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Abstract

Fault detection and isolation (FDI) is essential for dependability of complex technical

systems. One important application area is automotive systems, where precise and robust

FDI is necessary in order to maintain low exhaust emissions, high vehicle up-time, high

vehicle safety, and efficient repair. To achieve good performance, and at the same time

minimize the need for expensive redundant hardware, model-based FDI is necessary.

A model-based FDI-system typically comprises fault detection by means of residual

generation and residual evaluation, and finally fault isolation.

The overall objective of this thesis is to develop generic and theoretically sound

methods for design of model-based FDI-systems. The developed methods are aimed

at supporting an automated design methodology. To this end, the methods require a

minimum of human interaction. By means of an automated design methodology the

overall design process becomes more efficient and systematic, which also contributes to

higher quality. These aspects are of particular importance in an industrial context.

Design of a model-based FDI-system for a complex real-world system is an intricate

task that poses several difficulties and challenges that must be handled by the involved

design methods. For instance, modeling of these systems often result in large-scale,

non-linear, differential-algebraic models. Furthermore, despite substantial modeling

work, models are typically not able to capture the behaviors of systems in all operating

modes. This results in model-errors of time-varying nature and magnitude. This thesis

develops a set of methods able to handle these issues in a systematic manner.

Two methods for model-based residual generation are developed. The two methods

handle different stages of the design of residual generators. The first method considers

the actual residual generator realization by means of sequential residual generation with

mixed causality. The second method considers the problem of how to select an optimal

set of residual generators from all possible residual generators that can be created with

the first method. Together the two methods enable systematic design of a set of residual

generators that fulfills a stated fault isolation requirement. Moreover, the methods are

applicable to complex, large-scale, and non-linear differential-algebraic models.

Furthermore, a data-driven method for statistical residual evaluation is developed.

The method relies on a comparison of the probability distributions of residuals and

exploits no-fault data from the system in order to learn the behavior of no-fault residuals.

The method can be used to design residual evaluators capable of handling residuals

subject to stochastic uncertainties and disturbances caused by for instance time-varying

model errors.

The developed methods, as well as the potential of an automated design methodol-

ogy, are evaluated through extensive application studies. To verify their generality, the

methods are applied to different automotive systems, as well as a wind turbine system.

The performances of the obtained FDI-systems are good in relation to the required

engineering effort. Particularly, no specific adaption or no tuning of the methods, or the

design methodology, were made.
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Populärvetenskaplig Sammanfattning

Syftet med denna avhandling är att utveckla metoder för automatiserad design av diag-

nossystem för att upptäcka och isolera fel i stora komplexa tekniska system. Att upptäcka

och isolera fel är viktigt för att garantera ett systems pålitlighet och driftsäkerhet. Ett exem-

pel är tunga lastbilar där förmågan att upptäcka och isolera fel är avgörande för att uppnå

och bibehålla exempelvis låga avgasemissioner, hög nyttjandegrad, hög fordonssäkerhet

och effektiva reparationer.

Ett sätt att upptäcka fel i ett system är att använda så kallademodellbaserade residualer.
En modellbaserad residual kan skapas genom att bilda skillnaden mellan en observation

från systemet och dess virtuella motsvarighet som skapas genom att simulera systemets

felfria beteende med hjälp av en matematisk modell. En residual skild från noll indik-

erar att det kan finnas något fel i systemet. Genom att använda residualer baserade på

observationer från olika delar av systemet så kan ett upptäckt fel dessutom isoleras till

en specifik komponent i systemet. Detta är framförallt viktigt för effektiva reparationer.

Design av ett komplett diagnossystem för ett stort komplext system är en utmanande

uppgift som kräver en ansenlig mängd utvecklingsarbete. För att erhålla en optimal

lösning fodras väldefinierade krav med avseende på exempelvis robusthet och de fel som

skall upptäckas och isoleras. Dessutombehövs detaljerad kunskap om systemets beteende,

dels för det felfria fallet,men framförallt för alla tänkbara felfall. Denna typ av information

är dock sällan tillgänglig åtminstone inte i början av en utvecklingsprocess. Med en

automatiserad designmetodik så kan kontinuerliga förbättringar hos diagnossystemet

göras snabbt och effektivt då nya krav och mer kunskap tillkommer. Detta innebär en

systematisering och effektivisering av utvecklingsprocessen vilket i förlängningen också

borgar för högre kvalité.

I avhandlingen utvecklas ett antal generella och teoretiskt välgrundade metoder för

att upptäcka och isolera fel i komplexa tekniska system med hjälp av modellbaserade

residualer. För att stödja en automatiserad designmetodik är metoderna utvecklade

för att kräva minimal användarinteraktion. Stora komplexa system ställer höga krav

på metodernas beskaffenheter. Exempelvis så beskrivs dessa system ofta utav stora dy-

namiska och olinjära modeller vilka måste kunna hanteras. Vidare så leder dessa systems

mångfacetterade egenskaper och komplexitet till att modellerna inte alltid är kapabla att

beskriva systemens beteende i alla situationer. Metoderna är utvecklade för att hantera

dessa svårigheter på ett systematiskt sätt.

De utvecklademetoderna, såväl sompotentialen hos en automatiserad designmetodik,

utvärderas genom omfattande applikationsstudier. Metoderna appliceras med god fram-

gång för att utveckla kompletta diagnossystem för såväl en dieselmotor i en tung lastbil

som en vindkraftturbin. Slutsatsen är att metoderna kan användas för att designa ett

diagnossystem med bra prestanda till en mycket liten arbetsinsats.
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Chapter 1

Introduction

1.1 Background andMotivation

The ability to detect and isolate faults in complex technical systems is important in order

to fulfill dependability requirements. One important example is automotive systems,

where fault detection and isolation (FDI) is necessary in order to obtain and maintain

for instance high vehicle uptime, low exhaust emissions, high vehicle safety, efficient

repair, and good fuel economy. Uptime, repair, and fuel economy, are important factors

in order to minimize the overall life-cycle cost of an automotive vehicle, which is of great

importance for vehicle operators. Exhaust emissions are important in order to fulfill

strict legislative requirements but are also, together with vehicle safety, important for

conscious vehicle operators.

Complex technical systems aimed at commercial use are often designed for low cost

and high functionality, and not primarily to facilitate FDI. In particular, this means that

there are few sensors and foremost a limited amount of hardware redundancy in the

form of multiple sensors measuring the same quantity. To achieve good performance,

and at the same time minimize the need for expensive redundant hardware, model-based

FDI is often adopted. A model-based FDI-system typically comprises fault detection by

means of the two essential steps; residual generation and residual evaluation. In the first

step, a model of the system is used together with measurements to generate residuals, i.e.,

signals that indicate whether there is a fault in the system or not. In the second step, the

residuals are evaluated with the aim to reliably detect changes in the residual behavior

and make a decision whether the change is caused by faults in the system.

The inherent properties of complex real-world systems in general, and automotive

systems in particular, pose several difficulties and challenges when it comes to design

of model-based FDI-system. First of all, these systems are typically described by mod-

els in the form of large-scale, non-linear, and coupled differential-algebraic equations.

Consequently, this kind of models must be handled in the design of a model-based FDI-

system, in particular by the method used for design of residual generators. Furthermore,

1
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complex systems often contain many physical interconnections which implies that the

effect of a fault may propagate in the system and that the effect will be visible in many

of the sensor measurements. This, in combination with the small number of sensors,

makes fault isolation in these systems a non-trivial problem. For instance, the problem

of fault decoupling in residual generators must be handled which in addition is further

complicated by the properties of the involved models.

Furthermore, the complexity of the systems in combination with their often many

operating modes, imply that models typically not are able to fully describe the behaviors

of systems in all operating modes. Regardless of a substantial modeling work, this

results in model-errors of time-varying nature and magnitude. In order to be able to

detect small faults in a robust way, model errors and additional uncertainties must be

handled. Specifically, this issuemust be handled by themethod used for design of residual

evaluators.

1.2 Objective

In an industrial context, and with the challenges and difficulties discussed above in mind,

it is clear that design of a complete model-based FDI-system for a complex real-world

system is an intricate task that demands a substantial engineering effort. To obtain an

optimal design, it is required to have well-defined requirements regarding for example

robustness and the faults to detect and isolate. In addition, it is required to have detailed

knowledge of the behavior of the supervised system. Both in the no-fault case, but in

particular also in all fault cases. This kind of information is however seldom available for

real-world systems, at least not during early stages in the design process. To conform to

this situation, an iterative design process is adopted in this thesis. In this way, continuous

improvements of the FDI-system can be made as more knowledge is obtained and

additional requirements arise along the design process.

The overall objective of the thesis is to develop generic, systematic, and theoretically

sound methods for design of model-based FDI-systems for complex real-world systems.

In addition, in order to facilitate the adopted iterative design process, the methods are

aimed at supporting an automated design methodology and require a minimum amount

of human interaction. By means of an automated design methodology, the FDI-system

can be rapidly redesigned and reconfigured which makes the iterative design process

more efficient and systematic, and also contributes to higher quality. All these issues are

essential in an industrial context.

1.3 Outline

The thesis is divided into two parts. The first part aims at providing the information

necessary for placing the contributions of the second part in a scientific and industrial

context. The first part consists of Chapters 2, 3, and 4. Chapter 2 discusses FDI in

automotive systems with the aim to provide an application oriented background and

motivation to the work carried out in the thesis. Chapter 3 considers design of FDI-
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systems, both in a general and theoretical context, and in an industrial context. Finally,

Chapter 4 summarizes the main contributions of the thesis.

The second part consists of five papers enclosed as Papers A - E. Papers A and B

consider residual generation, and Paper C residual evaluation. Papers D and E contain

application studies in the form of an automotive diesel engine system and wind turbine

system, respectively. These papers demonstrate and evaluate the applicability of the

methods developed in Papers A, B, and C, in particular, and the potential of an automated

design methodology in general.





Chapter 2

Fault Detection and Isolation

in Automotive Systems

This chapter discusses fault detection and isolation (FDI) in the context of automotive

systems. The overall aim is to provide an application oriented background andmotivation

to the work carried out in this thesis. The chapter is structured as follows. Section 2.1

presents some automotive systems where FDI is important, and discusses some of their

characterizing properties of significance in this context. Section 2.2 elaborates on the

importance of FDI as a mean to fulfill a set of requirements on automotive systems.

Different activities involving FDI aimed at guarantee fulfillment of these requirements

are also discussed. Finally, Section 2.3 presents a set of requirements for FDI in automotive

systems. This is done from an industrial perspective, taking the properties of automotive

systems in Section 2.1, as well as the properties of the different activities in Section 2.2,

into account.

2.1 Automotive Systems

The intention with this section is to give examples of some automotive systems where

FDI is important, and also of typical faults that may occur in these systems. Finally, some

characteristic properties of automotive systems of particular significance in the context

of FDI are highlighted.

2.1.1 Examples

A modern automotive vehicle is a complex cyber-physical system that contains electrical,

mechanical, chemical, and thermo-dynamical, sub-systems. Of particular interest for

heavy-duty vehicles is the diesel engine, which is frequently used as an application

example in this thesis. In order to meet requirements in terms of fuel economy, emissions,

5
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Figure 2.1: A Scania 13-liter, 6-cylinder diesel engine equipped with EGR and VGT.

(Courtesy of Scania CV AB. Illustration by Semcon Informatic Graphic Solutions.)

and driveability, a modern diesel engine is equipped with for example Exhaust Gas

Recirculation (EGR), Variable Geometry Turbocharger (VGT), and intake manifold

throttle, see Figures 2.1, 2.2, and 2.3a. To purify exhausts, diesel engines interact with,

and are dependent on, one or several advanced after-treatment systems such as a Diesel

Particulate Filter (DPF), and a Selective Catalytic Reduction (SCR) system, see Figure 2.3b.

In addition, to further increase driveability and meet safety requirements, they interact

with other complex systems in the power train like an automatic gearbox and an auxiliary

hydraulic braking system, see Figure 2.4.

2.1.2 Faults

All of the above mentioned systems are, due to their function and complexity, vulnerable

to faults. To investigate which faults to detect and isolate, Failure Mode Effect Analysis

(FMEA) (Stamatis, 1995) and Fault Tree Analysis (FTA) (Haasl et al., 1981) may be

carried out. For the specific case of automotive engines, emission critical faults are

of special interest. Much effort is therefore spent on testing the engines in test-beds

where faults can be injected and emissions measured. Typical emission critical faults are

faults affecting the fuel-injection system, the cooling system, and the gas-flow system,

faults in all sensors and actuators, and faults affecting after-treatment systems like the

SCR-system and the DPF. Specific examples are gas-leakages in the VGT- or EGR-system,

bad UREA quality in the SCR-system, broken or missing filter substrate in the DPF,

or a bias- or gain fault in a sensor. Sensors and actuators are in themselves complex

cyber-physical systems, and are particularly sensitive to faults, in comparison with for

example purely mechanical systems. It is therefore important that especially faults in

sensors and actuators in automotive systems can be detected and isolated.
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(a) Exhaust Gas Recirculation (EGR). (b) Variable Geometry Turbocharger (VGT).

Figure 2.2: To meet requirements in terms of fuel economy, emissions, and driveability,

a modern diesel engine is equipped with EGR and VGT. (Courtesy of Scania CV AB.

Illustration by Semcon Informatic Graphic Solutions.)
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(b) Schematic of SCR-system.

Figure 2.3: Usage of EGR and/or SCR in diesel engines reduces the generation of NOx.

(Courtesy of Scania CV AB. Illustrations by Semcon Informatic Graphic Solutions.)

2.1.3 Characterizing Properties

Some characterizing properties of automotive systems, andmany large real-world systems

in general, of particular significance in the context of FDI, are highlighted below.

Few Sensors Automotive systems are typically designed for low cost and high func-

tionality, and not primarily to facilitate FDI. Foremost, this means that there are

few sensors in general, and in particular that there is limited, or no, hardware

redundancy in the form of multiple sensors measuring the same physical quantity.

Many Operating Modes Automotive system are typically designed to operate in a num-

ber of different operating modes and normal operation usually involves several of

these. For the example of a diesel engine, operatingmodes are typically determined

by engine torque and engine speed. One operating mode is characterized by low
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Figure 2.4: Scania GR875R 8-speed gearbox with a retarder. The retarder is a hydraulic

braking system used on heavy duty trucks for long continuous braking, for example

to maintain constant speed down a slope. (Courtesy of Scania CV AB. Illustration by

Semcon Informatic Graphic Solutions.)

engine speed and high engine torque, and another mode by high engine speed,

but low engine torque.

Highly Interconnected Automotive systems often contain many physical interconnec-

tions. For an example, the exhaust and intake parts of the diesel engine depicted

in Figure 2.1 are coupled by means of the shaft connecting the turbine and the

compressor. This implies that the effect of a fault may propagate in the system and

effects will be visible in many of the measurements.

Complex Models Typically, physical modeling based on first principles of physics is

utilized for modeling of automotive systems. As a consequence of the inherent

complexity of automotive systems, as well as theirmulti-domain features, modeling

typically results in large-scale, highly non-linear, differential-algebraic equations.

In addition, due to the many interconnections in the systems, models are often

highly coupled.

2.2 Importance of Fault Detection and Isolation

Automotive vehicles are designed in order to fulfill requirements in terms of:

• high vehicle uptime,

• low exhaust emissions,
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Figure 2.5: High vehicle uptime, low exhaust emissions, high vehicle safety, as well as

efficient repair, are important for the dependability of an automotive vehicle.

• high vehicle safety,

• efficient repair,

• good fuel economy,

• high driveability.

High vehicle uptime together with efficient repair, in the sense that the time at the work-

shop is minimized, maximizes the possible revenue for a vehicle operator. Good fuel
economy and efficient repair, in the sense that no unnecessary parts are changed, mini-

mizes the vehicle cost. Vehicle uptime, repair, and fuel economy, are thus all important

factors in order to minimize the overall life-cycle cost of an automotive vehicle. This, in

combination with high safety and high driveability, is of great importance for vehicle

operators. Requirements on low exhaust emissions are mainly driven by legislations.

The properties high vehicle uptime, low exhaust emissions, high safety, as well as

efficient repair, are all examples of the more general dependability (Laprie, 1992; Storey,

1996) attributes availability, reliability, safety, integrity, andmaintainability, see Figure 2.5.
A fault in the vehicle or any of its sub-systems may lead to a failure in the form of an

impairment of any of the required properties listed above, for instance in the form of a

standstill vehicle, increased exhaust emissions, or a non-functional braking system. Such

consequences may be prevented, or at least reduced, if the fault can be detected, isolated,

and accommodated. Thus, FDI is a mean in order to achieve the properties above.

To ensure achievement of the required properties, FDI is performed by means of the

three activities:

• legislative on-board diagnosis,

• off-board diagnosis,

• on-board fault accommodation.

For an illustration, see Figure 2.6. These activities may be performed independently,

but typically there are dependencies. For instance, results from legislative on-board

diagnosis may be exploited for off-board diagnosis at the workshop. Nevertheless, the

ability to be able to detect and isolate faults, to some extent, is important for all three

activities. Next, the different activities will be discussed.
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Fault Detection and Isolation
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Off-Board Diagnosis
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Figure 2.6: Legislative on-board diagnosis, off-board diagnosis, and on-board fault

accommodation, are important activities in order to achieve properties such as high

vehicle uptime, low exhaust emissions, high safety, efficient repair, good fuel economy,

and high driveability. All these activities involve fault detection and isolation.

2.2.1 Legislative On-Board Diagnosis

The on-board diagnosis (OBD) legislations (United Nations, 2008; European Parlia-

ment, 2009; California EPA, 2010; United States EPA, 2009) state that all manufactured

automotive vehicles must be equipped with a high precision OBD-system capable of

detecting faults in all components that, if broken, lead to emissions over pre-defined

OBD-thresholds during a specific driving cycle. In addition, it is required that emission

critical faults can be isolated. In the OBD-legislations, faults are classified according

to their emission criticality and different classes requires different actions. A sufficient

action for most faults is activation of a malfunction indicator light (MIL), but severe

faults require engine torque limitation, or even engine shutdown. OBD is performed

in electronic control units (ECUs), as the vehicle operates on the road. For heavy-duty

trucks, emissions of especially nitrogen oxides (NOx) and particulate matter (PM) are

crucial. Upcoming legislations in the European Union, Euro VI, require substantially

lowered emissions, see Table 2.1.

The upcoming functional safety standard ISO 26262 may result in legislative require-

ments for faults that may lead to an impairment of the vehicle safety. This will require

additional FDI and substantially increase the amount of legislative on-board diagnosis.

2.2.2 Off-Board Diagnosis

Off-board diagnosis refers to activities performed off-board the vehicle, typically in the

workshop by a mechanic and with additional external computer support. In this setting,

FDI can be combined with decision-theoretic troubleshooting, see, e.g., Heckerman et al.

(1995); Langseth and Jensen (2002); Warnquist (2011), in order to not only locate but also

replace faulty components. The overall aim of off-board fault diagnosis is to guarantee

efficient repair of the vehicle, which in turn contributes to high vehicle uptime.

Due to hardware limitations on-board the vehicle and the ability to actively excite

systems when the vehicle is at the workshop, off-board detection and isolation of faults

potentially give better and more precise results for repair purposes. In addition, it is

possible to exploit more knowledge and information from, and regarding, the vehicle in

an off-board setting, and to usemore powerful fault isolationmethods, e.g., Bayesian fault
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Table 2.1: EU Emission Standards for HD Diesel Engines, g/kWh (smoke in m−1)

Tier Date Test CO HC NOx PM Smoke

Euro I 1992, < 85 kW ECE R-49 4.5 1.1 8.0 0.612

1992, > 85 kW 4.5 1.1 8.0 0.36

Euro II 1996-10 4.0 1.1 7.0 0.25

1998-10 4.0 1.1 7.0 0.15

Euro III 1999-10, EEVs only ESC & ELR 1.5 0.25 2.0 0.02 0.15
2000-10 ESC & ELR 2.1 0.66 5.0 0.1 0.8

0.131

Euro IV 2005-10 1.5 0.46 3.5 0.02 0.5

Euro V 2008-10 1.5 0.46 2.0 0.02 0.5

Euro VI 2013-01 1.5 0.13 0.4 0.01

1 for engines of less than 0.75 dm3 swept volume per cylinder and a rated power speed

of more than 3000 min−1

isolation (Jensen and Nielsen, 2007; Schwall and Gerdes, 2002; Pernestål and Warnquist,

2012). Examples of additional knowledge and information may be measurements and

on-board diagnosis results from all ECUs in the vehicle, and history from previous

workshop visits, etc. These issues greatly contribute to better and more precise FDI

results. Nevertheless, despite the quite different prerequisites, FDI is of great importance

also in the context of off-board diagnosis.

2.2.3 On-Board Fault Accommodation

On-board fault accommodation, or fault management, is performed in ECUs on-board

the vehicle during operation on the road. The aim of on-board fault accommodation is to

prevent detected and isolated faults from developing into critical failures by taking appro-

priate actions, and thereby guarantee high vehicle uptime, high safety, high driveability,

and also good fuel economy. With upcoming requirements such as the functional safety

standard ISO 26262, it is likely that the amount of safety related fault accommodation

will increase.

Typically, different faults require different actions. A common action is reconfigura-

tion of the control system by means of fault tolerant control (FTC), see, e.g., Blanke et al.

(2006); Yang et al. (2010). For instance, a fault in a sensor used in closed-loop control is

accommodated by switching to open-loop control or by instead using a virtual alternative,

e.g., a modeled value, to the faulty sensor andmaintain closed-loop control. Some critical

faults may however require more intricate actions such as system shutdown. In order

to conduct the best possible action at any time, it is important to know which fault that

has occurred and thus fault isolation is important also in the context of on-board fault

accommodation.
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Figure 2.7: Centralized fault accommodation.
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Figure 2.8: Decentralized fault accommodation.

Centralized and Decentralized Fault Accommodation

Traditionally in the literature, centralized fault accommodation is adopted, where a cen-

tralized FDI unit is used together with a centralized fault accommodation manager, see,

e.g., Blanke et al. (2006), and Figure 2.7. However, this creates extra dependencies which

increase the complexity and thus this approach is non-modular and scales badly with

the size of the system.

Therefore, for large scale automotive systems with functionality distributed over

several ECUs, decentralized fault accommodationmay be more appropriate in order to

handle the inherent complexity and making the fault accommodation problem more

tractable, see Nyberg and Svärd (2010a,b). Using this approach, the FDI, as well as

the fault accommodation, is performed locally in a distributed manner, see Figure 2.8.

Independent of which fault accommodation approach that is adopted, FDI is nevertheless

needed.

2.3 Requirements on FDI in Automotive Systems

The properties of automotive systems discussed in Section 2.1.3, in combination with the

attributes of the different activities discussed in Section 2.2, impose certain requirements

on how FDI is performed from and industrial perspective. The most important of these,

in the context of this thesis, are listed below.

Existing Hardware Due to cost reasons and space limitations, it is not a desired option

to mount additional hardware in the form of for instance multiple sensors, in order
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to detect and isolate faults. Thus, FDI in automotive systems should be performed

by using existing hardware only.

Small Faults As said, the OBD-legislations require detection of all faults that may lead

to increased exhaust emissions. Typically, this require detection of small faults in

particularly sensor and actuators. For instance, many emission related automotive

systems, e.g., the SCR-system, are dependent on correct sensor values for control

and, as said in Section 2.1.2, sensors are particularly prone to faults. Even such a

small fault as a deviation of a sensor value by 10 % may lead to incorrect control of

these systems, which in turn may lead to increased emissions.

On-Board Implementation Apart from the particular case of off-board diagnosis, FDI

is to be performed in an on-board environment subject to constraints on com-

putational power and memory, and in some cases also on strict computational

deadlines, i.e., real-time. Thus, it is desirable that the FDI can be performed in this

environment.

Robustness The many operating modes of automotive systems, as discussed in Sec-

tion 2.1.3, in combination with the urge to be able to handle different vehicle

configurations and vehicle individuals, pose strict requirements on the robustness

of the FDI.

Systematic Design In order to obtain an FDI-system of high quality, and at the same

time enable reconfiguration, redesign, and an efficient overall design process, it is

desirable that the methodology used to design the system is systematic.

These requirements will be further considered in the next chapter, in which design of

FDI-systems is considered.





Chapter 3

Design of Fault Detection and Isolation Systems

While Chapter 2 aimed at providing an application oriented motivation and background

to the work in this thesis, the overall purpose of this chapter is to place the contributions

in a scientific and industrial context. To this end, this chapter considers design of fault

detection and isolation (FDI) systems, first from a general point of view, and then in the

context of automotive systems and Chapter 2. The chapter is structured as follows. In

Sections 3.1 and 3.2 some theoretical concepts from the field of model-based diagnosis

in general, and FDI in particular, are briefly introduced. For further details, refer to for

instance Blanke et al. (2006); Chen and Patton (1999); Hamscher et al. (1992). Section 3.3

discusses some difficulties and challenges that are encountered and must be handled

when designing FDI-systems for automotive systems under the prerequisites discussed

in Chapter 2. In Section 3.4, design of FDI-systems in an industrial context is discussed

and the automated design methodology adopted in this thesis is presented.

3.1 Fault Detection and Isolation Systems

A typical FDI-system consists of a set of fault detection tests and a fault isolation scheme,
see Figure 3.1. The input to the FDI-system is a set of observations, i.e., measurements,

from the supervised system, and the output is a diagnosis statement. The diagnosis

statement contains a collection of faults that can be used to explain the observations.

Given a set of observations, y, the outcome of a detection test τ i is a binary fault
detection result, d i , equal to for instance 1 if the test has alarmed, or equal to 0, otherwise.

To enable fault isolation, different detection tests typically monitors different faults, and

thus different parts of the system. Each fault detection test typically utilizes a subset of

the observations in order to determine if any fault is present in its monitored part of the

system.

Common traditional approaches for construction of fault detection tests are for

example limit checking, i.e., to check if a sensor is within its normal operating range, or

15
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Figure 3.1: A typical FDI-system consists of a set of fault detection tests and a fault

isolation scheme.

to employ hardware redundancy. For instance, if two sensors are used to measure the

same physical quantity, it is possible to test if one of the sensors is faulty by comparing

the values of the sensors. Another approach, providing potentially increased diagnosis

performance and in which the need of additional, redundant, hardware is avoided, is to

use detection tests based on residuals. Detection tests based on residuals will be further

discussed in Section 3.2.

3.1.1 Fault Isolation

There are several approaches for fault isolation,most originating from the field ofArtificial

Intelligence (AI), see, e.g., de Kleer andWilliams (1987); Reiter (1987); Greiner et al. (1989).

Another approach is Bayesian fault isolation, see, e.g.,Jensen and Nielsen (2007). Here, in

order to briefly illustrate the concept of fault isolation a method referred to as structured
residuals (Gertler, 1991), or structured hypothesis tests (Nyberg, 2002) will be considered.

For an example, consider a set of detection tests {τ1 , τ2 , τ3} constructed to detect

and isolate three faults, { f1 , f2 , f3}. The following fault signature matrix,

f1 f2 f3
τ1 1 1

τ2 1 1

τ3 1 1

(3.1)

shows which tests that are sensitive to which faults, i.e., test τ1 is sensitive to faults f2 and
f3, and so on. Now assume a situation where tests τ1 and τ2, but not τ3, have alarmed.

The outcome from the detection tests are thus d1 = 1, d2 = 1, and d3 = 0, which combined

with the fault signature matrix (3.1) results in the sub-diagnosis statements D1 = { f2 , f3},
D2 = { f1 , f3}, and D3 = { f1 , f2 , f3}. The latter is due to a common convention, saying

that nothing can be deduced regarding the status of the system if a test has not alarmed.

The diagnosis statementD then becomes

D = D1 ∩ D2 ∩ D3 = { f2 , f3} ∩ { f1 , f3} ∩ { f1 , f2 , f3} = { f3} ,

and it can be concluded that fault f3 is present. In general, considering an FDI-system

containing the detection tests {τ1 , τ2 , . . . , τn}, where the outcome of the test τ i is a
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detection result d i with a corresponding sub-diagnosis statement D i . Under a single

fault assumption, the diagnosis statementD can be obtained as

D =
n
⋂
i=1

D i ,

for multiple faults, see, e.g., de Kleer and Williams (1987).

3.2 Detection Tests Based on Residuals

A residual is a signal ideally zero in the no-fault case and non-zero otherwise. A residual
generator, R i , takes measurements, y, from the supervised system as input, and produces

a residual, r i , as output, i.e., r i = R i (y). A common way to construct a fault detection

test based on a residual is to evaluate its behavior in order to conclude whether or not a

fault is present in its monitored part of the system. This is done by means of a residual
evaluator, Ti , taking a residual r i as input and producing a detection test result d i as

output, i.e., d i = Ti (r i). Typically, residual evaluation is performed by forming a test
quantity from the residual and then threshold the test quantity. In this case, a detection

test τ i based on the residual r i = R i (y), by means of a residual evaluator d i = Ti (r i),
has the form

d i = τ i (y) = Ti (R i (y)) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if λ i (r i) > J i
0 if λ i (r i) ≤ J i ,

(3.2)

where λ i is a test quantity, and J i is a detection threshold. Methods for residual generation

and residual evaluation will be discussed in Sections 3.2.2 and 3.2.3, respectively.

In Figure 3.2, a residual r and test quantity λ created for fault detection in an automo-

tive diesel engine are shown. A fault occurs at t = 700 s. First of all, it is noted that the

behavior of the residual r is non-ideal, in the sense that the residual is non-zero both in

the no-fault and fault cases. Moreover, it can be seen that the response of the residual to

the fault is subtle. Nevertheless, as indicated by the behavior of the test statistic λ, the
fault can be detected by an appropriate residual evaluation.

3.2.1 Structure of FDI-Systems based on Residuals

An FDI-system with fault detection tests based on residuals typically have the structure

shown in Figure 3.3. Observations y in the form of measurements from the supervised

system are used as input to a residual generation block, which contains a set of residual

generators, R1 , R2 , . . . , Rn . The output from the residual generation block is a set of resid-

uals r1 , r2 , . . . , rn , with r i = R i (y). The residuals r1 , r2 , . . . , rn are used as input to the

residual evaluation block, which contains a set of residual evaluators, T1 , T2 , . . . , Tn . The

output from the residual evaluation block is a set of fault detection results, d1 , d2 , . . . , dn ,
with d i = Ti (r i). These are used as input to the fault isolation block, where the detected

fault(s) are isolated.
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Figure 3.2: A residual r (top) and test quantity λ (bottom) created for fault detection in

an automotive diesel engine. The red dashed line is the detection threshold J. A fault

occurs at t = 700 s. Note the non-ideal behavior of the residual and its subtle response to
the fault. By an appropriate residual evaluation by means of the test quantity λ, the fault
can nevertheless be detected.

3.2.2 Residual Generation

Typically, residual generators are constructed by using a mathematical model of the

system. For instance, a residual can be obtained as the comparison between a value

estimated by a model and the corresponding measured quantity. The residual generator

consists in this case of the model used for the estimation and the equation describing

the comparison, referred to as the residual equation.
One approach to residual generation that is of particular interest in this thesis is

sequential residual generation, see, e.g., Staroswiecki and Declerck (1989); Cassar and

Staroswiecki (1997); Staroswiecki (2002); Pulido and Alonso-González (2004); Ploix et al.

(2005); Travé-Massuyès et al. (2006); Blanke et al. (2006). This approach has shown to

be successful for real applications (Dustegor et al., 2006, 2004; Izadi-Zamanabadi, 2002;

Cocquempot et al., 1998), and in addition has the potential to be automated to a high

extent.

