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Abstract

Efficient drive cycle simulation of longitudinal vehiclegpulsion models is an important
aid for design and analysis of power trains. Tools on the etadday mainly use two dif-
ferent methods for such simulations, forward dynamic orsgstatic inverse simulation.
Here known theory for stable inversion of non linear systesmssed in order to combine
the fast simulation times of the quasi-static inverse satioih with the ability of including
transient dynamics as in the forward dynamic simulatiore $table inversion technique
with a new implicit driver model together forms a new concepgerse dynamic sim-
ulation. This technique is demonstrated feasible for Pehicopulsion simulation and
specifically on three powertrain applications that inclidportant dynamics that can not
be handled using quasi-static inverse simulation. Thensites are engine dynamics,
drive line dynamics, and gas flow dynamics for diesel enginddch also are selected
to represent important properties such as zero dynam&snamces, and non-minimum
phase systems. It is shown that inverse dynamic simulagi@asy to set up, gives short
simulation times, and gives consistent results for desggts exploration. This makes
inverse dynamic simulation a suitable method to use foredciycle simulation, espe-
cially in situations requiring many simulations, such asirojzation over design space,
powertrain configuration optimization, or development ofyertrain control strategies.

Optimal vehicle propulsion control is developed with spéébcus on heavy trucks
used for long haulage. The power to mass ratio for a typicalheluty truck makes
even moderate road slopes significant in the sense thanitisssible to keep a constant
cruising speed. This gives an interesting problem how tdrobuehicle speed such that
fuel consumption is minimized. Todays telematic systergstioer with three dimensional
road maps can provide the vehicle control system with infdrom of the road topography.
This enables intelligent cruise controllers that utilinéstinformation to control engine
fueling and gear shifting such that an optimal speed trajgés obtained.

First the optimal control problem is solved numerically byndmic programming,
giving a controller with real time capabilities that can b&ed on-line in the vehicles
control system. Simulations of such a system on authengid poofiles show that it has
potential for significant fuel savings. To achieve knowleadfpout the underlying physics
that affects the optimal solution, the optimal control gevb is solved in detail and an-
alytical expressions for the conditions of optimality aexided. Those expressions are
then used to find optimal solutions on constructed test roafilgs. Such test cases point
out the typical behavior of an optimal solution and also Watparameters that are decisive
for the fuel minimization problem, and also how they quatitiely influence the behav-
ior. Itis for example shown that small non-linearities il #ngine torque characteristics
have significant effect on the optimal control strategy. Ebkitions for the non linear
engine model have a smoother character but also requiredgnmgdiction horizons. For
optimal gear ratio control it is shown that the maximum faoglfunction is essential for
the solution. For example, in the case of a continuoushadeitransmission it is shown
that the gear ratio never is chosen such that engine speedadscthe speed of maximum
engine power. For a discrete step transmission the gedéingHidsses are essential for the
optimal shift positions, but over all the solutions are elts continuous solutions.






Sammanfattning

Effektiv korcykelsimulering av longitudinella fordonsimdrivningsmodeller &r ett vik-
tigt hjalpmedel for design och analys av drivlinor. Tillgdiga verktyg p& marknaden
idag anvander huvudsakligen tvd metoder for sddan simglefiaméatdynamisk simu-
lering eller kvasistatisk inverssimulering. Kénda metofie stabil invertering av olin-
jara system anvands har for att kombinera de snabba begfafiaktiva kvasistatiska in-
verssimuleringarna med den framatdynamiska simulerisgsijlighet att inkludera tran-
sient dynamik. Metoden for stabil invertering tillsammamsd en ny implicit férarmodell
skapar tillsammans ett nytt koncept, inversdynamisk sémind). Denna metods anvand-
barhet for simulering av fordonsframdrivning demonstsgsd tre drivlineexempel som
innehaller viktig transient dynamik som inte kan hanterasl ivasistatisk inverssimuler-
ing. Utvidningarna &r motordynamik, drivlinedynamik ocisodesdynamik for diesel-
motorer. Dessa har ocksa valts for att representera vigtjgaskaper sdsom nolldynamik,
resonanser och icke-minfas-beteende. Det visas att ohyeasnisk simulering ar enkel
att sétta upp, ger korta simuleringstider och ger kondiategsultat vid parameterstudi-
er. Detta gor att inversdynamisk simulering ar en passaretedior kdrcykelsimulering
sarskilt i situationer som kraver manga simuleringar, saparameteroptimering, opti-
mering av drivlinekonfiguration eller utveckling av regieategier for drivlinor.

Optimal styrning av fordonsframdrivning utvecklas medskér fokus pa landsvags-
koérning med tunga lastbilar. Férhallandet mellan motetefioch fordonsmassa for en
typisk tung lasthil gor att det inte ar mojligt att halla emistant marschfart ens i relativt
sma vaglutningar. Darfor ar det ett intressant reglergnobdtt styra fordonets hastighet
sa att bransleforbrukningen minimeras. Dagens telenyatigm tillsammans med tredi-
mensionella vagkartor kan levera information om vagtopbdgitl fordonets styrsystem.
Dennainformation ger méjligheten att skapa intelligeatéfallare for att styra branslein-
sprutning och véaxling sa att en optimal hastighetstrajékrhaills.

Forst I6ses det optimala styrnings-problemet numeriskd dyaamisk programmer-
ing vilket ger en regulator med realtidsegenskaper som kaaralas on-line i fordonets
styrsystem. Simulering av ett sddant system pa autentisggprufiler visar p& potential
for signifikanta bréanslebesparingar. Det optimala styrsfyobelemet I6ses sedan i de-
talj for att f& kunskap om den paverkande underliggandééysbch analytiska uttryck
for optimalitetsvillkoren héarleds. Dessa uttryck anvafiatsatt hitta optimala I6sningar
pa konstruerade testvagprofiler. Sddana testfall pekapigki beteende for en optimal
I6sning och ocksa vilka parametrar som ar bestammande &mnstEminimeringsprob-
lemet. Till exempel visas att sma olinjariteter i motornsmemtkaraktaristik har stor be-
tydelse for den optimala reglerstrategin. Losningarnal&ir olinjara motormodellen har
en mjukare karaktar men kraver ocksa langre prediktionstior. For optimal véaxlingsre-
glering visas det att bréanslebegréansingsfunktionen &argvfldr 16sningen. | till exempel
fallet med kontinuerligt variabelt utvaxlingsforhallaadisas det att utvaxling aldrig valjs
sa att varvtalet for motorns maxeffekt éverskrids. For egatl vaxelldda sa ar vaxlings-
forlusterna viktiga for de optimala vaxlingspunkterna,ms®m helhet &r I6sningarna
liknande de kontinuerliga I6sningarna.
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Introduction

For road vehicles performance, cost, and safety haveiwadlty been important factors
to optimize. Also environmental aspects has emerged as priogty, where one main
focus of the industry has been to reduce fuel consumptionttaerby CQ emission.
In this strive, the power trains and the vehicle’s contrateyns have become more and
more complex. One example is hybrid vehicles where two orenpawer sources, in a
coordinated fashion, propels the vehicle. Another exans@evanced traffic information
systems that provides information to the driver and/or thleicle control system. Then
the current road and traffic situation can be used in an igé&git way, such that the ve-
hicle can be driven more fuel efficiently. Systems that caapatb current situation and
operate in the most fuel efficient way for that situation amresikample cruise controllers,
gear shifting programs for automatic transmissions, amdgynmanagement systems for
hybrid vehicles.

In the development of such complex systems simulation arigh@ation have be-
come necessary tools when designing a competitive proldaicist optimized with respect
to many criteria. The way to handle this is to use mathemlaticaels of the vehicle, and
simulation of such models can to a high extent replace phlgi®totypes when test-
ing different design choices. To find an optimal design ofghgsical vehicle and/or its
control system, simulation of the mathematical models eanded to evaluate different
criteria. This process can be automatized by coupling timellsition with an optimiza-
tion algorithm. Simulation and optimization also shortéresproduct development cycle
which is necessary to cut development costs. A recent cassevgimulation studies re-
placed most prototype testing is the new Fiat 500 with a tdéalelopment time of 18
months. Simulation is also an important part of many cordfgbrithms where predic-
tions of future vehicle states are made by simulation, aed tsed to find the optimal
control signals.

In this thesis simulation methods and optimization of vihjgropulsion has been
studied with the main focus on fuel consumption. The first pthe thesis treats ef-



2 1 Introduction

ficient vehicle propulsion simulation methods that areahlé to for example parameter
optimization and control strategy evaluation. The secaart fpeats fuel optimal driving
of heavy trucks, and special attention is given to optimataa of engine fueling and op-
timal gear shifting strategies under the assumption tleatdhd topography ahead of the
vehicle is known. The results of the thesis can for exampleseel to design fuel optimal
control strategies, but the methods presented are alsiwaplgl for other purposes where
one important example is emission minimization.

1.1 Contributions

The contributions of the thesis will here shortly be summedifor each appended paper.
A more detailed description is given in the introduction fbe respective parts of the
thesis.

Efficient Drive Cycle SimulationAnders Fréberg and Lars Nielsen, IEEE Transac-
tions on Vehicular Technology, accepted for publicatidi02 The paper proposes a hew
method for inverse dynamic vehicle simulation. The new méfls compared to forward
dynamic simulation regarding for example simulation setffprt, consistency for pa-
rameter exploration, and simulation time. Also, a new drivedel for inverse dynamic
simulation has been developed that makes it easy to define dytle tracking that is
independent of vehicle properties.

Inverse Dynamic Simulation of Non-Quadratic MIMO Poweirtridlodels -Application
to Hybrid Vehicles Anders Froberg, IEEE Vehicle Power and Propulsion Comiege
2006. Extending the previous paper, it is demonstrated fipigal non-quadratic MIMO
power train models can be reformulated enabling inverseuayo simulation. It is also
demonstrated how time variant system order and time varidative degree is handled.

Controlling Gear Engagement and disengagement on heaskstfar minimization
of fuel consumptiopAnders Froberg, Lars Nielsen, Lars-Gunnar Hedstréom, aagrivs
Pettersson, IFAC World Congress 2005. This paper treat®fitenal use of neutral gear
using preview information of road topography. The conttithuis to show the magnitude
of possible fuel savings by making the correct decisionéegtdownhill slopes whether
to disengage the gear or to cut the fuel injection.

A Real-Time Fuel-Optimal Cruise Controller for Heavy Treaksing Road Topogra-
phy Information Erik Hellstrom, Anders Froberg, and Lars Nielsen, SAE \W&@bngress
2006. Itis shown how a predictive cruise controller withl teae performance can be de-
signed using dynamic programming, and the magnitude oflpledsel savings is demon-
strated.

Explicit Fuel Optimal Speed Profiles for Heavy Trucks on a&elfopograhic Road
Profiles Anders Froberg, Erik Hellstrom, and Lars Nielsen SAE Wdlthgress 2006.
To gain knowledge of decisive parameters affecting fuekoomption, fueling control is
here studied on constructed road profiles. The simple tegtscegether with analyti-
cal solutions to vehicle motion gives valuable insight ittite properties of the optimal
control.

Optimal Control Utilizing Analytical Solutions for Heavyriick Cruise ContrglAn-
ders Froberg and Lars Nielsen, technical report that is #&nebed version of the paper
Optimal fuel and gear ratio control for heavy trucks withgaevise affine engine charac-



1.1 Contributions 3

teristics Anders Froberg and Lars Nielsen, Fifth IFAC symposium oveades in auto-
motive control, California, 2007. The fuel optimal contppsbblem treated in the previous
paper is solved in more detail. Engine torque is a piece viisedunction of fueling, and
optimal gear choice is presented both for a continuouslialsée transmission as well as
for a discrete stepped transmission. The theoreticalteare used in a simple rule based
predictive cruise controller and the possible fuel saviiogshat method is demonstrated
in simulations on authentic road profiles.

The following work have also been published by the authdrabeinot included here:

Dynamic Vehicle Simulation -Forward, Inverse and New Mixgaksibilities for Op-
timized Design and ControAnders Froberg and Lars Nielsen in Modeling: Diesel En-
gines, Multi-Dimensional Engine, and Vehicle and Enginst&mns. Volume 2002-01-
1619 of SAE Technical paper series SP-1826.

A Method to Extend Inverse Dynamic Simulation of Powertsamith Additional
Dyanmics, Anders Froberg and Lars Nielsen in 1:st IFAC symposium onahdes in
Automotive Control.

Extending the Inverse Vehicle Propulsion Simulation Carc¢e Improve Simulation
PerformanceAnders Fréberg, Licentiate thesis.

Optimal Fuel and Gear Ratio Control for Heavy Trucks withd@igVise Affine Engine
CharacteristicsAnders Froberg and Lars Nielsen, Fifth IFAC Symposium owakttes
in Automotive Control 2007.
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Efficient vehicle propulsion
simulation






Inverse dynamic simulation

Modeling and simulation are today widely used tools whengigsg new power trains
and control systems. In for example optimization of a powaint a candidate design
is evaluated by use of an objective function. When optingziomplex systems the cal-
culation of the objective function can not always be done &lgwdation of analytical
expressions, instead a simulation of the model has to be woc&culate the objective
function. Using simulation in this way possibly a large nianbf simulations have to be
performed of the same model, where some parameters ard frane simulation to simu-
lation. For these situations computational efficiency amusistency between simulations
are important properties for the simulation method. Theiaithis part of the thesis is to
find a simulation method that has good behavior with resetttdse properties.

When certifying a vehicle with respect to fuel consumptiod @mission levels, the
vehicle is driven according to a given speed profile, a dnix@ec Hence, a typical task
for vehicle propulsion simulation is drive cycle simulatiohich is the main topic of this
part of the thesis. Another typical task for vehicle proprissimulation is performance
simulations which are done to test for example accelergteformance or the vehicles
ability to keep speed in steep grades. Although it is not eliied here, the methods
presented in this part can be used for such simulations ds wel

Mainly two different methods have been used for vehicle ptsipn simulation. For-
ward dynamic simulation and quasi-static inverse simaihathe forward dynamic simu-
lation typically uses models that consist of a set of ordim#iferential equations, ODEs,
that uses the drivers input, e.g. throttle, brakes, andisteéput, to calculate the ve-
hicles states and speed. Since the method is capable ofifgudghamic systems, the
prediction of for example fuel consumption and emissionslm@aaccurate. Quasi-static
inverse simulation uses speed and acceleration given fnersgeed profile to calculate
the required torque and speed at the wheels. The computiagioigoes backward through
the driveline to compute the generating variables to predbe given torque and speed.
Each component uses a static model and hence the predibiliy for this type of sim-
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ulation is not as good as for the forward dynamic simulation. the other hand, due to
the static models the simulation time for these models arg steort, which makes it a
suitable method for initial concept studies and paramedéinozations. This first part
of the thesis suggests that known theory for inversion of-lifegar systems is used to
combine the merits of forward dynamic simulation and quatic inverse simulation.

2.1 Overview and contributions of simulation

This thesis part on simulation consists of two papét#icient Drive Cycle Simulation
Anders Froberg and Lars Nielsen, IEEE Transactions on \Wdnidechnology, accepted
for publication, 2008, andnverse Dynamic Simulation of Non-Quadratic MIMO Pow-
ertrain Models -Application to Hybrid Vehicleg\nders Fréberg, IEEE Vehicle Power
and Propulsion Conference 2006. In the first paper a newsavéynamic simulation
method is proposed. A comparison of forward and inverse Isitiom of vehicle propul-
sion models is presented. The comparison is done in ordeataae how well different
simulation methods are suited for different tasks. For gparhow well the method can
capture transients, how suitable it is for optimizationg &iow computationally efficient
the method is. A new driver model for inverse dynamic sinmatahas been developed
that makes it easy to define drive cycle tracking that is ieteljent of vehicle proper-
ties. This work has also been presented more thorougtitxiending the Inverse Vehicle
Propulsion Simulation Concept-To Improve Simulation Berfance Licentiate thesis,
Anders Froberg.

The second paper is an extension to the first and deals witle goactical issues
for vehicle propulsion simulation. For example, invers@ayic simulation in general
requires a quadratic system, i.e. a system with equally nrgmyts and outputs. This
paper demonstrates how this requirement can be relaxegficatly non-quadratic vehi-
cle propulsion models. It is also demonstrated how vehiag@plsion models with time
variant system order and time variant relative degree cainbelated.

2.1.1 Related publications

The following publications by the author also treats thejescibof this part, but are not
included here.

Dynamic Vehicle Simulation -Forward, Inverse and New Mixegksibilities for Op-
timized Design and ControAnders Froberg and Lars Nielsen in Modeling: Diesel En-
gines, Multi-Dimensional Engine, and Vehicle and Enginst&mns. Volume 2002-01-
1619 of SAE Technical paper series SP-1826.

A Method to Extend Inverse Dynamic Simulation of Powertsamith Additional
Dyanmics, Anders Froberg and Lars Nielsen in 1:st IFAC symposium omahdes in
Automotive Control.

Extending the Inverse Vehicle Propulsion Simulation Ca@t<e Improve Simulation
PerformanceAnders Fréberg, Licentiate thesis.



Paper A

EFFICIENT DRIVE CYCLE SIMULATION?

Anders Froberg*, Lars Nielsert

* Dep. of Electrical Engineering, Link6pings universitet,
SE-581 83 Linképing, Sweder{f r oberg, l ars}@sy. | i u. se.

Abstract

Drive cycle simulations of longitudinal vehicle models isimportant aid for de-
sign and analysis of power trains, and tools on the markeiytaahinly use two
different methods for such simulations, forward dynamicjoasi-static inverse
simulation. Here known theory for stable inversion of norehr systems is used
in order to combine the fast simulation times of the quaaiisinverse simula-
tion with the ability of including transient dynamics as hretforward dynamic
simulation. The stable inversion technique with a new igipliriver model
together form a new concept, inverse dynamic simulationis Téchnique is
demonstrated feasible for vehicle propulsion simulatiot specifically on three
powertrain applications that include important dynamiieg tan not be handled
using quasi-static inverse simulation. The extensiongagine dynamics, drive
line dynamics, and gas flow dynamics for diesel engines, wliso are selected
to represent important properties such as zero dynamissnaaces, and non-
minimum phase systems. It is shown that inverse dynamiclation is easy to
set up, gives short simulation times, and gives consisesullts for design space
exploration. This makes inverse dynamic simulation a blétanethod to use
for drive cycle simulation, especially in situations regugy many simulations,
such as optimization over design space, powertrain cordigur optimization,
or development of powertrain control strategies.

1This is an edited version of [11], Efficient drive cycle simtitn, accepted for publication in IEEE Trans-
actions on Vehicular Technology.
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Forward dynamic simulation

‘ Cycle —% Driver HEngine HTransm.H Wheel HVehicle ‘

Quasi-static inverse simulation

‘ Cycle HVehicle H Wheel HTransm.H Engine‘

Quasi static Forward Dynamic

*Limited number of states *Dynamic system

due to numerical differentiation *High accuracy

*Solves static equations *Typically slower simulations

*Fast simulations

Inverse dynamic simulation

Inverse dynamic simulation

‘ Driver M Cycle HVehicle H Wheel HTransm.H Engine ‘

Figure 1: Schematic depiction of different computational schemikss, ilustrating
goal of the paper.

1 Introduction

There are a number of important uses of drive cycle simuiatiand among all appli-
cations there are many where simulation time is importahthat been used a lot in
concept studies [31, 14, 21], and other examples where dyisle simulation is used is
in optimization over a design space of parameters [14, h3jptimization of powertrain
configuration [24, 2], and in design of powertrain contrateyns, [3], [25]. Drive cycle
simulation is also used in controllers such as model prigdictuise controllers, [13].

There are two main ways to do longitudinal vehicle simulatiquasi-static inverse
simulation and forward dynamic simulation. The quasiistaterse simulation uses ve-
hicle speed and acceleration to calculate required torguespeeds backwards through
the driveline. Finally fuel flow is calculated. See Figureot & typical computational
scheme of quasi-static inverse simulation. No driver méglesed and drive cycle track-
ing is explicit. In existing tools today the followinguasi-static approacfis], [30] to
inverse simulation is taken. The spee(t,), and accelerationy(t), are approximated by
v(t) = (v(kh+h) +v(kh))/2,v(t) = (v(kh+h) —v(kh))/h. In this way only static equa-
tions are solved when the input is computed, and a major @agarf this method is that
simulation time is low. On the other hand, in forward dynasiioulation, differential
equations are solved using, e.g., throttle position or flogl as input, and vehicle speed
as output. Given an initial value of the vehicle’s states thiednput, the system is numer-
ically integrated to compute the speed trajectory. Thi®tgpsimulation also requires
a driver model, a controller, to track a given speed trajgcdrive cycle) as depicted
in Figure 1. For forward dynamic simulation drive cycle &ing is implicit since it is
obtained using an explicit driver model, and it is straightafard to include additional
significant dynamics. However, the differential equatitireg have to be solved typically
gives an order of magnitude longer simulation times for@ldycle simulations than what
is typical for quasi-static simulation.

Because of the importance of drive cycle simulation it isinatthat there are several
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tools for simulation of longitudinal vehicle models on thanket today. Example of quasi-
static inverse tools are, e.g., Advisor [30] and QSS-TB [Hsld examples of forward
dynamic simulation tools are, e.g., PSAT [23], Capsim [Hd.aV-Elph [5]. All these
tools use Matlab/Simulink.

1.1 Goal of paper

It would of course be of considerable value to be able to ektha time-efficient quasi-
static simulation with important dynamics without sigréfitly loosing simulation per-
formance. The goal of this paper is to find a simulation metwat such properties.
Guiding principles in this development have been to makeresibns to the quasi-static
method that are sufficiently general to include dynamic$efdgowertrain, such that im-
portant transients can be captured in the simulation. Gatasc inverse simulation uses
only one state, vehicle speg(t), so that the control is determined bt) = f(v(t),v(t))
. If more dynamics needs to be added to the models, then tbesegimulation strategy
has to be extended. More stateBave to be included, and they have to be obtainable
from the velocity profile, which means that higher derivasivof the speed, or drive-
cycle, may be needed. This can formally be writterugtg = F(v(t),v(t),z(t),z(t)) =
F(v(t),v(t),v(t),...), where either additional states or higher derivatives mayised.
Such simulation, here naméa/erse dynamic simulatigis the main topic of this paper.
Given the main objective of the paper, i.e. combining thedgpmperties of quasi-
static and forward dynamic simulation, see Figure 1, thezeaanumber of ramifications
of the problem that have to be considered and the rest of therpgoutlined as follows.
In Section 2 inversion of non linear systems with added dyiosiis described. Since
drive cycles in general are non smooth, tracking within t&ig an issue in drive cycle
simulations. This together with driver models is treated®attion 3. In Section 4 the
proposed method of inverse dynamic simulation is demotestri@asible on powertrain
models. This includes additional dynamics that has signitiégnfluence on fuel con-
sumption and emissions, and also that internal variablesaptured. Last, in Section 5
simulation performance measures such as simulation tieeypseffort, and consistency
in design space exploration are discussed, and inverserdysanulation is compared to
forward dynamics simulation.

2 Inversion of nonlinear systems

Inverse dynamic simulation is to compute generating véeglike fuel flow and engine
torque when the output, the velocity profile, is given, whickans that it is a problem of
system inversion. This section will present the theory taubed, whereas the practical
use of the theory will be demonstrated on important powiertrandels in Section 4.
Various domain specific solutions to system inversion haenldeveloped, e.g. in
rigid body dynamics, [22], [29], [32]. A review of methodsrfmverse dynamic sim-
ulation of nonlinear systems in aerospace applicationsvengn [20] where a method
based on numerical differentiation followed by algebraigeirsion is presented, and an
application of that method is presented in [26]. This metisdimited in that it uses an
Euler approximation of the derivatives. Another way to perf system inversion is to



12 PAPER A. EFFICIENT DRIVE CYCLE SIMULATION

use a tool for non-causal simulation like e.g. Dymola, whteemethod is based on a
structural manipulation of equations. However, only minimphase systems are treated
and numerical differentiation of the inputs is used [4].

A different possibility utilized in this paper, is to use ttieeory of stable inversion of
nonlinear systems. Drivecycles need not be continuouffigrdntiable, but for physical
powertrains, having finite forces and torques, simulatignas will be smooth, and it
turns out that it is not a limitation to assume smoothnessrdfore, the method described
in [6] and [16] can fruitfully be adapted. Related theory regented in [17]. The rest
of this section presents the method by showing how a systeordifiary differential
equations is manipulated in order to perform an inverse alyoaimulation of it. The
method handles minimum- as well as non-minimum phase sgstemd in the next section
it will be shown how numerical differentiation of the inpussavoided. A large class of
systems that can be simulated in the forward dynamic wayleanelby also be simulated
in the inverse dynamic way.

2.1 Stable inversion of nonlinear systems

A short review of the used inversion method will be given hdret u(t) be the inputs,
y(t) the outputs, ana(t) the states of a given system. Suppose that the system can be
written in input-affine form

Xt) = f(x(t)+g(x(t)u(t) 1)

y(t) = h(x(t)) )
Assume that the number of inputgs,equals the number of outputs. This is not a crucial
assumption as demonstrated for example in [12], where dahay is used to cast the
problem in this formulation. Consider also a system wheratiées with suffixd corre-
sponds to a system where variables are smooth, corresgptadiracking of a velocity
profile within tracking limits. Given a desired outpyt(t) that is smooth, the problemis
to solve

X(t) = flxa(t))+9(xa(t))ua(t) ®3)
ya(t) = h(xa(t)) (4)

for the inputuy(t), and possibly also the stateg(t). With the notion smooth, it is here
meant that a signal is sufficiently many times continuous#fgrentiable. From here on it
will be assumed that all functions are smooth such that thessary derivatives exist and
can be computed. It will also be assumed th) = 0 andh(0) = 0. This can always be
achieved for systems like (3)-(4) by a simple change of coatés.

Let L be the standard notation for Lie-derivatives according to

LihX) = 3 fi(xIAhx) )

L'h(x) = Ly (Lf;lh(x)) 6)
Ifforall1 <i,j <q,forallk<r;—1, and for allx in a neighborhood of®
Ly, Lfhi(x) =0 (7)
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and theq x g matrix

Lo, LY Thi(X) ... LggL Thu(x)

. Lg, L2 Mha(X) ... Lo L? tha(x)

B(x) = : L 8
LouL' () o LggLy he(x)

is nonsingular, then the system is said to have a vectoiveldegree = (r,ro,...,rq)
at the point®. That is, the relative degree of the system is the numbenafgione has
to differentiate the outputs for at least one input to apeaaticitly.

