulation is that above a certain
Ereq the solution is not unique. For lower Ereq the solution is limited by the
available engine power, but when the pressures and speeds have reached a level
where it can produce more than the requested power the solution is no longer
unique. This is because the output power is limited below the maximum power
of the engine, resulting in several solutions where the excess energy is stored as
kinetic energy in the engine itself, and thus resulting in an oscillatory solution,
see Fig. 10. To handle this the same method as in [19] is used. First time is
minimized and then a second problem is solved where fuel is minimized, with
T ≤ minT + ε, where ε is selected so that the minimum time is rounded up to
the nearest 100 microsecond. The obtained solution is both smooth and with
lower fuel consumption and only negligible effects on the duration.
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Figure 10: Two trajectories that are both time optimal, but the fuel consumptions
differ by 10.6%. For higher Ereq the minimum time solution is not unique.
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6.3 Time Optimal Energy Transients

In Fig. 11 the time optimal solution for the different Preq and Ereq are shown,
and in Fig. 12 the state and control trajectories for Preq = 170 kJ and three
different Ereq are shown. For the investigated output powers the characteristics
are seen to be independent of Preq as well as of Ereq, the solution for different
Ereq landing on top of each other.

The time optimal solution is to accelerate, following the smoke-limiter, to a
higher engine speed than that of the target end operating point and then apply
a step in generator power Pgen = 0 → Preq and apply this power until Ereq
is reached. The main dependence on Ereq is the length, which controls if the
solution reaches the peak efficiency of the powertrain for Pgen = Preq, denoted
ηgs,max(Preq), before Ereq is produced. Preq controls at which engine speed the
step is applied.

The engine accelerates with an overshoot in engine speed, kinetic energy
which is used to produce power. The states then wander towards ηgs,max(Preq)
and, if Ereq is large enough, stays there almost until the end. This stationary
point is not smoke-limited. However, towards the end the wastegate opens,
releasing some of the energy stored in the exhaust manifold, resulting in a slight
decrease in turbocharger speed as it approaches the final operating point, a
point that is on the smoke-limit. The efficiency of this point is lower than during
the stationary phase, e.g. Ereq = 850kJ, 1.5 ≤ t ≤ 4.5, however the efficiency
increase during the transient going there is higher than the efficiency loss of
being there for one sample. This is related to the pumping torque of the engine,
see Eq. (17). The time constant from uwg to pem is much shorter than to pim
due to the inertia of the turbo. The decrease in Tpump during the transient is
therefore larger than the increase of being in a suboptimal point in the last time
step.

6.4 Fuel Optimal Energy Transients

The fuel optimal solutions for the different powers,Preq, and energies, Ereq,
are shown in Fig. 13, and in Fig. 14 the state and control trajectories for
Preq = 170 kW and three different Ereq are shown. The characteristics of the
solutions are found to be dependent on both Preq and Ereq. The solutions follow
the maximum torque line with an end acceleration deviating from the maximum
torque line towards the point that fulfills the end constraints. If Ereq is large
enough, or Preq small enough, the solution does not deviate from the maximum
torque line. In both cases Pgen < Preq for the largest part of the transient.

The control accelerates with Pgen > 0 along the maximum torque line and
smoke-limiter and if the required energy is large enough the control has a
stationary phase at the peak efficiency of the GenSet, denoted ηgs,max, before a
final acceleration towards ηgs,max(Preq). For lower energies the control departs
from the maximum torque-line during the final acceleration.
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Figure 11: Minimum time transients from idle to Preq = [100 150 200] kW for
different Ereq. The characteristics of the solution are independent of both Ereq
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Table 2: The change in fuel consumption and duration of the different formula-
tions compared to a power step to 170 kW.

Ereq(T ) minmf minmf 2−phase minT minT2−phase

- ∆T [%] 0.9 - 0 -
∆mf [%] -2.1 - 0 -

170kJ ∆T [%] 2.4 -1.7 -1.7 -1.7
∆mf [%] -11.5 -11.4 -11.4 -11.4

340kJ ∆T [%] 15.3 -1.7 -1.7 -1.7
∆mf [%] -11.7 -11.4 -11.4 -11.4

510kJ ∆T [%] 22.1 -1.7 -1.7 -1.7
∆mf [%] -11.8 -11.4 -11.4 -11.4

680kJ ∆T [%] 27 -1.7 -1.7 -1.7
∆mf [%] -11.9 -11.4 -11.4 -11.4

850kJ ∆T [%] 34.7 -1.7 -1.7 -1.7
∆mf [%] -12 -11.4 -11.4 -11.4

6.5 Energy transients: Results
For comparison Preq = 170 kW is selected. To be able to compare the solutions
to the different optimization problems and requested energies all controls are
augmented so that they all produce 850 kJ, i.e. all shorter driving missions
are extended, by maintaining the end point until the target energy is reached.
These are then evaluated relative the power transients discussed in Section 5.
The trajectories for the different problems are all compared in Fig. 15.

Since minT , minT2−phase, and minmf 2−phase are insensitive to variations
in Ereq only Ereq = 850 kJ is shown. These three curves are also very similar
ending up being plotted on top of each other. The minmf problem is thus the
only problem where the characteristics change depending on Ereq. The time
and fuel consumptions for the different problems are shown in Table 2. Doing a
fuel optimal power step to 170 kW and then staying there results in 2% better
fuel economy compared to a time optimal power step. However, this comes at a
price of 0.9% increase in duration.

With requirements on produced energy it is seen that the results are the same
for all but minmf for the studied energies. The resulting consumption decrease
is 11.4% and the duration decrease is 1.7%. For minmf the fuel economy
increases with Ereq, however the duration also increases with Ereq. The control
follows the maximum torque line and, if long enough, approaches the point of
peak efficiency where Pgen ≈ 120 kW. The consumption decrease ranges from
11.4 to 12% and the duration increase from 15.3 to 34.7%. Interesting to note is
that the minimum time solution only consumes up to 0.5 % more fuel but is up
to 35 % faster.

7 More complex output profiles
So far the studied problems have been from idle to a specific Preq with different
requirements on produced energy. That raises the question as to whether these
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Figure 16: Engine speed and torque trajectories for minT4−phase and
minmf 4−phase. The solutions are similar despite different criteria.

results hold for more complex output profiles. In order to study this a problem
is formulated where the generator is required to go from idle to 200 kW and
produce 200 kJ, from there to 50 kW and produce 50 kJ and finally to 170 kW to
produce 170 kJ and end in a stationary point. For minmf it is seen in Section 6.4
that the solution is dictated by the peak efficiency of the engine as well as the
end constraints, and would therefore not follow the desired power trajectory.
Therefore the problem is solved with fixed output power, implemented as a
4-phase problem where Pgen = 0 kW in phase 1, Pgen = 200 kW in phase 2,
Pgen = 50 kW in phase 3, and Pgen = 170 kW in phase 4. This is solved both
for minimum time and minimum fuel and the results are shown in Fig. 16-17. It
is seen that both minimum fuel and minimum time produce similar solutions.
The difference in fuel consumption is less than 0.04h and the difference in
duration is less than one microsecond. Looking at Fig. 17 the controls follow
the same characteristics as previously discussed. The engine accelerates to a
higher engine speed, converting the kinetic energy to output power. When going
from a higher output power to a lower the solution follows the maximum torque
line. The only difference between the two criteria is the wastegate actuation,
which qualitatively is the same, the time at which it opens and closes is however
slightly different.
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Figure 17: State and control trajectories for minT4−phase and minmf 4−phase.
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8 Discussion
The formulation and solution of optimal transients in a diesel-electric powertrain
is studied. First the minimum fuel and minimum time control to steps in
requested powers is formulated, solved, and discussed. The effects of the end
constraints on the control trajectories have been studied through changing the
end constraints of the optimization problem. It is shown that the optimal
solutions are different for high and low requested powers. For high power
transients the time and fuel optimal controls are very similar despite the criteria
being different. The optimal control is to put as much energy as possible into the
system, following the smoke-limiter and maximum torque line. The difference
between the two criteria is which operating point they approach and also the fine
tuning to get there. Whereas the time optimal control follows the smoke-limiter
until the end, the fuel optimal control cuts off the fuel injection and ends near the
operating point with highest efficiency obtainable without using the generator.
This operating point requires more kinetic energy in the turbocharger which
takes longer to build, but reduces the total amount of kinetic energy necessary to
produce the requested power. It is also shown that without requiring a certain
produced energy, it is not optimal to go to the fuel optimal operating point, due
to the energy required to build enough kinetic energy in the turbocharger.

The power transient formulation is then extended to driving missions, defined
as that the powertrain has to produce a certain amount of energy. This can
be interpreted as how much freedom the optimization has when the operator
applies a step in requested power before this power has to be produced. During
which time the output power is allowed to vary. In order to also study fixed
output driving missions the problem is also solved as a 2-phase problem with the
output power fixed. This is then solved for both minimum time and minimum
fuel.

For minT , minmf 2−phase and minT2−phase the characteristics of the solution
are independent of requested energy and requested power. The optimal solution
is to accelerate the engine, following the smoke-limiter, and then use the excess
kinetic energy to produce power and approach the maximum efficiency point
for the requested power. At which engine speed this step occurs does however
depend on the requested power. The solutions to a sequence of steps in power
are also seen to have the same characteristics. For minmf the solution changes
with Ereq and Preq. For lower requested energies the solution is to follow the
maximum torque line, then accelerate the engine whilst producing power, and
then finally approach the end operating point from a higher engine speed. For
higher requested energies the engine accelerates along the maximum torque line
and also has a stationary phase at the peak efficiency operating point, the end
point is then approached following the maximum torque line.

The optimal controls are evaluated relative a time optimal power transient
to 170 kW. The result shows that compared to just doing a time optimal power
step and then holding the end controls large gains in fuel economy can be made.
All evaluated controls offer roughly 11-12% reduction in consumption, but the
time required differs. Interesting to note is that minT , minmf 2−phase and
minT2−phase all produce roughly the same solution despite the criteria being



9. Conclusions 63

different. These strategies offer almost optimal fuel economy and are 15-35%
faster, depending on amount of requested energy.

9 Conclusions
Time and fuel optimal transients in a diesel-electric system have been studied.
From the performed studies and discussions a couple of conclusions can be
drawn:

1. The turbocharger dynamics have a strong influence on the solution. This
is seen from that the smoke-limiter is active in all studied transients.

2. The freedom to select engine speed can be used to improve response time
of the powertrain. The time optimal solutions use the freedom to reduce
turbocharger lag.

3. The stationary points of the solutions are, as expected, dictated by the effi-
ciency map. The time and fuel optimal solutions have different stationary
points.

4. The minimum time solution only consumes up to 0.5 % more fuel than
the minimum fuel solution, but is up to 35 % faster.

5. Forcing the solution to follow a given output power trajectory yields the
same solutions as the minimum time solution, regardless of criteria.
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Appendix A: Model Data

Table 3: Nomenclature

Symbol Description Unit
ωice Engine speed rad/s
pim Intake manifold pressure Pa
pem Exhaust manifold pressure Pa
ωtc Turbocharger speed rad/s
uf Injected fuel mass mg/cycle
uwg Wastegate position −
Pgen Generator power W
Pmech Mechanical generator power W
Preq Requested power W
Ereq Required energy J
ṁc Compressor massflow kg/s

ṁc,corr Corrected compressor massflow kg/s
Πc Pressure ratio over compressor −

Πc,max Pressure ratio for zero massflow −
Pc Compressor power W
ṁac Massflow after compressor kg/s
ṁf Fuelflow kg/s
λ Air/fuel ratio −
φλ Smoke-limiter kg/s
Tice Engine torque Nm
Tig Indicated gross torque Nm

Tpump Pumping torque Nm
Tfric Friction torque Nm
qin Specific energy of the charge J/kg
xp Pressure quotient from combustion −
Tem Exhaust manifold temperature K
Πt Pressure ratio over turbine −
Π∗t Usefull pressure ratio over turbine −
Ψt Massflow parameter −
ṁt Turbine massflow kg/s
Pt Turbine power W

Πwg Pressure ratio over wastegate −
Ψwg Massflow parameter −
ṁwg Wastegate massflow kg/s

ηgs,max Maximum efficiency of the GenSet −
ηgs,max(P ) Maximum efficiency for power P of the GenSet −
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Table 4: Constants used

Symbol Description Value Unit
pamb Ambient pressure 1.011 · 105 Pa
Tamb Ambient temperature 298.46 K
pref Reference pressure 1.011 · 105 Pa
Tref Reference temperature 298.46 K
cpa Spec. heat capacity of air, constant pressure 1011 J/(kg ·K)
cva Spec. heat capacity of air, constant volume 724 J/(kg ·K)
γa Spec. heat capacity ratio of air 1.3964 -
Ra Gas constant, air 287 J/(kg ·K)
cpe Spec. heat capacity of exhaust gas, constant pressure 1332 J/(kg ·K)
γe Spec. heat capacity ratio of exhaust gas 1.2734 -
Re Gas constant, exhaust gas 286 J/(kg ·K)
γcyl Spec. heat capacity ratio of cylinder gas 1.35004 -
Tim Temperature intake manifold 300.6186 K
pes Pressure in exhaust system 1.011 · 105 Pa

(A/F )s Stoichiometric oxygen-fuel ratio 14.57 −
qHV Heating value, diesel 42.9 · 106 J/kg

Table 5: Parameters used

Symbol Description Value Unit
ncyl Number of cylinders 6 −
VD Engine displacement 0.0127 m3

rc Compression ratio 17.3 −
JGenSet Inertia of the engine-generator 3.5 kg ·m2

Vis Volume of intake system 0.0218 m3

Rc Compressor radius 0.04 m
Ψmax Max. compressor head parameter 1.5927 −

ṁc,corr,max Max. corrected compressor mass-flow 0.5462 kg/s
ηc Compressor efficiency 0.5376 −
ηvol Volumetric efficiency 0.8928 −
ηig,ch Combustion chamber efficiency 0.6774 −
cfr,1 Friction coefficient 8.4100 · 10−5 −
cfr,2 Friction coefficient −5.6039 · 10−3 −
cfr,3 Friction coefficient 0.4758 −
ηsc Non-ideal Seliger cycle compensation 1.0540 −
xcv Ratio of fuel burnt during constant volume 0.4046 −
Vem Volume of exhaust manifold 0.0199 m3

Jtc Turbocharger inertia 1.9662 · 10−4 kg ·m2

wfric Turbocharger friction 2.4358 · 10−5 kg ·m2/rad
At,eff Effective turbine area 9.8938 · 10−4 m3

ηt Turbine efficiency 0.7278 −
cwg,1 Wastegate parameter 0.6679 −
cwg,2 Wastegate parameter 5.3039 −

Awg,eff Effective wastegate area 8.8357 · 10−4 m3

λmin Minimum air/fuel ratio, smoke-limit 1.2 −
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Abstract
The effects of generator model and energy storage on the optimal control
of a diesel-electric powertrain in transient operation is studied. Two
different types of problems are solved, minimum fuel and minimum
time, with different generator models and limits as well as with an
extra energy storage. For this aim a 4-state mean value engine model
is used together with models for the generator and energy storage
losses. In the optimization both the engines output power and speed
are free variables. The considered transients are steps from idle to
target power with different amounts of freedom, defined as requirements
on produced energy, before the requested power has to be met. The
main characteristics are seen to be independent of generator model
and limits, they however shift the peak efficiency regions and therefore
the stationary points. For minimum fuel transients the energy storage
remains virtually unused for all requested energies, for minimum time it
is used to reduce the response time. The generator limits are found to
have the biggest impact on the fuel economy, whereas an energy storage
could significantly reduce the response time. The possibility to reduce
the response time is seen to hold for a large range of values of energy
storage parameters. The minimum fuel solutions remain unaffected when
changing the energy storage parameters, implying it is not beneficial
to use an energy storage if fuel consumption is to be minimized. Close
to the minimum time solution the fuel consumption with low required
energy is quite sensitive to variations in duration, for larger energies it
is not. Near the minimum fuel solution changes in duration have only
minor effects on the fuel consumption.
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Introduction

A diesel-electric powertrain has no mechanical connection between the combus-
tion engine and the wheels, introducing an extra degree of freedom since the
engine speed can be controlled independently of the wheel speed. This offers
the potential of both optimizing the performance and consumption since the
operating point of the diesel engine can be controlled more freely than in a
conventional powertrain. An open question is how to optimally control the
engine-generator (GenSet) between two different outputs, especially when the
diesel engine is turbocharged.

The literature regarding optimal control of diesel powertrains with the
freedom of selecting engine speed is rather scarce. However two papers are
found that explicitly study fuel or time optimal control of the diesel engine
in transient operation, optimizing engine speed. [3] studies the control of a
naturally aspirated diesel engine and use the stationary maps to model the
efficiency. While [2] studies fuel optimal control of a turbocharged engine using
a simple model and with the output trajectory fixed.

This paper is the second part of a two-part paper, studying fuel and time
optimal control of a diesel electric powertrain with both engine speed and output
power free variables in the optimization, using a model that incorporates both
engine and turbocharger dynamics as well as emptying and filling of the manifolds.
The first part, see [5], describes the model used and studies formulating the
problem and solution of optimal transient control problems in diesel-electric
powertrains. The focus of that study is the characteristics of the solution as
a result of the engine properties, why the generator is lossless and considered
ideal. This second part instead studies the effect of the generator model and
limits as well as what effect adding an energy storage has on the optimal control
trajectories.

The main contributions of the paper are: i) How a non-ideal generator
changes the results from part 1. ii) A detailed study of how the energy storage
efficiency influences the optimal solution. iii) Insights into optimal sizing of the
energy storage, how it depends on the energy storage efficiency, and also what
the limiting factors are. iv) A study on the trade-off between the minimum time
and minimum fuel solutions, and how it changes with the presence of an energy
storage.

Outline

In Section 1 the additions to the model used in part 1 are presented. In
Section 2 the problem is formulated and the solution procedure is described in
Section 2.3. Section 3 discusses how the generator model affects the solution,
whereas Section 4 summarizes the effects of the generator limits and Section 5 the
effects of adding an energy storage, from [4]. In Section 7 the impact of energy
storage properties is studied and in Section 8 the sensitivity of the minimum time
solution is studied, before the paper is summarized with a concluding discussion
in Section 9.
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1 Model
The engine model used is the same as in part 1, but now considering both an
energy storage and a model for the generator losses. The model is a nonlinear,
four state, three input mean value engine model (MVEM), used together with
models for the generator and energy storage losses, presented below. The states
of the MVEM are engine speed, ωice, inlet manifold pressure, pim, exhaust
manifold pressure, pem, turbocharger speed, ωtc. The model is augmented with
two summation states for the charge in the energy storage, q, and produced
energy of the powertrain, Eout defined as:

dq

dt
= −Ibatt (1)

dEout
dt

= Pout (2)

The controls are injected fuel mass, uf , wastegate position, uwg, generator power,
Pgen, and power from the energy storage, Pbatt. For a complete description of
the symbols used in this paper, see Table 3.

1.1 Energy Storage
The energy storage is modeled as an equivalent circuit according to:

Ibatt =
Uoc −

√
U2
oc − 4RiPbatt
2Ri

(3)

The model for the energy storage has two tuning parameters, Uoc and Ri, with
assumed reasonable values shown in Table 1. The impact of these values are
studied in Section 7.

1.2 Generator
Inspired by eq. 4.15 in [1] the generator is modeled according to:

Ploss =P 2
gen

(
cgen,1
ω2
ice

+ cgen,2

)
+ ωicecgen,3 + cgen,4 (4)

Pmech =Pgen + Ploss (5)
Pout =Pgen + Pbatt (6)

Pgen is the electric power, Pmech the mechanical power of the generator, and
Pout is the output power of the powertrain. Pmech has two limits, one for peak
power and one for continuous power, seen in Fig. 2. The generator model has
four tuning parameters, cgen,1−4, with values tuned to fit the efficiency map of
the generator, see Table 1.

1.3 Model validation
Adding a model for the generator losses decreases the efficiency of the powertrain
compared to the model used in part 1. To ensure that the model still describes
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Table 1: Parameters used in the generator and energy storage models

Symbol Description Value Unit
Uoc Open-Circuit Voltage 750 V
Ri Internal Resistance 0.5 Ω

cgen,1 Generator parameter 5.3727 · 10−3 rad/(sNm)
cgen,2 Generator parameter 1.6537 · 10−7 1/W
cgen,3 Generator parameter 14.1957 Nm
cgen,4 Generator parameter 2.6887 · 102 W

Figure 1: Structure of the MVEM. The modeled components as well as the
connection between them.
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Table 2: Relative error of the model vs. measurements

State Mean 800 rpm 1000 rpm 1250 rpm 1500 rpm 1800 rpm
pim 4.2 1.9 2.2 3.2 3.8 7.0
pem 12.9 3.5 6.1 11.9 17.5 16.2
ωtc 6.4 5.8 5.0 4.0 6.0 10.5

the modeled powertrain the model including the generator losses is validated
against five different datasets of measured data on the modeled powertrain. Each
dataset is 100-270 s long and consists of 9-10 steps in generator power of different
magnitudes as well as stationary phases in between for different constant engine
speeds. Since engine output torque is not measured the torque model is inverted
in the validation, resulting in almost no errors in the engine speed tracking. The
relative model error vs. measurements for each dataset as well as the mean error
over all datasets is shown in Table 2.

There it is seen that the mean relative error of the important intake manifold
pressure dynamics are 4 % for all datasets, however the model fit increase with
decreasing engine speed, being as low as 2 %.

2 Problem Formulation

This paper studies optimal transient control of a diesel-electric powertrain. The
problem considered is the same as in part 1, i.e. minimum time and minimum
fuel control from idle to a target power and energy. The problem is defined as:

min
u(t)

∫ T

0
ṁf (x(t), u(t)) dt or min

u(t)
T

s.t. ẋ(t) = f(x(t), u(t))
(x(t), u(t)) ∈ Ω(t)

(7)

where x is the state vector of the MVEM, ẋ is the state equations defined in
part 1 together with Eqs. (1)-(2), and u = [uf , uwg, Pgen, Pbatt].

The studied transients from idle to a target power and energy are also subject
to time varying constraints imposed by the components, such as maximum
torque and minimum speed, as well as environmental constraints, i.e. a limit on
φλ set by the smoke-limiter, and also a requirement that the control has to end
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Table 3: Nomenclature

Symbol Description Unit
ωice Engine speed rad/s
pim Intake manifold pressure Pa
pem Exhaust manifold pressure Pa
ωtc Turbocharger speed rad/s
q Charge in energy storage −

Eout Produced energy J
uf Injected fuel mass mg/cycle
uwg Wastegate position −
Pgen Generator power W
Pbatt Energy storage power W
Ibatt Energy storage current A
Pmech Mechanical generator power W
Ploss Loss power in generator and power electronics W
Pout Output power W
Preq Requested power W
Ereq Required energy J
ṁc Compressor massflow kg/s
ṁac Massflow after compressor kg/s
ṁf Fuelflow kg/s
λ Air/fuel ratio −
φλ Smoke-limiter kg/s
Tice Engine torque Nm
Tem Exhaust manifold temperature K
ṁt Turbine massflow kg/s
ṁwg Wastegate massflow kg/s
ηgs,max Maximum efficiency of the GenSet −

ηgs,max(P ) Maximum efficiency for power P of the GenSet −

in a stationary point. The time varying constraints (x(t), u(t)) ∈ Ω(t) are:

x(0) = x0, ẋ(T ) = 0
umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
Tice(x(t), u(t)) ≤ Tice,max(ωice(t))
Pout(t) = Pgen(t) + Pbatt(t), φλ(x(t), u(t)) ≥ 0
0 ≤ Pout(t) ≤ Preq, Pout(T ) = Preq

Pbatt = 0 or Pbatt(T ) = 0, Pbatt(t) ≤
αU2

oc

4Ri
q(T ) = q(0) = 0, Eout(T ) = Ereq

(8)

where α is a parameter set to 0.98 to avoid complex numbers in the iterations.
Ereq = − kJ means that the constraint Eout(T ) = Ereq is removed.

Here the accelerator position is interpreted as a power request. The problem
defined by Eqs. (7)-(8) is thus how to control the GenSet in order to be able
to satisfy the operators power request, either as fast as possible, or as fuel
efficiently as possible. The initial state values, x0, correspond to idle, that is an
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Table 4: The different generator limits used.

Standard-lim
Pmot,peak(ωice(t)) ≤ Pmech(Pgen(t), ωice(t)) ≤ Pgen,peak(ωice(t))
Pmot,cont(ωice(T )) ≤ Pmech(Pgen(T ), ωice(T )) ≤ Pgen,cont(ωice(T ))

Cont-lim
Pmot,cont(ωice(t)) ≤ Pmech(Pgen(t), ωice(t)) ≤ Pgen,cont(ωice(t))

Peak-lim
Pmot,peak(ωice(t)) ≤ Pmech(Pgen(t), ωice(t)) ≤ Pgen,peak(ωice(t))

Power-lim
−300 kW ≤ Pgen(t) ≤ 300 kW

engine speed of 525 rpm and Pgen = 0 W with the wastegate open, i.e. uwg = 1.
To solve these nonlinear optimal control problems Tomlab/PROPT is used,
see [6]. This commercial software uses pseudospectral collocation methods to
solve optimal control problems. Such methods only guarantee a local minimum.
Care has therefore been taken to ensure that the resulting solutions are at least
good local minima.

2.1 Generator power and limits
The generator has two limits on mechanical power, Pmech(Pgen(t), ωice(t)), one
for continuous operation and one for peak power, denoted cont and peak. In
order to study how these constraints affect the solution the problem is solved
for four different cases. The cases are listed in Table 4, where mot referes to
motoring mode and gen generating mode.

In the first case the generator is allowed to exceed the continuous limit, but
not the peak, and also has to end in a stationary point, below the continuous
limit. In the second case the generator is never allowed to exceed the continuous
limit. In the third case it is only limited by the peak limit and in the fourth
only limits on the power electronics are enforced. The different limits as well as
the maximum torque line can be seen in Fig. 7, where Tmech = Pmech/ωice.

2.2 Energy storage
In order to study the effects of adding a small energy storage to assist during
the transients the problem is solved with both Pbatt = 0 and with Pbatt as a
free variable. In order to ensure stationarity in charge, q, in the final time step
Pbatt(T ) = 0 in both cases. Since Uoc and Ri are independent of q only the
relative depletion is of interest, the initial q-level is thus set to zero. To also
be able to study optimal size of the energy storage, the size is not fixed. The
influence of storage parameters is also studied in Section 7.

2.3 Numerical solution path
Since the tool supports integral constraints and the computational complexity
of the problem increases with the number of states, the summation states for
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charge in the battery as well as produced energy, defined in Eqs. (1)-(2) are
reformulated as constraints according to Eq. (9).

∫ T

0
Ibatt dt = 0, and

∫ T

0
Pout dt = Ereq (9)

2.4 Oscillating solutions and non-unique solutions

In order to receive smooth solutions the integral of the squared state derivatives
is, as in part 1, added to the cost function with a weighting factor that is
iteratively decreased,

minmf + w

∫ T

0
ẋT ẋ dt (10)

and the lowest weight that gives a smooth solution is then used. The worst case
change from this technique is less than 0.15 h in fuel consumption and 0.4 % in
time.

To handle that the minimum time solution is non-unique above a certain
Ereq the same reformulation as in part 1 is used. I.e. time is first minimized
and then a second problem is solved where fuel is minimized, according to the
strategy discussed in Section 2.4, with T ≤ minT + ε, where ε means that the
minimum time is rounded up. How much the time needs to be rounded up to
obtain a smooth solution differs slightly, but the largest increase in duration
from this technique is less than a tenth of a permil. The obtained solution is
both smooth and with lower fuel consumption without any significant effects on
the duration, see Fig. 2. For a closer study on the impact of this strategy, see
Section 8.

2.5 Initial guess and control intervals

The problem defined in Section 2 is first solved without requirements on produced
energy for the different cases, i.e. for the two criteria, with and without energy
storage. This then becomes a step from idle to a terminal power, Preq = 170 kW,
referred to as a power transient. Since the solutions to the power transients don’t
have the problems discussed in Section 2.4 those techniques are not used. For
each generator limit the first initial guess is a simulated trajectory representing
idle, without energy storage. The number of control intervals used for the power
transients is set to 50.

The solution process with requirements on produced energy, denoted energy
transients, is then started with these results as initial guess and a small required
energy. For higher energies the solution for the nearest lower Ereq is used as
initial guess. The problem is then solved with an increasing number of collocation
points until good accuracy has been obtained. The shown trajectories all have
125 control intervals, regardless of duration.
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Figure 2: Two trajectories that are both time optimal, but the fuel consumption
differs by 10.6%. For higher Ereq the minimum time solution is not unique.
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Figure 3: Torque vs engine speed for minmf and minT and different require-
ments on produced energy with the generator considered ideal. Red circles mark
the end operating point.

3 Effect of generator losses
Adding a model for the generator losses changes the efficiency contours of the
powertrain, seen when comparing Fig. 2 and Fig. 3. The maximum efficiency of
the powertrain, ηgs,max is no longer on the maximum torque line. To study how
the change in efficiency affects the optimal controls the case with ideal generator
model is compared to the results when generator losses are added, corresponding
to Power-lim without energy storage. The corresponding trajectories for different
Ereq are shown in Fig. 4.

The addition of a model for the generator losses does not change the char-
acteristics of the solution. For minimum time the solution is still to overshoot
the engine speed of the final operating point and use this excess kinetic energy
to produce output power. The main difference is that both the engine speed
when the step in power occurs, as well as that of the stationary point, at ,
ηgs,max(Preq), increases with generator losses. For trajectories in torque and
engine speed, see Fig. 3 and Fig. 7.

For minimum fuel the trajectories appear to be different, this is related to the
change in efficiency of the powertrain. With generator losses the peak efficiency
is no longer on the maximum torque line of the engine. The control is still to
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accelerate whilst producing power and if Ereq is large enough, have a stationary
phase at ηgs,max, before a final acceleration to meet the end constraints, see
Fig. 8.

4 Effects of generator limits
The addition of a model for the generator losses has shifted the region of peak
efficiency away from the maximum torque line. Imposing different generator
limits shifts the engine speed for which the peak efficiency for Pgen = Preq,
ηgs,max(Preq), is obtained. The state and control trajectories for the different
limits are shown in Fig. 5.

4.1 Minimum fuel
Changing the generator limits does not change the characteristics of the solution.
The control is still to accelerate whilst producing power, following the maximum
torque line and smoke-limit, towards ηgs,max and since this is below the contin-
uous limit this applies to all the cases. For larger Ereq the control then stays
there before the engine is accelerated to ηgs,max(Preq) for the given case, see
Fig. 8. The only exceptions are Ereq = 85 kJ for Peak and Power-lim. This is
since Ereq is so small that the solution is mainly dictated by fulfilling the end
constraints. Instead the engine is accelerated to a higher engine speed and then
decelerated by the generator, converting the kinetic energy to output power.

Standard-lim and Cont-lim are very similar, as well as Peak-lim and Power-
lim. For Standard and Cont-lim this is because the generator hardly exceeds
the continuous limit. For Peak and Power-lim this similarity is due to that their
ηgs,max(Preq) are close.

4.2 Minimum time
The minimum time solutions have similar characteristics. The optimal control is
to accelerate the engine with wastegate closed up to roughly 130rad/s and then
a step in generator power Pgen = 0→ Preq is applied. The engine then wanders
towards ηgs,max(Preq), within the given generator limits. This means that for
Cont-lim the step is not to Preq, since that power is above the continuous limit,
instead Pgen follows the continuous limit up to the stationary point.

When the end point is approached the wastegate is actuated to bring the
engine to stationary conditions. For all limits except Standard-lim the stationary
point is the same as the end point, at ηgs,max(Preq). For Standard-lim the
control is slightly different. This is since ηgs,max(Preq) is on the peak limit but
the control has to end below the continuous limit. For larger Ereq it first wanders
to the peak limit where it has a stationary phase before it accelerates to the
end point, but for low Ereq it instead acclerates to the end point, without a
stationary phase.

The initial phase of these solutions is qualitatively similar to the results
with an ideal generator model discussed in part 1. With generator limits the
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Figure 5: Effects of generator limits. Minimum fuel and minimum time solutions
for Ereq = 510 kJ for the different generator limits.
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peak efficency region is shifted relative the previous results, thus changing the
trajectory after the initial acceleration, see Fig. 7.

5 Effects of energy storage
To study the effects of adding an energy storage the problem defined in Section 2
is solved with Preq = 170 kW and Ereq = [−, 85, 510, 850] kJ and Pbatt as a free
variable for all generator limits. The results for Standard-lim are shown in Fig. 6,
for comparison the case without energy storage is also shown. For comparison
between the different cases see Fig. 7-8. For state and control trajectories for
the other limits see [4].

5.1 Minimum fuel
None of the solutions with Standard and Cont-lim use the energy storage, the
solution is thus unaffected. With Peak-lim only Ereq = 85 kJ uses the energy
storage, but with Power-lim all the solutions use the energy storage. Without
energy storage these transients all approach the end operating point from a
higher engine speed. This is also the case with energy storage but now since
Pout ≤ Preq and Pout = Pgen + Pbatt, Pgen > Preq and the control can brake the
engine harder, energy that can be used earlier in the transient to reduce the
output power of the generator. The energy storage usage is however very slight.

5.2 Minimum time
When minimizing time the energy storage is used, but how it is used depends
on Ereq. For Ereq = 85 kJ the generator is used in motoring mode for the first
0.17-0.19 s, depending on generator limit, before it goes over into generator
mode. The energy storage continues to produce output power, for all cases
except Cont-lim, until approximately the maximum engine speed is reached.
The generator power is then ramped up to the generator limit, which it follows
until the end, whereas the engine follows the maximum torque line. During this
phase the wastegate is actuated to maintain the engine torque within the limits
while being on the smoke-limit. The transient then ends with actuation in all
controls to meet the end constraints.

For Ereq ≥ 510 kJ the energy storage output is controlled so that the response
time is immediate, i.e. Pout = Preq from t=0. For all but Cont-lim the generator
is ramped up with a slight overshoot in engine speed before it approaches a
stationary point recharging the energy storage. Cont-lim instead follows the
generator limit to a stationary point. The stationary point for all cases is limited
either by the generator limit, or engine max torque. At the stationary point the
wastegate is actuated so the component limit and smoke-limit coincide. The
engine speed of the stationary point is Ereq dependent, the higher the Ereq the
closer Pgen is to Preq and thus the higher the efficiency, controlling the rate of
charge of the energy storage. For larger energies there is more time to recharge
the energy storage, which yields lower Pbatt and thus better efficiency of both
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Figure 7: Torque and Engine speed plot for the different limits, minT, Ereq =
850 kJ, with and without energy storage.

the genset and the energy storage. The transient ends with the genset being
controlled to end in the region of peak efficiency within the given limits.

6 Discussion
The different criteria and limits, as well as the effects of the energy storage, are
compared in Table 5 and Fig. 7-8. In order for the results to be comparable,
all results are augmented by holding the final controls until 850 kJ has been
produced. There it is seen that even though the energy storage is used in some
of the minimum fuel transients, the effect on the fuel consumption is negligible.
The biggest effect comes from changing the generator limits. Both the fuel
economy and decrease in duration improves with increasing limits and if the
entire range of the engine is allowed the improvement in both is roughly 10%.
Even though all longer minimum fuel transients have a stationary phase at the
peak efficiency of the genset, the decrease in fuel consumption of this is small.
The increase in duration is however substantial.