Additional approaches include for instance observer-based residual generation, see,
e.g., Massoumnia et al. (1989); Hammouri et al. (2001); De Persis and Isidori (2001); Li

and Kadirkamanathan (2001); Martínez-Guerra et al. (2005); Kaboré et al. (2000); Hou

(2000); Patton and Hou (1998); Gao and Ding (2007); Vemuri et al. (2001); Shields (1997),
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Figure 3.3: An FDI-system with fault detection tests based on residuals by means of

residual generation and residual evaluation.

parity-space methods, e.g., Chow and Willsky (1984); Nyberg and Frisk (2006); Varga

(2003), and frequency domain methods, e.g., Frank and Ding (1994).

Fault Decoupling

To achieve a specific fault signature matrix, for example one similar to (3.1), decoupling
of faults in residuals is needed. The faults that are decoupled are referred to as non-
monitored faults, whereas the faults not decoupled are called monitored faults. In the

example of Section 3.1.1, fault f1 is decoupled in τ1, which means that for τ1, fault f1 is a
non-monitored fault and f2 and f3 are monitored faults. Decoupling of faults in a set of

tests based on residuals, means that the residuals must be sensitive to different subsets of

faults.

In the context of fault isolation, fault decoupling is a fundamental problem in residual

generation. In most of the observer-based residual generation methods mentioned

above, decoupling of faults is obtained by transforming the original model into a sub-

model where only the faults of interest are present. In sequential residual generation

methods, the original model is often divided into sub-models with specific properties

and residual generators are then designed for each sub-model. Since a residual generator

only is sensitive to those faults affecting its corresponding sub-model, all other faults are

decoupled.

3.2.3 Residual Evaluation

As said, the aim of residual evaluation is to detect changes in the residual behavior

caused by faults in the system. Typical components of a residual evaluator are a test

quantity λ i and detection threshold J i , see (3.2). There are, in essence, two main ap-

proaches (Ding et al., 2007) for design of the test quantity and threshold; statistical
residual evaluation (Willsky and Jones, 1976; Gertler, 1998; Basseville and Nikiforov,

1993; Peng et al., 1997; Al-Salami et al., 2006; Blas and Blanke, 2011; Wei et al., 2011), and

norm-based residual evaluation (Emami-Naeini et al., 1988; Frank, 1995; Frank and Ding,

1997; Sneider and Frank, 1996; Chen and Patton, 1999; Zhang et al., 2002; Zhong et al.,

2007; Ingimundarson et al., 2008; Al-Salami et al., 2010; Li et al., 2011; Abid et al., 2011).

In the statistical approach, the framework of statistical hypothesis testing is exploited

for design of the test quantity, or test statistic, which typically is based on a likelihood

ratio (Gustafsson, 2000). In norm-based approaches, the test quantity is instead based

on some norm of the residual, e.g., the mean-power.
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Uncertainties

Typically, and as was illustrated in Figure 3.2, residuals are not perfectly zero in the no-

fault case due to uncertainties in the form of for example model errors and measurement

noise. This may decrease the ability to detect faults and also lead to false detections.

The approach used to design the test quantity and threshold in (3.2) are thus important

means in order to handle uncertainties and thus guarantee good fault detection. For

both statistical and norm-based residual evaluation, adaptive thresholds (Clark, 1989;
Frank, 1994; Sneider and Frank, 1996) is a traditional approach to handle uncertainties.

The non-ideal behavior of the residual r in Figure 3.2 is a direct consequence of uncer-
tainties in the form of model errors. As illustrated by the fact that the fault nevertheless

can be detected by means of the test statistic λ, these uncertainties are handled by proper
residual evaluation.

3.3 Design Challenges for Automotive Systems

In Section 2.1.3, it was concluded that automotive systems typically are equipped with

few sensors, have many operating modes, contain many physical interconnections, and

are described by complex models. Further, it was in Section 2.3 required that FDI in

automotive systems should be done in order to, as far as possible, only use existing

hardware, be able to detect small faults, be implementable in an on-board environment,

and also be robust against uncertainties. In addition, it was concluded that all these

desired properties should be achieved by means of a systematic and efficient design

methodology.

The prerequisites in terms of the properties of automotive systems, in combina-

tion with the requirements on the FDI for these systems, pose several challenges and

difficulties that must be handled by the methods used for design of the FDI-system.

Fault Decoupling

As said earlier, fault decoupling is essential in order to obtain fault isolation. The fact

that automotive systems typically not are equipped with multiple sensors from start, in

combination with the requirement to only use existing hardware for FDI, implies that it

is necessary to employ analytical redundancy and model-based FDI in order to obtain

good performance. This typically leads to an FDI-system with detection tests based on

model-based residuals, as was considered in Section 3.2.

In addition, the many physical interconnections in an automotive system implies

that the effect of a fault may propagate in the system and that the effects will be visible in

many of the measurements. This fact, in combination with the small number of sensors,

makes decoupling of faults a non-trivial problem. Thus, it is of great importance that the

methods used to design an automotive FDI-system, in particular the residual generation

method, are able to handle this issue. Regarding the requirement concerning systematic

design, it is important that the residual generation method facilitates fault decoupling in

a systematic manner.
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Figure 3.4: The structure of a part of a model of an automotive diesel engine where the

rows correspond to model equations and columns to variables in the model. A black

square in position (i , j) indicates that equation i contains variable j. The red square

illustrates a coupled part of the model corresponding to a differential-algebraic loop. It

may be noted the loop involves almost 50% of the equations. A fault affecting any of the

equations in the coupled part of the model will influence all other equations in that part.

Model Complexity

As said, automotive systems in general, and automotive diesel engines in particular, yield

models in the formof large-scale, non-linear, and coupled differential-algebraic equations.

The methods used in the design of the FDI-system, in particular the residual generation

method, must thus be able to handle such models in a systematic manner. Moreover,

regarding the requirement concerning on-board implementability of automotive FDI-

systems, it is important that the output of the residual generation method, i.e., the set of

residual generators, is suitable for implementation in an on-board environment despite

the complexity of the model used as input.

As said, models of automotive systems are often coupled due to the many intercon-

nections in these systems. In particular, this results in algebraic and differential loops or

cycles (Blanke et al., 2006; Katsillis and Chantler, 1997) comprised of sets of equations

that contains the same set of unknown variables. This is illustrated in Figure 3.4 which

shows the structure, i.e., which equations that contain which unknown variables, of a

part of a model of an automotive diesel engine. It may be noted that the loop shown in



22 Chapter 3. Design of Fault Detection and Isolation Systems

850 900 950 1000 1050

5
10
15
20
25

δ p
i
c

[%
]

850 900 950 1000 1050

10

20

30

40

δ p
i
m

[%
]

850 900 950 1000 1050

5

10

15

20

δ p
e
m

[%
]

Time [s]

Figure 3.5: Relative model errors for the intercooler manifold pressure pim, intake man-

ifold pressure pim, and exhaust manifold pressure pem, for a model of an automotive

diesel engine during a part of the World Harmonized Transient Cycle (WHTC). Note

that the magnitude of the model errors vary with time.

Figure 3.4 involves almost 50 % of the equations in the model.

Uncertainties

Due to the inherent complexity of automotive systems, in combination with their many

operating modes, models are typically not capable of capturing the behaviors of systems

in all different operating modes. This results in uncertainties in the form of model

errors, in particular stationary errors (Höckerdal et al., 2011a,b), regardless of substantial

modeling work. In addition, due to the typically unfriendly environment in terms of for

example high temperatures in or around automotive systems, there are also uncertainties

in the form of measurement errors and noise in sensors.

Typically, the magnitudes and nature of these uncertainties are different for different

operating modes. For example, the model may be more accurate in one operating mode

than another, and a sensor may be more or less sensitive to noise in different operating

modes. Since the operating mode of the system varies with time, so does the magnitudes

and nature of the uncertainties. This is illustrated in Figure 3.5, which shows relative

model errors for three state-variables in a model of an automotive diesel engine during a

part of the World Harmonized Transient Cycle (WHTC). Clearly, the magnitude of the

model errors vary with time. To meet the posed requirements regarding small faults and

robustness, this issue must be handled by the FDI-system. In particular, uncertainties

may lead to residuals with the non-ideal behavior illustrated in Figure 3.2 and in order to
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be able to detect small faults, it is important that uncertainties are handled in the residual

evaluation.

3.4 Automated Design of FDI-Systems

Taking the challenges discussed in Section 3.3 into account, it is clear that design of a

complete FDI-system for an automotive system, and large-scale real world systems in

general, is an intricate and complex task that demands a substantial engineering effort.

To obtain an optimal design, it is required to have well-defined requirements regarding

for example robustness and the faults to detect and isolate, as well as detailed knowledge

of the behavior of the supervised system both in the no-fault case, but in particular also

in all fault cases. However, this kind of information is seldom available for real systems,

at least not during early stages in the design process.

Conforming to this situation, an iterative design methodology is adopted in this

thesis. In this way, continuous improvements of the FDI-system can be made as more

knowledge is obtained and additional requirements arise along the design process. To

support rapid redesign and reconfiguration, and in this sense make the overall design

process more efficient, it is desirable to automate as many steps as possible of the design

methodology. In addition, an automated methodology makes the design process more

systematic which also contributes to higher quality.

3.4.1 DesignMethodology

The considered designmethodology is conceptually illustrated in Figure 3.6. The method-

ology supports design of the residual generation and residual evaluation blocks in an

FDI-system with a structure in accordance with Figure 3.3.

The methodology is comprised of three main design stages. Firstly, residual genera-

tors are designed given a model of the supervised system and requirements regarding

which faults to detect and isolate, robustness, computational power and memory. Design

of residual generators is in this work, as in Nyberg (1999); Krysander (2006); Nyberg

and Krysander (2008), considered to be a two-step approach, see Figure 3.7. In the first

step, given the model, a large number of candidate residual generators is found, and in

the second step a set of residual generators fulfilling the given requirements is selected

and realized, i.e., put in a form suitable for implementation.

In the second stage, given the set of residual generators from the first stage and data in

the form of measurements from the supervised system, residual evaluators are designed.

The third and final stage is to evaluate the complete FDI-system with respect to the given

requirements. In particular, it is necessary to investigate the sensitivity of the detection

tests, comprised of the residual generators and residual evaluators, to the required set

of faults in the presence of uncertainties and disturbances. For this, data in the form

of measurements from the supervised system in a set of representative fault-cases, is

needed. The results of the evaluation are then analyzed and the process is, if necessary,

repeated with revised requirements.
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Figure 3.7: The considered two-step approach for design of residual generators.

It is noted that the available amount of fault data typically is substantially lower than

the available amount of no-fault data for a number of reasons. First of all, this is due

to the fact that faults are rare. To create fault data, one alternative is to inject faults in

the real system. This is however considered to be expensive, both in terms of time and

money, since it typically require hardware modifications and active usage of the system.

Another alternative is to create fault data by simulation. To give realistic results, this

on the other hand requires models capable of describing the faulty system, which in

turn require detailed knowledge regarding the behavior of the faulty system and possibly

also its environment. This kind of information is seldom available for real applications.

Consequently, it may not be possible to exploit fault data in all stages of the design

methodology, even though this is highly desirable.
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Summary of Main Contributions

The overall contribution of this thesis is a set of generic and theoretically sound methods

for design of FDI-systems, aimed at supporting an automated design methodology.

Specifically, this thesis contributes to the part of the design methodology enclosed in

the dashed area of Figure 3.6. The developed methods, as well as the overall design

methodology, are evaluated through extensive application studies.

In particular, theoretical and methodological contributions are made in the areas

of model-based residual generation and statistical residual evaluation in form of three

papers enclosed as Paper A, Paper B, and Paper C. Technological contributions, by means

of state-of-practice illustrations and proof-of-concept demonstrations, to the field of

model-based FDI are made in the form of application studies in two papers enclosed as

Paper D and Paper E. In addition, the application studies performed in these two papers

together serve as evaluations of the methods developed in Papers A, B, and C.

In the context of the design challenges discussed in Section 3.3, model complexity

and fault decoupling are considered in Papers A and B, and uncertainties in Paper C.

4.1 Summaries

Brief summaries of the main contributions of Papers A - E are given below.

Paper A - Residual Generation

The main contribution of Paper A is a sequential residual generation method that enables

simultaneous use of integral and derivative causality, i.e., mixed causality. In addition,

the method is able to handle equation sets corresponding to algebraic and differential

loops in a systematic manner, and is in this sense applicable to complex, large-scale, and

coupled models of automotive systems. The method relies on a formal framework for

computing unknown variables according to a computation sequence. In this framework,

25
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mixed causality is utilized and the analytical properties of the equations in the model, as

well as the available tools for algebraic equation solving, are taken into account.

In the context of the two-step approach for design of residual generators, see Figure 3.7,

additional contributions are made. Firstly, it is proven that the set of residual generators

that can be realized, i.e., created, with the method by necessity is a subset of the set of

candidate residual generators based on all Minimal Structurally Over-determined (MSO)

sets of equations (Krysander et al., 2008; Gelso et al., 2008; Pulido and Alonso-González,

2004; Travé-Massuyès et al., 2006) in the given model. Secondly, it is empirically shown

that the combination of the ability to handle mixed causality and loops substantially

increase the amount of realizable candidate residual generators. This is done by means of

application of the method to models of two different automotive systems, a diesel engine

and a hydraulic braking system.

Paper A relies partly on work presented in Svärd and Nyberg (2008a); Svärd and

Nyberg (2008).

Paper B - Selection of Residual Generators

Paper B elaborates further on the two-step approach of Figure 3.7 and in particular the

second step. Two different requirements on the sought set of residual generators are

considered. Firstly, it is required that the set of residual generators fulfills an isolability

requirement, stating which fault that should be isolated from each other. Secondly,

motivated by implementation aspects, it is required that the set of residual generators is

of minimal cardinality.

Two algorithms for solving the residual generator selection problem are presented in

Paper B. Both algorithms exploit a formulation of the selection problemwhich enables an

efficient reduction of the search-space by taking the realizability properties of candidate

residual generators, with respect to the considered method for residual generation, into

account. The first algorithm provides an exact solution fulfilling both requirements

and is suitable for small problems. The second algorithm, which constitutes the main

contribution, is suitable for large problems and provides an approximate solution by

means of a greedy heuristic by relaxing the minimal cardinality requirement.

Soundness and completeness for both algorithms are shown. In this context, this

means that the algorithms provide a set of realizable residual generators fulfilling the

stated isolability requirement if, and only if, the requirement can be met with the consid-

ered residual generation method. Both algorithms are general in the sense that they are

aimed at supporting any computerized residual generation method, not only the method

developed in Paper A. The algorithms are applied and evaluated on an automotive diesel

engine system.

A preliminary version of Paper B was presented in Svärd et al. (2011a).

Paper C - Residual Evaluation

The main contribution of Paper C is an adaptive and data-driven statistical residual

evaluation method. The key property of the method is its ability to handle residuals

that are subject to time-varying uncertainties and disturbances, caused for instance by
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model errors and noise. The test quantity used in the method is based on an explicit

comparison of the probability distribution of the residual, estimated online using current

data, with a no-fault residual distribution. The no-fault distribution is based on a set

of a-priori known no-fault residual distributions, and is continuously adapted to the

current situation.

The comparison is done in the framework of statistical hypothesis testing, by means

of the Generalized Likelihood Ratio (GLR). To be suitable for on-line implementation in

an on-board environment, a computational efficient version of the test quantity is derived

by considering a properly chosen approximation to one of the likelihood maximization

problems in the GLR. As a second contribution, an algorithm is proposed for learning

the required set of no-fault residual distributions off-line from no-fault training data.

This algorithm is based on a formulation of the learning problem as a K-means clustering

problem. The residual evaluation method is demonstrated and extensively evaluated by

application to a residual designed for fault detection in an automotive diesel engine.

A preliminary version of Paper C was presented in Svärd et al. (2011c).

Papers D and E - Application Studies

In PaperD, themethods for residual generation, residual generator selection, and residual

evaluation, from Papers A, B, and C, respectively, are combined into an automated design

methodology and applied for design of an FDI-system for an automotive diesel engine.

In Paper E, the methods for residual generation and residual generator selection are

combined with a preliminary version of the residual evaluation method, and applied for

design of an FDI-system for the Wind Turbine Benchmark (Fogh Odgaard et al., 2009).

Papers D and E contain minor theoretical contributions. Technological contributions

are however made in the sense that both works illustrate how a set of generic methods

may be combined into a complete methodology in order to solve a realistic industrial

FDI problem. In this sense, these works serve as an illustration of the state-of-practice in

model-based fault detection and isolation. Moreover, the papers evaluate and verify the

applicability of an automated designmethodology in general, and themethods developed

in Papers A, B, and C, in particular.

A preliminary version of Paper E was presented in Svärd and Nyberg (2011).

4.2 Publications

The research work leading to this thesis is presented in the following publications.

Journal Papers

• C. Svärd andM.Nyberg. Residual generators for fault diagnosis using computation

sequences with mixed causality applied to automotive systems. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(6):1310–1328,
2010 (Paper A)
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• C. Svärd andM. Nyberg. Automated design of an FDI-system for the wind turbine

benchmark. Journal of Control Science and Engineering, vol. 2012, 2012. Article ID
989873, 13 pages (Paper E)

Submitted

• C. Svärd, M. Nyberg, and E. Frisk. Realizability constrained selection of residual

generators for fault diagnosis with an automotive engine application. Submitted to

IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
2011b (Paper B)

• C. Svärd, M. Nyberg, E. Frisk, and M. Krysander. Data-driven and adaptive

statistical residual evaluation for fault detection with an automotive application.

Submitted toMechanical Systems and Signal Processing, 2012b (Paper C)

• C. Svärd, M. Nyberg, E. Frisk, and M. Krysander. Automotive engine FDI by

application of an automated model-based and data-driven design methodology.

Submitted to Control Engineering Practice, 2012a (Paper D)

Conference Papers

• C. Svärd, M. Nyberg, and E. Frisk. A greedy approach for selection of residual

generators. In Proceedings of the 22nd International Workshop on Principles of
Diagnosis (DX-11), Murnau, Germany, 2011a

• C. Svärd, M. Nyberg, E. Frisk, and M. Krysander. Residual evaluation for fault

diagnosis by data-driven analysis of non-stationary probability distributions. In

Proceedings of the 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC 2011), 2011c

• C. Svärd andM. Nyberg. Automated design of an FDI-system for the wind turbine

benchmark. In Proceedings of 18th IFACWorld Congress, Milano, Italy, 2011

• M. Nyberg and C. Svärd. A service based approach to decentralized diagnosis and

fault tolerant control. In Proceedings of 1st Conference on Control and Fault-Tolerant
Systems (SysTol’10), Nice, France, 2010b

• M. Nyberg and C. Svärd. A decentralized service based architecture for design

and modeling of fault tolerant control systems. In Proceedings of 21st International
Workshop on Principles of Diagnosis (DX-10), Portland, Oregon, USA, 2010a

• C. Svärd and M. Nyberg. A mixed causality approach to residual generation

utilizing equation system solvers and differential-algebraic equation theory. In

Proceedings of 19th International Workshop on Principles of Diagnosis (DX-08), Blue
Mountains, Australia, 2008a

• C. Svärd andM. Nyberg. Observer-based residual generation for linear differential-

algebraic equation systems. In Proceedings of 17th IFAC World Congress, Seoul,
Korea, 2008b
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Abstract

An essential step in the design of a model-based diagnosis system is to find a set

of residual generators fulfilling stated fault detection and isolation requirements.

To be able to find a good set, it is desirable that the method used for residual

generation gives as many candidate residual generators as possible, given a

model. This paper presents a novel residual generation method that enables

simultaneous use of integral and derivative causality, i.e., mixed causality, and

also handles equation sets corresponding to algebraic and differential loops in a

systematic manner. The method relies on a formal framework for computing

unknown variables according to a computation sequence. In this framework,

mixed causality is utilized and the analytical properties of the equations in the

model, as well as the available tools for algebraic equation solving, are taken

into account. The proposed method is applied to two models of automotive

systems, a Scania diesel engine and a hydraulic braking system. Significantly

more residual generators are found with the proposed method in comparison

with methods using solely integral or derivative causality.
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1 Introduction

Fault diagnosis of technical systems has become increasingly important with the rising

demand for reliability and safety, driven by environmental and economical incentives.

One example is automotive engines that are by regulations required to have high precision

on-board diagnosis of failures that are harmful to the environment (United Nations,

2008).

To obtain good detection and isolation of faults, model-based fault diagnosis is neces-

sary. In the Fault Detection and Isolation (FDI) approach to model-based fault diagnosis,

residuals are used to detect and isolate faults present in the system, see, e.g., Blanke et al.

(2006). Residuals are signals that are ideally zero in the non-faulty case and non-zero

else, and are typically generated by utilizing a mathematical model of the system and

measurements.

In this paper, we have the view that design of diagnosis systems is a two-step approach,

as elaborated in Nyberg and Krysander (2008); Nyberg (1999). In the first step, a large

number of candidate residual generators are found, and in the second step the residual

generators most suitable to be included in the final diagnosis system are picked out.

Since different residual generators have different properties regarding fault and noise

sensitivities, it is for the second step important that there is a large selection of different

residual generator candidates to choose between. Thus, the initial set of candidate residual

generators should be as large as possible.

A residual generator design approach (Staroswiecki and Declerck, 1989) which has

shown to be successful in real applications (Dustegor et al., 2004; Izadi-Zamanabadi, 2002;

Cocquempot et al., 1998; Svärd andWassén, 2006;Hansen andMolin, 2006) is to compute

unknown variables in the model by solving equation sets one at a time in a sequence, i.e.,

according to a computation sequence, and then evaluate a redundant equation to obtain a

residual. To determine from which equations and in which order the unknown variables

should be computed, structural analysis is utilized. In addition to (Staroswiecki and

Declerck, 1989), similar approaches have been described and exploited in, e.g., Cassar

and Staroswiecki (1997); Staroswiecki (2002); Blanke et al. (2006); Pulido and Alonso-

González (2004); Ploix et al. (2005); Travé-Massuyès et al. (2006).

In the works mentioned above, the approach is to apply either integral or derivative

causality (Blanke et al., 2006) for differential equations. However, as will be illustrated

in this paper through application studies, it is advantageous to allow simultaneous

use of integral and derivative causality, i.e., mixed causality. Furthermore, real-world

applications involve complex models that give rise to algebraic and differential loops

or cycles (Blanke et al., 2006; Katsillis and Chantler, 1997), corresponding to sets of

equations that have to be treated simultaneously. Thus, it is desirable that a method for

residual generation is able to handle mixed causality and equation sets corresponding to

algebraic and differential loops. The intention with the following simple example is to
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illustrate these issues. Consider the set of differential-algebraic equations

e1 ∶ ẋ1 − x2 = 0
e2 ∶ ẋ3 − x4 = 0
e3 ∶ ẋ4x1 + 2x2x4 − y1 = 0 (1)

e4 ∶ x3 − y3 = 0
e5 ∶ x2 − y2 = 0,

which is a subsystem of a model describing the planar motion of a point-mass satel-

lite (Brockett, 1970; De Persis and Isidori, 2001), and where x1 , x2 , x3,x4 are unknown
variables and y1, y2, y3 known variables. Assume that we want to use equation e5 as
residual. This implies that the unknown variables x1 , x2 , x3 , x4 must be computed from

the equations e1 , e2 , e3 , e4. A structure, i.e., which unknown variables are contained in

which equations, of the equation set {e1 , e2 , e3 , e4} with respect to {x1 , x2 , x3 , x4}, in
permuted form, is depicted below.

x3 x4 x2 x1
e4 1
e2 1 1
e3 1 1 1
e1 1 1

(2)

This structure reveals the order and from which equations, marked with bold, the un-

known variables should be computed. It is clear that computation of the variables will

involve handling of the differential loop arising in the equation set {e1 , e3}, since to
compute x2 the value of x1 is needed and vice versa. Furthermore, computation of the

variables according to (2) will require use of mixed causality: derivative causality when

solving for x4 in e2, and integral causality when solving for x1 in e1.
The main contribution of this paper is a novel method for residual generation that

enables simultaneous use of integral and derivative causality, and is able to handle equa-

tion sets corresponding to algebraic and differential loops in a systematic manner. In this

sense, the proposed method also generalizes previous methods for residual generation,

e.g., Staroswiecki and Declerck (1989); Dustegor et al. (2004); Izadi-Zamanabadi (2002);

Cocquempot et al. (1998); Cassar and Staroswiecki (1997); Staroswiecki (2002); Blanke

et al. (2006); Pulido and Alonso-González (2004); Ploix et al. (2005); Travé-Massuyès

et al. (2006). To achieve this, a formal framework for sequential computation of variables

is presented. In this framework, tools for equation solving and approximate differenti-

ation, as well as analytical and structural properties of the equations in the model, are

essential.

In Section 2 some preliminaries, basic theories and references regarding structural

analysis and differential-algebraic equation systems are given. Section 3 presents the

framework for sequential computation of variables, in which the concepts Block-Lower
Triangular semi-explicit Differential-Algebraic Equation form (BLT semi-explicit DAE

form), tools, and computation sequence are important. Tools, or more precisely algebraic

equation solving tools, are crucial for the ability to handle loops. In Section 4, it is shown
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how a computation sequence is utilized for residual generation. The resulting residual

generator is referred to as a sequential residual generator. Motivated by implementation

aspects, the concept of a proper sequential residual generator is introduced as a sequential
residual generator in which no unnecessary variables are computed and in which com-

putations are performed from as small equation sets as possible. A necessary condition

for the existence of a proper sequential residual generator is derived, connecting proper

sequential residual generators withMinimal Structurally Over-determined (MSO) equa-

tion sets (Krysander et al., 2008). An algorithm able to find proper sequential residual

generators, given a model and a set of tools, is outlined. A key step in the algorithm is to

find minimal and irreducible computation sequences, which is considered in Section 5.

In Section 6, the proposed method for residual generation is applied to models of an

automotive diesel engine and an auxiliary hydraulic braking system. The application

studies clearly show the benefits of using a mixed causality approach and handling al-

gebraic and differential loops. Finally, Section 7 concludes the paper. For readability,

proofs to all lemmas and theorems are collected in Appendix A.

2 Preliminaries and Background Theory

Consider a model, M(E,X,Y), or M for short, consisting of a set of equations E =
{e1 , e2 , . . . , em} relating a set of unknown variables X = {x1 , x2 , . . . , xn}, and a set of

known, i.e., measured, variables Y = {y1 , y2 , . . . , yr}. Introduce a third variable set

D = {ẋ1 , ẋ2 , . . . , ẋn}, containing the (time) derivatives of the variables in X. Without loss

of generality, it is assumed that the equations in E are in the form

e i ∶ f i (ẋ, x, y) = 0, i = 1, 2, . . . ,m (3)

where ẋ = (ẋ1 , ẋ2 , . . . , ẋn) is a vector of the variables inD, x = (x1 , x2 , . . . , xn) a vector of
the variables inX, and y = (y1 , y2 , . . . , yr) a vector of the variables inY. Also without loss
of generality, it is assumed that each equation e i ∈ E contains, at most, one differentiated

variable ẋ j ∈ D and that ẋ j is contained only in one equation. This assumption can be

madewithout loss of generality, since an equation containingmore than one differentiated

variable always can be written as an equation with only one differentiated variable

by introducing new algebraic variables and add trivial differential equations. For an

example, consider the equation ẋ1 + ẋ2 + x1 = 0 containing two differentiated variables.

By introducing the algebraic variable x3 and substitute ẋ2 with x3, and then add the

equation x3 = ẋ2, the equation can be written as ẋ1 + x3 + x1 = 0. This equation now

contains only one differentiated variable.

Define the set of trajectories of the variables in Y that are consistent with the model

M(E,X,Y) as

O (M) = {y ∶ ∃x; f i (ẋ, x, y) = 0, i = 1, 2, . . . ,m} . (4)

The set O (M) is the observation set of the model M. We formally define a residual

generator as follows.

Definition 1 (Residual Generator). A system with input y and output r is a residual

generator for the model M(E,X,Y) and r is a residual if y ∈ O (M)⇒ limt→∞ r → 0
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2.1 Integral and Derivative Causality

In the context of the methods for residual generation mentioned in Section 1, there are

two approaches for handling differential equations, referred to as integral and derivative
causality, see, e.g., Blanke et al. (2006). When adopting integral causality, the differenti-

ated variables, or states, of a differential equation can be computed. The use of integral

causality hence relies on the assumption that ordinary differential equations can be

solved, i.e., integrated, which in general requires that initial conditions of the states are

known. Integral causality is used in for example Pulido et al. (2008) and Pulido and

Alonso-González (2004).

If instead derivative causality is applied, a differential equation is interpreted as an

algebraic equation and only undifferentiated, i.e., algebraic, variables can be computed.

Usage of derivative causality thus relies on the assumption that values of the differentiated

variables in a differential equation are available. This requires in general that derivatives

of known, or previously computed, variables can be computed or estimated. Derivative

causality is used in Staroswiecki (2002), and also adopted in, e.g., Dustegor et al. (2004).

The difference between integral and derivative causality is discussed in Pulido et al. (2007)

and from a simulation point of view in Cellier and Elmqvist (1993). Causality also plays

a central role when using a bond-graph modeling framework, see, e.g., Narasimhan and

Biswas (2007).

The chosen causality approach naturally influences which variables that can be

computed from an equation set. For instance, consider the differential equation e1 ∶
ẋ1 − x2 = 0 from (1), where both x1 and x2 are unknown variables. If integral causality is

used, x1 can be computed from e1 but if instead derivative causality is used, x2 can be

computed from e1.

2.2 Structure of Equation Sets

To study which unknown variables are contained in a set of equations, a structural

representation of the equation set will be used. Let E′ ⊆ E and introduce the notations

varX(E′) = {x j ∈ X ∶ ∃e i ∈ E′ ,
∂ f i
∂x j
/≡ 0 ∨

∂ f i
∂ẋ j
/≡ 0} ,

varD(E′) = {ẋ j ∈ D ∶ ∃e i ∈ E′ ,
∂ f i
∂ẋ j
/≡ 0} .

Consider the model (1) and let X = {x1 , x2 , x3 , x4} and D = {ẋ1 , ẋ2 , ẋ3 , ẋ4}. For instance,
it holds that

varX({e3}) = {x1 , x2 , x4} . (5)

LetG = (E,X,A) be a bipartite graph where E and X are the (disjoint) sets of vertices,

and

A = {(e i , x j) ∈ E × X ∶ x j ∈ varX({e i})} ,
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the set of arcs. We will call the bipartite graph G the structure of the equation set E with

respect to X. Note that with this representation, there is no structural difference between

the variable x j and the differentiated variable ẋ j . An equivalent representation of G is

the m × n biadjacency matrix B defined as

B i j = {
1 if (e i , x j) ∈ A
0 otherwise

Return to the model (1). The structure of the equation set {e1 , e2 , e3 , e3} with respect to

{x1 , x2 , x3 , x4} is given by the biadjacency matrix (2). The result in (5) corresponds to

the third row of (2).

We will also consider the structure of E with respect toD which refers to the bipartite

graph Ḡ = (E,D, Ā), where

Ā = {(e i , ẋ j) ∈ E ×D ∶ ẋ j ∈ varD({e i})} .