The first step in the inversion procedure is to compute tregivel degree. The next
step is to partially linearize the system. This is done bfedéntiatingy; (t) until at least

oneu;(t) appears explicitly. Defing, = yfk’l) (t)fori=1,...,qandk=1,...,ri and let

()= (E10). 80 &, 0. E80).... &5 1) .EL 1)

= (yl(t)ayl(t)7"'aylrl Y ( )7)’2('[) ’y2r2 Y ( )’ ’yqrq 1)(t))T (9)

Now the change of coordinates can be defined. Synisea function ofx, it can be
written as

T

€7 =uvx (10)
wheren are variables needed, and the only constraint in the chéigésdhat the jacobian
matrix of y(x) must be nonsingular af so that it is a local coordinates transformation in
a neighborhood of. It is always possible to find suchyx) [17]. With this choice of
coordinates the following system which is partially lin@ag is achieved

g1 = &
£ () . & (1) fori=1,....9 (11)

U g® = ai@Et),nt)+BiEwn),nm)ut)
N(t) = sa(&(1),n(t)) +s(&(t), n(t)ut)

where the vectoo and the matrif3 are

agn) = Lthw'En) (12)
BEN) = Lolf h(™(En) (13)
and the functionsz(§,n) ands,(§,n) are given by the choice of.
Denotey(") = (y(lrl),...,ygq>). Then it can be seen in the first part of (11) that

YO () = o (E(t),n(t)) + Bi(E(t),n(t))u(t). By the definition of relative degre@(&,n)
is nonsingular. Given a desired output trajectayft) the required control inputy(t) can
be calculated as

ua(t) = Bi(E(t).n(®) vy () — ci(E(t),n (1)) (14)



14 PAPER A. EFFICIENT DRIVE CYCLE SIMULATION

Here it is seen that in order to calculate the required inputte system to follow the
prescribed trajectory, not oni(t) has to be known, but also the trajectories)@f) and
ther first derivatives ofyy(t). If the state trajectories producing the desired outpubére
interest they can be calculated from the inverse coordictzage

X(t) =W HEM),N() (15)

How the zero dynamics is to be solved depends on the systeledturhere are three
classes of systems that can be written in the form (11). Teediss is all systems where
the relative degree equals the dimension of the system hwhéans that there are no zero
dynamics. The second class is all systems with stable zerandigs, i.e., minimum phase
systems, and the third class is systems with unstable zerandigs, i.e., non-minimum
phase systems. For the class of systems without zero dysathi&) becomes a system
of static equations where the required input can be cakedfrom the desired output and
its derivatives. In the case of stable zero dynamics thequhoe is also straight forward.
Substitute (14) in (11),

(1) = sa(E(1), 0 (1)) + (&), N0)BI (ED),N®) 2T (1) — i (E(1),n(1)))
=s(n(t).Ya(t)) (16)
where
Ya(t) = (Y20 920), - 1 (09200, Y52 (0, 6 (1)) (17)

Choose appropriate initial values fig(t), and solve the system of differential equations,
(16), in order to find the trajectories of the zero dynamics.

In the case of unstable zero dynamics however, there is rfositaight forward way,
since then (16) can not be integrated as an initial valuelpnoblt is not possible to solve
the unstable zero dynamics in the general case, but in dysle simulations the desired
output trajectory is known before hand. This gives the iy of computing a non
causal solution of (16) and still receive a stable resulDévasia et al. [6] a Picard-like
iteration is used to find the zero dynamics of a nonlinear mammum-phase system. To
illustrate that method a linear system is first studied

n(t) = An(t) +Bu(t); n(+e)=0 (18)

whereA has no eigenvalues on thjeraxis. For such systems it is possible to find a
similarity transformatiom = Ti, whereT is invertible, that brings the system on a form

where . ) ) )
(gi):(%n /Sp) (?12) " (S;) Uy n(be) =0 (19)

whereA, has all eigenvalues in the left half plane dﬁ‘dhas all eigenvalues in the right
half plane. The solution to the boundary value problem (49) i

At) = / ot — 1)Bu(t)dr (20)
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where

[ 1) 0
(p(t) - < 0 _1(_t)eApt ) (21)

and 1t) is the unit step function. Solving for the first statggt) in (19) is easy. The
system is stable and the solution

[

i :/eA”TLS:lu(t—T)dT (22)

0

can be computed with numerical solvers for ODE:s. If the trgignal is known before
hand, the solution to the last statggt) can be computed in a stable way by reversing
time as

pTBgu t—1)dt (23)

S\O

or a non causal numerical solution can be used. Hence a siaiéation of the system
can be done. For a nonlinear system such as (16), a sepavatiom system in a stable
and unstable part as in (19) can not be done in general. Theagpin Devasia et al. [6]
is to write the nonlinear zero dynamics (16) as

s(n,Ya) = An+(s(n,Ya) — An) (24)
which can be interpreted such as that the nonlinearitiesen as disturbances to a linear
system. In the above equatidngives a linear approximation ), typically 65| 0.0)-

The iteration method simulates the linear system with tsudbances (nonllnearltles) as
inputs according to

i) = [ @t = 0)sm(®). Yo 1) — A()]de (25)

whereq(t) is the state transition matrix for the linear system. If arfeof coordinates
that brings the linearization in the form of (19) is applidte system becomes

A(t) = T HATA() + T H(S(TA(), Ya(t) — ATA(D)) (26)

and the iteration (25) can be separated in the form (19)

< r:]lml ) /‘9(th [S(TAim(T), Y4 (1) — ATfAm(T)]dT 27)

f]z,m+1

whereq(t) is defined by (21). For this iteration to converge to a sotutb(25), there are
restriction on the area of attraction that has to be haniéd,
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Figure 3: Two different simulations of NEDC. Both are within trackifignits but
result in different fuel consumption.

3 Tracking performance and driver models

A drive cycle is a speed profile where speed is given as a fumct time, see Figure 2
for an example, and as can be seen in the figure a drive cycleatdre expected to be
continuously differentiable. This means that for modetduding additional dynamics,
it is impossible to follow, or track, a drive cycle exacthpdahence, the speed has to
be controlled to track the drive cycle in a desired way. Whewedcycles are used for
emission legislations the cycle is tracked by a human drvidrin certain limits. It is
therefore logical, also in simulation, to design driver ralsdo track cycles within defined
limits. As will be shown later, results in for example fuehsmmption can differ between
two different velocity trajectories that both are withirepcribed limits, see Figure 3, and
it is thus important to study how a drive cycle is tracked antlanly that the tracking is
within limits.

To achieve good drive cycle tracking, more or less soplatdit driver models are
needed, and here driver models for both forward and inveysardic simulation will
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Figure 4: Driver behavior for forward dynamic simulation (left) anavérse dy-
namic simulation (right) for a part of NEDC.

be discussed. To compare tracking and behavior, the diffehéver models are in the
following tested on the New European Drive Cycle, NEDC, sigeitfe 2.

3.1 Tracking in forward dynamic simulation

In forward dynamic simulation a driver model acts as a cdiatrdo track the reference
speed trajectory, and as seen in Figure 1 the driver modgbaces the drivecycle with the
actual speed and decides how to control the inputs, e.gelexator pedal, brake pedal,
clutch, and gear selector, in order to follow the prescridgde cycle within defined
limits. A driver model can be as simple as a PID-controllgrdi7a more sophisticated
controller with prediction abilities [18]. The parametefsthe driver model determines
driver alertness, which in this type of simulation resuttfightness of cycle tracking. For
an example of tracking behavior for forward driver mode¢g Eigure 4.

3.2 Enabling Tracking in inverse dynamic simulation

In inverse dynamic simulation, the reference speed trajgdés followed exactly if the
physics of the model allows it, provided that the referemeesl trajectory is continuously
differentiable as many times as the relative degree of teeegy, as mentioned in [9], [8]
or as can be seen in Equation (14), see also [17]. If it is rifitgntly differentiable, then
the trajectory has to be smoothed to create a reference #ypsgetle simulated model can
follow with bounded states and inputs [9]. This smoothindgtaf drive cycle is in real
life done by a test driver, but is here done by mathematicalaghing that will be given
the interpretation of an implicit driver model. There argesal possibilities to smooth
the drive cycle, and the shape of the smoothed speed profilecised by the behavior
of the driver model. One way is to filter the drive cycle withtarslard linear low pass
filter with relative degree of at least the same order as teeery. This will ensure that
the filtered drive cycle is differentiable sufficiently matisnes for Equation (14) to be
solvable, see [17]. Using a non causal linear filter givediineer look ahead properties.
Another way to smooth the drive cyche,(t), is to compute the desired trajectowy(t),
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Figure 5: Convolution kernel and its first derivatives (normalizedv@s).

(28)

as the convolution .
1
vy(t) = E/Q(tfr)vc(r)dr

2

A good choice for the convolution kernejt), see Figure 5, is to use the definition
_—ar
e, M<a (29)

t) =

ot { 0, otherwise
where the parameteris a tracking time constant. Linear filtering of the drive leygives
only asymptotically exact tracking while the use of (29)eda compact support, gives
exact tracking on large parts of the drive cycle, as seengnrgi4. A smallea gives
"tighter" tracking which corresponds to a more aggressiadert driver behavior.

Since the choice (29) of the convolution kerigél) has compact support and is in-
finitely many times continuously differentiable, the remg trajectoryvgy(t) is infinitely
many times continuously differentiable. Moreover, thecakdtion of the derivatives does

not require numerical differentiation. Instead the deies are calculated using the fol-
(30)

[

lowing convolution
/g“)(t —T)Ve(T)dT

—o00

where the different derivativag”) are obtained by analytical differentiation of (29). See
Figure 5 for some examples with the parameter 1.
Driver model. The new driver model for inverse dynamic simulation is defibg

Equations (28)-(30).
inversion procedure presented in Section 2 is an extensigodsi-static simulation and

Inverse dynamic simulation. The driver model presented above together with the
forms a new concept of inverse dynamic vehicle simulaticze Sigure 1.
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Thus, the smoothing of the drive cycle is interpreted as gpliai driver model,
where the tracking behavior is specified in the velocity dionaad is independent of the
vehicle. In fact, this way of specifying tracking behavi@ncbe argued to be closer to
human behavior when performing drive cycle tests on a chalssiamometer, since the
tracking of a human driver is not specified by controller paegers, but rather in terms of
tracking smoothness.

4 Typical Powertrain model examples

When using drive cycle simulation it may be desired to capthe behavior in transients
to achieve sufficient precision in the processes generdtieigconsumption and emis-
sions. Therefore it is necessary to be able to include thardomhdynamics, and not only
use quasi-static simulation like in Advisor [30] or the Q&®ibox [15].

In this section three of the most important dynamics [18] tapture such transients
will be presented, and the feasibility of the inversion maare presented in Section 2
will be demonstrated on these models. One example is thentigaaf the air filling
in the intake manifold when using throttle position as infauthe powertrain. Another
example is resonances in the driveline mainly caused biotons the drive shafts. These
are modeled in Section 4.1. The third example comes fronet@wines with exhaust
gas recycling where the gas flow in the engine is importanefisissions modeling. This
flow is modeled in Section 4.2. The models are only briefly @nésd here and for a more
detailed presentation the reader is referred to [10].

Even though the examples in this section are motivated fhenapplication they each
impose interesting and illustrative mathematical chaéstics. The first example intro-
duces intake manifold pressure to illustrate the extensitim one extra state compared
to quasi-static modeling. The second example additionatiiudes drive shaft torsion
which includes a resonant system and zero dynamics. Tlekekample with gas flow
for diesel engines includes non-minimum phase, i.e. utestadyo dynamics. The model
examples will be used for comparison of different simulatieethods in Section 5.

4.1 Powertrain with intake dynamics and driveline dynamics

This section will describe the two first examples, and it Wwi#l done by first giving the
most complex example which is a power train with both intakespure dynamics and
drive shaft flexibility. Then the model will be specializedléxclude the drive shaft flexi-
bility.

The main dynamic variable of a vehicle is vehicle speaghich is the only one used
in quasi-static models. Including drive shaft tors@ndecouples vehicle speednd en-
gine speedo. Also the dynamics of intake manifold pressyes included. The model,
see Figure 6, is more thoroughly described in Froberg [1@],\aill be referred to as the
flexible powertrain model, FP. The tractive input is effeetihrottle area\es. From am-
bient pressurg, and intake manifold pressug the flow past the throttle is calculated
via a flow restriction mode#. Then the gasflow into the cylinders is calculated, giving
gross work. Subtracting pump work and friction gives thepotitorque from the engine.
The rest of the driveline is modeled as standard inertiasjaio springs, dampers, and
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Figure 6: Components of the powertrain model.

gears, giving driving force on the wheels. This driving ®reduced by air resistance and
rolling resistance gives vehicle speed. When needed a bwedgee proportional to driver
input is applied to the wheels, and the simulation is handgeid [12]. During the tractive
part of the drive cycle the model has input Agt+, Statesx = [V, we, B, pi]T, and output

y = V. The model parameters are lumped into the coefficigntset the functiond, g, h

be defined by the model equations that are

V = C1V?+CoV+ Cge+ G484 + Cs = f1(X) (31)
We = CgV+ Crte+ Cawi® 4 coBy + Cropi + C11 = f2(X) (32)
B = CioV+Cr3we = f3(X) (33)

Pi = C1aWe+ C15Wepi + C16W <%) Aett = fa(X) +ga(x)u (34)
a
y = v=h(x) (35)

The relative degree of this systemris= 3. Hence the zero dynamics, and the inverse
dynamic model, has order 1.
The coordinate change (10) is chosen as

(£1,€2,&3,n)" = (WV, v, p)" (36)
Using (14) in the zero dynamics gives
= fa(W €M) +0a(WH(EN)B Y —a) (37
using (12)-(13) which are
a = Lh (38)
B = LgLh (39)

The zero dynamics (37) is stable for this model, and hencebeasolved as an initial
value problem. It is seen that only the outpyft) and the first three derivatives thereof
have to be known when solving for the zero dynamics and thdtieg required input
(14)

Perra =B ENV —a(&n)) (40)
See Figures 7 and 8 for simulations of this model. The figurewdoth forward dynamic
and inverse dynamic simulation. The results are compaveliieh demonstrates the fea-
sibility of the proposed new method. A more detailed evaduais done in Section 5.
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Figure 7: Velocity of a simulation of the powertrain model with flexébdlriveshaft
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Figure 9: A schematic picture of a diesel engine with EGR and VGT. Therégs
adapted from [27].

Powertrain with intake dynamics

The stiff powertrain, SP, includes the dynamics of intakanificdd pressurey; but not the
drive shaft torsion. This simplified version of the model)-835) with stiff driveshafts is
written as

Vo= VP4Vt capi+ca= fi(X) (41)

pi = Csv+cgvp +c/W (%)Aeff = f4(X) + ga(X)u (42)
a

y = v=h(x) (43)

The inversion of this system follows the same procedurerahéoprevious example. The
system'’s relative degreelis= 2, giving an inverse model that consists of static equations

4.2 Gas flow control in a diesel engine

As mentioned earlier non-minimum-phase systems may béecigithg, and one impor-
tant powertrain component that has this property is the gasftir a diesel engine with
exhaust gas recycling, EGR and variable geometry turbii@T,\6ee Figure 9. Such a
system is modeled in Wahlstrom [27], and the simplified wardhat is used here is de-
tailed in Froberg [10], and will here be referred to as DE. @arvariables are the EGR
valve uegr and the area of the VGA,q. These two inputs are used to control the mass
flow and its composition into the cylinder. Here the fuel flavdangine speed are consid-
ered as model parameters. Outputs are normalized air filg| ka and EGR ratioxegr.
This is a non minimum phase system for many operating poamd,intuitively it can

be reasoned as follows: When the VGT is closed, initiallg, flbw past the turbine will
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decrease, which results in a decrease of compressor flow dacrease iA. However,
there will be a build up of pressure in the exhaust manifold after a while this will
result in a higher flow past the turbine, speeding up the tuabd after a while results
in an increase of fresh air flow, which means thancreases. The model has four states
X=[pi, pe,w[,Aeg,]T, i.e. intake manifold pressure, exhaust manifold presgureine
speed, and EGR valve area. As before the, coefficigrasee lumped model parameters,
and functiondfj, g;, h are defined in the model equations that are written as

pi

i i C
Pe = C4pPi+ CsAegrPe¥ (%) +Cp+C7Pey /1 — p—ngvgt = f2(X) + g2(x)u (45)
e e

C1Pi + Cotx + C3AegrPe¥ (%) = f1(x) (44)
e

. c C

@ = Ciopi™+Cia+ (013+ %) V1= %&Avgt = fa(x) +gs(x)u  (46)
Pe Pe” 0
Aegr = Ci6Pegr— Cielegr = f4(X) + ga(x)u (47)
The outputs arg = [\, Xeg]

A= C170x = hl(X) (48)

C18RegrPe¥ (%)
Xegr = h(x) (49)

C190x + C18AegrPeV (%)

Computing Lie-derivatives for this system gives the vectdative degree as =
(1,1), which means that the systems zero dynamics has order twava8snentioned
earlier it is assumed in the inversion procedure f{@) = 0 andh(0) = 0, which is easily
achieved for this system by a simple coordinate change wthererigin is moved to a
stationary point, likep"= p; — pi sta. When this is done the coordinate chang& smdn

can be chosen as .

(81,82.12,02)" = (A, Segr, B, e (50)
Using (14) the zero dynamics can be written as
n = fW*En) . (51)
N2 = f( En)+g En)BEnN) HE-a@En) (52)
where
a = L¢h (53)
B = Lgh (54)

For the stationary poirgi = 2.06- 10° Pa,pe = 2.41- 10° Pa,wy = 7001 rad/s, anflegr =
1-10-“m?, this zero dynamics is linearized

n=An (55)

and the eigenvalues éfbecomes; = —6.8 ando, = 15.8, so clearly the zero dynamics
is unstable. The iterative technique described by (27)ésl tis solve for the trajectories
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Figure 10: Specified output trajectories far andxegr (solid). A corresponding
forward dynamic simulation (dashed) is also seen.
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Figure 11: Required inputs from an inverse dynamic simulation of tlesel engine
with desired outputs according to Figure 10.

of the zero dynamics. No measures like e.g. multiple lirzzaions are used to optimize
performance. Having obtained the trajectories the reduirput is calculated as in (14)
which here becomes

the rd _ n- 5\ _
(f ) =pen) (( 2 ) G(EJ})) (56)

Forward dynamic simulations of the diesel engine is nonari28], since it is hard
to design a controller for the non minimum phase multivdgaystem. Instead, the pro-
cedure here is first to specify desired outputs, the driMecyloen to perform an inverse
simulation, and finally to use the resulting inputs as inpothe forward dynamic simu-
lation. See Figures 10 - 11 for simulations of the model, Whlemonstrates feasibility
since the results are almost identical for forward and isweimulation.

5 Simulation usability and performance

The extended concept of inverse dynamic vehicle simulaionmarized in Sections 2
and 3.2 was in the previous section demonstrated to be feaditowever, as has been
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mentioned, the goal of the paper is increased performancernpining the advantages of
forward dynamic simulation and quasi-static inverse satiah in a new method, inverse
dynamic simulation, see Figure 1. This section is devoteddomparison with standard
forward simulation, realizing that when performing a siatidn there a several properties
that are important. This regards the set-up effort, consecgs of tracking performance,
consistency when scanning a parameter set, and of coura&agsion time, which are the
topics of the following sections.

5.1 Simulations

The simulation study for investigating properties and faking comparisons has been set
up in the following way. The powertrain models from Sectioard used, with parameter
values corresponding to a typical personal sedan car efaetbte diesel example which
is a typical heavy truck diesel. Detailed parameter valaedxe found in [10]. Regarding
driver models, the forward model is controlled with a driveodel implemented as a
PID-controller that is connected to the vehicle model asaeg in Figure 1. The PID-
parameters arép = 8-107°, K; = 1-10-% andKq = 0. The inverse dynamic simulation,
see Figure 1, uses a driver model as described by (28) - (2B)the parametes = 5.
To get comparable tracking, the parameter setting of theedrnodels has been done
as follows: First an inverse dynamic driver model has beesigtied that has a suitable
tracking behavior. Then, a forward dynamic PID-type driveydel has been designed
such that it has comparable response time as the inverser dnivdel. The models are
simulated in the New European Drive Cycle, Figure 2.

5.2 Simulation setup effort

It was seen in Section 4.1 that both the inverse and forwandmiyc simulation produced
qualitatively the same result. However, it can be seen inifei§ that the forward dynamic
simulation in that example has an oscillating behavior iottiie position. This stems from
the driver model, since for this example it is not sufficieittva single PID-controller due
to the non-linearities in the system. It may take quite soffuetdo design a driver model
that adapts to the vehicle’s behavior in different opeapinints. On the other hand, it
is seen that the inverse dynamic simulation has a smoothiatdhat better resembles
the behavior of a real driver. Thus, the complexity of desigra driver model may be a
drawback for the forward dynamic simulation considerinypesffort.

It is straight forward to implement a forward dynamic modehisimulation tool like
Matlab/Simulink, whereas an inverse dynamic simulatiauiees manipulations with the
differential equations describing the system before itlsasimulated. These manipula-
tions are however systematic as described in Section 2, ande automatized. The
systematic conversion reduces the need to build dedicatedse models as those used
in, e.g., Advisor. In this way the new simulation concept lwigge that ties forward dy-
namic simulations as in, e.g., PSAT, to quasi-static irvsihiulations as in, e.g., Advisor,
in the sense that common model data bases can be used.
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Sim Driver model Fuel cons Fuel cons
Method [I/200km] [I/200km]
r=0.3m r=0.45m

Forward Kp=15-10% 8.619 7.315
Ki=1.10°

Forward Kp = 5104 8.634 7.293
Ki=5.106

Inverse a=2 8.595 7.265

Inverse a=1 8.627 7.271

Table 1: Consistency in simulation with change in wheel radius.

5.3 Consistency for parameter exploration

An important use of drive cycle simulation is for design spagploration like optimiz-
ing gear ratios of the transmission, optimizing the sizehaf ¢éngine for minimal fuel
consumption, or tuning of control system parameters. Thésnjmportant to have con-
sistency when some parameters vary between simulatiotizascorrect conclusions can
be drawn.

A first complication is that tracking may vary as describegadly in Section 3 and
illustrated in Figure 3. Using the model from Section 4.Jisiseen in Figures 7 and 8
that both the forward and inverse dynamic simulation predugualitatively comparable
results. In [10] an experiment with parameter changes mrtiodel is done by keeping
the driver parameters, but the engine size is changed frdno2..6 liters and the vehicle
mass is changed from 1700 to 1100kg. It turns out that th&itrgdehavior in the for-
ward simulations is different in the two cases but is by cartsion exactly the same for
the inverse dynamic simulations. Further, even thoughimllkations are within track-
ing limits, the different behaviors of the forward simutatigive oscillations in the light
weight vehicle case. This shows that it can be difficult to auset of forward dynamic
simulations and get a consistent fuel consumption calicmstvithout retuning the driver
model when the vehicle parameters are changed.

An even more important point will now be demonstrated. Theesanodel is used
again but now with a stiff driveline. It is simulated to stuthe fuel consumption in the
NEDC driving cycle. The fuel consumption is taken as thegraéof the maximum of
the fuel flow given by the model and an idle flow. Simulations performed both with
the inverse dynamic method and the forward dynamic methe@piag the same driver
models, the simulations are performed with two differeneelradius namely 0.3m and
0.45m. The results are shown in Table 1. For the forward dasetder between the
two cases are reversed§89< 8.634 compared to.315> 7.293), which means that the
order in fuel consumption between the driver models is nes@rved when wheel radius
is changed. This indicates that it can be difficult to evadusimulations where model
parameters change if the tracking characteristics is restgoved. For the inverse case the
order is consistent (B95< 8.627 and 7265< 7.271).

The examples above show effects in forward dynamic sinaridtiat deteriorates the
usefulness for the set of simulations as a design spaceratiplo. However, for inverse
dynamic simulation, due to the computational scheme wighitiplicit driver model the
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behavior within tracking limits is consistent. The condtusis that inverse dynamic
simulation has an advantage regarding consistency inmiepice exploration.

5.4 Simulation time

Recall that the main goal was to extend quasi-static inveirselation with additional
dynamics while still keeping the low simulation time.

In order to study the simulation speed of inverse and forvelndamic simulation
the three models from Section 4 will be used again in a moiteoetde study including
more cases than in the previous sections. Besides the giile NEDC also FTP 75 has
been used. Further, different driver models have been usstdramarized in Table 3.
Twentysix combinations of vehicle models, driver modelsd arive cycles have been
simulated and they are listed in the presentation of theltseegu Table 2. The “SP”
models is the model from Section 4.1 with a stiff drive shafdl @ngine dynamics. The
“FP” models is the model of a powertrain with a flexibility ine driveshaft from Section
4.1. The diesel engine model, “DE”, is the one with unstaki® zlynamics described in
Section 4.2. One iteration has been used to find the zerodgaathe inverse diesel
engine model. The number of integration steps in the inveirselation of the diesel
engine is the sum of steps for the simulations of the zero mycgmand for finding the
required inputs.

Approach in comparisons

The inverse dynamic simulations are setup in order to reEearbautomatic conversion
from the corresponding forward model using only the coneerdescribed in Section 2.
This means that there is additional potential for speedikrégarding choice of coordi-
nates or to see if all or at least some of the variables in therge coordinate change can
be solved analytically.

For each case in both inverse and forward simulation thesasblver has been cho-
sen, and the resulting choice is listed in a column of thelt@sesentation in Table 2.

Timing results

The main result that can be seen in Table 2 is that the invensandic simulation has a
considerable speed advantage compared to the forward dysarulation. This holds
for all three powertrain applications that have differasid@d dynamics. Going a bit more
into detail there are a number of interesting observatiorsetmade in the comparisons.
There are mainly two things that affect the simulation tithe, number of steps required
in the integration, and the number of calculations in eaehp.stn Table 2 it is seen that
the inverse dynamic simulation takes at least an order ofhihade fewer steps than the
forward dynamic simulation.

One reason for the difference in number of integration stefades to characteristics
of the vehicle model. The number of steps in the integratiomainly depending on
the eigenvalues of the simulated system, where large edieew, i.e., far away from the
imaginary axis, will require small steps and thus more stdpjgs means that when the
eigenvalues of the zero dynamics are smaller than the eaggw/for the forward dynamic
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model, the inverse dynamic simulation will require fewespst than the forward and for
many systems this is the case. For example, in the diesehemngodel the eigenvalues
of the forward model in the linearization point are -18.2.71, -5.00, -1.26, and for the
zero dynamics the eigenvalues are 15.8 and -6.8. For tlieatifertrain model there is
no zero dynamics, so the inverse model is correct in each lsgooint independent of
how few steps that are taken. Also for the flexible powertraodel, the zero dynamics,
stemming from the drive shaft flexibility, is slower than etlge intake pressure dynamics.

Another reason for the advantage in simulation time are #teutations needed in
each integration step. If there is a need to solve the inwarsalinate change numerically
online, the number of calculations in each step can increase for the inverse dynamic
models. However, since the dimension of the zero dynamismaller than the number
of states in the forward dynamic models the number of calimra in each step are fewer
in most cases.

A further reason for the relatively slow simulations of tieevfard models of the basic
powertrain and the flexible powertrain is the need for exymaadnics in the form of a con-
troller, the driver model. Typically, such a controller magve ten times faster dynamics
than the controlled system. Plots from such simulationseireed in Table 2 have been
presented in Section 4. In those plots the forward dynamiasition is unnecessarily
oscillating in some cases due to the driver model, but thimtghe main reason for long
simulation times. The trends in simulation time reporteddble 2 are still valid for other
tunings of the forward driver models.

6 Conclusions

The importance and characteristics, e.g. regarding tngcand repeatability, of drive
cycle simulation have been presented. Aiming especiatlydpeated drive cycle simula-
tions, the new implicit driver model presented in Sectiaht®gether with the inversion
procedure presented in Section 2 forms a new concept ofdexdmamic vehicle simu-
lation. The use of the new driver model is a good way of spéuifyracking behavior.

Compared to specifying tracking using the forward driverdelat is closer to human
behavior when performing drive cycle tests on a chassis mpnaeter, since it is not
specified by controller parameters, but rather in termsaaking smoothness.

In Section 4 three powertrain applications were presertiatlincluded important
dynamics that can not be handled using quasi-static ingmselation. The extensions
were engine dynamics, drive line dynamics, and gas flow dycsanound diesel engines.
These three cases also represented interesting mathahpaiiperties such as zero dy-
namics, resonances, and non-minimum phase systems, s&@blazero dynamics. The
feasibility of inverse dynamic simulation of these systemas shown.