For minimum time the decrease in fuel consumption without energy storage
is almost as high as for minimum fuel for Peak and Power-lim, following the
conclusion in part 1. For the other two limits the fuel economy potential is
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Table 5: Change in fuel consumption and duration of the different strategies
compared to the reference trajectory. ∆ = [∆T [%], ∆mf [%], ∆qmax [Wh]],
∆qmax = max q −min q.

Ereq(T ) minmf minT
Pbatt = 0 Pbatt Pbatt = 0 Pbatt

Standard-lim
- ∆ [0.2 -0.7 0.0] [-0.1 -0.7 0.5] [0.0 0.0 0.0] [-0.9 -0.5 2.8]

85kJ ∆ [7.3 -1.6 0.0] [7.2 -1.6 0.0] [-1.3 -0.2 0.0] [-3.0 1.1 6.7]
510kJ ∆ [65.0 -5.2 0.0] [65.0 -5.2 0.0] [-1.7 -4 0.0] [-6.7 -2.5 16.3]
850kJ ∆ [112.7 -8.2 0.0] [112.7 -8.2 0.0] [-1.7 -6.5 0.0] [-6.7 -5.3 17.1]

Cont-lim
85kJ ∆ [7.3 -1.6 0.0] [7.3 -1.6 0.0] [-0.8 -0.8 0.0] [-1.7 7.8 3.5]
510kJ ∆ [65.2 -5.3 0.0] [64.8 -5.3 0.0] [-0.8 -1.2 0.0] [-6.7 2.3 17.6]
850kJ ∆ [112.8 -8.2 0.0] [112.8 -8.2 0.0] [-0.8 -1.1 0.0] [-6.7 1.8 18.2]

Peak-lim
- ∆ [0.8 -2.1 0.0] [1.3 -3.6 2.7] [0.0 0.0 0.0] [-1.5 -2.9 4.4]

85kJ ∆ [0.0 -8.8 0.0] [0.1 -8.8 0.4] [-1.7 -8.7 0.0] [-3.2 -2.2 6.1]
510kJ ∆ [52.8 -9.7 0.0] [52.8 -9.7 0.0] [-1.7 -8.7 0.0] [-6.7 -7.2 16.3]
850kJ ∆ [100.4 -10.3 0.0] [100.5 -10.3 0.0] [-1.7 -8.7 0.0] [-6.7 -7.5 17.0]

Power-lim
85kJ ∆ [-0.5 -8.8 0.0] [-0.9 -8.9 1.2] [-1.7 -8.7 0.0] [-4.0 -7.1 9.1]
510kJ ∆ [49.8 -9.8 0.0] [49.9 -9.8 0.1] [-1.7 -8.9 0.0] [-6.7 -7.8 16.9]
850kJ ∆ [97.5 -10.4 0.0] [97.6 -10.4 0.1] [-1.7 -8.9 0.0] [-6.7 -7.9 17.7]

however a bit more limited. Adding an energy storage decreases the fuel gains
but instead it improves the response time. For Ereq ≥ 510 kJ the response time
is immediate, regardless of generator limit, and this with an energy storage of
only up to 18Wh≈65 kJ.

7 Impact of energy storage properties
Defining the energy storage efficency as ηbatt = (PbattPech

)sign(Pbatt) and Pech =
UocIbatt and inserting Eq. (3) yields:

ηbatt =

 Pbatt

1
2
U2
oc

Ri
−
√

1
4 (U

2
oc

Ri
)2 − U2

oc

Ri
Pbatt

sign(Pbatt)

(11)

The efficiency of the energy storage is thus a function of U
2
oc

Ri
and Pbatt. Since

both and Uoc and Ri are implemented as constants the impact of the efficiency
of the energy storage on the optimal solution can be expressed as a function of
Ri alone.

7.1 Impact of internal resistance
To study how the internal resistance of the energy storage, Ri, affects the optimal
solution the resistance is varied between 0 and 10000 Ω and the problem is
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Figure 9: Change in energy storage usage and fuel and time consumption as
a function of internal resistance. All consumption changes relative the case
without energy storage, Pbatt = 0.

solved for minT and minmf with Ereq = [−, 85, 510, 850] kJ using Standard-lim.
Neither 0 nor 10000 Ω can be considered realistic values but to fully study
the impact of the parameters the problem is solved for these extremes. In the
resulting figures only the Ω-region where the solution is affected is shown. The
resulting energy storage usage as well as the change in fuel and time consumption,
relative the case without energy storage, are shown in Fig. 9. For minmf only
the results for the case without requirements on produced energy are shown.
This is since even with Ri = 0 Ω the change in fuel consumption from adding
an energy storage is negligible for the studied required energies (savings in the
order 0.01 h).

For Ereq ≤ 85 kJ ∆qmax decreases with increasing internal resistance, ap-
proaching the solution without energy storage. For Ereq ≥ 510 kJ ∆qmax is no
longer monotone in Ri. For Ri ≤ 1 Ω the response is immediate and the depth of
discharge thus increases as a function of Ri to provide the required output power.
From Ri ≥ 1 Ω Pbatt is limited by the constraint that the square root in Eq. (3)
needs to be positive, and for Ri ≥ 2 Ω this has the effect that the response is
no longer immediate. The powers of the generator and engine are also limited,
this together with the fact that Ereq has to be met limits the power available to
recharge the energy storage. These effects lead to that for larger Ereq and Ri the
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Figure 10: The losses in the energy storage as a function of internal resistance
for Ereq = [85, 510, 850] kJ.

depth of discharge decreases. This is also seen in Fig. 10. Despite the increase
in Ri the amount of energy lost in the resistance decreases. However, even with
Ri = 10 Ω, the potential decrease in duration is between 1-3% depending on
Ereq, showing that an energy storage could really be beneficial for reducing the
response time.

7.2 Optimal size of the energy storage
In the problems studied so far it is seen that the size of the energy storage,
necessary for the time optimal transients, increases with Ereq. This raises the
question of how large the energy storage needs to be to not limit the solution
even for very large Ereq.

Solution method for long durations

A problem in studying this is that since Pout ≤ Preq the duration in time also
increases, and with the strategy previously used, using a fixed number of control
intervals regardless of duration, there is a risk that the number of control intervals
per second limits the solution. Increasing the number of collocation points on
the other hand makes solving the problems both slower and more difficult.
Studying the time optimal solutions for larger Ereq and Ri = [0.001, 0.5, 1] Ω
and Standard-lim it is seen that they all have the same characteristic. First
there is an acceleration phase, where the energy storage is discharged. Then
there is a stationary phase on the peak-limit of the generator, recharging the
energy storage, and finally an acceleration to meet the end constraints, ending
at the continuous limit. To avoid the problem with long optimizations, but still
be able to approximate the solution, the problem is reformulated as a 3-phase
problem. In the 3-phase problem the first phase and last phase are with the same
constraints as before, but in the second phase the constraint Pmech = Pmech,peak
is added. The durations of the first and last phases are also limited. With this
formulation, since it is known that the second phase is rather stationary, the
number of collocation points can be reduced, so the control interval density is
high during the transient phases but low in the stationary. This method is found
to give a good approximation of the optimal solution in the interval 850-2550 kJ.
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Results

The method described in Section 7.2 is used to solve the problem for a set of
Ereq up to 51 MJ, corresponding to a minimum duration of 300 s. The result is
shown in Fig. 11. Looking at Fig. 11 it is apparent that the optimal size is a
function of both Ri and Ereq, however Ereq only seems to influence the solution
up to a certain point. This is reasonable since the energy storage is used to
compensate for the time it takes to reach the efficient operating region. The
maximum size seems to be between 20-40 Wh depending on Ri. Using average
values from [1] for a high power Li-ion battery (100 Wh/kg, 1800 W/kg) as well
as a super capacitor (2.6 Wh/kg, 5250 W/kg) the necessary weight is found
to be in the range 19-38 kg (super-cap) and 56-111 kg (Li-ion) depending on
internal resistance. Important to note is that in all cases it is the specific power
that is limiting, for just specific energy the weight would be in the 0.2-0.4 kg
range (Li-ion).

8 Trade-off between minT and minmf

The strategy for solving minimum time problems, discussed in Section 2.3, has
negligible effect on the duration of the solution. It however raises the question on
how sensitive the fuel consumption is to changes in duration from the minimum
time solution. To study this the strategy is reformulated according to Eq. (12).

minmf , T ≤ (1 + ε)Tmin (12)

The problem is then solved for several values of ε ∈ [0, 1.5] and Ereq =
[85, 510, 850] kJ both with and without energy storage using Standard-lim.
The resulting Pareto fronts, in Fig. 12, show the trade-off between the two
criteria, expressed relative the minimum values.

For Ereq = 85 kJ the solution is rather sensitive to ε near zero, especially
with an energy storage. With energy storage an increase in duration of just 1 %
lowers the fuel consumption with 4.8 % (0.6 % without energy storage). It is
also relatively flat for larger ε, the last 30 % increase in duration only lowers
the consumption with 0.3 % (with energy storage). For larger Ereq the Pareto
front is flatter, meaning that the duration needs to be increased substantially to
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Figure 12: The effect on the fuel consumption of increasing the minimum time.

have significant effects on the fuel consumption. This is also visible in Table 5
which shows that the minimum time solution is almost as fuel efficient as the
minimum fuel solution but substantially faster.

9 Concluding discussion
The effect of adding a generator model and its limits, as well as the effects of
adding an energy storage, on the optimal control of a diesel-electric powertrain
during transients is studied. The studied transients are steps from idle to a
terminal power and energy. The results show that the characteristics remain
unchanged by the addition of a generator model, supporting the previous as-
sumption that the dynamics of the diesel-engine are dominant. The generator
model and limits do however shift the locations of the peak efficiency regions,
affecting the stationary points.

Adding an energy storage to assist in the transients is shown to be beneficial
to reduce the response time, but it cannot improve the fuel economy. For
minimum fuel the energy storage remains virtually unused, for minimum time
the energy storage is used both to accelerate the engine and to produce output
power. The solutions are relatively insensitive to energy storage parameters.
Decreasing internal resistance does not have significant effects on the minimum
fuel solution with requirements on produced energy. For minimum time it is
seen that even when increasing the internal resistance 20 times, there are still
duration benefits to be made regardless of required energy. The resistance and
required energy influence the optimal size of the energy storage, a size that is
found to be in the range of 20-40 Wh.

The relative fuel economy for the minimum fuel formulation improves with
increasing Ereq, regardless of generator limits, but the time penalty for this quite
quickly becomes relatively large. The minimum fuel solutions produce power
from the start, accelerating towards the peak efficiency region of the GenSet,
where it then stays for a large part of the transient. This leads to that the
time penalty increases with the a model for the generator losses since the peak
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efficiency of the GenSet is shifted to a lower output power. The minimum time
solutions first accelerate the engine before it starts to produce power. Adding
a small energy storage can reduce this delay, and even remove it for larger
requested energies, regardless of generator limits. Also even with a generator
losses the minimum time formulation not only decreases the duration of the
transients, it is also almost as efficient as the minimum fuel solution. For the
case without energy storage, and Peak or Power-lim, the minimum time controls
just increase the consumption with roughly 1 % compared to minimum fuel,
despite being substantially faster.

This implies that for energy transients the fuel optima is relatively flat,
something that is confirmed when studying the trade-off between minimum time
and minimum fuel. Close to the minimum time solution the fuel consumption
with low required energy is quite sensitive to variations in duration. A small
increase in fuel results in substantial decrease in duration. For larger energies
the difference is not that large, and especially near the minimum fuel solution
large increases in duration have only slight effects on the fuel consumption.

10 Conclusion
Time and fuel optimal transients of a diesel-electric powertrain, with and without
an energy storage, are studied. From the performed studies and discussions the
following general conclusions can be drawn.

1. The characteristics of the optimal control mainly depend on the engine
properties, the stationary points are however affected by generator model
and limits.

2. An energy storage can help reduce the response time, but not the fuel
consumption, for steps to higher output powers. This property is insensitive
to the efficiency of the energy storage.

3. The optimal energy storage size is small in terms of energy, but large in
terms of power which is the limiting factor.
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Abstract
The importance of including turbocharger dynamics in diesel engine
models are studied, especially when optimization techniques are to be
used to derive the optimal controls. This is done for two applications
of diesel engines where in the first application, a diesel engine in wheel
loader powertrain interacts with other subsystems to perform a loading
operation and engine speed is dictated by the wheel speed, while in the
second application, the engine operates in a diesel-electric powertrain as
a separate system and the engine speed remains a free variable. In both
applications, mean value engine models of different complexities are used
while the rest of system components are modeled with the aim of control
study. Optimal control problems are formulated, solved, and results are
analyzed for various engine loading scenarios in the two applications
with and without turbocharger dynamics. It is shown that depending on
the engine loading transients, fuel consumption and operation time can
widely vary when the turbocharger dynamics are considered in the diesel
engine model. Including these, have minor effects on fuel consumption
and operation time at minimum fuel operations of the first application
(≈ 0.1%) while the changes are considerable in the second application (up
to 60%). In case of minimum time operations however, fuel consumption
and operation time are highly affected in both applications implying
that not considering turbocharger dynamics in the diesel engine models
may lead to overestimation of the engine performance especially when
the results are going to be used for control purposes.
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Figure 1: Application 1, structure of the WL model, components as well as the
connection between them (system states in red, control inputs in blue and other
parameters in black)

Introduction
Diesel engines are commonly used as the prime mover in vehicles, ranging
from cars to heavy duty machinery. Productivity of engine operation can be
determined by considering time and costs of performing operations where fuel
consumption is a major issue. Optimal control of diesel engine operation is used
to analyze time or fuel optimal engine operations. To this goal, diesel engines are
modeled with different complexities where mean value engine modeling (MVEM)
is a commonly used alternative [1]. Diesel engine operation is constrained by
phenomena such as the lag due to turbocharger speed buildup or smoke generation
caused by insufficient air pressure in the intake manifold [2]. Turbocharger
dynamics can be described in the engine model by including additional states
and control variables, however these dynamics are not always included in the
models as the optimization becomes more computationally expensive or the
dynamics may not be interesting as in [3].

In this paper, minimum time (minT ) and minimum fuel (minmf ) transients
of diesel engines with and without turbocharger dynamics are studied with the
novelty being that corresponding changes in the system dynamics, fuel consump-
tion, and operation time are analyzed both qualitatively and quantitatively for
two separate applications.

In the first application, the diesel engine is considered as a component in
wheel loader (WL) powertrain. A frequent application of WLs is in short loading
cycles which are highly transient cycles with several power consumers, i.e. vehicle
traction, bucket lifting, and vehicle steering, that all have to be supplied by the
diesel engine. During the WL operation engine speed is coupled to the wheel
speed via transmission components and is thus affected by the vehicle maneuver
between loading point and load receiver. These short loading cycles are normally
repeated several times over a certain period, why reducing the fuel consumption
and operational time of them is a major interest for the manufacturers as it
will reduce the total cost of ownership. The structure of WL model of the first
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blue and other parameters in black).

application is illustrated in Figure 1.

In the second application, the diesel engine transients in a diesel-electric
powertrain are studied. A nonlinear MVEM represents the diesel engine which
is mechanically coupled to a generator (GENSET) providing the electricity for
electric motors. Since there is only an electric link between the GENSET and
electric load, the engine speed can be chosen freely which has the benefit that
the engine operating point can remain independent of the load properties on the
electric motors while the performance of the whole powertrain can be improved
because of the electric machine torque characteristics. The structure of the diesel
engine model in the diesel electric powertrain is illustrated in Figure 2.

Paper Outline

In the first part of the paper, the modeling of the diesel engine and WL powertrain
is described with and without turbocharger dynamics. Formulating and solving
optimal control problems, minT and minmf transients of the WL during the
short loading cycle are calculated and the differences in engine operation are
analyzed.

In the second part of the paper a model of a diesel-electric powertrain is
described. This model is then simplified, removing the turbocharger dynamics.
The optimal controls for steps in power and energy are then found for both
models, both for minT and minmf and the differences are analyzed.
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Figure 3: WL trajectory and the numbered sequence of actions in the short
loading cycle, picture from [7]

1 Model

1.1 Application 1, Wheel Loader

The WL model consists of three main subsystems namely powertrain, lifting
and steering where a 6-cylinder 12.7-liter diesel engine produces the power
required in other subsystems. The detailed version of the WL model as a
nonlinear system with nine states and four control inputs is available in [4].
The states in the system, as seen in Figure 1, are engine speed ωice, intake
manifold pressure pim, vehicle speed v, bucket lifting speed vbuc, bucket height
hbuc, vehicle positions in xy plane, vehicle heading angle θ and steering angle δ.
The four control inputs are fuel injection per combustion cycle of engine umf ,
bucket acceleration uab, braking torque signal ub and derivative of steering angle
ustr. The engine model is presented once as a full model (FMWL) including the
turbocharger dynamics and then with no turbocharger dynamics called reduced
model (RMWL). Figure 3 shows a WL and its trajectory while operating in the
short loading cycle.



100Paper 3. Turbo. Dyn. Influence On Opt. Ctrl. of Diesel Eng. Pwrd. Systems

Full Model, Wheel Loader

The FMWL diesel engine is represented by a simplified version of the MVEM
in [1] where engine speed, ωice, and intake manifold pressure, pim, are states
and injected fuel mass, umf is the control input. The turbocharger dynamics
are represented by a first order system with a time constant that describes the
intake manifold pressure. Engine power is consumed in order to lift the loaded
bucket and perform steering, Plift and Pstr respectively, while consuming power
for vehicle transportation Ptrans. Dynamics of engine speed are then calculated
by Newton’s second law as:

dωice
dt

= 1
Jice

(
Tice −

Plift + Pstr + Ptrans
ωice

)
(1)

where Jice is engine inertia and Tice the engine torque. Intake manifold pressure
is related to a static pressure model, pmodel, by a first order system according to:

dpim
dt

= 1
τ

(pmodel − pim), τ = cτ1 ω
cτ2
ice (2)

where τ is the time constant in the intake manifold pressure buildup due to
turbocharger dynamics, and the static pressure map is calculated as follows

pmodel = cp,1 Tice + cp,2 ω
2
ice + cp,3 (Tice ωice)2 + cp,4 (3)

with cp1,2,3,4 and cτ1,2 tuned to correspond to the stationary intake manifold
pressure values at different engine loads and speeds, and the response time
during intake manifold pressure transients at different engine speeds respectively.
The net engine torque Tice is modeled as the subtraction of the friction torque
Tfric from the gross indicated torque Tig according to:

Tice = Tig(umf )− Tfric(ωice) (4)

The air mass flow to the engine, ṁa calculated using a constant volumetric
efficiency, ηvol, and mass of injected fuel, ṁf are calculated as follows:

ṁa = ηvol VDωice pim
4π Ra Tamb

, ṁf = 10−6

4π umf ωice ncyl (5)

where VD, Ra, Tamb and ncyl are respectively engine displacement volume, gas
constant, ambient temperature and number of engine cylinders.

The minimum relative air to fuel ratio according to the environmental limits
on smoke generation is denoted by λmin, and a parameter φλ representing the
smoke generation during the engine operation is defined as:

φλ = ṁa − ṁf (A/F )s λmin (6)

where (A/F )s is the stoichiometric air to fuel ratio of the fuel.
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Reduced Model, Wheel Loader

The RMWL for the diesel engine does not include the intake manifold pressure
dynamics in (2) and has only the engine speed as state determined by (1) while
the only control input to the diesel engine as in the FMWL is injected fuel mass
umf . All other system states and control inputs mentioned in section 1.1 are
left without any change and the net engine torque is calculated by (4) similar to
the FMWL case.

1.2 Application 2, Diesel-Electric
The modeled powertrain consists of a 6-cylinder 12.7-liter SCANIA diesel engine
with a fixed-geometry turbine and a wastegate for boost control, equipped with
a generator. To study the effects and importance of including a turbocharger
model in the optimization, two different models are used where the full and
reduced models are denoted by FMDE and RMDE respectively. The first model,
FMDE , models the physics of the powertrain, incorporating the nonlinear nature
and turbocharger dynamics. In the second model, RMDE , only the stationary
efficiency map of the engine is modeled, neglecting turbocharger dynamics.

Full Model, Diesel-Electric

The model is a nonlinear, four state, three input MVEM, used together
with models for the generator losses. The diesel engine model is the same as the
one used in [8], augmented with a model for the generator losses as in [9].

The states of the MVEM are engine speed, ωice, inlet manifold pressure, pim,
exhaust manifold pressure, pem and turbocharger speed, ωtc. The controls are
injected fuel mass, umf , wastegate position, uwg, and generator power, Pgen.
The engine model consists of two control volumes, intake and exhaust manifold,
and four restrictions, compressor, engine, turbine, and wastegate. The control
volumes are modeled with the standard isothermal model, using the ideal gas
law and mass conservation. The engine and turbocharger speeds are modeled
using Newton’s second law. The governing differential equations of the MVEM
are:

dωice
dt

= 1
Jgenset

(Tice −
Pmech
ωice

) (7)

dpim
dt

= RaTim
Vim

(ṁc − ṁac) (8)

dpem
dt

= ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (9)

dωtc
dt

= Pt − Pc
ωtcJtc

− wfricω2
tc (10)

where ṁ denotes massflows, Tim/em manifold temperatures, Jgenset/tc inertias,
Vim/em manifold volumes, Re gas constant, Pt/c turbine/compressor powers,
Tice engine torque, and Pmech mechanical generator power, with connections
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between the components as in Figure 2. There is also a summation state, to
keep track of the produced energy:

dEgen
dt

= Pgen (11)

The model consists of eight submodels, connected as seen in Figure 2. The
submodels are models for compressor massflow and power, intake manifold
pressure, engine torque and exhaust temperature, exhaust manifold pressure,
wastegate massflow, turbine massflow and power, and generator losses. The
diesel engine smoke generation is represented by φλ parameter similar to (6).

Reduced Model, Diesel-Electric

The RMDE is a one state, two control model, MVEM with a model for
the generator losses, similar to the models used in [3] and [12] where transient op-
eration of naturally aspirated diesel engines are studied. The model corresponds
to the FMDE with the last three states left out:

dωice
dt

= 1
Jgenset

(Tice −
Pmech
ωice

) (12)

The net engine torque, Tice, is as in the FMDE modeled as:

Tice = Tig − Tfric − Tpump (13)

Tpump =VD
4π (pem − pim) (14)

Since the RMDE does not have the states pim, pem, Tpump is instead modeled
according to:

Tpump = (cTp,1ωice + cTp,2)umf + cTp,3ωice + cTp,4 (15)

with parameters tuned to correspond to the pumping torque of the stationary
efficiency map of FMDE .

2 Problem Formulation
Optimal control problems are formulated for both applications using the FMs
and RMs described in the previous section. Engine loading cycles and require-
ments together with the component specific limitations are described in terms of
boundary conditions and time varying path constraints in the problem formula-
tion. Considering the complexity and detail level of the models, using methods
such as dynamic programming is computationally expensive, instead PROPT
[13] which is a solver engine using pseudospectral collocation method is used for
solving the optimal control problems.
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2.1 Problem Formulation, Wheel Loader

To study the importance of the turbocharger dynamics, two optimal control
problems are formulated, minT and minmf , as follows:

min
u(t)

∫ T

0
ṁf (s(t), u(t)) dt or min

u(t)
T

s.t. ṡ(t) = f(s(t), u(t))
(s(t), u(t)) ∈ Ω(t)

(16)

where s is the state vector of the model, ṡ is defined by dynamic equations of the
state variables in lifting and steering subsystems [4], plus (1), (2) in FMWL case
or only (1) in RMWL case. The control inputs vector u = [umf , uab, ub, ustr] is
the same for both FMWL and RMWL.

The WL operation, see Figure 3, in the short loading cycle starts from an
initial WL position (x0, y0) and the loaded bucket is lifted to a desired final
level while the WL travels first in backward direction from the loading point
until a point where it stops, and then starts the forward move towards the load
receiver. The gear shifts during this operation introduce discontinuities into
the problem and in order to avoid these, the optimal control problem is divided
and solved in four phases with constant gearbox gear ratios during each, which
in time order begin with first reversing [0, t1], then braking with neutral gear
[t1, t2], then forwarding [t2, t3], and finally braking with neutral gear [t3, T ].

The fuel consumption ṁf in (16) is then calculated as the sum of consumed
fuel during each of the phases as follows:

ṁf =
∫ t1

0
ṁf,1 dt+

∫ t2

t1

ṁf,2 dt+
∫ t3

t2

ṁf,3 dt+
∫ T

t3

ṁf,4 dt (17)

In order to ensure the continuity of the states and physical properties during
WL operation, the successive phases are concatenated by constraints as follows:

uab, ustr, sj at phase (i+ 1)init = uab, uab, sj at phase (i)end
j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, i ∈ {1, 2, 3} (18)

Time varying constraints, (s(t), u(t)) ∈ Ω(t), imposed by the components, such
as maximum torque and minimum speed, and also a requirement that the control
has to end in a stationary point are:

s(0) = s0, ṡ(T ) = 0
umin ≤ u(t) ≤ umax, smin ≤ s(t) ≤ smax
Tice(s(t), u(t)) ≤ Tice,max(s(t)), Rmin ≥ R
Phcyl(s(t), u(t)) ≤ Phcyl,max, decclim ≤ v̇

(19a)



104Paper 3. Turbo. Dyn. Influence On Opt. Ctrl. of Diesel Eng. Pwrd. Systems

where R is the turning radius of the WL during the operation, Phcyl is the
pressure in the hydraulic lift cylinders of the WL’s boom and decclim is a lower
limit on the braking deceleration which ensures the stability of WL structure
by avoiding harsh braking. For the FMWL with turbocharger dynamics, there
is also an environmental constraint, i.e. a limit on φλ set by the smoke-limiter,
equivalent to a lower limit on the air-fuel ratio:

φλ(ṁa, ṁf ) ≥ 0 (19b)

2.2 Problem Formulation, Diesel-Electric
In case of the diesel-electric powertrain, the minT and minmf optimal control
problems have the same structure as in (16) with the difference being that
ṡ is defined by (7)-(10) and u = [umf , uwg, Pgen] (FMDE), or (12) and u =
[umf , Pgen] (RMDE). The considered problem is a step from idle to a requested
output power, Preq, augmented with that a certain amount of energy, Ereq has
to be produced. Ereq can be interpreted as a short driving mission, and also
as a measure on the amount of freedom given to the powertrain, in terms of
produced energy, before the operators power request has to be met.

The studied transients from idle to a target power and energy are subjected
to time varying constraints as those of the 1st application which are imposed
by the components and also the requirement to end up in a stationary point.
The time varying constraints (s(t), u(t)) ∈ Ω(t) in the diesel-electric problem
formulation are:

s(0) = s0, ṡ(T ) = 0
umin ≤ u(t) ≤ umax, smin ≤ s(t) ≤ smax
Tice(s(t), u(t)) ≤ Tice,max(s(t)), Pgen(T ) = Preq

0 ≤ Pgen(t) ≤ Preq, Egen(T ) = Ereq

(20a)

and for FMDE also:

φλ(ṁa, ṁf ) ≥ 0 (20b)

3 Results
The optimal control problems formulated in the previous section are solved for
different engine loading scenarios and the effect of not including turbocharger
dynamics in the diesel engine models are analyzed for both applications.

3.1 Wheel Loader Application
In order to investigate the effect of turbocharger dynamics under various loading
conditions, the optimal control problems defined in section 2.1, are first solved
for WL loading cycles of different lengths by defining various final position values
at t = T for states x and y. Figure 4 shows the increase in the fuel consumption
and cycle duration in minmf (top) and minT transients (bottom). As it is
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Figure 4: The change in fuel consumption and cycle time duration when tur-
bochargers dynamics are not included. Second order polynomials are fitted to
the results in the bottom subplot for better visualization.

seen, the changes in the fuel consumption or cycle duration are less than 0.1%
in minmf transients when the turbocharger dynamics are not included in the
diesel engine model. The engine operating points corresponding to the cycle
with the shortest traveling distance in the top section of Figure 4, are depicted
in Figure 5 (top) for the FMWL and RMWL. It is seen that neglecting the
turbocharger dynamics in the RMWL does not have a considerable effect on
the engine operation during minmf transients. In both FMWL and RMWL

cases, the engine is controlled in the low engine speed region of the engine map
since lower fuel consumption is the main objective. Mostly no rapid engine
acceleration takes place and therefore smoke generation constraint due to the
boost limit becomes active only during a short interval at the beginning of the
loading operation, shown by X in Figure 5, where the vehicle starts from stand
still and engine speed is low.

On the other hand, in the minT operations, as seen in the bottom plot of
Figure 4, when turbocharger dynamics are not included, the operation time
can be underestimated up to 15%. Lower fuel consumptions are also obtained
without turbocharger dynamics. The trend is such that the fuel consumption
and operation time are underestimated more in the shorter traveling distances.
This is due to the fact that in the cycles with shorter traveling distance, the
lifting and vehicle acceleration which are the major engine power consumers are
fulfilled almost simultaneously (lifting and acceleration) resulting in higher loads
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Figure 6: Top: Trade-off between fuel consumption and cycle duration for same
loading cycle. Bottom: The increase in fuel consumption during same loading
cycle at different cycle durations when turbocharging dynamics are included.

on engine compared to the cycles with longer travel distance where the load
lifting and vehicle acceleration are performed in almost separate periods of the
loading cycle (first vehicle acceleration, then load lifting). The details of this
shift in power distribution pattern are studied deeper in [4], [5] and [6]. Looking
at the engine operating points corresponding to the cycles with the shortest
travel distance at the bottom of Figure 4, it is seen that when turbocharger
dynamics are not included in the model, Figure 5 bottom-right, the engine
operation is mainly limited by the maximum torque production limits when the
WL starts the operation at phase one, however in case of including turbocharger
dynamics, Figure 5 bottom-left, engine operation at the beginning of operation,
is limited by the boost limit and cannot produce large torques due to insufficient
intake manifold pressure.

The trade-off between fuel consumption and cycle operation time is infor-
mative for WL operators as it is useful to select a compromise between the
two and achieve a higher productivity [11]. To investigate how this trade-off is
affected for a certain loading cycle when turbocharger dynamics are not included,
optimal control problems in (16) are reformulated as:

min
u(t)

w1

(∫ T

0
ṁf (s(t), u(t)) dt

)
+ w2 T

s.t. ṡ(t) = f(s(t), u(t))
(s(t), u(t)) ∈ Ω(t)
w1 + w2 = 1

(21)

The problem is solved for several w1 and w2 values using the same set of
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constraints as in section 2.1 using FMWL and RMWL for diesel engine. The
results are presented in Figure 6 where the selected WL operating cycle is selected
to be the one with shortest travel distance in Figure 4. The results imply that
not including the turbocharger dynamics, underestimates the fuel consumption
more in the shorter operations which is as already discussed, due to higher load
demands from the engine during the shorter cycles where the engine operation
is affected by the smoke-limiter constraint more severely. The importance of
turbocharger dynamics on fuel consumption decrease as the operation becomes
less engine load demanding for the longer cycles.

3.2 Diesel-Electric Application
The problem formulated in (16) and (20), how to control the diesel-electric
powertrain in order to be able to satisfy the operators power and energy request,
either as fast as possible, or as fuel efficient as possible, is solved for Preq = 170 kW
and Ereq = [0−850] kJ with the two different models. Ereq = 0 means that there
are no requirements on produced energy, just power, i.e. the Egen(T ) = Ereq
constraint is removed. A comparison between the different models and problems
is shown in Figure 7. For a deeper analysis of the results with FMDE , see [10].

For RMDE , the minT and minmf solutions to Ereq = 0 are equivalent. The
solution is to accelerate along the maximum torque line to the point of peak
efficiency for Pgen = 170 kW, denoted ηmax(Preq). For minT Ereq has no effect
on the characteristics of the solution, the acceleration phase is the same, the
duration spent at the stationary point does however increase. For minmf , a
requirement on produced energy means that the solution will accelerate along
the maximum torque line towards the peak efficiency of the GENSET, denoted
ηmax, have a stationary phase there, and then accelerate towards ηmax(Preq).
Ereq thus only affects the time spent at the peak efficiency of the GENSET.

With turbocharger dynamics the resulting trajectories differ substantially
compared to RMDE , see Figure 7. Whereas the results with RMDE are mainly
dictated by the maximum torque line and stationary efficiencies, the results with
FMDE are mainly dictated by the smoke-limiter and ability to generate enough
turbocharger speed to reach the efficient operating regions. So for Ereq = 0 kJ
this has the effect that the end operating point is nowhere near ηmax(Preq).
For the solution to actually end at ηmax(Preq), Ereq ≥ 170 for both minT
and minmf , compared to Ereq ≥ 0 kJ for RMDE . For minT this means that
with Ereq > 170 kJ the characteristic is unaffected. Also for minmf to have a
stationary phase at ηmax, Ereq ≥ 340 kJ, below that the solution does not have
any stationary phases, compared to Ereq ≥ 42.5 kJ for RMDE . This means
that when the operator requests Preq, this request has to be held for 1-2s for it
to be optimal to approach the optimal stationary point, something that is not
captured without including turbocharger dynamics in the model.

Looking at the trajectories, they are qualitatively very different. In Figure 8,
the relative change in duration and consumption of neglecting the turbocharger
dynamics, RMDE vs FMDE , is shown. For Ereq = 0 kJ, RMDE underestimates
both the fuel consumption and duration with over 60 % both for minmf and
minT . The difference then decreases as Ereq increases, since above a certain Ereq
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Figure 7: Torque-engine speed trajectories for the different models and problems.
Efficiency contours are for the GENSET.

the stationary points are similar, and for larger Ereq the transient contribution
to the fuel consumption and duration decreases.

4 Conclusions
The importance of incorporating turbocharger dynamics in the optimization of
transient control is studied for two different applications of diesel engines. In
the first application, the transients are studied for a diesel engine operating as a
component in a wheel loader where engine transients are affected by the power
requirements in the lifting, steering and transportation subsystems while the
engine speed is affected by the wheel speed during the operation.

The minimum time and minimum fuel transients of the diesel engine are
analyzed for wheel loader loading cycles of different length with and without
turbocharger dynamics in the diesel engine model. It is shown that by not
considering the turbocharger dynamics, fuel consumption and cycle duration
are not affected considerably during minimum fuel transients since the engine
is controlled to operate at low engine speed and torque where there is no
demand for high intake manifold pressure, thus lowering the importance of
turbocharger dynamics. In the minimum time transients however, it is shown
that the required operation times can be underestimated by up to 15% when
turbocharger dynamics are not considered and fuel consumption is also calculated
to be up to 2% lower. This is due the higher torque demand on the diesel engine
which calls for higher intake manifold pressure in order to satisfy the smoke
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generation limit which in turn takes longer times when turbocharger dynamics
are included. Underestimation of fuel consumption and cycle time duration in
minimum time transients are more severe during wheel loader loading cycles
with shorter traveling distance since load lifting and vehicle transportation have
to be performed simultaneously. The engine has to then deliver larger amounts
of power in a shorter time calling for faster rise in the intake manifold pressure
which is constrained by the turbocharger dynamics.