2.3 Structural Decomposition

Amatching on the bipartite graph G = (E,X,A) is a subset of A such that no two arcs

have common vertices. A matching with maximum cardinality is amaximum matching.
A matching is a complete matching with respect to E (or X), if the matching covers every

vertex in E (or X). By directing the arcs contained in a matching on the bipartite graph G
in one direction, and the remaining arcs in the opposite direction, a directed graph can
be obtained from G, see for example Asratian et al. (1998). A directed graph is said to

be strongly connected if for every pair of vertices x i and x j there is a directed path from

x i to x j . The maximal strongly-connected subgraphs of a directed graph are called its

strongly-connected components (SCC).
There exists a unique structural decomposition of the bipartite graph G = (E,X,A),

referred to as the Dulmage-Mendelsohn (DM) decomposition, see Dulmage andMendel-

sohn (1958); Murota (1987). It decomposes G into irreducible bipartite subgraphs

G+ = (E+ ,X+ ,A+), G0
i = (E

0
i ,X0

i ,A0
i ) , i = 1, 2, . . . , s, and G− = (E− ,X− ,A−), called

DM-components, see Figure 1. The component G+ is the over-determined part of G,
G0 = ⋃

s
i=1 G0

i the just-determined part, and G− the under-determined part. The DM-

components G0
i = (E

0
i ,X0

i ,A0
i ) correspond to the SCCs of the directed graph induced

by any complete matching on the bipartite graph G0, (Murota, 1987). The equation set

E0 = ⋃
s
i=1 E0

i is said to be a just-determined equation set with respect to the variables

X0 = ⋃
s
i=1 X0

i . For an application of the DM-decomposition see for example Krysander

and Frisk (2008).

Algebraic and Differential Loops

If the structure of an equation set, with respect to a set of unknown variables, contains

SCCs of larger size than one, the equation set contains loops or cycles, see, e.g., Blanke et al.
(2006); Katsillis and Chantler (1997); Pulido et al. (2007). If the equation set contains

cyclic dependencies including unknown differentiated variables, the loop is said to be

differential, else algebraic.
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X+ X 0 X -

E +

E 0

E -

0 0

0

E 1
0

E s
0

0

Figure 1: DM-decomposition of the bipartite graph G = (E,X,A). The DM-components

G0
i = (E

0
i ,X0

i ,A0
i ) correspond to the SCCs of the structure of E0

with respect to X0
.

In the example outlined in Section 1, the structure (2), which in fact is the result

of a DM-decomposition, revealed three SCCs which are bold-marked. The SCCs are

({e4} , {x3}),({e2} , {x4}), and ({e1 , e3} , {x1 , x2}) of size 1, 1, and 2 respectively. The

latter corresponds to a differential loop.

2.4 Differential-Algebraic Equation Systems

Due to its general form, it is assumed that the model (3) contains both differential

and algebraic equations, i.e., it is a Differential-Algebraic Equation (DAE) system, or

descriptor system (Kunkel and Mehrmann, 2006; Brenan et al., 1989; Ascher and Petzold,

1998). The most general form of a DAE is f (ẋ, x, y) = 0, where f is some vector-valued

function, cf. (3). DAEs appear in large classes of technical systems like mechanical-,

electrical-, and chemical systems. Further, DAEs are also the result when using physically

based object-oriented modeling tools, e.g., Modelica (Mattson et al., 1998).

Differential Index

A common approach when analyzing and solving general DAE-systems, is to seek a

reformulation of the original DAE into a simpler and well-structured description with

the same set of solutions (Kunkel and Mehrmann, 2006; Brenan et al., 1989). To classify

how difficult such a reformulation is, the concept of index has been introduced. There

are different index concepts depending on the kind of reformulation that is sought. In

this paper we will use the differential index, which is defined as the minimum number of
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times that all or parts of the DAE must be differentiated with respect to time in order to

write the DAE as an explicit Ordinary Differential Equation (ODE), ẋ = g (x, y), see for
example Brenan et al. (1989).

Semi-Explicit DAEs

An important class of DAEs are semi-explicit DAEs

ż = g (z,w, y) (6a)

0 = h (z,w, y) , (6b)

where z and w are vectors of unknown variables, and y a vector of known variables. A

semi-explicit DAE is of index one if and only if (6b) can be (locally) solved for w so that

w = h̃ (z, y), see, e.g., Brenan et al. (1989). An explicit ODE can easily be obtained from

a semi-explicit DAE of index one by substituting w = h̃ (z, y) into (6a).

3 Sequential Computation of Variables

In this section a framework for sequential computation of variables is presented. The

framework is built upon the concepts BLT semi-explicit DAE form, tools, and computa-

tion sequence. The small model (1) introduced in Section 1, will be used as a running

example to illustrate and exemplify the theory.

Large sets of equations often have a sparse structure, i.e., only a fewunknown variables

in each equation. This makes it possible to partition the set of equations into subsets that

can be solved, in a sequence, for only a subset of the unknowns. The main argument

for computing variables in this way is efficiency and in some cases this may be the only

feasible way to compute the unknowns. This approach has been used in the context of

equation solving, see Steward (1962); Kron (1963); Steward (1965), and is also utilized in

methods for non-causal simulation (Fritzon, 2004).

3.1 BLT Semi-Explicit DAE Form

One property that the partitioning must fulfill, is that computation of variables from a

certain subset of equations must only use variables that are known, that is, measured or

have been computed from another subset in a previous step of the sequence.

Furthermore, with the efficiency argument in mind, it is most desirable to partition

the set of equations into as small blocks, i.e., subsets, as possible. However, even if the

equation set has a sparse structure, there could be algebraic or differential loops, that

makes it impossible to consider subsets of solely one equation.

In addition, it is desirable that the equations are partitioned into blocks or subsets

from which variables can be computed in a straightforward manner. Since the consid-

ered set of equations (3) contains both differential and algebraic equations, subsets will

correspond to DAEs. Computation of variables from semi-explicit DAEs of index one,

referred to as simulation of the DAE, is a well studied problem and several methods

exist, see, e.g., Hairer and Wanner (2002); Ascher and Petzold (1998). Furthermore, as
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said in Section 2.4, a semi-explicit DAE of index one can trivially be transformed to an

explicit ODE. Explicit ODEs are suitable for real-time simulation in embedded systems,

for example Engine Control Units (ECUs), because real-time simulation often require

use of an explicit integration method, e.g., forward Euler (Ascher and Petzold, 1998),

which assumes an explicit ODE. For a detailed discussion regarding real-time simulation,

see Cellier and Kofman (2006).

Motivated by these arguments, we consider a partitioning of the equation set so that a

block-lower triangular form is achieved, where each block corresponds to a semi-explicit

DAE of index one.

Definition 2 (BLT Semi-Explicit DAE Form). The system

ż1 = g1 (z1 ,w1 , y)
ż2 = g2 (z1 , z2 ,w1 ,w2 , y) (7)

⋮

żs = gs (z1 , z2 , . . . , zs ,w1 ,w2 , . . . ,ws , y)

where wi = (w1
i ,w2

i , . . . ,w
p i
i ) and

w1
i = h

1
i (Ψi , y) (8)

w2
i = h

2
i (Ψi ,w1

i , y) (9)

⋮ (10)

wp i
i = h

p i
i (Ψi ,w2

i , . . . ,w
p i−1
i , y) , (11)

where

Ψi = (ẇ1 , ẇ2 , . . . , ẇi−1 , z1 , z2 , . . . , zi ,w1 ,w2 , . . . ,wi−1) ,

for i = 1, 2, . . . , s, and where zi and wi are vectors of unknown variables, all pairwise
disjoint, and y a vector of known variables, is in Block-Lower Triangular semi-explicit

Differential-Algebraic Equation form (BLT semi-explicit DAE form).

Note that it is not necessary that both zi and wi are present in (7) for every i =
1, 2, . . . , s. In particular, the system

w1 = h1 (y)
w2 = h2 (w1 , y)
⋮

ws = hs (w1 ,w2 , . . . ,ws−1 , y) ,

containing no differentiated variables at all, also is in BLT semi-explicit DAE form.
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Some Properties of the BLT Semi-Explicit DAE Form

Consider the system

ż1 = g1 (z1 ,w1 , y) (12a)

w1
1 = Bh11 (z1 , y) (12b)

w2
1 = h

2
1 (z1 ,w

1
1 , y) (12c)

ż2 = g2 (z1 , z2 ,w1 ,w2 , y) (12d)

w1
2 = h

1
2 (ẇ1 , z1 , z2 ,w1 , y) (12e)

w2
2 = h

2
2 (ẇ1 , z1 , z2 ,w1 ,w1

2 , y) , (12f)

where w1 = (w1
1 ,w2

1 ) and w2 = (w1
2 ,w2

2), which is in BLT semi-explicit DAE form with

s = 2 and p1 = p2 = 2. By studying the system (12), we can deduce some properties of the

BLT semi-explicit DAE form;

MixedCausality The form generalizes the use of integral and derivative causality, since

for example integral causality is used in (12a) and derivative causality in (12e).

Blocks are DAEs of Index One or Zero Each block, e.g. (12a)-(12c), corresponds to a

semi-explicit DAE of, at most, index one with respect to the unknown variables in each

block, i.e., z1 and w1 in the first block and z2 and w2 in the second block. Note that in

accordance with the note above, vectors z1, z2, w1, and w2 must not all be present in (12).

If, for instance, w1 is missing and hence also (12b) and (12c), the first block is an explicit

ODE, i.e., a DAE of index zero. If both z1 and w1 are present, the first block corresponds

to a semi-explicit DAE of index one.

Transformation to ODE Due to the previous property, a system in BLT semi-explicit

DAE form can trivially be transformed to a variant of an explicit ODE. In (12), we may

substitute (12b) into (12c) and then substitute the result along with (12b) into (12a) so

that we obtain

ż1 = g1 (z1 ,w1 , y)

= g1 (z1 , [h1
1 (z1 , y) , h

2
1 (z1 , h

1
1 (z1 , y))] , y)

= g̃1 (z1 , y) ,

and then repeat the procedure for the second block to obtain

ż1 = g̃1 (z1 , y)
ż2 = g̃2 (z1 , z2 , ẏ, y) .

As said above, ODEs may be preferable in real-time applications.
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Blocks are SCCs Each block in the BLT semi-explicit DAE form is a SCC of the

structure of the corresponding equations with respect to the unknown variables in that

block. This can be seen by studying the structure1 of the equations in (12) with respect

to the variables {z1 ,w1
1 ,w2

1 , z2 ,w1
2 ,w2

2}, which is shown in (13). In this structure, the

equation in (12a) has been named e1, the equation in (12b) has been named e2, and so

forth.

z1 w1
1 w2

1 z2 w1
2 w2

2

e1 1 1 1
e2 1 1
e3 1 1 1
e4 1 1 1 1 1 1
e5 1 1 1 1 1
e6 1 1 1 1 1 1

(13)

Efficiency Recall the discussion regarding efficiency in the beginning of Section 3.1.

As a consequence of the previous property, the original set of equations is partitioned in

as small blocks as possible, in the sense that there are no dependencies between blocks,

i.e., no loops occur.

Sequential Computation of Variables The block-lower triangular structure makes it

possible to compute variables sequentially by considering the blocks one at the time,

starting from the first block. Since the structure guarantees that a certain block only

contains unknown variables from the present and previous blocks.

3.2 Computational Tools

Whether a system in BLT semi-explicit DAE form can be obtained from a given set of

equations and whether trajectories of the unknown variables can be computed from

the resulting system, depends naturally on the properties of the equations in the model.

Equally important is also the set of tools that are available for use.
Consider the BLT semi-explicit DAE form (12). To obtain for example the function

h1
1 in (12b) from a subset of equations given in the model, some kind of tool for algebraic

equation solving is needed. To compute a trajectory of the variable z1 from (12a), a

differential equation must be solved and hence a tool for this is needed. Furthermore, to

obtain the derivative ẇ1, present in (12e), from the trajectory of w1 computed in (12b)

and (12c), a tool for differentiation is needed.

Motivated by this discussion, we consider three types of tools; algebraic equation

solving tools, differential equation solving tools, and differentiation tools.

Algebraic Equation Solving Tools

A tool for algebraic equation solving is typically some software package for symbolic or

numeric solving of linear or non-linear algebraic equations. Algebraic equation solving

1It is here assumed that f (x) implies
∂ f
∂x /≡ 0.
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tools are essential for handling models containing algebraic loops. If, for example, the

available algebraic equation solving tool only can solve scalar equations, loops can not

be handled.

More precisely, an algebraic equation solving tool (AE tool) is a function taking a

set of variables Vi ⊆ X ∪D and a set of equations Ei ⊆ E as arguments, and returning a

function gi , which can be a symbolic expression or numeric algorithm, taking variables

from {X ∪D} ∖ Vi and Y as arguments and returning a vector corresponding to the

elements in Vi . Now assume that gi is the function returned by an AE tool when Vi
and Ei are used as arguments, and that the equation set Ēi corresponds to vi = gi (ui , y),
where vi is a vector of the elements inVi , ui a vector of the elements inUi ⊆ {X ∪D}∖Vi ,

and y a vector of known variables. A natural assumption regarding an AE tool, whatever

algorithm or method it corresponds to, is that the AE tool should not introduce new

solutions. That is, a solution to Ēi should also be a solution to the original equation set

Ei . Moreover, an AE tool should neither remove solutions, i.e., solutions to Ei must also

be solutions to Ēi . Furthermore, motivated by the idea of using sequential computation

of variables for residual equation, we are interested in unique solutions. This discussion

justifies the following assumption.

Assumption 1. Given Ui and y, the solution sets of Ēi , obtained from the AE tool, and Ei ,
with respect to Vi , are equal and unique.

AE tools giving unique solutions generally assume that the given set of equations

contains as many equations as unknown variables. One example is Newton iteration,

which is a common numerical method for solving non-linear equations, see, e.g., Ortega

and Rheinboldt (2000). In addition, under- and over-determined sets of equations

for which an unique analytical solution exists are rare. This motivates the following

assumption.

Assumption 2. An AE tool requires that its arguments Vi and Ei correspond to a just-
determined equation set.

In this work, we assume that tools for algebraic equation solving are available through

existing standard software packages like, e.g., Maple or Mathematica, and design and

implementation of such tools will not be considered. For solving algebraic loops, also

tearing (Steward, 1965; Kron, 1963) can be a successful approach. In the following, we

also assume that AE tools fulfill the properties stated in Assumptions 1 and 2.

Differential Equation Solving Tools

A differential equation solving tool is typically a method or software for numerical inte-

gration of an (explicit or implicit) ODE, i.e., a DAE of index zero. Numerical integration

is a well studied area and there are several efficient approaches andmethods, see, e.g., Bre-

nan et al. (1989); Ascher and Petzold (1998). Implementations are available in for example

Matlab and Simulink.

Independent of which differential equation solving tool that is used, initial conditions

for the state variables are in general required. The availability of initial conditions depends

on the knowledge about the underlying system represented by the model. For complex
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physical systems, object-oriented modeling tools, e.g., Modelica (Mattson et al., 1998),

are frequently used to build models. Often, this leads to models in which state variables

correspond to physical quantities such as pressures and temperatures and then initial

conditions may have clear physical interpretations. For example, in an engine model a

variable corresponding to the intake manifold pressure should be equal to the ambient

pressure when the engine starts.

If all equilibrium points of the considered ODE are (globally) asymptotically stable,

or by using, e.g., state-feedback (Khalil, 2002) can be made so, the effect of the initial

conditions is neglectable. However, the computed trajectory will in this case differ from

the true trajectory for some time due to transients.

Recall from Section 3.1 that each block in a BLT semi-explicit DAE system can be

transformed to an explicit ODE. In the following, we assume that differential equation

solving tools are always available and that an explicit ODE can be solved, i.e., that

trajectories of the state variables in the ODE can be computed, if the initial conditions of

the state variables are known and consistent. Of course, this assumption is not always

valid and numerical solving of ODEs involves difficulties and problems such as stability

and stiffness, but this is not in the scope of this paper.

Differentiation Tools

A differentiation tool is for example an implementation of a method for approximate

differentiating of known variables. There are several approaches, e.g., low-pass filtering

or smoothing spline approximation (Wei and Li, 2006). An extensive survey of methods

can be found in Barford et al. (1999). Methods for approximate differentiation is not in

the scope of this paper, and will not be further considered.

In the following, we assume that differentiation of a set of known variables either is

possible or not possible. That is, if a tool for approximate differentiation is available, we

assume that the quality of the measurements of the involved variables are good enough

to support the tool.

One alternative to differentiate variables directly, is to propagate unknown differenti-

ated variables through a set of equations so that these can be expressed as derivatives of

measured variables only. Assume for example that we want to compute the derivative ẋ1
and we also have that x1 = y1. To compute ẋ1, we use a differentiation tool to compute ẏ1
and then use ẋ1 = ẏ1.

3.3 Computation Sequence

To describe the way and order in which a set of variables is computed from a set of

equations, we will introduce the concept computation sequence. Before going into details,
we need some additional notation. Let V ⊆ X ∪D and define

Diff (V) = {ẋ j ∈ D ∶ ẋ j ∈ V ∨ x j ∈ V} , (14)

unDiff (V) = {x j ∈ X ∶ x j ∈ V ∨ ẋ j ∈ V} . (15)

For instance, we have that Diff ({ẋ1 , x2}) = {ẋ1 , ẋ2} and unDiff ({ẋ1 , x2}) = {x1 , x2}.
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Now consider the modelM(E,X,Y), where E is the set of equations specified in (3),

X the set of unknown variables, and Y the set of known variables.

Definition 3 (Computation Sequence). Given a set of variables X′ ⊆ X, an AE tool T ,
and an ordered set

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) ,

where Vi ⊆ varX(Ei) ∪ varD(Ei), and {Ei} is pairwise disjoint. The ordered set C is a
computation sequence for X′ with T , if

1. X′ ⊆ unDiff (V1 ∪V2 ∪ . . . ∪Vk), and

2. a system in BLT semi-explicit DAE form is obtained by sequentially calling the tool
T , with arguments Vi and Ei , for each element (Vi , Ei) ∈ C.

For an example, recall themodel (1), whereE = {e1 , e2 , e3 , e4 , e5},X = {x1 , x2 , x3 , x4}
and Y = {y1 , y2 , y3}. Assume that the given AE tool T is ideal, in the sense that it can

solve all solvable linear and non-linear equations. Then the ordered set

C = (({x3} , {e4}) , ({x4} , {e2}) , ({ẋ1} , {e1}) , ({x2} , {e3})) (16)

is a computation sequence for {x1 , x2 , x3 , x4} with T according to Definition 3, since

unDiff ({x3} ∪ {x4} ∪ {ẋ1} ∪ {x2}) = {x1 , x2 , x3 , x4} ,

and the BLT semi-explicit DAE system

x3 = y3 (17a)

x4 = ẋ3 (17b)

ẋ1 = x2 (17c)

x2 =
−ẋ4x1 + y1

2x4
, (17d)

is obtained by sequentially calling T with elements from C as arguments.

Note that the obtained BLT semi-explicit DAE system (17) has three blocks; the first

block corresponds to (17a), the second to (17b), and the third to (17c) and (17d). Also

note that the equation set {e1 , e3}, containing a differential loop, corresponds to a semi-

explicit DAE of index one given by (17c) and (17d). Furthermore, derivative causality is

used in (17b) and (17d), and integral causality in (17c).

4 Sequential Residual Generation

In this section it is shown how a computation sequence can be utilized for residual

generation. A residual generator based on a computation sequence will be defined as

a sequential residual generator. In a sequential residual generator, the generation of a

residual will consist of finite sequence of variable computations ending with evaluation
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of an unused equation. The concepts of minimal and irreducible computation sequence,

as well as proper sequential residual generator will then be introduced. A necessary

condition for the existence of a proper sequential residual generator is given. The section

ends with an algorithm able to find proper sequential residual generators, given a model

and an AE tool.

An important property of a computation sequence is given by the following lemma.

Lemma 1. Let the ordered set

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek))

be a computation sequence for the variables X′ ⊆ X with the AE tool T , and let Ē′ be the
set of equations in BLT semi-explicit DAE form obtained from C with the AE tool T . Then
the solution sets of Ē′ and E1 ∪ E2 ∪ . . . ∪ Ek , with respect to V1 ∪V2 ∪ . . . ∪Vk , are equal
and unique.

With this lemma, the following important result can be proved.

Theorem 1. Let M(E,X,Y) be a model, T an AE tool, and

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) ,

a computation sequence for X′ ⊆ Xwith T , where Ei ⊆ E. Also, let e i ∈ E∖E1∪E2∪ . . .∪Ek
where varX(e i) ⊆ X′ and it is assumed that e i is written as f i (ẋ, x, y) = 0. Then the
BLT semi-explicit DAE system obtained from C with T and r = f i (ẋ, x, y), is a residual
generator for M(E,X,Y) if

1. consistent initial conditions of all states are available, and

2. all needed derivatives can be computed with the available differentiation tools.

Motivated by this theorem, we define a sequential residual generator as follows.

Definition 4 (Sequential Residual Generator). A residual generator for M(E,X,Y) ob-
tained from a computation sequence C and an equation e i ∈ E, in accordance with the
description in Theorem 1, is a sequential residual generator for M(E,X,Y), denoted
S = (T (C) , e i), and e i is a residual equation.

4.1 Proper Sequential Residual Generator

Regarding implementation aspects, e.g., complexity or numerical issues, smaller compu-

tation sequences are generally better. In particular, it is unnecessary to compute variables

that are not contained in the residual equation, or not used to compute any of the vari-

ables contained in the residual equation. Motivated by this discussion, we make the

following definition.

Definition 5 (Minimal Computation Sequence). Given a set of variables X′ ⊆ X and
an AE tool T , a computation sequence C for X′ with T is minimal, if there is no other
computation sequence C′ for X′ with T such that C′ ⊂ C.
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Return to the model (1) in Section 1. Consider the last two equations in the model,

e4 ∶ x3 − y3 = 0
e5 ∶ x2 − y2 = 0,

and let T be an ideal AE tool. The computation sequence

C1 = (({x3}, {e4}) , ({x2}, {e5})) (18)

for {x2 , x3} with T is minimal. The resulting BLT semi-explicit DAE form is given by

x3 = y3 (19a)

x2 = y2 . (19b)

However, C1 is not minimal for {x3} since C2 = ({x3}, {e4}) is a (minimal) computation

sequence for {x3} with T , and C2 ⊂ C1.
Computation of variables according to a minimal computation sequence thus implies

that no unnecessary variables are computed. However, with the complexity and numerical

aspects in mind, it is also most desirable that computation of variables in each step is

performed from as small equation sets as possible. This leads to the following definition.

Definition 6 (Irreducible Computation Sequence). Given a set of variables X′ ⊆ X and
an AE tool T , a computation sequence

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) ,

for X′ with T is irreducible, if no element (Vi , Ei) ∈ C can be partitioned as Vi = Vi1 ∪Vi2
and Ei = Ei1 ∪ Ei2, such that

C
′
= ((V1 , E1) , . . . , (Vi1 , Ei1) , (Vi2 , Ei2) , . . . , (Vk , Ek))

is a computation sequence for X′ with T .

Return to the equation set {e4 , e5} considered above. Clearly, the ordered set C3 =

({x2 , x3}, {e4 , e5}) is a minimal computation sequence for {x2 , x3} with the ideal AE

tool T . The corresponding BLT semi-explicit DAE system is given by (19). However, C3
is not irreducible since C1 given by (18) is also a computation sequence for {x2 , x3}.

From now on, we will only consider AE tools fulfilling the following, quite non-

limiting, property.

Assumption 3. Let Ei = Ei1 ∪ Ei2 and Vi = Vi1 ∪Vi2, in accordance with Definition 6. If
an AE tool can solve Ei for Vi , it can also solve Ei1 for Vi1 and Ei2 for Vi2.

Sequential residual generators based on minimal and irreducible computation se-

quences are of particular interest.

Definition 7 (Proper Sequential Residual Generator). Given an equation e i ∈ E, an AE
tool T , and a computation sequence C for varX(e i) with T . A sequential residual generator
S = (T (C) , e i) is proper, if C is a minimal and irreducible computation sequence for
varX(e i) with T .
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For construction of a sequential residual generator, a computation sequence and

a residual equation is needed. Due to Assumption 2, the equation set contained in a

computation sequence is a just-determined set of equations. Since the residual equation

is redundant, see Theorem 1, it follows that the equations in a computation sequence

and the residual equation constitute an over-determined equation set. Hence, an over-

determined set of equations is needed to construct a sequential residual generator. For

construction of a proper sequential residual generator, a Minimal Structurally Over-
determined (MSO) set (Krysander et al., 2008), is needed.

Theorem 2. Let S = (T (C) , e i) be a proper sequential residual generator, where

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) ,

then the equation set E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i is an MSO set with respect to varX(E1 ∪ E2 ∪

. . . ∪ Ek ∪ e i)

Note that Theorem 2 establishes a link between structural and analytical methods.

This is done without the use of any assumptions of generic equations as in, e.g., Krysander

et al. (2008), instead assumptions have been placed on the tools.

Recall again the model (1) and consider the computation sequence C, given by (16),

with the corresponding BLT semi-explicit DAE form (17). The computation sequence

C together with the equation e5 is a sequential residual generator for the model (1), if

we assume that the initial condition of x1 is known and consistent and the derivatives

ẋ3 and ẋ4 can be computed with the available differentiation tools. As a matter of fact,

the residual generator is a proper sequential residual generator since the computation

sequence C for varX(e5) = {x2} with the ideal AE tool T is minimal and irreducible.

Hence, we can by Theorem 2 conclude that the equation set E = {e1 , e2 , e3 , e4 , e5} is an
MSO set.

4.2 Finding Proper Sequential Residual Generators

Theorem 2 states a necessary condition for the existence of a proper sequential residual

generator. Hence, a first step when searching for all proper sequential residual generators

may be to find all MSO sets. There are efficient algorithms for finding all MSO sets in

large equation sets, see, e.g., Krysander et al. (2008).

Motivated by this, we propose the following algorithm for finding proper sequen-

tial residual generators, given a model M(E,X,Y) and an AE tool T . The function

findAllMSOs is assumed to find all MSO sets in the equation set E. The function

findComputationSequence, taking an equation set E′, a variable set X′ and an AE

tool T , is assumed to return a minimal and proper computation sequence for X′ with T .
The algorithm is justified by the following theorem.

Theorem 3. Let M(E,X,Y) be a model and T an AE tool. Also, let R be the set returned
by findResidualGenerators when E, X, and T are used as input. Then all elements
(T (C) , e i) ∈ R are proper sequential residual generators for M(E,X,Y) if, in accordance
with Theorem 1, consistent initial conditions of all states are available, and all needed
derivatives can be computed with the available differentiation tools.
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1: function findResidualGenerators(E,X, T )
2: R ∶= ∅
3: MSOs ∶= findAllMSOs(E,X)
4: for all Ē ∈MSOs do
5: X′ ∶= varX(Ē)
6: for all e i ∈ Ē do
7: E′ ∶= Ē ∖ e i
8: C ∶= findComputationSequence(E′ ,X′ , T )
9: if C ≠ ∅ then
10: R = R ∪ {(T (C) , e i)}
11: end if
12: end for
13: end for
14: return R
15: end function

The most important step in findResidualGenerators is thus to find a minimal

and irreducible computation sequence, i.e., the function findComputationSequence.

This is the topic of next section.

5 Method for Finding a Computation Sequence

A proper sequential residual generator consists of a BLT semi-explicit DAE system,

obtained from a minimal and irreducible computation sequence, and a residual equation.

Essential for construction of a proper sequential residual generator is thus to find a

minimal and irreducible computation sequence. The method that we propose for finding

a computation sequence is presented in this section. First, the different steps of the

method are illustrated by studying an example.

5.1 Illustrative Example

Consider the following set of equations,

e1 ∶ ẋ1 + x1x6 − x3 − x25x7 = 0
e2 ∶ ẋ2 + x2x3 + y1 = 0
e3 ∶ ẋ3 + x3 − x2x4 + y2 = 0
e4 ∶ ẋ4 + x2 − x5 − y3 = 0
e5 ∶ x1 − x2x3 − x4 + x6 − 2x7 − y4 = 0
e6 ∶ x23 − x6 − x7 + y5 = 0
e7 ∶ x4 − y6 = 0,

where X = {x1 , x2 , . . . , x7} are unknown variables and Y = {y1 , y2 . . . , y6} known vari-

ables. Assume that we want to find a computation sequence for X with a given AE
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tool.

First identify the SCCs, recall Section 2.3, of the structure of E = {e1 , e2 , . . . , e7} with
respect to X, and order the corresponding partitions of the equation and variable sets

accordingly

x4 x3 x2 x5 x6 x7 x1
e7 1
e3 1 1 1
e2 1 1
e4 1 1 1
e6 1 1 1
e1 1 1 1 1 1
e5 1 1 1 1 1 1

(20)

The ordered partitions are

E = ({e7} , {e2 , e3} , {e4} , {e1 , e5 , e6})

and

X = ({x4} , {x2 , x3} , {x5} , {x1 , x6 , x7}) ,

where each element in E is a SCC with respect to the corresponding element in X , e.g.,

({e2 , e3} , {x2 , x3}). The SCCs are marked with bold in (20).

The first SCC, ({e4}, {x7}), contains one linear algebraic equation. Under assump-

tion that our AE tool can handle such equations, e7 is solved for x4 and we obtain

x4 = y6 . (21)

Then consider the next SCC, ({e2 , e3}, {x2 , x3}) which contains two differential

equations. The permuted structure of {e2 , e3} with respect to the differentiated variables

{ẋ2 , ẋ3} is

ẋ3 ẋ2
e3 1

e2 1

(22)

As seen, the structure (22) contains two SCCs of size one, ({e3}, {ẋ3}) and ({e2}, {ẋ2}).
Assuming our AE tool admits it, we then solve e3 for ẋ3 and e2 for ẋ2 and obtain

ẋ3 = −x3 + x2x4 − y2 (23)

ẋ2 = −x2x3 − y1 .

The next SCC, ({e4}, {x5}), contains a differential equation. However, since x5 is
the variable intended to compute from the equation, we can handle e6 as an algebraic

equation and solve it for x5,

x5 = x2 + ẋ4 − y3 . (24)



60 Paper A. Residual Generators for Fault Diagnosis using . . .

The SCC ({e1 , e5 , e6}, {x1 , x6 , x7}) contains the differential equation e1 and the two

algebraic equations e5 and e6. By analyzing the equations we see that x6 and x7 are
algebraic variables contained in both e5 and e6 and that x1 is a differentiated variable

present in e1. We then solve e1 for ẋ1 and obtain

ẋ1 = −x1x6 + x25x7 + x3 . (25)

The structure of {e5 , e6} with respect to {x6 , x7} reveals a SCC of size two, see (26).

x6 x7
e5 1 1

e6 1 1

(26)

Under the assumption that our AE tool can handle it, we solve the equation system

{e5 , e6} for {x6 , x7} and obtain

x6 = 2x23 + x1 − x2x3 − x4 + 2y5 − y4 (27)

x7 = x1 − x2x3 − x4 + x23 + y5 − y4 .

Collecting the equations (21), (23), (24), (25), and (27) gives

x4 = y6 (28a)

ẋ3 = −x3 + x2x4 − y2 (28b)

ẋ2 = −x2x3 − y1 (28c)

x5 = x2 + ẋ4 − y3 (28d)

ẋ1 = −x1x6 + x25x7 + x3 (28e)

x6 = 2x23 + x1 − x2x3 − x4 + 2y5 − y4 (28f)

x7 = x1 − x2x3 − x4 + x23 + y5 − y4 , (28g)

which is a system in BLT semi-explicit DAE form with four blocks. The equation (28a)

correspond to the first block, which only contains an algebraic equation. The second

block is given by (28b) and (28c), and correspond to an explicit ODE with respect to

the variables {x2 , x3}. Hence, integral causality is used in this block. The third block

contains (28d), which is a differential equation in which derivative causality is used. The

equations (28e)–(28g) constitute the fourth and last block. This block corresponds to a

semi-explicit DAE of index one, with respect to the variables {x1 , x6 , x7}.
The resulting computation sequence for {x1 , x2 , . . . , x7} with the given AE tool is,

C = (({x4}, {e7}) , ({ẋ3}, {e3}) , ({ẋ2}, {e2}) , ({x5}, {e4}) ,
({ẋ1}, {e1}) , ({x6 , x7}, {e6 , e5})) .