Besides feasibility more importantly also good charast®s was demonstrated re-
garding consistency and simulation speed. It was foundspetifying the parameter
in the interpolating driver model is simpler than retunihg forward driver model (PID-
controller) for each model parameter setting, which is Bsagy to achieve consistency in
design space exploration. Simulation comparisons demaisstthat the new method has
good performance with faster simulations compared to stahiwrward simulation. This
means that the goals of Section 1 and Figure 1 are achievedrsmdynamic simula-
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Model Drivecycle Sim. Time[s] #steps  Solver Forw./ Inv.
SP1 NEDC 18.0 7653 ode45 F
SP1 FTP75 31.8 13594  ode45 F
SP 2 NEDC 135 6287 ode45 F
SP 2 FTP75 22.2 9819 ode45 F
SP3 NEDC 12.1 5637 ode45 F
SP3 FTP75 22.6 9730 ode45 F
SP 4 NEDC 0.33 50 ode45 I
SP 4 FTP75 0.078 50 ode45 I
SP5 NEDC 0.076 50 ode45 [
SP5 FTP75 0.084 50 ode45 I
SP 6 NEDC 0.057 50 ode45 I
SP 6 FTP75 0.090 50 ode45 I
FP1 NEDC 409 308207 ode23th F
FP 1 FTP75 216 140183 ode45 F
FP 2 NEDC 320 244053 o0de23tb F
FP 2 FTP75 197 130734 ode45 F
FP 3 NEDC 263 201583 o0de23tb F
FP 3 FTP75 188 124498 ode45 F
FP 4 NEDC 60.0 10207 ode23tb |
FP 4 FTP75 161 26763 ode23tb |
FP5 NEDC 30.5 5164 ode23tb |
FP5 FTP75 100 16806 ode23tb |
FP 6 NEDC 117 16294  ode23tb |
FP 6 FTP75 66.9 10899  ode23tbh |
DE - 12.9 3596 ode23tb F
DE - 8.66 2201 ode23tb |
Table 2: Simulation times.
Model K, K;

SP1,4 6104 1-10°
SP2,5 15-10% 1-10°
SP3,6 810° 1.10°
FP1,4 15-10% 25.10°6
FP2,5 12-10% 2.10°
FP3,6 810> 1.10% 5

NEFEOIN R

Table 3: Driver model parameters.
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tion was favorably compared to forward dynamic simulatiegarding simulation set-up
effort, simulation time, and consistency for parameter@gtion. This makes inverse
dynamic simulation a suitable method to use for drive cyrteutation, especially in sit-
uations requiring many simulations, such as optimizatieer @esign space, powertrain
configuration optimization, or development of powertradmtrol strategies.
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INVERSE DYNAMIC SIMULATION OF
NON-QUADRATIC MIMO POWERTRAIN
MODELS -APPLICATION TO HYBRID
VEHICLES?

Anders Froberg*

* Dep. of Electrical Engineering, Link6pings universitet,
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Abstract

The method for stable inversion of nonlinear systems hdgeéeen demon-
strated as an efficient tool in inverse dynamic vehicle plsipn simulation.

However, that method is restricted to quadratic systemssystems with equally
many inputs and outputs. Here that restriction is relaxeadtypical vehicle

propulsion simulation where the number of inputs, e.g. lecator pedal and
brake pedal, are greater than the number of outputs, e.iclespeed. Also re-
strictions to states and inputs resulting in time varyingtegn order and relative

degree is discussed. A model of a parallel hybrid vehiclesedifor demonstra-
tion.

1This is an edited version of [7], Inverse Dynamic SimulatidtNon-Quadratic MIMO Powertrain Models -

Application to Hybrid Vehicles, published in the prepriofghe IEEE Vehicle Power and Propulsion Conference
2006.
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1 Introduction

Simulation of longitudinal vehicle models is a commonlydiseol for driveline design,
driveline optimization, and, design of driveline contrtlagegies. There are two com-
mon ways to do this, quasi-static as, e.g., in Advisor [13] @85S-TB [8], and forward
dynamic simulation as, e.g. in PSAT [12] and Capsim [1]. Thadgstatic simulation
uses vehicle speed and acceleration to calculate requirgdes and speeds backwards
through the driveline, and from that engine input is calteda The model consists of
static equations and efficiency maps of the components wkglhts in low simulation
time making the method suitable for design space explaorai@ optimization loops. In
forward dynamic simulation, differential equations artved using, e.g., throttle position
as input, and vehicle speed as output, resulting in typieallorder of magnitude longer
simulation times for drive cycle simulations than what igital for Advisor or QSS [6].
The advantage is that dynamic effects can be included makaghodeling more accu-
rate than in quasi-static simulation. In Froberg [6] andderg and Nielsen [5], [4] it is
shown that inverse dynamic simulation is a good compromaseden accuracy and sim-
ulation speed. There the method for stable inversion ofineat system [2], [9] is used
to systematically transform a forward dynamic model to areise dynamic model. In
contrast to the quasi-static approach this method treatsame kind of dynamics as the
forward dynamic simulation, and it also handles zero dyiearand non-minimum phase
systems, while keeping a low computational time.

The method for stable inversion of nonlinear systems reguir quadratic system,
i.e. a system with equally many inputs and outputs. For acgfgongitudinal vehicle
simulation the number of inputs is greater than the numbeugfuts. Typically, there
is one output, vehicle speed, and at least three inputslemate pedal, brake pedal, and
gear selector. It will here be shown how this MISO systemhwwiinimal restrictions, can
be transformed to a quadratic system that can be inverted.

A characteristic property in system inversion is the systelative degree [10], i.e.
the number of times the output has to be differentiated ireiofdr the input to appear
explicitly. When for example putting restrictions on state controls, the relative degree
typically varies over time. It will here be discussed howstls treated and in a simu-
lation example it will be demonstrated how this is handletyical vehicle propulsion
simulation.

First, the method of inverse dynamic powertrain simulatisthbe described, and it
will be discussed what extensions that are necessary tdagmon quadratic powertrain
models and systems of time varying order and time varyiragivel degree.

2 Inversion of non linear systems

The inverse dynamic simulation method is based on two thingsrsion of differential
equations that describes the system, and design of a driedelm The inversion uses
the method of stable inversion of nonlinear systems [2], [fle method is based on a
change of coordinates that enables computation of the agpatfunction of the output,
its derivatives, and the trajectories of the zero dynamics.

A short review of the method [2, 9] will be given here. lLgt) be the inputsy(t) the
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outputs, and(t) the states of a given system. Suppose that the system carittinr
input-affine form and that the number of inpugsequals the number of outputs.

X(t) = fa(t)) +9(xa(t))ua(t) (1)
ya(t) = h(xa(t)) (2)

Here suffixd corresponds to variables which by some means are smootkesponding
to tracking of a velocity profile. Given a desired outpyt) that is smooth, the problem
is to solve for the inputiy(t), and possibly also the stategt). With the notion smooth,
it is here meant that a signal is sufficiently many times cardusly differentiable. From
here on it will be assumed that all functions are smooth satthe necessary derivatives
exist and can be computed. It will also be assumed tf@t= 0 andh(0) = 0. This can
always be achieved for systems like (1)-(2) by a simple charigoordinates.

LetL be the standard notation for Lie-derivatives according to

Lih(x) = ¥ fi(%) ag)(;(), L' h(x) = Ly (Lr(lh(x)) 3)

Ifforall1 <i,j <gq,forallk <rj—1, and for allx in a neighborhood af®

Ly, Lfhi(x) =0 (4)
and theq x g matrix
Lglerrihl(x) querl*ihl(x)
f e
() = Lglsz: ha(x) qusz: ha(x) )
Lgll_rfq;lhq(x) qul_rfq;lhq(x)

is nonsingular, then the system is said to have a vectoiveldegree = (r,ra,...,rq)
at the point. That is, the relative degree of the system is the numbenugione has
to differentiate the outputs for at least one input to apeealicitly.

The first step in the inversion procedure is to compute tregivel degree. The next
step is to partially linearize the system. This is done bfedéntiatingy; (t) until at least

oneu;(t) appears explicitly. Defing, = yfkfl) (t)fori=1,...,gandk=1,...,r; and let

T
(E%?E%?"'753-1’5%""72?27"'75311)

N\T
(yl?yl?' i 1%1715y2) tet 7yr227l) tet 7yaq l) (6)

Now the change of coordinates can be defined. Smsea function ofx, it can be written
as

3

€0 =w(x) (7)

wheren are variables needed, and the only constraintin the chbigésdhat the Jacobian
matrix of y(x) must be nonsingular af so that it is a local coordinates transformation in
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a neighborhood of°. It is always possible to find suchyzx) [10]. With this choice of
coordinates the following system which is partially lin@ag is achieved

g = &)

§ ) = & ®)
U680 = aE®.nm) +BEO.n0u0
() = S(E0.N(0) 1 SED .U

where the vectoon and the matriX3 are

a(g,n) = Lih(w 'En)) 9)
BEEN) = LeLt*h(w (&) (10)

and the functions,(§,n) ands,(&,n) are given by the choice of.
Denotey") = (y(lrl), .. ,ygq)). Then it can be seen in the first part of (8) thié&t(t) =

o;(&(t),n(t))+Bi(&(t),n(t))u(t). By the definition of relative degre@(&,n) is nonsin-
gular. Given a desired output trajectoyy(t) the required control inputig(t) can be

calculated as
Ua(t) = Bi(E(t),n(®) vy () — ci(E(t),n (1)) (11)

Here it is seen that in order to calculate the required inputtie system to follow the
prescribed trajectory, not oniy(t) has to be known, but also the trajectories@f) and
ther first derivatives ofyy(t). If the state trajectories producing the desired outpubére
interest they can be calculated from the inverse coorditaege

X(t) =W HEM),N() (12)

How the zero dynamics is to be solved depends on the systeledtur here are three
classes of systems that can be written in the form (8). Theecliass is all systems where
the relative degree equals the dimension of the systemhwhéans that there are no zero
dynamics. The second class is all systems with stable zerandigs, i.e., minimum phase
systems, and the third class is systems with unstable zerandigs, i.e., non-minimum
phase systems. For the class of systems without zero dysathit) becomes a system
of static equations where the required input can be cakedfaom the desired output and
its derivatives. In the case of stable zero dynamics thequhoe is also straight forward.
Substitute (11) in (8),

N = Sa(&N) +S(EN)BiIEN) LYY —ai(E,n)) =s(n, Ya) (13)

where o)
. r r
Yd: (Yl7Yl7---7y(ll)7yZ7---ay<22)a---7yqq) (14)

Choose appropriate initial values fig(t), and solve the system of differential equations,
(13), in order to find the trajectories of the zero dynamics.

In the case of unstable zero dynamics however, there is rfositaight forward way,
since then (13) can not be integrated as an initial valuelpnob It is not possible to
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solve the unstable zero dynamics in the general case, buivia d/cle simulations the

desired output trajectory is known before hand. This githesgossibility of computing a

non causal solution of (13) and still receive a stable resulDevasia et al. [2] a Picard-
like iteration is used to find the zero dynamics of a nonlimear-minimum-phase system.
See also Froberg [6] for a simulation example of a dieselragith non-minimum phase
properties.

In summary the algorithm is as follows. Consider a systemrdéon. First, find
the relative degree of the system and differentiate the outputimes. Then make a
coordinate change (7) where the system outputs and itsatiggg up to the ordar— 1
are used as states. Chooser other states to form a complete base for state space. These
n—r states is the zero dynamics and is typically chosen fromtiginal states. The zero
dynamics is driven from the output and can be calculated fitoeoutput and its first
derivatives by combining Equations (11) and (8). The trtajees of zero dynamics are
solved by numerical integration. Then Equation (11) is usezhlculate the inputs from
the trajectories of the zero dynamics andthiest derivatives of the output . The original
states are found by the inverse of the coordinate change (12)

3 Driver model

The outputy to the original system, and its derivatives, is used as ibptlhe inverse
dynamic simulation. In vehicle propulsion simulation thmgans that the reference ve-
hicle speed has to be differentiated as many times as thensyselative degree. For a
physically realistic system it is not a restriction to assutimat the speed is sufficiently
differentiable, since it would require infinite acceleoais and torques in the driveline to
produce a non differentiable vehicle speed. In inverse ahyaaimulation the vehicle
speed profile has to be smoothed to fulfill the differentiatiequirements. The smooth-
ing corresponds to driver behavior and in [5], [6] the smawghs done based on desired
driver behavior by calculating the desired speed profjl¢) and its derivatives from a
given drive cyclev(t) as the following convolution

[ee]

0= [¢Ot-tvmer (15)

—00

By using this method when calculatinﬁ)(t) numerical differentiation of the speed pro-
file is avoided sincg(") (t) can be analytically differentiated. Using the convolutiennel

2
git)y=<{ ¢, [fti<a (16)
0 otherwise

3

a speed profile as in Figure 1 is achieved.

4 Application to hybrid vehicles

To demonstrate inverse dynamic powertrain simulation aehofda parallel hybrid elec-
tric vehicle is used. First, the powertrain model equatiailsbe presented. Then, the
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Vehicle speed [m/s]
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Time [s]

Figure 1: Part of the European drive cycle NEDC. The solid line is theedcycle
and the dashed line is the desired speed profile given by theranodel (15) with
the tracking time constaat= 5 seconds.
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Figure 2: Schematic description of an example model of a paralleltiay®lectric
vehicle.
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design of the control system necessary for inversion wilpbesented. The inversion
algorithm for this system will be detailed, and last a sintiola of the model will be
presented.

The powertrain is a parallel hybrid electric vehicle cotisgs of an internal combus-
tion engine, ICE, with transmission, and an electric motmupied to the driveshafts.
See Figure 2 for a schematic depiction. The vehicle and engiodel are standard as
described in Kiencke and Nielsen [11].

The motion of the vehicle is described by Newtons second law,

m\'/:Ft—Fa—Fr—Fb (17)

i.e., massin, times acceleratiorv, equals the tractive forc&;, reduced by air resistance,
Fa, rolling resistanceky, and force from the brakeBy. The resistances are given by

1
Fo= Epchvz, F = mgg (18)

wherep is air densitycq drag coefficientA vehicle cross sectional areggravitational
acceleration, and is rolling resistance coefficient.

The wheels are modeled without slip such that the tractivesfes given from wheel
torqueT, and wheel radius, and vehicle speed is given from wheel spegdaccording
to

Rr =Ty, =V (29)

The wheel torque is the sum of the transmission torGug: and the electric motor
torqueTem
TW = Tt,out + Tem (20)

The transmission is modeled as an ideal gear with gearifatitd the ingoing torque
to the transmissioi j, and engine spead, are given by

Tiinit = Te,out, We = ity (21)
The rotating parts of the engine is modeled as a standarihwiaertia as
Je(he = Te - Tt,in (22)

whereJe is engine inertia ande is the produced torque from the pistons. The engine
torque is modeled as proportional to fuel mass per enginke cgc. Assuming that the
engine runs at stoichiometric conditions, i.e. the noreealiair fuel ratio\ = 1, fuel mass

is given from air mass per engine cyadlg: and stoichiometric air fuel ratibFs

Mac

Te = kems = keAFS?\ (23)
The air mass flow into the cylinders is described by
. VyWep . 2Ty
= — = 24
Mac = Nvol 2T RT’ Mac = Mgc P (24)

wherenyo is volumetric efficiencyy is engine displacemenp,is intake manifold pres-
sure,n; is number of revolutions per engine cyckeis the mass specific gas constant,
is intake manifold temperature.



40 PAPER B. INVERSE DYNAMIC SIMULATION OF NON-QUADRATIC MIMO MODELS

The pressure derivative in the intake manifold is given by difference of the in-
flow and the outflow, i.e. the flow past the throtthay, and the flow into the cylinders,

according to
. RT . .
p=" (Mt —ac) (25)
|
whereV is intake manifold volume.
The electric traction motor is here assumed to work as a georalso and is modeled

as a DC-motor where the torque is proportional to the electrirentiem,
Tem= lemKem (26)

The motor is modeled as with internal inductance and resistand the current derivative
is given by
Lemiem = Uem— Remlem— WerKem (27)
whereUgn is the applied voltage. Note that motor current is denatg@nd that its time
derivative is denotegm.
The rate change of the battery charge is simply

g=—lem (28)

Putting Equations (17)-(28) together results in a systeth thie states vehicle speed,
v, intake manifold pressurgy, motor currentley, and battery chargey. Inputs to the
system is air flow past the throttlej,, motor voltageUen, gear ratio,iy, and braking
forceF,. Output is vehicle speed. Lumping all model parametersdnto0, the system
can be written as

—C1V2 — C2 — C3Fp + Calem+ Cs it

Vo= Cs + C7it2 (29)
P = Calflat— Coitvp (30)
iem = C10Uem— Ciilem— C12V (31)
q = —lem (32)

4.1 Control system

Since the system (29)-(32) has four inputs and only one aoiriperse dynamic simulation
as described in Section 2 can not be applied directly. Howéwemost vehicle propul-
sion simulation applications this problem can be solved Ibg aonsidering an energy
management system and a driver model. In a hybrid vehiclelfrer does not decide
how to combine the engine and motor to get a desired traatief This is done by an
energy management system that in this case controls the rutage and the engine air
mass flow from accelerator pedal positidg,pos and the vehicles current state. Formally
this can be written adem= Uem(Ap,pos, Vi P; lem, 4), @andimia; = Mat (Ap pos, Vi P, lem, 4). For
most purposes it can also be assumed that the acceleratrgmetlbrake pedal never is
used at the same time. It will also be assumed that the drnaerges gear at for example
given engine speed, i.g.= f(we). Using the above assumptions the system has one input
at each time, either, accelerator pedal or brake pedal, aedwotput, vehicle speed. See
Figure 3 for a schematic depiction of inverse dynamic sittnuteof the example vehicle.
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Transm.

Control Wheel Vehicle Reference]
system speed
Motor * .
voltage Driver
Brake force model

Figure 3: Schematic description of inverse simulation of the moded giarallell
hybrid electric vehicle depicted in Figure 2.

Energy management system

The focus in this work have been to demonstrate the invensardic simulation on typical
system structure of a hybrid electric vehicle with varyietative degree and more inputs
than outputs. No effort has been made on finding a fuel optanatgy management
system.

The control strategy is as follows:

1. Use the electric motor at speeds beMw

2. Use both the electric motor and ICE at hard accelerations
3. Use the ICE aboWi,

4. Use the electric motor at braking (charging the battery)

5. Use the brakes if electric motor is not enough

No clutch is modeled between the engine and the rest of thelth& so the engine
always rotates. When the electric motor is not used a switalséd to disconnect the
motor from the battery. Also the charge and discharge ctisdimited tolemmin < lem <
lemmax-

For the five cases above the following systems are simuldtedcase 1 and 4 the
engine is dragged by the drivelimg,; = 0, andUen s the input to the model. This means
that the system is of order= 4, the relative degree beconres 2, and the dimension of
the zero dynamics is dim= 2. The coordinate change (7) can be chosen as

[El &2 M UZ}TZ[V V  lem CI]T (33)

wherev'is given from Equation (29).
For case 2 the current of the motor is saturatednhax SO the states to be simulated
arev, p, andg, and the input to the model isy;. The system order is = 3, the relative
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degree = 2, and dirm = 1. The coordinate change can be chosen as

[ & & ﬂl}T:[V v Q]T (34)

For case 3 the battery is disconnected from the motor, whigtsg = 2,r = 2, and
dimn = 0. This means that there are no zero dynamics and the inverdel s a system
of static equations according to Equation (11). The coatdichange is

[ &1 Ez]TZ[V V]T (35)

For case 5 the electric motor is saturated@nin, Mat = 0, andFy, is the input to the
model. Since the motor current is given= 3, r = 1, and dirm = 2. The coordinate
change can be chosen as

[ & ﬂz}T:[V p Q]T (36)

When the coordinate changes have been decided, the zermignzan be simulated
combining Equation (11) with the last equations of the gys(8). Using the inverse
coordinate change (12) the zero dynamics can be simulaiteglth original coordinates.
When the zero dynamics is known the required inputs is giveBduation (11).

The terms, (9) andp, (10) for the different cases wheéhy, My, or R, is used as
input becomes (expressed in the original coordinates):

1 —2c1v .
QM = _ ( — (—c1V? — ¢ — C3Fp + Calem+ Cspi
EM . Ce+C7It2( 1 2 — C3Fp + Calem+ Cs it )
+C4 (—C11lem— C12V) + Csit (CalMat — CQith)) (37)
C4C10
= - 38
Bem . (38)
1 —2c1v .
QicE = _ ( — (—c2V2 — C3 — CaFp + Calem+ CsPi
ICE ot G2 CG+C7It2( 1 2 — C3Fp + Calem+ Cs i)

+C4 (Cr0Uem— C11lem— C12V) + Csit (709itvp)) (39)

CsCalt

= 40

Bice S (40)

ag = (—C1V2 — o+ Calem+ Cs i . 41

B ( 1 2+ Calem spt)CG+C7|t2 (41)
—C3

= : 42

Bs Ce + C7if (42)

To perform an inverse dynamic simulation of this system,raeiise dynamic driver
model, (15), is designed that specifies the desired velpuaitfjle. Using the inverse driver
model together with the powertrain model and its controteays the model has only one
input, desired acceleration, i.e. accelerator or brakalgsssition, and one output, vehicle
speed. This system can be inverted using the method dedanilsections 2 and 3 which
results in an inverse dynamic model as depicted in Figuren®ample simulation of the
hybrid powertrain model is presented in Figures 4 and 5. Vémanlating the considered
vehicle model there are some further considerations tHeb&discussed in the following
subsections.
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4.2 Change in system order and relative degree

As described above the system changes both order and eetigtiiree when the energy
management system switches operating mode. For some mddbesthe coordinates
for the zero dynamics is changed. Whenever a new coordisdteroduced it has to
be properly initiated. For example, when switching fromhtg low speed, i.e. case
3 to 1, two new coordinatessm andq is introduced and has to be properly initialized.
This has to be done such that the system equations (29)g82)sistent over the mode
switch. For the charggthe only constraint is the obvious fact that it has to beatited

to the value it had at the end of the period when it was last.uBedien, continuity and
smoothness of other variables also has to be consideredhislcdse it means thaim,
has to be initialized to a value consistent with Equatior) (2®te that re-initializations
of variables as described above can not be done for genarahilimum phase systems
due to continuity restrictions [2].

4.3 Gear shifting and parameter jumps

The simplest way to model a gear change is as a parameter julgeai ratio. This
approach however can not be used without considerationithareénverse nor forward
simulation. As described in Section 2 there are smothnessticints on vehicle speed
as well as on internal variables. This can be violated if ggenges are modeled as
parameter jumps. In the vehicle model presented here tlameter jump approach is
chosen. Since the model is a minimum phase system the siorutdtthe zero dynamics
can be stopped just before a gear change, then all states-enigalized to be consistent
with the new gear ratio. For this example this causes a junitétke manifold pressure.
Since the intake pressure dynamics is much faster than th&sishdynamics this can
be accepted for cases such as fuel consumption simulatibas exact simulation of
the engine dynamics is required the gear shifting has to be werefully modeled, for
example with a slipping clutch where a “drive cycle” is sfied for the clutch, i.e. speed
profiles for the clutch plates during release and lock hagtsgecified.

Results for parameter jumps in inversion of linear non-munin phase systems is
given by Devasia et.al. [3].

5 Conclusion

Inverse dynamic simulation based on stable inversion ofinear systems has earlier
been demonstrated feasible on quadratic powertrain models models with equally
many outputs and inputs. Here it has been discussed howbiesendynamic powertrain
simulation of non quadratic systems is performed. Inveygedic simulation of MISO
powertrains is shown possible by specifying a control sysé@d a driver model which
results in a total system of one input, i.e. the driver’s gbsacceleration, and one output,
the vehicle speed. Itis shown that restrictions on statdsantrols can result in a system
where the system order and relative degree changes at gwaitets. Proper handling of
such systems in inverse dynamic simulation is discusseadt, iraverse dynamic simu-
lation of non quadratic systems that changes order andveldégree at switch points,
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is demonstrated feasible by simulation of an example modelparallel hybrid electric
vehicle.
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Look ahead powertrain control

The problem studied in this part is how to drive a given distaat a given time in the
most fuel efficient way. Only highway-like driving for heatryicks has been studied, but
the results should be easily transferred to other drivingsians and other vehicles by
changing the problem parameters.

Driving a given distance with an average speed is equivadetitive a given distance
at a given time. The problem of minimizing fuel consumptiowar such conditions can
be formulated as follows. Lets(t) be the fuel flow into the engine, lett) be vehicle
speed, and,yg a desired average speed. Then minimization of fuel congampver the
timets is

min [y g (t)dt (3.1)
such that t%jéf V(t)dt = Vayg (3.2)

This problem is studied with slightly different view poiritsthe following papers. First
some background to the problem is presented, and then semg thn optimal control is
summarized in a perspective used in the papers. Finallydperns are summarized and
contributions are indicated.

3.1 Background

For heavy trucks even moderate slopes become significamta Bgical heavy truck,
with weigth up to 60 metric tons, the mass of the vehicle matkiespossible to keep a
constant cruising speed at most roads due to road slope. i¢atyppad in Sweden has
variations in slope between approximatel$% to 5%, see Figure 3.1. A negative slope
here defines a downhill slope and a positive slope defines hifl slppe. As shown in
Paper E the power to mass ratio for a typical vehicle that hge&p tons is too small for

49
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Figure 3.1: Slope of the highway E4 in Sweden between the cities of Saleand
Norrképing.

the vehicle to keep cruising speed in uphill slopes with attiriation larger than about
1%. Further, in down hill slopes where the engine does nalymre any work, the mass
of the vehicle will make it accelerate if no brakes are aphliethe slope is steeper than
about—1%. For driving missions on such roads there are severallpespeed profiles

that have the same average speed but with different fueloopison. These facts make
it interesting to study optimal speed profiles that minirsifigel consumption on a given
driving mission while keeping a desired average vehicledpe

3.2 Optimal control theory

To solve the problem defined by Equations (3.1) and (3.2ywgdtcontrol theory is used.
A short review of optimal control as described in the claaisiextbook [4] will now be
given.

Letto,ts be the initial and final time respectively. Left) be the state vector andt)
be the controls of the system defined by

Let ¢(xs,ts) and L(x(t),u(t),t) be functions that are differentiable sufficiently many

times. The optimal control problem is then to find the conkaol u(t) that minimizes
the performance index

tf
J= 0(X(tr),tr) + / L(x(t), u(t),t)dt (3.4)
fo
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Now, adjoin the system dynamics, i.e. the constraint (30Xhe performance index with
multipliersA(t)

tf
j:¢uaﬁm)+/(MMUMGLU+AWU(NMUMGLU—ﬂUDdt (3.5)
fo

Define a scalar function called the Hamiltonian as
H (x(t),u(t),A(t),t) = L(x(t),u(t),t) +)\T(t)f(x(t), u(t),t) (3.6)

In Chapter 2.3 in [4] the necessary optimality conditiors stated as follows: The
adjoint dynamics for an optimal solution is

: oH oL of
T__oH_ oL . rof
A= 0x 0x A 0x (3.7)

with boundary conditions

0
A (t5) = .
(tr) ax(tr) (3.8)
and for an extremum it must hold that
oH
- — <t< )
5 0, to <t < tj (3.9)

Equations (3.7), (3.8) and, (3.9) are often referred to asthler-Lagrange equations.

A more general result than (3.9) for optimal control is thexmaum principle as stated
in [7]. For a minimization problem as here the maximum piptebecomes a “minimum
principle”. Let the set of allowed controls lue= U, let the optimal control be*, and let
the optimal solution b&*. Then the optimal control is found from

minH (x*(t),u(t),A(t)) = H(X*(t),u*(t),A(t)) (3.10)

ueU

—— Example 3.1 |
Consider a vehicle with air and rolling resistance forgesf the formF = a+ bv? where
v is vehicle speed. Let the resistance due to road slopeshe (s), the total vehicle
inertiaJ, the propulsive forc&, and the distance traveled The system dynamics can
then be written as

v = Z(F-a-bZ—csina(s)) (3.11)

(3.12)

< Gl

g =
The system state vector is thas- [v,s]T and the control isi = F. If the total propulsive

work for the driving timet; is to be minimized, i.e.

tf

mm/Fmt (3.13)
0
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i.e. L = Fv. The Hamiltonian for this problem is
1 .
H :Fv+)\\,3(F—a—bvz—csmo((s))+)\sv (3.14)

and the adjoint dynamics is given by (3.7), i.e.