In the second application, the diesel engine transients are studied while the
engine operates in a diesel-electric powertrain. For this aim two different models
are used, a four state, three control MVEM, and a one state, two control MVEM.
The considered problem is a step from idle to target power and energy, which is
solved both for minimum time and minimum fuel. The results show that the
optimal trajectories differ substantially and that neglecting the turbocharger
dynamics can underestimate the optimal duration and consumption by over 60%.
Also the amount of energy required for it to be optimal to go to the optimal
operating points differ with 170− 300 kJ, meaning for the considered case the
same power has to be requested for 1-2s, something that is not captured when
the dynamics are neglected.

References
[1] Walström, J., Eriksson, L.,: Modeling engines with a variable-geometry

turbocharger and exhaust gas recirculation by optimization of model param-
eters for capturing non-linear system dynamics. In Journal of Automobile
Engineering 225, 960–986 (2011).

[2] Rakopoulos, C. D., Giakoumis, E. G., : Diesel engine transient operation -
Principles of operation and simulation analysis. In Springer,2009.

[3] Tomas Nilsson, T., Fröberg, A., Åslund, J., : Optimized engine transients.
In 7th IEEE Vehicle power and propulsion conference, Chicago, Illinois,
USA, 2011.

[4] Nezhadali, V., and Eriksson, L., : Optimal lifting and path profile for a



4. Conclusions 111

wheel loader considering engine and turbo limitations. In Optimization
and Optimal Control in Automotive Systems, Springer Lecture Notes in
Control Science, 2014.

[5] Nezhadali, V., Eriksson, L. : Modeling and optimal control of a wheel
loader in the lift-transport section of the short loading cycle. In AAC’13
- The 7th IFAC Symposium on Advances in Automotive Control, Tokyo,
Japan, September 2013.

[6] Filla, R.: Quantifying Operability of Working Machines. Linköping Uni-
versity, Dissertation, NO. 1390 (2011).

[7] Filla, R.: Optimizing the trajectory of a wheel loader working in short
loading cycles. In SICFP2013 - The 13th Scandinavian International
Conference on Fluid Power. Linköping, Sweden, 2013.

[8] Sivertsson, M., Eriksson, L., : Time and fuel optimal power response of
a diesel-electric powertrain. In E-COSM’12-IFAC Workshop on Engine
and Power-train Control, Simulation and Modeling, Paris, France,October
2012.

[9] Sivertsson, M., Eriksson, L., : Optimal transient control and effects of
a small energy storage for a diesel-electric powertrain. In AAC’13 - The
7th IFAC Symposium on Advances in Automotive Control, Tokyo, Japan,
September 2013.

[10] Sivertsson, M., Eriksson, L., : Generator effects on the optimal control of
a power assisted diesel-electric powertrain. In IEEE VPPC 2013 - The 9th
IEEE Vehicle Power and Propulsion Conference, Beijing, China, October
2013.

[11] Frank, B., Skogh, L., Filla, R., Fröberg, A., Alaküla, M. : On increasing
fuel efficiency by operator assistant systems in a wheel loader. In The
International Conference on Advanced Vehicle Technologies and Integration,
155-161 (2012).

[12] C E Nino-Baron, C. E., Tariq, A. R., Zhu, G., Strangas, E. G. : In
Trajectory optimization for the engine-generator operation of a series
hybrid electric vehicle. In IEEE Transactions on Vehicular Technology,
60(6):2438-2447, 2011.

[13] TOMLAB 7.9 : http://www.tomdyn.com/.



112Paper 3. Turbo. Dyn. Influence On Opt. Ctrl. of Diesel Eng. Pwrd. Systems



4

Paper 4

Optimal and real-time control potential
of a diesel-electric powertrain†

Martin Sivertssona and Lars Erikssona

aVehicular Systems, Department of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden.

†This is a formatted version of “Optimal and real-time control potential of a diesel-electric pow-
ertrain” by Martin Sivertsson and Lars Eriksson, IFAC World Congress 2014, Cape Town, South
Africa. ©IFAC 2014. Reproduced with the permission of IFAC. The original version was published
in ifac-papersonline.net, http://ifac-papersonline.net, and can be found using the Digital Object
Identifier (DOI): 10.3182/20140824-6-ZA-1003.01969. The formatting is restricted to changing the
article into a single-column format, adjusting sizes of figures and tables, and adjusting the referenc-
ing style.

113

http://ifac-papersonline.net
10.3182/20140824-6-ZA-1003.01969


114 Paper 4. Opt. and R-T. Ctrl. Potential of a Diesel-Electric Powertrain

Abstract
Real-time control strategies and their performance related to the optimal
control trajectories for a diesel-electric powertrain in transient operation
are studied. The considered transients are steps from idle to target
power. A non-linear four state-three input mean value engine model,
incorporating the important turbocharger dynamics, is used for this
study. The strategies are implemented using the SAE J1939-standard
for engine control and evaluated compared to both the optimal solution
and the solution when the engine is restricted to follow its stationary
optimal line. It is shown that with the control parameters tuned for a
specific criteria both engine control strategies in the SAE J1939-standard,
speed control and load control, can achieve almost optimal results, where
engine load controlled shows a better trade-off between fuel economy
and duration. The controllers are then extended and it is shown that it
is possible to control the powertrain in a close to optimal way using the
SAE J1939-standard, both with the engine speed and load controlled.
However the mode where the engine is load controlled is seen to be more
robust.
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Introduction

The diesel-electric powertrain, such as the BAE Systems TorqE™, see Fig. 1,
offers the potential to increase the performance and lower the fuel consumption,
since it decouples the diesel engine from the wheels. Through this electrification
of the powertrain the engine speed can be chosen freely which also enables the
powertrain to produce maximum power from standstill. This in combination with
the torque characteristics of the electric motors can thus increase performance
and potentially lower the fuel consumption.

During stationary operation the desired operating point can be found from the
combined efficiency map of the engine-generator (GENSET). An open question is
how to optimally control the GENSET between two different outputs, especially
when the diesel engine is turbocharged. In transient operation the turbocharger
dynamics limit the changes in load and speed that can be achieved, often referred
to as turbocharger lag, see [5]. The absence of an energy storage also makes the
system more restricted and difficult to manage, compared to a series hybrid, that
can use the energy storage to compensate for the dynamics of the engine, since
all power consumed has to be produced by the GENSET. Therefore efficient
transient control is of high importance, any delay in power response of the
GENSET will also result in delay in power at the wheels.

Previous papers have studied how to best exploit the extra degree of free-
dom available in a diesel-electric and optimally control the engine-generator
(GENSET) from idle to target power and energy, see [9, 10]. The main con-
tribution of this paper is the study of the potential performance of different
control strategies using the control principles used in industry, i.e. the SAE
J1939-standard for engine control, see [6]. Two main approaches are discussed
and implemented with the control parameters tuned for minimum fuel or mini-
mum time. This is then performed for several cases and the results are related
to the previous optimal results, investigating the potential for optimal control.
As a further contribution the controllers are extended and it is shown that
it is possible to control the GENSET in an optimal manner using the SAE
J1939-standard.

The literature regarding diesel-electric powertrains is rather scarce. For
series hybrids on the other hand, where the GENSET is augmented with an
energy storage, there are several publications. A common approach is to use
the stationary map to generate setpoints for the GENSET, see [11, 1, 7]. This
optimization does not consider the transient effects of the GENSET and therefore
raises the question if the optimal setpoint actually is the operating point with
highest efficiency. Another approach is to limit the change in requested power
from the GENSET so the controller can maintain the GENSET operating close
to its stationary optimal line, see [1, 11]. This means that the energy storage
needs provide a larger part of the requested power, but it also assumes that it
is optimal to follow the stationary optimal line in transients. Whether these
assumptions are true or not for turbocharged GENSETs is also studied in this
paper.
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Figure 1: BAE Systems TorqE™ powertrain.

1 Model

The modeled powertrain consists of a 6-cylinder 12.7-liter SCANIA diesel engine
with a fixed-geometry turbine and a wastegate for boost control, equipped with
a generator. The model is a nonlinear, four state, three input mean value engine
model (MVEM), used together with models for the generator losses. The diesel
engine model is the same as the one used in [8], augmented with a model for the
generator losses as in [9].

The states of the MVEM are engine speed, ωice, inlet manifold pressure,
pim, exhaust manifold pressure, pem, turbocharger speed, ωtc. The controls
are injected fuel mass, uf , wastegate position, uwg, and generator power, Pgen.
The engine model consists of two control volumes, intake and exhaust manifold,
and four restrictions, compressor, engine, turbine, and wastegate. The control
volumes are modeled with the standard isothermal model, using the ideal gas
law and mass conservation. The engine and turbocharger speeds are modeled
using Newton’s second law. The governing differential equations of the MVEM



2. Problem Formulation 117

Figure 2: Structure of the MVEM. The modeled components as well as the
connection between them.

are:
dωice
dt

= 1
Jgenset

(Tice −
Pmech
ωice

) (1)

dpim
dt

= RaTim
Vim

(ṁc − ṁac) (2)

dpem
dt

= ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

= Pt − Pc
ωtcJtc

− wfricω2
tc (4)

Where ṁx denote massflows, Tim/em manifold temperatures, Jgenset/tc inertias,
Vim/em manifold volumes, Ra/e gas constants, Pt/c turbine/compressor powers,
Tice engine torque, and Pmech mechanical generator power, with connections
between the components as in Fig 2. For further explanation of the symbols,
see Table 2 in the appendix. There is also a summation state, to keep track of
the produced energy:

dEgen
dt

= Pgen (5)

The model consists of ten submodels, connected as seen in Fig. 2. The submodels
are models for compressor massflow and power, intake manifold pressure, engine
torque and exhaust temperature, exhaust manifold pressure, wastegate massflow,
turbine massflow and power„ generator losses, and engine and turbocharger
speed.

2 Problem Formulation
The considered problem is that the GENSET is at idle when the operator
requests a step in power. Previous papers have studied how to best exploit the
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extra degree of freedom available in a diesel-electric and optimally control the
GENSET from idle to target power and energy by solving the two optimization
problems:

min
u(t)

∫ T

0
ṁf (x(t), u(t)) dt or min

u(t)
T

s.t. ẋ(t) = f(x(t), u(t))
(x(t), u(t)) ∈ Ω(t)

(6a)

where x is the state vector of the model, ẋ and is defined by (1)-(4) and
u = [uf , uwg, Pgen]. The considered problem is a step from idle to a requested
output power, Preq, augmented with that a certain amount of energy, Ereq has
to be produced. Ereq can be interpreted as a short driving mission, and also
as a measure on the amount of freedom given to the powertrain, in terms of
produced energy, before the operators power request has to be met.
The studied transients from idle to a target power and energy are also subject to
time varying constraints imposed by the components, such as maximum torque
and minimum speed, and also a requirement that the control has to end in a
stationary point. The time varying constraints (x(t), u(t)) ∈ Ω(t) are:

x(0) = x0, ẋ(T ) = 0
umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
Tice(x(t), u(t)) ≤ Tice,max(x(t)), Pgen(T ) = Preq

0 ≤ Pgen(t) ≤ Preq, Egen(T ) = Ereq

φλ(x(t), u(t)) ≥ 0

(6b)

For all problems studied in this paper Preq = 170 kW.

3 Optimal control trajectories
The resulting engine torque-engine speed trajectories to (6) for Ereq = 340 kJ
and Ereq ≥ 0 kJ, are shown in Fig. 3. Also shown is the minimum fuel solution
for fixed output power, denoted minmf,2−phase. In minmf,2−phase the problem
is solved using two phases with the added constraints that in phase 1 Pgen = 0
and in phase 2 Pgen = Preq. For a more thorough discussion on the optimal
results, see [9, 10].

With Ereq ≥ 0 the solutions for the two criteria are very similar. The
optimal control puts as much energy as possible into the system, following the
smoke-limiter and maximum torque line. The difference between the solutions to
the two criteria is which operating point they approach and also the fine tuning
to get there.

When Ereq > 0 the solutions differ. For minT and minmf 2−phase the
characteristics are the same, and also independent of Ereq. The optimal solution
is to accelerate the engine, following the smoke-limiter, and then use the excess
kinetic energy to produce power and approach the maximum efficiency point
for the requested power. At which engine speed this step occurs does however
depend on the requested power.
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Figure 3: The fuel and time optimal trajectories for different Ereq.
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Figure 4: The stationary optimal operating line and its polynomial approxima-
tion.

For minmf the solution changes with Ereq. The control is to accelerate
whilst producing power and if Ereq is large enough, have a stationary phase at
the peak efficiency of the GENSET before a final acceleration to meet the end
constraints, see Fig. 3. The final operating point is then approached from a
higher engine speed.

4 Optimal Line
In [1, 11] the change in requested power is limited to be able to maintain the
GENSET close to its stationary optimal line. To study how far from optimal
this strategy is for turbocharged GENSETs the problem in (6) is solved with
the added constraint that the engine power, Pice = ωiceTice, is not allowed to
deviate more than 1 kW from the stationary optimal line. As seen in Fig. 4 the
optimal line is non-smooth therefore a fifth order polynomial approximation of
the optimal line, also visible in Fig. 4, is used instead. The added constraint is
of the form:

Popt(ωice)− 1kW ≤ Pice ≤ Popt(ωice) + 1kW (7)

Comparing Fig. 3-4 it is seen that the optimal solutions does not follow the
optimal line neither for minimum time nor minimum fuel. Further, restricting the
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control to follow the optimal line the control cannot reach a point where it can
sustain Pgen = 170 kW without producing output power, since the control needs
to build turbocharger speed and intake manifold pressure without accelerating
the GENSET. In order to reach the final operating point the produced energy is
Egen = [305, 320] kJ for minT and minmf respectively. This means that the
operator or controller has to request Preq = 170 kW for 2.7-2.8s for this power to
be realizable, a problem the optimal control does not have. However to make the
comparison fair the strategies are evaluated using Ereq = 340 kJ, and the results
are expressed relative the time optimal solution for Ereq = 340 kJ, shown in
Table 1. There it is seen that even though the optimal trajectories do not follow
the stationary optimal line, following the optimal line gives almost optimal fuel
economy, the difference is just 0.3-0.4% depending on criteria. Following the
optimal line is also substantially faster than the minmf solution. However, the
minT solution consumes just 1.4-1.7% more fuel than the minmf and optimal
line strategies but is 27.7-65.2% faster.

5 Control using SAE J1939
In the optimization it is assumed that the actuators in the GENSET can be
individually controlled, this is commonly not the case. A common approach
in GENSET control is to split the control in two parts, engine and generator
control. The engine is controlled using the SAE J1939-standard, following either
a speed or torque reference. The controller parameters are tuned first by iterating
through a large set of possible candidates and then selecting the best one as
initial guess for an optimization problem solved with fmincon in Matlab to
fine tune the performance. In the following control strategies the wastegate is
assumed fully closed throughout the transient, i.e. uwg = 0.

5.1 Strategy 1: Engine Speed Controlled
The normal GENSET control is that the engine tries to follow a reference speed,
see [3, 2, 4]. From talks with the industry the standard generator control scheme
for propulsion applications is to reduce the produced power from the desired
power based on the speed error of the engine. The scheme can be summarized
as:

ωice,err = ωice,ref − ωice (8)

uf = sat

(
kp,ωωice,err + ki,ω

∫ T

0
ωice,err dt

)
(9)

Pgen = sat (Pgen,ref − kp,genωred) (10)

ωred =
{
ωice,err − ωd if ωice,err − ωd ≥ 0
0 otherwise

(11)

Where ωd is a dead-zone to circumvent the drawback that the speed error has
to be zero for the requested power to be produced. sat (ux) means that the
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control is saturated to comply with the constraints. For uf this means both
smoke-limited, max torque-limited as well as being limited by the maximum
possible fuel injection. Here the gains for the engine speed controller, kp and
ki, are tuned to correspond to the speed controller of the modeled engine. The
Strategy 1 (S1) control thus has three parameters/setpoints.

5.2 Strategy 2: Engine Load Controlled
Instead of using the speed request of the SAE J1939-standard to control the
engine, one could use the load request and instead use the generator to control
the speed of the GENSET. From a Preq this strategy then requires two setpoints,
desired torque and speed. From a Preq and ωice,ref the mechanical torque of
the generator, Tmech, is calculated. This torque is then sent to the engine
control system. In simulation the torque model is inverted to calculate the fuel
control. The generator power is set by a PI-controller from the engine speed
error. A drawback is that Pgen is not allowed to exceed Preq, since that would
require a consumer being able to accept the excess power. This means that
the generator cannot control the engine speed if ωice,err < 0 since potentially
ωiceTice > Pmech(ωice, Preq). A solution to this problem is to instead decrease
the desired torque proportional to the unavailable torque desired from the
generator by the controller.

The suggested strategy is then summarized as:

Pgen,sp = kp,Pωice,err + ki,P

∫ T

0
ωice,err dt (12)

Pgen = sat (Pgen,sp) (13)

Tred =
{
Pgen,sp−Pgen

ωice
if Pgen,sp − Pgen ≥ 0

0 otherwise
(14)

Tref = Pmech(Preq, ωice,ref )
ωice,ref

− kp,TTred (15)

uf = sat (f(ωice, Tref , pim, pem)) (16)

The Strategy 2 (S2) controller then has three tuning parameters, kp,P , ki,P , and
kp,T .

5.3 Results and Discussion
To investigate the potential for optimal control, the gains in the two different
controllers are tuned for the different criteria, Preq and Ereq. The previously
solved optimal control problem, (6), requires the end point to be stationary,
Pgen(T ) = Preq, Egen(T ) = Ereq, as well as component and environmental
constraints to be fulfilled. To request stationarity and that the power and
energy should be met is infeasible for lower Ereq when using PI-controllers due
to the turbocharger dynamics, since Ereq will be met before the target speed
and stationary conditions are reached. For S1 the stationarity requirement is
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therefore removed, since the generator power is decreased if the speed error
increases. For S2 it is replaced with the requirement 0 ≤ ωice,err(T ) ≤ 0.52rad/s.

In Fig. 5 the resulting torque-speed trajectories for the two different controllers
are shown. The gains are tuned for Ereq = [170, 340] kJ but for S2 both Ereq
have the same solution why Ereq = 340 kJ is left out. For S1 the controller is
also simulated and plotted for for Ereq = 8.5 MJ to show how ωice,ref is used.

With S1 it is not optimal to request the speed of peak efficiency, something
also seen in Fig. 5 that ωice,ref , marked by red stars, is quite far from the peak
efficiency region. This since the requested engine speed cannot be met unless
Ereq is very large and for low ωice,ref Preq cannot be met without exceeding
Ereq, since it is necessary to build turbocharger speed to be able to produce
the high torques required. For minmf the parameters are instead such that the
GENSET stays in the high efficiency region, for minT the ability to meet Preq
dominates.

With S2 it is both fuel and time optimal to set ωice,ref in the peak efficiency
region. For minmf the end point is approached with very little overshoot in
engine speed, whereas for minT the overshoot is larger, similar to the time
optimal trajectories.

In Table 1 the fuel consumption and duration are related to the time optimal
results. These controllers are not far from fuel optimal when tuned for minmf ,
and not far from time optimal when tuned for minT . For S1 the punishment in
the metric it is not tuned for is substantial, i.e. the fuel consumption increases
with 8% when the controller is tuned for minT and the duration increases with
25% when tuned for minmf . With S2 this is avoided with and the controller
performs well in both metrics regardless for which it is tuned. However the
potential fuel economy of S1 is higher than S2, whereas S2 is faster than S1.
Worth noting is that S2 minT is very close to the time optimal solution in both
metrics, and the trajectory is also qualitatively similar seen when comparing
Fig. 4 and 5.

6 Optimal control using SAE J1939
Even though the implemented strategies S1 and S2 can come close to the optimal
solutions the gains of the controllers end up quite extreme, tuned for a specific
criteria. The question whether or not the optimal trajectories are implementable
using the SAE J1939-standard is still open. To evaluate this minmf,2−phase
is selected since it represents a good trade-off between fuel and duration, and
also since it is rather simple. First it accelerates along the smoke-limiter up to
a certain engine speed, ωstep, and then applies a step in generator power from
zero to Preq, a power that is then held until the end. The wastegate is used
to maintain the engine on the smoke-limit. Here the wastegate is ignored and
again assumed closed throughout the transient.

6.1 Optimal control with the engine speed controlled (S1)
For S1 this means that first a ωice,ref,1 higher than ωstep is sent to the en-
gine speed controller. Since Pgen should be zero the Pgen control has to be
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the end points.
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disconnected. When ωice = ωstep, Pgen = Preq and this power should then
be maintained and if ωstep is correct the engine speed should decrease. When
dωice
dt ≥ 0 the speed reference is set to ωice,ref . For this to work the integrator

in the engine speed controller needs to be reset to a value fitting the target
operating point, which makes the control sensitive to errors and integral wind-up.
When this shift of reference occurs the generator control can be activated since
now the reference speed is the target for control, not just a value to ensure
that the control follows the smoke-limiter. This control increases the number of
control parameters with one, since ωice,ref,1 is just set to a value higher than
ωstep, which means that only ωstep and ωice,ref need to be decided.

6.2 Optimal control with the engine Load controlled (S2)
Using S2 the torque reference is calculated using ωice,ref and Preq. The difference
here compared to S2 is that the generator is not activated by exceeding ωice,ref ,
but by exceeding ωstep. When this speed is exceeded Pgen = sat (Pgen,sp)
calculated according to (12) with the integrator part set to Preq. To avoid
integral wind-up this is reset to Preq when ωice,err = 0. To avoid decreasing the
reference when it is not necessary Tred = 0 and only activated if the step has
occurred and dωice

dt > 0. When ωice,err = 0 it is then reset to zero. This scheme
then only has one extra parameter, ωstep.

6.3 Results and discussion
For both strategies ωstep and ωice,ref need to be decided. ωice,ref can be
found from stationary measurements, however ωstep is not as easily defined. To
investigate the controllers sensitivity to error in this parameter it is varied ωopt±
10% where ωopt is the speed where the step occurs in the optimal minmf,2−phase
solution shown in Fig. 4. ωice,ref is decided as the end operating point from
that solution. The results are shown in Fig. 6 and in Table 1.

For both strategies it is possible to control the GENSET in an optimal
manner, both controllers end up being as fast and roughly as fuel efficient as the
optimal solution. For S1 the control is however quite sensitive to errors in ωstep.
It also has the drawback that the integrator of the engine speed controller needs
to be reset, something that is not available in the SAE J1939 standard. In Fig. 6
the used gains are in the same range as for S1: minmf , Ereq = 340 kJ. With 10%
error in ωstep the control ends up with the engine stalling, indicating that this
control strategy is not very robust. For S2 the gains are set to reasonable values,
not tuned for a specific criteria. S2 does not have the drawback of changing
reference as with S1, looking at Fig. 6 is is also robust to errors in ωstep. Despite
errors of 10% the control manages to bring the GENSET to stationarity in speed
and power within 1.5s.

7 Conclusion
In this paper the performance of several different control strategies for a diesel-
electric powertrain in transient operation are discussed and evaluated compared
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Table 1: Change in fuel and time compared to minT , Ereq = 340 kJ.

∆mf [%] ∆T [%]
minT 0.0 0.0

minmf -1.7 65.2
minmf,2−phase 0.1 0.0
minTopt−line -1.4 27.7

minmf,opt−line -1.5 38.3
S1: minT 8.0 0.8
S1: minmf -1.2 25.2
S2: minT 0.0 0.3
S2: minmf -0.1 3.8

S1: Opt-control 0.2 0.0
S2: Opt-control 0.1 0.0

to the optimal control trajectories. The considered problem is that the GENSET
starts at idle and the operator requests a certain power, Preq a power that should
be met either as fast or as fuel efficient as possible. To make the controllers
comparable this is augmented with that a certain amount of energy has to be
produced. The controllers are then evaluated in terms of duration and fuel
economy compared to the minimum fuel and minimum time solutions.

First a strategy where the control is limited to follow the stationary optimal
line is evaluated. It is seen to provide almost optimal fuel economy, it however
takes almost 3s to reach the requested output power, regardless of criteria.

Then two basic PI control strategies using the same structure as used in
industry are studied. The engine is controlled using the SAE J1939-standard
which has the options of using speed control or load control to control the engine.
The gains of the PI controllers are then tuned for minimum time or minimum
fuel. With the engine speed controlled, a strategy called S1, the controller is seen
to give almost optimal performance in the metric for which it was tuned, for the
other metric the performance is not as good. With the engine load controlled,
called S2, the resulting solutions represents a better trade-off between the two
metrics, while still being close the optimal results.

Finally it is shown that the optimal trajectories could be implemented using
the SAE J1939-standard, both with the engine speed controlled and with the
engine load controlled. With the engine speed controlled this involves switching
speed reference and resetting of the internal speed controller of the engine,
something that may not be possible. It is also seen that the control is not robust
to errors in one of the parameters describing the optimal solution. With the
engine load controlled on the other hand the reference sent to the engine is
in the ideal case constant throughout the transient and even with errors it is
changed in a less dramatic way. The resulting controller is also seen to be robust
to errors and to able to bring the engine speed and output power to stationarity
within 1.5s.
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A Nomenclature

Table 2: Model nomenclature

Symbol Description
ωice Engine Speed
pim Intake manifold pressure
pem Exhaust manifold pressure
ωtc Turbocharger speed
uf Injected fuel per cycle
uwg Wastegate position
Pgen Electrical generator power
Pmech Mechanical generator power
Tice Engine torque
ṁc Compressor massflow
ṁac Air massflow into the cylinders
ṁf Fuel massflow
ṁt Turbine massflow
ṁwg Wastegate massflow
Tem Exhaust manifold temperature
Pc Compressor power
Pt Turbine power

Jgenset GENSET inertia
Jtc Turbocharger inertia
Tim Intake manifold temperature
Ra/e Gas constant air/exhaust gas
Vis Volume of intake system
Vem Volume of exhaust manifold
wfric Friction coefficient, turbocharger
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Abstract
An optimal control ready model of a diesel-electric powertrain is devel-
oped, validated and provided to the research community. The aim of
the model is to facilitate studies of the transient control of diesel-electric
powertrains and also to provide a model for developers of optimization
tools. The resulting model is a four state three control mean value
engine model that captures the significant nonlinearity of the diesel
engine, while still being continuously differentiable.
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Nomenclature

Table 1: Symbols used

Symbol Description Unit
p Pressure Pa
T Temperature K
ω Rotational speed rad/s
N Rotational speed rpm
ṁ Massflow kg/s
P Power W
M Torque Nm
Π Pressure ratio -
V Volume m3

η Efficiency -
A Area m2

Ψ Head parameter -
Φ Flow parameter -
γ Specific heat capacity ratio -
cp Specific heat capacity constant pressure J/(kg · K)
cv Specific heat capacity constant volume J/(kg · K)
R Gas Constant J/(kg · K)
rc Compression ratio -
ncyl Number if cylinders -

(A/F )s Stoichiometric air/fuel-ratio -
qHV Lower heating value of fuel J/kg

uf , uwg, Pgen Control signals mg/cycle, -, W
J Inertia kg · m2

BSR Blade speed ratio -
R Radius m
λ Air/fuel equivalence ratio -
φ Fuel/air equivalence ratio -

Introduction
Optimal control can be an important tool to gain insight into how to control
complex nonlinear multiple-input multiple-output systems. However for the
model to be analyzable and also for the results to be relevant, higher demands
are set on model quality. This relates both to differentiability of the model,
for efficient solution processes of the optimal control problem, and also its
extrapolation properties since the obtained solutions are often on the border to
or outside the nominal operating region. This paper presents the modeling and
final model of a diesel-electric powertrain to be used in the study of transient
operation. This optimal control ready model will also be made available to the
research community to further encourage optimal control studies.
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Table 2: Subscripts used

Index Description Index Description
amb Ambient c Compressor
im Intake manifold em Exhaust manifold
01 Compressor inlet 02 Compressor outlet
eo Engine out a Air
e Exhaust ac After Compressor
f Fuel ice Engine

GenSet Engine-Generator t Turbine
wg Wastegate es Exhaust System
vol Volumetric d Displaced
fric Friction pump Pumping
ig Indicated gross mech Mechanical
tc Turbocharger ref Reference

Figure 1: Structure of the model

The resulting model is a four state, three control, mean value engine model
(MVEM) that consists of 10 submodels that are all continuously differentiable,
and suitable for automatic differentiation, in the region of interest in order to
enable the nonlinear program solvers to use higher order search methods.

In engine simulation the component efficiencies are often implemented as
maps. In an optimal control framework such strategies are undesirable, instead
the developed model includes analytically differentiable efficiency models for
the compressor, turbine, cylinder massflow, engine torque and generator power.
The efficiency map of the measured production engine is highly nonlinear, see
Fig. 3-left, something that is well captured by the developed model, as seen in
Fig. 2-left. The resulting mean relative model errors are less than 2.9% for the
states and less than 5.4% for the component models.

A typical internal combustion engine normally has an efficiency "‘island"’
located near the maximum torque line where its peak efficiency is obtained,
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Figure 2: Efficiency of the two models, MVEMo: a model trying to capture the
characteristics of the modeled engine (left) and MVEM2: a model representing
a typical engine (right).

see [4, 5, 1]. Due to the special nature of the efficiency map of the measured
engine the model is also provided with a second torque model, yielding a more
typical efficiency map, see Fig. 2-right.

1 Contributions

The contributions of the paper are three-fold: 1) A methodology how to model
and parametrize a model of a diesel-electric powertrain is presented. The
measurements are conducted without a dynamometer, the only requirements
are a diesel-electric powertrain and sensors. 2) A model structure and modeling
approach with provided equations, enabling researchers to adjust the parameters
of the model to represent their own powertrain. 3) It also provides researchers
without engine models or data a relevant and validated open source model on
which control design or optimization can be performed.
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Measured Implemented Measured Implemented
ωice State Tamb Constant
pim State T01 Tamb
pem State T02 not used
ωtc State Tim Constant
ṁf Control (uf ) Tem Static model
uwg Control pamb Constant
Pgen Control p01 pamb
ṁc Static model p02 pim
pes Constant λ Static model

Table 3: Measured variables and their implementation in the model.

2 Model structure
The aim of the model is control systems design and optimization. This imposes
the requirement that the model has to be detailed, but at the same time
computationally fast. This leads to a 0-D or MVEM approach. Within MVEM
there are two different approaches, one is black box modelling or standard
system identification techniques, another is physical modelling where the engine
is described using standard physical relations. Due to that one of the model
aims is optimization and the solution of optimization problems often are on
the border to or outside the nominal operating region the physical modeling
approach is selected for its extrapolation properties. For more information about
engine modelling as well as the state of the art of engine models the reader is
referred to [4, 5].

3 Modeling
The measured and modeled engine-generator combination (GenSet) consists of
a generator mounted on the output shaft of a medium-duty tier 3 diesel-engine.
The engine is equipped with a charge air cooled wastegated turbocharger. The
states of the developed MVEM are engine speed, ωice, inlet manifold pressure,
pim, exhaust manifold pressure, pem, turbocharger speed, ωtc. The controls are
injected fuel mass, uf , wastegate position, uwg, and generator power, Pgen.

The submodels are models for compressor massflow and power, engine out
and exhaust manifold temperatures, cylinder massflow, turbine massflow and
power, wastegate massflow, engine torque and generator power, with connections
between the components as in Fig 1. The signals measured and also how they
are implemented in the model are listed in Table 3. The data sets used are
described in Appendix and listed in Table 5-7.

The tuning process is that first the component models are tuned to stationary
measurements. Then the dynamic models are tuned using the results from the
component tuning, and finally the whole model is tuned to both dynamic and
stationary measurements. In the dynamic and full model tuning all measured
signals except the states and ṁf are used.
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3.1 Error measure
In the modeling the following relative error is used:

erel(k) = ymod(k)− ymeas(k)
1
M

∑M
l=1|ymeas,stat(l)|

(1)

i.e. regardless of whether it is dynamic or stationary measurements that are
considered the error is normalized by the mean absolute value from the stationary
measurements. In the tuning it is the euclidean norm of this relative error that
is minimized.

3.2 Dynamic Models
There are four dynamic models, two rotational states and two manifolds. The
rotational states, ωice and ωtc are modelled using Newton’s second law

JGenSet
dωice
dt

=Pice − Pmech
ωice

(2)

Jtc
dωtc
dt

=Ptηtm − Pc
ωtc

(3)

and the manifolds are modelled using the standard isothermal model [7]

dpim
dt

=RaTim
Vim

(ṁc − ṁac) (4)

dpem
dt

=ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (5)

where in the tuning the measured intake manifold temperature, Tim is used but
in the final model the intercooler is assumed to be ideal, i.e. no pressure loss
and Tim constant. The dynamic models have four tuning parameters, JGenSet,
Jtc, Vim and Vem.

3.3 Compressor
The compressor model consists of two sub-models, one for the massflow and
one for efficiency. In order to avoid problems for low turbocharger speeds and
transients with pressure ratios Πc < 1 a variation of the physically motivated Ψ
Φ model in [4] is used. The idea is that Ψ approaches a maximum at zero flow
and that the maximum flow in the region of interest is quadratic in ωtc.

Massflow model

The pressure quotient over the compressor:
Πc = p02

p01
(6)

Pressure ratio for zero flow:

Πc,max =
(
ω2
tcR

2
cΨmax

2cp,aT01
+ 1
) γa
γa−1

(7)
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Corrected and normalized turbocharger speed:
ωtc,corr,norm = ωtc

15000
√
T01/Tref

(8)

Maximum corrected massflow:
ṁc,corr,max =
cṁc,1ω

2
tc,corr,norm + cṁc,2ωtc,corr,norm + cṁc,3

(9)

Corrected massflow:

ṁc,corr = ṁc,corr,max

√
1−

(
Πc

Πc,max

)2
(10)

The massflow is then given by:

ṁc = ṁc,corrp01/pref√
T01/Tref

(11)

The surge-line is modeled using the lowest massflows for each speedline from
the compressor map and is well described by the linear relationship:

Πc,surge = cṁc,surge,1ṁc,corr + cṁc,surge,2 (12)

In an optimization context surge is undesirable why this is implemented as a
constraint according to:

Πc ≤ Πc,surge (13)

Efficiency model

The efficiency of the compressor is modeled using a quadratic form in the flow
parameter Φ and speed ωtc following [4]. The dimensionless flow parameter is
defined as:

Φ = ṁcRaT01
ωtc8R3

cp01
(14)

Deviation from optimal flow and speed:

dΦ = Φ− Φopt (15)
dω = ωtc,corr,norm − ωopt (16)

The compressor efficiency is given by:

ηc = ηc,max −
[
dΦ
dω

]T [
Q1 Q3
Q3 Q2

] [
dΦ
dω

]
(17)

The consumed power is calculated as the power from consumed in an isentropic
process divided by the efficiency:

Pc =
ṁccp,aT01

(
Π
γa−1
γa

c − 1
)

ηc
(18)
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Initialization

The compressor has 10 tuning parameters, Ψmax, cṁc,1−3 , Φopt, ηc,max and ωopt,
Q1−3. The model is first fitted to the compressor map then to the stationary
measurements, using data set A, but then ṁc is measured and ηc and Pc are
calculated according to:

ηc = T01(Π1−1/γa
c − 1)

T02 − T01
(19)

Pc = ṁccp,a(T02 − T01) (20)

The results are mean/max absolute errors of [2.4/8.2, 2.3/23.2, 1.4/7.8] % for
[ṁc, ηc, Pc] respectively.