5.2 Summary of theMethod

Given an AE tool and a just-determined set of equations, the proposed method for

finding a computation sequence can be outlined as follows:



5. Method for Finding a Computation Sequence 61

1. Find the SCCs of the structure of the equation set with respect to the unknown

variables. No distinction is made between a variable and its derivative.

2. For each SCC, split the equations into one set of differential equations and one

set of algebraic equations, and the variables into one set of differentiated variables

and one set of algebraic variables.

3. For the differential equations, find the SCCs of the structure of the differential

equations with respect to the differentiated variables. For each SCC, try to solve

the differential equations for the intended differentiated variables with the AE tool.

Note that due to the assumption that each differential equation only contains one

differentiated variable, all SCCs are of size one.

4. For the algebraic equations, find the SCCs of the structure of the algebraic equations

with respect to the algebraic variables. For each SCC, try to solve the algebraic

equations for the intended algebraic variables with the AE tool.

5.3 Algorithm

The method is formally described in the function findComputationSequence below.

The function takes a just-determined equation set E′ ⊆ E, a set of unknown variables

X′ ⊆ X, and an AE tool T as input, and returns an ordered set C as output. The function

findAllSCCs is assumed to return an ordered set of equation and variable pairs, where

each pair corresponds to a SCC of the structure of the equation set with respect to the

variable set. The order of the SCCs returned by findAllSCCs is assumed to be the

one depicted in Figure 1, for more information regarding ordering of SCCs please refer

to Murota (1987). There are efficient algorithms for finding SCCs in directed graphs, see

for example Tarjan (1972). The DM-decomposition (Dulmage and Mendelsohn, 1958)

can also be utilized. In Matlab, the DM-decomposition is implemented in the function

dmperm, from which also the order of the SCCs, according to Figure 1, easily can be

obtained. Other functions used in findComputationSequence are:

• Diff and unDiff, takes a variable set as input and returns its differentiated and

undifferentiated correspondence, see (14) and (15).

• isInitCondKnown determines if the initial conditions of the given variables are

known and consistent, and the function isDifferentiable determines if the given

variables can be differentiated with the available differentiation tool.

• isJustDetermined is used to determine if the structure of the given equation set,

with respect to the given variable set, is just-determined. This is essential, since

otherwise the computation of SCCs makes no sense.

• getDifferentialEquations takes a set of equations and a set of differentiated

variables as input, and returns the differential equations in which the given differ-

entiated variables are contained.
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• isToolSolvable determines if the given AE tool can solve the given equations

for the given set of variables.

• Append, takes an ordered set and an element as input and simply appends the

element to the end of the set.

• The operator ∣ ⋅ ∣, taking a set as input, is assumed to return the number of elements

in the set and the notion A(i) is used to refer to the i:th element of the ordered

set A.

That the ordered set C returned by findComputationSequence, indeed, is a mini-

mal and irreducible computation sequence is verified in the following theorem.

Theorem 4. Let E′ ⊆ E be a just-determined set of equations with respect to the variables
X′ ⊆ X, and T an AE tool. If E′, X′, and T are used as arguments to findComputation-
Sequence and a non-empty C is returned, then C is a minimal and irreducible computation
sequence for X′ with T .

6 Application Studies

The objective of this section is to empirically show the benefits of the method for finding

sequential residual generators proposed in Sections 4.2 and 5.3. This is done by applying

the method to models of an automotive diesel engine and an auxiliary hydraulic braking

system. In addition, we illustrate how a sequential residual generator for the diesel engine,

found with the proposed method, can be realized. The realized residual generator is then

evaluated using real measurements from a truck.

6.1 Implementation and Configuration of theMethod

The analytical models of the two systems were obtained from Simulinkmodels by using

the toolbox described in Frisk et al. (2006). The resulting models are complex DAEs

containing non-linearities like min- and max-functions, look-up tables, saturations, and

polynomials.

The functions findResidualGenerators and findComputationSequence, de-

scribed in Sections 4.2 and 5.3, were implemented in Matlab. In the implementation of

findComputationSequence, the symbolic equation solver in Maple was used as AE

tool. To find all MSO sets, the algorithm described in Krysander et al. (2008) was used.

The MSO sets were arranged in classes, so that MSOs containing the same set of known

variables belongs to the same MSO class.

For comparison, different configurations of findComputationSequence were ap-

plied to the models. The following parameters, which naturally influences the possibility

to find computation sequences, were used for configuration:

SCC: The ability to handle SCCs of larger size than one, i.e., equation sets containing

algebraic or differential loops.

IC: The ability to use integral causality.
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1: function findComputationSequence(E′ ,X′ , T )
2: C ∶= ∅

3: S ∶= findAllSCCs(E′ ,X′)
4: for i = 1, 2, . . . , ∣S∣ do
5: (Ei ,Xi) ∶= S (i)
6: Di ∶= Diff(Xi)

7: Zi ∶= varD(Ei) ∩Di
8: Wi ∶= X i ∖ unDiff(Zi)

9: if not isInitCondKnown(Zi) then
10: return ∅
11: end if
12: EZ i ∶= getDifferentialEquations(Ei ,Zi)

13: EW i ∶= Ei ∖ EZ i

14: SZ i ∶= findAllSCCs(EZ i ,Zi)

15: for j = 1, 2, . . . , ∣SZ i ∣ do
16: (E j

Z i
,Z j

i) ∶= SZ i ( j)
17: if isToolSolvable(Z j

i , E
j
Z i
, T ) then

18: Append(C , (Z j
i , E

j
Z i
))

19: else
20: return ∅
21: end if
22: end for
23: if isJustDetermined(EW i ,Wi) then
24: SW i ∶= findAllSCCs(EW i ,Wi)

25: for j = 1, 2, . . . , ∣SW i ∣ do
26: (E j

W i
,W j

i) ∶= SW i ( j)
27: if isToolSolvable(W j

i ,E
j
W i
,T ) then

28: Append(C , (W j
i , E

j
W i
))

29: else
30: return ∅
31: end if
32: end for
33: else
34: return ∅
35: end if
36: end for
37: return C
38: end function
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Table 1: The Six Configurations of the Method used in the Studies

D I DI SD SI SDI

SCC x x x

IC x x x x

DC x x x x

DC: The ability to use derivative causality.

Note that if a configuration uses integral causality, it is assumed that all initial conditions

are available. Moreover, it is assumed that all needed derivatives can be computed when

a configuration uses derivative causality.

The six possible different configurations are shown in Table 1. For example, configu-

ration SI is able to handle equation sets containing loops and use integral causality, but

can not use derivative causality. The configuration corresponding to the novel approach

for finding sequential residual generators proposed in this paper is SDI.

6.2 PerformanceMeasures

A sequential residual generator is sensitive to those faults that influence its residual

equation and the equations contained in its computation sequence. Different MSO

sets correspond to different subsets of the equations in the model. Sequential residual

generators obtained from computation sequences and residual equations originating

from different MSO sets will thus naturally be sensitive to different subsets of faults.

To achieve good fault isolation, it is hence important that residual generators can be

constructed from as many MSO sets as possible.

In the automotive applications studied here, it is especially important to detect and

isolate faults present in sensors and actuators, that is, faults affecting measurements of

known variables. Hence, it also important that residual generators can be constructed

from as many MSO classes as possible.

Additionally, different residual generators constructed from the same MSO set or

MSO class may have different properties regarding for example numerical aspects, sensi-

tivity to faults, and sensitivity for disturbances such as measurement noise or modeling

errors. Hence it is most desirable to be able to evaluate as many residual generators as

possible, with real measurement data, to decide which set of residual generators to use

in the final diagnosis system.

Motivated by this discussion, we will use the following performance measures to

compare the different configurations of the method:

MSO Sets: In how many of the total number of MSO sets at least one residual generator

could be found.

MSO Classes: In how many of the total number of MSO classes at least one residual

generator could be found.

Residual Generators: The total number of residual generators found.
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Figure 2: Cutaway of a Scania 13-liter, 6-cylinder diesel engine equipped with EGR and

VGT. Illustration by Semcon Informatic Graphics Solutions.

6.3 Automotive Diesel Engine

The studied engine is a 13-liter, 6-cylinder Scania diesel engine equipped with Exhaust

Gas Recirculation (EGR) and a Variable Geometry Turbocharger (VGT). A cutaway of

the engine can be found in Figure 2.

The model describes the gas-flow in the engine, see Wahlström (2006) for more

details. The analytical model extracted from the Simulinkmodel is a non-linear DAE

system and contains 282 equations, 272 unknown variables, and 11 known variables. Of

the equations, 8 are differential and the rest are algebraic. The differentiated variables

represent physical quantities such as pressures, temperatures, and rotational speeds.

In total, 598 MSO sets could be found in the engine model. The MSO sets could

be arranged into 210 MSO classes. Theoretically, the total number of potential residual

generators that can be constructed from an MSO set is equal to the total number of

equations in the MSO set. In this case, 135772 different residual generators could be

theoretically constructed from the 598 MSO sets.

The total number of residual generators found and how many of the MSO sets and

MSO classes that could be used, for each configuration of the method, is shown in Table 2

and Figure 3. The columns to the left and in the middle of Table 2 shows in how many

of the MSO sets and MSO classes at least one residual generator could be found. The

column to the right shows the total number of residual generators that could be found

for each configuration of the method.

It is obvious that a very small fraction of the potential residual generators were found,

about 1.2 %, and that only a small fraction of theMSO sets andMSO classes could be used,

independent of configuration. The main reason for this is the complexity of the engine

model. The model contains large algebraic and differential loops, including complex non-

linear equations, which are impossible to solve analytically. Nevertheless, many more

residual generators were found and more MSO sets could be used with configuration
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Table 2: Results for Diesel Engine

MSO Sets MSO Classes Residual Generators

D 4 4 46

I 1 1 5

DI 4 4 46

SD 4 4 46

SI 23 20 58

SDI 120 72 1636

Potential 598 210 135772

Table 3: Results for Hydraulic Braking System

MSO Sets MSO Classes Residual Generators

D 21 14 145

I 6 6 18

DI 21 14 147

SD 33 22 288

SI 29 29 71

SDI 65 44 1293

Potential 125 83 4607

SDI, i.e., with mixed causality and the ability to handle loops, in comparison with any

other configuration of findComputationSequence.

6.4 Hydraulic Braking System

The Scania auxiliary hydraulic braking system, called retarder, is used on heavy duty

trucks for long continuous braking, for example to maintain constant speed down a

slope. By using the retarder, braking discs can be saved for short time braking.

The model of the hydraulic braking system contains 49 equations, 44 unknown

variables, and 9 known variables. It is a non-linear DAE system and contains 4 differential

equations and 45 algebraic equations.

The model contains 125 MSO sets, which can be arranged into 83 MSO classes. The

total number of possible residual generators for the model of the hydraulic braking

system is, theoretically, 4607.

Table 3 and Figure 4 shows, for each configuration of the method, how many of the

MSO sets andMSO classes that could be used and the total number of residual generators

found for the model of the hydraulic braking system. As seen, a significantly larger

fraction of the MSO sets and MSO classes could be used and more residual generators

could be found with configuration SDI, in comparison with any other configuration.
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Figure 3: The bars to the left and in the middle shows the fractions of the total number

of MSO sets and MSO classes in which a residual generator could be found with each

configuration of the method. The bars to the right shows the fractions of the number of

potential residual generators that could be found with each configuration of the method.
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Figure 5: Structure of the 203 equations in the considered computation sequence, with

respect to the 203 unknown variables. The SCCs of the structure, corresponding to the

elements in the computation sequence, are marked with squares. The large SCC contains

102 equations.

6.5 Realization of a Residual Generator for the Diesel Engine

The purpose of this section is to briefly show how a residual generator for the diesel

engine is constructed from a computation sequence obtained with the proposed method.

Properties of the Computation Sequence

The considered computation sequence originates from an MSO set containing in total

204 equations, 203 unknown variables, and 8 known variables. Thus, the computation se-

quence contains 203 equations and 203 unknown variables. In total 33 residual generators

were found in the MSO class to which the MSO set belongs. All 33 residual generators

were found with configuration SDI of findComputationSequence.

The computation sequence contains 102 elements. All elements but the last one

contains one equation and one variable. The last element contains 102 equations and

102 variables and corresponds to a SCC of size 102. The structure of the 203 equations

contained in the computation sequence, with respect to the 203 unknown variables, is

shown in Figure 5. The SCCs of the structure, corresponding to the elements in the

computation sequence, marked with squares in Figure 5.

The residual equation used in the residual generator, i.e., the equation removed from

the MSO set when the corresponding computation sequence was found, compares the

measured and computed pressure in the intake manifold of the diesel engine.
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Properties of the BLT Semi-Explicit DAE System

The BLT semi-explicit DAE system obtained from the computation sequence contains

102 blocks and has the following form

w1 = h1 (y)
w2 = h2 (w1 , y)
⋮

w64 = h64 (w1 ,w2 , . . . ,w63 , y)
w65 = h65 (ẇ64 ,w1 , . . . ,w64 , y)
w66 = h66 (w1 ,w2 , . . . ,w65 , y)
⋮

w76 = h76 (w1 ,w2 , . . . ,w75 , y)
w77 = h77 (ẇ76 ,w1 , . . . ,w76 , y) (29)

w78 = h78 (w1 ,w2 , . . . ,w77 , y)
⋮

w100 = h100 (w1 ,w2 , . . . ,w99 , y)
ż101 = g101 (w1 , . . . ,w101 , y)

w1
101 = h

1
101 (z101 ,w1 , . . . ,w100 , y)

w2
101 = h

2
101 (z101 ,w1 , . . . ,w100 ,w1

101 , y)

⋮

w99
101 = h

99
101 (z101 ,w1 , . . . ,w100 ,w1

101 , . . . ,w
98
101 , y) ,

where w101 = (w1
101 ,w2

101 , . . . ,w99
101), and z101 is of dimension three and all wi , w

j
i of

dimension one. The largest block, denoted 101 in (29), is a semi-explicit DAE of index

one with three differential equations with variables z101 and 99 algebraic equations with

variables w1
101 , . . . ,w99

101, corresponding to a differential loop and a SCC of size 102. Since

the block is a semi-explicit DAE of index one, integral causality is used in this block. In

two of the blocks, denoted 66 and 77 in (29), derivative causality is used. The remaining

blocks, denoted 1 - 65, 67 - 76, and 78 - 100 correspond to algebraic equations. In total,

the BLT semi-explicit DAE system contains five differential equations and 198 algebraic

equations.

Implementation Issues

The residual generator, i.e., the obtained BLT semi-explicit DAE system and the residual

equation, was implemented inMatlab. To compute the values of the unknown variables,

the approach described in Section 3.1 was used. To solve the resulting explicit ODE, Euler

forward with fixed step-size was utilized. All state variables in the residual generators

represent physical quantities, hence initial conditions were easy to obtain from the

available measurements.
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Approximate Differentiation In the two blocks where derivative causality is used, 66

and 77 in (29), derivatives of variables computed in previous blocks had to be computed.

By propagating the two differentiated variables through equations in earlier blocks of the

obtained BLT semi-explicit DAE system, the differentiated variables could be expressed

as derivatives of known variables only, see Section 3.2. The known variables that had to

be differentiated were measurements of the pressure in the exhaust manifold, and the

rotational speed of the turbo turbine.

The differentiation tool, i.e., the method for differentiation of known variables, used

in this case study was a sliding-window least square polynomial fit approach. By finding

a linear approximation, in a least square sense, to a set of consecutive measurements,

referred to as a window, an approximation of the first-order derivative of the measured

signal in the window can be obtained as the slope of the linear approximation, see,

e.g., Barford et al. (1999). This approach was used since it is simple and straight-forward

to implement, and gave good results. An implementation was done in Matlab, a

window-size of 40 measurements, 20 past and 20 future, was used.

Results

Real measurements of the known variables in the engine model were collected by driving

a truck on the road. Two sets of measurements were collected, one with a fault-free

engine and one with an implemented fault. The implemented fault was a constant bias in

the sensor measuring the pressure in the intake manifold of the diesel engine.

The residual generator was run off-board by using the collected measurements. The

residual was then low-pass filtered to remove some measurement noise and finally scaled.

In Figure 6, the resulting residual is shown. During the first 100 seconds, the measure-

ments are fault-free. The remaining time, the measurements contain the implemented

bias fault. It is obvious that the residual can be used to detect the injected fault.

7 Conclusions

We have in Section 1 concluded that it is important that there is a large selection of

different candidate residual generators to choose between when designing diagnosis

systems. In this spirit we have in this paper presented a method for deriving residual

generators with the key property that it is able to find a large number of different residual

generators. This property is firstly due to the fact that the method belongs to a class

of methods that we refer to as sequential residual generation. This class of methods

has in earlier works been shown to be powerful for real non-linear systems (Dustegor

et al., 2004; Izadi-Zamanabadi, 2002; Cocquempot et al., 1998; Svärd and Wassén, 2006;

Hansen and Molin, 2006). Secondly, which is the key contribution of the paper, we have

extended these earlier methods by handling mixed causality and also, in a systematic

manner, equation sets containing differential and algebraic loops.

The method has been presented as an algorithm utilizing an assumed given toolbox

of, e.g., algebraic equation solvers. We have proven, in Theorem 1, that the algorithm

really finds residual generators and, in Theorems 3 and 4, that the residual generators, or
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Figure 6: The residual obtained from the constructed residual generator. No fault is

present the first 100 seconds. During the remaining 100 seconds, there is a bias fault in

the sensor measuring the pressure in the intake manifold. The dashed lines suggests how

thresholds could be chosen in order to detect the fault.

rather sequential residual generators, found are proper. Properness guarantees that the
residual generator is not containing unnecessary computations and that computations

are performed from as small equation sets as possible. We have also proven, in Theorem 2,

that proper sequential residual generators are always found within MSO sets. This fact

has been utilized in the algorithm since there is no need to look for sequential residual

generators in other equation sets than MSO sets. Furthermore, this theorem provides a

link between structural and analytical methods without the use of any assumptions of

generic equations, such as in, e.g., Krysander et al. (2008).

In the empirical study in Section VI, we have evaluated our method onmodels of two

real automotive Systems. The results obtained are compared to results from the special

cases of using solely differential or integral causality, or only handling scalar equations.

It is evident that our more general method outperforms the other alternatives. Since the

two systems have quite different characteristics, e.g., in the number of redundant sensors,

we believe that these results are representative also for a larger class of systems.
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A Proofs of Theorems and Lemmas

Proof of Lemma 1. Consider an element (Vi , Ei) ∈ C, and let Ē′i denote the set of equa-
tions obtained when T is called with arguments Vi and Ei . It then holds that Ē′ =
Ē′1 ∪ Ē

′
2 ∪ . . . ∪ Ē

′
k . Given y, let x̃ be an arbitrary solution to Ē′, i.e., a trajectory fulfilling

every equation e i ∈ Ē
′
. Trivially, x̃ also is a solution to the equations in every Ē′i , since

Ē′i ⊆ Ē
′
. Assumption 1 then implies that x̃ is a unique solution and also a solution to every

Ei , and hence to E1 ∪ E2 ∪ . . . ∪ Ek . By taking an arbitrary solution to E1 ∪ E2 ∪ . . . ∪ Ek
and applying the same arguments as above, it can be shown that this solution is unique

and also satisfies Ē′, which completes the proof.

Proof of Theorem 1. Consider the modelM(E,X,Y) and assume that ỹ ∈ O (M). Due to
the definition ofO (M) in (4), we know that given ỹ there exists at least one trajectory of
the variables in X that satisfies the equations in E. Since describing E1 ∪E2 ∪ . . . ∪Ek ⊆ E,
it holds that the trajectory ỹ also belongs to the observation set of the sub-model of

M(E,X,Y) given by E1 ∪E2 ∪ . . .∪Ek , i.e., the equation set contained in the computation

sequence C. Hence, given ỹ, there exists a trajectory x̃ of the variables in varX(E1 ∪

E2 ∪ . . . ∪ Ek) that satisfies E1 ∪ E2 ∪ . . . ∪ Ek . By Lemma 1 we know that x̃ is a unique
solution that also satisfies the equations of the BLT semi-explicit DAE system obtained

by sequentially applying the tool T to the computation sequence C.

As said in Section 3.1, a BLT semi-explicit DAE system can be transformed to an

explicit ODE, with the exception that the ODE will contains derivatives of known

variables. Furthermore, after the discussion in Section 3.2, that an explicit ODE al-

ways can be solved if initial conditions are available. From this it follows that given

ỹ, consistent initial conditions of the states in the BLT semi-explicit DAE system, i.e.,

zi in (7), and the ability the compute all needed derivatives, the trajectory x̃ can be

computed from the BLT semi-explicit DAE system. Since e i ∈ E ∖ E1 ∪ E2 ∪ . . . ∪ Ek and

varX(e i) ⊆ X′ ⊆ varX(E1 ∪ E2 ∪ . . . ∪ Ek), the trajectory x̃ will also satisfy e i . We then

have that f i(˙̃x, x̃, ỹ) = 0. Hence, with r = f i (ẋ, x, y), ỹ ∈ O (M) implies r = 0 and we can
use r as residual. Thus the BLT semi-explicit DAE system obtained from the computation

sequence C with T , together with e i is a residual generator forM(E,X,Y).

Some important properties of a computation sequence, used in sub-sequential proofs,

is given by the following lemma.

Lemma 2. Let C = ((V1 , E1) , (V2 , E2) , . . . (Vk , Ek)) be a computation sequence for the
variables X′ with the AE tool T , then {unDiff (Vi)} is pairwise disjoint and

unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek).

Proof. From Definition 3, we have that a system in BLT semi-explicit DAE form can

be obtained by sequentially calling T with arguments Vi and Ei for every (Vi , Ei) ∈ C.

From this fact, it follows that each variable x j ∈ unDiff (Vi) is present in some vector

zk or wl in the obtained BLT semi-explicit DAE system. Since the set of all vectors of

known variables in a BLT semi-explicit DAE system by Definition 2 is pairwise disjoint,

it follows that {unDiff (Vi)} is pairwise disjoint and we have shown the first claim. For
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the second claim, we start by noting that Vi ⊆ varX(Ei) ∪ varD(Ei) due to Definition 3.

Since a system in BLT semi-explicit DAE form can be obtained from C and, according to

Lemma 1, the solution sets of E1 ∪ E2 ∪ . . . ∪ Ek and the BLT semi-explicit DAE system,

with respect to V1 ∪ V2 ∪ . . . ∪ Vk , are equal and unique, it holds that each unknown

variable in E1 ∪ E2 ∪ . . . ∪ Ek , differentiated or undifferentiated, must be present in some

Vi . From this fact and by the definitions of the operators unDiff () and varX(), it must

also hold that unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek).

For the next proof, we need some additional graph theoretical concepts, see, e.g., As-

ratian et al. (1998); Murota (1987), therefore consider the bipartite graph G = (E,X,A)
describing the structure of E with respect to X, see Section 2.2. A path on the graph G is

a sequence of distinct vertices v1 , v2 , . . . , vn such that (v i , v i+1) ∈ A and v i ∈ E ∪ X. An
alternating path is a path in which the edges belong alternatively to a matching and not to

the matching. A vertex is said to be free, if it is not an endpoint of an edge in a matching.

Proof of Theorem 2. In this proof we will use a characterization of an MSO set given

in Krysander et al. (2008), saying that an equation set E is an MSO set if and only if E is

a Proper Structurally Over-determined (PSO) set and E contains one redundant equation.

Furthermore, an equation set E is a PSO set if E = E+, where E+ is the structurally over-
determined part obtained from theDM-decomposition, recall Section 2.3, or equivalently

the equations e ∈ E such that, for any maximal matching, there exists an alternating path

between at least one free equation and e.
Returning to our case, we must show that E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i is a PSO set and

contains one redundant equation, with respect to the variables varX(E1 ∪ E2 ∪ . . . ∪ Ek).

We begin with the second property, i.e., that E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i contains a redundant
equation. Since S = (T (C) , e i) is a proper sequential residual generator, it follows from
Definition 7 that C is a minimal and irreducible computation sequence for varX(e i) with
T . If we let

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) , (30)

we have from Definition 3 that a system in BLT semi-explicit DAE form is obtained by

sequentially calling the AE tool T with arguments Vi and Ei for every (Vi , Ei) ∈ C. This

and Assumption 2, implies that ∣Vi ∣ = ∣Ei ∣ for every (Vi , Ei) ∈ C and hence∑
k
i=1 ∣Vi ∣ =

∑
k
i=1 ∣Ei ∣. By the definition of the operator unDiff () in (15), we can conclude that ∣Vi ∣ =

∣unDiff (Vi)∣ and therefore it also holds that∑
k
i=1 ∣unDiff (Vi)∣ = ∑

k
i=1 ∣Ei ∣. By Lemma 2

we have that {unDiff (Vi)} is pairwise disjoint which implies that∑
k
i=1 ∣unDiff (Vi)∣ =

∣unDiff (V1) ∪ unDiff (V2) ∪ . . . ∪ unDiff (Vk)∣ = ∣unDiff (V1 ∪V2 ∪ . . . ∪Vk)∣. Defi-

nition 3 states that also {Ei} is pairwise disjoint and therefore ∣E1 ∪ E2 ∪ . . . ∪ Ek ∣ =

∑
k
i=1 ∣Ei ∣. Thus, it holds that ∣unDiff (V1 ∪V2 ∪ . . . ∪Vk)∣ = ∣E1 ∪ E2 ∪ . . . ∪ Ek ∣. By

Lemma 2, we have that unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪E2 ∪ . . .∪Ek) and there-

fore it also holds that ∣E1 ∪ E2 ∪ . . . ∪ Ek ∣ = ∣varX(E1 ∪ E2 ∪ . . . ∪ Ek)∣, i.e., E1∪E2∪. . .∪Ek
contains asmany equations as unknowns. Since C is a computation sequence for varX(e i)
withT , we have fromDefinition 3 that varX(e i) ⊆ unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1∪

E2 ∪ . . . ∪ Ek), where the last equality follows from Lemma 2, implying that adding e i to
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E1∪E2∪. . .∪Ek will not introduce any newunknown variables, i.e., e i is redundant. Hence,
the equation set E1∪E2∪ . . .∪Ek∪e i contains onemore equation than unknown variables,

since ∣E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i ∣ = ∣E1 ∪ E2 ∪ . . . ∪ Ek ∣+ ∣e i ∣ = ∣varX(E1 ∪ E2 ∪ . . . ∪ Ek)∣+ 1.

We will now show that E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i is a PSO set with respect to varX(E1 ∪

E2 ∪ . . . ∪ Ek ∪ e i). To show this, we must show that for any maximum matching on

the bipartite graph describing the structure of E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i , with respect to

varX(E1 ∪E2 ∪ . . .∪Ek ∪ e i), there exists an alternating path between a free equation and

every equation in E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i . We start by constructing a maximummatching

and finding a free equation. Consider the computation sequence C described by (30)

and recall that C, given by (30), is a minimal and irreducible computation sequence for

varX(e i) with T . The irreducibility of C implies that for each element (Vi , Ei) ∈ C, it

holds that the structure of Ei with respect to unDiff (Vi) corresponds to a SCC. To see

this, assume that (Vi , Ei) not corresponds to a SCC. This implies that it is possible to

partition Vi and Ei into Vi = Vi1 ∪Vi2 ∪ . . . ∪Vi s and Ei = Ei1 ∪ Ei2 ∪ . . . ∪ Ei s so that

C
′
= ((V1 , E1) , . . . , (Vi1 , Ei1) , . . . , (Vi s , Ei s) , . . . , (Vk , Ek)) ,

is also a computation sequence for varX(e i) with T , due to Assumption 3. This con-

tradicts the irreducibility of C and hence (Vi , Ei)must be a SCC. From this property

it follows, by the definition of a SCC, that there exists a maximummatching Γi on the

bipartite graph the structure of Ei with respect to unDiff (Vi). This implies that a maxi-

mum matching, let it be denoted Γ, in the structure of E1 ∪ E2 ∪ . . . ∪ Ek with respect

to unDiff (V1 ∪V2 ∪ . . . ∪Vk) can be constructed as Γ = ⋃
k
i Γi , see, e.g., Murota (1987).

By Lemma 2, we have that unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek) and

therefore Γ is also a maximum matching in the structure of E1 ∪ E2 ∪ . . . ∪ Ek with

respect to varX(E1 ∪ E2 ∪ . . . ∪ Ek). In the first part of this proof, we concluded that the

equation e i is redundant and therefore Γ is also a maximum matching on the structure

of E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i with respect to varX(E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i) and e i is a free
equation, since it is not contained in Γ.

Since it trivially exists a path between e i and e i , it is sufficient to show that there

exists an alternating path between the free equation e i and every equation in E1 ∪ E2 ∪

. . . ∪ Ek . Due to the fact that each (Vi , Ei) ∈ C corresponds to a SCC, there exists an

alternating path between any two vertices, i.e., equations or variables, in the bipartite

graph describing the structure of Ei with respect to unDiff (Vi), see, e.g., Asratian et al.

(1998). Moreover, the minimality of C implies that for (Vk , Ek) ∈ C there exists at least

one variable xm ∈ unDiff (Vk) such that xm ∈ varX(e i), since otherwise C′ = C∖(Vk , Ek)

is a computation sequence for varX(e i) and C is not minimal. With the same argument,

we have that for (Vi , Ei) ∈ C, i = 1, 2, . . . , k − 1, there exists at least one variable xm ∈
unDiff (Vi) such that either xm ∈ varX(e i), or else xm ∈ varX(E j) where (V j , E j) ∈ C

and j ∈ {i + 1, i + 2, . . . , k}. This means that there exists an alternating path between at

least one variable in each (Vi , Ei) ∈ C to e i , either directly or via one or several other
(V j , E j) ∈ C. Thus, there exists an alternating path between e i and every equation in

E1 ∪ E2 ∪ . . . ∪ Ek . We have by this shown that E1 ∪ E2 ∪ . . . ∪ Ek ∪ e i is a PSO set.

The proof of Theorem 3 is based on the following lemma.
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Lemma 3. Let Ē ⊆ E be an MSO set, T an AE tool, X′ = varX(Ē), and E′ = Ē ∖ e i , where
e i ∈ Ē. A minimal and irreducible computation sequence

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) ,

for X′ with T , where Ei ⊆ Ē, is also a minimal and irreducible computation sequence for
varX(e i) with T .

Proof. Assume that C is a minimal and irreducible computation sequence for X′ with
T . First of all, since e i ∈ Ē and X′ = varX(Ē) it trivially holds that varX(e i) ⊆ X′ and
hence C is a computation sequence for varX(e i) with T . As well, it directly follows

from Definition 6 that C is an irreducible computation sequence for any subset of X′,
in particular varX(e i). To show that C also is a minimal computation sequence for

varX(e i), assume that there exists a computation sequence C′ ⊂ C for varX(e i) with
T . Let Ē′ and X̄′ = varX(Ē

′
) denote the equations and variables, contained in the

elements of C′ and note that since C′ ⊂ C, it holds that Ē′ ⊂ Ē. By the argumentation

in the proof to Theorem 2, we can conclude that ∣Ē′∣ = ∣X̄′∣, i.e., Ē contains as many

equations as unknowns. Since C′ is a computation sequence for varX(e i), it must hold

that varX(e i) ⊆ X̄′. This means that Ē′ ∪ e i is a structurally over-determined set of

equations with respect to X̄′, which shows that there exists a proper structurally over-

determined subset of Ē. This contradicts the fact that Ē is an MSO set, and hence there

can not exist a computation sequence C′ ⊂ C for varX(e i) with T . Thus, C is a minimal

computation sequence for varX(e i) with T .