. oH 2

ANo= 5 =—F+3Abv-)hs (3.15)
) oH 1 da

As = s = j)\vccosa(s)E (3.16)

with Ay(ts) = As(ts) = 0. The optimal propulsive force is found by minimizing therrik
tonian with respect to the contral Since the Hamiltonian is linearly dependentarthe
result obtained by using (3.9),

oH Av

— =V+— 3.17

ou * J ( )
does not give the optimal control directly. However, thisdtion plays an important
role and will be referred to as the control switching funatitysing the maximum princi-
ple (3.10) it is seen that when the control switching funct®negative maximum propul-
sive force is used and when the control switching functigroisitive minimum propulsive

force is used. When

oH Av
i Y _0 3.18
ou vt J ( )

for finite periods of time further reasoning needs to be donerder to find the optimal
control.

Another way of approaching the problem is as follows. Siraarslopex is a func-
tion of position it is convenient to change independentalad according to

d 1d

The natural choice of states are then vehicle spestt traveled tim&, and the system
dynamics is

dv

1 .
Fr J—V(Ffafbvzfcsmor(s)) (3.20)
dT 1
= - = 21
ds \% (3-21)
The objective function is then
St
min/Fds (3.22)
0

i.e.L =F, and the Hamiltonian is

H :F+)\V%/(F—a—bvz—csincx(s))—i—)w\—ll (3.23)
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The adjoint dynamics becomes

d}\v aH o }\V }\T

R R T (F —a+bv?—csina(s)) + 7 (3.24)
dr  OH
o= == 0 (3.25)

Note that the second adjoint varialdle now is constant.

3.2.1 Optimal control with specified final states

Now, consider the optimization problem studied above btit wome of the states spec-

ified at the final times. If X is specified at the terminal time the boundary condition
ax?—?:f) = Ai(tf) is exchanged tg (tf) = x; r. If a system witim states has statgs=1,...,q
specified at the final time, see Chapter 2.4 in [4], the coimt(a.8) is exchanged to the
following, whered ; are associated multipliers to be decided by the problem

Aty =4 O AThed (3.26)
() = : .
! (i) i=g+1,...,n

—— Example 3.2 |

Consider again Example 3.1. For that problem to be of anydstea constraint on the
traveled distance at the tinig¢ has to be imposed. For the formulation using time as
independent variable this means thatts) no longer is zero, but instead that value has
to be chosen such that the optimality conditions are salisfelsov(t;) is specifiedAy

is treated similarly. I6is the independent variable instead of time, the same réasn
applied toAr(sf) andAy(st).

3.2.2 Restrictions on control variables and states

In some problemsitis interesting to study optimal solusiander constraints on functions
of the control and state variables. Such a constraint igemrit

C(x,u,t) <0 (3.27)

This problem is handled by adjoining the constraint to thenitanian with a multiplier

K
H=L+ATf+puC (3.28)

{20 620 (3.29)

where
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Necessary optimality conditions are discussed in Chapfdr i [4], and is as follows:
The adjoint dynamics is

[ “Le-ATh-pG, C=0
A —_HX—{ L= \THy, C<0 (3.30)

and the optimal control is found from
Hu=Ly+ AT fu+pC=0 (3.31)

WhenC =0, i.e.pu# 0, (3.27) and (3.31) together determing) and(t).

3.2.3 Singular solutions

In many applications the system is in the form
x= f(x)+g(x)u (3.32)

Also assume thdt is linearly dependent om, i.e.

L=I(x)u (3.33)
The Hamiltonian is then
H = I(x)u+AT(f(x)+g(x)u) (3.34)
and _
AT = —Lu—AT(fx+guu) (3.35)

If uis bounded the minimum dfi may occur on the boundary of the set of all It is
however possible that there are intervals where a funatipnwill yield x(t) andA(t)
such that

Ho=1(x)+ATg(x) =0 (3.36)

A convexity condition for a local minimum isly, > 0. When (3.36) is fulfillecH,, = 0
and such solutions are referred to as singular solutionssikeh sections (3.36) does not
directly determinei(t), but it must also hold that

%Hu = I, X+ ATg+ATgx =0 (3.37)

Using (3.32) and (3.35) in (3.37) gives

%Hu = Ix(f 4+ gu) — (ku+ AT (fx+gxu))g+ATgx(f +gu) =0 (3.38)
Note that the terms in the control varialbleancels out in this expression. Equation (3.38)
hence does not help directly in finding but it may give valuable insight in the depen-
dence betweeNl andx, which in turn can give information about This method will be
used later in paper F. In Chapter 8.3 in [4] Equation (3.3&)ifferentiated once again
with respect to time to get an expression that determines
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—— Example 3.3 |

Consider again the problem of Examples 3.1 and 3.2 formdilaith position as inde-
pendent variable. With = F the partial derivative of the Hamiltonian (3.23) with respe

to the control is

oH Av

P 1+ Iy (3.39)
and

doH _1dh A dv_20b A (3.40)

For singular arc%% = 0 for finite distances which from (3.39) means that= —Jv.
Using this the following dependency betweeandA+ is obtained

doH At 2b

—___2L_ZZ_p 3.41

dsoF J¥@ J ( )
SinceAt is constant is also constant during singular arcs. From that infornmatiee
optimal control is found from the vehicle dynamics.

3.3 Dynamic programming

Dynamic programming became popular after the works [1, Beré& is also a presentation
given in [4], and a more recent textbook on the subject is [8]the previous section
optimal control was discussed given an initial state an@tiin control applications it is
often desired to know optimal control solutions from marijiahstates and times in order
to implement feedback control. In [4] it is discussed hove tisi treated for continuous
time problems, and a short review will be given here.

Typically, only one optimal path passes through a péx(t),t) which means that a
unigue optimal contral® is associated with it. An optimal feedback control law cagrnth
be expressed,

U’ =u’(x,t) (3.42)

Also, for each pointx(t),t), following the optimal path to the surface of the terminal
boundary, there is a unique optimal value of the performamtex,J°. Hence J° can be
regarded as a function of the starting point, i.e.

J° =3 (xt) (3.43)

This is referred to as the optimal return function.
For an arbitrary initial poinfx,t) the performance index is

tf
J=0(x(tf),tf) +/L(X(T),u(T),T)dT (3.44)
t
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with terminal conditionsp(x(ts ),ts) = 0. The optimal return function (3.43) is then
tf

3(t) = min{o (). tr) + [ L(x(0).u(r) ot} (3.45)
t

with boundary condition thal’(x,t) = ¢(x,t) on the hypersurface(x,t) = 0. In [3]
there is a thorough description how this problem is solvextively by discretizing time.
There, time is divided ifN + 1 stages and the system is described as

X1 = (%, k) (3.46)
The return function, or cost-to-go as it is called by Ber&se[3], in the last stage is
IN (XN) =0ON (XN) (3.47)

wheregy is the same function asused in [4], see (3.4). Now, let the cost at time instant
k begk(x, ux). Then, from the value of the end cost, (3.47), the optimatrabpolicy is
found by iterating backward in time according to

Jk(Xk) = rrdli(n{gk(xk, Uk) +Jk+1(fk(Xk, Uk))}, k=0,1,...,.N—1 (3.48)

Let the optimal value of the cost-to-go function at stidme J; (xk).
Let € = { L, k11, - -, Un_1}. Then the optimal value of the cost to go function is

N-1
I (%) = ngfin{gm (Xn) + i; i (%, (%))} (3.49)

This expression can be compared to (3.45). In [3] it is shdvan the functiorJ; (x«) are
equal to the functiondc(xx) generated by the dynamic programming algorithm (3.48).

When solving an optimal control problem it is also practiatiscretize the state-
space. The dynamic programming problem can then be deddripa transition graph.
In a deterministic graph the same optimal solution is fourttependent if the algorithm
is run backward or forward in the graph.

—— Example 3.4 |
Consider again example 3.1 but now to be solved with the elisctynamic programming
algorithm. The vehicle dynamics using the Euler approxiomatvith step lengthn is

h .
Virr = (i, o) = 3 (Fc—a—bv—csina(s)) + Wk (3.50)
Let the final state cost bgy(vn) = 0 and the cost for a transition from stateto vi1 be
the propulsive worlhF. Then the state transition cost is
Ok(Vk, Fx) =hFR, k=0,...,N—1 (3.51)
The optimal control is then found from the backward itemativith Jy = O,
Jk(Xk) = min:k {gk(vk, Fk) + Jk+1(fk(vk, Fk))} ,k=0,....N—1 (3.52)

The dynamic programming method described is used in Papad®aAn example
simulation is seen in Figure 3.2, which also will be the &tarpoint of the next section.
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Nfuel = -2.26 % Atime = -1.77 %
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Figure 3.2: A simulation example of an authentic road from Paper D. Twousi
lations are depicted, one using a standard cruise cont(@lgand one with a pre-
dictive controller using dynamic programming (MPC). Thp fdot shows the road
topography, the second vehicle velocity, the third noreealiaccelerator and brake
levels, and the fourth gear selection.
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3.4 Towards practical rule based control

In Figure 3.2, part of an example simulation from Paper D &spnted. In that case the
dynamic programming algorithm has been used in each sampgl@dulate the optimal
accelerator level, i.e. fueling, optimal brake level, aptimal gear choice. Some typical
behavior can be observed in the figure, e.g., prior to a s@amifiincline the vehicle is
accelerated which can be seen at 1, 4 and 6 km, and prior tolmeléte vehicle is
retarded which can be seen at5 and 7 km. Inspired by suchwvalbises it is interesting to
see if simple rules can be found that can be used in an irdutidd more computationally
efficient control system, and to what extent such a contrilable to save fuel.

To quantify when and how to take actions such as acceleragéore inclines and
retardation before declines, the optimality conditiormsfrSection 3.2 can be used.

—— Example 3.5 |
Again consider Example 3.1. Recall the control switchingction (3.17), and that if
%—'J > 0 minimum tractive force is used, and that%ﬂ'f < 0 maximum tractive force is
used. It is seen that vehicle inertia, which mostly depemdgathicle mass, is a decisive
parameter for the optimal control, but also that the retabietween vehicle speatand
the adjoint variabl@,, is important.

Those equations also gives a possibility to find the decigarmmeters for the optimal
control. It is natural that for example engine torque, viehinass, and road inclination
are decisive but it is not clear in what relation they will@rinto practical rules. By using
simple yet descriptive models and formulating the anadytaptimality conditions a lot

of insight can be obtained. The results point toward a practule-based controller as is
described in Paper F.

3.5 Overview and contributions of the papers

A brief overview of the papers will here be given and the dbations will be stated.

Controlling Gear Engagement and disengagement on heaskstfar minimization
of fuel consumptionAnders Froberg, Lars Nielsen, Lars-Gunnar Hedstrém, aad-M
nus Pettersson, IFAC World Congress 2005. In steep dowsibjles a heavy truck will
accelerate even though there is no fuel injected to the engm the engine produces
negative work due to friction. A possibility to reduce théaiopowertrain friction is to
engage neutral gear. This will increase the vehicle acagderand the gain in kinetic en-
ergy will increase. However, to drive systems like poweeste etc, the engine has to be
run in idle conditions and thus consuming some amount of flle¢ contribution of this
paper is to show the magnitude of possible fuel savings byimgake correct decision in
significant downhill slopes whether to disengage the ge# out the fuel injection.

A Real-Time Fuel-Optimal Cruise Controller for Heavy Treaksing Road Topogra-
phy Information Erik Hellstrom, Anders Froberg, and Lars Nielsen, SAE \W&@bngress
2006. If knowledge of road profile ahead of the vehicle is knthat information can be
used to control engine fueling and gear choice in a fuel cgitivay. This paper shows
how a predictive cruise controller with real time perforrarcan be designed using dy-
namic programming, and the magnitude of possible fuel ggvisidemonstrated through
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simulations on authentic road profiles. This work is basedhenmaster thesis by Erik
Hellstrdm [6] which was supervised by Anders Froberg.

Explicit Fuel Optimal Speed Profiles for Heavy Trucks on a&efopograhic Road
Profiles Anders Froberg, Erik Hellstrom, and Lars Nielsen, SAE \Wd@bngress 2006.
To gain knowledge of decisive parameters affecting fuekoomption fueling control is
here studied on constructed road profiles. The simple testscengether with analyti-
cal solutions to vehicle motion gives valuable insight itlte properties of the optimal
control. The results can also be used to validate the beha¥ioumerical predictive
controllers such as presented in Paper D.

Optimal Control Utilizing Analytical Solutions for Heavyriick Cruise ContrQlAn-
ders Froberg and Lars Nielsen, technical report that is teneled version of the paper [5],
Optimal fuel and gear ratio control for heavy trucks withgaevise affine engine char-
acteristics.Again solutions on constructed road profiles are studietinbw by solving
the optimal control problem in more detail. The analyticgbessions that are derived
for the necessary optimality conditions provide insighthaw each parameter affects the
optimal solution.

Optimal control solutions for affine engine torque modeking compared to solutions
for piece-wise affine models, and it is shown that even snaitimearities have signif-
icant effect on optimal control switch points. Solutionsaptimal gear ratio control for
both a continuous variable transmission and a discretgstepransmission show that
the maximum fueling function and the gear shifting lossesimportant for the optimal
control behavior.

The theoretical results are used in a simple rule basedqtiezicruise controller and
the possible fuel savings for that method is demonstratsihnlations on authentic road
profiles showing promising results.
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Paper C

CONTROLLING GEAR ENGAGEMENT AND
DISENGAGEMENT ON HEAVY TRUCKS FOR
MINIMIZATION OF FUEL CONSUMPTION?

Anders Fréberg*, Lars Nielsert, Lars-Gunnar Hedstrom®, Magnus Petterssof

*Dep. of Electrical Engineering, Linképings universitet,
SE-581 83 Linképing, Sweder{f r oberg, l ars}@sy. | i u. se.
TScania, SE-151 87 Sédertélje, Sweden

Abstract

There is a potential to save fuel for heavy trucks by storiimgetic energy in
the vehicle when driving downhill, because the speed adutikienergy to the
vehicle which can be used after the downhill slope to proghellvehicle. This
behavior can be even more utilized by disengaging the geadtece the friction
in the driveline and thus increase the speed even more. Tiferetit control
strategies to choose when to disengage the gear is pres@redhat uses in-
stantaneous inclination and one predictive control schigraeuses look ahead
information of the road topology. Simulation results shbwattgear disengage-
ment in downhills can reduce the fuel consumption about 3% petialized
constructed road profiles, but only about one tenth of thaaroauthentic road
profile.

1This is an edited version of [3], Controlling gear engagenaeul disengagement on heavy trucks for mini-
mization of fuel consumption, published in the preprintshaf IFAC world congress 2005.
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1 Introduction

In order to save fuel it can be beneficial to increase speed wdheing downhill to build
up kinetic energy that can be used driving uphill. Typicalise controllers used in heavy
trucks allow the speed to vary between specified limits shelh the speed is high in
hollows and low on crests. If the slope is high when drivingvdbill the fuel injection
can be cut off and no fuel is consumed. However, for smalledape engine friction
can be so high such that the speed is decreased when goingi@htout-off mode. In
these cases some fuel has to be injected to overcome theednigtion. Then it can be
beneficial to disengage the gear so that the powertrairdiniés reduced and the speed
can be increased or maintained with only idle fuel flow. Fertif the road profile ahead
is known, using e.g. GPS or collected data, then further avgments can be done.
Here dynamic programming is used to make the trade off betygeig into fuel cut off
and disengaging the gear. In this paper, two strategiedbwitleveloped, simulated, and
evaluated to explore the potential fuel savings.

2 Truck model

The truck is modeled with standard equations for a stiffeme [5, 6] as summarized
here. See Section 6 for notations.
The dynamics of the engine inertia is modeled as

Jee = Te— T 1)

whereT, is the engine torque, which includes negative values reptesy e.g. negative
torque during fuel cut off or if present an exhaust braken3naission and final drive are
modeled as stiff rotational components with constant efficies.

We = It f 2)

Teieneiens = Tw (3

The wheels are modeled as rolling wheels with brakes
Jw@w = Tw —Frw—Tp 4)

V = Iy (5)

The vehicle motion is described by
F = mv+ Fair + F + mgsin(a) (6)
where the air and rolling resistance is

1
Fair = EchpV2 (7)

Fr = mgg coga) (8)
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Negative values ofi indicates a downhill slope and positive values indicatesigatmill
slope. If Equations (1)-(8) are combined the result is

1V = CoTe+ C3Th + C4V2 + G5 cOS 1) 4 Cg Sin(t) (9)

wherec; are lumped model parameters.
The control input to the engine is the injected amount of fiezlengine strokd. The
resulting engine torque is mapped as a functiod afid engine speead..

Te = Te(d, %) (10)

The fuel consumption is computed as

(300, wu(0)) = [ 30 e P (a)

3 Control strategies

Cruise controllers in heavy trucks normally allow the sp&eihcrease some above the
setpoint when driving downhill [8]. If the speed increasesrethough the engine does
not deliver any torque, the brakes are not applied until agdfienit defined by the cruise
controller is reached. The typical speed interval allonse8-1L0 km/h. In this work, the
cruise controller is implemented as two Pl-controllerg oantrolling the fueling and one
controlling the brakes.

Two strategies will be developed in the following: one imséameous strategy in Sec-
tion 3.1, and one strategy with look ahead in Sections $%2-3.

3.1 Using instantaneous inclination,  Il-strategy

As mentioned above, there are possibilities to enhancerthigeccontroller to save fuel.
For example a gyro, an accelerometer, or a GPS and 3D map aaseleo obtain in-
formation about the inclination. This instantaneous imafion can be utilized, and the
rationale behind the algorithm below is as follows: Considiéving downhill with the
gear engaged in such a small slope that the engine has terdsdime torque for the vehi-
cle to maintain speed. In such a slope it can be possible éngage the gear, and thereby
lowering the driveline friction sufficiently much, such thihe speed can be maintained or
even increased. The increase in kinetic energy that isctorthe vehicle leads to lower
fueling some distance after the downhill slope and therébyoverall fuel consumption
can be reduced. When the gear is disengaged the engine hasuo i idle mode to
deliver power supply to auxiliary systems such as poweristgeand hence consumes a
certain amount of fuel. In downhills with inclination so hithat the engine does not has
to deliver any torque to maintain speed it is always benéfigigo into fuel cut-off mode.

Following this idea, the model presented in Section 2 is tgektrive the inclination
angles for when it is beneficial to disengage the gear. Whemdar is disengaged it is
seen from Equation (9), settifig = 0, T, = 0, that for inclination angles

B e {B:ca?+cscogP) + cesin(B) > 0} (12)
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the speed will be maintained or increased. The boundanh#osét (12) (using equality
in (12), then becomes

2
. Vv
B= arcsm(c“i) — arctanz—5 (13)

/2 2 6
C5+Cg

On the other hand, if the inclination is too high it was earimted that fuel cut off was
beneficial. The following model for the engine friction whiéis being dragged

Ted = d1We + d (14)
with bothd; < 0, is used. Together with Equation (9) it is seen that forimatlon angles
¥ € {V: ca(dawe + da) + Cav? + cscog§) + Cesin(y) > 0} (15)

the speed will be maintained or increased even when the gesgiaged. The boundary
for the set (15) can be expressed as

2
y= arcsin(cz(dlme o) +Cav ) — arctan<§> (16)

2 2 Cs
\/C5+C6

3.2 Lookahead

As stated above it is possible to have knowledge about thernipg road profile. This

can be used to make a more intelligent choice, than the metbsctibed in Section 3.1,
on when to disengage the gear. To use the extra informationtdabe upcoming road
profile and find the optimal control strategy a model pred&tontrol scheme is used
[1,9].

3.3 Formulation of the optimization problem

Since the altitude information of the road profile is giveraaiinction of position, the
model (9) is reformulated with a change of variables frometim position according to

dv dvds dv

dt ~dsdt  'ds an
which introduced in (9) gives
dv 1 .
1= V(CZTe+03Tb+c4v2+c5cos(a) + cgsin(a)) (18)

Using this model the choices of whether to disengage theayeast can be represented
by a transition graph as depicted in Figure 1. The samplamisi\ was chosen to the

same as the distance between the samples of the altitudeostier a transition between
statevi to statevy 1 is computed as

ms (O, We), Ux=1
gk(Vk7(5k7Uk))={ m:(imz ) u:z:O (19)
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Figure 1: An example of a dynamic programming transition graph foredfmtion
horizon ofN samples. From each state there are two choices, eithemdigerthe
gear or use the cruise controller over the next sample iaterUhe cost for each
transition is the amount of fuel that is needed to go betwkeorresponding states,
i.e. change the speed frorhto Vi, on the length of one sample interval.

whereuy, = 1 denotes that the gear is engaged apng- 0 denotes that the gear is dis-
engaged. Fuelingx and engine speed is computed from a simulation of the model
using the standard cruise controller, ang is computed from Equation (11). The fuel
consumption at idle isn jgie.

The following optimization problem is general, but since #im is dynamic pro-
gramming the notation from [2] is used. Lgf(vk) = (O, ux). Consider the class of all
admissible control laws

= {pov"'auNfl} (20)
that maps stateg into controls. Given an initial stat) and an admissible control law,
the statesy are defined by the equation

Vit1 = Fie(Vie, Mk(Vk)) (21)

wherefy(-) is defined by a discrete approximation method of (18), e.¢erfSunethod or
a Runge-Kutta method, see [4]. If the cost for an end stag (v ) the total cost fom
starting atvp is

N—1
Jn(Vo) = 9n(VN) + Z) Ok (Vi Mk (k) (22)
k=

The optimal control strategy to drive the distance corresiirg toN samples is to find
the way,mt*, through the transition graph with the lowest cost, whicgiven by

Jre (Vo) = mnian(vo) (23)

3.4 Design considerations

The design criterion (22) is defined by the fuel consumptl®) (but the final cogin (vn)
remains to be designed. Sometimes this may need consaterdfiall end states are



66 PAPER C. CONTROLLING GEAR ENGAGEMENT AND DISENGAGEMENT

assigned the same cost it is in most cases optimal to end ugeistate with lowest
velocity, because the fuel required to reach that statenisridhan for all other states (of
course except if braking is considered). However, if the gtk is in a downhill slope,
it can be beneficial for the total cost of the whole drivingrearéo if the end state for the
current optimization has a higher velocity. The fuel conptiomn for reaching such an
end state has to be compared to the velocity of that statenie seay, and here the idea
is that the final states are assigned a cost correspondinfyiéd @quivalent of the higher
kinetic energy they corresponds to. This comparison is matiean efficiency model of
the truck.

3.5 Determining the reachable state space

Using dynamic programming to optimize (22) means backwalclgation in a transition
graph, and here this graph has the following charactesistit the problem considered,
there are natural bounds on the velocity. Too high speed oabenaccepted for, e.g.,
safety or regulation reasons. The driver will probably ntiva the speed to decrease
below a certain limit. To find the upper limit for the speed theck model is simulated
with maximum fueling which results in a speed seque(n@g...,vyf). The upper limit
is then taken as m{Nst, Vmax), Wherevmax is the highest speed allowed. As lower limit
Vmin = MiN(Ve, Vset) IS chosen, Wherevg, ... ,vy) is the speed sequence obtained with a
standard cruise controller angk; is a set-point speed chosen by the driver.

Even though the state space is restricted with an upper ared lsound one can have
infinitely many states in between. Therefor an approxinmigodone such that if two
states are very close to each otheg,— v»| < € for some small positive valug, they
are approximated to the same state. Following this proestther problem grows linearly
with prediction horizon, and the maximum number of statessaich stage in the transition
graph in Figure 1 i$Vimax— Vmin) /€.

4 Simulation results

To evaluate the control strategies described in Sectior 8tick model presented in Sec-
tion 2 has been simulated with different road topologiegshRonstructed test topologies
as well as actual topologies from the highway E4 outside &joikg, Sweden have been
used, see Figures 2- 7. The constructed road topologiesde@rechosen such that they
should show interesting properties of, and differencewa®en, the two proposed control
strategies and an ordinary cruise controller.

The standard cruise controller and the controller usintaimtaneous inclination, II-
strategy, were sampled with 10 Hz. The look ahead contrelkes sampled each 25
meters, and the prediction horizon was 10 samples corre#pgpto 250 meters.

The gap betweef andy defined by Equations (13) and (16) is narrow, typically
in the order of 0.1 degree for trucks weighing around 20-6(3 tand speeds around 85
km/h. In Figure 2 the inclination is betweghandy. The lI-strategy disengages the
gear in the downhill which can be seen in the second submot &bove, where 0 means
disengaged gear. There is thus two periods around positieA00 ands = 800 where
this happens. Thereby the speed increases, as can be séenlawést subplot as the
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Mass: 40 ton A=-1.53% slope 1.3, 1.3%
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Figure 2: Simulations of a 40 ton truck. The dashed line representsalatd cruise
controller and the solid line the ll-strategy. The inclioatin the slopes isF1.3%
and the fuel saving is 1.53%.



68

PAPER C. CONTROLLING GEAR ENGAGEMENT AND DISENGAGEMENT

Mass: 40 ton A=-0.083% Slope 2, 2%
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Figure 3: Simulations of a 40 ton truck. The dashed line representsulatd cruise
controller and the solid line the II-strategy. The inclioatin the slopes is-2% and
the fuel saving is 0.083%.
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Mass: 40 ton A=-0.0877%
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Figure 4: Simulations of a 40 ton truck. The dashed line representslatd cruise
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Figure 5: Simulations of a 40 ton truck. The dashed line representgalatd cruise

controller and
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solid line. The behavior of the standard cruise controbeséen in the same subplot as
dashed line. It does not disengage so the speed is in thesepéarounds = 600 and

s = 800) decreasing instead of increasing as for the Il-styategsubplot 3 from above
the fuel savings, about 1.5 %, for the ll-strategy, is seethadlifference between the
curves in the same period £ 600,s = 800).

In Figure 3 the inclination is outside the operating rangthefll-strategy and it gives
the same result as the standard cruise controller. If theqgflgear engagement and
disengagement is studied closely it is seen that the ltegfyadoes in fact disengage the
gear at 4 positions even though the inclination is outsieeéimgeB,y]. This is because
the algorithm calculates the instantaneous inclinatiomrasnterpolation between two
consecutive samples. In Figure 4 the II-strategy is ilatstl on a real road profile, and
subplot 2 shows that the gear is seldom disengaged. Onlitasht third of the driving
scenario there are downhill slopes where the strategy caiséxand the total reduction
of fuel consumption is small. In Figure 5 it is seen, for thogd profile, that the look
ahead strategy works almost as the ll-strategy in Figurevouild however be expected
that the look ahead strategy should give a lower or at leasdlégel consumption as the
lI-strategy, and the reason for not being so is that the Idwad strategy only changes
its control signal each 25 m. Driving in 85 km/h this is roughl1 times the sampling
frequency of the Il-strategy. On the other hand, for thepiesdfile in Figure 6 it is seen that
the look ahead strategy disengages the gear not only in thetdibslopes but also in the
flat sections between and after the downhill. Compared tatdedard cruise controller
the kinetic energy is increased in the downhill. Becaushisfthe look ahead strategy can
start to inject fuel later after the downhill, (subplot 2 anal positiors = 900 m), and still
keeps the same speed as the standard cruise controlleedingion of fuel consumption
is almost 3 %. In Figure 7 it is seen that the look ahead styadiégpngages the gear
in the downhills of the third part of the driving scenario. rjeared to the Il-strategy in
Figure 4, for the same real road profile, the gear is, in th& kftead case, disengaged
during approximately three times as long. The reductioruef Eonsumption is higher
than for the ll-strategy, but is still modest over the totatahce.