3.4 Cylinder Gas Flow
The cylinder gas flow models are models for the air and fuel flow in to the
cylinder. The airflow model is a model for the volumetric efficiency of the engine.
The model used is the same as in [9] according to:

ηvol = cvol,1
√
pim + cvol,2

√
ωice + cvol,3 (21)

ṁac = ηvolpimωiceVd
4πRaTim (22)

The control signal uf is injected fuel mass in mg per cycle and cylinder and the
total fuel flow is thus given by:

ṁf = 10−6

4π ufωicencyl (23)

The air-fuel equivalence ratio λ is computed using:

λ = ṁac

ṁf

1
(A/F )s

(24)

In diesel engines a lower limit on λ is usually used in order to reduce smoke.
However in fuel cut, i.e. uf = 0, λ = ∞ which is undesirable in optimization.
Instead the fuel-air equivalence ratio φ is used and the lower limit on λ can be
expressed as:

φ = ṁf

ṁac
(A/F )s (25)

0 ≤ φ ≤ 1
λmin

(26)

Initialization

The tuning parameters of the gas flow models are cvol,1−3. The model is initialized
using all stationary measurements, i.e. set A using that at stationary conditions
ṁac = ṁc. The volumetric efficiency model corresponds well to measurements
with a mean/max absolute relative error of [0.9/3.7] %.
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Figure 3: Efficiency of the powertrain (left) and efficiency of the engine (right)

3.5 Engine torque and generator
The engine torque is not measured so the tuning of the torque models have to
rely on the DC-power out from the power electronics. Then there are actually
three efficiencies that should be modeled, the power electronics, the generator,
and the engine efficiencies. In Fig. 3-left the total efficiency of the powertrain is
shown, with the maximum power line.

First the engine torque model is tuned. In the tuning the engine torque
is calculated using the stationary efficiency map of the generator, provided by
the manufacturer. The efficiency of the power electronics is lumped with the
generator efficiency and is here assumed to be 0.98. Then the generator model
is tuned, first using the stationary map and then measurements but with the
torque calculated using the efficiency map.

Engine torque model

In Fig. 3-right the efficiency of the engine is shown, with Mice calculated using
the generators efficiency map and 2% losses in the power electronics assumed.
The engine torque is modeled using three components, see [7], i.e. friction torque,
Mfric, pumping torque Mpump and gross indicated torque, Mig. The torque
consumption of the high pressure pump is not modeled on it’s own, but lumped
in to the following models. The net torque of the engine can then be computed.

Mice = Mig −Mfric −Mpump (27)
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The pumping torque is proportional to the pressure quotient over the cylinder:

Mpump = Vd
4π (pem − pim) (28)

The friction torque is modeled as a quadratic shape in engine speed:

Mfric = Vd
4π 105 (cfr1ω2

ice + cfr2ωice + cfr3
)

(29)

The indicated gross torque is proportional to the fuel energy:

Mig = uf10−6ncylqHV ηig
4π (30)

Where the indicated gross efficiency is defined as:

ηig = ηig,t(1−
1

r
γcyl−1
c

) (31)

The torque model in (27)-(31) is fairly common, and if ηig,t is implemented
as a constant maximum brake torque (MBT)-timing is assumed. A typical
internal combustion engine normally has an efficiency "‘island"’ located near
the maximum torque line where its peak efficiency is obtained, see [4, 5, 1].
However looking at Fig. 3-right this is clearly not the case. Therefore the model
is provided with two different torque models, seen in Fig. 4.

Torque model 1 (TM1) is used in the model tuning and validation and is
designed to capture the nonlinear nature seen in Fig. 3. TM1 consists of two
second order polynomials and a switching function:

ηig,t = Mf,1 + gf (Mf,2 −Mf,1) (32)

gf = 1 + tanh(0.1(ωice − 1500π/30))
2 (33)

Mf,1 = cMf,1,1ω
2
ice + cMf,1,2ωice (34)

Mf,2 = cMf,2,1ω
2
ice + cMf,2,2ωice + cMf,2,3 (35)

Torque model 2 (TM2) is designed and provided to represent a "‘typical"’ engine
with an efficiency island, to be used for optimal control studies, and is thus not
used in the tuning or validation. TM2 is quadratic in uf

ωice
and expressed as

ηig,t = ηig,ch + cuf ,1( uf
ωice

)2 + cuf ,2
uf
ωice

(36)

The maximum power line is implemented as a limit on the net power of the
engine, Pice = Ticeωice, which is well approximated by two quadratic functions
and a maximum value:

Pice ≤ Pice,max (37)
Pice ≤ cP1ω

2
ice + cP2ωice + cP3 (38)

Pice ≤ cP4ω
2
ice + cP5ωice + cP6 (39)
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Figure 5: Mechanical generator power as a function of electrical power

Initialization

The two torque models have eight and six tuning parameters respectively. The
tuning parameters are cfr1−3, and cMf,1,1−2, cMf,2,1−3, or ηig,ch and cuf ,1−2 The
models are fitted using set C. For (32) it is rather straight forward. For model
(36) the "island" is not visible in the measured data, therefore the parameters of
ηig,ch are manually tuned and the Mfric model is tuned assuming MBT-timing.
The mean/max absolute relative errors of TM1 are [2.2/10.9] %.

Generator model

Looking at Fig. 5 a reasonable first approximation of the relationship between
mechanical and electrical power of the generator is two affine functions, something
normally denoted willans line, [6], where the slope of the line depends on whether
the generator is in generator or motor mode.

P+
mech = egen,1Pgen + Pgen,0, if Pgen ≥ 0 (40)
P−mech = egen,2Pgen + Pgen,0, if Pgen < 0 (41)

This model is not continuously differentiable so therefore to smoothen it out a
switching function is used. The model is then given by:

Pmech = P−mech + 1 + tanh (0.005Pgen)
2 (P+

mech − P
−
mech) (42)

egen,1−2 are seen to have a quadratic dependency on ωice, a reasonable addition
to the willans line is thus to model egen,1−2 as:

egen,x = egen,x−1ω
2
ice + egen,x−2ωice + egen,x−3 (43)

which constitutes the full model.

Initialization

The generator model has seven tuning parameters, Pgen,0 and egen,1/2,1−3. The
model is first fitted to the generator map and secondly to measurement data,
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using set C. The mean/max absolute relative errors of the generator model are
[0.7/2.5] %.

3.6 Exhaust temperature
The cylinder out temperature model is based on ideal the Seiliger cycle and is a
version of the model found in [9]. The model consists of the pressure quotient
over the cylinder:

Πe =pem
pim

(44)

The specific charge:

qin = ṁfqHV
ṁf + ṁac

(1− xr) (45)

The combustion pressure quotient:

xp =p3
p2

= 1 + qinxcv

cv,aT1r
γa−1
c

(46)

The combustion volume quotient:

xv =v3
v2

= 1 + qin(1− xcv)
cp,a( qinxcvcv,a

+ T1r
γa−1
c )

(47)

The residual gas fraction:

xr =Π1/γa
e x

−1/γa
p

rcxv
(48)

Temperature after intake stroke:
T1 =xrTeo + (1− xr)Tim (49)

The engine out temperature:
Teo =ηscΠ1−1/γa

e r1−γa
c x1/γa−1

p(
qin

(
1− xcv
cp,a

+ xcv
cv,a

)
+ T1r

γa−1
c

)
(50)

To account for the cooling in the pipes the model from [2] is used, where Vpipe
is the total pipe volume:

Tem =Tamb + (Teo − Tamb)e
−

htotVpipe
(ṁf+ṁac)cp,e (51)

The model equations described in (45)-(50) are nonlinear and depend on each
other and need to be solved using fixed point iterations. In [9] it is shown that
it suffices with one iteration to get good accuracy if the iterations are initialized
using the solution from last time step. In an optimization context remembering
the solution from last time step is difficult and also using a model that uses an
unknown number of iterates is undesirable. However the loss in model precision
of assuming no residual gas, i.e. xr = 0, is negligible therefore this is assumed.
Further, the addition of heat loss in the pipe through (51) drives xcv to zero.
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The reduced model is then given by:

qin = ṁfqHV
ṁf + ṁac

(52)

Teo =ηscΠ1−1/γa
e r1−γa

c

(
qin
cp,a

+ Timr
γa−1
c

)
(53)

Tem =Tamb + (Teo − Tamb)e
−

htotVpipe
(ṁf+ṁac)cp,e (54)

Initialization

The used temperature model has two tuning parameters, ηsc and htot. The first
step of the initialization assumes that there is no heat loss in the manifold before
the sensors. Then the complete model is fitted using the results from Tem = Teo.
The nominal set is used in the fitting. The mean/max absolute relative error
of the temperature model is [1.9/5.4] % and the error increase from assuming
xr = 0 is [0.014/0.06] h.

3.7 Turbine and Wastegate
Since the massflow is not measured on the exhaust side, the models for wastegate
and turbine have to be fitted together.

Πt = pes
pem

(55)

Turbine

The massflow is modeled with the standard restriction model, using that half
the expansion occurs in the stator and half in the rotor, see [3]:

Π∗t = max(
√

Πt,

(
2

γe + 1

) γe
γe−1

) (56)

Ψt (Π∗t ) =
√

2γe
γe − 1

(
(Π∗t )

2
γe − (Π∗t )

γe+1
γe

)
(57)

ṁt = pem√
ReTem

ΨtAt,eff (58)

The turbine efficiency is modeled as a quadratic shape in blade-speed ratio
(BSR), as used in [10, 3] .

BSR = Rtωtc√
2cp,eTem(1−Π

γe−1
γe

t )
(59)

ηtm = ηtm,max − cm(BSR−BSRopt)2 (60)
The power to the turbocharger is then:

Ptηm = ṁtcp,eTemηtm

(
1−Π

γe−1
γe

t

)
(61)
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Figure 6: BSR model and its fit to map and measured data

Due to uncertainty of the behaviour outside the mapped region, and to avoid
problems with negative turbine efficiency, a reasonable constraint is to restrict
BSR to the maximum and minimum values provided in the map, i.e. BSRmin ≤
BSR ≤ BSRmax.

Wastegate

The wastegate massflow is modeled with the standard restriction model and an
effective area that changes linearly in uwg.

Π∗wg = max(Πt,

(
2

γe + 1

) γe
γe−1

) (62)

Ψwg =
√

2γe
γe − 1

(
(Π∗wg)

2
γe − (Π∗wg)

γe+1
γe

)
(63)

ṁwg = pem√
ReTem

ΨwguwgAwg,eff (64)

Initialization

The initialization uses data set C. The massflow models need to be fitted together
and the turbine efficiency cannot be calculated from measurements since none
of the massflows are measured. Looking at the nominal data set the quadratic
shape in BSR is not observed since the measurements are rather constant in BSR,
see Fig. 6. Since this shape is nonexistent in the measurements the efficiency
model of the turbine is locked to the map fit since otherwise it would converge to
an arbitrary shape trying to capture as much as the cloud nature of the measured
data as possible. One could consider adding pulse compensation factors for the
massflow and efficiency but the resulting improvements are small.

The massflow models are fitted together using ṁac+ṁf = ṁt+ṁwg = ṁexh.
Friction losses according to Pc = Ptηm − wfricω2

tc can be added, however the
parameter wfric becomes small in the optimization.
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The final turbine and wastegate models have three tuning parameters, At,eff ,
ηtm,max and Awg,eff . The results are mean/max relative errors of [2.3/5.4,
4.7/17.0] % for [ṁexh, Ptηtm] respectively.

Exhaust flow models

Using the standard restriction model a max-expression is necessary under the
square root to keep the flow real, representing choking which occurs at Π−1

t ≈
[3.3, 1.8] for the turbine and wastegate. However such expressions are undesirable
when using optimization tools. Instead the following expressions are used:

Ψt = ct,1

√
1−Πct,2

t (65)

Ψwg = cwg,1

√
1−Πcwg,2

t (66)

The flow models are fitted to produce the same flow profile as the standard
restriction models in (57), (63), where ct,1−2 and cwg,1−2 are tuning parameters.

3.8 Dynamic models
So far the models are tuned using stationary measurements. The next step is
to tune the parameters of the dynamic models in (2)-(5). Since torque is not
measured JGenSet is fixed to it’s real value and only Vim, Vem and Jtc are tuned.
Since torque and eventual torque errors might lead to engine stalling the torque
model is inverted to track the real engine speed trajectory. This will lead to
that there will be almost no errors in engine speed. To fit the dynamic models
data set D-I are used but only the transients in the measurements, plus a couple
of seconds before and after. As in [9] the transient is also normalized to 0-1 so
that the stationary point has no effect on the dynamics.

3.9 Full models
The full models are tuned using both dynamic and stationary measurements,
using a similar cost function as in [9]. If the same cost function is used the
model will not be able to reach the same maximum torque as the real engine
for low engine speeds without λ being excessively low. Therefore to ensure that
the model is able to span the entire operating range of the engine an addition
is made. The model is simulated with λ = λmin for Nice = 800 rpm and the
models maximum torque is added to the cost function according to:

VMmax
= wMmax

( Mice,max,mod(800rpm)
Mice,max,meas(800rpm) − 1) (67)

(67) assumes that the engine is smoke-limited at 800 rpm and maximum torque
and thus tries to force the max torque of the model to coincide with that of the
real engine, where wMmax is a weighting parameter.

To ensure reasonable behaviour also when the generator is in motoring mode
this side is fitted using the efficiency map from the manufacturer with an assumed
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Table 4: Mean relative errors of the complete model. Bold marks variables
used in the tuning and T, V, are the errors relative tuning and validation sets
respectively.

ωice pim pem ωtc
T V T V T V T V

Dyn. 0.0 0.0 2.8 2.2 2.8 2.9 2.9 2.9
ṁc Pc ṁac Tem ṁexh Pt P +

mech P−mech
Stat. 2.5 1.8 2.5 2.4 3.3 5.4 3.4 1.4

power electronics efficiency of 98%. For the stationary tuning set C is used and
for the dynamics sets D-I are used. The full cost function is given by:

Vtot(θ) = 1
ydynMdyn

Mdyn∑
k=1

ydyn∑
yn=1

Ndyn∑
l=1

(eynrel,dyn(l))2

Ndyn

+ 1
ystat

ystat∑
ys=1

Nstat∑
m=1

(eysrel,stat(m))2

Nstat

+ V 2
Mmax

(68)

where y is the number of outputs, M the number of datasets and N the number
of operating points in each dataset.

The models are also, as in [9], validated using only dynamic measurements
and in particular all load transients, i.e. set J0.1, 1, 2-N0.1, 1, 2.

4 Results
The resulting fit to both tuning data and validation data is shown in Table 4. The
variables used in the tuning are written in bold in the resulting tables. Table 4
shows that the model is a good mathematical repesentation of the measured
system with state errors less than 3% and stationary errors in the same range.
In Fig. 7 the state trajectories of the model are compared to measurements.
There it is also seen that the agreement is good.

The pressure dynamics, and in particular the exhaust pressure, are faster
than the speed dynamics therefore the resulting model is moderately stiff. This
is also seen when selecting ode-solvers. In matlab ode23t and ode15s are twice
as fast as the standard ode45 when simulating the model. When the states are
normalized with their maximum values the relative and absolute tolerances [1e-4,
1e-7] are found to be good trade-offs between accuracy and performance.

5 Conclusion
In this paper a validated optimization ready model of a diesel-electric powertrain
is presented. The resulting model is four state-three control mean value engine
model, available for download in the LiU-D-El-package from [8]. The model is
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Figure 7: Model vs. measurements

able to capture the highly nonlinear nature of the turbocharger diesel engine,
and is at the same time continuously differentiable in the region of interest, to
comply with optimal control software. The model is provided with two torque
models to be used for optimal control studies. The first model, called MVEMo

with a torque model representing the actual engine, as well as a model with a
more general torque model aimed to represent a typical engine, called MVEM2.

BothMVEMo andMVEM2 are included in the LiU-D-El-package together
with a small example that can be downloaded fully parametrized from [8]
implemented in matlab.
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A Data used
There are a total of 192 stationary points measured. Of those 192, 53 are with
the wastegate locked in a fixed position. Since injection timing is not measured
those points are only used when fitting the gas flow models since there are some
questions about what the engine control unit does when the wastegate control is
altered. Nominal refers to unaltered wastegate, see Table 5

The dynamic data set consists of 21 measurements. The first six, D-I, are
engine speed transients with constant(as close as the generator control can track)
generator power and a sequence of steps in reference speed that the engine speed
controller tries to track, see Table 6.

The last 15 sets are with constant reference speed, and different load steps,
see Table 7. As with the speed transients the ECU controls the engine speed
and the generator acts as a disturbance. The load transients are conducted at
different engine speeds and then a programmed sequence of 23 power steps is
performed with varying rise time, or rate at which the power changes. The first
five, J0.1 −N0.1 are with a ramp duration of 0.1s and the other are with 1s and
2s respectively. The total length of each set is approximately 300s.

Table 5: Stationary Data

Data Set A B C
Delimiter all nominal nominal & Pgen > 0

Nr. of points 192 139 127

Table 6: Speed transients

Data Set D E F G H I
Pgen [kW] 30 60 90 130 160 180
Nr. of steps 22 22 22 22 21 21

Table 7: Load transients

Data Set J0.1, 1, 2 K0.1, 1, 2 L0.1, 1, 2 M0.1, 1, 2 N0.1, 1, 2
Speed [rpm] 1100 1500 1800 2000 2200
Nr. of steps 23 23 23 23 23
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Abstract
An optimal control benchmark is presented and discussed. The bench-
mark is optimal transient control of a nonlinear four state three control
model of a diesel-electric powertrain and constructed in such a manner
that it is available in several versions to be of interest for developers of
optimal control tools at different levels of development. This includes
with and without time as a parameter as well as with and without time
varying constraints.



155

Nomenclature

Table 1: Symbols used

Symbol Description Unit
p Pressure Pa
T Temperature K
ω Rotational speed rad/s
ṁ Massflow kg/s
P Power W
M Torque Nm
E Energy J
Π Pressure ratio -
V Volume m3

R Gas Constant J/(kg · K)
uf , uwg, Pgen Control signals mg/cycle, -, W

J Inertia kg · m2

BSR Blade speed ratio -
φ Fuel-air equivalence ratio -

λmin Air-fuel smoke-limit -

Table 2: Subscripts used

Index Description Index Description
ice Engine GenSet Engine-Generator
im Intake manifold em Exhaust manifold
c Compressor ac After compressor
t Turbine wg Wastegate
f Fuel tc Turbocharger
a Air e Exhaust
gen Generator-electrical mech Generator-mechanical
req Requested c, surge Compressor surge-limit

Introduction
In this paper a benchmark for optimal control tools is suggested and presented.
The current state of computer technology has enabled a rise in the development
of optimal control packages that can handle models of complex systems. However
to evaluate the performance of the tools developers often have to rely on relatively
small problems that do not reflect the purpose for which the tools were developed.

This paper presents a benchmark on which to evaluate developed optimal
control tools. The benchmark problem is the optimization of the control of a
diesel-electric powertrain from idle to a target output power and energy. The
benchmark relies on the validated model of a diesel-electric powertrain described



156 Paper 6. An Opt. Ctrl. Benchmark: Trans. Opt. of a D.-El. Powertrain

in [2]. The model is a nonlinear four state, three controls mean value engine
model (MVEM), that consists of 10 submodels that describe the individual
components of the powertrain. Due to the complex and nonlinear nature of
the modeled system the resulting optimization problem is non-convex and the
optimization tools can therefore only guarantee local optima. The model is
continuously differentiable in the desired operating region and is implemented
using only analytical expressions. The motivation for this is to enable the solvers
to use higher order search methods in the optimization. It also makes the model
suitable for automatic differentiation (AD), enabling developers to also evaluate
AD routines versus computing gradients and hessians using finite differences.

In the paper the solutions to the problems using two different solvers, the
ACADO Toolkit, see [1], TOMLAB/PROPT, see [6], is presented and discussed.
The model and the resulting optimal trajectories, as well as the corresponding
initial guesses, are available for research community. Two types of problems
are considered, time and fuel minimization. To make the benchmark problem
suitable for optimal control tools at different stages of development the problems
are solved both with duration as a parameter to be optimized as well as for a
fixed duration and also with and without path constraints.

1 Contributions
The contribution of this paper is the formulation and solution of an optimal
control problem to serve as a benchmark on which to evaluate optimal control.
The intention of the benchmark is to provide the research community with a
relevant problem of reasonable complexity on which to benchmark optimal control
tools. The benchmark is provided together with a simultaneously developed
model, both available for download. To ensure that the benchmark is relevant
for tools at different stages of development the problem is provided both with
and without path constraints as well as with and without time as a parameter.

2 Model
The model used can be downloaded from [5] and is described in detail asMVEM2
in [2], and provided either on its own, in the LiU-D-El-package, or together with
the benchmark in the LiU-D-El+Benchmark-package. The modeled diesel-
electric powertrain consists of a 6-cylinder diesel engine with a fixed-geometry
turbine and a wastegate for boost control, with a generator mounted on the
output shaft. The states of the MVEM are engine speed, ωice, inlet manifold
pressure, pim, exhaust manifold pressure, pem, and turbocharger speed, ωtc. The
controls are injected fuel mass, uf , wastegate position, uwg, and generator power,
Pgen. The engine model consists of two control volumes, intake and exhaust
manifold, and four restrictions, compressor, engine, turbine, and wastegate. The
control volumes are modeled with the standard isothermal model, using the
ideal gas law and mass conservation. The engine and turbocharger speeds are
modeled using Newton’s second law. The governing differential equations of the
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MVEM are:

dωice
dt

=Pice − Pmech
ωiceJGenSet

(1)

dpim
dt

=RaTim
Vim

(ṁc − ṁac) (2)

dpem
dt

=ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=Ptηtm − Pc
ωtcJtc

(4)

The MVEM is extended with two summation states to keep track on produced
and consumed energy. The summation states are defined as:

dmf

dt
= ṁf (5)

dEgen
dt

= Pgen (6)

3 Problem Formulation
The proposed benchmark problem is the same problem as is studied in [3, 4].
The problem is that the GenSet is at idle when the operator requests a step in
output power, Pgen, that should be met either as fuel efficient or time efficient
as possible. The requested power is also augmented with an energy requirement,
Egen, that has to be produced before the GenSet reaches stationary conditions.
This problem is mathematically expressed as:

min
u(t)

∫ T

0
ṁf (x(t), u(t)) dt or min

u(t)
T

s.t. ẋ(t) = f(x(t), u(t))
(x(t), u(t)) ∈ Ω(t)

(7)

where x is the state vector of the MVEM, ẋ is the state equations (1)-(4) together
with the summation states in (5)-(6), and u = [uf , uwg, Pgen].

The constraints of the optimization problems, (x(t), u(t)) ∈ Ω(t), can be
divided into two categories, time independent and time varying constraints. The
first category, time independent constraints, are bounds on states and controls
as well as initial and final conditions expressed as:

x(0) = x0, ẋ(T ) = 0
umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
0 ≤ Pgen(t) ≤ 100 kW, Pgen(T ) = 100 kW
Egen(T ) ≥ 100 kJ

(8)

The time varying constraints are constraints imposed by the components, such
as maximum power of the engine, surge-limit of the compressor, blade speed
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ratio-limit of the turbine, as well as environmental constraints, i.e. an upper
limit on φ set by the smoke-limiter:

Pice(x(t), u(t)) ≤Pice,max(x(t))
Πc ≤Πc,surge

BSRmin ≤BSR(x(t), u(t)) ≤ BSRmax

0 ≤φ(x(t), u(t)) ≤ 1
λmin

(9)

To be relevant for software developers at different stages of development the
benchmark problems defined in (7)-(9) are also available as a minimum fuel
problem with fixed end time, as well as without the time varying constraints in
(9).

4 Solution accuracy
To ensure that the solutions are at least good local minima both benchmark
problems, minT and minmf , are solved using PROPT and two different initial
guesses, see Fig. 2-right. The first initial guess is a hard acceleration with
φ = 1

λmin
from idle followed by a step in load power to Pgen = 100 kW, and the

second one is the GenSet at idle. Both initial guesses produce the same solution,
although they are very different, indicating that the solutions are at least a good
local minima. All solutions shown are with 125 control intervals/collocation
points. In the following the initial guess from idle to 100kW is used.

5 With time varying constraints
The benchmark problems defined by (7)-(9) are solved using ACADO and
PROPT, and the solutions from the two solvers are shown and compared in
Fig. 1, where ωice/tc is engine speed and turbocharger speed, pim/em intake and
exhaust manifold pressure, uf/uwg/Pgen are the controls, i.e. injected fuel mass
per cycle, wastegate position, and output power from the generator. The minmf

problem is also solved with fixed end time, T . For this a duration between the
time optimal and fuel optimal durations is selected, T = 1.33. The solution with
fixed end time is shown in Fig. 2-left.

Both solvers produce qualitatively the same solutions, there are however some
differences owing to discretization technique employed as well as solution method.
The resulting consumptions are shown in Table. 3. For further comparison all
three solutions using PROPT are shown in torque-engine speed domain in Fig. 3.

Looking at Fig. 1 the trajectories for minmf and minT are a bit different.
For minT uf follows the smoke-limit, i.e. φ = 1

λmin
, during the entire transient,

whereas for minmf it is only smoke-limited 0.17 ≤ t ≤ 0.91 and t = T . During
the initial acceleration engine efficiency is instead maximized, clearly seen in
Fig. 3. The minT solutions apply a step in Pgen from 0→ 100 kW whereas the
minmf Pgen actuation is a slightly later and not in a step from 0 → 100 kW.
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t.c) time varying constraints.



160 Paper 6. An Opt. Ctrl. Benchmark: Trans. Opt. of a D.-El. Powertrain

100

150

200

min m
f
, fixed T

ω
ic

e
 [

ra
d

/s
]

100

120

140

p
im

 [
k
P

a
]

120

140

160

p
e

m
 [

k
P

a
]

2000

3000

4000

5000

6000

ω
tc

 [
ra

d
/s

]

Initials used

0

50

100

u
f [

m
g

/c
y
c
le

]

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

P
g
e
n
 [

k
W

]

time [s]

0 0.2 0.4 0.6 0.8 1

time [s]

0

0.5

1

u
w

g
 [

−
]

 

 

A

P

A, no t.c

P, no t.c

 

 

Initial, 100kW

Initial, idle

Figure 2: The fixed time solutions using PROPT (P) and ACADO (A) (left)
with and without(no t.c) time varying constraints, as well as the different initial
guesses used (right).



6. Without time varying constraints 161

Table 3: Time and fuel consumption to the benchmark problems using both
PROPT (P) and ACADO (A).

Criteria Tool mf T

minmf
P 6.5917398e-03 1.3498815e+00
A 6.5977572e-03 1.3497437e+00

minT P 6.6392313e-03 1.3103439e+00
A 6.6466370e-03 1.3110366e+00

minmf , fixed T P 6.5933240e-03 1.3300000e+00
A 6.6005188e-03 1.3300000e+00

At the end of the transient the minmf use both uf and uwg to bring the states
to stationarity whereas minT only uses uwg. Noteworthy is that none of the
solutions end in the peak efficiency operating point, neither of the GenSet nor
of the ICE.

The minmf , fixed time, solutions are as expected a mix between the
minT/mf solutions. The Pgen actuation follows that of minT but uf and
uwg are more similar to minmf . uf during the initial acceleration does however
not follow the maximum efficiency trajectory but instead follows a trajectory
between this and the smoke-limit, see Fig.1.

6 Without time varying constraints

In the problems solved in Section 5 the only time varying constraint that is
active is the smoke-limiter, i.e. the constraint on φ. The others can therefore
be removed without affecting the solution. For the problem without (9) to be
relevant, i.e. the problem defined by (7)-(8), the smoke-limiter needs to be
included. To achieve this without state-dependent time varying constraints the
model is reformulated so that φ is a control signal and uf calculated from it.
Since φ = ṁf

ṁac
(A/F )s and ṁf = 10−6

4π ufωicencyl the model can be reformulated
to:

ṁf = φṁac

(A/F )s
(10)

uf = 4π
10−6

ṁf

ωicencyl
(11)

and with φ replacing uf as control signal all the time varying constraints are
removed. The solutions to the problem without time varying constraints follow,
as expected, the same discussion as with time varying constraints. The results
are also shown in Fig. 1-2 but the trajectories end up on top of eachother. The
fuel and time consumptions are shown in Table 4. The reformulation leads to
slightly different numerical values but the difference is negligible.
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Figure 3: Torque-engine speed trajectories for the three benchmark problems.

Table 4: Time and fuel consumption to the benchmark problems without time
varying constraints using both PROPT (P) and ACADO (A).

Criteria Tool mf T

minmf
P 6.5916926e-03 1.3497981e+00
A 6.5985144e-03 1.3493627e+00

minT P 6.6394831e-03 1.3103321e+00
A 6.6468526e-03 1.3104947e+00

minmf , fixed T P 6.5930972e-03 1.3300000e+00
A 6.6000832e-03 1.3300000e+00
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7 Conclusion
In this paper an optimal control benchmark is suggested and presented. The
benchmark concerns transient optimization of a diesel-electric powertrain, from
idle to a target power and energy. The benchmark makes use of a freely available
four state-three control nonlinear model of a diesel-electric powertrain. Both
the model and the initial guesses used are available for download in the LiU-
D-El+Benchmark-package from [5]. The benchmark is available in several
versions, both with and without time varying constraints, as well as with and
without time as a parameter.
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Abstract
A mean value engine model is used to study optimal control of a diesel-
electric powertrain. The resulting optimal controls are shown to be highly
oscillating for certain operating points, raising the question whether
this is an artifact of discretization, modeling choices or a phenomenon
available in real engines. Several model extensions are investigated and
their corresponding optimal control trajectories are studied. It is shown
that the oscillating controls cannot be explained by the implemented
extensions to the previously published model, nor by the discretization,
showing that for certain operating points the optimal solution is periodic.
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Figure 1: The WHTC and its traction phases.

Introduction
The engine speed of a conventional vehicle is normally decided by the wheel
speed and the gear ratio. In a diesel-electric powertrain this mechanical path
between the combustion engine and the wheels is replaced by an electric path
instead. This introduces an extra degree of freedom since the engine speed can
be controlled independently of the wheel speed, which offers the potential of
both optimizing the performance and consumption since the operating point of
the diesel engine can be controlled more freely than in a conventional powertrain.
This of course raises the question of how to use this extra degree of freedom.

Previously it has been studied how to optimally control the powertrain
between two different power levels, see [12, 13]. For off-highway machinery the
driving patterns are normally very transient, something that is captured in the
World Harmonized Transient Cycle (WHTC), see [17], shown in Fig. 1. The
WHTC can be divided into 11 traction phases, defined as the period between
two idle periods, where idle is assumed to occur when the engine speed is the idle
speed and no power is required. Here the phases where the engine is motored, i.e.
Pgen < 0 are ignored and Pgen is in those cases set to zero. To investigate the
potential of the diesel-electric powertrain and how to best exploit the extra degree
of freedom introduced by the electrification of the powertrain, minimizing fuel
for the WHTC is cast as an optimal control problem (OCP). In a conventional
powertrain WHTC prescribes both engine speed and output power, but here
engine speed is a degree of freedom and also optimized. If this OCP is solved
for phase 8 in the WHTC the resulting controls are very oscillatory, see Fig. 1,
t ∈ [670, 678], [684, 687]. It is mentioned in [12] that the optimal solutions in
transient optimal control of a diesel-electric powertrain are often oscillatory and
in [2] the unconfirmed hypothesis is that the oscillations seen in the optimal
variable geometry turbine (VGT) control of a diesel engine are due to decrease
in the gas exchange losses. This is due to that the exhaust manifold pressure
oscillates with the VGT position whereas the intake manifold pressure remains
unaffected due to the slower turbocharger dynamics. This could indicate that
the optimal solution is in fact periodical as described in [5], [6].

Other possible explanations are either that the solution is along a singular
arc and that the controls are therefore oscillatory, as discussed in [10], or that
it is an integration error exploited by the algorithm to decrease the criteria as
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shown in [7]. In both these cases it would be suspected that the frequency of
the oscillations depend on the discretization. To test this hypothesis a single
operating point is selected and studied using a very fine time discretization.

1 Contributions
The contributions of this paper is a deeper study of the occurence of oscillating
controls for diesel-electric powertrains as a solution for optimal control problems.
More specifically it studies whether the observed oscillations are an artifact of
the discretization. It also investigates if the oscillations can be explained by the
models used and whether or not extending the model impacts the oscillating
solutions. The paper also presents a fast and accurate residual gas model suitable
for use in an optimal control context.

Table 1: Symbols used

Symbol Description Unit
p Pressure Pa
T Temperature K
ω Rotational speed rad/s
ṁ Massflow kg/s
P Power W
M Torque Nm
E Energy J
Π Pressure ratio -
V Volume m3

γ Specific heat capacity ratio -
cp Specific heat capacity constant pressure J/(kg · K)
cv Specific heat capacity constant volume J/(kg · K)
R Gas Constant J/(kg · K)

uf , uwg, Pgen Control signals mg/cycle, -, W
J Inertia kg · m2

BSR Blade speed ratio -
φ Fuel-air equivalence ratio -

λmin Air-fuel smoke-limit -
xr Residual gas fraction -

MFR Fuel to mass ratio -
qHV Lower heating value J/kg
rc Compression ratio -

2 Model
The basic model used can be downloaded in the LiU-D-El-package from [14]
and is described in detail as MVEMo in [11]. The modeled diesel-electric
powertrain consists of a 6-cylinder diesel engine with a fixed-geometry turbine
and a wastegate for boost control, with a generator mounted on the output shaft.
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Figure 2: The optimal solution to phase 8 of the WHTC, with ωice as a degree of
freedom. The resulting controls are highly oscillatory, see t ∈ [670, 678], [684, 687]



170Paper 7. Mod. and Disc. impact on Osc. Opt. Ctrl. for a D.-El. Powertrain

Table 2: Subscripts used

Index Description Index Description
ice Engine GenSet Engine-Generator
im Intake manifold em Exhaust manifold
c Compressor ac After compressor
t Turbine wg Wastegate
f Fuel tc Turbocharger
a Air e Exhaust
gen Generator-electrical mech Generator-mechanical
ref Reference c, surge Compressor surge-limit
vol Volumetric d Displaced
fric Friction pump Pumping
ig Indicated gross eo Engine out
amb Ambient

The states of the MVEM are engine and turbocharger speeds, ωice/tc, and inlet
and exhaust manifold pressures, pim/im. The controls are injected fuel mass, uf ,
wastegate position, uwg, and generator power, Pgen. The engine model consists
of two control volumes, intake and exhaust manifold, and four restrictions,
compressor, engine, turbine, and wastegate. The governing differential equations
of the MVEM are:

dωice
dt

=Pice − Pmech
ωiceJGenSet

(1)

dpim
dt

=RaTim
Vim

(ṁc − ṁac) (2)

dpem
dt

=ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=Ptηtm − Pc
ωtcJtc

(4)

For a complete list of the symbols used in the paper, see Table 4-5.

3 Problem Formulation
This paper uses the MVEM to study optimal stationary operation, or lack of it
in the case of oscillating controls.

3.1 Stationary optimization
As a reference for the dynamic optimization, three stationary optimization
problems are first solved, to find the following three stationary points for the
given ωref , Pref -combination: The maximum efficiency, φmax, the maximum
fuel/air-ratio, ηmax, and the minimum fuel/air-ratio, φmin. η = Pgen

ṁfqHV
is the

efficiency of the powertrain and φ is the fuel/air-ratio. These problems are solved
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to find the optimal operating point for stationary operation and also the limits
for stationary operation.