Proof of Theorem 3. Consider the modelM(E,X,Y) and let (T (C), e i) ∈ R. Due to line
9 in findResidualGenerators, we can conclude that C is non-empty. Let

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) ,

where Ei ⊆ E′, be the minimal and irreducible computation sequence for X′ with T ,
returned by the function findCompuatationSequence on line 8. Due to lines 3-7, we

have that E′ = Ē ∖ e i and X′ = varX(Ē), where Ē ⊆ E is an MSO set and e i ∈ Ē ∖ E′.
Lemma 3 then implies that C also is a minimal and irreducible computation sequence for

varX(e i) with T . Now note that since e i ∈ Ē ∖ E′ and it holds that Ē ⊆ E, we have that
e i ∈ E ∖ E′. Trivially, since X′ = varX(Ē) and X′ ⊆ X it also holds that varX(e i) ⊆ X′ ⊆ X.
Thus the computation sequence C for varX(e i) with T and the equation e i fulfills the
prerequisites of Theorem 1. Hence, since all initial conditions are known and all needed

derivatives can be computed, we can by Theorem 1 conclude that the BLT semi-explicit

DAE system obtained from C with T and e i is a residual generator forM(E,X,Y). Thus,

(T (C), e i) is a sequential residual generator. Since, in fact, C is a minimal and irreducible

computation sequence for varX(e i) with T , (T (C), e i) is a proper sequential residual
generator.

Proof of Theorem 4. On line 3 in findComputationSequence the SCCs of the structure
of E′ with respect to X′ are computed. If we assume that the structure contains s SCCs,
the ordered set returned by the function findAllSCC can be written as

S = ((E1 ,X1) , (E2 ,X2) , . . . , (Es ,Xs)) , (31)
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where each element (Ei ,Xi) ∈ S corresponds to a SCC of the structure of E′ with respect

to X′. Note that since E′ is just-determined with respect X′, the SCCs of the structure
of E′ with respect X′ are unique, see Section 2.3. As said in Section 5.3, we assume that

the SCCs in S are ordered according to Figure 1. Note that this ordering implies the

important property

varX(Ei) ∩ {Xi+1 ∪ Xi+2 ∪ . . . ∪ Xs} = ∅, (32)

for i = 1, 2, . . . , s − 1. On lines 6-8, the variables in Xi are partitioned into differentiated

variables Zi and undifferentiated variable Wi , i.e., Xi = unDiff (Zi) ∪Wi , where Zi
contains variables that appear as differentiated in some equation in Ei . On lines 12-14, a

corresponding partitioning of the equations in Ei into Ei = EZ i ∪ EW i is done, where EZ i

are equations that contain any of the differentiated variables Zi , and EW i are equations

that do not contain any of the differentiated variables Zi , but may contain variables from

unDiff (Zi). Now note that, due to the assumptions regarding the model in Section 2,

each equation in EZ i contains only one differentiated, which furthermore only is present

in that equation. This means first of all that EZ i is just-determined with respect to the

variables in Zi , and second that the structure of EZ i with respect to Zi only contains

SCCs of size one. On line 14, these SCCs are computed. Assuming that the structure

contains s i SCCs, the ordered set returned by findAllSCC on line 14 can be written as

SZ i = ((Z
1
i , E1

Z i
) , (Z2

i , E2
Z i
) , . . . , (Zs i

i , E
s i
Z i
)) . (33)

Due to line 23, we know that the equation set EW i is just-determined with respect to

Wi , and hence the structure of EW i with respect toWi can be uniquely partitioned into

SCCs. On line 24 these SCCs are computed and as above, the ordered set of SCCs can be

written as

SW i = ((W
1
i , E1

W i
) , (W2

i , E2
W i
) , . . . , (Wp i

i , E
p i
W i
)) . (34)

Furthermore, as in the case with the set S in (31), the ordering of the SCCs in SW i implies

that

varX(E j
W i
) ∩ {W j+1

i ∪W
j+2
i ∪ . . . ∪W

p i
i } = ∅, (35)

for j = 1, 2, . . . , p i − 1. From the discussion above, we have that a non-empty C returned

by findComputationSequence have the form

C = ((Z1
1 , E1

Z1
) , (Z2

1 , E2
Z1
) , . . . , (Zs1

1 , E
s1
Z1
) ,

(W1
1 , E1

W1
) , (W2

1 , E2
W1
) , . . . , (Wp1

1 , Ep1
W1
) , . . . ,

(Z1
2 , E1

Z2
) , (Z2

2 , E2
Z2
) , . . . , (Zs2

2 , E
s2
Z2
) ,

(W1
2 , E1

W2
) , (W2

2 , E2
W2
) , . . . , (Wp2

2 , Ep2
W2
) , . . . ,

(Z1
s , E1

Zs
) , (Z2

s , E2
Zs
) , . . . , (Zss

s , E
ss
Zs
) ,

(W1
s , E1

Ws
) , (W2

s , E2
Ws
) , . . . , (Wps

s , Eps
Wp
)) , (36)
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where every (Z j
i , E

j
Z i
) ∈ C and (W j

i , E
j
W i
) ∈ C corresponds to a SCC.

We will now utilize Definition 3 to show that the the ordered set C in (36) is a

computation sequence forX′ with T . First note thatZ j
i ⊆ varD(E

j
Z i
) andW j

i ⊆ varX(E
j
W i
).

When the structure of a just-determined equation set with respect to a set of variables

is decomposed into its SCCs, unique partitions of the equation and variable sets are

also obtained, see for example Dulmage and Mendelsohn (1958) and Figure 1 for an

illustration. From this fact it follows that every equation in E′ is present in some Ei in (31)

only once. When the equations in Ei are split into differential equations EZ i and algebraic

equations EW i on line 13, it is guaranteed that EZ i ∩ EW i = ∅. Moreover, again due to

the fact that a decomposition into SCCs gives an unique partition of the equation and

variable set, we have that every equation in EZ i is present in some equation set E j
Z i
in (33)

only once and that every equation in EW i is present in some E j
W i

in (34) only once. Thus,

we can conclude that each equation in E′ is contained in only one equation set in C, that

is, all equation sets in C are disjoint. Hence, the ordered set C fulfills the prerequisites

in Definition 3. According to conditions 1) and 2) in Definition 3, C is a computation

sequence for X′ with T if

X′ ⊆
s
⋃
i=1

⎛

⎝

s i
⋃
j=1

unDiff (Z j
i) ∪

p i
⋃
j=1

W j
i
⎞

⎠
(37)

and a system in BLT semi-explicit DAE form is obtained by sequentially calling the tool

T , with arguments Z j
i and E j

Z i
for every element (Z j

i , E
j
Z i
) ∈ C, and with argumentsW j

i

and E j
W i

for every element (W j
i , E

j
W i
) ∈ C.

We start by showing condition 1), i.e., (37). From the fact mentioned above that a de-

composition of a structure into its SCCs also induces a partitioning of the corresponding

equation and variable sets, it follows that every variable in X′ is present in some Xi in (31).

That is, we have that X′ = ⋃s
i Xi . When the variables in Xi are split into differentiated

variables Zi and undifferentiated variablesWi , it holds that Xi = unDiff (Zi) ∪Wi . In

addition, it holds that every variable in Zi is present in some variable set Z j
i in (33)

and that every variable in Wi is present in some W j
i in (34), so that Zi = ⋃

s i
j=1 Z

j
i and

Wi = ⋃
p i
j=1W

j
i . Hence,

X′ =
s
⋃
i
Xi =

s
⋃
i
(unDiff (Zi) ∪Wi)

=
s
⋃
i

⎛

⎝
unDiff

⎛

⎝

s i
⋃
j=1

Z j
i
⎞

⎠
∪

p i
⋃
j=1

W j
i
⎞

⎠

=
s
⋃
i

⎛

⎝

s i
⋃
j=1

unDiff (Z j
i) ∪

p i
⋃
j=1

W j
i
⎞

⎠
, (38)

where the last equality trivially follows from the definition of unDiff () in (15). The

property (37) and thus condition 1) has then been verified.
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Condition 2) of Definition 3 will now be verified, that is, that C can be used to obtain

a system in BLT semi-explicit DAE form. Consider an element (Z j
i , E

j
Z i
) ∈ C. Since

E j
Z i
⊆ EZ i ⊆ Ei , and we have that (Xi , Ei) ∈ S, the property (32) implies that

varX(E j
Z i
) ∩ {Xi+1 ∪ Xi+2 ∪ . . . ∪ Xs} = ∅, (39)

for i = 1, 2, . . . , s − 1. From lines 17-21 in the algorithm, it follows that the AE tool T can

be used to solve the equations in E j
Z i
for the variables in Z j

i . Since we have assumed that

each differential equation contains at most one differentiated variable and (39) holds, we

can use (Z j
i , E

j
Z i
) ∈ C and the AE tool T to obtain

ż ji = g
j
i (x1 , x2 , . . . , xi , y) , (40)

where ż ji is a vector of the variables in Z j
i , xk a vector of the variables in Xk , y a vector of

the known variables in E′, and g j
i a function returned by T when the arguments are Z j

i
and E j

Z i
. From the elements (Z j

i , E
j
Z i
) ∈ C, j = 1, 2, . . . , s i , we can thus, by using (40) and

also that Xi = unDiff (Zi) ∪Wi , obtain

żi = gi (z1 , z1 , . . . , zi ,w1 ,w2 , . . . ,wi , y) , (41)

where zi = (z1i , z2i , . . . , z
s i
i ) and a vector of the variables in Zi , wi a vector of the variables

inWi , y a vector of the known variables in E′, and gi = (g1i , g2i , . . . , g
s i
i ).

Now instead consider an element (W j
i , E

j
W i
) ∈ C. Since also (W j

i , E
j
W i
) ∈ SW i , where

SW i is given by (34) the property (35) holds. Since E j
W i
⊆ EW i ⊆ Ei , and (Xi , Ei) ∈ S we

also have that

varX(E j
W i
) ∩ {Xi+1 ∪ Xi+2 ∪ . . . ∪ Xs} = ∅, (42)

for i = 1, 2, . . . , s − 1. By using that the AE tool T can solve E j
W i

forW j
i due to lines 27-31,

that Xi = unDiff (Zi)∪Wi and varD(EW i )∩Zi = ∅ due to lines 6-8 and 12-14, and then

utilize (35) and (42), we can obtain

w j
i = h

j
i (ẇ1 , . . . , ẇi−1 , z1 , . . . , zi ,w1 , . . . ,wi−1 ,w1

i , . . . ,w
j−1
i , y) , (43)

from (W j
i , E

j
W i
) ∈ C, where w j

i is a vector of the variables in W j
i , zi a vector of the

variables in Zi , and h j
i a function returned by T when the arguments areW j

i and E j
W i
.

Note that the absence of vectors żi in (43) is a direct implication of the assumption that

each differentiated variable is present in only one equation in the original model and

therefore also in the BLT semi-explicit DAE system. Since żi , obviously, is present in (41),
it can not be present in (43).
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By using (43), we can then obtain

w1
i = h

1
i (ẇ1 , . . . , ẇi−1 , z1 , . . . , zi ,w1 , . . . ,wi−1 , y)

w2
i = h

2
i (ẇ1 , . . . , ẇi−1 , z1 , . . . , zi ,w1 , . . . ,wi−1 ,w1

i , y)

⋮

wp i
i = h

p i
i (ẇ1 , . . . , ẇi−1 , z1 , . . . , zi ,w1 , . . . ,wi−1 ,w1

i , . . . ,w
p i
i , y) (44)

from the elements (W j
i , E

j
W i
) ∈ C, j = 1, 2, . . . , p i . Comparing (41) and (44) with the

system in Definition 2, shows that the elements (Z j
i , E

j
Z i
) ∈ C, j = 1, 2, . . . , s i and

(W j
i , E

j
W i
) ∈ C, j = 1, 2, . . . , p i , corresponds to the i:th block of a BLT semi-explicit

DAE form. Applying the above arguments for i = 1, 2, . . . , s then implies that the ordered

set C in (36) can be used to obtain a system in BLT semi-explicit DAE form with s blocks.
Thus, C is computation sequence for X′ with T .

It now remains to show that C is a minimal and irreducible computation sequence

for X′ with T . We begin with the irreducibility of C. In the beginning of this proof, we

showed that all elements of C, given by (36), correspond to SCCs. We have also concluded

that due to the assumptions regarding the model in Section 1, all elements (Z j
i , E

j
Z i
) ∈ C

are of size one, i.e., trivially irreducible. Now consider an element (W j
i , E

j
W i
) ∈ C and

assume that we partitionW j
i asW

j
i =W

j
i1 ∪W

j
i2 and E

j
W i

as E j
W i
= E j

W i 1
∪E j

W i 2
and form

the two new elements (W j
i1 , E

j
W i 1
) and (W j

i2 , E
j
W i 2
). Due to the fact that (W j

i , E
j
W i
)

corresponds to a SCC, E j
W i

is a dependent equation set with respect to the variables in

W j
i . This implies that when applying T to the elements (W j

i1 , E
j
W i 1
) and (W j

i2 , E
j
W i 2
),

we obtain the two equations

w j
i1 = h

1
i1 (. . . ,w

j
i2 , . . .)

w j
i2 = h

1
i2 (. . . ,w

j
i1 , . . .) ,

which clearly not has the structure of equations contained in a BLT semi-explicit DAE

system, due to the cyclic dependence between the equations. Hence, a system in BLT semi-

explicit DAE form can not be obtained when the element (W j
i , E

j
W i
) ∈ C is partitioned,

which violates condition 2) in Definition 3. We can then conclude that no elements of C

can be further partitioned and hence C is an irreducible computation sequence for X′
with T .

The minimality of C for X′ with T trivially follows from the fact that (38) holds. Since

as (38) is fulfilled, all elements in C is needed to compute the variables in X′. This implies

that any attempt to form a computation sequence for X′ with T by using a subset of C

will violate condition 1) in Definition 3. This completes the proof.



80 Paper A. Residual Generators for Fault Diagnosis using . . .

References

U. M. Ascher and L. M. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. Siam, 1998.

A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite Graphs and their Applications.
Cambridge University Press, 1998.

L. Barford, E. Manders, G. Biswas, P. Mosterman, V. Ram, and J. Barnett. Derivative

estimation for diagnosis. Technical report, HP Labs Technical Reports, 1999.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant
Control. Springer, second edition, 2006.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. Siam, 1989.

R. W. Brockett. Finite-Dimensional Linear Systems. Wiley, New York, 1970.

J. P. Cassar andM. Staroswiecki. A structural approach for the design of failure detection

and identification systems. In Proceedings of IFAC Control Ind. Syst., pages 841–846,
Belfort, France, 1997.

F. E. Cellier and H. Elmqvist. Automated formula manipulation supports object-

oriented continuous-system modeling. IEEE Control Systems Magazine, 13(2):28–38,
April 1993.

F. E. Cellier and E. Kofman. Continuous System Simulation. Springer, 2006.

V. Cocquempot, R. Izadi-Zamanabadi, M. Staroswiecki, and M. Blanke. Residual

generation for the ship benchmark using structural approach. In Proceedings of the
UKACC International Conference on Control ’98, pages 1480–1485, September 1998.

C. De Persis and A. Isidori. A geometric approach to nonlinear fault detection and

isolation. IEEE Transactions on Automatic Control, 46:853–865, 2001.

A. L. Dulmage and N. S. Mendelsohn. Coverings of bi-partite graphs. Canadian Journal
of Mathematics, 10:517–534, 1958.

D. Dustegor, V. Cocquempot, and M. Staroswiecki. Structural analysis for residual

generation: Towards implementation. In Proceedings of the 2004 IEEE Inter. Conf. on
Control App., pages 1217–1222, 2004.

E. Frisk, M. Krysander, M. Nyberg, and J. Åslund. A toolbox for design of diagnosis

systems. In Proceedings of IFAC Safeprocess’06, Beijing, China, 2006.

P. Fritzon. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1.
IEEE Press, 2004.

E. Hairer and G. Wanner. Solving Ordinary Equations II - Stiff and Differential-Algebraic
Problems. Springer, 2002.



References 81

J. Hansen and J. Molin. Design and evaluation of an automatically generated diagnosis

system. Master’s thesis, Linköpings Universitet, SE-581 83 Linköping, 2006.

R. Izadi-Zamanabadi. Structural analysis approach to fault diagnosis with application

to fixed-wing aircraft motion. In Proceedings of the 2002 American Control Conference,
volume 5, pages 3949–3954, 2002.

G. Katsillis and M. Chantler. Can dependency-based diagnosis cope with simultaneous

equations? In Proceedings of the 8th Inter. Workshop on Princ. of Diagnosis, DX’97, pages
51–59, Le Mont-Saint-Michel, France, 1997.

H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

G. Kron. Diakoptics - The Piecewise Solution of Large-scale Systems. Macdonald, London,

1963.

M. Krysander and E. Frisk. Sensor placement for fault diagnosis. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(6):1398–1410, Nov.
2008.

M. Krysander, J. Åslund, and M. Nyberg. An efficient algorithm for finding minimal

over-constrained sub-systems for model-based diagnosis. IEEE Trans. on Systems, Man,
and Cybernetics – Part A: Systems and Humans, 38(1):197–206, 2008.

P. Kunkel and V. Mehrmann. Differential-Algebraic Equations - Analysis and Numerical
Solution. European Mathematical Society, 2006.

S.Mattson, H. Elmqvist, andM.Otter. Physical systemmodeling withmodelica. Control
Engineering Practice, 6(4):501–510, 1998.

K. Murota. System Analysis by Graphs and Matroids. Springer-Verlag Berlin Heidelberg,

1987.

S. Narasimhan and G. Biswas. Model-based diagnosis of hybrid systems. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans, 37(3):348–361,
2007.

M. Nyberg. Automatic design of diagnosis systems with application to an automotive

engine. Control Engineering Practice, 87(8):993–1005, 1999.

M. Nyberg and M. Krysander. Statistical properties and design criterions for AI-based

fault isolation. In Proceedings of the 17th IFACWorld Congress, pages 7356–7362, Seoul,
Korea, 2008.

J. M. Ortega and W. C Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. SIAM Classics, 2000.

S. Ploix, M. Desinde, and S. Touaf. Automatic design of detection tests in complex

dynamic systems. In Proceedings of 16th IFAC World Congress, Prague, Czech Republic,

2005.



82 Paper A. Residual Generators for Fault Diagnosis using . . .

B. Pulido and C. Alonso-González. Possible conflicts: a compilation technique for

consistency-based diagnosis. IEEE Trans. on Systems, Man, and Cybernetics. Part B:
Cybernetics, Special Issue on Diagnosis of Complex Systems, 34(5):2192–2206, 2004.

B. Pulido, C. Alonso, A. Bregón, V. Puig, and T. Escobet. Analyzing the influence of

temporal constraints in possible conflicts calculation for model-based diagnosis. In

Proceedings of the 18th International Workshop on Principles of Diagnosis (DX-07), pages
186–193, Nashville, TN, USA, 2007.

B. Pulido, A. Bregón, and C. Alonso. Combining state estimation and simulation in

consistency-based diagnosis using possible conflicts. In Proceedings of the 19th Interna-
tional Workshop on Principles of Diagnosis (DX-08), pages 339–346, Blue Mountains,

NSW, Australia, 2008.

M. Staroswiecki. Fault Diagnosis and Fault Tolerant Control, chapter Structural Analysis
for Fault Detection and Isolation and for Fault Tolerant Control. Encyclopedia of Life

Support Systems, Eolss Publishers, Oxford, UK, 2002.

M. Staroswiecki and P. Declerck. Analytical redundancy in non-linear interconnected

systems by means of structural analysis. In Proceedings of IFAC AIPAC’89, pages 51–55,
Nancy, France, 1989.

D. V. Steward. On an approach to techniques for the analysis of the structure of large

systems of equations. SIAM Review, 4(2):321–342, October 1962.

D. V. Steward. Partitioning and tearing systems of equations. SIAM Journal onNumerical
Analysis, 2(2):345–365, 1965.

C. Svärd and H. Wassén. Development of methods for automatic design of residual

generators. Master’s thesis, Linköpings Universitet, SE-581 83 Linköping, 2006.

R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis based on

component-supported analytical redundancy. IEEE Trans. on Systems, Man, and Cyber-
netics – Part A: Systems and Humans, 36(6):1146–1160, November 2006.

United Nations. Regulation no. 49: Uniform provisions concerning the measures to

be taken against the emission of gaseous and particulate pollutants from compres-

sionignition engines for use in vehicles, and the emission of gaseous pollutants from

positive-ignition engines fuelled with natural gas or liquefied petroleum gas for use in

vehicles, 2008. ECE-R49.

J. Wahlström. Control of EGR and VGT for emission control and pumping work

minimization in diesel engines. Technical report, Linköpings Universitet, 2006. LiU-

TEK-LIC-2006:52, Thesis No. 1271.

T. Wei andM. Li. High order numerical derivatives for one-dimensional scattered noisy

data. Applied Mathematics and Computation, 175:1744–1759, 2006.



B

Paper B

Realizability Constrained Selection of Residual

Generators for Fault Diagnosis with an

Automotive Engine Application☆

☆Submitted to IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 2011.

83





Realizability Constrained Selection of Residual

Generators for Fault Diagnosis with an

Automotive Engine Application

Carl Svärd, Mattias Nyberg, and Erik Frisk

Vehicular Systems, Department of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden.

Abstract

This paper considers the problem of selecting a set of residual generators, ful-

filling requirements regarding fault isolability and minimal cardinality, for in-

clusion in a model-based FDI-system. Two novel algorithms for solving the

selection problem are proposed. The first one provides an exact solution ful-

filling both requirements and is suitable for small problems. The second one,

which constitutes the main contribution, is suitable for large problems and

provides an approximate solution by means of a greedy heuristic by relaxing the

minimal cardinality requirement. The foundation for the algorithms is a novel

formulation of the selection problem which enables an efficient reduction of the

search-space by taking the realizability properties of the model, with respect

to the considered residual generation method, into account. Both algorithms

are general in the sense that they are aimed at supporting any computerized

residual generation method. In a case study the greedy selection algorithm is

successfully applied to the complex problem of finding a suitable set of residual

generators for detection and isolation of faults in an automotive engine system.

In this study a prior known sequential residual generation method is considered.
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1 Introduction

Model-based Fault Detection and Isolation (FDI) systems typically contains the three

sub-systems: residual generation, residual evaluation, and fault isolation, see, e.g., Blanke

et al. (2006). In this work, as in for example Nyberg (1999); Krysander (2006); Nyberg

and Krysander (2008); Svärd and Nyberg (2010), design of the residual generation

sub-system is considered to be a two-step approach. In the first step, a large set of

candidate residual generators are found. In general, it may be possible to find thousands

of candidate residual generators for large models and regarding implementation aspects

such as complexity and computational load it is infeasible, or even impossible, to use

all these in the FDI-system. In addition, it is often possible to meet stated requirements

with a, possibly small, subset of all residual generators. Therefore, in the second step, the

set of candidate residual generators most suitable to be included in the FDI-system are

selected. The topic of this paper is the selection problem emerging in the second step.

The selection problem is formulated by considering two different requirements on

the final set of residual generators. Firstly, it is required that the set of residual generators

fulfills an isolability requirement stating which faults that should be isolated from each

other. Motivated by the implementation aspects mentioned above, a set of residual

generators of low cardinality is preferred before a set of high cardinality, given that the

two sets have equal isolability properties. Therefore, secondly, it is required that the set

of residual generators is of minimal cardinality.

Two novel algorithms for solving the selection problem are proposed in this paper.

The first one provides an exact solution fulfilling both the isolability and the minimal

cardinality requirements and is suitable for small problems. The second one, which

is the main contribution, relaxes the minimal cardinality requirement and provides

an approximate solution by means of a greedy heuristic. This algorithm is suitable

for large, real-world, problems for which the approach used in the first algorithm is

intractable. Both algorithms are general in the sense that they are aimed at supporting

any computerized residual generation method.

In general, all the candidate residual generators found in the first step of the design

process are not realizable, i.e., it is not possible to create residual generators from all

found candidate residual generators. Typically, evaluation of realizability is a computa-

tional demanding task. Therefore, in those cases where the number of found candidate

residual generators is large, it may not be feasible to first evaluate the realizability of all

found candidate residual generators and then make the selection. To handle this, the

proposed algorithms exploits a novel formulation of the selection problem which takes

the realizability aspect into account. This, in addition, enables an efficient reduction of

the search-space which typically is quite large for practical problems. In this formulation,

which in fact is an optimization problem, isolability and realizability properties are stated

in terms of attributes of subsets of the model equations.

In Section 2, a motivating industrial application example is presented. Section 3

presents preliminaries regarding realizability and fault isolability, given a residual gen-

eration method. The residual generator selection problem is formalized in Section 4.

The first selection algorithm is presented and discussed in Section 5. The second, greedy,

algorithm is presented and justified in Section 6. Section 7 briefly describes the residual
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Figure 1: Overview of the automotive engine System. Considered faults marked with red

arrows.

generation method (Svärd and Nyberg, 2010) which is used in the application example.

In Section 8 the greedy selection algorithm is used to solve the industrial application

problem described in Section 2. The paper is concluded in Section 9.

2 Motivating Application Example

As a motivating industrial application example, consider the problem of selecting a set

of suitable residual generators for detecting and isolating faults in an automotive engine

system. The studied engine is a 13-L six-cylinder Scania truck diesel engine equipped

with Exhaust Gas Recirculation (EGR), Variable Geometry Turbine (VGT), and intake

throttle.

There are in total 12 faults that should be detected and isolated from each other in

this system. An overview of the system with the considered faults, is shown in Figure 1.

More details regarding the system, and the faults, are given in Section 8.

For the model of this system, and for the specific residual generation method devel-

oped in Svärd and Nyberg (2010), which is briefly described in Section 7, it is possible to

find in total 14,242 candidate residual generators. Indeed, as argued in Section 1, it is not

possible to include all these residual generators in the FDI-system.

In order to isolate a certain fault from an other, it is necessary to find a residual

generator sensitive to the fault but not to the other. Intuitively, a set of approximately 12
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Figure 2: Fault sensitivity for a small subset of the 14,242 candidate residual generators

found for the automotive engine system. A square in position (i,j) denotes that the

residual generator corresponding to column j is sensitive to the fault corresponding to

row i.

residual generators would be sufficient in order to isolate the 12 considered faults from

each other. Thus, a set of 12 residual generators, capable of isolating the 12 faults, should

be selected from the set of 14,242 candidate residual generators which means that the

search-space is quite large.

The fault sensitivity for a small subset of the found candidate residual generators, with

respect to the 12 considered faults, are shown in Figure 2. According to the figure, most

residual generators are sensitive to most faults and it is therefore not straightforward

to perform the selection. In addition, as said in Section 1, the sought set of residual

generators should be realizable and preferably of minimal cardinality. Due to the vast

number of candidate residual generators it is not possible to perform a complete search in

order to find the set of residual generators, whichmakes the selection problem non-trivial.

In Section 8 this selection problem will be reconsidered and solved.

3 Preliminaries

The purpose of this section is to formally introduce the notions of realizability and

isolability, given a residual generation method, and ultimately derive necessary and

sufficient conditions for fault isolability in terms of properties of model equation subsets.

Consider a model, M = (E,X,Y, F), containing an equation set E relating the un-

known variables X, known variables Y, and fault variables F. Without loss of generality,

the following is assumed regarding the model.

Assumption 1. Each fault f ∈ F is contained in one, and only one, of the equations in the
model M.

Note that if a fault f ∈ F is contained in more than one equation, the fault f can be

replaced with a new variable x f in these equations, and the equation x f = f added to the
equation set E. This added equation will then be the only equation where f occurs.

Given a model, a residual generator is formally defined as follows.

Definition 1 (Residual Generator). Let M = (E,X,Y, F) be a model. A system R with
input Y and output r is a residual generator for M, and r is a residual, if f = 0 implies
r = 0 for all f ∈ F.
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An important property of a residual generator is whether or not it responds to a

certain fault.

Definition 2 (Fault Sensitivity). Let R be a residual generator for the model M. Then R is
sensitive to fault f ∈ F if f ≠ 0 implies r ≠ 0.

Note that in practice, residuals typically deviate from zero even in the case when

all faults are zero due to for example unknown initial conditions, changes in operating

conditions, and uncertainties such as modeling errors and noise. Therefore, residuals are

often thresholded as a part of the residual evaluation mentioned in Section 1, where the

aim is to detect changes in the residual behavior caused by faults.

The notions of residual generator and fault sensitivity are possible to make more

precise and formal, see for example Blanke et al. (2006); Patton et al. (2000); Chen and

Patton (1999), and references therein. This is however not necessary in the context of

this work for which the above definitions are sufficient.

3.1 Realizability

The method used for design of residual generators plays a central role in this work. A

residual generation method is formally defined as follows.

Definition 3 (Residual Generation MethodM). Let M = (E,X,Y, F) be a model. A
residual generation method,M, is a procedure, denotedM (⋅), taking as input a set of
equations S ⊆ E and giving as output a residual generator R for M, or an empty set ∅.

Given a residual generation method and an equation set, an important issue is

whether the output from the method is non-empty, or not. That is, if a residual generator

can be created with the method given the equation set as input. This property of an

equation set, with respect to a method, is formalized below.

Definition 4 (Realizability with methodM). Let S be an equation set andM a residual
generation method. Then S is realizable withM ifM (S) ≠ ∅.

For an example, consider a model containing the following set of differential and

algebraic equations

e1 ∶ ẋ1 = −x1 + u + f1
e2 ∶ y1 = x1 + f2 (1)

e3 ∶ y2 = x1 + f3 ,

where x1 is an unknown variable, {u, y1 , y2} known variables, and { f1 , f2 , f3} fault
variables. LetM′ be a residual generation method capable of handling linear, static,

equation sets. It can then be concluded that the equation set {e2 , e3} is realizable with
M′, but not for instance the equation set {e1 , e2} since e1 is a differential equation.

Let e f denote the equation in an equation set containing fault f . From now on, the

following is assumed regarding a residual generation method.
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Assumption 2. Let S be an equation set andM a residual generation method. Further,
let S be realizable withM and R =M (S) the corresponding residual generator. Then, R
is sensitive to fault f if and only of e f ∈ S.

The important implication of Assumption 2, in the context of this work, is that a

residual generation method preserves structural fault information, in the sense that it

does not discard, nor add, equations containing faults, during the realization process.

For an example, consider again the model (1) and assume that the equation set

{e1 , e2 , e3} is realizable with a methodM. IfM fulfills Assumption 2, it is guaranteed

that the residual generator obtained fromM ({e1 , e2 , e3}) is sensitive to the faults f1, f2,
and f3. Thus, the output fromM can neither be the residual generator r = y1 − y2 since
this residual generator not is sensitive to f1, nor the trivial residual generator r = 0.