5 Conclusions

Simulations shows that fuel consumption can be decreagedyito approximately 3%
for some driving scenarios by disengaging the gear whernndyigownhill, and thereby
increasing the vehicle’s kinetic energy. This increasddda lower fueling directly after
the downhill. As mentioned in Section 3.5 the size of thermjztation problem is linear
in prediction horizon, and the case presented can easilyrbeell under real time.

If the vehicle is equipped with an automated manual transionis see e.g. [7], or an
automatic clutch, no extra hardware in the powertrain igleddo implement the control
strategies presented. Since only the control softwaredbs thanged the implementa-
tion cost is expected to be reasonably low.
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6 Nomenclature

A Vehicle cross sectional area

cqg  Airdrag coefficient

Ci Lumped vehicle model parameters
Cr Rolling resistance coefficient

di Engine drag torque parameters

F Vehicle Forces

g Gravitational acceleration

i Gear ratio

J Inertia

m Vehicle mass

m;  Fuel mass

Neyt  Number of cylinders

ny Revolutions per engine cycle
Onv  Fuel heating value

r«,. Wheel radius

T Torque

v Vehicle speed

a Inclination

n Efficiencies

A Sample distance

o Injected amount of fuel per engine stroke
p Air density

w Rotational speed
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A REAL-TIME FUEL-OPTIMAL CRUISE
CONTROLLER FOR HEAVY TRUCKS USING
ROAD TOPOGRAPHY INFORMATION?

Erik Hellstrom *, Anders Fréberg®, Lars Nielsen

* Dep. of Electrical Engineering, Link6pings universitet,
SE-581 83 Linkdping, Sweder{hel | strom froberg,lars}@sy. liu. se.

Abstract

New and exciting possibilities in vehicle control are rdeeaby the considera-
tion of topography, for example through the combination &SGand three di-
mensional road maps. How information about future roadesayan be utilized
in a heavy truck is explored. The aim is set at reducing thédaasumption
over a route without increasing the total travel time.

A model predictive control (MPC) scheme is used to contrel litngitu-
dinal behavior of the vehicle, which entails determiningederator and brake
levels and also which gear to engage. The optimization israptished through
discrete dynamic programming. A cost function that weighed fise, negative
deviations from the reference velocity, velocity changgsar shifts and brake
use is used to define the optimization criterion.

Computer simulations back and forth on 127 km of a typicahhigy route
in Sweden, show that the fuel consumption in a heavy truckeareduced with
2.5% with a negligible change in travel time.

1This is an edited version of [4], A real-time fuel-optimaluige controller for heavy trucks using road
topography information, published in the preprints of t#€ESNVorld Congress 2006.

7
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1 Introduction

Fuel cost is a major part of the life cycle cost of a truck. Redg fuel consumption is
therefore attractive to the the owner as well as a gain foetivironment.

In [3] the use of neutral gear and look ahead information &mi Savings were ex-
plored. The present paper is a continuation where the dedgatroller also determines
fueling, braking and gear shifts. The paper [7] also dessriuch a predictive algorithm
which uses topography information. Compared to that, herelosions are also drawn
regarding optimal length of the prediction horizon and theeptial fuel savings of using
the neutral gear.

When reporting effects on the fuel consumption from new idler strategies it is
important to study the effects on travel time. To get a faseasment of controller perfor-
mance, it is preferable with controller configurations aoad sections where the relative
difference in travel time compared to the reference modegmtive or close to zero. This
paper presents some results from short illustrative tesftlgs with the aim of showing
controller behavior in detail. To assess fuel saving paéribnger and authentic road
measurements are used.

The main objectives of the present paper are therefore fieelacontrol criterion for a
sufficiently complex truck model and drive mission on a itadiroad profile, and further,
to study the interplay between model, criterion, and dyrmgmdgramming with its tuning
parameters, and to interpret the resulting optimal stiasegbtained in the simulations.
Some of the observations are under simplifying assumptives analytic interpretations
in [2]. The presentation is organized so that the following sections describe the truck
model and the dynamic programming algorithm which is usedofdtimization in an
MPC controller. In the final sections simulation resultsaresented and conclusions are
drawn.

2 Truck model

In the following section, a model for the longitudinal dyniamof a truck is formulated.
The foundation for this model is found in [6].

The engine torqu@; is modeled as
Te = fe(we,d) 1)
wherewx is engine speed [rpm] andl is the fueling [mg/stroke]. The functiofe is

approximated with polynomial functions which are fitted &talfrom steady state mea-
surements.

The engine transmits a torqiigto the clutch through
Jee =Te—Tc (2)

whereJe is the engine inertia. The inertia of the transmission aral finive is neglected.
The resulting conversion ratio isand energy losses are modeled with an efficiemcy
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Force | Explanation | Expression

Fa(v) | Airdrag ZCwAapaV’

F(a) | Rolling resistance | mgg cosa

Fg(a) | Gravitational force| mgsina
Table 1: Longitudinal forcesa is the road slope [rad] artd is the rolling resistance
coefficient [-]

The clutch, propeller shafts and drive shafts are furtheumed stiff. This gives

We = iw
1
T = —
c in w
@y = Tw—To—rwFw (3

whereT,, is the torque transmitted to the whedj,is the wheel inertia]y, is the braking
torque andy, is the wheel radiuds, is the resulting friction force at the wheel.
The motion of the truck is governed by

The longitudinal forces are explained in Table 1. Assumioglip, the vehicle velocity
is

V = Wy
Equation (2) to (4) can then be combined to yield

V= m(inTe(szs)*Tb*rw(Fa(v)+Fr(d)+Fg(a))) (5)

The mass flow of fueim; [g/s] is determined by the fueling [mg/stroke] and the
engine speed. Assuming zero slip the velocity is T we. The mass flow in [g/s] is then

ms(v,0) = cfvd (6)
wherect (i) = 10 T

wherency is the number of cylinders ang is the number of crankshaft revolutions per
stroke.

3 Look ahead control

An MPC controller has been developed to control the vehithes section describes the
shortest path Dynamic Programming (DP) algorithm whictsisdlfor the optimizationin
an MPC scheme [5]. The control objectives are first identéiled based on these, the cost
function is chosen. The problem is then presented in a foitalde for implementation.
Lastly, the DP algorithm is described and the algorithm clexify is discussed.



80 PAPER D. A REAL-TIME FUEL-OPTIMAL CRUISE CONTROLLER

3.1 Objective

The main objective is to keep the vehicle in an allowed rarigelocities with a minimum
use of fuel. Denote the reference velooity; [km/h]. The vehicle velocity is allowed
to decrease witlvgec and increase withvi,c from vies. The brake system is assumed
to be effective enough for the road ahead and thus the upperdd@res + Vinc) Never
needs to be violated. It is however not sure that a heavy ttaokkeep the lower bound
(Vref — Vdec) ON all road profiles. This bound is therefore lowered if thexmmaum torque
possible which the vehicle can produce is not enough to Keepaound. It is assumed
though, that it is possible to keep a velocity greater thaw z¢ all time. Denote the
velocity achieved when applying maximum torqugim. The constraint on the vehicle
speedv can then be expressed as

0 < min{Vret — Vdeo Vriim} <V < Vref + Vinc (7

3.2 Cost function

The cost function is

N-1
I=ln+ 8
4N k; Lk 8)

wherek is the stage number. The weighting functidnis, with basis of the objectives,
chosen as

ms k
K(a)el
Zk = Q |Vk—Vk+1| kiO,l,...,Nfl
K(|9k — Okr1)
Tb
in =0 9)
whereex = Vief — Vi, Q is a vector with five scalar penalty facto€g, i = 1,2,3,4,5, and
K is a step function
1, t>0

The required fuel massy x for a state transition is weighed witQ;. In order to
limit the state space, the state vector will not be expandeiddlude any cumulative
information of the state history. This leads to that it is possible to penalize the mean
velocity (with a terminal constraint on such a state). Tfanes the factoQ; is included
which adds a cost on velocities below the reference speethodther control is received
throughQsz which penalizes velocity changes. Gear shifts are perhlidieéh Q4. A
cost is finally added that is proportional, with the const@gt to the braking torque
Tp. Intuitively one may perhaps conclude that because of tbetliat braking converts
kinetic energy into heat, it is a waste and hence it can noukédptimal. However,
because of the fact@; it can for example be advantageous to penalize braking tw fav
a solution where the speed is lowered at one point to lessde lusage at a later point.
One example of this can be seen in the next section, in Figuféné terminal costy
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is set to zero. One obvious possibility is to penalize th@cigy in the end stage with
{n- The state velocities will however be limited, as descrilag¢elr in this section, to only
contain desired velocities.

3.3 Problem presentation

The vehicle is modeled by (5) and the fuel consumption adngrtb (6). This gives a
state description with vehicle velocity as the only statd #ire slopex as a measurable
disturbance. The vehicle velocity and the fuel flow are viédwas the output signals. Let
a signalg denote a gear number that maps to a conversioniratid an efficiency). The
control signals are then the fuelidgthe gear numbeg and the brake torqug,.

My

v=fy(v,8,Tp,g,0) = Jw+ M2+ Ni2Je

(inTe(w,8) = To — rw (Fa(¥) + Fe(@) + Fy(0)))
yi=Vv
y2=f1(v,3,9) = cr(g)vd (11)

The road slope is position dependent rather than time deperas is the vehicle model.
This is handled by transforming the latter to a position deleet model by the following

simple rewrite.
dv dvds dv dv 1dv
gt dsdt _ds' ds var V7O (12)

It is assumed that it is possible to keep a velouigreater than zero at all time.

3.4 Problem reformulation

The system defined by Equation (11) is deterministic becalissknown disturbances
are neglected.

If the state space is discretized, it becomes finite due tleeig constraints in (7).
The evolution of this system under the influence of differ@oritrol signals can then be
represented in a directed graph. An arc represents a imanisétween states in successive
stages and is associated with a cost for this transition.cobeof an arc can be viewed as
the length of that arc. Through this, the problem is a shop@th problem in a graph [1].

The optimization problem at hand is to be solved numeridajiyneans of dynamic
programming (DP). A discrete model is therefore needed. sthge grid in DP is noted
S[m]. Denote

vk = Vv(kS
ms ,k = m¢ (kS

Itis assumed that the inputs and the disturbance is cordiaing S, that is
u(s) = uk
a(s) = o Vse kS (k+1)5 (13)

Euler's method with step lengtihand the velocity assumption then gives

h
Vi1 = Vk+ — Ty (14)
Vk
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To determine the fuel mass consumed the output signalintegrated. Applying Euler’s
method again with the step lendtlyields

h
Mt k1= Mg+ — ft (15)
Vi

3.5 Reducing the search space

The aim is a real-time algorithm, and therefore the searelsessgvhich is considered by
the algorithm should be small enough to enable fast calonlatf the optimal trajectory
and at the same time accurate enough to receive satisfatlutyons. In order to reduce
the search space, states that do not meet the constrairas arot be reached because
of various physical limitations in the system, are removda. balance grid size and
accuracy, the state and control spaces are not straiglafdiywiscretized. Instead, the
state space is discretized and the control signals thatftrans the system to these states
are calculated by an inverse simulation of the system egustiThis avoids discretizing
the control signals which will lead to inevitable roundingags in the state-space grid.
The search-space reductions are described in more detla@ iremainder of this section.

Frequent gear shifting is not desirable and thereforesshif¢ penalized in the cost
function (9). In order to make this possible, the state veist@xpanded with the gear
that brought the system to the current state. With this mfdion in a state, the search
space can easily be reduced by introducing a limit on the maxi possible gear shifting
frequency. The only need is a counter, for the number of stpgesed since the last shift,
in the state information.

The search space is a grid consisting of the states whichams®dered by the DP
algorithm. The distance between two adjacent stag&dns]. A grid point is made up
of a velocity value, the gear number that brought the systethi$ state and the number
of stages for which this gear has been engaged. The velaciyrther equidistantly
spaced witht [km/h], see Figure 1. The control signals fueling and brakegue are not
discretized. They are instead calculated by an inverselation of Equation (5).

With a given velocity, only a subset of the gears in the geaeib applicable. With
bounds on the engine spefdhin, Nmay it is possible to select a set of a usable gears in
a state. Only gears with a ratio which give a engine speederaliowed range are then
considered. In a state with the velocitythe set of usable gea, is then defined as

Gv = {9 Nmin < N(Vv,9) < Nmax} U{0} (16)

whereN(v,g) is the engine speed at vehicle veloaitgnd gear numbeywith parameters
{i,n}. The neutral gear is modeled as gear number zero with a raichvequals zero.
In order to determine which velocities to consider, the hadde velocities from the
initial state along the horizon is calculated with consédien of the allowed range. This
is achieved by simulating Equation (5). This gives an iraéof velocities for each stage.
The lower bound in the last stage is then increased to theerafe velocityes, or set
equal to the higher bound if it goes belaygs. With this restriction it is possible to go
through the interval backwards from the last stage and remstates from where it is not
possible to reach one of the allowed velocities in the lagjest An example is shown in
Figure 1. The light gray area is the part of the state spadentiticbe considered. The
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velocity
: | S
Vmax, = T -
Vv : - el
ref | ﬂ\a’(\“f\u -
Vo - :
Vminl - 10 f Ueling
stage
0 1 N-1 g

Figure 1: The velocity state space

darker area is the velocities that are removed when goinkwzads from the last stage.
There is now, for each stage, a set of velocities which areetodmsidered[vmw,vhigh].
This is a subset of the reachable velocities. The set in &tageliscretized in constant
steps oft. This makes up a s&

Vie= {Vlow,VIow+T7VIow+ 2Ta---thigh} a7

3.6 DP algorithm

A statei is made up of a velocity', a gear numbeg' and the countec’. The possible
stated in stagek is a setSc and will be generated from the velocity randgeand the set
of gearsG,,

S={{vg.ctlveEW,geGy,ceZt} (18)

The counters in the states of the last stadej € Sy, are set tdim. The other counters
will be set in the DP algorithm. For each state in st&géeasible control actions are
sought (by an inverse simulation of the system equation&hnansforms the system
into the states in stadet 1. The feasible control action with the lowest cost is theropt
control from the current state.

The transition cost at stdpfrom statel € S to statej € Sc;1 is

4 =4V v ud ag)

where the contro.h:(’j causes the transition from stat® j with a road slope ofi.
If there is no control that transforms the system from sitédej at stagek, the cost is
set to infinity2. The algorithm is summarily stated below.

1. Letdn(i) =qn =0.

2With a numerical approach, an infinite cost means a very langeber.
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2. Letk=N-1.

3. Let .
J(i) = min {Z"‘+Jk i },ies(.
() RO +1(])
A control actioru:(’j that transforms the system from a steteS, to a statg € S¢;1
is only allowed ifg' = ¢! or ¢! > kim. The counter of statg c' is set toc! + 1 if
g = ¢’ and 1 otherwise.

4. Repeatstep3fde=N—-2N-3,...,0

5. The optimal cost igy and the sought control is the optimal control set from the
initial state.

In the simulations, the DP algorithm is used for optimizatio an MPC scheme. The
algorithm is issued once eve8m. If the vehicle position is, the algorithm calculates
the control signals to apply whese [s+ S s+ 2S]. The state a8+ Sis predicted and used
as the initial state in the first stage in the algorithm. Thailable time for computation

is thus the travel time between positisands+ S. Due to the fact that the algorithm is
restarted ever$gm, there is no need to store any information about the sulesggtages

when the optimal costs has been computed for all states istage.

3.7 Complexity

At stepk in the DP algorithm, every combination of states in stegadk+ 1 will be
processed. Ify denotes the number of states in stagéhe number of operations in
this step will thus be proportionakng1. At the next step, all combinations between
states in stagk+ 1 andk+ 2 will be processed. The number of operations in this step is
proportional tong 1Nk, 2. Repeating this for the horizon &f steps, the total number of
operations is approximately proportionalN@?,, if nn is the maximum number of states
in any stageym = max_1. n{ni}.

4 Simulations

A reference truck-model is implemented in Matlab/Simulinks in the design of the
controller, the basic Equation is (5) but measured data raapsised instead of using
polynomial functions that are fitted to data. A Pl cruise colter and gear switching logic
are implemented to imitate driver behavior. The abilityto§tmodel to accurately predict
the fuel consumption in a real truck has been shown in [9].sEess the performance, the
relative difference in the fuel consumptidriuel and the travel timé&timeare used. The
algorithm parameters used are stated in Table 2 and thetpéaebrs are shown in Table
3. These factors have been adjusted in order to receive aptatide behavior on the short
test profiles and a negligible effect on the travel time whiemutating longer distances
with authentic road measurements. The results and the svaluthe penalty factors
naturally depends on the vehicle parameters used. The mpsttant parameter is the
mass of the vehicle. The vehicle mass has been chosen to 40 toes and the reference
velocity is constant 85km/h in all simulations. The geaxBmade up of twelve gears,
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Parameten Function Value
S Stage grid 25m
N Number of steps 40

SN Horizon 1000 m
h Step length 25m
T Velocity discretization | 0.1 km/h
Vinc Max. inc. above ref. 5 km/h
Vdec Min. dec. below ref. 5 km/h
Kiim Min. steps before a shift 8
Nmin Lower engine bound 1000 rpm
Nmax Upper engine bound 2000 rpm
Table 2: User parameters
Factor | Penalizes Value
Q1 Fuel use 2
Q2 Neg. dev. from ref. speed 5
Q3 Velocity changes 15
Q4 Gear shifts 15
Qs The use of brakes 0.005
Table 3: Penalty factors
Gear Rat|0 Gear Ratio
No. 10| 1.55 No. 12 1.00
No. 11 ‘ 1.23 H Final drive | 3.27

Table 4: The gear-box
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and the conversion ratian (3) is the product of a final drive ratio and a gear ratio. &at
for the final drive and the three gears used here are givenldle Pa Disturbances from
other vehicles are disregarded.

4.1 Constant slope

In Figure 2 an example incline is shown. With the accelerdbiefore the hill(300-500m)
it is possible to keep a higher velocity throughout the imeland the time required on
a lower gear(700-1050m) is reduced, compared to the refereontroller (700-1300m).
The integral part of the PI controller is saturated afterttilevhich is causing the differ-

ence between 1300 and 1500m.

Examples of declines are seen in Figures 3 and 4. In the sbanthdll, Figure 3,
neutral gear is used for about 700m(at 300-1000m). The gdiorin of kinetic energy
is evidently greater than the cost of the fuel used to run tiggne on idle. When the
engine is dragged, the fuel supply can in general be cut fofffiel neutral gear was to be
used in the 500m downhill, Figure 4, the maximum velocity ddue reached earlier and
increase the need for braking. The truck is in this caseaadtet to slow down before the
steep decline. In both examples the brake use is lowered @@upo the Pl-controller.
The mentioned saturation effect is evident at about 1250notih Figure 3 and 4.

Afuel =0.26 % Atime = -1.56 %
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Figure 2: A 500m incline with slope of 3.5%. The MPC controller accates the
vehicle before the incline. No braking occurs.
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4.2 Hills and depressions

In Figure 5 neutral gear is used in the beginning to the bottbthe depression (500-
1200m). The lessened resistance torque allows the velidedelerate faster than if
a gear was engaged and the engine was dragged. Owing to teiermation, the MPC
controller can increase the fueling after the PI contrdiéérl150m instead of at 950m)
and still keep about the same velocity later through the Hiliis delay evidently saves
more fuel than was used to run the engine on idle resultinduelause reduction of about
2% without increasing the travel time.

A steeper depression is shown in Figure 6. In the MPC caseg theno need for
braking in the downhill because the truck is let to slow doweiiolbe the downhill (300-
500m). In the end of the downhill part, the MPC controllerrgases the fueling (at
1100m) despite the fact that the velocity is well above thHeremce. This is due to the
controllers knowledge about the steep uphill in front of theek. This pre-acceleration
makes the need for a down-shift of gear unnecessary and kd@ghker velocity through
the hill. In total, both fuel(-6.97%) and time(-0.76%) candaved.

In the hill, Figure 7, the controller accelerates the vehiotfore the uphill begins
(300-500m). This leads to a higher velocity from the foothe top of the hill. Before
the top is reached, the accelerator level is decreasedtedhpi the velocity is much
below the reference (at 900m). The coming downhill will decate the vehicle above
the reference anyway and the lower velocity on the top of ttheviil reduce the need for
braking. The lower gear is kept throughout the hill to furtheduce the need of braking.
The vehicle is finally let to slow down to the reference velpoin the neutral gear (2000-
2250m). Neutral gear makes the retardation slightly slowke travel time is increased
with half a percent on the section and the fuel consumptioedsced with 7.85%.

4.3 Authentic roads

In order to estimate fuel saving potential, authentic @& measurements are used to
calculate slope values. The altitude is measured once éanlog the highway between
the two cities of Linkdping and Jonkdping in Sweden. A partaf the road is selected
3. Simulations are made with this section in both directiofibe results are shown in
Figures 8 and 9. The effects discovered in the illustratst profiles are also found in
these simulations with authentic sections.

In Figure 8, acceleration prior to a steep incline is seenkat.3Retardation prior
to a decline is seen at 2, 4 and 5km. A lower gear is used to ecthecload on the
brake systems between about 6 and 8km. Brake use is howewtlyrtwvered by the
retardation before the decline. The truck is let to slow déwthe reference velocity on
neutral gear after a steep decline at about 8km.

In Figure 9, acceleration prior to a steep incline is seen4ahd 6km. Retardation
prior to a decline is seen at 5 and 7km. A lower gear is useddoaethe load on the
brake systems between about 5.5 and 6km. Brake use is howmstly lowered by
the retardation before the decline. Between about 7 and 8kurral gear is used and

3The selected section is 9km and begins 97km from Linképiryeards 21km from Jénkdping. The route
data is shown in Figure 10.
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the truck accelerates. When the slope lessens and the &tarkls, the twelfth gear is
engaged when the reference velocity is reached.

The use of fuel is greatly reduced (-12.73%) in the first secshown in Figure 8. The
reduction is mainly made through the retardations befareltwnhill slopes at about 2, 4
and 5km. The acceleration prior to the uphill at 3km lead$i&d the twelfth gear is used
for about 200m longer and a higher velocity is maintainedulghout the hill compared
to the Pl-case. The higher velocity in the uphill between@®4km lessens the increase of
the travel time that is a result of the retardations. The gbamtravel time for this section
then becomes negligible (+0.07%). The magnitude of thedarsumption reduction is
of course dependent on the fact that the altitude above sehdecreases with almost
100m over the 9km in Figure 8. However, when this sectionéslus the other direction,
Figure 9 shows that a satisfactory reduction of the fuel aonion still can be achieved
(-2.26%).

Figure 9 shows the section where the altitude increasesakituit 100m over 9km.
Fuel is primarily saved through the retardations beforedtihenhill slopes at 5 and 7km.
In this case, the accelerations prior to inclines evideintyeases the mean velocity more
than the retardations prior to declines decreases it, tiegtih a travel time reduction
(-1.77%).

Simulations on the entire route, see Figure 10, are madevaitfing horizon length
(by varying the number of steds). The effect on fuel consumption and travel time
are shown in Figure 11. The fuel consumption is at best retlwdth about 2% in
the direction toward Jonkoping and about 3% toward Linkdpifraveling back and
forth gives a reduction of about 2.5%. The travel time is maty affected and the
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Figure 12: The effect on fuel use and travel time on the road Linkdping to
Jénkoping. Use of neutral gear is disallowed.

magnitude does not vary much with the horizon according guife 11. The fuel use
is however clearly dependent on the horizon. A horizon loriigan 2000m seems ab-
solutely superfluous and good results are achieved withtab@@0m, at least for this
road configuration. The simulation in Matlab/Simulfntuns in real timé up to about

750 to 1000m, depending on road configuration, if the veyatigcretization is 0.1km/h.
The road configuration influences the size of the search spatéerefore the complex-

ity.

4.4 Neutral gear

The use of neutral gear adds another degree of freedom irrdldepn. To estimate the
magnitude of the gain that is achieved through this, sinaratare made where neutral
gear is disallowed. A comparison between Figures 11 and veale the effects. The
change in travel time is similar in both directions. Tramgltoward Jonk&ping, the fuel
consumption reduction is lessened by about half a percegrhwhutral gear is disallowed.
The most evident difference appears in the direction tovianédping. The fuel use
reduction is increased from about 1% to 3% when neutral geallowed. The altitude
above sea level is around 60m higher in Jonkoping than indpirg, see Figure 10.
Going toward Jonkdping thus in general means facing mordlupan downhill slope.
Neutral gear is thus, as might be expected, most useful wieza ts more downbhill than
uphill slope.

4The computer used was a PC with an Intel Celeron 2.6GHz ocasd 480Mb of RAM running Windows
XP SP2 and Matlab 6.5.1, release 13.
5Meaning that the time required to simulate the system istehtitan the time that is simulated.
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5 Conclusions

There is an evident potential of fuel reductions by an eiplise of road topography in
a cruise controller. In the reported results with authergid maps, the travel time is
only insignificantly changed which of course is important fiee credibility of the fuel
reduction values. Using authentic altitude measureméatga 127 km route, simula-
tions showed that the fuel consumption traveling this roackland forth can be reduced
with 2.5% without affecting the total travel time. When viay the horizon length, it
appears that, at least for this road configuration, a horid@bout 1000m is sufficient.
Horizon lengths longer than about 2000m do not improve theltg it only adds to the
complexity.

Simulations showed that substantial reductions in fuetasebe made in a number of
situations of principle interest and some of these are nomnsarized. When a sufficiently
steep decline is ahead, the vehicle velocity can be loweeéor® the decline and the
vehicle is then let to accelerate in the downhill slope. $tgdown before a steep decline
will in general also lower the need for braking.

When there is a steep incline ahead, it may be favorable &lerate before the uphill
slope begins. A higher velocity reaching the incline caséasthe need for lower gears.
This action do not decrease the use of fuel of noticeable atspit may even slightly
increase it. Simulations did however show that the travaktcan be shortened of a
greater magnitude. Considering a route, the time decrems¢hen counterbalance the
time increases introduced where the vehicle velocity isl@d prior to declines.

On a route with more downhill than uphill slope, the use oftredigear seems to be a
potent way of reducing fuel use. When going back this routefacing many inclines, a
clever choice of the pedal level appear to be more important.

The control algorithm relies on topographic informationhisinformation can be
obtained with for example the combination of GPS and threeedsional road maps.
Another possibility could be to record road data the firstetimroute is travelled, and
then to use this data on later trips on that route. If the tisigkuipped with an automated
manual transmission, see e.g. [8], no extra hardware indivegrain would be needed to
carry out gear shifts. Hence, to realize the presenteditigoonly the control software
has to be altered.

The search space for dynamic programming was reduced byiegihe states that
can not be reached because of the various physical limitatiothe system and also the
states that do not meet the problem constraints. In ordeaslsmbe accuracy versus grid
size, the state space was discretized and the control sigieaé calculated by an inverse
simulation. Owing to these reductions, the complexity &f #figorithm, when achieving
reported results, allows the simulations and thus the glgorto run in real time on a
standard PC.
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Paper E

EXPLICIT FUEL OPTIMAL SPEED PROFILES
FOR HEAVY TRUCKS ON A SET OF
TOPOGRAPHIC ROAD PROFILES?

Anders Froberg*, Erik Hellstrom *, Lars Nielserr

* Dep. of Electrical Engineering, Link6pings universitet,
SE-581 83 Linkdping, Sweder{f r ober g, hel | strom |l ars}@sy. li u. se.