3.2 Dynamic optimization
The main optimal control problem studied is:

min
u(t)

∫ T

0
ṁf

s.t. ẋ(t) = f(x(t), u(t))
(x(t), u(t)) ∈ Ω(t)

(5)

where x is the state vector of the MVEM, ẋ is the state equations (2)-(5), and
u = [uf , uwg, Pgen]. The optimal control problems are also subject to a set of
constraints, namely:

x(0) = x(T ) = x(ηmax), ẋ(T ) = 0
umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
ωice(T ) = ωref or ωice(t) = ωref , Pgen(t) = Pref

Pice(x(t), u(t)) ≤ Pice,max(x(t)), φ(x(t), u(t)) ≤ 1
λmin

BSRmin ≤ BSR(x(t), u(t)) ≤ BSRmax, Πc ≤ Πc,surge

(6)

The constraints are actuator and state limits, as well as constraints imposed
by the components, such as maximum power of the engine, Pice, surge-limit of
the compressor, Πc,surge, blade speed ratio-limit of the turbine, BSR, as well as
environmental constraints, i.e. an upper limit on φ set by the smoke-limiter.

The driving mission-constraints are that the powertrain starts in the operating
point of maximum efficiency ηmax, a point it should also end in, with the added
requirement that the end operating point should be stationary. The generator
power is also fixed to the reference value. Two types of problems are then studied,
one where the engine speed is fixed to the reference speed, denoted ωice = fix,
and one where it is allowed to depart from this as long as it starts and ends in
ωice = ωref , denoted ωice = free.

4 Numerical Solution
The software package that is used to solve the optimal control problem numer-
ically is CasADi [1]. First the problem is discretized using Radau collocation
with three collocation points in each control interval. The states are thus approx-
imated with a third order polynomial, whereas the controls are approximated
by a second order polynomial in each control interval. The states are required
to be continuous over each control interval boundary, whereas the controls are
allowed to be discontinuous. The resulting nonlinear program(NLP) is solved
using IPOPT, [15], with the MA57 linear solver from the HSL package, [9]. For
the wastegate oscillation study 200 control intervals have been used.
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5 Oscillating controls
The stationary point of interest here is the one seen with oscillating controls in
Fig. 1 namely Pgen = 140 kW and ωice = 1700 rpm. The three stationary OCPs
(OSS) described in Section 3.1 and the two dynamic OCPs (OSD), ωice = fix and
ωice = free, described in Section 3.2 are solved using CasADi/IPOPT/HSL and
the results are shown in Fig. 3. Looking at Fig. 3 it is clearly visible that both
OSDs result in a periodic oscillation. If the engine speed is free the amplitude
and frequency changes slightly, however the nature of the oscillation remains the
same. The nature of the opening and closing goes against the hypothesis that
this should be oscillations due to a singular arc or an effect of the integration
error since the wastegate only opens 9-11 times despite 200 control intervals
with a three controls in each interval, yielding an optimal period of 90-110ms
which is approximately 20 times the control interval length. This indicates that
the oscillations are in fact optimal.

This is especially interesting for the case with fixed engine speed, since
then the effect can be isolated since all torque losses only depend on engine
speed except the pumping torque, Mpump, see Appendix A.1. This means that
the oscillating control actually decreases the pumping torque, as hypothesised
in [2]. Looking at Fig. 3 the low pass filtering effect of the turbocharger can
be clearly seen since the wastegate opening and closing results in a pem span
of 60-100 kPa depending on if ωice = free/fix, whereas the effect on pim is only
4-5 kPa. In Fig. 4 the pumping power, Ppump = ωiceMpump, are shown relative
Ppump(ηmax). Both x(φmin) and x(φmax) increase Ppump compared to x(ηmax),
as expected. The oscillation changes Ppump several hundred percent away from
what is stationary optimal.

In Table 3 the gains of oscillating controls are quantified. x(φmax) and
x(φmin) both increase the pumping energy Epump with 50% which also leads to
a relative efficiency decrease of 0.5% (0.2% absolute). The oscillating control
with fixed ωice decreases Epump with 2.4% and ωice free with 4.1%. Since the
friction losses are quadratic in engine speed, ωice-free, increases the friction
losses, but it is still beneficiary since the relative efficiency increase is 0.52h vs.
0.24h for ωice-fix (0.2h vs. 0.09h absolute).

The gains are small but nevertheless surprising since it’s a dynamic phe-
nomenon. Looking at Fig. 5 the wastegate’s effect on the stationary efficiency
as well as pumping torque is shown. The efficiency is a convex function in uwg
whereas Mpump is concave, which if the analysis was performed for stationary
conditions would lead to the conclusion that oscillating controls would increase
the pumping torque and consequently decrease the efficiency. However the
result is actually the opposite, oscillating between the two worst controls from a
stationary perspective, increases the efficiency dynamically.

6 Model extensions
To investigate whether the oscillating controls are results of a modeling assump-
tion a set of different model extensions are considered. The extensions and their
motivation are:
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Figure 3: Optimal states and controls for constant output power, both stationary
and dynamic. The dynamic solutions are highly oscillatory.
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∆η ∆Efric ∆Epump ∆Eig
x(φmax) -0.542 0.0 56.3782 0.5448
x(φmin) -0.482 0.0 50.1279 0.4844
ωice = fix 0.024 0.0 -2.4073 -0.0223
ωice = free 0.052 0.8797 -4.0869 -0.0263

Table 3: Changes in efficiency and energies relative x(ηmax) in percent, Ex =∫ T
0 Px dt.
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Figure 5: Wastegate position’s effect on the efficiency and pumping torque
during stationary conditions.
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• xr: Model for residual gas: In [11] it is shown that mean/max absolute
relative error increase of assuming xr = 0 is [0.014/0.06] h versus measure-
ments. However in the oscillating controls the exhaust pressure changes
very rapidly, something that might have a significant effect on the amount
of residual gas trapped in the cylinder.

• ηvol,2: Pressure ratio dependent volumetric efficiency model. In the volu-
metric efficiency model used, see Appendix A.2, only the dependence of
the intake manifold pressure and engine speed are modeled. Of course the
changing pressure ratio over the engine could have effects on the volumetric
efficiency.

• Adiabatic: The isothermal exhaust manifold model used, see Appendix A.3,
neglects energy conservation since it assumes that the gases flowing in
and out of the control volume have the same temperature, therefore an
adiabatic exhaust manifold model that satisfies both conservation of mass
and energy is implemented.

The basic model is MVEMo which is then extended with different combinations
of these three models. The model fit for the different models versus both
dynamic(Dyn.) and stationary measurements(Stat) are shown in Table 4. None
of the model extensions have any significant effects on the model fit versus
measurements.

6.1 Residual gas
In [16] the engine out temperature model is based on an ideal Seiliger cycle model,
incorporating residual gas. The model is formulated as: xr,0 = 0,Teo,0 = 800.
While ‖Teo,k+1 − Teo,k‖ >1e-6

qin = ṁfqHV
ṁf + ṁac

(1− xr,k)

xp =1 + qinxcv

cv,aT1r
γa−1
c

xv =1 + qin(1− xcv)
cp,a( qinxcvcv,a

+ T1r
γa−1
c )

xr,k+1 =Π1/γa
e x

−1/γa
p

rcxv
T1 =xr,k+1Teo,k + (1− xr,k+1)Tim

Teo,k+1 =ηscΠ1−1/γa
e r1−γa

c x1/γa−1
p(

qin

(
1− xcv
cp,a

+ xcv
cv,a

)
+ T1r

γa−1
c

)

(7)

The equations in (7) are nonlinear and depend on each other and need to be
solved using fixed point iterations. In [16] it is shown that if the solution from the
previous time step is known, one iteration suffices to get a good approximation
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of the engine out temperature. In an optimization context it is difficult to
keep track of the solution form the previous time step since the time steps are
solved simultaneously. Also a submodel that is evaluated for a varying number
of iterations is undesirable, especially since it complicates the computation of
derivatives. Therefore this type of model is not implementable in an optimization
context and a new model is developed.

xr is modeled as a function of both pressure ratio over the engine and the
fuel to mass ratio. defined as:

MFR = ṁf

ṁf + ṁac
(8)

xr =xr,mod1
xr,mod2

= cxr1Π2
e + cxr2Πe + cxr3

1 + cxr4MFR
(9)

In Fig. 6-top this gives a good agreement to the iterative model, resulting in
mean/max relative errors of [0.92/4.52] %. Using that xcv becomes zero in the
optimization for this particular engine Teo can be computed according to

Teo =
(1− xr)( qHVMFR

cp,a
+ Timr

γa−1
c )

1
ηscΠ1−1/γa

e r1−γa
c

− xrrγa−1
c

(10)

Teo and xr could be used as starting values and then one iteration of the fixed
point iteration can be performed. However it turns out that not only is it more
computations, the model fit is actually worse. When simulated over the entire
WHTC the mean/max absolute relative error of exhaust gas temperature, Teo for
the model in (8)-(10) relative the model in (7) are [0.025/0.22]%. If in addition
to (8)-(10) one fixed point iteration is used the errors increase to [0.045/0.34] %.
The model used is therefore the one without iterations. In Fig. 6-bottom the fit
vs. the model in (7) is shown.

6.2 ηvol,2: Modified volumetric efficiency

The ηvol,2 model implemented is a modified version of the model found in [4],
consisting of an ideal part and two polynomials, in ωice and pim respectively.

ηvol,ideal =
rc −

(
pem
pim

)1/γa

rc − 1
ηvol,ωice =cηvol,1ω2

ice + cηvol,2ωice + cηvol,3
ηvol =ηvol,ωiceηvol,ideal + cηvol,4pim + cηvol,5

The component model fit for stationary measurements are slightly better than
the model in (20), with mean/max absolute relative errors of 0.62/2.68 % vs.
0.9/3.7 % for (20), which is to be expected since the number of tuning parameters
increases from three to five.
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Table 4: Mean absolute relative errors for the different models versus measure-
ments. T=tuning set, V=validation set.

ωice pim pem ωtc

Dyn. T V T V T V T V
MVEMo 0.0 0.0 2.8 2.2 2.8 2.9 2.9 2.9

xr 0.0 0.0 2.8 2.2 2.8 2.9 2.9 2.9
xr+adiabatic 0.0 0.0 2.8 2.2 2.8 3.0 2.9 3.0

ηvol,2 0.0 0.0 2.8 2.3 2.9 3.0 3.0 3.2
ηvol,2 + xr+adiabatic 0.0 0.0 2.9 2.3 2.9 3.0 3.1 3.2

Stat. ṁc Pc ṁac Tem ṁexh Pt P +
mech P −

mech

MVEMo 2.5 1.8 2.5 2.4 3.3 5.4 3.4 1.4
xr 2.5 1.8 2.4 2.5 3.3 5.5 3.3 1.5

xr+adiabatic 2.5 1.8 2.5 2.7 3.1 4.9 3.1 1.5
ηvol,2 2.5 2.0 2.7 2.3 3.2 5.5 5.1 1.4

ηvol,2 + xr+adiabatic 2.5 1.9 2.7 2.6 3.0 4.9 4.4 1.6

6.3 Adiabatic exhaust manifold model

The adiabatic model, as described in [3, 8] is implemented according to:

dpem
dt

=Reγe
Vem

(Tem,k (ṁac + ṁf )− Tem (ṁt + ṁwg))

dTem
dt

= ReTem
pemVem

(
γe

(
Tem,k (ṁac + ṁf )− Tem (ṁt + ṁwg)

)
− Tem(ṁac + ṁf − ṁt − ṁwg)

)
This means extending the model with an additonal state, Tem. Tem,k, i.e. the
temperature of the gases flowing into the manifold are computed according
to (23), that is temperature after heat loss.

7 Results

The two OSDs defined in Section 3.2 are solved for the different models and
the resulting optimal pumping power, Ppump is plotted relative the stationary
optimal in Fig. 7. The oscillations cannot be explained by any of the model
extensions. The periodic nature of the solution is present for all model extensions
and the changes in frequency and amplitude of the oscillations are minor. In
Table 5 the changes in energies and efficiency are shown, which confirms the
results seen in Fig. 7. The decrease in pumping energy, ∆Epump, increases for
each model extension for ωice = fix, indicating that given a standard mean value
engine model it actually is optimal to use periodic wastegate control in order to
decrease the pumping torque.
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Figure 7: Relative pumping power of the optimal solutions to the two OSDs
for the different models, relative the stationary optimal operating point. The
oscillatory solution can not be explained by any of the model extensions.

Table 5: Changes in efficiency and energies of the two OSDs, ωice = fix and
ωice = free, relative x(ηmax), for the different models.

∆η ∆Efric ∆Epump ∆Eig
MVEMo

fix 0.024 0.0 -2.41 -0.02
free 0.052 0.88 -4.09 -0.03

xr
fix 0.024 0.0 -2.52 -0.02
free 0.054 1.32 -3.64 0.02

xr+ fix 0.024 0.0 -2.58 -0.02
adiabatic free 0.068 1.74 -3.7 0.19

ηvol,2
fix 0.029 0.0 -3.14 -0.03
free 0.070 -2.23 -10.16 -0.31

ηvol,2 + xr+ fix 0.030 0.0 -3.23 -0.03
adiabatic free 0.080 -1.99 -10.21 -0.22
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8 Conclusions
Optimal control of a diesel-electric powertrain is studied. It is shown that the
oscillatory solutions seen for certain operating points are not directly discretiza-
tion dependent. Instead the solution is periodic with a period much greater
than the control interval length. Further it is seen that the pumping work of
the engine decreases as a result of the oscillations. To study if this effect is
a result of over-simplification in the previously published mean value engine
model, several model extensions are investigated and their corresponding optimal
control problems are solved. Furthermore a new residual gas model, suitable for
optimal control, is presented. It is shown that the oscillating controls cannot
be explained by the implemented extensions to the previously published model,
showing that for certain operating points for mean value engine models the
optimal solution is actually periodic.
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A Excerpts from original model
A.1 Torque model

Mice = Mig −Mfric −Mpump (11)

Mpump = Vd
4π (pem − pim) (12)

Mfric = Vd
4π 105 (cfr1ω2

ice + cfr2ωice + cfr3
)

(13)

Mig = uf10−6ncylqHV ηig
4π (14)

ηig = ηig,t(1−
1

r
γcyl−1
c

) (15)

ηig,t = Mf,1 + gf (Mf,2 −Mf,1) (16)

gf = 1 + tanh(0.1(ωice − 1500π/30))
2 (17)

Mf,1 = cMf,1,1ω
2
ice + cMf,1,2ωice (18)

Mf,2 = cMf,2,1ω
2
ice + cMf,2,2ωice + cMf,2,3 (19)

A.2 Volumetric efficiency
ηvol = cvol,1

√
pim + cvol,2

√
ωice + cvol,3 (20)

A.3 Exhaust pressure and temperature

qin = ṁfqHV
ṁf + ṁac

(21)

Teo =ηscΠ1−1/γa
e r1−γa

c

(
qin
cp,a

+ Timr
γa−1
c

)
(22)

Tem =Tamb + (Teo − Tamb)e
−

htotVpipe
(ṁf+ṁac)cp,e (23)

dpem
dt

=ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (24)
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Abstract
Measurements and optimal control are used to study whether the fuel
economy of a diesel engine can be improved through periodic control of
the wastegate. The measurements show that the pumping torque of the
engine is changed when the wastegate is controlled in a periodic manner
versus stationary even if the mean position is the same. If this decreases
the fuel consumption or not is seen to be frequency and operating point
dependent. The measurements indicate that the phenomenon occurs
in the time scales capturable by mean value engine models (MVEM).
The operating points are further analyzed using a MVEM and optimal
control. It is shown that whether the optimal solution exhibits periodic
oscillations or not is operating point dependent, but is not due to the
instantaneous nature of the controls. Even if an actuator model is added
the oscillations persist for reasonable time constants, the frequency of
the oscillations is however affected. Further it is shown that the periodic
control can be predicted by optimal periodic control theory and that the
frequency of the control affects the resulting efficiency.
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Introduction
Numerical optimal control is a powerful tool to study how to best utilize the
available controls to get a desired output from complex systems. The resulting
optimal controls may however be oscillatory, as seen Fig. 1 where the optimal state
and control trajectories to a prescribed output power profile of a diesel-electric
powertrain is shown. These oscillations can be divided into four categories: a)
the algorithm is stuck in a local minima, b) the algorithm exploits numerical
errors to decrease the criteria to be minimized, c) the optima is not unique
and the oscillations do not affect the criteria, or d) the oscillations are actually
optimal given the model and maybe even for the physical system.

The problem with local minima is algorithm and/or initial guess dependent
and inherent in numerical optimal control of nonconvex problems. With good
knowledge of the problem it can normally be ensured that the received solutions
are at least good local minima, for instance using fundamentally different initial
guesses and see that they converge to the same solution.

In [14] it is shown that along singular arcs the resulting controls are often
highly oscillatory and that the oscillations are artifacts of the numerical method
and not the solution itself. It is also claimed that the problem gets worse in
the presence of active trajectory constraints. In [9] it is shown that oscillations
can be produced as a result of that the optimizer uses the integrator error to
decrease the objective.

In [17] it is shown that under certain circumstances the minimum time
solution for a step in output power and energy of a diesel-electric powertrain
is not unique. There the problem is solved by first minimizing time and then
using the optimal time as a constraint and minimize fuel.

For certain problems the optimal steady state solution (OSS) is not the same
as the optimal dynamic solution (ODS) of the problem, even when a steady state
solution would have been expected. This is the case when the optimal solution
is periodic. Two examples where it is shown that the optimal solution is periodic
are [8] and [12] who both deal with the topic of vehicle speed optimization.
There also exist some theory on how to test whether a stationary solution can
be improved by periodically varying control, see [4, 5, 3, 6].

For physical systems oscillating controls are often undesirable, since it might
increase wear in components and also be perceived as strange by the operator.
In optimization oscillating controls also have the problem that they impair
convergence of the algorithm. Further if a fixed step integrator is used and the
system has fast dynamics the oscillations will also demand a very fine grid to
guarantee the integration accuracy, which will increase the memory usage and
further slow down the algorithm.

One technique commonly used to get rid of oscillations is regularisation. The
idea is to add a penalty term to the cost fuction to remove the oscillations. In [14]
adding the piecewise derivative variation of the control to the cost function to
penalize oscillating controls is suggested, a strategy also used in [2]. In [17, 18]
the integral of the squared state derivatives is added to the cost function to
accomplish the same thing. Another technique is to reformulate the problem
to remove the gain of oscillating controls. In [9] a change in formulation, going
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Figure 1: The optimal state and control trajectories to the prescribed output
power trajectory, Pgen, for a diesel-electric powertrain. The resulting controls
are highly oscillatory, see t ∈ [670, 678], [684, 687]
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from velocity to kinetic energy as state variable, solves the problem of oscillatory
controls.

In previous works by the authors optimal control of a diesel-electric powertrain
in transient operation is studied, see [17, 18]. It has been seen and noted that
the resulting solutions are oscillatory, and the oscillations are especially severe
in the wastegate control. These oscillatory solutions have been seen both with
TOMLAB/Propt, using pseudospectral collocation and sequential quadratic
programming (SQP), see [19], as well as with ACADO Toolkit, using multiple
shooting and SQP, see [10], suggesting that the problem should not be an artifact
of the integration routine/solver. In [2] the unconfirmed hypothesis is that the
oscillations seen in the optimal variable geometry turbine (VGT) control of a
diesel engine are due to decrease in the gas exchange losses. This is due to
that the exhaust manifold pressure oscillates with the VGT position whereas
the intake manifold pressure remains unaffected due to the slow turbocharger
dynamics.

In [16] it is shown that it actually is optimal to oscillate the wastegate, that it
actually decreases the pumping torque of the engine and that this phenomenon
does not disappear when the model is extended, and that the period time is
fundamentally different from the discretization step length, suggesting that it
might be a property of the physical system itself. This paper continues this study
using both measurements and further simulation and optimization to study if
the oscillating solutions seen are a result of the optimal solution being periodic,
and also if this applies to the real engine.

1 Contributions
The contributions of this paper is a study of whether or not gains can be made
by controlling the wastegate in a periodic manner in an otherwise stationary
operation of a diesel engine. More specifically the paper contributes with a novel
experimental investigation of whether the stationary operation of a real engine
can be improved by controlling the wastegate periodically, and whether these
dynamic effects occur in the time scales captured by mean value engine models
(MVEM) or not. Further, using simulation and optimization techniques, the
paper extends the study in [16] to see if the nature of the oscillating optimal
solutions are operating point dependent. It also verifies the optimality of the
periodic control using optimal periodic control theory, as well as shows that this
can be used to predict the period of the oscillations. Finally it studies if the
optimal oscillatory solution is affected by including an actuator model for the
wastegate and how it is affected by the time constant of the actuator.

2 Measurements
The measurements are conducted on the diesel engine-generator combination
(GenSet) of a diesel-electric powertrain. The measurements are conducted on a
complete powertrain equipped with extra sensors, and not a test bench. The
GenSet consists of a generator mounted on the output shaft of a medium-duty
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Table 1: Measured operating points

Engine Speed [rpm] 1100 1500 1800 2000 2200
Generated Power [kW] 80 120 120 160 130

tier 3 diesel-engine. The engine is equipped with a charge air cooled wastegated
twin-scroll turbocharger. To model the powertrain 192 stationary points are
measured together with 21 dynamic data sets that consist of either a sequence
of power transients with constant engine speed or a sequence of engine speed
transients under constant power. These measurements are used to build a mean
value engine model of the powertrain in [15]. The measured signals, sensors
used, as well as measured rate is shown in Table 6 in Appendix B.

To investigate the impact of the wastegate control five operating points are
selected. These points are different constant engine speeds and output powers,
see Table 1, that are measured with:

• Nominal wastegate control as on the production engine

• The wastegate locked in several fixed positions

• The wastegate controlled by an external pneumatic actuator. With this
actuator the wastegate can be opened and closed in a pulsating manner to
investigate how the system behaves in the presence of oscillating controls.

2.1 Stationary measurements
In this paper the focus is on stationary optimal control, or absence of stationarity
in the case of oscillating controls. For all stationary measurements the engine
is run in speed control mode of the SAEJ1939 standard, see [13], which means
that a speed reference, ωref , is sent to the engine control unit (ECU), a speed
reference the ECU tries to track. The generator acts as a load on the engine and
the generator controller tries to produce the prescribed output power, Pref . This
operating point is then held until the pressures, temperatures and turbocharger
speed have reached stationarity. The main measurement rate is 10kHz that
is then downsampled and stored. In this paper the measurements are further
downsampled to 200, 50, and 10Hz respectively, using combinations of 2, 4
and 5th order FIR filters. The main metrics used in this paper from these
measurements are the average efficiency of the powertrain, η and the average
pumping torque of the engine, Mpump, defined according to:

η = P gen
ṁfqHV

Mpump = P pump
ωice

(1)

where ¯ means average, Pgen is the output power of the generator, ṁf the fuel
flow, Ppump the pumping power, qHV the lower heating value of the fuel, and
ωice the engine speed. For a full list of symbols used see Appendix A.
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Figure 2: Measured fuel weight and the linear approximation.

2.2 Calculating fuel flow
The fuel flow is not measured, instead the fuel weight in the tank is measured.
Due to recirculating flow and response time of the scale and system itself, this
technique is only suitable for stationary points. Further the scale reports whether
the measurement is stable or unstable. To get an accurate approximation of the
fuel flow a first order polynomial is fitted with the least squares method, using
only the stable measurements and the slope of this polynomial is the fuel flow in
kg/s, see Fig. 2. It turns out that the relative difference in slope if all measured
points are used instead of only the stable measurements is negligible but still
only the stable points are used.

2.3 Output power
As described in [15] the efficiency of the power electronics is lumped together
with the generator efficiency. Meaning that the produced output power of the
powertrain is Pgen = IDCUDC .

2.4 Measurements with pulsating wastegate
The measurements start in stationary conditions with closed wastegate, the
ECU controlling engine speed, and the generator control set to a fixed output
power. The wastegate is then opened and closed in a pulsating manner using
the external pneumatic actuator and different periods and opening lengths, see
Table 2. Since the fuel flow is measured using a scale and only stationary points
are of interest, the pressures are then allowed to stabilize and the analysis is
conducted on the last 30s of the pulsating part, the exact duration is adjusted
slightly to include an integer number of periods for the wastegate pulsation, see
Fig. 3.

2.5 Results
In Fig. 4 the measured signals, downsampled to 200Hz, are shown. The exhaust
pressures seem noisy due to pulsations from the cylinders. If instead the
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Figure 3: Measurement using pulsating wastegate position, 1100rpm, 80kW,
200Hz. Only the stationary part between the red lines is used in the analysis.
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measurements are downsampled to 50Hz the pulsations in the exhaust pressures
are removed and it can be clearly seen that the wastegate only affects the front
bank of the exhaust manifold, while still accurately capturing the dynamics
in pim and uwg. pem,f , controlled by the wastegate, is seen to be a lot faster
than pim indicating that this could be used to decrease the pumping torque.
If the data is downsampled to 10Hz the accuracy starts to drop, smearing out
the peaks in both pressure and wastegate position. The analysis is therefore
conducted using the measurements downsampled to 50Hz.

In Fig. 6 the mean efficiency and pumping torque (1) is plotted as a function
of mean wastegate position for the different operating points, with fixed, normal
and pulsated wastegate position. For the fixed and nominal wastegate controls
the efficiency of the powertrain correlates strongly with the pumping torque. The
only exception is 160kW, 2000rpm, where Mpump is monotonic in uwg whereas
the efficiency has a clear peak around uwg = 0.2.

From the measurements it is clear that even though uwg is the same, Mpump

and η change depending on whether the wastegate is opened and closed in a
pulsating manner or kept at the same position. The pulsating measurements
with small opening times, i.e. uwg ≤ 0.1 increases the pumping torque for
all operating points. For uwg > 0.1 Mpump decreases for 80kW, 1100rpm and
120kW, 1500rpm and increases for the other three operating points, with some
exceptions for 120kW, 1800rpm. Looking at the efficiency the trend is similar,
if the pulsations decrease the pumping torque, the efficiency increases, and
conversely, if the pumping torque increases the efficiency decreases. There are
however some exceptions, especially for uwg ≤ 0.1 and also for several of the
points for 120kW, 1800rpm, but in general the measurements show that pulsating
wastegate can be used to alter both the pumping torque and the efficiency of
the powertrain. Here the pulsations are performed in open loop control, with
a few selected periods and opening times, there could be a potential for closed
loop control.

The analysis is performed using measurements downsampled to 50Hz. To
investigate if the conclusions depends on the sampling rate, an analysis is
performed for different sampling rates. In Fig. 7 the relative error in pumping
torque and wastegate position is shown relative the measurements at 200Hz.
50Hz seems to be an adequate sampling time to capture these effects, as indicated
in Fig. 5, with a maximum relative error in Mpump of 1.3h indicating that this
phenomenon occurs within the range of, and could be captured by, a mean value
engine model [7].

Table 2: Pulse periods and opening durations used. ∗ means duration only used
with 1.5s and 2.25s period, ∗∗ only with 0.75s period.

Period [s] 0.75 1.5 2.25
Duration [s] 0.125 0.25∗∗ 0.375 0.75∗ 1.125∗
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Figure 4: Measured signals for 120kW, 1500rpm, with pulsating wastegate
downsampled to 200Hz. The exhaust pressures appear to be noisy, but this is
due to individual pulsations from the cylinders.
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Figure 5: Measured signals for 120kW, 1500rpm, with pulsating wastegate
downsampled to 50Hz. The individual pulsations in exhaust pressures are
removed while still capturing the dynamics in pim and uwg. Downsampling to
10Hz appears to be too slow.
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Figure 6: The effect of the wastegate on the efficiency and pumping torque
during constant engine speed and generator power. Solid line is wastegate in a
fixed position, circle is nominal wastegate control, and x marks pulsed wastegate.
50Hz measurements are used.



2. Measurements 195

0

0.02

0.04
80kW1100rpm

e
(M

p
u
m

p
) 

[%
]

0

0.5

1
80kW1100rpm

e
(u

w
g
) 

[%
]

0

0.05

0.1
120kW1500rpm

e
(M

p
u
m

p
) 

[%
]

0

0.5

1
120kW1500rpm

e
(u

w
g
) 

[%
]

0

0.2

0.4
120kW1800rpm

e
(M

p
u
m

p
) 

[%
]

0

0.2

0.4
120kW1800rpm

e
(u

w
g
) 

[%
]

0

0.1

0.2
160kW2000rpm

e
(M

p
u
m

p
) 

[%
]

0

0.2

0.4
160kW2000rpm

e
(u

w
g
) 

[%
]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1
130kW2200rpm

e
(u

w
g
) 

[%
]

u
wg

 [−]

 

 

e
rel

 50Hz

e
rel

 10Hz

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2
130kW2200rpm

e
(M

p
u
m

p
) 

[%
]

u
wg

 [−]

Figure 7: Relative errors in pumping torque and wastegate position if the study
is conducted using 50Hz and 10Hz measurements, vs. 200Hz. Dashed lines mark
the average error
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Figure 8: Structure of the MVEM. The modeled components as well as the
connection between them.

3 Simulation and Optimization
To analyze the effects and results more analytically a mean value engine model
of the system is used in an optimal control study to investigate whether or not
it is optimal to oscillate in the measured points.

3.1 Model
The model used can be downloaded in the LiU-D-El-package from [20] and
is parameterized and validated against measurement data in [15] as MVEMo.
The states of the MVEM are engine speed, ωice, inlet manifold pressure, pim,
exhaust manifold pressure, pem, and turbocharger speed, ωtc. The controls are
injected fuel mass, uf , wastegate position, uwg, and generator power, Pgen. The
engine model consists of two control volumes, intake and exhaust manifold, and
four restrictions, compressor, engine, turbine, and wastegate, with connections
between the components according to Fig. 8. The control volumes are modeled
with the standard isothermal model, using the ideal gas law and mass conserva-
tion. The engine and turbocharger speeds are modeled using Newton’s second
law. The governing differential equations of the MVEM are:

dωice
dt

=Pice − Pmech
ωiceJGenSet

(2)

dpim
dt

=RaTim
Vim

(ṁc − ṁac) (3)

dpem
dt

=ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (4)

dωtc
dt

=Ptηtm − Pc
ωtcJtc

(5)
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3.2 Problem Formulation
First an optimal control problem (OCP) is solved to find the optimal steady
state controls (OSS) for the studied operating points, i.e. the controls that
maximize η = Pgen

ṁfHLHV
given that ẋ = 0 and Pgen = Pref . These controls are

then used as input and comparison for the following OCP:

min
u(t)

∫ T

0
ṁf

s.t. ẋ(t) = f(x(t), u(t))
(x(t), u(t)) ∈ Ω(t)

(6)

where x is the state vector of the MVEM, ẋ is the state equations (2)-(5) and
u = [uf , uwg, Pgen]. The optimal control problems are also subject to a set of
constraints, namely:

x(0) = x(T ) = x(ηmax), ẋ(T ) = 0
umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
ωice(t) = ωref , Pgen(t) = Pref

Πc ≤ Πc,surge φ(x(t), u(t)) ≤ 1
λmin

BSRmin ≤ BSR(x(t), u(t)) ≤ BSRmax
Pice(x(t), u(t)) ≤ Pice,max(x(t))

(7)

The constraints are actuator and state limits, as well as constraints imposed
by the components, such as maximum power of the engine, Pice, surge-limit of
the compressor, Πc,surge, blade speed ratio-limit of the turbine, BSR, as well
as environmental constraints, i.e. an upper limit on φ set by the smoke-limiter.
The driving mission-constraints are that the powertrain starts in the operating
point of maximum efficiency, x(0) = x(ηmax), a point it should also end in, with
the added requirement that the end operating point should be stationary. The
generator power and engine speed are fixed to their reference values. Since the
modeled losses in the torque model are only speed dependent, except for the
pumping torque, that depend on the intake and exhaust manifold pressures, this
formulation ensures that if the results are oscillatory, it is actually optimal and
it does actually decrease the pumping torque.

3.3 Numerical Solution
The software package that is used to solve the optimal control problem numer-
ically is CasADi [1]. First the problem is discretized using Radau collocation
with three collocation points in each control interval. The states are thus approx-
imated with a third order polynomial, whereas the controls are approximated
by a second order polynomial in each control interval. The states are required
to be continuous over each control interval boundary, whereas the controls are
allowed to be discontinuous. The resulting nonlinear program(NLP) is solved
using IPOPT, [21], with the MA57 linear solver from the HSL package, [11]. In
this study 200 control intervals per second is used.
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3.4 Results
The OCP defined in (6)-(7) is solved for the different operating points in Table 1.
In Fig. 9-left the stationary efficiency as well as pumping torque of the model for
the points in Table 1 is shown. In Fig. 9-right the OSD wastegate actuation to
the solved OCP is compared to the OSS. Comparing the efficiency and pumping
torque curves between the model, Fig. 9-left and the measurements, Fig. 6,
it can be seen that for both the measurement and model the efficiency goes
from convex to concave in wastegate position, whereas the pumping torque goes
from concave to convex. For which operating point this transition occurs differs
slightly. In general the peak efficiency occurs for a smaller wastegate opening
for the measurements than for the model, see for instance 130kW, 2200rpm.
This might indicate that the effective wastegate area in the model is too small,
however it’s value is actually 2% larger than the measured wastegate size. In
any case the agreement is considered good as the model is a global MVEM for
the engine with no special tuning for these operating points.

The resulting wastegate controls from the solution to the OCP exhibit
oscillations for all operating points except 80kW, 1100rpm. This seems to be
due to that the OSS control in that case is with wastegate fully closed. The
closer to the boundaries the stationary optima is, the longer the period of the
oscillation, but in all solutions the wastegate control is switching between zero
and one, which according to a pure stationary analysis should increase the
pumping torque. Whether it is optimal or not and where the optima is attained
thus seems to depend on the matching of the engine and turbocharger.

In Fig. 10 the relative pumping torque vs. the stationary optima is shown
for the different operating points. Through the oscillations the pumping torque
is changed several hundred percent away from what is stationary optimal. The
operating point with the oscillations with the shortest period also has the largest
relative benefit, see Table. 3, where the change in efficiencies and energies relative
the stationary optima is shown. The relative efficiency increase of oscillating the
wastegate is for the studied operating points up to 0.3h, which is small, but in
an optimization context, clear.

Looking at Fig. 11 the low pass filtering effect of the turbocharger, as
hypothesised by [2], can be clearly seen since the wastegate opening and closing
results in a pem span of 60 kPa, whereas the effect on pim is only 4-6 kPa.

Relating the optimal results to the measurements, the solutions exhibit faster
oscillations than used in the experiments, with periods as short as 0.1s. Also in
the experiments the wastegate is open at most 75% of the period, whereas for
160kW, 2000rpm and 130kW, 2200rpm the optimal solution is with wastegate
open 88-95% of the time.

3.5 Π-test and periodic control
The Π-test, [4, 3], is a sufficient condition to determine if a periodic OCP is
proper, i.e. if the OSS solutions can be improved by a suitable periodic operation.
To simplify the problem, Pgen and ωice are implemented as constants, the engine
torque is computed from the mechanical generator power and engine speed, and
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Figure 9: Left: Wastegate position’s effect on the efficiency and pumping torque
during stationary conditions, circles mark ηmax and Mpump,min of OSS, squares
average value of OSD. Right: Optimal wastegate actuation both for the OSD
(solid), OSS (red dashed), as well as average value of OSD (black dashed).