3.2 Fault Isolability

In this section fault isolability is formally defined from two different perspectives. First,

fault isolability is defined as a property of a given set of residual generators. Second, fault

isolability is defined as a property of a model given a method for residual generation. The

mainmotivation for introducing both definitions is to prove soundness and completeness

of the selection algorithms in Sections 5 and 6. More specific, that the algorithms find a

set of residual generators fulfilling the stated isolability requirement if, and only if, the

corresponding faults are isolable in the model with the considered method for residual

generation.

Given a set of residual generators, fault isolability is defined as follows.

Definition 5 (Fault Isolability with residual generators R). Let M = (E,X,Y, F) be a
model andR a given set of residual generators for M. A fault f i ∈ F is isolable from fault
f j ∈ F withR if there exists a residual generator R ∈R that is sensitive to f i but not to f j .

Note that Definition 5 is not dependent on the residual generation method. Next,

fault isolability is defined as a property of a model, given a residual generation method.

Definition 6 (Fault Isolability with methodM). Let M = (E,X,Y, F) be a model and
M a residual generation method. A fault f i ∈ F is isolable from fault f j ∈ F in M withM
if a residual generator R for M can be created withM such that R is sensitive to f i but not
to f j .

Note that if S ⊆ E and fault f i ∈ F is isolable from fault f j ∈ F with the residual

generator R =M (S) then, by Definition 6, f i is isolable from f j in the modelM with

the methodM. The converse is also true. For future reference, this trivial result is stated

below.

Proposition 1. Let M = (E,X,Y, F) be a model andM a residual generation method.
Then, fault f i ∈ F is isolable from fault f j ∈ F in M withM if and only if there exists S ⊆ E
such that f i is isolable from f j with R =M (S).

By exploiting the notion of realizability and Assumption 2, necessary and sufficient

conditions for fault isolability, given a model and a residual generation method, in terms

of properties of subsets of the model equations can be established.
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Proposition 2. Let M = (E,X,Y, F) be a model andM a residual generation method.
Then, for each S ⊆ E it holds that fault f i ∈ F is isolable from fault f j ∈ F with R =M (S)
if and only if S is realizable withM, e f i ∈ S, and e f j /∈ S.

Proof. Assume first that f i is isolable from f j with R =M (S). By assumption, R is a

residual generator and thereforeM (S) ≠ ∅ and it follows that S is realizable withM
fromDefinition 4. Further, by Definition 5, R is sensitive to f i but not to f j . Assumption 2

then implies that e f i ∈ S and e f j ∈ S, and the first part of the proof is complete. For

the converse, assume that S that is realizable withM, i.e.,M (S) ≠ ∅, e f i ∈ S, and
e f j /∈ S. Since S ∈ E andM (S) ≠ ∅, it follows from Definition 3, that R =M (S) is a
residual generator forM. Assumption 2 then states that R is sensitive to f i but not to f j .
Definition 5 completes the proof.

Consider again the model in (1) and the linear, static, residual generation method

M′ with which the equation set {e2 , e3} is realizable. Due to this fact and since e f2 =
e2 ∈ {e2 , e3}, e f3 = e3 ∈ {e2 , e3}, and e f1 = e1 /∈ {e2 , e3}, it can be deduced from

Proposition 2 that faults f2 and f3 are both isolable from fault f1 with the residual

generator R′ =M′ ({e2 , e3}).
Note that even though additive faults were considered in this example above, the

framework in this paper is general and independent on the fault model, i.e., also multi-

plicative faults are allowed.

4 The Residual Generator Selection Problem

In this section, the residual generator selection problem is formalized and stated as an

optimization problem: fulfill an isolability requirement while minimizing the number of

residual generators. This formulation exploits the notion of realizability introduced in

the previous section and enables an efficient reduction of the search-space.

As input to the residual generator selection procedure the following are assumed

to be given: a model M = (E,X,Y, F), a method for residual generationM, and an

isolability requirement F . The output from the selection procedure is a set of residual

generators,R. As said in Section 1, two different requirements onR are considered:

1. R should fulfill the isolability requirement F , and

2. R should be of minimal cardinality.

4.1 The Isolability Requirement

The isolability requirement, F , is defined as a set of ordered fault pairs ( f i , f j) ∈ F × F,
where the interpretation of ( f i , f j) is that f i should be isolable from f j with the set of

residual generatorsR. Consequently,F is fulfilled withR if for each ( f i , f j) ∈ F it holds

that f i is isolable from f j withR.
From Proposition 2 it can be deduced that to fulfill the isolability requirement it is

necessary, and sufficient, to find for each fault pair ( f i , f j) ∈ F an equation set S f i f j ⊆ E
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such that S f i f j is realizable withM, and for which e f i ∈ S f i f j and e f j /∈ S f i f j . Given the

equation subsets S f i f j , a set of residual generators fulfilling F can be constructed as

R = {M (S f i f j) ∶ ∀ ( f i , f j) ∈ F} . (2)

4.2 Candidate Equation Set

If E is a small set, it may be tractable to evaluate all subsets of E in the search for the sets

S f i f j in (2). In the general case, however, it is not. In order to reduce the search-space, all

subsets of E that not by necessity are realizable are discarded. To this end, the notions of

necessary realizability criterion and candidate equation set are introduced.

Definition 7 (Necessary Realizability Criterion for methodM). Let S be an equation
set andM a residual generation method. A constraint on S is a necessary realizability
criterion forM if the constraint is satisfied when S is realizable withM.

Definition 8 (Candidate Equation Set for methodM). Let S be an equation set andM
a residual generation method for which a necessary realizability criterion is defined. Then
S is a candidate equation set forM if S fulfills the necessary realizability criterion forM.

Regarding the choice of necessary realizability criterion for a given residual generation

method, it is desirable that it fulfills at least two requirements. First of all, in order to

meaningful, the necessary realizability criterion should reduce the search-space, in terms

of number of discarded non-realizable subsets of the model equations, to a high extent.

Secondly, in order to be of practical use, it should be possible to extract all candidate

equation sets for a method, given a model, in an efficient way.

As an example, a candidate equation set for several observer-based residual genera-

tion methods is an equation set in, or that trivially can be cast in, state-space form, see,

e.g., Blanke et al. (2006); Chen and Patton (1999) and references therein. An additional

example is given by the class of methods referred to as sequential residual generation,

see, e.g., Staroswiecki and Declerck (1989); Cassar and Staroswiecki (1997); Ploix et al.

(2005); Blanke et al. (2006); Svärd and Nyberg (2010), for which Minimal Structurally

Over-determined (MSO) sets of equations Krysander et al. (2008); Gelso et al. (2008);

Travé-Massuyès et al. (2006), constitute candidate equation sets.

4.3 Formalization of the Selection Problem

Consider now the isolability requirement F and let SM ⊆ 2
E be the set of all candidate

equation sets for the residual generation methodM.

Define the isolability class, I f i f j , of SM for the fault pair ( f i , f j) ∈ F as the collection

of all candidate equation sets in SM containing fault f i but not fault f j , that is,

I f i f j = {S ∈ SM ∶ e f i ∈ S ∧ e f j /∈ S} . (3)

Let the set

I = {I f i f j ∶ ∀ ( f i , f j) ∈ F} , (4)
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contain the isolability classes of SM for all fault pairs in F .

The next result formulates the problem of fulfilling the isolability requirement in

terms of properties of the candidate equation sets.

Lemma 1. Let M = (E, X , Z , F) be a model,M a residual generation method, and F an
isolability requirement. Also, let SM be the set of all candidate equation sets forM and I
the set of all isolability classes of SM for F , defined according to (3) and (4). Then, for each
S ⊆ SM where all S ∈ S is realizable withM it holds that F is fulfilled with

R = {M (S) ∶ ∀S ∈ S} , (5)

if and only if

∀I ∈ I , S ∩ I ≠ ∅. (6)

Proof. Assume first that F is fulfilled withR defined according to (5). First note that

this implies that for each ( f i , f j) ∈ F there exists a residual generator R ∈R such that f i
is isolable from f j with R. This, Proposition 2, and (5), imply that for each ( f i , f j) ∈ F
there exists a S ∈ S such that R =M (S) ∈ R, e f i ∈ S, and e f j /∈ S. This implies, since

S ∈ S and S ⊆ SM, that S ∩ I f i f j ≠ ∅ where I f i f j is defined according to (3). Hence,

for each ( f i , f j) ∈ F there exists S ∈ S such that S ∩ I f i f j ≠ ∅. Since (4) holds, this
implies that (6) is satisfied and the first part of the proof is complete. For the converse,

assume that (6) is satisfied. This, (3) and (4) implies that for each ( f i , f j) ∈ F there exists

S ∈ S such that e f i ∈ S and e f j /∈ S. This and the fact that all S ∈ S are realizable with

M, implies via Proposition 2 that for each ( f i , f j) ∈ F there exists S ∈ S such that f i
is isolable from f j with R =M (S). Thus, ifR = {M (S) ∶ ∀S ∈ S} there exists R ∈ R
such that f i is isolable from f j with R for each ( f i , f j) ∈ F and the proof is complete.

For the set of residual generators R to fulfill also the stated minimal cardinality

requirement, the cardinality of the set S in Lemma 1 should be minimized. Thus, the

residual generator selection problem can be stated as the problem of finding the smallest

set within SM which satisfies (6). To conclude, the selection problem is stated as the

minimization problem

min
S⊆SM

∣S ∣ (7a)

s.t. ∀S ∈ S , M (S) ≠ ∅ (7b)

∀I ∈ I , S ∩ I ≠ ∅, (7c)

where ∣ ⋅ ∣ returns the cardinality of a set.

5 MinimalHitting Set Based Selection

A hitting set is a set that has a non-empty intersection with every set in a collection of

sets. In fact, the isolability requirement, given by (7c), on the set of candidate equation

sets S implies that S should be a hitting set for the collection of sets I . Further, to
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also fulfill the minimal cardinality requirement (7a), S should be a hitting set for I

of minimal cardinality, i.e., a so called minimal cardinality hitting set. By necessity, a
minimal cardinality hitting set is a minimal hitting set, i.e., a hitting set of which no

proper subset is a hitting set.

This fact suggests the following naive, but nevertheless simple, approach for solving

the selection problem (7). First find the collection of all minimal hitting sets for I ,

denotedH, and then find the smallest setH ∈H, where all candidate equation sets S ∈ H
are realizable.

5.1 MHS-Based Selection Algorithm

The naive selection approach outlined above is the basis for the procedure selectRes-

GenMHS presented in Algorithm 1, taking as input a modelM, a residual generation

methodM, and an isolability requirement F . The output is a set of residual generators

R.

Algorithm 1MHS-Based Selection of Residual Generators

Input: ModelM, residual generation methodM, isolability requirement F

Output: Set of residual generatorsR

1: procedure selectResGenMHS(M,M,F)

2: S ← ∅

3: R← ∅

4: SM ← findCES(M,M)
5: I ← isolClasses(SM ,F)

6: H ← findMHS(I)

7: whileH ≠ ∅ do
8: H∗ ← argminH∈H ∣H∣
9: for all S ∈ H∗ do
10: R ←M (S)
11: if R ≠ ∅ then
12: S ← S⋃{S} , R←R⋃{R}
13: else
14: H ←H ∖ {H∗}
15: S ← ∅, R← ∅

16: break
17: end if
18: end for
19: if R ≠ ∅ then
20: break
21: end if
22: end while
23: returnR
24: end procedure
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The others procedures used in Algorithm 1 are listed below:

• findCES finds all candidate equation sets for the methodM given a modelM
and a necessary realizability criterion forM.

• isolClasses returns the set of all isolability classes of a set of candidate equation

sets SM for the isolability requirement F according to (3) and (4).

• findMHS finds all minimal hitting sets for the collection of sets I given as input.

Note that in an efficient implementation of Algorithm 1, it is preferable to keep book

of those candidate equation sets that have been realized, successfully or not, in previous

iterations in order to avoid unnecessary calls to the procedureM (⋅), which may be

expensive.

5.2 Properties of theMHS-Based Selection Algorithm

Algorithm 1 is formally justified by Theorem 1 below. The theorem states that if, and only

if, the given isolability requirement can be fulfilled with any set of residual generators

createdwith the givenmethod, thenAlgorithm 1 finds a set of residual generators fulfilling

the requirement. In addition, it is guaranteed that this set of residual generators is of

minimal cardinality, i.e., there is no residual generator set of lower cardinality that fulfills

the isolability requirement.

Theorem 1. Let M = (E,X,Y, F) be a model,M a residual generation method, and F
an isolability requirement. Further, let M,M, and F be input to Algorithm 1 andR the
output. Then, F is fulfilled in M withM if and only if F is fulfilled withR. Further, if F
is fulfilled withR thenR is of minimal cardinality.

Proof. Consider first the claim concerning the isolability requirement F and assume

that R ≠ ∅. Due to rows 10-17 in Algorithm 1, and the fact that R ≠ ∅, it holds that

R equals (5) and consequently there is a S ∈ H where all S ∈ S is realizable withM.

From rows 4-6 and 7 and the definition of I , see (3) and (4), it can also be deduced that

S ⊆ SM. Hence, S fulfills the prerequisites of Lemma 1. Further, due to rows 4-6, it

can be concluded that S is a (minimal) hitting set for I and thus S fulfills (6). From

Lemma 1 it then follows that this property of S is equivalent to that F is fulfilled withR

which, according to Proposition 1, is equivalent to that F is fulfilled inM withM.

If insteadR = ∅, rows 4-7 and 10-17 implies that there is no minimal hitting set in

H where all candidate equation sets are realizable withM. Hence, there is no S ⊆ SM,

where all S ∈ S are realizable withM, that fulfills (6). This is, due to Lemma 1, equivalent

to that F not is fulfilled withR which is equivalent to that F not is fulfilled inM with

M, due to Proposition 1. This completes the part of the proof considering the isolability

requirement.

Regarding the cardinality of R, or equivalently S , it is first noted that a minimal

cardinality hitting set also is a minimal hitting set, that is, a hitting set of which no

proper subset is a hitting set. Thus, a minimal cardinality hitting set is by necessity

found within the collectionH of all minimal hitting sets computed in row 6. Since the
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search for a realizable minimal hitting set inH, rows 7-22, is exhaustive and performed

by considering the sets inH in increasing order with respect to cardinality, row 8, it is

guaranteed that the first found, and then returned, realizable minimal hitting set is of

minimal cardinality.

The minimal hitting set problem, or the equivalent minimal set covering prob-

lem (Ausiello et al., 1980), is unfortunately known to be NP-complete, see, e.g., Karp

(1972); Aho et al. (1974); Garey and Johnson (1979). Thus, for large problems, that is, cases

when the number of candidate equation sets ∣SM∣, as well as the number of isolability

classes ∣I ∣, is large, it may be impossible, or at least intractable, to obtain the collection

of all minimal hitting sets for I . Two possible improvements of Algorithm 1, which may

overcome this complexity issue, are discussed below.

Using an ApproximateMHS Algorithm

There are several algorithms that give approximate solutions, typically in the form of a

subset of all minimal hitting sets, to the NP-complete minimal hitting set problem, see

for example Abreu and van Gemund (2009) and references therein. A complicating issue

is however that for large and complex models, typically, only a fraction of the candidate

equation sets are realizable. Indeed, this situation applies to the automotive engine system

considered in Section 8. Typical causes of non-realizability are non-invertible functions

in the model, see for example Svärd and Nyberg (2010), but also numerical issues or

instability. For Algorithm 1, this implies that a vast amount of the found minimal hitting

sets, possibly all, would be discarded since only a fraction of the found minimal hitting

sets contain realizable candidate equation sets. To maximize the possibilities of finding a

minimal hitting set in which all candidate equation sets are realizable, it is important

to start with as many minimal hitting sets as possible. The reduced number of minimal

hitting sets found by an approximate algorithm may therefore not be large enough.

Reducing the Problem Size

Another alternative approach is to find the realizable subset of all candidate equation sets,

S ′M = {S ∈ SM ∶M (S) ≠ ∅}, calculate I ′ according to (3) and (4) using S ′M instead

of SM, and then apply a minimal hitting set algorithm to I ′ to obtain S . In general, it

holds that ∣S ′M∣ < ∣SM∣ and ∣I
′∣ < I , and therefore it is more likely that the set of all

minimal hitting sets can be computed for I ′ than for I . The set S ′M can be computed

by applyingM (⋅) to each S ∈ SM. However, realization of an equation set may be a

computational demanding task, see Section 8.2 for an example. It is therefore desirable

to keep the number of realizations, or realization attempts, at a minimum. Consequently,

this approach may not be preferable if SM is a large set.

It should however be noted that for small problems, where all minimal hitting set

can be found, Algorithm 1 works satisfactory and in those cases it provides an exact, and

yet straightforward and simple, solution to the selection problem.
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6 Greedy Selection

Taking into account the complexity issues associated with finding all minimal hitting

sets, and the urge of keeping the number of realizations at a minimum, a more appealing

approach is instead to build the set of candidate equation sets S iteratively, and only

realize those candidate equation sets that are likely to be part ofS . To employ this iterative

approach, a heuristic is needed for identifying and selecting a candidate equation set in

each iteration.

6.1 GreedyHeuristic

For the general minimal hitting set problem, or the equivalent set covering problem, a

greedy heuristic (Black, 2005) has shown Johnsson (1974); Lovász (1975); Chvatal (1979)

to provide an approximate solution at a reasonable cost. Using a greedy approach, the

candidate equation set with the largest utility, is selected in each iteration of the algorithm
and added to the solution if it is realizable. The iterations continue until the solution is

complete. In order to use this approach, a utility function that evaluates the usefulness of

a given candidate equation set must be defined, and the properties of a complete solution

to the selection problem must be stated to know when to stop the iterations.

Given the set of isolability classes I of the candidate equation sets SM for the isola-

bility requirement F , define the isolability class coverage of a set S ⊆ SM as

σI (S) = {I ∈ I ∶ ∃S ∈ S , S ∈ I} . (8)

Basically, σI (S) states which of the isolability classes in I that are covered by the

candidate equation sets in S .

Complete Solution

A complete solution to the selection problem is characterized as a set of candidate

equation sets S that fulfills (7b) and (7c). The hitting set requirement (7c) can with the

isolability class coverage notion be formulated as σI (S) = I .

Utility Function

The aim is fulfill the isolability requirement, formalized by (7b) and (7c), with as few

candidate equation sets as possible (7a). In line with this, the following utility function

will be used to evaluate a specific candidate equation set,

µI (S) = ∣σI ({S})∣ , (9)

reflecting how many of the isolability classes in I that are covered by the candidate

equation set S ∈ SM. According to the greedy approach the candidate equation set

that maximizes µI (S), i.e., covers most isolability classes, should be selected in each

iteration.
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6.2 Greedy Selection Algorithm

The procedure selectResGenGreedy for greedy selection of residual generators is

presented in Algorithm 2. Input to the algorithm is a modelM, a residual generation

methodM, and an isolability requirement F . The output is a set of residual generators

R.

Algorithm 2 Greedy Selection of Residual Generators

Input: ModelM, residual generation methodM, isolability requirement F

Output: Set of residual generatorsR

1: procedure selectResGenGreedy(M, E,F)
2: S ← ∅

3: R← ∅

4: SM ← findCES(M, E)
5: I ← isolClasses(SM ,F)

6: while I ≠ ∅ do
7: if SM ≠ ∅ then
8: H← {S′ ∈ SM ∶ S′ = argmaxS∈SM µI (S)}
9: S∗ ← pickCES(H)

10: R ←M (S∗)
11: if R ≠ ∅ then
12: R←R⋃{R}
13: S ← S⋃{S∗}
14: I ← I ∖ σI ({S∗})
15: end if
16: SM ← SM ∖ {S∗}
17: else
18: returnR
19: end if
20: end while
21: returnR
22: end procedure

The procedures findCES and isolClasses are the same as in Algorithm 1 and

described in Section 5.2. The procedure pickCES, taking a set H containing candidate

equation sets as input, returns one of the equation sets in H. This function enables usage

of an additional, user-provided, heuristic for selecting one single candidate equation set

among candidate equation sets of equal utility by analyzing both structural and analytical

properties of equation sets. For instance, pickCES can be used to pick the candidate

equation set of lowest cardinality, i.e., containing fewest equations or to pick a candidate

equation set not containing a troublesome non-linearity.

Note that the complexity of Algorithm 2 is linear in the number of elements of

SM, in comparison with the NP-completeness of Algorithm 1 originating from the

search for all minimal hitting sets. For a further complexity analysis of Algorithm 2, the

complexity of the procedure findCES is of most interest. The complexity of findCES is
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however dependent of the actual method used for residual generation. For the method

employed in Section 8, the procedure corresponding to findCES has nice complexity

properties (Krysander et al., 2008).

6.3 Properties of the Greedy Selection Algorithm

This section explores the properties of Algorithm 2 in terms of providing a solution

to the residual generator selection problem, i.e., return a set of residual generators

fulfilling the isolability and minimal cardinality requirements. The following result

justifies Algorithm 2 with regard to the isolability requirement. That is, if, and only if, the

isolability requirement can be fulfilled with the given method, then Algorithm 2 finds a

set of residual generators with which the isolability requirement is fulfilled.

Theorem 2. Let M = (E,X,Y, F) be a model,M a residual generation method, and F
an isolability requirement. Further, let M,M, and F be input to Algorithm 2 andR the
output. Then, F is fulfilled for M withM if and only if F is fulfilled withR. If F is not
fulfilled for M withM, thenR gives the maximum attainable isolability for M withM,
with respect to F .

Proof. According to rows 5, 6, 14, and 21, and rows 4, 7, 16, and 18, there are two different
termination conditions in Algorithm 2; either I = ∅ or SM = ∅.

Consider first the case when Algorithm 2 terminates because of the condition on

row 6, i.e., I = ∅, and let n denote the total number of iterations performed by Algo-

rithm 2 in which the condition on row 11 is met. Further let Si ,Ri , Ii , S∗i , and R i , denote

the values of the variablesS ,R, I , S∗, and R, respectively, after iteration i. By assumption,

and due to row 6, it holds that In = ∅. Further, it holds that S0 =R0 = ∅, and I0 = I . By

assumption alsoR ≠ ∅ and thereforeRn ≠ ∅ and Sn ≠ ∅, due to rows 12 and 13. In fact,

due to rows 10-12, it can be concluded thatRn = ⋃
n−1
i=1 {R i}, and Sn = ⋃

n−1
i=1 {S∗i }, where

R i =M (S∗i ), and thus each S∗i ∈ Sn is realizable withM and the relation betweenRn
and Sn is the same as betweenR and S in (5). Moreover, due to rows 7-9, it holds that

each S∗i ∈ Sn is contained in SM and therefore Sn fulfills the prerequisites of Lemma 1.

From row 14 it can be deduced that I0 = ⋃
n−1
i=1 σI ({S∗i }). From (8), it follows that for

i = 1, 2, . . . , n − 1 and for all I ∈ σI ({S∗i }) it holds by definition that S∗i ∈ I. Therefore,

since Sn = ⋃
n−1
i=1 {S∗i }, it holds that Sn ⋂ I ≠ ∅ for all I ∈ I0 = ⋃n−1

i=1 σI ({S∗i }). According
to Lemma 1, this property of S = Sn is equivalent to that F is fulfilled with R = Rn
which, due to Proposition 1, is equivalent to that F is fulfilled inM withM.

Consider now instead the case when Algorithm 2 terminates because of the condition

on row 7 and let n denote the total number of iterations in which the condition on row 11

is met. With similar arguments and notations as above, it holds thatRn = ⋃
n−1
i=1 {R i} and

Sn = ⋃
n−1
i=1 {S∗i }, where R i =M (Si). Since termination of Algorithm 2 by assumption

was due to the condition on row 7, it holds that In = I0 ∖ {⋃
n−1
i=1 σI ({S∗i })} ≠ ∅.

Thus, there exists I ∈ I0 such that Sn ⋂ I = ∅ and consequently, by Lemma 1, it can

be deduced that F not is fulfilled with R = Rn . However, if I ′ = ⋃n−1
i=1 σI ({S∗i })

and F ′ = {( f i , f j , ) ∈ F ′ ∶ I f i f j ∈ I ′}, Lemma 1 implies that F ′ is fulfilled with R. By

assumption and row 7, it holds that Sn
M = ∅. Therefore, there are no S ∈ Sn

M that can be
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used to isolate the fault pairs inF ∖F ′ and thusF ′ is the maximum attainable isolability

forM withM.

Note that if the isolability requirement not can be fulfilled, the MHS-based Al-

gorithm 1 will return an empty set due to the non-existence of minimal hitting sets.

Algorithm 2 will instead provide the best possible solution, in terms of fault isolability,

with regard to the given method. However, if the output from Algorithm 2 is an empty

set, there are no realizable candidate equation sets that contribute to fulfill the stated

isolability requirement.

TheMinimal Cardinality Requirement

Theorem 2 does not regard the minimal cardinality requirement, i.e., nothing is said

whether the set of residual generators obtained as the output from Algorithm 2 is of

minimal cardinality or not. The purpose of this section is to analyze this.

To this end, consider the optimization problem formulation (7) of the residual gener-

ator selection problem. To be able to exploit a previous result regarding the qualification

of the greedy heuristic used in Algorithm 2, a different but equivalent formulation of the

underlying minimal hitting set problem, given by (7a) and (7c), is considered. Define

the set

UM = {σI ({S}) ∶ ∀S ∈ SM} , (10)

that is, UM is the collection of all isolability classes covered by each candidate equation

set in SM. Consider now the problem of finding a set U ⊆ UM of minimal cardinality

that covers UM, i.e.,

min
U⊆UM

∣U ∣, s.t. ⋃
U∈U

U = ⋃
U∈UM

U . (11)

The problem (11) is referred to as a set covering problem, and can be shown to be equivalent

to the previously considered minimal hitting set problem

min
S⊆SM

∣S ∣, s.t. ∀I ∈ I , S⋂ I ≠ ∅, (12)

that is, the selection problem (7) with the realizability condition (7b) relaxed. In fact, if

U∗ is a solution to the set covering problem (11), a solution S∗ to the minimal hitting

set problem (12) can be constructed by finding for each U ∈ U∗ a S ∈ SM such that

σI ({S}) = U . The converse is given by (10) with UM and SM replaced by U∗ and S∗,
respectively.

Consider now solving (11) approximately with a greedy heuristic equivalent to the

one described in Section 6. Namely, in each iteration, until all isolability classes in

UM are covered, select the one U ∈ UM that covers most uncovered isolability classes,

i.e., the U ∈ UM of highest cardinality. Denote the resulting solution U . It can be

shown (Johnsson, 1974; Lovász, 1975), that

∣U ∣

∣U∗∣
≤

k
∑
j=1

1

j
≤ ln k + 1, (13)
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where U∗ is an exact solution to (11) and k is the cardinality of the largest set in UM.

As said, the greedy heuristic described above for solving problem (11) coincide with

the heuristic described in Section 6 for solving problem (12). Since the two problems are

equivalent, it can be concluded that the worst case bound (13) also holds for approximate

solutions to (12) obtained by usage of the greedy heuristic described in Section 6. This

fact is summarized in the following result.

Theorem 3. Let M = (E,X,Y, F) be a model,M a residual generation method, and F
an isolability requirement. Further, let M,M, and F be input to Algorithm 2 and R a
non-empty output. Then,

∣R∣

∣R∗∣
≤

k
∑
j=1

1

j
≤ ln k + 1, (14)

where R∗ is the exact solution to the residual generator selection problem, and k is the
cardinality of the largest set in UM, defined according to (10).

Theorem 3 provides a measure, by means of a worst-case error bound, of how well

the minimal cardinality requirement is met when solving the selection problem with

Algorithm 2. Theorem 3 and Theorem 2 together provide a theoretical justification of

Algorithm 2.

Note that if each candidate equation set in SM only covers a few of the isolability

classes in I , i.e., k is small, then Algorithm 2 performs well in the sense that the car-

dinality of its output is close to the cardinality of the exact solution to the selection

problem. However, the larger the coverage, the worse the performance. Nevertheless,

the approximation ratio (14) increases slowly with k, due to the function ln().

7 Sequential Residual Generation

The purpose of this section is to briefly describe the residual generation method (Svärd

and Nyberg, 2010), which is considered in the application study in Section 8, and discuss

its use in the framework of Section 3. Note however that the algorithms developed in

Sections 5 and 6 are general in the sense that they are aimed at supporting any computer-

ized residual generation method fulfilling Assumption 2, and not only this particular

method.

The considered residual generation method belongs to a class of methods referred to

as sequential residual generation, which has shown to be successful for real applications

and also has the potential to be automated to a high extent. Sequential residual generation

is based upon the ideas originally described in Staroswiecki and Declerck (1989), where

unknown variables in a model are computed by solving equation sets one at a time

in a sequence and a residual is obtained by evaluating a redundant equation. Similar

approaches are described and exploited in for example Cassar and Staroswiecki (1997);

Pulido and Alonso-González (2004); Ploix et al. (2005); Travé-Massuyès et al. (2006);

Blanke et al. (2006).
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7.1 Computation Sequence

Recall the modelM = (E, X , Z , F) considered in Section 3, where E is a set of equations,

X a set of unknown variables, Y a set of known variables, and F a set of fault variables.

An essential component in the design of a sequential residual generator is a computation
sequence, describing the order and fromwhich equations variables are computed. In Svärd

and Nyberg (2010) a computation sequence is defined as an ordered set of variable and

equation pairs

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) , (15)

where Vi ⊆ X⋃D, E i ⊆ E, and D contains the first-order derivatives of the variables in

X. The computation sequence C implies that first the variables in V1 are computed from

equations E1, then the variables in V2 from equations E2 and so forth.

7.2 Sequential Residual Generator

Having computed the unknown variables in V1⋃V2⋃ . . .⋃Vk according to the compu-

tation sequence C in (15), a residual can be obtained by evaluating a redundant equation e,
i.e., e ∈ E ∖ E1⋃ E2 . . .⋃ Ek with varX(e) ⊆ varX(E1⋃ E2 . . .⋃ Ek), where the operator

varX(⋅) returns the unknown variables that are contained in an equation set. A residual

generator based on a computation sequence C and redundant residual equation e is
referred to as a sequential residual generator.

For an example, consider again the model (1) considered in Section 3, where E =
{e1 , e2 , e3}, X = {x1}, Y = {u, y1 , y2}, and F = { f1 , f2 , f3}. A computation sequence for

the unknown variable x1 is given by C1 = (({ẋ1}, {e1})). Given C1, e2 is a redundant
residual equation and the corresponding sequential residual generator is

ẋ1 = −x1 + u (16a)

r = y1 − x1 . (16b)

In fact, also C2 = (({x1}, {e2})) and C3 = (({x1}, {e3})) are computation sequences for

x1. For instance, the sequential residual generator corresponding to C2 and the residual

equation e3 is

x1 = y1 (17a)

r = y2 − x1 . (17b)

7.3 Residual GenerationMethod

Algorithm 3, see Svärd and Nyberg (2010), constructs a sequential residual generator

given an equation set S. The output from the algorithm is a sequential residual generator

R, if S is realizable with the method, else an empty set.

The realization of an equation set with the considered sequential residual generation

method relies heavily on the procedure findComputationSequence, which finds a

minimal and irreducible computation sequence C for the variables X. Whether it is

possible or not to find a computation sequence for a set of variables depends naturally
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Algorithm 3 Realization of a Sequential Residual Generator

Input: Equation set S
Output: Sequential residual generator R
1: procedure sequentialResidualGeneration(S)
2: X← varX(S)
3: for all e ∈ S do
4: S′ ← S ∖ {e}
5: C ← findComputationSequence(S′ ,X)
6: if C ≠ ∅ then
7: R ← {C ∪ e}
8: return R
9: end if
10: end for
11: return ∅
12: end procedure

on the properties of the equations. Equally important are however prerequisites in

terms of causality assumption, i.e., regarding integral and/or derivative causality, and the

properties of the computational tools, that are available for use.