Abstract

The problem addressed is how to drive a heavy truck over warioad topogra-
phies such that the fuel consumption is minimized. Usingadistic model of a
truck powertrain, an optimization problem for minimizatiof fuel consumption
is formulated. Through the solutions of this problem optisgeed profiles are
found. An advantage here is that explicit analytical solusican be found, and
this is done for a few constructed test roads. The test raadsoastructed to be
easy enough to enable analytical solutions but still captioe important prop-
erties of real roads. In this way the obtained solutions jgi@explanations to
some behaviour obtained by ourselves and others using ratrerate modeling
and numeric optimization like dynamic programming. Theutessshow that for
level road and in small gradients the optimal solution is riwedwith constant
speed. For large gradients in downhill slopes it is optimaltilize the kinetic
energy of the vehicle to accelerate in order to gain speeis. Speed increase is
used to lower the speed on other road sections such thattti@werage speed
is kept. Taking account for limitations of top speed the mmati speed profile
changes to a strategy that minimizes brake usage. This islojpe.g. slowing
down before steep down gradients were the truck will acatdezven though the
engine does not produce any torque.

1This paper is an edited version of [3], Explicit Fuel optinsgleed profiles for heavy trucks on a set of
topographic road profiles, published in the preprints of3A& World Congress 2006.
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1 Introduction

For heavy trucks fuel is a large part of the operating cost. cAdydriver has an intu-
ition of how to drive in a fuel optimal way. The problem of fimdj a fuel optimal way
of driving has been studied for different kinds of vehicl&sarlier work in this subject
have either been using simpler models [2], or they have bsérgwan optimal con-
trol theory approach with approximate solutions using fearaple dynamic program-
ming [8, 9, 11, 13]. In these types of simulations many irgéng behaviors are observed.
For example, it is sometimes observed that it is optimaldavglown before a downhill
whereas sometimes it is not. This may depend on a change afpgers like vehicle
mass or road inclination. One objective of this paper is targgght to these observations
by formulating a problem allowing analytical solutions.

The analytical derivation of fuel efficient driving behawie presented using a phys-
ical model of a heavy truck that gives fuel consumption prgaln, but still being of
manageable complexity. The optimal solutions of the colestd test roads are important
for the understanding of the energy usage of a heavy trucle ptinpose of this study
is to provide insight as mentioned before, but also to giviper strategies for standard
cases such as up- and downhill slopes, hills and depresgiamnplete optimal strategy
will then be a continuous chain of such standard cases wherparameter dependence
will be explicit. Moreover, the optimal solutions presahsee usable in e.g. validation of
suboptimal real time model predictive cruise controllersto teach drivers how to drive
more efficiently.

2 Truck model

The model structure that will be used here has been verifipdetdict fuel consumption
to within a few percent [12], but is still of such a simple cheter that it can be used for
analytical studies of fuel consumption.

The model consists of the following components: Enginengnaission, final gear,
wheels and chassis, which are all modeled as in [10]. Thenerigimodeled as

Te = fe(d, we) (1)

whered is engine fueling in mg/strokey. is engine speed, and the functi®s{d, we) is
mapped from measured data. For a typical diesel engine ane affodel of the engine
torque is a reasonable approximation, and can be written as

Te = Ce5O + CeWe + Cec (2

This affine model will be used later in the optimization oflfaensumption.
The flywheel and the other rotating parts of the engine areeteddas

Te — Trw = Jele 3)

whereTsy, is the flywheel torque.
The transmission and final gear are modeled as a lumped canpwith gear ratio

and efficiencyn as
We = 10y

. . 4
Train — T = Jow @
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wherew,, is wheel speed] is the lumped inertia of the driveline, afig is wheel torque.
The wheels are modeled as rolling wheels without slip as

roy =V

wherer is wheel radiusy vehicle speed, anB, is wheel force. The motion of the truck
is modeled as
nv = l:w* l:air - I:roll - ch (6)

wherem s vehicle mass and the right hand side is wheel force, af drsistance, rolling
resistance, and normal force respectively. The resistimces are

Fair = %pCdAV2
Fronl = mg(crl + CroV+ C,—3V2) (7)
Finc = mgsina

where the latter force depends on the road stope
If all equations are combined the result is

1 J 1 1
\ (m+Je| nr—z + r—z) = ? (C656+ CeryWe + Cec) n- EpchV2
—mg(Cr1 + CraV + CraV?) —mgsina  (8)
To summarize, the model can be written in the form

v(t) = f(v(t),o(t),a(s(t
U0 = 1. 80,a(40) ©)

wheresis the distance traveled.

3 Optimal speed on level road

The model presented in the previous section is of a simitaicsire as the one used
in [2]. Here that model structure is extended with more detiainodels of the engine
and the rolling resistance. In [2] it is shown that the optiseed profile on level
road is constant speed. The assumption for the engine meddlthere is that the fuel
consumption is proportional to the produced work. It willnbe shown that constant
speed also is optimal when the model from [2] is extended withore detailed engine
model as described by Equation (2). The model that is stufitigttly is then given by
Equations (1) - (9). The model can be written as

V() = C58(t) + Coe(t) + GV(t) + Ce(a) + CaVA(t) (10)

wherec; is the lumped model constants from Equation (8). Driving@istant speed,
i.e. v=0, with fixed gear, i.e.we = iv/r , the fuel consumption over the distansés
proportional to

2=08s= (& + 6N+ EpV?)s (11)
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Vo

S

Figure 1: Driving the distance with average speed and the subdistances and
S with the speeds; andvs respectively.

wherecc = —c¢/C5, 6y = —Cyi/(Csr) — Cy/Cs, andCy, = —Cy2/Cs. Let the distance be
partitioned in two parts as

s=s1+% (12)
and assume that the vehicle is driving the distances witlcdmstant speedg and v,
respectively, see Figure 1. The total consumption can teemrtiten as

7= (& + EV1 + EVD)S1 + (& + ENa + BoVB)S, (13)

The problem studied here is how to choegs@ndv, such that the fuel consumption (13)
is minimized and that the distancgsands; is traveled over the time

S
a,%2_5 (14)
Vi Vo V
wherev is the total average speed. The optimization problem is tomize (13) subject
to the constraint (14). The objective function is augmentéth the constraint using

Lagrange methods resulting in

t=t1+t=

L(ve,V2,A) = (& + &1 + BaV2)st + (& + Eva + EoV3)s, H\(V% + V% —-t)  (15)

whereA is a constant Lagrange multiplier. The minimum is found byisg the equations
defined by setting the partial derivatives of the Lagrangefion to zero

oL o _
v, — ot +26v1S1 — As1v;2 =0 (16)
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oL - _
oy, o +262V,% — AV, 2 =0 (17)

oL
oL_s s
oA vi WV

Multiplying (16) with v /s, (17) withv3 /s, and eliminating\ gives

0 (18)

GV + 262V = B3+ 260V (19)

which can be rearranged to
26,  V3—V4
G Vv
For physically realistic values og,,"€2, the only solution to this equation is that
v1 = V. Using the constraint on total travel time (18) it is seert th& speed is also the
specified average speed for the distance

(20)

v=s/t=vi=w (22)

If the second partial derivatives of the Lagrangian is cotegit is seen that this point
is also a minimum.

In [2] it is shown that taking account for acceleration andelderation between the
speeds/; andve does not change the solution that the speeds must be equalest
in the ideal case the extra energy it takes to accelerate ¥rtorv,, see Figure 1, will
be recovered when decelerating fremto v so that the effect in energy consumption of
accelerating and decelerating will be zero. This fact ie alssily shown with the theory
of calculus of variations. Taking account for acceleratiotme problem of finding the
speed trajectory from poirtto pointb that has a given average speed and minimizes the
fuel consumption can, using Equation (10), be written as

th th
nm/GMWUMme/@W@+Q+@WU+QMGWMMI (22)
t‘a t.a
subject to the constraint of a given average speed, i.e.

ty

/mm:%m) 23)

ta

1
tb_ta

wherevet is the specified average speed. This problem is in the form of

ty
min/F(t,v,\'/)dt (24)
ta

subject to

th
/G@mwm:wM (25)
ta
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A necessary condition for(t) to be an optimum is that it fulfills the differential equa-
tion [5]
oF doF (aG d aG)

v dtov Mav T drav

whereA is a constant Lagrange multiplier. In the case of (22) an{l {#8 becomes

=0 (26)

Ec + 26M(t) 4+ 362V2(t) +A =0 (27)

i.e., even if accelerations and decelerations are takeyuattor, the optimal speed profile
is constant speed.

4 Optimal speed on small gradients

In [2] it is shown that for small gradients it is optimal witlorestant speed. It will be
shown that this is true also for the model (10)-(11). Firsabmradients will be defined
in terms of inclination angles, [4].

Consider the model (8). Let the acceleratigt) and the fuelingd(t) be zero. Then it
is seen that for all inclination angles

. .1 1 -
Ya€{Va: - (Cegoe + Cec) iN — Epchv2 — mg(Cr1 + CraV+ CraV?) — mgsinfy > 0} (28)

the vehicle will accelerate even though the engine doesnoaige any work. The limit
for the setyy is found by setting equality in (28) resulting in

(CersWe + Cec) ™ — BcyAV — mg(Cr1 + CraV + Crav2)
mg

Y4 = arcsin (29)

See Figure 2 for the characteristics of the limit angle. Rahillislopes the angles are
defined using maximum fuelinBmax(we) as

Yu € {Vu 1 £ (CoOmax+ Cewte + Cec) iN — 3PCaAV? (30)
—mg(Cr1 + GraV+ Grav?) — mgsingy > 0}

i.e. the angles for which the engine is powerful enough tekecate. The limit angle is
then

(CepOmax+ Cewse + Cec) T — BCaAV? — mg(Cry + Crov+ Crav?)
mg

Yu = arcsin (32)

The maximum fuel injectio®mnaxis here modeled as a second order polynomial in engine
speed. See Figure 3 for the characteristics of the limiteang|

The definition of small gradients can now be made.

Definition 1: Small gradients are all gradients with inclinatiansuch that

Yo <a<vyy (32)

Note thatyy takes a negative value whilg is positive.
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Figure 3: The limit angle in uphill slopes as a function of vehicle sppézr different
vehicle masses.
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Altitude

Position

Figure 4: A constructed road profile that captures important behaviar truck
traveling in a downhill slope with large gradient. The geattiis such that the vehicle
will accelerate in the slope even though the engine doesrodtjse any work.

Now with a definition of small gradients, optimal solutioms foads with level sec-
tions and sections with small gradients can be calculatedaFoad section with a small
gradient with constant inclination the fuel consumptioh)(is written

z=0s= (Cc+EV+ C\QVZ'FCinc)S (33)

wherecinc is the additional cost due to road inclination. Combining devel tangent
section with one of small gradient the total fuel consump(i3) is now

Z= (& + BV1+ E2V3)st + (& + EV2 + E2V3 + Cinc)S2 (34)

The Lagrangian (15) becomes
ST, ®

L(v1,V2,A) = (& + &1 + EpV3)s1 + (5c+5vvz+5\er§+Cinc)SQ+)\(v—l + v —t) (35)

It is seen that the additional,c in the Lagrangian will disappear when the partial
derivatives (16)-(18) are computed, and hence the optimemmains unchanged. The
conclusion is that also combinations of level tangent readisns with sections of small
gradients has the optimal speed profile of constant speed.

5 Optimal speed on steep gradients

In [2] it is argued that slopes with large gradients, i.e. saig the definition in (32),
is so rare on common roads that there is no reason to take radoouhem. However,
in [4, 7, 6] it is shown that there is a potential to save someaeger cent of fuel by
controlling the vehicle speed in such slopes. Analytic sohs to the motion of the
model presented in Section 2 will here be used to find the @bpeed profiles for large
gradients. The type of road sections that will be studieegjsaed in Figure 4.
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5.1 Downbhill slopes

For steep downhill slopes the vehicle will accelerate eveugh the engine does not
produce any work. The motion of a vehicle accelerating in ardull slope with fuel
injection cut off will now be studied. Assuming no fuelingg.id(t) = 0, fixed gear, and
constant inclination the vehicle motion (10) can be writhsn

V(t) = Ce + CV(t) + CVA(t) (36)

This ordinary differential equation can be solved by sefir@gavariables writing (36)
as

1

de: dt, Cc+C\/V+ CV2V27é0 (37)

Integrating both sides gives

/cc+CVV+c\/zv2 /dt+c (38)

wherec is a constant. For typical values of the model parametersnwhe vehicle is
traveling downhill, 4,,c. < ¢2, which means that the integrals are

1 —4C2Cc + G

In
V—AC2Cc+C§ | 202V + Gyt \/—4CnaCe + G

From this equation the speed can be solved for and the result i

=t+c (39)

a(ey — vk) — (o + vk)eVkt+o
ZQ,Ze\/R(tJrC) —a2cy

v(t) = (40)

The constant is determined from the intitial velocity(0), k = ¢ — 4c.Cyp, anda=1
if the initial speed is above the stationary speedard—1 if below the stationary speed.

Solving Equation (40) foc gives

1 In(a(cv—ﬂ)+v(0)a2c\,z) 1)

“ vk v(0)2ce+ o+ vk

As seen in Equation (40), given an initial speed at the beéggof the slope, the speed at
each time instant in the slope can be calculated. In ordealtulate the speed at the end
of the slope, the time for that point has to be known. The timalies to travel the slope
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can be calculated from the following expression for theattise of the slope.

t1 5]
1
s= [v(t)/dt=a cv—\/E/ dt
to/ ( ) ( )to Zc\ae\/RCe\/Rt _ ZaQQ
t1

vkt
B vke € _
(vt vK)e /2c\QeJRCe¢Rt—2aq,2dt*

to

a(c\,f \/R) {ﬁ( (\/Etf In‘Zac\,anZc\,ze‘/R"e‘/RtM
t1

B N 1 _ keav/kt
(cv+\/R)e [7\&20\,2@/?0'”‘ 2ac,, + 2c,2€¥ % ”to (42)

Given the start timdy, start velocityv(tg), and the total lengtk, the end time; can
be calculated solving equation (42).

When a vehicle has accelerated in a steep downhill slopeasudbpicted in Figure 4,
it has to decelerate to cruising speed again once the levéébseés reached. The optimal
way to decelerate is to cut the fuel injection to deceleratiast as possible. This will be
shown mathematically in Section 6, but it can also be argntdtively as follows. Any
amount of fuel that is injected when driving faster than thésing speed is used when
the vehicle is subject to higher resistance, which deceethsetotal efficiency. Hence, in
order to decelerate on level road the fuel injection is clitiedr typical model parameters
in this case d,,¢; > ¢2 and the integrals in (38) then becomes

5]

fo

2 2c,2v+ Cv)
—arctanl ————— | =t+c 43
vk ( vk “
wherek = 4c.cp — c§ The speed is then
1 vk
V(t) = E <\/Rtan<7 (t +C)> — CV) (44)
The constant is given from initial conditions as
2 1
c= —arctan| — (2¢c,»v(0) + 45
2 arctan( - (26a4(0) ., ) (45)

Typical solutions to the speeds as given by Equations (40)(44) are depicted in
Figure 5 - Figure 8. A simulation of a truck driving in a slopedepicted in Figure 4 is
presented in Figure 9. Note that for such a short downhiiesks 400 m, the deceleration
before and after the slope as well as the acceleration inltipe $s nearly linear. The
reason for slowing down before the slope is to keep an avesered equal to the cruising
speed on the level sections.

5.2 Analytical solutions for optimal speed profiles

As can be seen in Figure 9, during deceleration with fuel ¢ubo level sections, it
is a good approximation to consider speed as a linear funaiqosition. Also the
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Figure 5: Deceleration on level road when fueling is zero. For all ¢hvehicle
weights the motion is almost linear for a large part of therafieg range.
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Figure 6: Acceleration on 2% downhill slope with zero fueling. Noteatlit takes
more than 10 km to reach a stationary speed.
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Figure 7: Acceleration on 2% downhill slope with zero fueling. A zoomaf the
previous figure. For speeds around cruising speed the aatiefecan be approxi-
mated as linear.
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Figure 8: Acceleration of a 40 ton truck with zero fueling for diffeteénclinations.
Note that it takes more than 10 km to reach a stationary speed.
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Figure 9: Typical speed profile when driving with an average speed dfréh on
a level section, followed by a steep downhill slope, and egdiith a level section.
The inclination in the slope is 3%. There is no fuel injectituring the part from
200m to 1000m.
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Figure 10: Two different speed profiles with the same average speedh [Bofiles
assumes that speed is a linear function of position duriegléeation and accelera-
tion. The distance traveled in fuel cut off mode is equal ithteases and hence the
dotted profile has the lowest fuel consumption.
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Figure 11: Typical speed profile when driving with an average speed &8 on
a level section, followed by a steep downhill slope, and egdVith a level section.
The inclination in the slope is 3%. There is no fuel injectiuring the part from
1000m to about 5000m.

acceleration with fuel cut off in the slope can be approxedats linear. In the simulation
in Figure 9 the cruising speed was chosen to equal the desisrdge speed on the total
distance. The point where the fuel injection is cut off is &#w so that the average speed
is the desired. Of course there are other speed profiles évatthe same average speed.
For example, a lower cruising speed on the level sectiongamd) into fuel cut off later
can have the same average speed, see Figure 10. Using Ippgraximations for the
decelerations and acceleration it is seen that the distaaveed in fuel cut off mode is
equal for the different profiles. This means that the profiléawower cruising speed in
the level sections has the lowest fuel consumption. As caseba in Figure 9 the linear
approximations of the speed profiles are valid for the casies.

When studying long slopes such as the one depicted in Fiduri is seen that the
linear approximation of vehicle speed during the accel@mato longer is very good.
However, the linear approximation during deceleratiortilsgood as expected, see Fig-
ure 5. The exponential behavior of the speed during the a@i&n, see Equation (40),
means that the gain in speed in the slope will be lower thedrigie initial speed is.
Comparing the previous two strategies, this means thaguhkim strategy of cruising at
a lower speed and going into fuel cut off mode later, will tegua shorter distance in
fuel cut off mode, and hence the decrease in fuel consumptilbibe lesser. However
comparing the two strategies as in Figure 12, the stratetfylaiver cruising speed still
has the lowest consumption on the total distance.

So far it has been shown that the optimal way to drive in doWsluipes is to cruise
at constant speed all the way to the crest of the downhillesldpen go into fuel cut
off mode, let the vehicle accelerate in the slope, and lastldeate on the level section
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down to cruising speed again. Compared to other stratafiegain in speed in the slope
is used to lower the cruising speed on the level sectionslareby reducing the fuel
consumption. However, simulations also show that the gafiuél consumption varies
little between different strategies.

The discussion up till now has assumed that there are nalimiis on vehicle speed.
However, in a realistic case the speed must be limited duefédysand legislation reasons.
For such cases the brakes have to be used to limit the spetgtmdownhill slopes. As
the brakes transform kinetic energy into heat, all brakgess a waste of energy. For
fuel optimal driving it is hence desirable to find speed pesfithat minimize the brake
usage. If the optimal speed profile not considering speeitslimas a higher velocity than
allowed, the strategy can be modified. The new optimal pridildaen to cut the fuel
injection at a time such that the vehicle reaches the maxialowed speed at the end of
the slope without using the brakes, see Figure 13. Usingrthlytic solution (40), (42),
for vehicle acceleration in the slope and a linear approtionaof deceleration on level
road, the point of going into fuel cut off can be calculatezhira desired speed at the end
of the slope.

As mentioned earlier, the difference in fuel consumptiartifferent speed profiles is
moderate for the simulation cases presented if not cornisgigpeed limitation. Typically,
the fuel savings using the optimal strategy as presentedjuré10 and Figure 12 is in
the order of 1-2% for the simulated road profile. Howeverirtglaccount for speed limits
and adjusting the policy as described above, see Figurted 8¢l savings are above 10%.

So far, road sections consisting of level road, and one dalslbpe of constant
inclination have been examplified. A real road could be aergd as a sequence of
sections with constant inclination. The problem of findihg bptimal speed profile for
such sequences can be solved using the same strategy asaddogthe constraint that
the speed at the end of one section must equal the initiadspiethe following section.
The parameter to optimize is then the constant speed on thierse of level road and
small inclinations.

Another observation can bee made. When looking at numesadations to optimal
driving as presented in, e.g. [6, 8, 9], there is often catdlhs in the control inputs and
in some cases also the vehicle speed, and this often ocoses td switch points similar
to those in e.g. Figures 9 -12. Using the results presentexitis easier to understand if
numerical solutions to optimal control problems are suitigaumerical or other errors.

6 Derivation of optimal controls

Up till now it has been argued with an intuitive reasoning ttha optimal controls are,
namely: 1) At level road or in small gradients the optimalieedueling is the one that
corresponds to a constant vehicle speed. 2) In steep ddwtdks fuel injection is cut
off. Before the slope the fuel injection in some cases waffun order to minimize
brake usage. After the slope fuel injection remained cutuotfil cruising speed was
reached. 3) In long downhill slopes the brakes might haveetagiplied in order not to
exceed the speed limit. For completeness it will in thisisedbe mathematically proven
that the above stated optimal controls also are the matheatigoptimal controls.
Using the change of variablels = vdt the problem considered can be formulated as
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Figure 12: Two different speed profiles with the same average speeddiBtance
with fuel cut off is shorter for the dotted profile than theidgrofile, but the lower
cruising speed still results in a lower over all fuel constiom
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Figure 13: Using an optimal strategy disregarding speed limits is mgéy optimal
when speed limitation is introduced. In this case the spedichited to 90 km/h.
The old optimal strategy, dashed line, has to use the brakés &nd of the slope.
The new optimal policy, solid line, cuts the fuel injectiohatime such that the
maximum allowed speed is reached at the end of the slope wtitlaing the brakes.
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the following optimal control problem [1]

min?L(s)ds

x’(s)soz f(x,u) (46)
X(S0) =%, W(X(sf)) =0
C(x(s) <0

where in this cask(s) = 3(s), the statesane” = [ v t |, i.e. vehicle speed and traveled
time. The control variables at€ = [ o0 R } i.e. fueling and braking force. The state
constraints at positioss are given by and the path constraint &= v(s) — Vimax where
Vmaxis the maximum allowed speed. The system dynamics are a®)jre¢hsideringc

as a function of inclinatiom. Using a fixed gear and also considering the braking force
Fu(s) the dynamics are

V(8) = £ (C58(9) +0(S) + o+ 0 2(S) — ) (47)

where ' denotes differentiation with respect to positiorheTHamiltonian that is to be
minimized [1] is
H=L+ATf+puC (48)

which in this case is
A 1
H :6+71 (Cs®-+ CwW + o+ GV — Fo) + A2 + H(V— Vinax) (49)

The dynamics of the adjoint variables are

N=—HT (50)
which in this case is
)\/ _ )\1 5 V2 }\l 2 )\2 51
1= 7 (Cad+ W+ Cot GV — Fp) — T2 Gy +260V) + 5 — 1 (51)
and
A,=0 (52)
It now is convenient to change variables according to
Cs / ;G Cs
=14+=2 =N N_)\22
p=1+ » A, p 17, )\1V2\/ (53)
which gives the Hamiltonian
p-1 p—1_ A
H=pd+—- V) — —Fy+ —= 54
Po+ = (Cc+ oW+ CiaV) & Pty (54)

and the adjoint dynamics

p—1 )\2C5 Cs
p=—7 (-ew- 20,V + vl (tv (55)
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Note that the adjoint dynamic is unstable in the causal toe@nd hence should be
simulated in the acausal direction, i.e. time should bersmewhen simulating. Doing
so (55) becomes

p =—71(—CVV—20\,2v2) — =t u (56)

The optimal controls are found by minimizing the Hamiltamig4). It is seen that
there are a few choices of optimal control listed below:

e If p<0,d=0max i.e. maximum fueling

e If p=0,9dis arbitrary, i.e. partial fueling

If p> 0,0 = 0min, i-€. no fueling

If p<1, Ry = Fymin, i.€. no braking

If p=1, R is arbitrary, i.e. partial braking
o If p> 1, Ry = Fymay i.. maximum braking

The cases op = 0 andp = 1 will now be treated. When cruising, i.e. driving on
level roads or in small gradients it is not expected thatifigeteaches the limits a¥max
or dmin. Hence, for cruising at lower speed than the speed ¥git, p=p' = 1= 0 and
(56) becomes

0= V_lz (—ew—20V%) — —=° (57)

SinceA; is constant, the speed is constant when fueling is not inithie IThis constant
speed is given by the above equation and is dependant onrie@ad\». The value of\»
is chosen such that the end constraint on traveled timefilddl Note that since, < 0,
cv2 < 0, andcs > 0, the adjoint variablé, > 0.

In an instant of partial braking = 1 and (56) would become

}\205 Cs
/ [ — —
pP=-—5 tH (58)
When the speed is below the speed limit 0 which givesp’ < 0. Hence, as long as the
speed is below the speed lingwill not stay atp = 1 and therefore the conclusion can be
drawn that the brakes never will be used in such cases. Dseicigpns of partial braking
p’ =0 and (56) becomes

NG Cp
and the speett = Vhax To conclude, the possible choices of optimal controls ane:
partial fueling such that the vehicle speed is constante®) fueling used to decelerate
on level road or in small gradients or to accelerate in largdignts. 3) Maximum fueling
in and in the neighborhood of steep uphill slopes. 4) Paltiaking in steep downbhill
slopes when the vehicle speed is equal to the speed limit.
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7 Conclusions

Optimal speed profiles for heavy trucks driving importarst teoad profiles have been
presented. The method has been based on analytic solutibingar road segments, and
the continuous connection of such solutions. An importéfiece of that strategy is that
the problem of finding the optimal speed trajectory is reducea parametric optimiza-
tion problem of finding the positions for switching betwegatimal control inputs. This
reduces the dimension of the problem significantly comperether methods. Further, it
provides a way of validation of solutions to optimal drivisgbject to numerical or other
errors. The more important conclusions are on a behavieval.l It was shown that it is
optimal to keep a constant speed on level road and in smaligrs. For large gradi-
ents in downhill slopes several interesting conclusiomstEadrawn. The first is that it is
optimal for most cases to drive at cruising speed to the Iméginof the slope, then cut
the fuel injection and let the vehicle accelerate down tbpesl and then decelerate after
the slope down to cruising speed again. The accelerationeidownhill slope can be
used to lower the speed on level sections while still keepidgsired average speed over
the total distance. However, considering a more realistseavhere there is a top speed
limit, there is an interesting switch in the optimal strated@he optimal speed profile is
now to cut the fuel injection at a point before the downhids such that the vehicle
will reach the maximum allowed speed at the end of the sloge point where to cut
the fuel injection can be calculated from the presentedyéioal solutions of the vehicle
motion. Thus, the most important contribution is to providsight into proper strate-
gies for standard cases like up- and downhill slopes, hilts@depressions, and that these
base strategies can be continuously connected to a conspiiategy while still keeping
explicit parameter dependence.
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Abstract

The problem addressed is how to control vehicle speed ovigea distance on a
given time such that fuel consumption is minimized. Analgtiexpressions for
the necessary optimality conditions are derived. Theseessjpns are essential
for the understanding of the decisive parameters affedtirjoptimal driving
and the analytical optimality conditions make it possible¢e how each param-
eter affects the optimal solution. Optimal solutions foradfine engine torque
model are compared to solutions for a piece-wise affine meauahel it is shown
that small non-linearities have significant effect on th&ropl control strategy.
The solutions for the non linear engine model has a smoottaacter but also
requires longer prediction horizons.

Assuming a continuously variable transmission, optimargatio control
is presented, and it is shown how the maximum fueling fumci®essential
for the solution. It is also shown that the gear ratio neveshissen such that
engine speed exceeds the speed of maximum engine powere Tégsts are
then extended to include a discrete stepped transmissidrt & demonstrated
how gear shifting losses affect optimal gear shifting posi.