Table 3: Changes in efficiency and energies for the OSD relative x(ηmax) in
percent, where Ex =

∫ T
0 Px dt.

∆η ∆Efric ∆Epump ∆Eig
80kW,1100rpm 0.000 0.0 0.0 0.0
120kW,1500rpm 0.006 0.0 -0.37 -0.006
120kW,1800rpm 0.027 0.0 -4.43 -0.027
160kW,2000rpm 0.007 0.0 -1.93 -0.007
130kW,2200rpm 0.003 0.0 -1.69 -0.003



200 Paper 8. Opt. Stat. Ctrl. of Diesel Engines Using Periodic Ctrl.

−10

0

10
80kW1100rpm

M
p

u
m

p
, 

re
l [

%
]

−200

−100

0

120kW1500rpm

M
p

u
m

p
, 

re
l [

%
]

−400
−200

0
200
400

120kW1800rpm

M
p

u
m

p
, 

re
l [

%
]

0

500

1000

160kW2000rpm

M
p

u
m

p
, 

re
l [

%
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000
130kW2200rpm

time [s]

M
p

u
m

p
, 

re
l [

%
]

Figure 10: Pumping torque of the OSD relative the OSS.
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Figure 11: States and control trajectories for the OSD, 120kW,1800rpm. The
solution is highly oscillatory.
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the fuel flow is computed by inverting the engine torque model. The model is
then reduced to a three-state, one-control, MVEM.

For the operating points considered where oscillations occur, i.e. all points
except 80kW, 1100rpm, no constraints are active in the OSS-solution except the
power constraint, engine speed constraint and stationarity constraints. These
constraints, except the stationarity constraints, are thus implemented within the
model. Two problems are considered using the reduced model, one stationary
and one periodic, defined as:

OSSr :

 min
uwg(t)

∫ T
0 ṁf

s.t. 0 = f(x, uwg)
(8)

OSDr :


min
uwg(t)

1
T

∫ T
0 ṁf

s.t. ẋ = f(x(t), uwg(t))
x(0) = x(T )

(9)

The idea is that the solution to (8), denoted x∗, u∗, is also a solution to (9),
however not necessarily the optimal one. If the optimal control from (8) can be
improved by a periodic variation around u∗ for (9), (9) is proper, if not then
the solutions are the same.

Defining the hamiltonian as:

H(x, u, λ) = ṁf (x) + ΛTf(x, u) (10)

The Π-test is defined as:
A = f ′x(x∗, u∗), B = f ′u(x∗, u∗), R = H ′′uu(x∗, u∗)
Q = H ′′xu(x∗, u∗), P = H ′′xx(x∗, u∗)
G(jω) = (jωI −A)−1B

Π(ω) = G(−jω)TPG(jω) +QTG(jω) +GT(−jω)Q

(11)

where H ′x means partial derivative with respect to x, and Π(ω) is an m ×m
hermitian matrix, where m is the number of controls. If for some ω, Π(ω) is
not positive semi-definite, and (9) is normal at x∗, u∗, then (9) is proper. Here
there are no active constraints and A is non-singular, the normality condition is
therefore automatically satisfied. Since m = 1 Π(ω) is scalar and the requirement
translates to if Π(ω) is negative for any ω then (9) is proper.

The problem in (8) is solved using fmincon in Matlab, which also provides
the optimal lagrange multipliers Λ, for 120kW, 1800rpm, Π(ω) is computed using
(11) and plotted as a function of ω in Fig. 12-top. The figure shows that for
frequencies ω ≥ 9 rad/s (9) is proper. Hence a weak variation of the u∗ control
of sinusoidal type should decrease the consumption for all frequencies larger
than 9 rad/s. Defining a periodic control signal according to:

uwg = u∗wg + ε sinωt (12)

The reduced model is then simulated using this control, for different ω and
ε and compared to u∗. To make the comparison fair, the model is simulated
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Figure 12: Top: Π(ω) for 120kW, 1800rpm. Bottom: The change in efficiency
for the periodic control vs. u∗ for different frequencies and amplitudes.

until the oscillations in the states have reached their final amplitude, and then
restarted using this as initial conditions. The change in efficiency is shown in
Fig. 12-bottom. The results confirm the results of the Π-test. For ω ≥ 9 rad/s
the periodic control improves the efficiency, the improvement increases with ε.
Worth noting is also that ε acts as an amplification and that a periodic control
with ω < 9 rad/s decreases the efficiency. It turns out that for the operating
points in Table 1 the frequencies, ωp, above which OSDr is proper is in the range
7-11 rad/s. The only exception is 80kW, 1100rpm where ωp = 0, however this is
hardly valid since u∗ = 0 which means that all periodic variations would lead to
negative wastegate positions, i.e. massflow into the manifold which would be
free energy. ωp ≥ 7-11 rad/s translates to a period T ≤0.6-0.9s. This supports
the results from Section 2.5 that pulsating control with uwg ≥ 0.1 increases the
pumping torque. This is since the lowest uwg are achieved with the two longest
periods in Table 2 which are well above the found ωp.

3.6 Including an actuator model
One of the assumptions in the current MVEM is that the actuators are infinitely
fast. This is of course not the case, however it is of interest to investigate the
limit of optimal control, i.e. to see what would be possible if the actuators were
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Figure 13: Change in efficiency of the OSD relative x(ηmax) as a function of
the wastegate actuator time constant, τwg. Circle marks the solution without
actuator model.

that fast. To investigate if the oscillations seen here are only possible due to
the instantaneous nature of the controls the model is extended with a wastegate
actuator model. This is modeled using a first order model according to:

dxwg
dt

= 1
τwg

(uwg − xwg) (13)

This of course introduces the question for which τwg the OSDs result in oscillatory
solutions. Therefore the OCPs are solved for a set of time constants between
1µs and 1s and the relative change in efficiency is shown in Fig. 13. As expected
the potential gain decreases with increasing time constant. With the pneumatic
actuator used in the measeurements the time constant is 70ms when opening
and 20ms when closing, why 50ms is considered a reasonable value. In Fig. 14
the solution with τwg = 50ms is shown. 50ms is chosen as a reasonable time
constant, even if it depends on way of actuation, electrical or pneumatic. As
can be seen in Fig. 14 both the frequency and the amplitude of the oscillations
change when an actuator model is added. The wastegate control signal follows
the same pattern as before, however the slower actuator dynamics prevent the
wastegate from reaching it’s fully open or fully closed position. The amplitude
of the pressure oscillations are still a lot higher in the exhaust manifold than
in the intake manifold, through the lowpass-filtering effect of the turbocharger.
The span of the pressures during the oscillations are 60 vs. 11kPa (pem vs. pim)
allowing for the pumping torque to be optimized.

4 Results and discussion
The measurements on a diesel-electric powertrain in Section 2 show that the
pumping torque of a system where the wastegate is periodically controlled differs
from when it is controlled in a stationary manner, even if the mean wastegate
position is the same. This effect occurs in the time scales captured by mean
value engine models but whether the pulsating control is beneficiary or not is
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Figure 14: States and control trajectories for the OSD with wastegate actuator
model, 120kW, 1800rpm. The oscillations persist, however the period increases.
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shown to be operating point and period dependent, for some cases it increases
the efficiency and for others not.

This is also confirmed in simulation in Section 3. The optimal control is
not periodic for all the investigated operating points, this seems to be due to
whether the optimal steady state solution lies on the boundary or not which
indicates that it depends on the matching of the turbocharger and engine. The
optimal periods and opening times are however different from the ones used in
the measurements for all operating points but one. For that operating point the
model predicts the stationary optima to be within the control set whereas the
measurements show it to be on the boundary. Optimal periodic control theory
confirms that the steady state solutions can be improved by periodic control.
It also predicts well for which frequencies this is true, explaining why some
measured points increase and some decrease the pumping torque. In general
the periods used in measurements are too long, both compared to what the
optimization in Section 3.4 shows, and to what the Π-test in Section 3.5 predicts.

Further it is shown in Section 3.6 that the oscillating nature of the controls
is not a result of instantaneous nature of the controls in the model. When an
actuator model is added for the wastegate the optimal control is still periodic,
however the time constant of the actuator has a direct impact on the optimal
frequency of the solution.

5 Conclusions
Optimal control of diesel engines in stationary operation is studied and more
specifically if gains can be made from controlling the wastegate in a periodic
manner. Measurements show that the pumping torque can be changed from it’s
stationary value and even decreased using periodic control, for certain operating
points. Using optimal control techniques as well as optimal periodic control
theory it is shown that whether periodic control can improve the efficiency of
the engine or not, depends on both the operating point as well as the frequency
of the control. This does not change when an actuator model is added.
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A Nomenclature

Table 4: Symbols used

Symbol Description Unit
p Pressure Pa
T Temperature K
ω Rotational speed rad/s
ṁ Massflow kg/s
Π Pressure ratio -
P Power W
M Torque Nm
E Energy J
V Volume m3

R Gas Constant J/(kg · K)
uf , uwg , Pgen Control signals mg/cycle, -, W

J Inertia kg · m2

BSR Blade speed ratio -
η Fuel-air equivalence ratio -
φ Fuel-air equivalence ratio -
λ Air-fuel equivalence ratio -

qHV Lower heating value J/kg

http://www.tomdyn.com/
http://www.tomdyn.com/
http://www.fs.isy.liu.se/Software/
http://www.fs.isy.liu.se/Software/
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Table 5: Subscripts used

Index Description Index Description
ice Engine GenSet Engine-Generator
im Intake manifold em Exhaust manifold
c Compressor ac After compressor
t Turbine wg Wastegate
f Fuel tc Turbocharger
a Air e Exhaust
gen Generator-electrical mech Generator-mechanical
ref Reference c, surge Compressor surge-limit
fric Friction pump Pumping
ig Indicated gross tm Turbo, mechanical
amb Ambient es Exhaust system

B Measured signals and sensors

Table 6: Measured signals and sensors. ∗ means that the signal is asynchronous
and the rate refers to an average

Name Description Sensor Base rate
pamb Ambient pressure Dynisco PT130-50 Pressure Transducer 500Hz
pim Pressure intake manifold Dynisco PT130-50 Pressure Transducer 500Hz
pem,f Pressure exhaust manifold, front Dynisco PT130-50 Pressure Transducer 2kHz
pem,r Pressure exhaust manifold, rear Dynisco PT130-50 Pressure Transducer 2kHz
pes Pressur eafter turbine Dynisco PT130-50 Pressure Transducer 2kHz
pc,b Pressure before compressor Dynisco PT130-50 Pressure Transducer 500Hz
pc,a Pressure after compressor Dynisco PT130-50 Pressure Transducer 500Hz
Tamb Ambient temperature TC 1.5mm mineral insulated type K thermocouple 12-13Hz∗
Tim Temperature intake manifold TC 1.5mm mineral insulated type K thermocouple 12-13Hz∗
Tem,f Temperature exhaust manifold, front TC 1.5mm mineral insulated type K thermocouple 12-13Hz∗
Tem,r Temperature exhaust manifold, rear TC 1.5mm mineral insulated type K thermocouple 12-13Hz∗
Tes Temperature after turbine TC 1.5mm mineral insulated type K thermocouple 12-13Hz∗
Tc,b Temperature before compressor TC 1.5mm mineral insulated type K thermocouple 12-13Hz∗
Tc,a Temperature after compressor TC 1.5mm mineral insulated type K thermocouplee 12-13Hz∗
ntc Turbine rotational speed PicoTurn PT2G Turbocharger Speed Sensor 500Hz
uwg Wastegate position Firstmark Controls Series 170 Subminiature Position Transducer 1kHz∗
ṁc Massflow through compressor ABB FMT500 Thermal Massflow Meter 500Hz
IDC Measured DC current LEM IT 1000-S High Performance Current Transducer 2kHz
UDC Measured DC voltage Tektronix P5200 High-voltage Differential Probe 2kHz
λ Air-fuel ratio ETAS636 Lambda module 2kHz
Wf Fuel weight Kern IFS60K0,5DL Counting scale 6-7Hz∗
ne Engine rotational speed CAN-signal 50Hz
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Abstract
To fully utilize the fuel reduction potential of a hybrid powertrain re-
quires a careful design of the energy management control algorithms.
Here a controller is created using map-based equivalent consumption
minimization strategy and implemented to function without any knowl-
edge of the future driving mission. The optimal torque distribution is
calculated offline and stored in tables. Despite only considering station-
ary operating conditions and average battery parameters, the result is
close to that of deterministic dynamic programming. Effects of making
the discretization of the tables sparser are also studied and found to have
only minor effects on the fuel consumption. The controller optimizes the
torque distribution for the current gear as well as assists the driver by
recommending the gear that would give the lowest consumption. Two
ways of adapting the control according to the battery state of charge
are proposed and investigated. One of the adaptive strategies is experi-
mentally evaluated and found to ensure charge sustenance despite poor
initial values.
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Figure 1: The architecture of the Haldex eTVD concept. The EM is labeled
Haldex in the figure. There are two energy paths between the ICE and EM.

Introduction
A hybrid powertrain utilizes at least two separate energy converters. This has
the potential to significantly increase the efficiency of the powertrain. The key
to utilizing the full potential of the powertrain lies in the design of the control
algorithm. The goal in hybrid powertrain control is normally to minimize the
fuel consumption while maintaining the battery State of Charge (SOC) within
prescribed limits, sometimes with addition of constraints regarding emissions.

This paper develops an adaptive Equivalent Consumption Minimization
Strategy (ECMS), based on [4], and applies it to the Haldex electric Torque
Vectoring Drive (eTVD). The optimal torque distribution is calculated offline
and stored in tables and the effects of discretization on the fuel consumption is
studied. Then two ways of adapting the control to maintain the SOC within the
desired limits are investigated.

The Haldex eTVD and the test vehicle

The system used for modeling, simulation, and experimental evaluation is a
SAAB 9-3 XWD with a 2.0L turbo charged spark ignited combustion engine
and a six-speed manual gear-box (GB), fitted with the eTVD.

The eTVD is a system designed to combine all-wheel drive (AWD) with
hybrid functionality. It also has the ability to control the torque distribution on
the rear wheels individually, which is useful to prevent under- and over-steering.
In the eTVD concept the combustion engine (ICE) and main electric motor (EM)
are connected electrically to each other via the generator (ISG) and mechanically
via the wheels, see Fig. 1. The architecture of the system thus resembles that of
a split hybrid but since the components in the test vehicle are dimensioned for
AWD the series hybrid functionality of the vehicle is reduced. A more fitting
description would be advanced parallel hybrid since the powertrain can be viewed
as a parallel hybrid with an extra degree of freedom in choosing which energy
converter to use during load shifting since the ISG is added to the powertrain.
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1 Vehicle Model
For the purpose of investigating different control strategies and their fuel con-
sumptions, a quasistatic model approach is used. This is partly due to simplicity
but also because it is well suited for both DDP and ECMS. In a backward
facing quasistatic approach the speed is known from the driving cycle. When
the speed is known the torque required at the wheels to follow the driving cycle
is calculated through a longitudinal vehicle model:

Treq = rw

(
ρa
2 CDAfV (t)2︸ ︷︷ ︸

Fair

+mgfr︸ ︷︷ ︸
Froll

+mV̇ (t)︸ ︷︷ ︸
Facc

+ V̇ (t)Jw
r2
w︸ ︷︷ ︸

Fwi

)
(1)

where Fair is the aerodynamic drag, Froll the rolling resistance, Fwi the inertia of
the wheels, and Facc is the acceleration force. Force from road grade is neglected.

1.1 Components

The control signals of the system are the energy converter torques TICE , TISG,
TEM , and gear γGB . The components (ICE, EM, ISG and GB) are all modeled
with a power balance and efficiency, Pout = Pinη, where the efficiencies, η, are
assumed to be known and account for all losses in the component. The efficiency
ηGB is assumed constant while the efficiencies of the energy converters are shown
in Fig. 2. The battery is modeled as a Thevenin equivalent circuit with open
circuit voltage Uoc(SOC), coloumbic charge efficiency ηc(SOC), and constant
internal resistance Ri. The battery in the test vehicle outputs its SOC, thus the
SOC is assumed to be known. The power required by the auxiliary units, Paux,
is assumed constant. For more details about the modeling see [9].

2 Reference Consumptions
As a reference for the implemented optimization, deterministic dynamic pro-
gramming (DDP) as described in [3] is used. Time and SOC are discretized with
a step length of 1s and 0.02h respectively. The SOC discretization is chosen so
that one step roughly equals the change in SOC from the auxiliary units during
1s. The operating points from the DDP solution to NEDC are shown in Fig. 2.
Interesting to note is the efficient use of the ISG in load shift and that almost
all the EMs operating points during braking are on, or close, to the torque limit.
This is a result of the EM and ISG primarily being designed for torque vectoring
and AWD and not fuel economy.

To evaluate the performance of the real-time control, the consumption as
a strictly AWD vehicle is used. For that purpose a control is used where the
gear that results in the lowest consumption at each time is engaged. The EM is
assumed to be unused both in traction and braking, thus this mode corresponds
to pure ICE propulsion.
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Figure 2: Efficiencies of the ICE, EM, and ISG, as well as the operating points
of the three energy converters on the NEDC from the DDP solution

3 The ECMS
In ECMS, proposed in [5] and [6], the sum of fuel and fuel equivalent of the
electrical power is minimized. Since fuel and battery power are not directly
comparable an equivalence factor, λ, is used. The function to be minimized can
be written as:

H = Pf (TICE , γGB) + λ(t)Pbatt(TEM , TISG, γGB) (2)

Under the assumption that the battery efficiency is independent of SOC,
the equivalence factor λ remains approximately constant along the optimal
trajectory. Therefore the optimization problem is reduced to finding the constant
λ that approximates the optimal trajectory of a given driving cycle. Since the
characteristics of the battery depends on if the battery is charging or discharging,
λ is sometimes replaced by two constants. It is however shown in [4] that one
constant suffices to get a good approximation on a given driving cycle, which is
the approach selected here. For more details on ECMS see [3, 7, 8].

As a consequence of the discussion above the strategy for selecting the control
inputs becomes:

[TICE , TISG, TEM , γGB ] = argmin(H) (3)
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Subject to:

Treq = ηGBγGB (TICE − γISGTISG) + γEMTEM (4a)

TEM,min(ωEM ) ≤TEM ≤ TEM,max(ωEM ) (4b)
0 ≤TICE≤ TICE,max(ωICE) (4c)
0 ≤TISG ≤ TISG,max(ωISG) (4d)

Pbatt,min(SOC) ≤Pbatt ≤ Pbatt,max(SOC) (4e)

3.1 Offline Optimization

Instead of solving the computationally demanding three degree of freedom
problem in (3)-(4) for all possible controls in real-time, the optimization is
performed offline and the result is tabulated. In the real-time implementation
the control system interpolates in the stored data to find the optimal torque
distribution.

In the offline calculations the three parameters that the ECMS algorithm
takes as input, i.e. vehicle speed, required torque, and equivalence factor, are
discretized and the optimal torque distribution on the three energy converters, as
well as the optimal gear, are calculated as a function of (V ,Treq,λ) for each point.
Since, for each gear, it is a two degree of freedom problem, see (4a), it requires
two tables for each gear, one for the ISG and one for the ICE. From these two
tables the torque required from the EM can be calculated using (4a). With six
gears, not including reverse, a total of 13 tables are calculated: six ICE, six ISG
and one for the gear selection. So the system not only optimizes the torque
distribution for the current gear, it also assists the driver by recommending the
gear that would give the lowest fuel consumption.
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3.2 Table Discretization
The real-time algorithm uses linear interpolation in the stored data and the
assumption is thus that the solution is linear between two optima. As seen in
Fig. 3 the solution is only piecewise linear between two λ so the discretization has
to be chosen with care. Fig. 4 shows how the mean torque in each table changes
as a function of λ. Since it is desirable to reduce the memory requirements
the idea is to make the λ discretization sparser in the segments that could be
considered linear and denser where it is clearly non-linear. From Fig. 4 it is clear
that the ISG and ICE tables should have separate λ discretizations since the ISG
tables remain constant up until λ ≈ 3 while the ICE tables only remain constant
until λ ≈ 2. To test how the loss of accuracy, introduced by reducing the size of
the tables, affects the consumption, simulations are carried out on two sets of
tables: one large set, TL, and one small set, TS . The TL has the same V- and
Treq-discretization as the offline optimization itself, but the λ-discretization is
made sparser according to the strategy mentioned above. The TS-discretization
is made sparser than TL in all three directions. The memory requirement of TS
is roughly one eighth of that of TL.

4 Real-time Implementation Details
In the implementation the ECMS is only used in traction. During braking the
main parameter that affects the ability to recuperate energy is the gear. However
the time spent in braking is deemed too short to motivate a gear shift. Instead
a heuristic brake control is used. Provided that the SOC is within limits the
EM supplies the requested brake torque and if the EM is insufficient, the ISG,
providing that a gear is engaged, also provides a regenerative torque and the
rest is handled by the friction brakes.

Since the test vehicle has a manual gearbox the gear selector recommends
gears to the driver. In simulation the system follows the gear selector and shifts
instantaneously without the use of a clutch. To avoid too frequent gear shifts
(recommendation changes) a hysteresis is applied to the interpolated optimal
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gear.

5 Equivalence Factor Considerations
An equivalence factor λ is considered optimal if the resulting ∆SOC = SOC(tend)−
SOC(tstart) = 0 within a specified tolerance. Since the speed in the driving
cycles is discretized, the situation can arise where there exists no λ that results
in ∆SOC = 0. In those situations the method suggested in [2] is used, where
the control switches between two λ, λ1 leading to ∆SOC > 0 and λ2 leading to
∆SOC < 0, at time t to achieve ∆SOC = 0.

To evaluate the offline optimization a set of tables, ECMSopt, consisting
of λopt for the NEDC and FTP-75 cycles is created. That is, no interpolation
between two optima in the λ-direction is necessary. In Fig. 5 the SOC trajectories
of ECMSopt as well as DDP on the FTP-75 cycle is shown. Since the gear shifting
of the DDP solution is highly unrealistic, a DDP Fixed Gear solution using
the gear trajectory of ECMSopt is also shown. The ECMSopt SOC trajectory
still differs from the two DDP solutions. This is due to the offline optimization
using only stationary operating points and average battery parameters. However,
introducing SOC-dependency in the offline optimization would mean adding
an extra dimension in each table and the decrease in consumption using DDP
compared to ECMSopt is small, especially if a more realistic gear shifting
strategy is used, as shown in Table 1. Results from simulations on the NEDC
and FTP-75 driving cycles are shown in Table 2. The increase in consumption
for TS and TL compared to ECMSopt, as well as the difference in λopt values,
confirm that the solution is not a linear function of λ. However, the increase
in consumption is small, only 0.1% from making the λ-dimension sparser and
0.2− 0.4% when the tables are made sparser in all three dimensions.

Even if the simulations show that the implemented ECMS produce a good
result on a given driving cycle, close to that of DDP, it is also seen that the
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Table 1: The decrease in fuel consumption with DDP compared to ECMSopt.

DDP: Free Gear DDP: Fixed Gear
NEDC 4.0% 0.2%
FTP-75 10.1% 2.3%

Table 2: λopt and associated consumption of the different tables. Consumptions
are in L/100km and Reduction is compared to AWD.

Cycle Performance EMCSopt TL TS

NEDC
λopt 2.8384 2.8238 2.8426

Consumption 5.728 5.733 5.738
Reduction 17.23 % 17.15 % 17.08 %

FTP-75
λopt 2.6353 2.6615 2.7146

Consumption 5.505 5.512 5.534
Reduction 24.33 % 24.23 % 23.93 %

optimal values of λ are specific and the system seems to be quite sensitive. A
λopt from one driving cycle is not necessarily charge sustaining on another, see
Fig. 6. The controller has to adapt to the driving scenario.

5.1 Static Prediction Based on SOC
In [1] it is suggested that λopt is approximated by an affine function in SOC.
Since the eTVD mainly is an AWD concept, the charge sustenance of the
controller is crucial. Therefore another adaptation function is suggested. Under
the assumption that there exists one λ that approximates a given driving cycle,
the controller should ideally find that λ for the future driving mission and use
that value for the entire mission. To allow the system to use as much of the
battery capacity as possible the idea is to create a function that is relatively
flat around the center of the desired SOC window. However, when the SOC
approaches the limits of the SOC window it needs to adapt to ensure charge
sustenance. The chosen function that fulfills these requirements is a tangens
function, see Fig. 7-left. The adaptation of λ is of the form:

λ = fSP (λc, kc, SOC) (5)

where fSP has the shape of a tangens function centered at λc, with the slope
kc. As seen in Fig. 7-right the fuel consumption increases with the slope but
it is also apparent that the ability of the system to keep the SOC within the
desired SOC window, increases with the slope, since a change in SOC results in a
larger change in λ. However, since there is no way of knowing the optimal λ for
the current driving mission there is no slope that guarantees charge sustenance.
The choice is a trade-off between charge sustenance and fuel consumption. Here
kc = −1.9 is chosen. In Fig. 6 the same test as in Section 5 is shown, now with
the use of the Static Prediction based on SOC (SP) in (5). With the use of the
new adaptation the system is not as sensitive to the initial λ. The system is
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Table 3: λc,opt and associated consumptions. Consumptions are in L/100km
and reduction is compared to AWD.

Cycle Performance TL TS

NEDC
λc,opt 2.73 2.7374

Consumption 5.735 5.739
Reduction 17.12 % 17.07 %

FTP-75
λc,opt 2.6365 2.6823

Consumption 5.515 5.533
Reduction 24.19 % 23.95 %

now charge sustaining with λc = λopt,FTP−75. However the fuel consumption
increases slightly, see Table 3 compared to Table 2. Also interesting to note
is that λc,opt, the λc that gives ∆SOC = 0, is not the same as the λopt that
approximates the driving cycle.

5.2 Adaptive Prediction Based on SOC
The proposed strategy has introduced some adaptivity to the system, but since
there is no way of knowing the λc that approximates the future driving mission,
it is not necessarily enough. The value of λc is still important. As seen in Fig. 8
the SOC does not stay within the SOC window when the λc value differs too
much from λc,opt. The system instead varies around a SOC value that is not
necessarily within the SOC window. The corresponding λ value seems to vary
around a value close to the λc,opt found in Section 5.1. The idea is thus to let
the center of the function proposed in Section 5.1 change according to the trend
of the λ values. To find the trend a low-pass filter is used according to:

λp+1
c = (1− α)λpc + αλp (6)
λp+1 = fSP (λp+1

c , kc, SOC) (7)

The trade-off is between response time and fuel consumption. If the time constant
is small, the system will find the optimal λ region fast, but a fast filter also means
that λc becomes sensitive to the current λ which increases the fuel consumption.
Here α is chosen so the time constant of the filter is around 200s. To avoid
build-up in the low-pass filter, similar to integral wind-up, λc is only allowed to
move in what can be considered a feasible region, chosen to be between 2 and
6. With the use of the Adaptive Prediction based on SOC (AP) in (6)-(7) the
control manages to maintain the SOC within the desired SOC window despite
the use of a too high initial λc, as seen in Fig. 8.

6 Tests
So far the systems have been designed and evaluated using known driving cycles.
To investigate how well the systems perform in a more realistic situation the
system is tested both on unknown driving cycles as well as in a real vehicle.
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With static prediction based on SOC the system finds a point on the tangens
function, around which it varies, that is not necessarily within the desired SOC
window. With adaptive prediction based on SOC the control maintains the SOC
within the desired SOC window.

6.1 Randomized Driving Cycle
To simulate real driving a driving cycle is constructed out of a random set
of driving cycles. The 30 selected driving cycles represent roughly 8 hours of
driving and a distance of 350km. On this driving mission the ECMS with both
adaptive and static prediction based on SOC is tested with both TL and TS and
the result is shown in Fig. 9 and Table 4. Because of the length of the driving
mission the fuel equivalent of the deviation in end SOC is deemed negligible.
Both the functions proposed for adaptive control are charge sustaining and imply
a fuel consumption reduction of 19-20% compared to AWD. AP results in a
slightly higher consumption than SP, as well as TS results in a slightly higher
consumption than TL.

6.2 Vehicle Tests
The system that is chosen to be implemented in the test vehicle is the one
with TS and adaptive prediction based on SOC. The set TS is used because
of the substantial decrease in memory usage and only slight increase in fuel
consumption. Even though it is implied in Section 6.1 that static prediction
is charge sustaining under normal driving circumstances the extra robustness
of the adaptive prediction is considered desirable. The test drive, see Fig. 10,
represents urban driving with many transients and low speed, and is done to
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Figure 9: Performance test with (a) SP and (b) AP. Both systems are charge
sustaining over the randomized driving mission and the TS result in a slightly
higher consumption than the TL.
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Table 4: The consumptions for TL and TS with the two different adaptive
controllers during a set of randomized driving cycles. Red. is the reduction
compared to AWD

Config. Tables Consumption Red.
AWD - 6.963 L/100km -

ECMS w. SP TS 5.575 L/100km 19.19%
TL 5.557 L/100km 20.19%

ECMS w. AP TS 5.586 L/100km 19.78%
TL 5.572 L/100km 19.98%

test the driveability and the charge sustenance of the control system. The test
drive is done with an initial SOC at reference level but a high λc. As seen in
the figure the control is charge sustaining despite the initially high λc. The AP
adapts λ and maintains the SOC within the desired SOC window. It is also seen
that the gear recommendation often is too high for comfort. For more test data
see [9].

7 Conclusion

A map-based implementation of ECMS is developed and the effects of the
discretization are studied. Performing the optimization offline with stationary
operating points and average battery parameters increases the consumption by
only a few percent compared to DDP if the same gear trajectory is used. DDP
implies a potential to decrease the consumption further by a couple of percent if
no restrictions on gear selection is enforced, but the resulting gear trajectory is
highly unrealistic, making the solution infeasible.

The effect on the consumption by reducing the size of the tables is small.
Making the discretization sparser in the λ-dimension according to the strategy
proposed in Section 3.2 only increases the consumption by 0.1% and making all
three dimensions sparser only results in an increase of less than 1%.

Both methods suggested for adaptive control are charge sustaining and
only result in a slight increase in consumption compared to when λopt is used.
The static prediction based on SOC increases the consumption less than the
adaptive prediction based on SOC, but the latter is more robust. The use of
static prediction based on SOC reduces the importance of knowing the optimal
equivalence factor for the future driving mission, as the control manages to
maintain the SOC within the desired window as long as the used λc doesn’t
differ too much from the λc,opt of the driving mission. With the use of adaptive
prediction based on SOC the need for information about the future mission
is eliminated. Instead the control adapts so that λ varies around λopt of the
driving mission, ensuring charge sustenance.
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Abstract
A benchmark control problem was developed for a special session of
the IFAC Workshop on Engine and Powertrain Control, Simulation
and Modeling (E-COSM’12), held in Rueil-Malmaison, France, in Octo-
ber 2012. The online energy management of a plug-in hybrid-electric
vehicle was to be developed by the benchmark participants. The sim-
ulator, provided by the benchmark organizers, implements a model of
the GM Voltec powertrain. Each solution was evaluated according to
several metrics, comprising of energy and fuel economy on two driving
profiles unknown to the participants, acceleration and braking perfor-
mance, computational performance. The nine solutions received are
analyzed in terms of the control technique adopted (heuristic rule-based
energy management vs. equivalent consumption minimization strategies,
ECMS), battery discharge strategy (charge depleting–charge sustaining
vs. blended mode), ECMS implementation (vector-based vs. map-based),
ways to improve the implementation and improve the computational
performance. The solution having achieved the best combined score is
compared with a global optimal solution calculated off line using the
Pontryagin’s minimum principle-derived optimization tool HOT.
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Introduction

Energy management of Hybrid Electric Vehicles (HEV) is nowadays a more-than-
ten-years-old field of research in control engineering [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Indeed, energy management is a control task since it consists in determining the
setpoints (mostly, torque) to the various power converters (internal combustion
engine, electric machines with their power electronics, mechanical transmission
devices, electrical power converters, etc.) that constitute the HEV powertrain.
These setpoints are chosen by the energy management strategy (EMS) in order
to fulfil the driver’s request and at the same time exploit the remaining degrees
of freedom to obtain the most suitable powertrain behaviour. “Optimal" EMS
that have been disclosed in these years are aimed at minimizing an objective
function that typically represents the overall fuel consumption, but might include
pollutant emissions, battery life degradation, under several constraints concerning
battery charge, drivability, etc. In particular, charge-sustaining or autonomous
HEV imply that the battery State Of Charge (SOC) at the end of a vehicle
mission is required to be as close as possible to its initial value. A mathematical
formulation of such a control problem has been posed in terms of optimal
control [11, 12, 13, 14, 15] and numerous practical implementations for various
architectures such as parallel [4, 5, 7, 16, 17, 18], series [19, 20], and combined
HEV [11, 21, 22, 23] have been presented.

The class of plug-in HEV (PHEV), where the battery can be recharged
from an external source (grid) also, has attracted less research than charge-
sustaining HEV, although pioneering papers have already treated this topic
in terms of optimal control and presented simulation or experimental results
[24, 25, 26, 27, 28]. The specific difficulty in this class of EMS is to generate
an optimal discharge of the battery. Indeed it is known that a simple CD–CS
strategy, i.e., a fully-electrical operation (charge depleting, CD) followed by a
Charge-Sustaining (CS) operation from when the battery is discharged onwards,
although attractive as it allows presenting the HEV as an “electric vehicle", is
far from being optimal from a fuel economy standpoint. Therefore, progressive
battery discharge (“blended-mode") operation is expected to be the output of
an optimal EMS.

While several EMS have been generally presented in the scientific literature,
a way to compare them is obviously not generally available, since studied systems
and driving conditions vary from case to case. Clearly, the ability to make direct
comparisons between systems, employing these algorithms, would be highly
beneficial for the scientific community to verify common claims concerning
both performance (optimality) and implementability (flexibility or reusability,
easiness of calibration and implementation, etc.) of EMS and focus future efforts
in the most promising directions. Such comparison tools have been deployed
for other control applications [29] and consist of benchmark control problems
that are typically solved using simulation models replacing real systems. As a
second step, functional solutions might be benchmarked on physical systems
as well. Recently, the Japanese automotive societies JSAE and SICE have
jointly proposed a benchmark HEV control problem [30] based on a simulator
of a combined hybrid (Prius-like) vehicle and driver and aimed at challenging
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academic researchers.
This paper presents a benchmark PHEV control problem and analyzes

a set of solutions. The benchmark was developed for a special session of the
IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (E-
COSM ’12), held in Rueil-Malmaison, France, in October 2012. The participation
of nine teams presenting their own solution demonstrated the interest in such
initiative. All teams were provided with a fully functional simulator of a PHEV,
and were to implement an EMS to optimize a set of criteria. The simulator
(see Sect. 1) is of the quasi-static type and accounts for longitudinal vehicle
dynamics and battery SOC dynamics, while the engine and electric machines are
modeled using stationary maps. Solutions were to be submitted in the form of a
Simulink block with a specific format (inputs/outputs/solver). The evaluation
of the strategies was done on the basis of the fuel and energy consumption for
two realistic driving cycles that were unknown to the participants, as well as
acceleration performance and controller runtime performance (details in Sect. 2).
In the cycle tests, the battery is completely charged at the beginning of the cycle
and can be depleted at the end of the cycle. The participants were able to make
use of some approximated information about the cycle, namely the total distance
and average speed, which could be easily retrieved from a GPS device. Given the
focus of the benchmark problem, this information was included in the simulator
as perfectly known, albeit in practice it is affected by measurement uncertainties.
A special jury, presided by the holder of the IFP School – Fondation Tuck Chair
on Hybrid vehicle and energy management, defined the two test cycles and
guaranteed the correct evaluation of the solutions to be benchmarked. The nine
solutions evaluated are presented in Sect. 3, while Sect. 4 discusses the results
obtained. The software developed for this benchmark will be made available on
the web site www.ecosm12.org.