7.4 Fault Sensitivity

In Section 3, it was assumed that a residual generation method satisfies Assumption 2. If

a residual generation methodM satisfies Assumption 2 it is guaranteed that the residual

generator R =M (S) is sensitive to a fault f if e f ∈ S. Thus, to verify that the residual

generation method given as Algorithm 3 satisfies Assumption 2 it must be shown that a

non-empty output R from Algorithm 3 is sensitive to fault f if and only if e f ∈ S, when
S ⊆ E is input.

Assume first that e f /∈ S and note that this implies that no equation in S is affected if

fault f is present. Since only equations in S are used in the sequential residual generator

R =M (S) it follows that R can not be sensitive to f .
For the converse, assume that e f ∈ S and note that a sequential residual generator

consists of a computation sequence and a residual equation. It therefore holds that

R = {C ∪ e}, where C is a computation sequence for varX(S) and e a residual equation.
For R = {C∪ e} to be sensitive to fault f , it is necessary that e = e f or that e f is contained
in any of the equations in C, i.e., e f ∈ E1 ∪ E2 ∪ . . . ∪ Ek where E i ⊆ E when C is given

by (15). Since the former case is trivial due to the fact that e ∈ S, consider the latter and
assume that e f is not used in C. This implies that there exists a computation sequence C′

for varX(S) such that C′ ⊂ C. However, according to Theorem 4 in Svärd and Nyberg

(2010), a non-empty C returned by findComputationSequence in Algorithm 3 is a

minimal and irreducible computation sequence for varX(S). Therefore C′ ⊂ C contradicts
the minimality of C and it follows that e f must be used in C.

It then remains to show that R = {C ∪ e} is sensitive to f if e f ∈ E1 ∪ E2 ∪ . . . ∪ Ek ,
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where E i ⊆ E, or e f = e. Since no restrictions are placed on the model equations E,
nothing can in general be guaranteed regarding the analytical properties of the equations

in E1 ∪ E2 ∪ . . . ∪ Ek ∪ e. In particular, nothing can be said regarding how the fault f
influences the equation e f in E1∪E2∪ . . .∪Ek ∪ e and consequently nor how f influences
the residual generator R = {C ∪ e}. In addition, the effect of f in R is highly dependent

on the size and temporal properties of f , and also on for example the current operating

conditions. In order verify that R is sensitive to f , it is thus necessary to implement and

run R using representative data from relevant fault cases.

In conclusion, it is hard to theoretically verify that R is sensitive to fault f , given the

prerequisites and the general model class considered in this work. It should though be

noted that under the idealized assumption that R = {C ∪ e} is sensitive to f if e f ∈ C
or e f = e, the residual generation method given as Algorithm 3 satisfies Assumption 2.

Empirical studies have however shown that Assumption 2 mostly holds in practice. In

particular, this is true for the automotive engine system considered in Sections 2 and 8.

This is discussed in Section 8.5 and exemplified in Figure 7.

7.5 Necessary Realizability Criterion

In Svärd and Nyberg (2010, Theorem 2), it is shown that the equations in a minimal and

irreducible computation sequence together with a redundant residual equation, in fact

correspond to a Minimal Structurally Overdetermined (MSO) set, see Krysander et al.

(2008). As said above, a non-empty computation sequence returned by findComputa-

tionSequence in Algorithm 3 is indeed minimal and irreducible. Thus, if an equation

set S is realizable with the sequential residual generation method then S is an MSO set.

Consequently, a necessary realizability criterion for the method is that the equation set

used as input is an MSO set and hence an MSO set is a candidate equation set for the

method. There are efficient algorithms for finding all MSO sets in a large set of equations,

see, e.g., Krysander et al. (2008).

For the model (1), it is possible to find in total threeMSO sets. These are given by S1 =
{e1 , e2}, S2 = {e1 , e3}, and S3 = {e2 , e3}. In fact, the sequential residual generators (16)

and (17) are created from the MSO sets S1 and S3, respectively.
As a side remark, note that the maximum number of sequential residual generators

that can be constructed from an MSO set equals the number of equations in the set. All

residual generators created from the same MSO set however have equal fault sensitivity

properties according Assumption 2. Nevertheless, their actual fault sensitivity may differ

due for example different sensitivity for noise, etc. To make the final selection of which

of the residual generators created from an MSO set that should be included in the final

diagnosis system, evaluation by means on execution using real measurements from

different fault cases might be needed. For this purpose, Algorithm 3 can be trivially

modified to return all residual generators that can be created from the MSO set used

input, and not only one.
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Table 1: Considered Faults

Fault Description

fWic
Leakage, intercooler

fWim
Leakage, intake manifold

fWem
Leakage, exhaust manifold

fuxth
Fault, throttle position actuator

fuxegr
Fault, EGR-valve position actuator

fuxvgt
Fault, VGT-valve position actuator

fypamb
Fault, ambient pressure sensor

fyTamb
Fault, ambient temperature sensor

fypic Fault, intercooler pressure sensor

fypim Fault, intake manifold pressure sensor

fyTim Fault, intake manifold temperature sensor

fypem Fault, exhaust manifold pressure sensor

8 Application Example

In this section, the selection algorithms presented in Section 5 and 6 are applied to the

automotive engine system introduced in Section 2. The residual generation method

considered in this study is briefly outlined in Section 7.

8.1 The Automotive Engine System

Consider again the Scania truck diesel engine system introduced in Section 2, which

is shown in Figure 1. The main incentive for diagnosis of this system is the stricter

emission legislation requirements for heavy-duty trucks, which in turn implies stricter

on-board diagnosis (OBD) legislation requirements. The OBD-legislation states that all

manufactured vehiclesmust be equippedwith a diagnosis system capable of detecting and

isolating faults in all components that, if broken, result in emissions above pre-defined

OBD-thresholds during a specified test cycle.

For the considered system, emission critical components include all actuators and

sensors, and to meet the OBD-requirements it is desirable that, at least, single faults in

these can be detected and isolated. Other emission critical components are pipes and

hoses. In particular, a broken pipe or hose may lead to gas-leakage which may increase

emissions. Leakages in or near the intercooler, intake manifold, and exhaust manifold are

particularly critical. It is desirable that these leakages can be detected and isolated, from

each other, but also from all sensor and actuator faults. In total, there are 12 emission

critical components and consequently 12 faults that should be isolated from each other

in the system. All the 12 considered faults for the system, along with their description,

can be found in Table 1.
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TheModel

The model of the system used in this work is described in Wahlström and Eriksson

(2011) and relies on both fundamental first principle physics and gray-box modeling. The

model describes the behavior of the system in the no-fault case, i.e., it is a nominalmodel.

To incorporate fault information in the nominal model, faults are modeled as additive

signals in corresponding equations. For example, fault fypim , representing a fault in the

intake manifold pressure sensor ypim , is modeled by simply adding fypim to the equation

describing the relation between the sensor value ypim and the actual intake manifold

pressure pim according to ypim = pim + fypim .
The model contains in total 46 equations, 43 unknown variables, 11 known variables,

and the 12 faults in Table 1. Of the 11 known variables, 3 are actuators, 6 are sensors, and

2 are control inputs. Of the 46 equations, 5 are differential equations and the rest are

algebraic equations. The model contains several non-linear functions.

The Isolability Requirement

Since it is required that the 12 considered faults can be isolated from each other, the

isolability requirementF for the truck diesel engine system consists of all unique pairwise

combinations of the faults in Table 1. That is,

F = {( fWic
, fWim

) , ( fWic
, fWem

) , . . . , ( fyTim , fypem )} , (18)

with ∣F ∣ = 12 × 11 = 132.

8.2 Appliance of theMHS-Based Algorithm

There exists in total 270 candidate equation sets, here MSO sets, for the considered

sequential residual generation method in the truck diesel engine system model, i.e.,

∣SM∣ = 270. The MSO sets were found using the algorithm (Krysander et al., 2008),

which was implemented as the procedure findCES.

As said in Section 7.5, the largest possible number of sequential residual generators

that can be constructed from an MSO set equals the number of equations in the set.

Thus, the maximum number of residual generators that can be constructed from a set of

MSO sets is the sum of the number of equations for all MSO sets. From the set of 270

MSO sets found in the automotive engine system model this number equals 14,242. This

is the rationale behind the total number of candidate residual generators mentioned in

Section 2.

Given the 270 candidate equation sets and the isolability requirement F defined

in (18), 132 isolability classes were created according to (3) and (4), that is, ∣I ∣ = 132.

Due to the complexity of the selection problem, in terms of the cardinalities of the sets

SM and I , it was impossible to find the collection of all minimal hitting sets for I and

consequently impossible to use the MHS-based Algorithm 1 to solve the automotive

engine selection problem.

Some insight regarding the complexity of the selection problem can be gained by

studying the total number of minimal hitting sets for smaller instances of the problem.
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Figure 3: The total number of minimal hitting sets, ∣H∣, as function of the cardinality of

the set of considered faults, ∣F∣. The number of minimal hitting sets grows rapidly with

the number of faults.

One simple way to reduce the size of the selection problem is to consider only a subset

of the faults in Table 1, and then calculate F and I for this smaller set of faults. For

each cardinality number, several randomized subsets of faults were chosen from the

set of 12 faults. Figure 3 presents, in logarithmic scale, the mean cardinality of the set

of all minimal hitting sets, ∣H∣, as a function of the cardinality of the set of considered

faults, ∣F∣. The minimal hitting sets were computed using a C++ implementation of the

algorithm presented in de Kleer and Williams (1987). From Figure 3 it can be seen that

the number of minimal hitting sets grows rapidly with the number of faults, and that the

total number of minimal hitting sets is over 30,000 already for 7 faults. Given this, it is

not that surprising that the problem with 12 faults was not possible to solve.

Using Improvements of the Algorithm

Two possible improvements of Algorithm 1 were suggested in Section 5.2. One of the

proposed improvements was to consider the realizable subset of all candidate equation

sets and thereby reduce the size of the involved minimal hitting set problem.

This approach however requires that the realizability of all candidate equation sets

are evaluated which, as argued in Section 5.2, may be a computational demanding task.

With a Matlab implementation of the sequential residual generation method outlined

in Section 7, the realizability evaluation required 15,778 s ≈ 4.38 h on a 2.4 GHz Intel

Core 2 Duo PC running Windows XP. In total, only 59 of the 270 candidate equation

sets (21.9%) were realizable with the considered sequential residual generation method.

The main cause of this relatively large fraction of non-realizable candidate equation sets
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is non-invertible non-linear functions in the automotive engine model, see Svärd et al.

(2011) for a discussion of a similar result regarding a similar model.

By using the set of 59 realizable candidate equation sets, the size of the selection

problem is substantially reduced. Even for this smaller problem, it was unfortunately

not possible to compute the set of all minimal hitting sets within feasible time, no

termination after 24 h, using the same C++ implementation as above of the minimal

hitting set algorithm (de Kleer and Williams, 1987).

The other improvement of Algorithm 1 suggested in Section 5.2 is to use an approx-

imative MHS-algorithm to compute a subset of all minimal hitting sets. Neither this

approach did succeed, since it was impossible to find a realizable minimal hitting set

within feasible time due to the large number of non-realizable candidate equation sets.

8.3 Appliance of the Greedy Algorithm

Since it was impossible to use the MHS-based Algorithm 1, or any of the two suggested

improvements, to solve the automotive engine selection problem, the greedy Algorithm 2

was employed.

Algorithm 2 was implemented in Matlab. The realization procedureM (⋅) was

implemented according toAlgorithm 3, and the procedure findComputationSequence,

for finding computation sequences, according to the corresponding algorithm in Svärd

and Nyberg (2010).

Given the isolability requirement (18) and the automotive engine system model,

Algorithm 2 returned a set of 11 residual generators. All of the 11 residual generators

were dynamic, 3 used only integral causality and the remaining 8 both integral and

derivative causality, i.e., mixed causality. Before terminating, the algorithm discarded in

total 119 non-realizable candidate equation sets, mainly due to non-invertible non-linear

functions in the model.

Table 2 shows the fault signature matrix for the 11 selected residual generators with

respect to the faults in Table 1. The fault signature for a residual generator R contains

an “x” in the column corresponding to fault f , if R is sensitive to f in the context of

Assumption 2.

As seen in Table 2, all of the 11 selected residual generators are sensitive to the faults

fypamb
and fuxvgt

. This is also indicated in Table 3, which shows the resulting isolability

matrix for the set of selected residual generators. Clearly, faults fypamb
and fuxvgt

are not

isolable from the other faults and the isolability requirementF , defined in (18), is not met.

However, according to Theorem 2, Table 3 shows the maximum attainable isolability in

the automotive engine model with the considered sequential residual generation method.

8.4 Analysis of the Cardinalities of Greedy Solutions

As said in Section 6.3, the greedy Algorithm 2 provides an approximate solution when it

comes to fulfillment of the minimal cardinality requirement. Thus, the above mentioned

solution to the automotive engine selection problem, i.e., the set of 11 residual generators,

may therefore not be of minimal cardinality.
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Table 2: Fault Signature Matrix

f W
ic

f W
im

f W
e
m

f y
p a
m
b

f y
p a
m
b

f y
p i
c

f y
p i
m

f y
T i
m

f y
p e
m

f u
x t
h

f u
x e
g
r

f u
x v

g
t

R1 x x x x x x x x x

R2 x x x x x x x x x x

R3 x x x x x x x x x x

R4 x x x x x x x x x x

R5 x x x x x x x x x x

R6 x x x x x x x x x x

R7 x x x x x x x x x x

R8 x x x x x x x x x x

R9 x x x x x x x x x x

R10 x x x x x x x x x x

R11 x x x x x x x x x x

To investigate the performance of Algorithm 2with respect to theminimal cardinality

requirement, it is necessary to know the cardinality of an exact, i.e., minimal cardinality,

solution to the selection problem. As said in Section 8.2 it is unfortunately not possible

to find all minimal hitting sets for the selection problem when all 12 faults are considered

and consequently not possible to find an exact solution using Algorithm 1. There are

however algorithms (de Kleer, 2011) that are able to compute oneminimal cardinality

hitting set for this problem. In practice, this is not sufficient since the obtained minimal

cardinality hitting set may contain non-realizable candidate equation sets, see Section 5.2.

However, from a theoretical point of view and for this investigation, this is sufficient.

For several different instances of the selection problem, and under the assumption

that all candidate equation sets were realizable, one greedy solution and one exact, i.e.,

minimal cardinality, solution were computed. The different instances were obtained by

using randomized subsets, of varying cardinality, of the 12 faults in Table 1. Figure 4

shows the median cardinalities of the exact, ∣R∗∣, and greedy, ∣R∣, solutions as functions

of the cardinality of the set of considered faults, ∣F∣.
According to Figure 4, the median cardinalities of the greedy and exact solutions

coincide in a majority of the cases. Consequently, it can be concluded that this selection

problem suits the greedy selection approach well. Thus, it is likely that the set of 11

residual generators obtained as solution to the selection problem with 12 considered

faults in Section 8.3, is of minimal cardinality, or at least in close proximity.

Figure 5 shows the mean execution times, in logarithmic scale, for the exact and

greedy algorithms for the runs described above. Both algorithms were implemented

in Matlab and executed on a 2.4 GHz Intel Core 2 Duo PC running Windows XP.

Clearly, the greedy algorithm is magnitudes faster than the exact algorithm. Note that

the execution time for computing a minimal cardinality hitting set for the problem with

12 faults is in the magnitude of hundreds of hours.

It is also interesting to evaluate the greedy solution to the truck diesel engine selection

problem by comparing it with the worst-case bound (14), given in Theorem 3. This bound,



110 Paper B. Realizability Constrained Selection of Residual Generators . . .

2 3 4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

8

9

10

11

|F |

|R
|

 

 

Exact Solution
Greedy Solution

Figure 4: Median cardinalities of exact and greedy solutions, as functions of the cardinality

of the set of considered faults, to the automotive engine selection problem.
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Figure 5: Mean execution times for the exact and greedy minimal cardinality hitting

sets algorithms, as functions of the cardinality of the set of considered faults, for the

automotive engine selection problem.
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Table 3: Isolability Matrix
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fWic
x x x

fWim
x x x

fWem
x x x

fypamb
x x

fyTamb
x x x

fypic x x x

fypim x x x

fyTim x x x

fypem x x x

fuxth
x x x

fuxegr
x x x

fuxvgt
x x

along with the median cardinalities of the greedy solutions are shown in Figure 6, for the

same instances of the selection problem used above. It can be seen that the cardinalities

of the greedy solution differ substantially from the worst-case bound. From this and the

fact that the cardinalities of the greedy solutions are more or less equal to the cardinalities

of the exact solutions, according to Figure 4, it can be concluded that for the automotive

engine selection problem, the bound (14) is very conservative.

8.5 Case Study of Fault Sensitivity

In this section it is shown that the considered approach for design of residual generators,

i.e., the proposed selection algorithm togetherwith the residual generationmethod (Svärd

and Nyberg, 2010), is applicable to real-world systems characterized by, e.g., uncertain

models and noisy measurements. This is done by illustrating how two of 11 residual

generators obtained in Section 8.3 can be used to isolate a pair of faults from each other.

The first residual generator, denoted R2 in Table 2, adopts mixed causality with three

state variables and two numerically differentiated measurement signals. The estimated

derivatives are of first-order. The residual generator uses in total 11 of the 12 known

variables as input. The second residual generator, denoted R4, contains 5 state variables

and uses 9 known variables as input. This residual generator uses integral causality only.

The considered faults are fypim and fypic , i.e., faults in the intake manifold pressure

sensor and intercooler pressure sensor, respectively. According to Table 2, residual

generator R2 is sensitive to fault fypim but not to fault fypic . The residual generator R4,

on the other hand, is sensitive to fypic but not to fypim . Note that the fault sensitivity
in Table 2 is in the context of Assumption 2, see Section 7.4 for a further discussion

regarding this.

The residual generators were implemented in a Matlab/Simulink environment
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Figure 6: The median cardinalities of the greedy solution to the truck diesel engine

selection problem compared with the worst-case bound provided in Theorem 3.

and run off-line. As input data, a set of measurements from an engine test bed during a

World Harmonized Test Cycle (WHTC) was used. In two separate runs, faults in the

intake manifold pressure sensor pim and intercooler pressure sensor pic were injected.
Both faults were in the form of a 20% positive gain of the corresponding pressure sensor

signal, i.e., ypim = 1.2 ⋅ pim and ypic = 1.2 ⋅ pic where pim and pic are the actual intake
manifold pressure and intercooler pressure signals, respectively.

The residuals obtained as output from the residual generators R2 and R4, for each

of the faults fypim and fypic , are shown in Figure 7. From the figure it can be seen that

residual generator R2 (top figure) responds to the fault fypim but not to fault fypic , and that
residual generator R4 (bottom figure) responds to fault fypic but not to fault fypim . Clearly,
for these fault cases, R2 is indeed sensitive to fypim but not to fypic , and R4 sensitive to

fypic but not to fypim . Thus, fault fypim is isolable from fault fypic and vice versa, with the

residual generators R2 and R4.

9 Conclusions

Two novel algorithms for solving the residual generator selection problem have been pro-

posed. The foundation for both algorithms was a formulation of the selection problem, in

the form of an optimization problem, where the isolability requirement was equivalently

stated in terms of properties of subsets of the model equations. The formulation enabled

an efficient reduction of the search-space by taking the realizability properties of equation

subsets, with respect to the considered residual generation method, into account. Both

algorithms are general in the sense that they are aimed at supporting any computerized
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Figure 7: Residuals from residual generator R2 (top figure) and residual generator R4

(bottom figure) for the fault cases fypim (solid lines) and fypic (dashed lines). Both faults

are injected at t = 1630s. The dash dotted lines suggest how thresholds may be set in

order to detect the faults.

residual generation method.

Algorithm 1, based on the naive approach of finding all minimal hitting sets, gives an

exact solution fulfilling both the isolability and the minimal cardinality requirements but

is intractable for large problems. Algorithm 2 is suitable for large, real-world, problems

and is based on a greedy heuristic. It provides an approximate solution in terms of

fulfilling the minimal cardinality requirement. A theoretical characterization of the

approximation error, in the form of a worst-case bound, was given in Theorem 3, and

that the output of Algorithm 2 indeed fulfills the isolability requirement was guaranteed

by Theorem 2.

The problem of selecting a set of residual generators for detection and isolation of

faults in a complex automotive engine system was considered as an industrial application

example. Due to the significant complexity of this problem, it was not possible to use

the exact MHS-based Algorithm 1 and instead the approximative greedy Algorithm 2

was employed. For this selection problem, the greedy algorithm provides a near-exact

solution at a very low cost.
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Abstract

An important step in model-based fault detection is residual evaluation, where

residuals are evaluated with the aim to detect changes in their behavior caused

by faults. To handle residuals subject to time-varying uncertainties and dis-

turbances, which indeed are present in practice, a novel statistical residual

evaluation approach is presented. The main contribution is to base the residual

evaluation on an explicit comparison of the probability distribution of the resid-

ual, estimated online using current data, with a no-fault residual distribution.

The no-fault distribution is based on a set of a-priori known no-fault residual

distributions, and is continuously adapted to the current situation. As a second

contribution, a method is proposed for estimating the required set of no-fault

residual distributions off-line from no-fault training data. The proposed resid-

ual evaluation approach is evaluated with measurement data on a residual for

diagnosis of the gas-flow system of a Scania truck diesel engine. Results show

that small faults can be reliable detected with the proposed approach in cases

where regular methods fail.
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1 Introduction

Fault diagnosis is becoming more and more important with the increasing demand for

dependable technical systems, driven mostly by economical, environmental, and safety,

incentives. One example is automotive systems, where good fault diagnosis is essential

in order to meet customer demands regarding up-time, efficient repair and maintenance,

and also to fulfill on-board diagnosis (OBD) legislative regulations.

Model-based fault diagnosis typically comprises fault detection and isolation (Blanke

et al., 2006), and the fault detection part contains the essential steps residual generation

and residual evaluation. In the first step, a model of the system is used together with

measurements to generate residuals. In the second step, the residuals are evaluated with

the aim to detect changes in the residual behavior caused by faults in the system. This

works concerns the second step, residual evaluation.

Ideally, residuals are signals that are zero when no faults are present in the system, and

non-zero otherwise. Due to the presence of uncertainties and disturbances, caused by

for instance modeling errors, measurement noise, and unmodeled phenomena, residuals

typically however deviate from zero even in the no-fault case. Moreover, due to changes in

the operating mode of the system, the magnitude of these uncertainties and disturbances

is time-varying, causing the behavior of residuals to be non-stationary. An illustration

is given by Figure 1, where a residual for fault detection in the gas-flow system of a

truck diesel engine is shown. Clearly, the residual is not zero in the no-fault case, and

it is obvious that the residual exhibit non-stationary features. It can also be noted

that the difference between the residual in the no-fault and fault cases is time-varying.

Nevertheless, the fact that there is a difference implies that the present fault is potentially

detectable.

There are two main approaches (Ding et al., 2007) for residual evaluation; statisti-

cal (Willsky and Jones, 1976; Gertler, 1998; Basseville andNikiforov, 1993; Peng et al., 1997;

Al-Salami et al., 2006; Blas and Blanke, 2011; Wei et al., 2011) and norm-based (Emami-

Naeini et al., 1988; Frank, 1995; Frank and Ding, 1997; Sneider and Frank, 1996; Chen

and Patton, 1999; Zhang et al., 2002; Zhong et al., 2007/03/; Ingimundarson et al., 2008;

Al-Salami et al., 2010; Li et al., 2011; Abid et al., 2011). Statistical approaches exploits the

framework of statistical hypothesis testing in order to detect changes in some parameter

of the probability distribution of the residual, typically by means of likelihood ratio

testing (Gustafsson, 2000). In norm-based approaches, residual evaluation is typically

done by adaptive or constant thresholding of some norm of the residual.

Apparently, when encountering a residual as the one depicted in Figure 1, neither

statistical-based approaches assuming stationary probability distributions, nor norm-

based approaches using constant thresholds, would be successful. A potential solution is

to consider adaptive thresholds (Clark, 1989; Frank, 1994), and use a-priori knowledge,

either qualitative (Ingimundarson et al., 2008; Zhang et al., 2002; Höfling and Isermann,

1996; Emami-Naeini et al., 1988) or quantitative (Sneider and Frank, 1996; Frank, 1995;

Nyberg and Stutte, 2004), to derive non-constant thresholds to take the time-varying

uncertainties and disturbances into account. This paper instead proposes an adaptive

statistical residual evaluation method, which exploits quantitative a-priori knowledge in

the form of data.
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Figure 1: A residual for fault detection in the gas-flow system of a heavy-duty truck diesel

engine in the no-fault (solid) and fault (dashed) cases.

The main contribution is to base the residual evaluation on an explicit comparison

of the probability distribution of the residual, estimated on-line using current data,

with a no-fault residual distribution. The no-fault distribution is based on a set of a-

priori known no-fault distributions and to handle changes in the operating mode of the

system, and thus time-varying residual features, it is continuously adapted to the current

operating mode of the system. The comparison is done in the framework of statistical

hypothesis testing by application of the Generalized Likelihood Ratio (GLR). As a second

contribution, a method is proposed for estimating the required set of no-fault residual

distributions off-line from no-fault training data. Thus, using the method for distribution

estimation, the overall residual evaluation method becomes fully data-driven and no

assumptions regarding the properties of the probability distribution of the residual, nor

the properties of the faults to be detected, are made.

The paper is organized as follows. Section 2 discusses and formalizes the problem

setup and the residual evaluation problem is formulated in the framework of statistical

hypothesis testing. In Section 3, theGLR is utilized to design a preliminary test statistic for

the residual evaluation hypotheses, and the emerging likelihood maximization problems

are considered. In Section 4, the preliminary test statistic is improved in terms of required

computational effort, and a residual evaluation algorithm suitable for implementation

in an online environment is given. Section 5 presents an off-line algorithm for learning

no-fault residual distributions from no-fault training data. In Section 6 the proposed

residual evaluation approach is applied to a residual for fault detection in the gas-flow

system of a real Scania truck diesel engine. Finally, Section 7 concludes the paper. In

order to improve readability, lengthy proofs of theorems and lemmas are collected in

Appendix A.

2 Problem Formulation

The residual evaluation problem, as considered in this work, is formally stated in this

section.
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Figure 2: A system and a residual generator.

2.1 Prerequisites

A residual, r, is considered to be the output from a residual generator, taking measure-

ments from a system as input. Typically, the measurements consists of the input u and

output y, see Figure 2. The system is considered to be subject to faults, and the intention

is to detect if any fault is present in the system by monitoring the behavior of the residual.

Note that if a set of residuals sensitive to different faults is used, faults can also be isolated,

see for example Blanke et al. (2006).

The system typically operates in a number of different operating modes, and normal

operation usually involves several of these modes. For an example, consider a heavy-duty

truck diesel engine, for which a residual is shown in Figure 1. Naturally, this system is

designed to operate in a number of different operating modes typically characterized by

engine torque, engine speed, ambient temperature, ambient pressure, etc.

The setup depicted in Figure 2 most often contains uncertainties in the form of

measurement noise or, in the case of a model-based residual generator, modeling errors.

Typically, the magnitudes and nature of the uncertainties are different for different

operating modes of the system. For example, a sensor may be more or less sensitive to

noise in different operating modes, and a model may be more accurate in one operating

mode than another. Since the operating mode of the system varies in time, so does the

magnitudes and nature of the uncertainties. This is the cause of the non-ideal residual

behavior illustrated in Figure 1.

It is assumed that during on-line operation, the current operating mode of the system

is unknown. In addition, it is also assumed that the probability that the system is in a

specific mode is unknown. In this sense, the system can be considered to be subject to

an unknown, i.e., unmeasurable, input signal, determining the current operating mode.

Regarding in particular the first assumption, it is considered to be hard to quantify and

measure all factors, internal and external, that determine the current operating mode

of a system. Furthermore, these factors may be different for different individuals of the

system, or may change over time. However, even if its is possible to determine a set of

measured signals that determines the operating mode, all signals may not be available

for the residual evaluation scheme due to for example fault decoupling principles, or

architectural constraints in the control system software. In addition, even if all signals
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are available, they may as well be subject to faults. The second assumption is mainly

motivated by the fact that the operation of a system differs between different individuals

of the same system, and may change over time or due to external unmeasurable factors.

2.2 Probabilistic Framework

To handle the uncertain environment described above, a probabilistic framework is

adopted. Let the discrete random variable R with range X = {x1 , x2 , . . . , xM}, represent
the discretized and sampled value of the residual, and let r denote a particular outcome

of R.
For a given specific operating mode i of the system, the probability that R = r is

assumed to be characterized by the probability mass function (pmf)

p (r∣θ i) = Pr (R = r∣θ i) = θ i j , if r = x j , (1)

for j = 1, . . . ,M. The pmf (1) is fully parametrized by θ i = (θ i1 , θ i2 , . . . , θ iM), where the

θ i j are required to fulfill

θ i j ≥ 0, j = 1, 2, . . . ,M
M
∑
j=1

θ i j = 1.
(2)

Under the assumption that there is in total K operating modes, the probability that

R = r can be characterized by the K-component mixture distribution given by the pmf

p (r∣α, θ) =
K
∑
i=1

α i p (r∣θ i) (3)

with α = (α1 , α2 , . . . , αK) and

θ =
⎛
⎜
⎜
⎜
⎝

θ1
θ2
⋮

θK

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

θ11 θ12 ⋯ θ1M
θ21 θ22 ⋯ θ2M
⋮ ⋮ ⋮ ⋮

θK1 θK2 ⋯ θKM

⎞
⎟
⎟
⎟
⎠

, (4)

where α i , i = 1, 2, . . . ,K, are referred to as mixture weights required to fulfill

α i ≥ 0, i = 1, 2, . . . ,K ,
K
∑
i=1

α i = 1.
(5)

In the context of this work, the mixture weight α i specifies the probability that the

system is in mode i. As said in Section 2.1, the probability that the system is in a specified

operating mode is considered to be unknown. Consequently, α i , i = 1, 2, . . . ,K, are
assumed to be unknown and will in the following be considered as nuisance parameters.
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Figure 3: Example of a sample from a mixture distribution in the form (3) with 3 compo-

nents θ1, θ2, and θ3, and mixture weights α1 = α2 = α3 =
1

3
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Figure 3a shows a set of residual samples with underlying distributions described by

the pmf (3), with 3 components θ1, θ2, and θ3, shown in Figure 3b, and mixture weights

α1 = α2 = α3 =
1

3
.

Note that the probabilistic model (3) can be used to describe the distribution of the

residual for both the no-fault and faulty system.

In the context of residual evaluation, it is assumed that the distribution of the residual

is known in the no-fault case. Let θNF denote the no-fault distribution parameter, where

the i-th row θNF
i describes the distribution of the residual in operating mode i of the

no-fault system. Section 5 describes how the required parameters θNF
i can be learned

from no-fault training data, without the need of any detailed a-priori knowledge of

the system. For a different approach, utilizing expert knowledge regarding the system,

see Svärd et al. (2011).

Typically, the distribution of the residual is different for all K operating modes of the

no-fault system, which implies that the matrix θNF has full row rank. For the model (3)

to make sense it is required that M > K, since otherwise θNF can be used to describe any

residual distribution, including ones originating from faulty cases.