The theory presented is a good base to formalize the intuitiduel efficient
driving. To show this, optimal solutions are presented imuations of some
constructed test road profiles, where the typical behavfianmptimal solution
is pointed out, and also which parameters that are decisiteé fuel minimiza-
tion problem. This is then used to design a simple low-comigleomputation-
ally efficient rule-based look ahead cruise controller, &igldemonstrated that
simple parametrized quantitative rules have potentiagigmificant fuel savings.

1This is an edited version of the technical report [4], OptitBantrol Utilizing Analytical Solutions for
Heavy Truck Cruise Control.
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1 Introduction

Fuel cost is a large part of the operating cost of heavy trutlence there has been an
increasing interest in predictive cruise controllers tmé&imizes fuel consumption [19,
5, 11]. Some early work in finding fuel optimal speed profil@sdutomobiles is reported
in [16, 8]. Other related work regarding passenger cars lamtraffic has shown on a
large potential to use speed control to minimize fuel corpion [14]. Similar methods
as discussed in this paper has earlier been used on railegfis].

The scenario studied here concerns heavy trucks used hiuage and the goal is
to control vehicle speed over a given distance on a givengimeé that fuel consumption
is minimized. It is assumed that road topography ahead ofehécle is known and the
resulting problem will be referred to as look ahead cruisetrad. In a practical case
road topograghy can be extracted using for example a namigsystem with 3D maps
or collected data. The differences between optimal saistfor a linear engine torque
model and a non linear engine torque model is investigatked.nbn linear model is here
modeled as a piece-wise affine, PWA, function. Optimal gé#tisg is also studied,
both with a simplified transmission model with continuouglyiable gear ratio, and for
a discrete step transmission.

Based on the modeling, the optimality conditions for thd fa@imization problem
become analytical expressions. From these expressiomsfént of each parameter can
be studied which is important to gain knowledge of what fextbat affect fuel consump-
tion. For example, the optimal control derived here can leelas an aid when analyzing
and validating the behavior of numerical controllers ascdbed in [6] and [7]. The re-
sults are also the basis for formalizing an intuitive oplidvé&ing behavior which can be
used for design of simple rule based controllers. In thisepaipe effect of other traffic
is not explicitly considered. However, one way to handlehssituations is to consider
other traffic as an extra constraint on vehicle speed. In @liflethod is presented that
optimizes vehicle speed when approaching a slower vehicle.

The paper is organized as follows. The fuel minimizationbpem is formulated in
Section 2. Under the assumption of an affine engine torqueshaodi a fixed gear ratio,
necessary conditions for optimal fueling is derived in 8gt8B. In Section 4 a piece-wise
affine, PWA, model is used to capture the non linearitieséethgine characteristics. As-
suming a continuously variable transmission, optimal gato is derived in Section 5 and
the results are then extended to include a discrete stepgeshtission. The optimality
conditions for the different modeling choices are used td @iptimal solutions for a few
illustrative constructed road profiles, and simulatiorutessare presented in Section 6.
It is also demonstrated in Section 8 that the derived exmessan be used to design a
low-complexity computationally efficient rule-based loatkead cruise controller.
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2 Problem formulation

The problem to be solved is to minimize fuel consumption @vgiven distance; with
specified travel timd;. With notation according to Table 1 this is written as

min ' ;‘Sua{'rids 1)
st [y ids=T )
The vehicle is modeled as in [3], and [10], and can be writken a
o1
V= j (Fprop* Fair — Froll — l:slope* Fb) (3)

where the variables and parameters are selected accoodiiadple 1, and the forces and
inertias are set according to Table 2. Losses in differerispd the driveline are easily
modeled as lumped losses by modifying the coefficients ofnenfyiction losses and

vehicle resistance forces. Measured engine torque froel @ngine is given in Figure 1.

It is there seen that an affine model of engine torque is a gegidafpproximation, but for

a detailed analysis the non linearities should be included.

Variables and| Description
parameters
a Road slopérad]
19 Engine fuelingkg/strokd
n Transmission efficiency
We Engine speefrad/s|
P Air density [kg/m®]
Be Crank shaft anglgad]
A Front aredn?]
Ces: Cewrs Cec | ENgine torque coefficients
Cyd Air drag coefficient
Cr1, Cr2, Cr3 Rolling resistance coefficients
(=N Brake force
g Gravitational acceleration
[ Gear ratio
Je Engine inertigkgmn
Jd Lumped drivline inertigkgni
m Vehicle masskg
Neyi Number of cylinders
Ny Revolutions per stroke
r Wheel radiugm|
s Traveled distancém|

Table 1: Variables and parameters for the truck model.
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Quantity Equation Description
J(i(t)) M-+ Jei? r]r2 + Vehicle Inertia
Fair (V(t)) _ 1pcgAV Air resistance
Forop(3(t), we(t),i(t)) Q(fg;(é) + fo(we) + Cec) | Propulsive force
Froll (V(1)) m(cr1+Crav+Crav?) | Rolling resistance
Fsiopda(s(t))) mgsina(s) Force due to road slope

Table 2: Vehicle forces and inertias.

0.9
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=3 o o o o o
w B (%)) (2] ~ [ee]
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Figure 1: Measured engine torque. Each line represents a given esjgaesl.
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Figure 2: Affine approximation of engine torque. A maximum fueling étion is
also plotted as function of engine speed.

3 Optimal fueling -Affine engine characteristics

It will first be assumed that engine torque can be approxichatean affine function.
With inspiration from the measured data in Figure 1, the rhdépicted in Figure 2 is
constructed. Note that engine torque in Table Zds= f5(d) + f,(we) + Cec.  Using

We = % the affine approximation of engine torque gives Hgaép in Table 2 is written as

i iv
Forop = Tn(0e55+ Cono + Cec) (4)

In Figure 2 the maximum fueling function for a real enginelistigd. That function
will here firstly be approximated as an affine function of ergspeed, but later a more

exact quadratic function will be used. Again usiag= % this can be written as

.V
Cs=0— (chon|F + Cecon) <0 (5)

and it is assumed that> 0.

Since road slope is a function of position it is convenierttiange independent vari-
able from timet to positions,

d 1d

ds  vdt

Let the statex of the system be vehicle spegdnd traveled timd, i.e. x = [v, T]".

(6)
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Neglecting engine inertia the system dynamics becomes

dv 1/ . oV .
g — v (c5|6+cw| F+ce|
+Cc+ CW+ GV + Cg sina(s)) = fy )
dT 1
_ = —_ = f
i S= T (8)

where the model coefficients can be derived from those givdabel 1.

The fuel minimization problem will be solved with optimal ool theory which is
thoroughly described in the classic textbook [1], and tlwation will here be followed.
The function to be minimized, (1), with constraints (5),,(®B), are used to construct the
following Hamiltonian

H = &+ Afy + At fr + 1Cs (©)
where er'ﬁg’r'r are included in the multipliers. When the constraigtis inactiveps = 0,
and when the constraint is actiyg > 0. The dynamics of the adjoint state variables are
&= _HJ,ie.
dA A, . .
d_s\;/ = V—‘2’(05|6+ Cel + Cc — Gy2V? + Cq SiNaY)
A i
+V—12— + UﬁcwconF (10)
dAt
— 11
s 0 (11)

As in [12] the optimal fueling control is found by minimizirg with respect to the
control variabled. Since the Hamiltonian is linear inthe optimal control sequence will
consist of sections of maximum fueling, minimum fueling ectons wheré’(% =0.The
latter sections are called singular arcs. DifferentiatimgHamiltonian gives

- =i(1

TR
For sections of singular arcs wheZg < 0, i.e. s = 0, it is seen in (12) that, = —%. It
must also hold thaf; (45 ) = 0 which gives

)+ s (12)

E(AV%) _ OANG MG
ds' v ~ dsv vV
A\/Cs i2v ArCs

— (~Co— — oV~ 20,2V%) + 7 =0 (13)

V3
Putting (12) equal to zero, solving fay, and inserting into (13) gives the following
dependency betweerandAt
v
c_(c‘*’7 +Cy+20V)+A7 =0 (14)
3
SinceAt is constant, (11), the system must be in stationarity dwingular arcs, i.evis
constant, and since (14) akgd= — % Ay must be constant. The constartis determined
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by that the constraint on total travel time (2) is fulfilledivén initial and end conditions
on the states andT, the complete problem to solve thus consists of Equationg%2,
(7). (8), (10)-(12), (14).

3.1 Solution characteristics

As mentioned above, the optimal control sequence consistsagimum fueling, zero
fueling and, singular arcs where fuelidgs chosen such that vehicle speed is stationary.
Obviously, due to the nature of the vehicle resistance &rite global optimal solution
will be stationary, i.e. constant speed, whenever it is ipbssi.e. whenever the road
gradientis small enough. Road gradientis considered simadiximum fueling is enough

to keep constant speed in an uphill slope and if zero fueloeghot result in acceleration
in a down hill slope, [2]. Such small enough gradients wilidnbe defined. Consider the
model (7) and let fueling = 0. Itis seen that for all inclination angles

~ ~ SV . .
0g € {aq: C‘*’IZF + Cei 4 Cc+ GV -+ CyaV2 + Cy SiNdlg > 0} (15)

the vehicle will accelerate even though the engine doesnoaige any work. The limit
for the seffiq is found by setting equality in (15) resulting in

Col*} + Cel + Co+ GV + GV
—Ca
+ %4l — M1 — MGV — MGaV? — FpCaAV
mg

0g = arcsin

CewNi2V

. 2
= arcsin—.

(16)

that of course is a negative angtey < O, for realistic vehicle parameters. For uphill
slopes the vehicle will accelerate when using maximum figegdiax for angles

. . oV .
8y € {8y : Csidmax+ cwle + Cel + Cc + GV + C2V? + Cq Sindiy > 0} (17)

and the limit for the set is

. Caidmax+ Col°¥ + Cel + Cc+ GV + GV
o, = arcsin s

| N .
2 Smax+ 2 4 4l — mg 1 — MGV — MGav2 — 3pCIAV
mg

= arcsin

(18)

that is a positive angley, > 0.
Using Equations (16) and (18) the following definition camhede

Definition Small gradients are all gradients with inclinatmrsuch that
Og <0<y (29)

Other gradients are referred to as steep gradients.
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Figure 3: Engine torque as a piece-wise affine function of fueling. Mam fueling
is plotted as function of engine speed.

To conclude, there are three possible control settingsgtmal fueling, i.e. maxi-
mum fueling, fuel cut-off, and to control fueling such thaticle speed is constant.

The adjoint variable\, responds to future changes in inclinatian and for steep
slopes maximum or minimum fueling respectively is not erfotagkeep\, stationary. As
seenin (12)?1—5| depends oAy and hencé, is important for the control switch points. An
optimal solution will thus consists of constant fueling ftat road and small gradients,
but in and in a neighborhood of steep uphill slopes it will gimal to use maximum
fueling, and, in and in a neighborhood of steep downhill sjt will be optimal to cut
off the fuel injection. The importance of the adjoint vaib, will be stressed later and
in Section 6.5 it will be used for a discussion on the serigitinf the optimal solution.

4 PWA engine characteristics

To better approximate the engine characteristics the ertgiigue will now be modeled
as a piece-wise affine function of fuelidg see Figure 3 for a hypothetic example. Let
fueling be divided inN regions, see Figure 4 for a schematic depiction. When thmeng
is operated in region the propulsive forc&pop in Table 2 is written

; n—1
Forop= ? < Z(kél - ké,i+1)6ma>gi + ké,n5+ KuweWe + k) (20)

When operating in fueling regiamthe vehicle dynamics can be written in the form (7)

with obvious changes to the parameters, e.g.cdet cs, = nﬁf‘”. Differentiating the
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Hamiltonian with respect to fueling now gives

d H . )\Vcé n

— =Ii(1 :

IR
Considering only the operating region where the engine liseatly operating, optimal
control can be derived as in Section 3, i.e. fueling can bénlimit of the region or
fueling can be such that vehicle speed is constant. Eacimemnggion can be associated
with a constant speed solution as in Equation (14), i.e. theisn to

)+ s (21)

VT

—(Cwo— +Cy+2CV) +AT=0 (22)
C&n r

For each engine operating regianlimit angles can be defined as in Equation (19) by
modifying Equations (16) and (18) giving

Odn < A < Oyp (23)

4.1 Concave engine map

Now consider a concave torque characteristic,Gs.> C5j,1. From (21) it is seen that
when 1 N 1

~ <= (24)
Coiv1 Vv Csi

it will hold that g—gi' <0 and#’;‘l > 0. Since bothvy andA, are continuous functions the
optimal control sequence will consist of a period whereifigeis on the border of fueling
regioni andi + 1. This means that there is never an immediate change frostamrspeed
to maximum or minimum fueling, but the solution will considta “smoother” change
to the upper or lower limit of fueling. Witles; > c5;,1 the corresponding stationary
solution given by (22) will bey; > vi,1. This means that some downhill slopes will have
constant speed solutions with higher speed than for flat aoddsome uphill slopes will
have constant speed solutions that is lower than for flat road

4.2 Non concave engine map

For the approximation in Figure 3 the requiremegit > Cs;.1 is not fulfilled for all i,
i.e. the approximation is not concave. For such a case furdfasoning needs to be done
in order to find the optimal control. An example fuel-torqumaracteristic is depicted in
Figure 4. Let the torque characteristic have sloggin the respective region. Consider
a case where cruising at constant speed at flat road implicatd,, i.e. a fueling value
in region 1. When a steep uphill slope is approached therensedistance where for

example 4 AV—\C,é' >0 fori=24and 1+ @ < 0 fori=1,3. For such a position,
if considering only region 1 and 2 fueling would be choserhatliorder between those
regions. Considering only region 3 and 4 would in the same gieg a fueling in the
border between those regions. There is hence two candidaiesvof fueling to use.
To decide which one that is optimal an approximation to thrgue characteristics that
reduces the number of fueling regions can be used. Such aoxap@ation is marked as
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Figure 4: piece-wise affine approximation of engine characteristics

a dashed line in Figure 4. In this way the fueling-torque ahtaristics is transformed
into a concave function and the choice of fueling is uniquiggided by considering (24).
Similar reasoning can be made for downhill slopes.

4.3 Non linear engine speed characteristics

To further improve the approximation of the engine chanésties, non-linearities in en-
gine speed dimension could also be considered. One way &ider engine torque as
a piece-wise affine function of both speed and fueling.

Let engine speed be divided M regions and let fueling be divided N regions.
When the engine is operated in regigm,n) the propulsive forcdp,p in Table 2 is
written

H n-1
Fprop = m <Z(k6| - k6,i+1)6ma>gi + k6,n5+

r\c

m-1
Z\(kwm - ko)e,j+1)wemaxj + kwemwe + k) (25)

J:

See Figure 5 for an hypothetic engine model with= 8,N = 6.
Differentiating the Hamiltonian with respect to fuelingygs the same result as in (21).
Considering only the operating region where the enginerieatly operating, optimal
control can be derived as in Section 3, i.e. fueling can béénlimit of the region or
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Figure 5: piece-wise affine approximation of engine characteristfiéaximum fu-
eling is plotted as function of engine speed.

fueling can be such that vehicle speed is constant. Eacimemnggion can be associated
with a constant speed solution as in Equation (14), i.e. ahdisn to
V2 i2

— (Com— +Cy+2CV) + AT =0 (26)
Cé,n r

For each engine operating regipm, n], limit angles can be defined as in Equation (19)
by modifying Equations (16) and (18) giving

Odmn < O < Oymm (27)

Modeling engine torque as a piece-wise affine function ofremgpeed gives a Hamil-
tonian that is not differentiable with respecttoThis means that, will have a disconti-
nuity in the switch point between different engine speedoreg How this can be treated
is described in Chapter 3.6 in [1]. However, accountinglfierrion-linearities in the speed
dimension does not affect the principal behavior of theropticontrol given by (21) in the
sense that the optimal fueling also in this case is in thedrastifueling regions or such
that vehicle speed is constant. However, both the vehialahjcs (7) and the adjoint dy-
namics (10) is affected by the engine characteristics ispleed dimension, which means
that the optimal control switch points depends on it. Siteedptimal fueling behavior
in principal is not affected by the modeling in the speed disien the remaining of this
paper only considers nonlinearities in the fueling dimensi

A non-concave engine torque can require some care in fintiegylobal optimal
solution. One such case is treated in [9]. That case is whenl¢ired average speed
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corresponds to an inefficient engine operating point. Theam be optimal to switch
between two other cruising speeds resulting in correcteaeespeed. This can be studied
using Equation (26). For a giveyt it can be the case that no region has a feasible constant
speed solution corresponding to desired average speadchrascase the optimal solution
consists of switching between different cruising speeds.

Other ways than (25) to make a PWA approximation of the engiap can be more
close to the real characteristics. For example one can usngtlar mesh or a bilinear
function of engine speed and fueling. However, such apprations would still keep
the problem in input affine form and the principal resultsdssed so far would not be
changed.

5 Optimal gear ratio control

Not only fueling control but also gear choice affects thd fitsumption considerably.
Although there are high-power applications for which coatiusly variable transmissions
are used [15, 18], the most common transmission for heaeksrare the discrete step
transmission. As a first attempt to study fuel optimal geé#tisg, gear ratioi is assumed
to be continuously variable and fulfillingQ imin <i <imax Later, those results will be
used to derive solutions for a stepped transmission.

5.1 Optimal gear ratio - affine maximum fueling

Again study the model with affine engine characteristicsfi@n Section 3. Maximum
fueling will here be modeled as an affine function of engireespby usingoe = % in (5).
Although this is a too simple model to resemble the measwmsadtion in Figure 2 the
results are illustrative and a base for the more accuratérgtia model that will be used
in Section 5.2.

The gear ratio can be varied between a lower and upper limit,ii has to fulfill the
following constraints

Cimax = i- imax§ 0 (28)
Cimin = imin*i < 0 (29)

When choosing gear ratio the engine speed must also be ki Vunits, i.e.

iv
Comin = Wmin— r <0 (30)
iv
Comax = T Wmax< 0 (31)

The constraints (28)-(31) are adjoined to the Hamiltonidth wespective Lagrange
multipliers dimax, Himin, Heomin, @Ndeomax:

H = &i + Ay fy + At fr + H5Cs + HimaxCimax + HiminCimin + MeominCoomix
+ HomaComax  (32)
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Differentiating the Hamiltonian (32) with respectitgives

o =0+

Av. Av Y v
)+ ZCwTI + Cev — Uﬁcu)conF + Himax— Mimin — leminF
\'
+ PmmaxF (33)

During sections of constant speed, i.e. for flat road andlgmnadients, fueling is not in
the limit, i.e. gy = 0. Then Equation (12) givesﬁ“% = 0. Also assume that gear ratio
and engine speed is within allowed limits, i.e. the respeg¢ti= 0. The condition‘fj—':I =0
then gives the optimal gear ratio
. Ce I
fopt= —— =—
opt Coo 2V

For typical engine characteristics, see Figure:16,, < 0 orc, < 0 andce is small. Both
situations resultin thagpt given by (34) is smaller thaimn, and hence, considering limits
oni the resulting optimal solution igpt = imin. This minimizes engine speed and hence
engine friction.

Assuming that engine speed limits and gear ratio limits ate@ached, i.epymin =
Momax = Mimin = Mimax = 0, optimal gear ratio during sections of maximum fuelingpigrid
by combining Equations (5), (12), and, (33), usifi= 3! = 0, which gives

(34)

dH o )\Vcé }\V
o Ceon(1+ v )+Ce7
2 AvC .
- (Caco(14+ =) 4 Cuhy)i = 0 (35)

The optimal gear ratio given by Equation (35) is
Coon(1+ M%) 4 goAv

}\VC5

2(CaponV(1+ 2% 4 chy)

iopt = (36)

Recall that 1 AV% < 0 during sections where maximum fueling is used. It will bewsh

later in simulations that 4 A"% gets a large magnitude in steep uphill slopes resulting in
high gear ratios. Before and after the slope a low gear is asegiven by (34). For the
model considered.onCs is about 7 times,, giving high gear ratios in steep uphill slopes.
However, large magnitudes @fon limits the gear ratio to a lower gear ratio.

5.2 Optimal gear ratio - quadratic maximum fueling

To make a better approximation of maximum fueling than (%) fibllowing quadratic
model is used

iv iv
c:ﬁ:zsf(ao+a1?+a2(?)2)go (37)

Another choice could be to make a piece-wise affine modetheutthe Hamiltonian will
not be differentiable with respect to vehicle speed.
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The optimal gear ratio is now given from

dH }\VC5 )\V
=31 2¢c Y
di o1+ \% )+ er

. A iv. v
I 4 Cevv — MUs(ar+ zazT)F =+ Mimax— Mimin
Vv Vv
- lJ(ominF + lJ(omaxF =0 (38)

When using maximum fueling and assuming that gear ratiddias well as engine speed
limits are not reached, optimal gear ratio is found by conmgrEquations (12), (37),
and (38), which gives

V2

AVCs .. \ AVC
Bay— (1+ V0y2 4 (Zal—(1+ V2
r Y, r

Y MG, A
v )+2%TV)|+ao(l+ 2 1 Get

\' \'
=koi’+ kii+ko=0 (39)

Now the optimal gear ratio is

. ki ki\? ko
=——+/(==] —= 4
oPt = "2l (2k2) ke (40)
Typically, only the solution with the plus sign before theuace root gives physically
feasible solutions.
Plots of optimal gear solutions.In Figure 6 the solution to Equation (39) is plotted

as a function of the decisive variablekl)“’—vces and vehicle speed. The lowest possible
gear ratio for the vehicle studied is 3.42. Recall that dusections of constant speed

1+ AVV°5 = 0. Consider the case where cruising speed is 85 km/h and thelerés ap-

proaching a steep uphill slope. During acceleration betffoeeslope speed will increase
and the term % AV% will decrease, i.e. the operating point will move downwaiathe
rightin Figure 6. One conclusion that can be drawn from tlgisr# is that it will never be
optimal to change gear during the acceleration phase bafsteep uphill slope. When
the vehicle starts to climb the hill speed will decreasédisigi the operating point to the
left, and the operating point enters the region for a posgjbhr change.

Another thing to notice in Figure 6 is that for large magnésdf 1+ AV\fB the optimal
gear ratio is approximately a function of vehicle speedssite gear ratio contours are
almost vertical. As will be shown later in simulations thegiion is reached when max-
imum fueling has been used for a longer period of time, i.e.rétatively long or steep
uphill slopes.

For any given vehicle speed it is equivalent to see enginedpgas control variable
instead of gear ratio usingwe = Y. Using this substitution in Equation (39) optimal
engine speed can be calculated and a contour plot of thevachiesult is plotted in
Figure 7. It can be seen in the area to the left of the dotteditifFigure 7 that optimal

engine speed very well can be described as a function of ttiside variable 4 }“(,cﬁ,
since the lines are almost horizontal. To the right of théatbline the solution is restricted
by the minimum allowed gear ratio, compare with Figure 6. Al e shown later in
simulations the magnitude of the decisive expressier%&‘ depends highly on the length

and inclination of uphill slopes. A longer or steeper slopgutts in larger magnitude of
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Figure 6: Contour plot of the optimal gear ratio, given by Equation (39). The
operating point for stationary vehicle speed at 85 km/h iskewd by a cross. The
contours are drawn at gear ratio levels corresponding te@ete step transmission.
The dashed lines are the optimal gear shifting points foserdte step transmission.
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Figure 7: Contour plot of optimal engine speed.
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1+ )“’—Vca which means that optimal engine speed is a function of leagtl steepness of
the slope.

Further analysis and implications of optimality. If the quadratic maximum fueling
function is linearized it can be compared with the result3@)( The linearization of the
guadratic model in the poindy is

Cs = 5— (ap — @t} + (a1 + 2ax60)w) < 0 (41)

Considering (36) and assuming thaﬂLi\VT05 has a large magnitudi,p: can be approxi-

mated as
Ccon

2
7 CwconV

Again using engine speed as an equivalent control insteggaif ratio, using the sub-

stitution we = ¥, an optimal engine speed can be calculated for every vebpsed.

Rewriting (42) to optimal engine speed gives

iopt = (42)

Ceon aO—aZ(k%

_ — 43
2Cexcon Z(al + 232000) (43)

Wopt =

. . _ %2 .
There is one engine speed = w* wherew* = —%. Foruwyp < w* it holds that

Wopt > " and forwg > w* it holds thatwypr < w*. Hence it is never beneficial to operate
at a higher engine speed thari. Rewriting (43) the optimal engine speed is found by
solving the following equation

38.20.)3 pt + 2810 pt+ao = 0 (44)

Using we = % this expression is quite similar to (39). It will now be shotinat when

’AV%‘ >> 1, optimal engine speed goes to the same engine speed as waeraum
torque to the wheels are delivered. The torque deliveretiéghgine to the wheels is

e e
Tow = —~NTe = —=1(Cos(80 + 100 + 80 + Cecale+ Cec) (45)
This equation is differentiated with respectigto find the engine speed that gives max-
imum torque to the wheels. This is also the engine speed wherengine produces

maximum power.

dTy r
ﬁ = Vn (Ces(80 + 28100 + 382003) + 2Cerse + Coc) = 0 (46)

Consider Equation (39), notice that wh%‘ >> 1, the optimal engine speed goes to

the solution of Equation (46). Also, sing&s| >> |Cew|, [Cec/, this solution is close to the
solution of Equation (44). For the engine considered andjtia@ratic maximum fueling
function, maximum engine torque and maximum wheel torquee{mum engine power)
are plotted in Figure 8. The conclusion from this is that tharacter of the maximum
fueling function is decisive for the optimal gear choice.
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Figure 8: Maximum engine torque and maximum wheel torque. At abou€18th
the engine delivers maximum torque to the wheels.

5.3 Discrete step transmission

Since discrete step transmissions are the most commontl teesesmission for heavy
trucks it is interesting to see how the optimal solution veblo if the gear ratio belongs
to a set of discrete numbeirs {i1,i,...,in}. For this case Equation (33) can no longer
be used directly to find the optimal gear ratio.

As a first attempt to model the gear shift process it will bauassd that a gear shift
is carried out instantaneously but possibly with a disearnty in vehicle speed. For
vehicles with mechanical solutions such as for example duéth transmissions there
is no disruption in torque during a gear shift, and hence feé&sible to model the gear
shifting without any speed loss. Using the more common mignarassmissions there is
a disruption in torque, and such gear shifts will, excepttegep downhills, result in a
decrease in speed. Suppose that a gear shift occurs abpasitis for a set of gear
shifting positionss € {s1,...,Sv-1}, and let the speed just before the shiftijg_ ), let
the speed just after the shift bés ), and let the decrease in speed during the shifisbe
The shift is then modeled as

v(s-) —Vv(s+) = Vs (47)

One way to handle the discontinuity in this problem is to édesboth fueling and gear
choice as control variables. The optimal control is themfiby searching for the control
that minimizes the Hamiltonian at every position, see tteewhision on the maximum
principle in [12]. Another approach that will be used herdéscribed in [1]. Then only
fueling is considered as a control variable that is foundifedd /du = 0. This leads to a
formulation with switching between different system dynesriunctions when switching
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gear. The optimal control problem formulation with disdantties in the system equa-
tions and in the state variables, as described in Chapten 317 is used here. The gear
shifting function

¢=Vv(s-)—-V(s)—Vs=0 (48)
is adjoined to the performance criteria with multiplerLet
o=9¢ (49)
and the Hamiltonian be the combination of the Hamiltoniammsehch interval
HO = L0 \T£0 (50)

ForN — 1 shifts the performance criteria is

NS*

dx
_ T T) _ )T 2X
J= ZS o) Zg ATt A ds)ds (51)
_1+
Itis shown in [1] that necessary conditions for optimalgy i
A oHO\ "
as | Tax , §—1+ <s<S§— (52)
09
A(s—) = 53
(s—) x5 (53)
09
AT = - 54
(s+) D) (54)
HO(s—)—HIH(s+) = 0 (55)

For the case (48)y(s—) = Av(s+) =9, i.e. the adjoint variabl&, is continuous over a
gear shift.