1 Simulator
Although a detailed description of vehicle propulsion systems would require the
modeling of several dynamic phenomena, it has long been recognized [31] that
for the purpose of fuel economy estimation, quasi-static models, i.e., based on
efficiency maps measured under stationary operation of the various components,
suffice to a large extent. For such a reason, quasi-static models are largely
used to design and pre-assess energy management strategies of HEV, as per the
literature cited within the paper. Of course, the mutual relationship between the
EMS and typical transient maneuvers would not be represented by such models,
but if the main focus is on the fuel economy, they can still reasonably serve to
compare the global performance of different EMS. These are also the reasons
why the present benchmark PHEV control problem is based on a quasi-static
simulator.

The simulator provided implements a model of Chevrolet Volt, validated
with published GM data, which are well reflected in the simulation results
[32, 33, 35, 34]. The simulator implements three main blocks (Fig. 1): (1)
Driving cycle, which computes the torque demand based on the specified driving
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Figure 1: Benchmark simulator layout.

cycle, and also outputs the preview information (nominal distance and average
speed); (2) Control strategy (EMS), which was to be filled with the benchmark
solutions respecting given input and output ports; (3) Vehicle and powertrain
model, which contains the quasi-static model of the powertrain and vehicle
dynamics.

The participants had access to the content of the driving cycle and the vehicle
model block, but they were not to be modified. Only their respective outputs
could be used for developing the EMS, and only the controller block was to be
submitted at the end.

1.1 Powertrain model: GM Voltec
The powertrain architecture powering the Chevrolet Volt consists of a power-
split, planetary-based system, named Voltec and shown in Fig. 2. Three clutches
(C1, C2, C3) allow connecting or disconnecting the internal combustion engine
(ICE), the generator (GEN) and the main traction machine (MOT). Both electric
machines can actually work in both motoring and generating mode, and for both
of them the sign convention is that positive torque and positive electric power
indicate motoring operation.

The powertrain can operate in the following modes [32, 33, 35]:

1. One-motor EV (C1 locked, C2 open, C3 open, engine off). MOT alone
propels the vehicle, powered by the battery. The planetary gear set
introduces a fixed reduction between the machine MOT and rest of the
driveline (final ratio and differential).

2. Two-motor EV (C1 open, C2 locked, C3 open, engine off). In this case, the
machine GEN acts on the planetary ring through C2 and thus it changes
the gear ratio between MOT and the powertrain output. This mode is



232 Paper 10. A Ctrl. Benchmark on the EM of a PHEV

Figure 2: Kinematic architecture of GM’s Voltec [33].

useful to reduce MOT speed at high vehicle speed, thus increasing overall
powertrain efficiency by combining the use of both electric machines.

3. Range-extender mode (C1 locked, C2 open, C3 locked, engine on). This is
a traditional series-HEV mode: the engine and generator are connected
and produce electric power; MOT alone propels the wheels.

4. Power-split mode (C1 open, C2 locked, C3 locked, engine on). In this
mode, the three machines are all connected together with a variable speed
ratio that depends on the generator speed. The mode allows transmitting
mechanical power directly from the engine to the wheels, thus resulting in
overall higher efficiency than a pure series mode.

As a whole, the vehicle and powertrain model takes as inputs the outputs
of the EMS, i.e., engine torque setpoint Te (T_eng_sp in Fig. 1), motor torque
setpoint Tm (T_mot_sp), generator speed setpoint ωg (w_gen_sp), brake torque
Tbr (T_mechBrake_sp), engine on/off signal (eng_on), and clutch commands C1
to C3 (c1,c2,c3). The outputs are vehicle speed v (V_veh), fuel consumption
∗
mf (FuelCons), and the battery SOC ξ (SOC), to be used within the EMS.

Vehicle Model

The vehicle submodel takes the wheel torque Twh from the powertrain and the
brake torque Tbr command as inputs and yields the vehicle speed v and the
wheel speed ωwh as output. The submodel implements vehicle’s longitudinal
dynamics

v̇ = rwh
Jv

[
Twh + Tbr −mvrwhg sinα− rwh

(
c0 + c1v + c2v

2)] (1)
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Table 1: Vehicle parameters

Curb weight mv 1812 kg
Road law coefficient c0 105.95N
Road law coefficient c1 0.01N·s·m−1

Road law coefficient c2 0.4340N·s2·m−2

Wheel radius rwh 33 cm
Vehicle inertia Jv 207 kg·m2

Wheelbase 2685mm
Center of gravity height 550mm

Front/rear static weight distribution 49%/51%

where α is the road slope and Jv the vehicle moment of inertia.
The relevant vehicle parameters have been extracted from [33] or estimated

from similar vehicles and are listed in Table 1. All simulations are carried out
by considering 97 kg in addition to the vehicle mass (75 kg driver and 35 `, i.e.,
22 kg full tank of fuel).

Transmission Model

The transmission consists of a differential gear (Rd = 2.16), a planetary gear set
(PGS), and a node (unit ratio). The generator is connected to the ring (r), the
motor is connected to the sun (s) and the transmission output is the satellite
carrier (c) of the PGS. The node connects the engine and the generator.

The forward transmission submodel takes the generator and wheel speeds,
ωg and ωwh, as well as the engine and motor torques, Te and Tm as inputs, and
yields the engine and motor speeds, ωe and ωm, as well as the generator and
wheel torques, Tg and Twh, as outputs.

The kinematic relation between the speeds of three elements of the planetargy
gear set is

ρ · ωr + ωs = ωc · (ρ+ 1), (2)
where ρ is the ratio between the number of teeth of the ring and the sun gear:
ρ = Nr/Ns = 83/37 = 2.24. The torque relations imposed by the planetary gear
set are

Tr
ρ

= Tc
ρ+ 1 = Ts (3)

The connection between PGS elements and power converters depends on
the mode in which the powertrain is operated. See Table 2 for mode-dependent
correspondances.

The simulator is implemented using these relations, including the gear ef-
ficiencies but neglecting the dynamics of the machines and the inertia of the
gears.

Engine Model

The engine submodel takes ωe and Te as inputs and yields the fuel consumption
∗
mf . Since a quasi-static modelling approach is used, the engine is represented
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Table 2

Mode 1 ωr = 0 ωe = 0
Tg = 0

Mode 2 ωr = ωg ωe = 0
Tg = ρ · Tm

Mode 3 ωr = 0, ωe = ωg
Tg = −Te

Mode 4 ωr = ωg ωe = ωg
Tg = ρ · Tm − Te

All Modes ωm = ωs, ωc = Rd · ωwh
Tm = Ts, Twh = Rd · Tc

Figure 3: Engine fuel map [33].

by its fuel maps, shown in Fig. 3. Torque and speed limits are enforced. Special
treatments are used to represent cranking and idle phases. When the engine is
switched on, the model generates a predefined negative torque (-25Nm) for a
short period (1 s), after which the torque generated matches the setpoint.

Motor and Generator Model

The motor submodel takes the motor torque Tm and speed ωm as inputs and
yields the electric power Pm as output. Similarly for the generator submodel
Tg and ωg are the inputs and Pg is the output. The electric machines are
represented by their efficiency maps, which are shown in Fig. 4. Torque and
power limits are enforced. The generator model also enforces a maximum rate
of change of ωg (200 rad/s2) to represent machine inertia.

Battery Model

The battery submodel takes the overall electrical power Pb = Pg + Pm and
the current SOC as input and yields the SOC at next time step as well as the
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Figure 4: Combined motor-transmission efficiency map (left) [34] and generator
efficiency map (right) [33].

Table 3: Battery parameters

parameter value source
Total energy capacity 16 kWh [33]
Total nominal voltage 360V [33]

SOC range 65% [33]
Number of cells in series 96 [35]

Number of strings in parallel 3 [35]
Peak current 400A [35]

Peak power (charge) 110 kW
Peak power (discharge) -60 kW

inner or electrochemical battery power Pech. The model is based on a simple
equivalent circuit composed of a voltage source Voc and a resistance Rb in series,
both functions of the SOC (Ib is the battery current),

Pech = VocIb, Ib = Voc
2Rb

−

√
V 2
oc − 4RbPb

4R2
b

(4)

ξ̇ = − Ib
Qb

(5)

where Qb is the charge capacity. Power, current, and voltage limits are enforced.
Moreover, SOC operation within a prescribed window is enforced.

In the case of the Volt, only the basic battery parameters, collected in Table 3,
are published. For the lack of specific data, the internal resistance and the open
circuit voltage characteristic of a single Li–ion cell are assumed to be the same
as the experimental data in [36].
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1.2 Driver model
The driver model is responsible for yielding the powertrain torque request Td
(T_wh_des in Fig. 1) to the EMS as a function of the vehicle speed v (V_veh)
measured from the vehicle model output. For the two cycle tests, the model is a
cascade of (i) a feedforward calculation of the torque request as a function of the
desired speed v, and (ii) a PI regulator as a function of the difference between
cycle speed and v. The term (i) is calculated as

Td =
{

Td,tot, Td,tot ≥ 0,
(1− σ)Td,tot − Td,totHCG

mvgrwhBw
, Td,tot < 0 (6)

Td,tot = v̇Jv
rwh

+ rwh
(
c0 + c1v + c2v

2 +mvg sinα
)

(7)

where the wheel torque request Td,tot is obtained from the inversion of (1), HCG

is the height of the center of gravity, Bw the wheelbase, and σ the static weight
distribution (see Table 1). The proportional and integral gains of the term (ii)
are tuned as KP = 500N·s, KI = 1N.

For acceleration tests, only the PI regulator is used, with a reference speed
set to a very high value in order to enforce full torque demand. The test end
is detected as a function of the speed or the distance covered, according to the
particular test. Conversely, the braking test is split into two parts, with a first
part to reach 100 km/h through a PI regulator, then a second part with constant
negative torque request.

1.3 EMS
The EMS block to be filled by benchmark participants takes as inputs the driver
torque demand Td output by the driver’s model (T_wh in Fig. 1) and the vehicle
speed v (V_veh) and the SOC ξ (SOC) yielded by the vehicle and powertrain
model. The expected outputs of the EMS model are the engine and motor torque
setpoints, the generator speed setpoint, the clutch commands, the engine on/off
state, and the mechanical brake torque, all sent to the vehicle and powertrain
model.

2 Benchmarking
2.1 Scoring metrics
Each solution has been evaluated according to several metrics, listed in Table 4.
The overall score is obtained by weighting each metric by the factor shown in the
table. The weights are intended to be a compromise between energy efficiency
(50%) and expectations of manufacturers (20%) and end users (30%). Since
they intervene only in the final evaluation stage of the benchmark, they can be
easily modified in future versions of the benchmark to reflect a different focus.
Although a correlation is expected between energy efficiency sub-metrics, they
are accounted for separately in order to emphasize the effects of residual battery
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Table 4: Scoring metrics

Metric Weight
Performance (30%) Acceleration 0–100 km/h [s] 7.5%

Acceleration 70–120 km/h [s] 7.5%
Acceleration 0–1000m on 4% slope [s] 7.5%
Braking distance from 1000 km/h [m] 7.5%

Energy Total energy use (fuel+electricity) [MJ] 15%
and economy (50%) Fuel consumption [MJ] 20%

Tailpipe emissions (not modeled) 0%
Well-to-wheel CO2 emissions [kg] 15%

Computational Processor use [s] 10%
performance (20%) Memory use [kB] 10%

Table 5: Data for CO2 emissions

Gasoline well-to-tank emissions [37] 12.5 gCO2/MJ of fuel
Gasoline combustion [37] 73.4 gCO2/MJ of fuel
Electricity production Europe average: 94.7 gCO2/MJ
(emissions for electricity and heat France: 24.7 gCO2/MJ
production [38], average 2007–2009) US: 147.5 gCO2/MJ

China: 207.8 gCO2/MJ
World average: 140 gCO2/MJ

energy and the CO2 factor. The actual scoring is obtained by normalizing the
result obtained in each metric with respect to the average value for that metric
calculated over all valid solutions. Note that all scores are best when minimized.

Performance

Four performance tests are enforced in the driver’s model, see Sect. 1.2. Elapsed
simulation time or distance covered until the simulation stop are monitored and
used as metrics.

Energy and economy

These metrics are the sum of the results in two different driving cycles, based on
real-world data, whose length (see Sect. 2.2) exceeds the all-electric range of the
vehicle. In each cycle, the initial SOC must match the value given in the data
file provided with the simulator, while the final SOC must be at least equal to
a target final value. CO2 emissions were calculated from energy use results as
the total emissions from fuel combustion, fuel production (well-to-tank), and
electricity production. For electricity, Europe average emissions were to be taken
into account (data for France, US, and China were also provided for information).
The coefficients in Table 5 were used to compute the CO2 emissions. Tailpipe
emissions were not considered for simplicity (unavailable reliable modeling) and
due to their weak dependency on the EMS for warm engine conditions.
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Table 6: Cycle statistics. Notes: a) the actual test cycle consists of three
repetitions of Aachen urban cascaded by Aachen mixed.

Aachen urbana Aachen mixeda Arco–Merano
Length [km] 16.2 28.4 157.7
Max speed [km/h] 71.6 132.6 115.4
Average speed [km/h] 30.3 53.8 49.2
Duration [s] 1926 1871 11549
Max acceleration [m/s2] 3.9 4.7 5.7
Max deceleration [m/s2] 3.0 4.6 7.4
No. of vehicle stops 14 11 15
Total stop time [s] 430 185.5 671.5
Total stop time [%] 22 10 6
Altitude variation [m] 0 0 1579

Computational Performance

Processor use and memory use were monitored on the computer running the
simulation. The former was evaluated using MATLAB functions tic and toc
before and after each test, the latter using MATLAB function sldiagnostics.
Only for fuel economy tests, the actual results are averaged over four runs,
in order to reduce the effects of other possible instances running on the test
computer. Counting of floating point operations could be used to make these
metrics less dependent on the particular machine. However, albeit an option for
future versions of the benchmark, this solution has not implemented due to the
lack of a simple flop counting function in the most recent versions of MATLAB.

Solution validity

At all times, all component limitations detailed in the data file (max/min power,
torque, state of charge, speed etc.) were to be respected in all components;
failure to do so during any simulation invalidated the corresponding results.

2.2 Driving cycles
Driving cycles were defined by the benchmark jury as “surprise" cycles, not
communicated in advance to the participants. The two real-life cycles selected
are shown in Figs. 5–6. The first cycle is actually the combination of two trips
recorded in the German city of Aachen, namely, an urban trip spanning 16.2 km
and a mixed-drive trip spanning 28.4 km . Elevation has been set to zero for
the whole cycle. In order to allow full battery depletion if the HEV would be
operated in EV modes, the combined Aachen cycle is repeated three times.

The second cycle is a trip recorded between Arco and Merano, Italy (in the
Alps), spanning 157.7 km and including severe altitude variations that are visible
in Fig. 6.

A summary of cycle statistics is listed in Table 6.
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Figure 5: Aachen cycle.

3 Proposed Solutions
3.1 Introduction
The benchmark control problem can be summarized as to find a control policy
u(t) for t = 0, . . . , T where T is any test duration, in such a way to minimize the
score defined in Sect. 2. For each single metrics, this is equivalent to minimize a
cost function J(u), where the control vector u , {Te, Tm, ωg, C1, C2, C3, Be, Tbr}
defines the powertrain mode and the operating point of each component. In the
example of the total energy use metrics,

J = LHV ·
∫ T

0

∗
mf (u,w)dt+

∫ T

0
Pech(u,w)dt (8)

where the disturbance vector w(t) , {v(t), Td(t)} comprises the exogenoeus
inputs (not known in advance) and LHV is the lower heating value of the fuel.
The minimization (8) is subject to the SOC constraint, ξ(T ) ≥ ξmin, and other
constraints. Formulated as such, the benchmark control problem is formally
equivalent to a constrained optimal control problem.

Data published by GM [33] show that, in the Volt embodied strategy, mode
selection depends primarily on SOC status. For charge-depleting (CD) operation
(high SOC), modes 1 or 2 are selected according to vehicle speed and required
torque, see Fig. 7. When the SOC becomes low, charge-sustaining operation
(CS) is activated, wich consists of three modes 1, 3, and 4, again selected as
a function of vehicles speed and desired torque. This SOC-regulating policy
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Figure 6: Arco to Merano cycle, (a) speed profile, (b) altitude profile.
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Figure 7: Operating modes of GM’s Voltec as a function of vehicle speed and
desired torque [33].

depends on the fact that the Volt is classified as a range-extended electric
vehicle. In the benchmark control problem, participants were allowed to activate
a “blended-mode" (BM) strategy to regulate the SOC, i.e., to start the engine
before the SOC reaches a lower-end value. Of course, battery-recharge (BR)
operation aimed at restoring the battery charge to a certain value was possible
as well.

Nine control solutions were submitted to the benchmark problem. Table 7
summarizes the approaches implemented in the proposed solutions. The column
“EMS technique" classifies the entries according to the type of control design.
Two approaches are represented, namely, based on rules (heuristic) or based on
optimal control theory and particularly on the Pontryagin Minimum Principle
(PMP). Additionally, the table classifies the nine solution according to the
discharge strategy, the mode selection strategy, and the operating point selection
strategy.

All the used techniques are further illustrated below. More details on two
solutions are provided in the ECOSM’12 papers [39, 40].

3.2 Heuristic controllers
Heuristic EMS are based on intuitive rules and correlations involving various
vehicular variables. One guiding principle is to use the engine when its efficiency
can be relatively high, while in less favorable conditions the electric modes should
be given preference and the engine should be turned off. Moreover, when the
engine is on, it should be operated in the highest possible efficiency regions (i.e.,
at high loads). Two common approaches to implement these intuitive principles
are the map-based and the rule-based approach. In the map-based approach,
the output setpoints are stored in multi-dimensional maps whose entries are
measured quantities describing the state of the powertrain. In the rule-based
approach, the EMS is either coded as a set of logic rules or implemented as a
finite state machine (FSM).
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Table 7: List of solutions to the PHEV control benchmark. Notes: a) with 10%
driving distance underestimation; b) enhanced with exception rules; c) adaptive
ECMS with varying SOC reference

Solution EMS technique Discharge Mode Operating point
strategy selection selection

S1 ECMS BMa,c Map based Map based
S2 Heuristic CD–CS Map basedb Map based
S3 ECMS BMc Vector based Vector based
S4 Heuristic BM Rule based Rule based
S5 Heuristic BM Rule based Rule based
S6 Heuristic BM Rule based Map based
S7 ECMS BMc Vector based Vector based
S8 ECMS BMc Vector based Vector based
S9 Mixed ? Rule based Rule based

In most solutions (S2, S4, S6, and S9), a two-level architecture is implemented.
A high-level supervisor (see Fig. 8a) first selects the powertrain mode and the
engine power setpoint Pe. The former output is either mapped (S2) as a
function of v, Tt, and ξ and enhanced with exception rules, or calculated by
a finite-state machine (S4, S9) with transition rules as a function of the same
vehicular quantities. Engine power is calculated from rules as a function of the
same variables and of the distance Dt, either in order to implement a CD–CS
SOC-regulation strategy (S2) or a blended-mode strategy (S4) by minimizing a
performance criterion.

The cascaded low-level controller evaluates the engine, motor, and generator
setpoints, as well as the clutch commands, according to the mode selected and
the engine power. While for mode 1 there is no degree of freedom, other modes
require additional choices. Optimal operating point map of the engine is used
to calculate Te and ωe as a function of Pe, while the other setpoints are such
to fulfill transmission kinematics/dynamics. In S9 (a mixed-approach strategy)
this task is performed using ECMS (see Sect. 3.3) for mode 4.

An alternative control architecture (used in S6, Fig. 8b) is such that the
high-level supervisor selects CD operation or BR operation as a function of ξ,
Tt, v and the information on the distance-to-go. In the case of CD operation,
the low-level controller selects mode 1 or mode 2 by minimizing the electric
consumption and determines electric setpoints. In the case of BR operation, the
low-level controller operates the engine either to maximize the recharge efficiency
or the recharge power and selects accordingly the setpoints using predefined
maps.

A simpler approach (used in S5) switches between electric modes and engine-
on modes as a function of the difference between ξ and a reference SOC profile
based on the distance-to-go. If on, the engine is operated at its best-efficiency
point and mode 4 is actuated, with exceptions possibly shifting the engine
operating point or enforcing mode 3.
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Figure 8: General heuristic strategy flowchart (a) and variant (b).

3.3 ECMS
The second approach used in the proposed solution is that based on optimal
control. Since early 2000’s it has been shown that the control problem of
minimizing the fuel consumption of a HEV over a driving mission, while letting
its SOC tend to a target value ξref can be formulated as an optimal control
problem similar to (8). Offline solutions to such a problem, that is, solutions
that make use of the prior knowledge of the driving profile can be calculated
using dynamic programming or directly solving the Euler-Lagrange formulation
of optimal control. In the latter case, the optimal control policy is found as

uo(t) = arg min
u
H(u,w(t), ξ(t)) = arg min

u
LHV · ∗mf (u,w(t)) + λ(t)dξ(t)

dt
(9)

under the state and costate dynamics

dξ(t)
dt

= −Ib(u,w, ξ)
Qb

,
dλ(t)
dt

= −∂H(u,w, ξ)
∂ξ

. (10)

Under the approximation ∂Voc/∂ξ ≈ 0, ∂Rb/∂ξ ≈ 0, λ is a constant and
the strategy (9) reduces to offline technique commonly known as Equivalent
Consumption Minimization Startegy (ECMS)

uo(t) = arg min
u
LHV · ∗mf (u,w(t)) + soPech(u,w(t)) (11)

with the equivalence factor defined as so = −λ/(VocQb). The value so fulfills
the global constraint on SOC, i.e., ξ(T ) = ξref .

Costate adaptation

While in offline ECMS so can be calculated using iterative root-finding algorithms,
in online application it has to be continously adapted and thus a variable s(t)
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replaces so in (11). The most common approach for such adaptation, which
proves to be directly related to Hamilton-Jacobi-Bellman optimal feedback
control [12], is a feedback on current SOC:

s(t) = s0 − kp(ξ(t)− ξref )− . . . , (12)

where the ellipsis indicates possible integral or nonlinear terms.
All solutions (S1, S3, S7, S8, and S9 when ECMS is used) include in the

right-hand side of (12) a term proportional to the integral of the error ξ(t)− ξref .
However, S8 uses a modified coding where s is initialized to a value s0, updated
according to a space-depending version of (12) when a prefixed sampling distance
is covered, and reset to s0 at each time the reference SOC is tracked back [41].
A nonlinear term in the form of a tangent-like function of the error is added to
the proportional-integral terms in S1 [40]. The feedforward term s0 is variously
calculated as a function of the average speed and the distance (S1, S8), the
average speed only (S3), or it is constant (S7).

While ξref clearly equals the initial value of SOC, ξ(0), for CS operation,
plug-in hybrids allow for discharging the battery and thus a different definition
for ξref must be used. Recent literature has addressed this problem and the
most common strategy is to use a varying, i.e., decreasing ξref (t) aimed at
implementing a BM operation. The decrease of ξref should represent the
advance in the mission and toward its end, ξref (T ) should tend to ξmin. All
five solutions (S1, S3, S7, S8, and S9) adopt a linear variation of ξref with the
distance covered D(t), namely,

ξref (t) = ξ(0)− kξ
D(t)
Dtot

, kξ = ξ(0)− ξmin. (13)

This approach clearly require the prior estimation of the distance to be covered
Dtot.

ECMS Implementation

The vectorial implementation of strategy (11), used in S3, S6, and S8, requires
discretizing the field of admissible values u(t) ∈ {uq(t)}, q = 1, . . . , N at any
time step. Thus,

uo(t) = uqo(t)(t), where
qo(t) = arg min

q
Hq(t), and (14)

Hq(t) = LHV · ∗mf (uq(t), w(t)) + s(t) · Pech(uq(t), w(t)).

The vector size N and the nature of u varies from solution to solution. For
each q, uq is obtained by imposing a set of predefined values to independent
components of u (degrees of freedom, DoF) and calculating the dependent
components through kinematic and other physical constraints. The powertrain
mode is clearly a DoF itself, thus N =

∑4
i=1Ni. In mode 1 there is no additional

degree of freedom and thus N1 = 1. In mode 2 there is one speed DoF (either
ωm or ωg). In mode 3 the DoF is engine power Pe since engine speed and torque
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are obtained by maximizing the engine–generator efficiency for a given power. In
mode 4 there are one speed and one torque independent DoFs. As an example,
S8 uses N{2,3,4} = 21.

From (14), it is clear that qo(t) and thus uo(t) depend only on w(t) and s(t).
Since w(t) is a two-dimensional vector (speed and torque at the wheels), the
energy management output is completely determined by three variables. While
the dependency of the Hamiltonians Hq(t) on SOC is neglected in the ECMS,
s(t) does depend on ξ(t), as well as on the distance D(t). This fact suggests
decoupling the evaluation of the energy management output in a two-step process,
where first s(t) is evaluated using (12) and subsequently uo(t) is evaluated as

uo(t) = FU (w(t), s(t)) (15)

where FU (w, s) is a look-up table where the offline-calculated results of (14) are
stored. The advantage of this map-based implementation, used in S1, in terms
of computing time with respect to the vectorial implementation, i.e., the online
solution of (14) is evident. Moreover, the map-based implementation can be
generated off line using a much finer discretization (i.e., a much higher N) than
its vectorial counterpart. S1 uses a total of 7 maps [40].

3.4 Implementation issues
Since CPU use and memory use are among the scoring metrics, all solutions pay
a particular attention in trying to reduce them.

Concerning the heuristic solutions, implementation of rules reduces memory
use, while use of maps reduces CPU time consumption. Other techniques adopted
include:

• simplification of look-up tables (S2),

• disabling of inactive Simulink subsystems, triggered subfunctions (S1, S2,
S6),

• only native Simulink blocks without maps (S5),

• reduction of complexity for modes 2 and 3 (S9).

Concerning ECMS-based solutions, vector-based implementation reduces
memory use while map-based implementation reduces CPU time consumption.
Other techniques adopted include:

• iterative sparsification of maps (S1),

• use of Matlab S–functions (S3),

• setpoint candidate reduction (S3),

• use of vector merging instead of multi-dimensional matrices for setpoint
candidates (S7).
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Table 8: Benchmark results. Fuel A: cycle Arco–Merano; Fuel B: cycle Aachen;
Notes: a) test disqualified due to constraints not met, result set to maximum
valid if lower; b) test invalid, cycle not entirely driven; c) entry or test not
considered for average calculation.

Fuel A Fuel B Memory Proc. time Score
Solution L/hkm L/hkm kB 100 = Avg.
S1 2.86 1.83 153 16 0.836
S2 3.18 2.27 81 14 0.850
S3 3.56 1.86 24 84 0.877
S4 3.39 2.57 159 18 0.934
S5 3.66a,c 4.60a,c 36 13 0.993
S6 3.66 4.60 186 18 1.086
S7 3.05 1.88 298 197 1.119
S8 6.06a,c 4.99a,c 353 442 1.873
S9c NAb 8.93 95 361 NA

Enforcing component limits is a delicate issue that has a strong impact on
the solution validity (see Sect. 2.1). Two main approaches have been followed in
the proposed solutions:

1. A priori limitation (S3, S6, S7), where map inputs or ECMS degrees
of freedom are preliminarly saturated to corresponding limits: in this
approach actual limits might take into account also limits induced by the
concurrent operation of other components; for example, the engine torque
could be constrained by the generator limits at the corresponding speed
and such a method often introduces iterations, algebraic loops that deserve
a special treatment (S7).

2. A posteriori limitation (S2, S5), where map outputs or ECMS candidates
are checked and possibly saturated to their respective limits.

A combined approach, with a priori and a posteriori check, is used in S1, S8,
and S9.

4 Results
4.1 Proposed Solutions
Table 8 summarizes the main scores obtained by running the proposed solutions.

A comparison between all valid solutions in terms of SOC trajectory for
cycle “Arco–Merano" is shown in Fig. 9. The figure clearly shows that best
performing strategies, i.e., S1 and S7 (see respective scores in Table 8), are able
to drive the SOC toward the minimum value before the last downhill in a smooth
fashion. In contrast, solutions S3 and S5 suffer from SOC oscillations around the
best-performing trajectory, solutions S2 and S4 tend to discharge the battery too
fast, while S6 and S8 are characterized by heavy SOC deviations with respect
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Figure 9: Cycle Arco–Merano, SOC for all valid strategies.

to the best-performing trajectory. In the following section, the best-performing
strategy S1 is detailed and compared with the optimal solution of Problem 8
calculated using an offline PMP algorithm.

Two among the three best performing solutions (S1 and S3) have adopted
ECMS, alongside with two other solutions (S7, which is among the best per-
forming strategies in the fuel economy tests, and S8). It is apparent that the
performance of ECMS strongly depends on the implementation of (12). All four
solutions have adopted (13) with possible SOC margins. As a consequence, the
ξref (t) signal is decreasing almost linearly with the increase of time and distance
covered, as shown in Fig. 10.

Table 8 shows a weak correlation between fuel economy results and memory
use, resp., processing time results. Discrepancies are particularly visible for
solutions S7 and S5. The latter is the simplest solution, so it performs rather
well both in terms of CPU time and memory use. On the other hand, S7 has the
second-best aggregate score in the fuel economy tests but it is penalized in terms
of CPU time by the use of long ECMS-candidate vectors and in memory use
by the use of large maps. Generally speaking, ECMS-based strategies require
Hamiltonian minimization and thus need a larger CPU time than heuristic
strategies; however S1 that is map-based rather than vector-based performs
better than S3, S7, and S8 in terms of CPU time. As for memory use, there is
no clear trend among ECMS and heuristic strategies, since both require maps
and look-up tables either to represent the various components’ efficiency, or to
store the pre-calculated setpoints or rules.

The final scores shown in Table 8 were calculated using the European CO2
emission factor, as explained in Sect. 2.1. If other CO2 factors were used, the
scores would change only slightly and the ranking of the proposed solutions
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Figure 10: Cycle Arco–Merano, reference SOC for all four ECMS strategies.

would remain the same. A different focus in weighting the scoring metrics
would obviously lead to a different ranking. For instance, an enhanced focus
on computational performance (raised from 20% to 40%) would let S2 have a
better overall score than S1. On the other hand, an enhanced focus on energy
efficiency (raised from 50% to 75%) would confirm S1 as the best solution. Since
performance metrics are similar for all solutions, enhancing their weight (e.g.,
rasing it from 30% to 65%) would not change the ranking at all. However,
setting different weights would have probably led to differently focused solutions,
so that the previous discussion must be taken very cautiously.

4.2 Globally Optimal Solution
To assess the optimality of the best-performing strategy S1, it has been compared
with the outcome of an offline optimization tool (HOT, [42]) that has prior
knowledge of the driving cycle. HOT is based on PMP and finds iteratively the
initial values of the costates. Model parameters are the same as in the Voltec
simulator. The optimization criterion set is fuel consumption. Although having
the capability of running cold-start cycles and performing two- or three-state
optimization with engine and aftertreatment temperatures as additional state
variables ([43]), for this test the standard functionality with SOC as the single
state has been used. The constant value of the equivalence factor s0 is found
with a root-finding algorithm based on the SOC at the end of the test cycle,
ξ(T ). The target value for the SOC is set to ξt = 30%: positive deviations
ξ(T )− ξt make s0 decrease in the next iteration, while negative deviations make
s0 increase.

Figure 11 compares the optimal profiles of SOC and fuel consumption calcu-
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Figure 11: Aachen cycle, SOC and fuel consumption.

lated by HOT for test cycle “Aachen" with the outcome of S1. The two profiles
are very close to each other. Wider differences are visible in Fig. 12 that refers
to the test cycle “Arco–Merano". However, in this case too, S1 is able to make
the SOC approach the minimum value (30%) before the final downhill, at the
end of which both S1 and HOT predict a SOC of about 50%. Consequently, the
fuel consumption predicted by S1 is very close to the minimum value calculated
by HOT (2.76 l/hkm for test cycle “Arco–Merano", 1.77 l/hkm for test cycle
“Aachen"), see Table 8. Figures 13–14 show the distribution of engine operating
points during the two test cycles. Both S1 and HOT tend to operate the engine
around the best efficiency region, although S1, being an online strategy, is char-
acterized by many more distinct operating points (transient maneuvers, SOC
regulation, etc.) than HOT. Figures 15–16 compare the two distributions of
powertrain modes as a function of vehicle speed and torque. In both strategies,
mode 1 is selected at low speeds, mode 2 for medium speeds and low torques,
mode 3 at high torques, and mode 4 for medium to high speeds. The S1 use
of the mode 3 is wider than in HOT, certainly in the attempt of perform a
blended-mode strategy as a function of SOC. The behavior in the two cycles is
similar for both strategies, except for the different speed and torque range.

5 Conclusions
The development of benchmark control problems is an engineering practice that
can help assessing different methods and techniques under the same circumstances
(same system, same operating conditions, same exogenous inputs, etc.). The
benchmark control problem illustrated in the paper, concerning the energy
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management of a plug-in hybrid-electric car, has fulfilled this goal since it has
allowed:

1. a comparison in terms of various performance criteria: while the dispersion
among different solutions in terms of vehicle performance is rather low,
fuel economy is more sensitive to the energy management strategy adopted,
particularly for real-life driving profiles with severe altitude variations;
even larger differences can arise in terms CPU time and memory use

2. a comparison between heuristic and optimal control-based techniques:
generally speaking the latter outperform the rule-based approach under
the same unprevisible circumstances, particularly in terms of fuel economy;
however, heuristic algorithms can also achieve good performance, yet they
require a higher amount of tuning and they are less robust to system
variations

3. a comparison between different implementations of optimal-control-based
techniques (ECMS): map-based ECMS induce lower computing efforts but
higher memory use, while the opposite is true for vector-based ECMS

4. a comparison between online solutions and a globally optimal solution
calculated off line with a prior knowledge of the driving profile: if properly
designed, online energy managers can be very close to global optimum in
terms of fuel economy.

The software developed for this benchmark will be made available on the
web site www.ecosm12.org for further use by control engineering students and
professionals that desire to test their own energy management solutions. A
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parametric PMP algorithm, HOT, will be also accessible to calculate a global
optimum reference. Such platform could be enriched in the future with generators
of random but realistic driving profiles and the possibility of modifying the
structure and the components of the powertrain in the online-running model
representing the actual system.
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Abstract
Plug-in hybrid electric vehicles (PHEV) provide a promising way of
achieving the benefits of the electric vehicle without being limited by the
electric range, but they increase the importance of the supervisory control
to fully utilize the potential of the powertrain. The winning contribution
in the PHEV Benchmark organized by IFP Energies nouvelles is described
and evaluated. The control is an adaptive strategy based on a map-
based Equivalent Consumption Minimization Strategy (ECMS) approach,
developed and implemented in the simulator provided for the PHEV
Benchmark. The implemented control strives to be as blended as possible,
whilst still ensuring that all electric energy is used in the driving mission.
The controller is adaptive to reduce the importance of correct initial
values, but since the initial values affect the consumption, a method
is developed to estimate the optimal initial value for the controller
based on driving cycle information. This works well for most driving
cycles with promising consumption results. The controller performs
well in the benchmark; however, the driving cycles used show potential
for improvement. A robustness built into the controller affects the
consumption more than necessary, and in the case of altitude variations
the control does not make use of all the energy available. The control
is therefore extended to also make use of topography information that
could be provided by a GPS which shows a potential further decrease in
fuel consumption.
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Introduction
A hybrid electric vehicle (HEV) utilizes both electric energy and energy from
fuel to meet the demands set by the driver. This may lead to a reduction
in the environmental impact and fuel consumption of the vehicle. A Plug-In
HEV (PHEV) is a HEV with the possibility of recharging the battery from the
grid. This adds the potential of using the vehicle as an electric vehicle, without
the range limitations in a pure electric vehicle. The supervisory control algorithm
for these more complex powertrains plays an important role in achieving the
full potential of the powertrain. In order to evaluate different strategies, IFP
Energies nouvelles (IFPEN) organized a benchmark for the energy management
of a PHEV (see [5], [7]) held at the E-COSM’12 - IFAC Workshop on Engine
and Powertrain Control, Simulation and Modeling in Paris, France.

This paper describes the design, and evaluates the performance of the best-
performing controller in the PHEV benchmark problem. As such, the paper
describes and also contributes with discussions about several engineering trade-
offs that were necessary to make, in order to provide a complete and efficient
solution for the benchmark problem. This paper is an extension of [8] where
the control strategy was outlined. The control is an extension of the adaptive
map-based Equivalent Consumption Minimization Strategy (ECMS) developed
in [9] for the PHEV problem and it is implemented for the simulator made
available in the PHEV Benchmark.

The PHEV problem poses additional problems compared with HEV con-
trol since the control should no longer try to maintain the battery State of
Charge (SOC) around a constant reference value. This is since it is desirable to
make use of all the stored energy in the battery, the engine should only be started
if the driving mission exceeds the electric range of the vehicle. Therefore the
control strategy in [9] is extended to also handle a time-varying SOC reference
as well as estimation of initial control values from driving cycle data provided in
the simulator.

To achieve optimal results using ECMS the optimal value of an equivalence
factor needs to be found; see [1]. However, this optimal value is driving cycle-
specific and has to be approximated online. Two promising approaches are found
in the literature. Both approaches use a cycle independent-equivalence factor
and a correction based on the deviation of SOC from its reference value, denoted
SOC error. In [1] the correction is a linear function in SOC error. In [10] the
equivalence factor is corrected with a product of two terms, a cubic function of
the SOC error and tanh of the low-pass filtered SOC error.

The contribution of the method proposed here is an efficient way of solving
and implementing the ECMS control strategy for a PHEV that is also self-
contained, using driving distance and average speed to estimate the initial
equivalence factor and then adapting it continuously throughout the driving
mission to ensure that it is robust to unknown driving missions and that the
desired discharge profile is followed.

The main contributions of the paper are the evaluation of the performance in
the benchmark, a discussion on the influence of some of the design choices, and
finally, the extension of the control to incorporate topology information from
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GPS to improve the performance in the presence of altitude variations in the
driving missions.

Outline
In Section 1 the benchmark is presented and the models in the simulator are
briefly described. In Section 2 the problem to be solved is formulated and in
Section 3 the offline optimization is described. Section 4 describes the architecture
of the controller, and the energy management is described in Section 5. Section 6
evaluates the controller’s performance in the benchmark and the influence of
some of the design choices is discussed in Section 7. Section 8 then suggests
some improvements for the controller before the concluding remarks in Section 9.
The scoring metrics as well as a nomenclature describing the symbols used in
the paper are found in the Appendix.

1 IFPEN PHEV Benchmark
In the IFPEN PHEV Benchmark a simulator is provided for which a supervisory
control algorithm is to be designed. This simulator is a quasi-static model of
the Chevrolet Volt with vehicle and battery dynamics and all energy converters
modeled using stationary maps. The architecture of the vehicle and connections
between components are shown in Fig. 1. The Chevrolet Volt has three energy
converters, an internal combustion engine (ENG), an electric motor (EM) and a
generator (GEN), connected through a planetary gear set (GB). Both electric
machines can work in both motoring and generating mode. The powertrain also
incorporates three clutches that allow the vehicle to be driven in the following
four modes:

• Mode 1: One-motor pure electric vehicle. Only the EM is connected to
the GB.

• Mode 2: Two-motor pure electric vehicle. Both the EM and GEN are
connected to the GB.

• Mode 3: Series HEV. Only the EM is connected to the GB. The ENG and
GEN work as an auxiliary power unit, producing electric power.

• Mode 4: Power-split HEV. All energy converters are connected to the GB.

In the benchmark the controller should output desired torque from the ENG, EM
and mechanic brakes, the speed of the GEN, the position of the three clutches, and
if the engine should be on or off. The inputs to the controller are the requested
torque from the driver model, Treq, minimum allowed regenerative torque, SOC,
vehicle speed, average speed in the driving cycle, vavg, and approximate driving
cycle length, Dtot. The aim of the control is to minimize the criteria described
in Table 8 with a battery that is fully charged at the beginning of the driving
cycle and may be depleted at the end of the driving cycle. There are also rules
on how closely the controller has to follow the desired velocity profile; see [5].
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Figure 1: Architecture of the modeled vehicle and the connections between the
components.

1.1 Models
The model is provided as a Matlab/Simulink file. The key model equations in
the simulator are briefly described below, while the interested reader is referred
to [5] for more details. A nomenclature describing the symbols used in the paper
is shown in the Appendix.

Vehicle Model

The vehicle motion equation is implemented as (1) where Twh is the torque from
the powertrain at the wheels, Tb is the torque applied by the brakes, and v is
the vehicle speed.

dv

dt
= rwh
Jveh

(
Twh − Tb − rwh(mveh g sin θ + cv,0 + cv,1v + cv,2v

2)
)

(1)

Battery Model

The battery model is of equivalent circuit type with a voltage source and internal
resistance and implemented as:

Ib = Uoc(SOC)
2Rc

−

√
Uoc(SOC)2 − 4RcPb

4R2
c

(2)

Pech = Ib Uoc(SOC) (3)

∆SOC = −dt Ib
Q0

(4)
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Transmission

The transmission is a planetary gear set with three clutches, c1, c2 and c3. The
kinematic relations between the energy converters and the wheels given by the
simulator are:

ωENG = ωGEN c3 (5)
ωEM = ωwh γfd(1 + γrs)− ωGEN c2(1− c1)γrs (6)

Ts = TEM η
sgn(TEM )
gb (7)

Tr = Ts γrs c2 η
sgn(Ts)
gb (8)

TGEN = Tr − c3TENG (9)

Tc = (1 + γrs)
(

(1− c2)Ts + c2
γrs

(TGEN + c3TENG)
)

(10)

Twh = Tc η
sgn(Tc)
gb γfd (11)

Consumption

There are two consumptions provided in the simulator and used in this paper;
fuel consumption and a fuel equivalent of the electricity consumption. They are
defined as:

Dreal =
∫

v

1000 (12)

mf =
∫
ṁf

ρf Dreal
105 (13)

mf,equiv =
∫
Pech

ηf→ech qLHV ρf Dreal
105 (14)

where ṁf is the fuel flow, ρf is the density of the fuel, Dreal is the distance
traveled, Pech is the electrochemical power, ηf→ech is the average efficiency from
fuel to electricity, and qLHV is the lower heating value of the fuel.

2 Problem Formulation
Looking at the scoring metrics and CO2 data in Tables 8-9 the problem can be
reformulated as delivering the torque requested by the driver, Treq, or as close as
possible if the requested torque is infeasible. This should be done in a fuel and
computationally efficient way. The performance criteria are actually different
measures on torque-tracking ability, therefore they need no further attention
than that the controller should follow Treq as closely as possible. Even though
the specific CO2 emissions are higher for electricity production, the higher
efficiencies of the electric energy converters compared with the efficiency of the
combustion engine result in the fact that the minimization of the well-to-wheel
CO2 emissions can be interpreted as fuel consumption minimization. So, the
aim is to minimize the energy use, with emphasis on the fuel consumption, while
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fulfilling the driver’s requests. This problem is well accommodated by the ECMS,
where the sum of fuel and battery power is minimized. However, battery and
fuel power are not directly comparable and therefore an equivalence factor λ
relating the two is needed; for more information on ECMS, see [4, 6, 3]. The
problem is formulated as:

H = Pf + λPech (15)

[TEM , TENG, ωGEN ,Mode] = argmin(H) (16)

Subject to:
Twh = Treq

Ti,min(ωi) ≤ Ti ≤ Ti,max(ωi)
0 ≤ ωi ≤ωi,max
i ∈ [ENG,GEN,EM ]

Pb,min(SOC) ≤ Pb ≤ Pb,max(SOC)

(17)

where ω is the rotational speed of the energy converter, and Pb is the power at
the terminal of the battery. The torque and speed limits are applied to each
individual energy converter.

3 Offline Optimization
Since the kinematic relations change with the actuation of the clutches, the
optimization problem to be solved differs between the modes. Due to the complex
nature of the problem the optimal solution is not calculated online. For a given
combination of required torque, wheel speed and equivalence factor (Treq, ωwh,
and λ), the cost for each mode can be computed. Therefore, in order to find
which mode to use when, the minimum cost for each mode is calculated offline,
through discretizing the problem and selecting the combination with the lowest
cost. The resulting controls are then stored in tables for a given set of (Treq, ωwh,
and λ). Since the efficiency of the battery does not change much as a function
of SOC in the desired operating region of the battery, the SOC is found to only
have minor effects on the optimal solution, therefore that effect is ignored.

To ensure that (17) are all fulfilled, or in the case of Treq being infeasible,
the produced torque is as close to that requested as possible for that mode, the
cost function in (15) is augmented so that the closest point, that fulfills all the
inequalities is selected.

In order to find which mode is optimal for each combination of Treq, ωwh
and λ, the optimal torque and speed setpoints also have to be found. However,
instead of just storing all the control variables in tables a few insights can be
gained from the kinematic relations in (5)-(11) to reduce the amount of memory
used:

• Mode 1: TEM can be calculated from Treq in all modes. Therefore, Mode
1 requires no tables.

• Mode 2: Only ωGEN has to be stored and since Pf = 0 it is independent
of λ.
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• Mode 3: TEM , ωEM , and therefore PEM are given by Treq and ωwh.
The optimal output power from the generator should be on the optimal
operating line of the engine-generator combination (GENSET). Therefore,
only the optimal output power for each PEM , λ combination has to be
stored together with the optimal operating line of the GENSET.

• Mode 4: Both ωGEN and TGEN or TENG need to be stored as functions
of Treq, ωwh and λ.

3.1 Stored data and complexity
With the insight from above the following seven tables are stored for the different
modes. An example of the resulting tables is also shown in Fig. 2. This results
in 7 tables to be stored, shown in Fig. 2. That is:

• Mode selection (3-D)

• Mode 2: ωGEN (2-D)

• Mode 3: PGENSET (2-D), ωopt−line (1-D) and
Topt−line (1-D)

• Mode 4: ωGEN (3-D) and TGEN (3-D)

The optimization is performed for a dense grid in Treq, ωwh and λ. In order to
minimize the amount of memory used the calculated tables are sparsened in an
iterative manner. This means that the Treq, ωwh or λ resulting in the smallest
error in the interpolation scheme used in the online implementation if removed,
is removed in an iterative manner. This is performed for all tables, so each table
has its own discretization. To simplify the implementation and to reduce the
memory consumption Mode 4 is only used when Treq > 0.

4 Controller
The basic structure of the controller is shown in a block diagram in Fig. 3. The
controller consists of three main subsystems. The first subsystem calculates
the value of the equivalence factor, λ, using the SOC and driving cycle data,
discussed in Section 5.

The second subsystem controls which mode to engage and the third calculates
the torque and speed setpoints for the energy converters, both briefly described
below.

The mode block consists of five subsystems, one for each mode and one
for engine start. The mode controller outputs which mode to activate and if
the engine should be started or not. In order to avoid too frequent engine
starts/stops two thresholds are used, ton and toff . The controller has to request
engine on/off for a duration longer than ton/toff = 1/4 s before it is turned
on/off. These values are found heuristically, iterating through several values and
driving cycles and selecting the values giving the best performance qualitatively.
In the simulator the transition between modes is instantaneous, except for engine
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Figure 2: Structure of the stored data, illustrating the complexity of each mode.
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Figure 3: Structure of the controller. The controller consists of three main
subsystems, one where the equivalence factor is calculated, one where the mode
is selected, and one where the torque and speed setpoints are calculated.

start, which is why no extra penalty or delay on mode switching is implemented.
The torques and speed are then calculated using the tables calculated offline
and the kinematic relations for that mode defined in (5)-(11). Care is also taken
not to exceed any of the constraints in (17).

5 Energy Management
Since the optimal solution is calculated offline and Treq and ωwh are outputs
from the driver model only λ needs to be decided; λ thus controls the energy
management. The energy management of a PHEV is often divided into two
categories. The first is to make use of all the stored energy in the battery, that
is run as an electric vehicle until the SOC is under a certain limit, and then
operates as a hybrid in charge-sustaining mode. This strategy is commonly
denoted charge deplete-charge sustain strategy (CDCS). The main advantage of
this strategy is that it is guaranteed to make use of the stored electric energy and
does not need information about the future driving mission. The second strategy
is to mix usage of fuel and electricity throughout the driving cycle, a strategy
known as blended strategy. It is well established in the literature that a blended
strategy may result in lower fuel consumption than CDCS; see, for instance [2].
However, in order for a blended strategy to make use of all the energy in the
battery the length of the driving cycle has to be known. In the driving cycles
provided by the PHEV Benchmark organizers only the approximate distance as
well as the mean speed is known. In the provided driving cycles this approximate
distance can deviate from the actual distance of the driving cycle by up to almost
10%.
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5.1 Reference SOC
In order to make use of all the stored energy in the battery, a mix between the
blended and CDCS strategies is implemented. The strategy is to underestimate
the approximate distance by 10%, and use that as a horizon for the blended
strategy, then switch to charge-sustaining mode. This is achieved by setting a
SOC reference, SOCc, that is linear in the ratio of traveled distance vs. expected
distance according to (18), a method also used in [10]. The minimum SOCc,
SOCf , is set to 0.315 in order to ensure that SOC(end) ≥ 0.3. The shape of
SOCc is shown in Fig. 4.

Dx = Dreal

0.9Dtot

SOCc = (SOCf − SOC0)Dx + SOC0

SOCf ≤ SOCc ≤ SOCmax

(18)

5.2 Equivalence factor adaptation
A common strategy when using ECMS is to adapt the equivalence factor ac-
cording to an affine function of the SOC error; see [1, 7]. Here, for robustness
reasons, another approach is used. The strategy used in [9] is extended to fit the
PHEV problem. The strategy is to adapt the equivalence factor according to a
tangent function in SOC. The idea is that as long as the SOC is near the desired
SOC the control should remain rather constant; but when the SOC approaches
the limits the control needs to adapt. In [9] this is used in a HEV where the
aim is to maintain the SOC around a constant level. Here, since it is a PHEV,
it is desirable to use the energy stored in the battery, therefore the center of
the tan-function is SOCc. The SOC window used is also decreased linearly with
distance traveled. This is to allow larger deviations early in the driving mission,
and then make the control follow the SOCc on a narrower band towards the
end of the driving cycle. The λ-adaptation is given by (19), where l1 and ls are
constants that control the slope and range of the tangent function, and dSOC is
the allowed deviation from SOCc.

dSOC = (dSOCmax − dSOCmin)Dx + dSOCmax
dSOC ≥ dSOCmin

λ = λc − l1 tan( lsπ

2dSOC (SOC− SOCc))
(19)

A benefit with this formulation is that the smaller the dSOC, the steeper the
slope around SOCc becomes and the faster the control reacts to deviations. In
Fig. 4 the shape of the control is shown for the case when the approximate
distance is correct. That is, the SOCc undershoots the distance traveled, and
thus results in the control going over to charge-sustaining mode. Also shown is
that the allowed SOC deviation gets smaller with distance.

The variable λc still has to be decided. In Table 1 the change in consumptions
compared with the consumptions with optimal λc and end SOC are shown for
different values of λc and different driving cycles. A λc is considered optimal



268Paper 11. Des. and Eval. of EM u. M.-B. ECMS for the PHEV Benchmark

0.7 0.8 0.9
0

1

2

3

4

5

SOC [−]

λ 
[−

]
SOC

c
=0.8075

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

distance [−]

S
O

C
 [−

]

 

 

0.3 0.32
0

1

2

3

4

5

SOC [−]

λ 
[−

]

SOC
c
=0.315

SOC
c

SOC
c
+dSOC

SOC
c
−dSOC

Figure 4: The outline of the basic control shape, λ-function for Dx ≈ 0.2 (left),
SOCc and dSOC (center) and λ-function for Dx ≥ 0.9 (right).

if the λ trajectory follows the desired discharge profile, SOCc. However, since
SOCc is based on undershooting the approximate driving cycle length, there are
λc values that result in lower consumptions; this is, however, hard to predict.
Instead, the optimality of λc is qualitatively assessed and the parameter is found
in an iterative manner. It is seen that the optimal value changes with the driving
cycle. The control ensures SOC(end) ≥ 0.3 for all λc but it might come with a
substantial increase in consumption if the λc value is wrong.

In Fig. 5 the λ and SOC trajectories for the different values of λc on 10xUS06
driving cycle is shown, as well as the mode selection for the final repetition of
the cycle. Due to the driving mission length provided only being approximate,
the control undershoots the length in order to make sure all electric energy is
used. The US06 cycle is, however, 7% longer than the length provided, resulting
in an undershoot of roughly 16% for the controller. It is seen that the control
for λc 6= λc,opt does not follow the SOCc; instead it follows SOCc ± dSOC. For
λc = 2 this results in a control that switches rapidly between λ ≈ 2.5 and λ ≈ 5,
something that comes with a large consumption penalty. It also affects the
number of engine starts, seen in Table 1.

5.3 Adaptive control of λc
In order to avoid the switching nature of the λ-control seen in Fig. 5 the idea is
to adapt λc if the SOC deviates too much from SOCc. This is done with a PI
controller according to:

λc = λc,init +Kp(SOCc − SOC) +Ki

∫
(SOCc − SOC)dt (20)

where Kp and Ki control how fast the controller adapts, but a faster controller
comes with a slight consumption penalty. In Table 2 the consumption change
compared with λc,opt for adaptive λc is shown for different driving cycles and
λc,init. The number of engine starts is also shown. A λc,init is considered optimal
if it roughly produces a SOC trajectory that follows the desired trajectory without
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Figure 5: The SOC and λ-trajectories for different λc values on 10xUS06 driving
cycle as well as the modes used for the last repetition of US06. Mode=5 represents
engine start. A poor λc may lead to a switching characteristic of the control,
which is also visible in the number of engine starts.
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Table 1: The change in consumptions compared with λc,opt for different values
of λc. All controls ensure SOC(end) ≥ 0.3. non is the number of engine starts.

Cycle-info λc ∆mf [%] ∆mf,equiv [%] SOC(end) non
10xFUDS 3 -0.65 -0.19 0.3099 66

Dtot = 119.9km λc,opt=2.65 - - 0.3076 62
Dreal = 119.9km 2 10.35 2.32 0.3066 73

10xNEDC 3 27.02 15.87 0.3420 25
Dtot = 119.9km λc,opt=2.63 - - 0.3197 10
Dreal = 110.1km 2 0.80 0.56 0.3162 15

10xUS06 3 -0.03 -0.71 0.3147 110
Dtot = 119.9km λc,opt=2.85 - - 0.3103 125
Dreal = 128.9km 2 5.30 2.20 0.3078 130

Table 2: The change in consumption with adaptive λc for different λc,init,
compared with λc,opt. non is the number of engine starts.

Cycle-info λc,init ∆mf [%] ∆mf,equiv [%] SOC(end) non
10xFUDS 3 0.10 -0.29 0.3110 68

Dtot = 119.9km λc,init,opt=2.65 -0.57 -0.05 0.3075 61
Dreal = 119.9km 2 -0.87 -0.16 0.3081 57

10xNEDC 3 15.61 0.45 0.3306 22
Dtot = 119.9km λc,init,opt=2.55 -0.16 0.08 0.3188 10
Dreal = 110.1km 2 1.69 0.45 0.3184 16

10xUS06 3 0.07 -0.41 0.3143 125
Dtot = 119.9km λc,init,opt=2.85 0.03 -0.18 0.3109 125
Dreal = 128.9km 2 0.39 -0.05 0.3101 119

λc deviating too far from λc,init, i.e. producing a roughly constant λ trajectory.
This value is, as with λc,opt, qualitatively assessed and found in an iterative
manner. It is seen that the adaptive λc performs as well as λc,opt, better in
some cases, worse in some cases, but most of all it reduces the effect of poor
initial values. This is also confirmed in Fig. 6, where the SOC and λ trajectories
are shown for 10xUS06 driving cycle, as well as the mode selection for the final
repetition of the cycle. The switching nature is almost completely removed,
resulting in a nearly constant λ value during the entire blended phase.

5.4 Estimating λc,init

Although the developed control has been seen to perform well for all reasonable
initial λc, the consumption is still affected by it. Therefore, it is desirable to
achieve an estimate as close as possible to the optimal λc. In Fig. 7, the optimal
λc,init is plotted against approximate distance for the driving cycles used. It is
seen that the shape of the profiles is similar for all driving cycles. The all-electric
range, seen in Fig. 7 as λc,init ≥ 2, differs up to almost 100% for the different
driving cycles. In Fig. 8 the approximate distance required to exceed the all-
electric range is plotted against mean speed. Even if the mean speed is not
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Figure 6: The SOC and λ trajectories with adaptive λc for different values on
λc,init on 10xUS06 driving cycle as well as the modes used for the last repetition
of US06. Mode=5 represents engine start. The adaptive λc reduces the effect of
poor initial values.
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Table 3: The change in consumption with λc,init,mod, compared with λc,init,opt.
non is the number of engine starts.

Cycle-info λc,init,mod ∆mf [%] ∆mf,equiv [%] SOC(end) non
10xFUDS(λc,init,opt=2.65) 2.518 13.62 2.32 0.3066 65
10xNEDC(λc,init,opt=2.55) 2.533 0.80 0.56 0.3162 12
10xUS06(λc,init,opt=2.85) 2.741 5.30 2.20 0.3078 124

20xArtemis Urban(λc,init,opt=2.84) 2 -6.69 -1.41 0.3104 105

enough to describe the driving cycle, since neither the slope nor how transient
it is are captured by the mean speed, the all-electric range is approximated by
a linear function, shown in Fig. 8. Artemis Urban is plotted in magenta to
mark that it is considered an outlier and is not included when the line is fitted.
Since the losses in the vehicle motion equation (1) are quadratic in speed, a
straightforward assumption would be that the all-electric range decreases with
mean speed, an assumption that is also used here. The approximate distance is
then corrected with the proposed linear correction, in order to compensate for
the different all-electric ranges. The result is shown in Fig. 9. It is seen that the
correction shifts the points to the same region, a trend that is well captured by
an exponential function. The final scheme to estimate λc,init is of the form:

Dcorr = Dtot − (k1vavg + k2) (21)
λc,init,mod = k3(1− exp(−k4Dcorr + k5)) (22)

In Table 3 the results for the full controller with λc,init,mod are compared with
the results for λc,init,opt. Even if the estimated λc,init is not too far from the
optimal, the consumption can differ substantially. Interesting to note is that
the driving cycle with the largest λc,init error shows the best result. Looking
at Fig. 10 this appears to be due to the λc,init,mod-control that has a higher
λ value when entering charge-sustaining mode which results in less switching
behavior and lower consumption.

Another important property of the λc,init estimation is that it should be
such that it avoids unnecessary engine starts if the driving mission is within the
all-electric range. This is achieved for all tested driving cycles except FHDS (1
unnecessary start) and Artemis Extra-Urban (2 unnecessary starts), which is
deemed acceptable.

6 Benchmark evaluation
In the PHEV Benchmark the controller is tested on two unknown driving cycles,
hence not used in the design of the controller; see Fig. 11. Both cycles are rather
transient and the first cycle, Arco-Merano, has substantial altitude variations,
whereas the second, Aachen, is on flat road. The results for the benchmark tests
are shown in Table 4. For both tested cycles the controller performs relatively
well and is close to the solution predicted by HOT, described in [1]. The results
are within 3.6 % in fuel consumption. This is despite the fact that the controller
is implemented without knowledge of the future driving profile and road slope
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Table 4: Benchmark results for the developed controller

Metric Arco-Merano Aachen
Total energy use (fuel+electricity) [MJ/km] 1.0809 0.8664

Fuel consumption [MJ/km] 0.9259 0.5913
Well-to-wheel CO2 emissions [kg/km] 0.0942 0.0768

Processor use [s] 2.9874 2.9631
Memory use [MB] 0.1535

Acceleration 70-120km/h [s] 9.1
Acceleration 0-100km/h [s] 7.3

Acceleration 0-1000m on 4% slope [s] 32.6
Braking Distance from 100km/h [m] 37.7614
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Figure 11: The two driving cycles used in the benchmark.
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Figure 12: The SOC and λ trajectories for the two cycles used in the benchmark.

and with a memory usage of just 154 kB. For a closer comparison between the
resulting controls and the solution predicted by HOT, see [7].

The resulting SOC and λ trajectories for the tested cycles are shown in
Fig. 12. For both cycles Dtot is accurate and therefore the SOCc reference has
both a blended and a charge sustaining phase. For Aachen it is seen that the
controller performs well, the λc,init is fairly close to the desired λ-region and the
control manages to maintain SOC near SOCc during the entire blended phase
without large variations in λ. During the charge-sustaining phase the control
becomes a bit switching to maintain SOC within the desired window.

For Arco-Merano it is apparent that a linear discharge profile is not optimal.
This is since the altitude variations, or more accurately the road slope, acts as a
disturbance and is unknown to the controller. During the first uphill the control
works as expected, maintaining the SOC near SOCc, but during the subsequent
downhill phase the recuperation moves SOC outside the desired SOC window.
In the second uphill phase the control then brings the SOC back into the SOC
window, but the final downhill yet again brings the SOC outside of the SOC
window.

7 Discussion
The main objective of the controller is to minimize fuel, and one of the basic
ideas to accomplish this is to make sure that all the energy in the battery is used.
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However, since one of the requirements is that SOC(end) ≥ 0.3 for the entry not
to be disqualified, this needs to be taken into account. This is accomplished by
underestimating the total distance, setting a SOC target higher than SOCmin,
and decreasing the allowed deviation from the desired SOC the closer to the
end of the cycle the vehicle gets. Using a tan-function can also be considered
a safety measure since it is seen in Fig. 5 that the tan-function does not make
the control follow the desired discharge profile; instead it makes sure that the
control stays within the desired SOC window. All these safety measures affect
the consumption, but how much and in what way depends on the driving cycle.

For instance, for Arco-Merano, setting λ = λc, that is, removing the tan part,
improves the fuel economy by 2.9 %, but instead for Aachen SOC(end) < 0.3.
In a real vehicle the lower SOC limit would be more of a soft constraint and this
might not be critical. Without perfect look-ahead the control will potentially
end up in charge-sustaining operation and this is something that needs to be
handled. One way could be with gain scheduling of the gains in (20), or as here
with a tan-function. This is also true for SOCf . For some cycles, especially with
downhill phases, it would be beneficial to set SOCf < 0.3, forcing the controller
to follow a steeper discharge profile but then for other cycles SOC(end) < 0.3.

Removing the underestimation of driving cycle length is not as trivial since
the design of λc,init,mod depends on it. However, since the aim is to minimize
fuel consumption, a reasonable assumption is that the fuel penalty of ending
with energy left in the battery is larger than the fuel penalty of the strategy not
being completely blended, which supports the under-estimation as long as the
driving cycle length is not exactly known.

8 Controller Extensions
Up until now the focus has been on the controller implementation and design
trade-offs that were made for the benchmark. This section describes some
extensions that were implemented after the benchmark was completed. Both
cycles used in the benchmark evaluation highlight different aspects of potential
improvement for the controller. Two suggested improvements for the controller
are increasing the allowed SOC window and incorporating topology information,
both described in the following subsections.

8.1 Increasing the allowed SOC window

For Aachen the control during the charge-sustaining phase switches between
λ ≈ 3 and λ ≈ 6, something that is also visible to a lesser extent in Arco-Merano
around 9000 s, which increases the consumption. This is almost completely
removed if dSOCmin is increased from 1% to 2.5%, with a corresponding fuel
consumption decrease of 2.7 % (Aachen) and 0.9 % (Arco-Merano). Even with
this larger SOC window SOC(end) > 0.3 for both cycles, something that also
holds for all other tested cycles except 10xFUDS, where SOC(end) = 0.298, but
in a real application such small deviations might be acceptable.
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8.2 Including topography information
In Arco-Merano during the downhill segments braking is needed and energy can
be recuperated, energy that could be used in the uphill phases. However, to
be able to make use of this potential energy some look-ahead is necessary. If
the topography is known beforehand and provided to the controller from map
and GPS data this could be used in the controller. Vehicle potential energy
recuperated in the downhill phases is not taken into account when setting the
SOC reference; if estimates of this can be used this could offer potential for
improvement. A suggested extension to the control strategy, given that this
information is available, is to relate the potential energy to SOC and decrease
the target SOC, SOCf , with the amount of energy that can be expected to be
recuperated. The requirement is still that SOC(end) ≥ 0.3 and therefore SOCf
is increased as a function of the traveled distance. The new SOCf strategy used
together with (18) thus becomes:

SOCf = SOCf,o − (1−Dx)hnegmvehηavgg

Qtot

SOCf ≤ SOCf,o
(23)

In (23) SOCf,o = 0.315, hneg is the sum of altitude difference in the downhill
phases in the driving cycle, ηavg is an estimate of the average efficiency from the
wheels to the battery, set to 0.8, and Qtot is the energy capacity of the battery.
In the presence of altitude variations this evaluates to a quadratic expression
in distance traveled, but on flat road it is equivalent to (18). The results for
Arco-Merano with this strategy, as well as the results when just increasing
dSOCmin, are shown in Fig. 13.

The resulting trajectories are similar, but as expected the control with varying
SOCf increases the battery usage during the first uphill and therefore ends at
a lower SOC, SOC(end) = 0.5036 vs SOC(end) = 0.5454. When dSOCmin is
increased the switching nature of λ disappears but with the addition of varying
SOCf the switching returns. This is, however, deemed acceptable since the
controller still needs to be robust to the other driving cycles. The extra depletion
of the battery results in an additional fuel consumption reduction of 4.9 %,
results that also hold for the other driving cycle with altitude variations provided
by the organizers (VAIL2NREL, 12.4 % decrease).

9 Conclusions
The design and development of the winning control strategy in the IFPEN PHEV
Benchmark is described. The strategy is an adaptive map-based implementation
of ECMS striving to be as blended as possible, but still ensuring that all electric
energy is used. The controller tries to follow a SOC reference that is linear in
traveled distance, but to ensure that all electric energy is used this distance is
underestimated. The equivalence factor is adapted according to a function in
SOC, a function whose center adapts according to how well the SOC reference
is followed. Finally, a method for estimating the initial value for the controller
from driving cycle data is developed.
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In the benchmark the controller is seen to perform well, close to the results
predicted by HOT. This is despite being implemented just using the approximate
driving distance and average velocity. In the case of altitude variations the
assumed linear discharge profile is not followed, due to the fact that the slope
of the road is unknown to the controller. Also, the allowed SOC window, kept
narrow to ensure complete use of the battery energy whilst still ensuring that
the final SOC is within the limits prescribed in the benchmark, affects the
consumption more than necessary.

The controller is therefore extended, first to be allowed to make use of more
of the battery, and finally to incorporate topology if available, a strategy that is
seen to perform well with promising consumption results.
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A Notation used

Table 5: Symbols used and their meaning.

Symbol Meaning Unit
rwh Wheel radius m
Jveh Driveline moment of inertia at the wheels kg m2

mveh Vehicle mass kg
g Gravitational acceleration m/s2

θ Road slope rad
v Vehicle speed m/s

cv,0−2 Longitudinal vehicle model parameters [N,Ns/m,Ns2/m2]
Uoc Open-circuit voltage [V ]
Rc Internal resistance [Ω]
Q0 Battery capacity [As]
Qtot Energy capacity of the battery [J ]
SOC State of Charge [−]
ρf Fuel density [kg/m3]

qLHV Lower heating value of the fuel [J/kg]
ṁf Fuel massflow [kg/s]
mf Fuel consumption [L/100km]
mech Fuel equivalent of consumed electricity [L/100km]
hneg Height meters downhill in the driving cycle [m]
c1−3 Position of clutch 1-3 [−]
T Torque [Nm]
ω Angular velocity [rad/s]
P Power [W ]
η Efficiency [−]
I Current [A]
γ Gear ratio [−]

Dtot Estimated driving cycle distance [km]
Dreal Actual distance traveled [km]
non Number of engine starts [−]
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Table 6: Subscripts used

Subscript Meaning
ENG Engine
GEN Generator
EM Electric Motor

GENSET Engine-generator combination (Mode 3)
rs Ring-Sun
fd Final Drive
wh Wheel
gb Planetary gear box
req Requested
s Sun wheel of planetary gear box
r Ring wheel of planetary gear box
c Carrier wheel of planetary gear box
f Fuel
b At the terminal of the battery
ech Electrochemical, inside the battery

f → ech Fuel to electrochemical
avg Average

Table 7: Control parameters

Name Meaning
SOCc SOC reference
dSOC Allowed deviation from reference

dSOCmax/min Maximum and minimum allowed dSOC
SOCf Final SOC reference
SOCf,0 Final SOC reference with adaptive SOCf
SOC0 Initial SOC
ton/toff Thresholds for changing the engine state

λ Equivalence factor, relating fuel and electricity
λc Center of the λ-control

λc,init Initial λc
λc,init,mod Modeled initial λc

l1,s Shape parameters of the tan-function
kp,i Gains for the λc control
k1−5 Parameters for the λc,init,mod estimation
Dx Corrected actual distance driven



284Paper 11. Des. and Eval. of EM u. M.-B. ECMS for the PHEV Benchmark

B Benchmark Data

Table 8: The scoring metrics used in the benchmark

Metric Weight

Performance(30%)

Acceleration 0-100km/h [s] 7.5%
Acceleration 70-120km/h [s] 7.5%

Acceleration 0-1000m on 4% slope [s] 7.5%
Braking Distance from 100km/h [m] 7.5%

Energy and Economy(50%)
Total energy use (fuel+electricity) [MJ/km] 15%

Fuel consumption [MJ/km] 20%
Well-to-wheel CO2 emissions [kg/km] 15%

Computational performance (20%) Processor use [simulation time] 10%
Memory use [MB] 10%

Table 9: Data for CO2 emissions

Gasoline well-to-tank emissions 12.5gCO2/MJ of fuel
Gasoline combustion 73.4gCO2/MJ of fuel

Electricity production(Europe average) 94.7gCO2/MJ of electric energy
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