SinceA, is continuous and gear ratio should be chosen such that theltdaian
is minimized at each position, a change in gear can only oatian the Hamiltonian
evaluated for two nearby gears equal each otherHi(@,v(s—)) = H(iix+1,v(s+)). For
zero speed loss at shifting points, ive= 0, the resulting gear shifting points are marked
with dashed lines in Figure 6. The optimal solution with gopted transmission will of
course be quite similar to the continuously variable ratiaton in the sense that the gear
ratio is chosen such that the engine speed is on averagetaltsecontinuous case. See
Figure 9 for a depiction of typical gear shifting points wtbe speed loss of a gear shift
is setto 0.1 m/s.

5.4 Optimal gear ratio for PWA engine characteristics

For non-linear engine characteristics it is interestingttaly gear choice also when fu-
eling is not in the limit. For a PWA model as (25) each engirgiae can be analyzed
separately as in Section 5.1. During constant speed seatiach regio{m,n} has an
optimal gear ratio as in (34)

Cemn I
Com 2V

iopt = (56)
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Figure 9: To the left, the Hamiltonian evaluated for a fixed ratioAfv and for
the two highest gears. To the right, a zoom in of the left pldte arrows indicates
where downshift and upshift occurs when the speed loss odagit is set to 0.1
m/s

In most cases the optimal gear ratio for each region is suahtiie engine speed is in
the border of the regions. This means that there are somatomepoints that have to be
considered and the optimal gear ratio is chosen such thateeafficiency is maximized.
Again, if searching for optimal gear ratio during non statioy sections the engine torque
has to be modeled such that the Hamiltonian is differergialith respect to speed.

6 Simulations

The results from previous sections will now be demonstrats@mulations of some con-
structed road profiles. Both affine and piece wise affine engindels will be used, but
all simulations will use the quadratic maximum fueling ftion (37). Also results from
both continuous variable transmission as well as discitejgped transmission will be
presented. The road profiles will consist of flat road folldwey an uphill slope or a
downhill slope of constant gradient, and then flat road agaam such road segments the
slopea will have a discontinuity when changing from flat road to €off there is such a
discontinuity at a given positiosy it is according to theory possible that the Hamiltonian
and/or the adjoint variables have a discontinuity at thaitpm. For simulation it is im-
portant to decide whether or not the adjoint variables haseodtinuities, and it will here
be shown that that is not the case. A general condition thzitlds at which positios;
such an event occurs can be formulated as in [1] as a so catkgibrr boundary condition

N(x(s1),s1) =0 (57)



136 PAPER F. OPTIMAL CONTROL UTILIZING ANALYTICAL SOLUTIONS FOR CC

In Chapter 3.5 in [1] the influence dth andA from such an event is derived to be

ON

Ms) = AT<Sl+>+”Tax<sl> 8)
ON

His—) = H(SlJr)*TETE (59)

wherertare constant multipliers. Since road slope is a functionasitppn the condition
that decides when a discontinuitydnoccurs can be formulated as

N(s)=s—s=0 (60)

For the condition (60) it is seen from (58) that there is naaliginuity in the adjoint
variables\ since the condition is independent of the states.

6.1 Optimal solutions for uphill and downhill slopes

Optimal solutions of example simulations are seen in Figl@ 11 and, 12. All sim-
ulations are of a 40 ton truck withy chosen such that cruising speed at flat road is 85
km/h. In Figure 10 the engine model is piece-wise affine itifigedimension and affine
in speed dimension, see Figure 3. Assuming a continuousighla transmission both
fueling and gear ratio is optimized. As expected from Secti® and especially Equa-
tions (39) and (46), for long steep slopes the gear ratio @seh such that the engine
speed is close to 1800 rpm, the point of engine maximum poen as mentioned in
Section 5.2 in connection to Figure 6, starting at 85 km/toteethe slope there is no
change in gear ratio during the acceleration phase befersltipe. Notice also that the
acceleration from about position 300 m to 2400 m is done uiialing in the border be-
tween the two upper fueling regions. Then, between aboud 24 5200 m maximum
fueling is used, and from 5200 m to 6900 m fueling is again ekbrder between the
two upper fueling regions.

In Figure 11 a simulation of the PWA engine model is done in@mGslope of-6%
slope. The vehicle cruises at constant speed from startaot&90 m where the fueling
is lowered to the border between fueling region 2 and 3. Rutirat part it begins to
decelerate and at about 2400 m the fuel injection is agaiefedto the border between
region 1 and 2. It is worth noting that the fuel injection iveecut off totally as it would
have been done for an affine engine torque model.

6.2 Affine and piece-wise affine modeling

In Figure 12 three simulations are presented. The solidisiresimulation of the affine
engine torque model with no gear optimization. The dashegli§ with the PWA engine
torque model with no gear optimization. The dotted line goakith the PWA model but
now with gear optimization. As expected the affine model aislys two modes of fueling,
i.e. such that constant speed is kept to about 2300 m, anditegimum fueling is used
until 5300 m where speed is kept constant again. The simulatith the PWA model

start accelerating earlier and uses only maximum fuelioghfabout 3900 m to about
4200 m. The gradual change in fueling for the PWA model givemaother control but
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Uphill slope of 0.03 radians
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Figure 12: Three simulations in a 1000 m 3 percent uphill slope. Sofié Is an
affine engine torque model. Dashed line is PWA engine torqoéati Dotted line is
PWA engine torque model with gear optimization.

also requires about 500 m longer prediction horizon tharaffiee model. When also
gear ratio is optimized the PWA model never uses maximunirfgel

6.3 Continuously variable gear ratio optimization

To study optimal choice of gear ratio three simulations efélffine engine torque model
is presented in Figure 13. The optimal engine speed givenduation (39) for the
three simulations are there shown as functions of vehiocked@mnd the decisive vari-

able 1+ A"% One simulation, the “inner arc”, is of a 1000 m 3 % uphill stopn that
simulation the optimal gear ratio just about reaches thesteasible gear ratio. The
other simulations is of a 600 m 6 % uphill slope and a 1500 m 6 %lluglope. In the
latter simulation the vehicle is able to keep a constantépéabout 30 km/h at some part
of the slope. As mentioned earlier the magnitude efa@ gets larger the longer and
steeper the slope is. Hence, optimal engine speed is aduraitiength and steepness of
the slope.

In Figure 14 the same simulation as in Figure 10 with the PWAleted engine is
depicted. Only the part in the upper fueling region is shoMote that the optimal engine
speed, being around the line 1780 rpm, is higher than for fireeaengine, Figure 13,
where it was around 1650 rpm, and closer to maximum enginepdigure 8 where the
maximum is around 1800 rpm.

The result from Figures 6 and 7 could be used to define gedimghfjoints that is
dependent on speed and for example length and slope oflhilte vehicle is approach-
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Uphill slope of 0.06 radians
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during the gear shifts. Note that without gear shift lossegxdra gear shift occurs
near the top of the hill.

ing a long and or steep slope the magnitude $f5](,3 will get larger leading to a higher
optimal engine speed during the slope. Looking at the sitima in for example Fig-
ure 13 it is seen that during the uphill slope, the retardatibase, the optimal engine
speed has small variations with a mean value depending ospwed at the start of the
slope. Hence, an approximative gear shifting strategyccbel designed based on the
speed when starting to climb a hill.

6.4 Discrete stepped transmission

Last, two simulations of a stepped transmission is preder8ee Figure 15 for example
simulations in a 6% 600 m uphill slope. The dashed lines irfithee corresponds to a
simulation without a speed loss during the gear shifts, hedsblid lines corresponds to
a 0.1 m/s speed loss during shifts. This is a typical valueig assumed that the engine
is incapable to propel the vehicle for about 0.5 s during Hik. SNote that the simulation
without gear shifting losses performs an extra gear shét tiee top of the hill. Note also
that the engine speed is on average close to the continutimsoéution in Figure 13.
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6.5 Interpretation of the Lagrange variables

Looking at the Hamiltonian (9), it is seen that it is propontl to amount of fuel used
per distance, i.e. [kg/m]. This means that the Lagrangealai\, is proportional to
amount of fuel divided by velocity, i.e. [kg/(m/s)]. Sinaeg is decisive for the optimal
control itis interesting to interpret the value of it. In fiLjs shown that for the augmented
performance criterid = _fssof (8 +AT(f — %s‘))ds the variation in the performance criteria
0J due to a variation in initial condition®(s) is

St
_ oH
8T = AT (50)8x(50) + / S duds (61)
%

whereu is the control vectofd i]T. Hence\T(s) is the gradient ofl with respect to
initial conditions while holdingu(s) constant. Of course the positigs can be taken
anywhere which means thatat every position is a measure of how much the total cost
would be affected by a changexrat that position. The variabbg, thus is a measure of
how much fuel consumption would change if the speésivaried. Since\, is negative

a raise in vehicle speed by 1 m/s at positggwill result in a decreased total cost given
by the value ofA,(s). A decrease of speed by 1 m/s would increase the total cosieby t
same amount.

Now, looking at the simulations above in for example Figut8sand 11, it is seen
that for an uphill slope a change in speed in the beginningp@fstope has the highest
influence on the total consumption. In the same way the spietbe &nd of a down hill
slope is most critical to the total fuel consumption.

The influence from a change in vehicle speed on the total 2¢p&5)dv(sy), can be
written as

Av(s0)
V(%)

Remember that the terin, /v is decisive for both optimal fueling and for optimal gear
ratio. Rewriting (61) the first part is (62). Sin#dv is a measure of change in kinetic
energyAy/Vvis a measure of how the total cost is affected to a change &tikienergy.
Looking at Figure 13 it is seen that the point most sensitive thange in kinetic energy
does not coincide with the point most sensitive to a changeliicle speed. Instead of the
beginning of the slope now a point somewhere in the middl@eftope is most critical,
i.e. the lowest point of the respective arc. However, as ioretl earlier, the decisive
factor 1+ A"% has small variations during the slope which means that theitbgty to a
change in kinetic energy is approximately constant duttiregsiope.

V(S0)dV(%0) (62)

6.6 Speed limits

Speed limits is a state variable inequality constraint. i®ak control with such con-
straints are treated in Section 3.11 in [1]. An upper spe®tl is derived by the following
constraint

C/=V—Vnax<0 (63)
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In [1] the method to handle the type of constraint as (63) ardifferentiate until the
control variable appears explicitly. For the model (7) thisans that the derivativ&, =
disC\, is adjoined to the Hamiltonian (9) with the multipligy resulting in

H = 8i + (A + ) fy + A1 fr + UsCs (64)

At the entry point of a constrained arc the adjoint variahlés discontinuous but contin-
uous at the exit point. However, instead of solving the optioontrol problem as before
the constrained solution can intuitively be found from timeanstrained solution. Con-
sider the cases presented so far. If there had been an upgeet spnstraint present the
solution after the position of leaving the constrained aocild follow the unconstrained
solution. For example, after a steep downhill slope wheeeuticonstrained solution ex-
ceeds the speed limit at the end of the slope, the constramlaton could be found in
the same way as before, by setting the speed at the end obihetsl the maximum al-
lowed speed. The value &f, is then given by the fact that bo#y, andv should reach
their respective stationary values at the same positiorce3i, has a discontinuity at the
entry point of the constrained arc there is no easy way todeettie value oh at that
point. However, among all solutions that fulfills the neeggsconditions for optimality,
(10)-(13), the most fuel efficient solution is to start to elecate before the slope at a
position such that the upper speed limit is reached exattlyeaend of the slope. This
is of course then the solution that minimizes brake usag#hance minimizes the total
fuel consumption.

For uphill slopes the reasoning can be done in the same wdy that maximum
allowed speed is reached exactly at the beginning of thesltipe unconstrained solution
exceeds the speed limit at that position. An example sinwlavith an affine engine
torque model is plotted in Figure 16 where the maximum altbspeed was 90 km/h.
If Figure 16 is compared to an unconstrained simulation efshme slope in Figure 13
it is seen that in the constrained simulation the optimat gatio in the slope is higher
resulting in about 100 rpm higher engine speed than in thensiined case.

6.7 Discussion

The optimal strategies presented above is a compromiseebatwinning the engine at
efficient operating points and minimizing air and roll réaice. For the affine engine
model (4) the optimal fueling strategy has the charactemofbbang control. This strat-
egy minimizes vehicle speed variations and hence air athdeasistance losses. When
using the non linear model (20) the engine efficiency deesasthe upper fueling re-
gion. Hence the optimal solution in for example Figure 12tsti accelerate earlier than
when using an affine model. Using this strategy, vehicledsg$sr the driving mission is
increased but the distance of maximum fueling, where engfiit@ency is low, is short-
ened. Looking in the same figure it is also seen that, by optirgigear ratio, the upper
fueling region is avoided, though the higher gear ratio gimereased engine friction.

7 Sensitivity analysis

For an implementation in a vehicle it is interesting to se® bacertainties in parameters
will affect the optimal strategy and thereby the total fuehsumption. Using a given
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Coefficient| Sensitivity,a = —0.03 | Sensitivity,0 =0 | Sensitivity,a = 0.03
8 = 0 mg/stroke 0 =113 mg/stroke| & =220 mg/stroke
Cs 0.00 323 -1.48
Co -0.12 -49 0.11
Ce 0.079 32 -0.076
Cc -0.42 -171 0.40
Cv 0.00 0.00 0.00
Cv2 -0.33 -135 0.32
Ca 1.78 0.00 1.72
a 1.78 0.00 1.72

Table 3: Senstivity of vehicle dynamics to model coefficients. Thessivity is
calculated for a 40 ton truck cruising at 85 km/h

fueling strategy and gear choice, an error in a parameienatson will result in a different
speed profile than predicted. To see how much such a changefedt the total cost the
discussion in Section 6.5 can be used. As mentiokgis a measure of how much the
total fuel consumption is affected by a change in vehicleedpélhus, to estimate how
a parameter change influences the total fuel consumptisrsitfficient to study how a
parameter change affects vehicle speed. The sensitivigyfahction f (x) to x at the
pointXo is computed agof /0x)|x,/(Xo/f(X0)). In Table 3 the sensitivity of the vehicle
dynamics, i.e. the right hand side of Equation (7), to the ehadefficients, is presented.
Road slope has the highest significance on the total fuebropson. The second highest
influence hags, and the third highest influence hasandc,,. Note that if the drive line
inertiasJe andJy are neglected in the total vehicle inertia, see Tablg 2; (incgs)/(mr),
Cv2 = (0.5pcgA+ maG3)/m, cc = (inCec+ MG1)/m, andcq = g. This means for example
that a fault in vehicle mass or fuel-torque characteristis @qual importance. However,
a fault in road slope has the most significant influence ondtas tost.

One parameter known to be difficult to measure is vehicle raadstherefor it is of
special interest to study. To see how a fault in vehicle méssta the optimal solution
two simulations has been performed with masses 40 tons atoh44see Figure 17. It
is there seen that if the vehicle mass is underestimatedethiele will start to accelerate
too late and shift to lower gear too late which can lead to s&essary extra gear shift
which of course gives an increase in fuel consumption. Inventhill slope it is of course
also worse to underestimate the mass than to overestinmate ah underestimate leads
to a later deceleration before the slope, which in turn léadshigher speed in the slope.
In presence of speed limits this leads to unnecessary lyakid an increase of total fuel
consumption.

8 Rule based predictive cruise control

There are several ways to use the presented optimality tomslin attempts towards an
on-line controller. Looking at the vehicle dynamics in tliraé domain, vehicle speed
can be solved analytically, as in [2], on constant grades@ith constant fueling and
maximum fueling. Given the equations for vehicle speed haabnstraint on total travel
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Figure 17: Simulation in a 6 % 600 m uphill slope with masses 44 tons (eldsh
lines) and 40 tons (solid lines).

time, the problem of finding optimal controls is that of fingioptimal control switching
points, by solving a system of nonlinear equations [2].

Another approach to utilize the analytical solutions tokhicle motion will here be
used as part of an on-line predictive cruise controller. @eantage is that the assump-
tion that the road grade is piece-wise constant can be ddoppe

To demonstrate the possibility to significantly save fuéhgshe second approach, a
simple rule based predictive cruise controller has beeneémented. For simplicity the
controller is based on the results using an affine enginestongodel as in Section 3. It
would be possible to make further improvements using a obletrbased on non-linear
engine characteristics and optimize gear choice. Howélerpurpose here is only to
demonstrate the magnitude of the savings that can be dong ting presented material.
In [5] the possible savings of gear choice is presented.

8.1 Optimization criterion

The idea for an on-line controller is to locate upcoming gthéls, compare different
fueling strategies with respect to a criterion over a prgatichorizon, use the best strategy
over a sampling distance, and then re-evaluate the critatidhe next sampling point.
Closed loop control is achieved by recalculating optimaitonls at every sample point.
An idea for criterion could be to use the Hamiltonian (9). ©shkort horizons it

might however not be a good idea to try to control the averaged to a given value.
For example, if the road mostly consists of downhill slopesrty the prediction horizon
it is often better for the total driving mission to have a teglspeed than average, and
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the opposite for sections of mostly uphill slopes. Influehbg (9) the criterion for a
prediction horizon frons= 0 tos= S, could be chosen as

/ Sids+ )\T/ frds (65)
0

The first term is proportional to the fuel consumed while ahgvthe distance, and the
second term accounts for the travel time. The time penajtys obtained by solving
Equation (14) using a desired stationary spegé on flat roads and small gradients.
For this criterion to be useful it has to be modified to accdonthe speed at the end
of horizon. As known from Section 3 the optimal solution dstsof constant speed,
maximum fueling, and fuel cut off. Using (65) will result instrategy that uses fuel cut
off at the end of the prediction horizon.

Handling residual cost at end of horizon. One way to deal with this could be to
constrain the solution to a given speed, exjSy) = Viet, at the end of the horizon.
However, this is not a good idea if for example the end of laris in a slope. The way
chosen here to deal with the problem of finite horizon is akWd: Assume flat road
afterSp, let Syret be the position where the reference spegglis reached afte®, when
using either maximum fueling or fuel cut off depending orhi¢ tspeed &%, is less than
or greater thamef. By defining a functior\ as

Svr‘ef Svref
A= / Sids+ A / frds (66)

the criterion (65) can be chosen as

S S
J:/Sider)\T/deerA 67)
0

The functionA then follows from the solution to the vehicles longitudidghamics.
When using fuel cut off on flat road the vehicle dynamics (#hmtime domain becomes

V= Cel +Cct (%? + GV GV (68)
Using maximum fueling modeled @ax= Ccon+ CoxcontV -+ %2con§v2 results in
i i2 i
V = CeiCon + Cel + Co + (CaCacon + Co + )V + (CoCuzcon 5 + C)v*  (69)
Both Equation (68) and (69) are in the form
V= Co+C1v+ VP (70)
This differential equation can be solved by separatingaideis as

1

de: dt, CO+C]_V+CZV27éO (71)
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Integrating both sides give

/;dv: /dt (72)
J Co+cC1v+cov?

This equation has two different solutions depending on tedficients. When accelerat-
ing the coefficients are such that the solution to (72) is

1 2CV+ €1 — |/ —4caCo + ¢
t+k (73)

In =
\/—4C2C0+CZ | 2CV+Ci+ 1/ —4CaCo + CF

The solution to this equation is
—(C1— /€2 — 4cgCy) — (C1+ 1 /G2 — Acyep)eV G -4aca (k)
v(t) = 74
© 2c,eV/—40ca(t+k) 4 oc, (74)

andk is chosen such that initial conditions are satisfied. Wherelgeating the coeffi-
cients are such that the solution to (72) is

2cov+C
arctan| —=2C ) _¢ 4k (75)

2
\/4coC2 — C3 \/4coCz — €3

and also her& is determined by initial conditions. The vehicle speed gileg this equa-
tion is
2
1 5 1/ 4CoC2 — Cf
v(t) = 2 \/4CoC2 — citan f(t-i-k) - (76)

Now, from (73) or (75) the time required ferto reachvies can be calculated. Given
time, distance can be calculated by integrating speed. ®tande traveleds = [ vdt,
during acceleration t@e+, is given from the integral of (74) which is

2
—(C1— /€% — 4cCp) — (C1 4 /2 — AcoCp) eV G40tz (tHK)
/ 1 1 dt

2¢,€\ / 0%740002(t+k) +2¢

\/ € —4coc2 — €1 In‘ZCZ(e o1 -deocz(kt) 4 1) (77)
= t— 7

2Co C2

and the distance traveled during deceleration¢e is given from the integral of (76)

which is
\/4cocp — 2 \/4cocp — 2
/ ! tan l(t+k) -

2Co 2 2Co
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Now A, (66), can be calculated as follows. Given distance theifitegral is easily
calculated for the different cases of fuel cut off and maximfueling. The second integral
is simply traveled time as given by Equations (73) and (75).

8.2 On-line algorithm

Given the results above, an on-line cruise controller cafobraulated. For simplicity,
as in [5] the standard cruise controller will be used as @otu&Vhen constant speed is
desiredy = viet iIs commanded, when maximum fueling is desired, a higherdspemn
the vehicles present speed will be commanded, and, whewtdtieff is desired, a lower
speed than the present speed is commanded. Since the gtangiae controller is of a
PID-controller type this strategy will not always lead te tthesired fueling but as will be
shown in simulations it will be close to desired behavior.

For a realistic case, speed limits has to be imposed sucifak v < Vinax The
algorithm is as follows:

1. Check if there are steep slopes within the horizon. If sehdves to the cruise
controller.

2. If a steep slope is detected, perform two simulationsefthicle. First simulation:
If the first steep slope is an uphill(downhill) slope staritgsmaximum(minimum)
fueling and simulate until eithefes or Vimax(Vmin) is reached. Second simulation:
Command constant speed on one sample and then use maximmimgmi) fuel-

ing.

3. If Vimax(Vmin) is reached beforee+ is reached after the slope, commang to the
cruise controller.

4. Compare the two solutions by the performance index (6fips€ control according
to the simulation with lowest value of the performance index

This algorithm is implemented in a simulation environmeateoped by Erik Hell-
strom [6].

Results from the simulations are shown in Figures 18 - 20r&te above rule-based
look-ahead cruise controller, LC, is compared to a stan&abdtype cruise controller,
CC. The allowed speed range is 80v < 90 km/h and the reference speed is 85 km/h.
The standard cruise controller will not apply the brakesluhe upper speed limit is
reached. The prediction horizon for the look-ahead coletralas set to 1000 m and the
sample distance to 50 m. It is seen that the algorithm worlkexpscted from Section 3.
In Figure 18 the algorithm starts to accelerate using marirfueling about 300 m before
the slope. The higher speed compared to the standard cariseler also results in a
shorter period on a lower gear. Due to higher average spe#usfitook ahead cruise con-
troller the fuel consumption is slightly higher comparedrie standard cruise controller.
However, the trip time is significantly lower. A down hill §le is presented in Figure 19.
The look ahead algorithm cut offs the fuel injection andtstés decelerate about 200 m
before the slope. This results in a shorter period of bralimfjsignificant fuel savings but
a small increase in trip time. For a real road consisting offi liphill slopes and downhill
slopes, it is expected that the difference in total travektbetween the look ahead cruise
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controller and the standard cruise controller is modeiat€igure 20 it is seen that even
though the travel time is almost the same for the two comrsithe fuel saving is sig-
nificant for the look ahead controller. It can also be mergthat the magnitude of the
savings is promising even though not quite as high as thgeetesl in [6] using a more
sophisticated numerical optimal controller.

9 Conclusions

Analytical expressions for optimality of the fuel optimalése control problem have been
derived. These expressions are essential for the unddistpaf the decisive parameters
affecting fuel optimal driving, and the analytical optintyaconditions makes it possible to

see how each parameter affects the optimal solution. It&éas shown that the expression

1+ A"% is decisive for both optimal fueling and optimal gear setett For example, it
is seen in Equation (12) that the ratio between engine torgwehicle mass, given by
the parametess, directly affects the optimal control switch points, whiglso the adjoint
variableA, and vehicle speeddoes. The adjoint variablg, reacts to future changes in
road slope and from that the control switch points given i) @so depends on road
inclination. This type of analysis lead to the idea of usihgge plots with % AV% andv
on the axes, and this type of plot has been used extensieelyigures 6, 7, 13, 14, and
16. It has also been shown that, accounting for small naggtities in the engine torque
model, fueling is gradually increased or decreased to thknfy limit, giving a smoother
control than achieved for an affine model, see for examplerEig1. This gradual change
in control also means that a longer prediction horizon iglede

The maximum fueling function has strong influence on optigedr choice. It is
shown for a continuously variable transmission that it iganeptimal to operate above
the engine speed of maximum engine power. Further, for #ymases, see Figure 13,
during the acceleration phase before an uphill slope it\@neptimal to shift gear, but
it can be optimal to stay at a higher gear ratio for a shoradist after the slope. From
the results in Figure 13 it is seen that for optimal solutiengine speed is approximately
constant during the slope, and is determined by the vehieedat the beginning of the
slope. The optimal vehicle speed at the beginning of theestopstly depends on the
length and inclination of the slope and hence optimal geditirglyis approximatively a
function of slope length and inclination. Another point totice is that for non-linear
fuel-torque characteristics, in order to avoid inefficiengine operating points, it can be
beneficial to shift gear instead of using maximum fueling.

Optimal solutions for a discrete stepped transmissionlasedo the continuous gear
ratio solutions in the sense that engine speed for the twescar® close. However, it is
shown in simulations that modeling of gear shifting lossesimportant for gear shifting
positions.

The theory presented is a good base to formalize the intuitiduel efficient driving
and one example where the analytical optimality expressian be used is in design of a
simple low-complexity computationally efficient rule-leascontroller. Such a controller
has been shown to be able to save a large part of the possiblgsachieved with more
computationally demanding controllers based on numeojgtimization.



150 PAPER F. OPTIMAL CONTROL UTILIZING ANALYTICAL SOLUTIONS FOR CC

20x50m.53=0.2 - 0, 80 <v<90,auto
q=reg/sim = 6.29/101.93 s. Afuel =1.14 % Q=[16.410.12.0]
Atime = -2.47 %
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Figure 18: Rule based algorithm in a 6 % 300 m upphill slope. LC denotaskto
ahead cruise controller and CC denotes the standard canseter.
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14x50m.5=0.2 —_ 80<v<90
q=req/sim = 6.69/104.45 s. Afuel = -11.10 % Q=[16.410.12.0]
Atime = 0.56 %
0
E Ol
[}
°
2 -10f
<
15}
1 1 1 1
0 500 1000 1500 2000
90
= 88
£
= 86
2
8 84
S
82
80 L I L I
0 500 1000 1500 2000
1-
LC acc
0.8 LC brake
= = =CCacc
T 0.6 — — — CC brake
3 [ T -
3 LT
8 04r
!
0.2 ' t
) [
0 | A . !
0 500 1000 1500 2000
LC gear
—_ — — — CCgear
<z &
2 5
§ Jo2 2
LC fuel use 01
= CCfueluse|| ™
1 1 1
0
0 500 1000 1500 2000
Position [m]
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20x50m.5=0.2 Afuel = -2.19 % 80 <v<90,auto
g=reg/sim = 279.65/5092.42 s. . Q=[16.410.12.0]
Atime = 0.18 %
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Figure 20: Simulation of the rule based algorithm on the Highway E4 leetwthe
cities Sodertélje and Norrkoping in Sweden. LC denotes Lalogad cruise con-
troller and CC denotes the standard cruise controller.
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