2.3 Residual Evaluation in aHypothesis Testing Framework

Consider now a set R = {r1 , r2 , . . . , rN} of sampled residual values. Given θNF and

R, the residual evaluation problem is, in the context of this work, to determine if the

probability distribution of the residual samples inR can be characterized by the pmf (3)

with θ = θNF for some α ∈ Υ, where

Υ = {α ∈ RK
∶ α i ≥ 0,

K
∑
i=1

α i = 1} , (6)

denotes the space of α as specified by (5).

The residual evaluation problem as described above can be formulated by means of

the hypotheses

H0 ∶ θ = θNF
, α ∈ Υ

H1 ∶ θ ≠ θNF
, α ∈ Υ

(7)

where the null hypothesis H0 corresponds to the no-fault case, i.e., when no fault is

present in the system, and the alternative hypothesis H1 to the faulty case, i.e., when

one or several faults are present in the system. Next section deals with the problem of

designing a test statistic for the hypotheses (7).

3 GLR Test Statistic

A standard approach when encountering composite hypotheses, is to utilize the Gen-

eralized Likelihood Ratio (GLR), see, e.g., Casella and Berger (2001); Basseville and
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Nikiforov (1993). For testing hypothesis H0 versus H1 in (7), the GLR is

Λ (R) =

max
α∈Υ
L (α, θNF∣R)

max
α∈Υ, θ∈Θ

L (α, θ∣R)
, (8)

whereL (θ , α∣R) is the likelihood function of α and θ, given the setR of residual samples,

and

Θ =

⎧⎪⎪
⎨
⎪⎪⎩

θ ∈ RK×M
∶ θ i j ≥ 0,

M
∑
j=1

θ i j = 1

⎫⎪⎪
⎬
⎪⎪⎭

, (9)

denotes the space of the distribution parameter θ as specified by (2). The GLR test

statistic becomes

λ (R) = −2 logΛ (R) , (10)

and the hypothesis H0 is rejected in favor of hypothesis H1 if λ (R) > J, where J is a
constant threshold.

In order to employ the GLR test statistic λ (R), the maximization problems in the

denominator and numerator of the GLR (8) must be solved. Before considering these

maximization problems, the objective function, i.e., the likelihood function L (θ , α∣R),
will be studied in some more detail.

3.1 The Likelihood Function

The likelihood function of the parameters θ and α given the setR of residual samples is

given by

L (α, θ∣R) = p (R∣α, θ) , (11)

where p (R∣θ , α) is the joint pmf for the residual samples inR. In the general case, the

expression for the joint pmf is cumbersome to deal with. Tomake subsequent derivations

tractable, or even possible, it is necessary to pose the following assumption.

Assumption 1. Samples from (3) are independent and identically distributed (iid).

Note that Assumption 1 not may be valid in the general case, since residuals often

are obtained as output from dynamic systems and thereby exhibit Markovian properties.

It can however often be fulfilled in practice by sampling the residual at a sufficiently

low rate. In addition, residuals based on innovation filters (Gustafsson, 2000), e.g., the

Kalman Filter, fulfills the assumption. The residual evaluation approach developed in

this paper has also been shown to be applicable in practical settings, for example in the

application example presented in Section 6.

By using Assumption 1, the joint pmf can be written as

p (R∣α, θ) = ∏
rk∈R

p (rk ∣α, θ) , (12)
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where p (⋅∣α, θ) is given by (3). By using (12), the likelihood (11) takes the formL (α, θ∣R) =
∏rk∈R p (rk ∣α, θ).

Next, let c j denote how many of the samples inR that have value x j , i.e.,

c j = ∣{rk ∈R ∶ rk = x j , x j ∈ X}∣ , j = 1, 2, . . . ,M . (13)

By definition, it holds that∑
M
j=1 c j = N .

It is worth noting that the quantities c1 , c2 , . . . , cM can be obtained from a regular

histogram, with M bins, calculated fromR.

By using (12), (3), (13), and (1), the likelihood function (11) reduces to

L (α, θ∣R) = ∏
rk∈R

p (rk ∣α, θ)

= ∏
rk∈R

K
∑
i=1

α i p (rk ∣θ i)

=
M
∏
j=1
(

K
∑
i=1

α i p (x j ∣θ i))

c j

=
M
∏
j=1
(

K
∑
i=1

α i θ i j)

c j

.

(14)

To simplify the calculations, the log-likelihood function

l (α, θ∣R) = log [L (α, θ∣R)]

= log

⎡
⎢
⎢
⎢
⎢
⎣

M
∏
j=1
(

K
∑
i=1

α i θ i j)

c j⎤
⎥
⎥
⎥
⎥
⎦

=
M
∑
j=1

c j log [
K
∑
i=1

α i θ i j] ,

(15)

will be used instead of (14).

Before proceeding, the following is assumed without loss of generality regarding

c1 , c2 , . . . , cM , as specified by (13).

Assumption 2. c j > 0, j = 1, 2, . . . ,M.

To see that Assumption 2 can be done without loss of generality, assume that ck = 0,
i.e., that there are no samples inRwith value xk . Then the corresponding factor in (14) is

(∑
K
i=1 α i θ i j)

0
≡ 1, or equivalently the corresponding term in (15) is 0 ⋅ log [∑

K
i=1 α i θ i j] ≡

0, independent of α j and θ i j . Thus, this term, or factor in the case of the likelihood, can

be neglected and the log-likelihood function (15) instead written as

l (α, θ∣R) = ∑
j∈{1,2, . . . ,M}∖{k}

c j log [
K
∑
i=1

α i θ i j] .
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3.2 LikelihoodMaximizations

This section is devoted to explore in detail how to solve the two maximization problems

in the GLR (8). Both problems correspond to finding parameter values that maximize

the likelihood function (14), given the residual samples in R, i.e., finding Maximum

Likelihood Estimators (MLE’s).

DenominatorMLE Problem

Consider first the MLE problem

max
α∈Υ, θ∈Θ

L (α, θ∣R) , (16)

in the denominator of (8). Under Assumption 1, and by using the log-likelihood func-

tion (15) as well as the structure of the parameter spaces (9) and (6), theMLE problem (16)

can be equivalently stated as

max
α∈RK , θ∈RK×M

M
∑
j=1

c j log [
K
∑
i=1

α i θ i j]

subject to α i ≥ 0, i = 1, 2, . . . ,K ,
θ i j ≥ 0, i = 1, 2, . . . ,K , j = 1, 2, . . . ,M ,

K
∑
i=1

α i = 1,

M
∑
j=1

θ i j = 1, i = 1, 2, . . . ,K , (17)

which is a general non-linear constrained maximization problem.

It turns out that (17), and equivalently the MLE problem (16), can be solved explicitly.

The key step in obtaining the expression for an explicit solution to (16) is given by the

following lemma.

Lemma 1. Let c1 , c2 , . . . , cM fulfill Assumption 2. Then,

ϕ⋆ = (ϕ⋆1 , ϕ⋆2 , . . . , ϕ⋆M) (18)

where

ϕ⋆j =
c j
N
, j = 1, 2, . . . ,M , (19)

and N = ∑M
j=1 c j , is the global solution to the maximization problem

max
ϕ∈RM

M
∏
j=1

ϕc j
j (20a)

subject to ϕ j ≥ 0, j = 1, 2, . . . ,M (20b)

M
∑
j=1

ϕ j = 1. (20c)
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Proof. First note that by (20b) and Assumption 2 it holds that ϕ j ≥ 0 and c j > 0 for

j = 1, 2, . . . ,M. Furthermore, by definition of c j in (13), it also noted that ∑
M
j=1 c j = N .

Consider now the weighted arithmetical and geometrical averages of the quantities
ϕ j
c j ≥ 0 with weights c j > 0 for j = 1, 2, . . . ,M. According to the inequality of weighted

arithmetic and geometric means, see, e.g., Hardy et al. (1934), it then holds that

1

N
⎛

⎝

M
∑
j=1

ϕ j

c j
⋅ c j
⎞

⎠
≥ N

¿
Á
Á
ÁÀ

M
∏
j=1
(

ϕ j

c j
)

c j

, (21)

with equality if and only if
ϕ1

c1 =
ϕ2

c2 = ⋯ =
ϕM
cM . For the left hand side of (21), it holds

that 1

N (∑
M
j=1

ϕ j
c j ⋅ c j) =

1

N ∑
M
j=1 ϕ j =

1

N due to (20c). Exploiting this fact and re-writing

the right hand side of (21) as
N

√

∏
M
j=1 (

ϕ j
c j )

c j
= N

√
∏M

j=1 ϕ
c j
j

∏M
j=1 c

c j
j
, the inequality (21) can be

equivalently stated as

M
∏
j=1

ϕc j
j ≤

1

NN

M
∏
j=1

cc jj =
M
∏
j=1
(
c j
N
)
c j
. (22)

Now assume that equality holds in (21), and let C = ϕ1

c1 =
ϕ2

c2 = ⋯ =
ϕM
cM . Under (20c),

it then holds that 1 = ∑
M
j=1 ϕ j = ∑

M
j=1 C ⋅ c j = C∑

M
j=1 c j = C ⋅ N which is equivalent to

that C = 1

N . Hence, for the objective function∏
M
j=1 ϕc j

j in (20a) it holds that∏
M
j=1 ϕc j

j ≤

∏
M
j=1 (

c j
N )

c j
under (20b), with equality under (20c) if and only if

ϕ j
c j =

1

N ⇔ ϕ j =
c j
N ,

j = 1, 2, . . . ,M. This completes the proof.

Note that since log [⋅] is a strictly increasing function, Lemma 1 is also applicable

to the problem of maximizing the function log∏
M
j=1 ϕc j

j = ∑
M
j=1 c j log ϕ subject to the

conditions (20b) and (20c).

By using Lemma 1, a condition for a solution to the maximization problem (17), and

thereby the MLE problem (16), can be obtained.

Theorem 1. LetR be a set of residual samples, define c1 , c2 , . . . , cM according to (13), and
let Assumptions 1 and 2 be valid. Then, any α⋆ ∈ Υ and θ⋆ ∈ Θ such that

K
∑
i=1

α⋆i θ⋆i j =
c j
N
, j = 1, 2, . . . ,M , (23)

is a solution to the MLE problem (16).

Proof. Assumption 1 implies that the joint distribution ofR is given by (12). With c j
defined according to (13), the likelihood (11) can be written as (14) and by exploiting the

structure of the parameter spaces (6) and (9), it trivially follows that theMLEproblem (16)

can be equivalently reformulated as the maximization problem (17). From Lemma 1, and
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the fact that log [⋅] is a strictly increasing function, it follows that any α⋆ ∈ Υ and θ⋆ ∈ Θ
that satisfies

c j
N = ∑

K
i=1 α⋆i θ⋆i j , j = 1, 2, . . . ,M, is a solution to the maximization problem

max
α∈RK , θ∈RK×M

M
∑
j=1

c j log [
K
∑
i=1

α i θ i j]

subject to
K
∑
i=1

α i θ i j ≥ 0, j = 1, 2, . . . ,M ,

M
∑
j=1

K
∑
i=1

α i θ i j = 1.

(24)

Nownote that (24) has the same objective function as (17) and that the feasible set of (17) is

contained in the feasible set of (24), since α i ≥ 0 and θ i j ≥ 0 implies∑
M
j=1∑

K
i=1 α i θ i j ≥ 0

and ∑
K
i=1 α i = 1 and ∑

M
j=1 θ i j = 1 implies that ∑

M
j=1∑

K
i=1 α i θ i j = ∑

K
i=1 α i ∑

M
j=1 θ i j =

∑
K
i=1 α i ⋅1 = 1, since θ ∈ Θ. Clearly, (α⋆ , θ⋆) is contained in the feasible set of problem (17)

and it follows that (α⋆ , θ⋆) is a solution also to (17). It now remains to show that

(α⋆ , θ⋆) is a global solution to (17). Since log [⋅] is a non-decreasing concave function,

and∑
K
i=1 α i θ i j is a linear function, it holds that log [∑

K
i=1 α i θ i j] is a concave function.

Therefore, the objective function in (17) is a convex sum of concave functions, since c j > 0
due to Assumption 2, and hence a concave function. Since all constraints in (17) are

linear, it follows that (17) is a concave optimization problem. Thus, the solution (α⋆ , θ⋆)
is a global maximizer to (17) and hence a solution to the MLE problem (16).

NumeratorMLE Problem

Consider now the MLE problem

max
α∈Υ

L (α, θNF
∣R) , (25)

in the numerator of the GLR (8).

Note that (25) and (16) differs by that θ is fixed to θNF in (25).

With the notion of Section 2, the parameter θNF characterizes the set of distributions

of the no-fault residual for all operating modes of the system. In this sense, the MLE

problem (25) corresponds to finding a no-fault distribution that is most likely to fit the

residual samples inR.

By again using Assumption 1, the log-likelihood function (15), and exploiting the

structure of the space (6) of the parameter α, the MLE problem (25) can be equivalently

stated as the non-linear constrained maximization problem

max
α∈RK

M
∑
j=1

c j log [
K
∑
i=1

α i θNF
i j ]

subject to α i ≥ 0, i = 1, 2, . . . ,K ,
K
∑
i=1

α i = 1.

(26)
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In the general case, it is unfortunately not possible to find an explicit expression for a

solution to the maximization problem (26), or equivalently the MLE problem (25), as

was the case with the MLE problem (16). There are however several efficient numerical

approaches, see, e.g., Nocedal and Wright (2006).

By using similar arguments as in the proof ofTheorem 1, it can be shown that also (26)

is a concave maximization problem. The concavity property facilitates the numerical

solving since it implies that if a local maximum can be found, then it is also a global

maximum.

4 Online Residual Evaluation Algorithm

Typically, residual evaluation is to be done in an online environment subject to real-time

constraints, i.e., computational times in order of micro- or milliseconds with strict dead-

lines. Unfortunately, it is in general not feasible to solve the non-linearMLE problem (25),

or equivalently (26), under such conditions. In this section, a relaxed version of the MLE

problem (25) is proposed. The relaxed problem requires less computational effort and

results in a residual evaluation test that under certain conditions performs better than

the residual evaluation test based on the original MLE problem.

4.1 Relaxed Problem

In light of Theorem 1, and since the problems (26) and (17) exhibit significant similarities,

an intuitive solution to problem (26) is to, if possible, choose α ∈ Υ so that

K
∑
i=1

α i θNF
i j =

c j
N
, j = 1, 2, . . . ,M . (27)

However, since K < M, see Section 2.2, (27) corresponds to an overdetermined set of

equations which in general has no solution. Motivated by this discussion, it makes sense

to chose α so that each∑
K
i=1 α i θNF

i j is as close as possible to
c j
N for j = 1, 2, . . . ,M. Thus,

the following relaxation of the problem (26) is considered

min
α∈RK

1

2
∥

K
∑
i=1

α iθNF
i − ϕ⋆∥22

subject to α i ≥ 0, i = 1, 2, . . . ,K ,
K
∑
i=1

α i = 1,

(28)

where ϕ⋆ is defined by (18).

The relaxed problem (28) is equivalent to a linear least squares problem with equality

and non-negative constraints. Solving (28) therefore typically requires less computational

effort than solving the original general non-linear maximization problem (26). Solving

of (28) will be further discussed in Section 4.3.
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In order to compare the fault detection properties of the residual evaluation tests

based on the relaxed problem (28) and the original MLE problem (26), the following

result is given.

Lemma 2. Let c1 , c2 , . . . , cM fulfill Assumption 2, let θNF ∈ Θ, and

Φ
NF
= {ϕ ∶ ϕ =

K
∑
i=1

α i θNFi , ∀α ∈ Υ} . (29)

Further, let ϕ⋆ ∈ ΦNF, and let αO and αR be solutions to the original problem (26) and
relaxed problem (28), respectively. Then, it holds that

K
∑
i=1

αO
i θNFi =

K
∑
i=1

αR
i θNFi = ϕ⋆ . (30)

Proof. First note that ϕ⋆ ∈ ΦNF is equivalent to that the set

Υ
NF
= {α ∈ Υ ∶ ϕ⋆ =

K
∑
i=1

α i θNF
i } , (31)

is non-empty. Assume that ΥNF ≠ ∅ and consider first the optimization problem (26).

Since ΥNF ≠ ∅, it follows from Lemma 1, and the fact that log [⋅] is an increasing function,

that any optimal solution to (26) is contained in ΥNF. In particular, this holds for αO and

thus ϕ⋆ = ∑K
i=1 αO

i θNF
i . Consider next the optimization problem (28). Again ΥNF ≠ ∅

implies that any optimal solution to (28), in particular αO, is contained in ΥNF. Hence,

ϕ⋆ = ∑K
i=1 αR

i θNF
i and the proof is complete.

Consider the hypotheses in (7) and the GLR test statistic λ (R) defined by (10)

and (8). Define the test statistic

λR (R) = −2 log
L (αR , θNF∣R)

L (α⋆ , θ⋆∣R)
, (32)

where (α⋆ , θ⋆) is a solution to the original MLE problem (16) as present in (8), but where

αR is a solution to the relaxed numerator MLE problem (28).

The power of the residual evaluation test λ (R) > J can be quantified by the power
function (Casella and Berger, 2001)

βλ (α, θ) = Pr (reject H0∣α, θ) = Pr (λ (R) > J∣α, θ) , (33)

where J is a fixed threshold. If α ∈ Υ and θ = θNF in (33), i.e., under H0, the power

function gives the probability of false detection, or Type I error. Otherwise, the power

function gives the probability of detection for fixed α and θ, or equivalently the probability
of missed detection or Type II error, by 1 − βλ (α, θ).

Consider now the power function

βλR (α, θ) = Pr (λR (R) > J∣α, θ) , (34)

for the residual evaluation test λR (R) > J, based on the relaxed problem (28). The

relation between the power functions (33) and (34) is given by the following result.
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Theorem 2. It holds that

βλR (α, θ) ≥ βλ (α, θ) . (35)

Proof. It is first noted that according to Theorem 1, it holds that ϕ⋆j =
c j
N , j = 1, 2, . . . ,M,

and thus Lemma 2 is applicable. According to Lemma 2, it holds that ϕ⋆ = ∑K
i=1 αO

i θNF
i =

∑
K
i=1 αR

i θNF
i if ϕ⋆ ∈ ΦNF. This implies, due to (14), thatL (αO , θNF∣R) = L (αR , θNF∣R)

if ϕ⋆ ∈ ΦNF. Due to the concavity property of the likelihood function L (α, θ∣R), and
the fact that αO is a solution to the MLE problem (25), it follows that

L (αR
, θNF
∣R) ≤ L (αO

, θNF
∣R) ,

with equality if ϕ⋆ ∈ ΦNF. Thus, it holds that

L (αR , θNF∣R)

L (α⋆ , θ⋆∣R)
≤
L (αO , θNF∣R)

L (α⋆ , θ⋆∣R)
, (36)

and equivalent that λR (R) ≥ λ (R), due to (32) and (10), again with equality if ϕ⋆ ∈ ΦNF.

The claim (35) then follows directly by definitions (33) and (34).

The implication of Theorem 2 is that the residual evaluation test λR (R) > J, based
on the relaxed problem (28), gives greater or equal probability for detection than the test

λ (R) > J, based on the original problem (26). Or equivalently, that the Type II error,

i.e., the probability for missed detection, for the test λR (R) > J always is smaller than,

or equal to, the Type II error for the test λ (R) > J.
In general, unfortunately, the test λR (R) > J gives larger probability for false detec-

tion, i.e., Type I error, than the test λ (R) > J. This is a direct consequence of Theorem 2.

However, asymptotically the condition ϕ⋆ ∈ ΦNF holds under hypothesis H0, i.e., in the

no-fault case, which implies that also the probabilities for false detection becomes equal

for the two tests. This fact is formalized in the following result.

Theorem 3. Let N denote the number of residual samples inR, and let H0 in (7) be valid.
Then, it holds that

lim
N→∞

βλR (α, θ) − βλ (α, θ) = 0. (37)

Proof. Define ϕ = ∑K
i=1 α i θ i and note that from (7), it can be deduced that ϕ ∈ ΦNF is

equivalent to that α ∈ Υ and θ = θNF, i.e., that H0 in (7) is valid. Thus, by assumption,

it holds that ϕ ∈ ΦNF. Consider now ϕ⋆ and note that due to the invariance prop-

erty (Casella and Berger, 2001) of maximum likelihood estimates it holds that if (α⋆ , θ⋆)
are the MLE of (α, θ), which indeed is true by assumption, then ϕ⋆ = ∑K

i=1 α⋆i θ⋆i is the
MLE of ϕ. Lemma 5 (found in Appendix A) then implies that

lim
N→∞

Pr (∣ϕ⋆ − ϕ∣ ≥ ε) = 0,

for all ε > 0 and ϕ ∈ Φ′, with Φ′ defined by (70). Since it holds that ϕ ∈ ΦNF by

assumption, it therefore holds that ϕ⋆ ∈ ΦNF when N →∞. Since ϕ⋆ ∈ ΦNF holds, (36)

holds with equality which is equivalent to that λR (R) = λ (R). By (33) and (34) this is

equivalent to βλR (α, θ) = βλ (α, θ), and thus (37) holds.
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Figure 4: Comparison of test quantities λR(R) and λ(R) under hypothesisH0, bymeans

of the quantity
λ(R)
λR(R) , for different values of the size N of the residual sampleR.

Theorem 3 is empirically illustrated in Figure 4, which shows a comparison of the test

statistics λR(R) and λ(R), under hypothesis H0, as the size N of the residual sample

R grows. In this particular case, the parameters M = 80 and K = 25 was used. The

comparison is done by means of the quantity
λ(R)
λR(R) , and Figure 4 shows the average of

10,000 Monte Carlo simulations using synthetic data. It is clear that the test quantities

λR(R) and λ(R) are almost equal when N is large, in this case for N > 1000. Since both
test λR(R) > J and λ(R) > J are based on the same threshold J, the situation in Figure 4

implies that the power functions βλR (α, θ) and βλ (α, θ) are almost identical under H0

when N is sufficiently large.

To summarize, Theorem 2 implies that the test λR (R) > J, based on the relaxed

problem (28), will result in greater or equal probability for detection than the GLR test

λ (R) > J, based on the original MLE problem (26). Moreover, according to Theorem 3,

if N is sufficiently large, then also the probabilities for false detection will be almost equal

for two tests.

In an application where computational effort is crucial, and when implementation

matters limit usage of a “sufficiently large” N , a switch from the original MLE prob-

lem (26) to the relaxed problem (28), means trading probability of false detection against

computational feasibility.

4.2 Residual Evaluation Algorithm

The proposedmethod for residual evaluation is summarized as an algorithm below. Input

to the algorithm is a set of residual samples R = {r1 , r2 , . . . , rN}, a no-fault residual
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distribution parameter θNF, and a detection threshold J. Output is a decision whether to

reject hypothesis H0 in (7) or not, i.e., whether a fault is present in the system or not.

Step 1: Compute c1 , c2 , . . . , cM according to (13).

Step 2: Obtain αR by solving (28).

Step 3: Obtain (32) by computing

λR = −2 log
∏

M
j=1 (∑

K
i=1 αR

i θNF
i j )

c j

∏
M
j=1 (

c j
N )

c j . (38)

Step 5: Reject H0 if λR > J.

Note that for use with sequential residual data, the samples inRmay be collected by

using a sliding window, i.e., at sampling instant t the set of residual samples

Rt = {rt−N+1 , rt−N+2 , . . . , rt} ,

is used, where rt denotes the residual sample collected at instant t.

Parameter Choices

The parameters involved in the residual evaluation are the number N of residual samples

inR, the detection threshold J, and the no-fault distribution parameter θNF. The first two

parameters, N and J, are discussed below. The parameter θNF is the topic of Section 5.

According to Theorem 3, the relaxation (28) of the MLE problem (25) is justified in

terms of the probability for false detection if N is sufficiently large. The actual meaning

of “sufficiently large” is application dependent and must be evaluated from case to case.

This can for example be done by comparing the test quantities λR(R) and λ(R), under
hypothesis H0, for different values of N in the same manner as in Figure 4.

In general, given that N is large enough to justify the relaxation, the choice of N
is a trade-off between detection performance and complexity. A large N will give the

test statistic smoothed, low-pass, characteristics. This makes it possible to detect small

changes in the residual, but on the other hand a large N may increase the detection time.

Computational and memory aspects will be discussed in Section 4.3.

The choice of detection threshold J is a trade-off between detection time, and test

power, in terms of probability of false detection and probability of missed detection. The

higher the threshold, the longer the detection time, the lower the probability of false

detections but the higher the probability of missed detection. The actual selection of

threshold may be aided by the fact that the test statistic based on the GLR, ideally, is

Chi-squared distributed (Willsky and Jones, 1976).
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4.3 Implementation Issues and Computational Complexity

Typically, the residual evaluation algorithm outlined in Section 4.2 is implemented and

executed in real-time in an online environment. This poses strict restrictions on the

computational complexity of the algorithm, in terms of requirements of computing time

and storage.

The main potential computational pitfalls of the algorithm are related to Step 1 and

Step 2, i.e., computing the bin counts c1 , c2 , . . . , cM according to (13) and solving the

equality and inequality constrained linear least square problem (28). These two issues

will now be considered, starting with the former.

Computing the Bin Counts

Computing the bin counts c1 , c2 , . . . , cM given a set of residual samplesR corresponds to,

for each x j ∈ X , counting how many samples inR that takes value x j , where X denotes

the range space of the residual, see Section 2.2.

As said in Section 3.1, the quantities c1 , c2 , . . . , cM can be obtained from a regular

histogram, with M bins, computed fromR and the computational complexity for this

problem depends on the parameters M and N , i.e., the number of bins in the histogram,

and the number of samples inR, respectively.

The number of required computations for computing a regular histogramwithM bins

from a set of N samples, is M × N and grows linearly with both M and N . Considering

the memory requirements, the N residual values and theM bin counts need to be stored,

and these requirements also grow linearly. The conclusion is that if only there is enough

memory available, the histogram calculations, and thus the computation of the bin

counts, can easily be performed in real-time in an online environment.

Solving the Constrained Linear Least Square Problem

A variety of numerical methods have been developed for solving linear least square

problems with inequality and equality constraints, see, e.g., Haskell and Hanson (1981);

Lawson and Hanson (1974); Bjorck (1996); Zhu and Rong Li (2007). Most methods are

based on convex optimization (Boyd and Vandenberghe, 2004), where primal-dual meth-

ods, including interior point methods (Wright, 1997) and the active set method (Bjorck,

1996), are of particular interest.

Convex optimization problems can be efficiently solved (Boyd and Vandenberghe,

2004; Wright, 1997), using for example algorithms with worst-case polynomial com-

plexity (Nesterov and Nemirovskii, 1994). State-of-the-art algorithms often exploits

code-generation, where solvers are customized to a specific problem class. One such

example is CVXGEN (Mattingley and Boyd, 2012), which enables real-time, i.e., solving

time scales inmicroseconds ormilliseconds with strict deadlines, solving ofmodest-sized

quadratic optimization problems (Mattingley and Boyd, 2010).

The absolute requirements on memory and computation time for solving the linear

least square problem (28) by using any of the above methods, depends on the dimension

and structure of the K × M matrix θNF, where K denotes the number of considered

operating modes of the system, and M the number of bins in the above mentioned
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histogram. The most crucial parameter of these two is K, which in this sense should

be kept as low as possible. Implications of the value of this quantity, in the context of

residual evaluation performance, is further discussed in Section 5.

It is worth noting that the complexity of the problem (28) does not depend on the

number N of residual samples inR. This is favorable since it is only justified to consider

the relaxed problem (28) instead of the MLE problem (25) if N is sufficiently large, see

Section 4.1.

5 Learning No-Fault Distribution Parameters

In previous sections, it was assumed that the distribution of the residual was known,

by means of the parameter θNF, for K operating modes of the no-fault system. Given a

set of residual samples, the problem was to determine if the set of samples originated

from the distribution (3) with θ fixed to θNF. In the context of this section, however, the

parameter θNF, as well as K, are considered to be unknown and the task at hand is to

learn, i.e., estimate, these using a large set of residual samples, denoted training data.

It is important to stress that the learning is done in an off-line environment with

less restrictions on computational complexity, while the actual residual evaluation, as

considered in Section 4, typically, is performed online.

5.1 Problem Characterization

With the notion of Section 2, the distribution parameter θNF
i , i.e., the i-th row of the

K ×M matrix which constitutes the parameter θNF, characterizes the distribution of the

no-fault residual when the considered system is in operating mode i. Thus, the value of

K determines the number of considered operating modes of the system and θNF the set

of no-fault residual distributions associated with these operating modes.

Note that if training data partitioned according to operating mode is given, the pa-

rameter θNF can be directly obtained by means of Lemma 1. Specifically, the distribution

parameter θNF
i is obtained by computing a normalized histogram with M bins for the

part of the data corresponding to operating mode i.
If the total number of operating modes of the system is known, this knowledge can be

exploited and K set accordingly. In general, however, K is unknown and must be learned

from the training data. The importance and meaning of the value of K is discussed next.

A large K allows for a complete description of the set of no-fault residual distributions

as specified by θNF, which may be desirable. However, if K is too large, the set of

distributions may become too large in the sense that any distribution in the form (3) can

be characterized by θNF. This may reduce the fault detection performance of the residual

evaluation test developed in previous sections, since almost any set of residual samples

will be considered as generated from a no-fault system, which means no alarm, even if

there is a fault present. In addition, a large K results in a θNF of large dimension, which

affects the computational issues addressed in Section 4.3. So in this sense, K should

be kept as low as possible. A too small K, on the other hand, may give an insufficient

description of the set of all no-fault distributions. This typically also leads to decreased
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fault detection performance, either in the form of missed detections or false alarms,

depending on the strategy used when setting the alarm threshold.

In conclusion, the choice of K and θNF is a trade-off between fault detection perfor-

mance and computational effort. However, in order to take the fault detection perfor-

mance into account, training data from a set of representative fault cases is needed. In

the context of this work it is however assumed that only no-fault training data is available

due to a number of reasons. First of all, the amount of available no-fault data is typically

substantially larger than the available amount of fault data, since faults are rare. To create

fault data, one alternative is to inject faults in the real system. This is however considered

to be expensive, both in terms of time and money, since it typically require hardware

modifications and active usage of the system. Another alternative is to create fault data

by simulation. To give realistic results, this on the other hand requires models capable of

describing the faulty system, which in turn require detailed knowledge regarding the

behavior of the faulty system and possibly also its environment. This kind of information

is seldom available for real applications.

Motivated by this discussion, fault detection performance will not be explicitly

considered in the learning ofK and θNF. Instead, the learning problemwill be formulated

as a trade-off between the ability of K and θNF to characterize the set of all no-fault

residual distributions, i.e., model fit, and computational effort. The main motivation

for this choice is that a good characterization of the no-fault case will hopefully make

it possible to detect deviations from the no-fault case, meaning good fault detection

performance. The resulting fault detection performance is however empirically studied

in Section 6.

5.2 Problem Formulation

Consider a setD = (r1 , r2 , . . . , rND) of ND residual samples ordered according to time.

The residual samples inD will now be split into residual sample sets

Rk = {r(k−1)n+1 , r(k−1)n+2 , . . . , rk−n} , (39)

containing n consecutive residual samples fromD. To this end, let n < ND , and define

T = (R1 ,R2 , . . . ,RNT ) , (40)

where NT = ⌊ NDn ⌋, and Rk is given by (39) for k = 1, 2, . . . ,NT . The collection T of

residual sample setsRk , will henceforth be referred to as the training data.

In the following, it is assumed that each Rk ∈ T contains residual samples from

only one operating mode. In practice, this can be achieved by choosing n such that the

time it takes to collect a set of n residual samples is shorter than the time the system

spends in one operating mode, as well as longer than the transition time between any

two operating modes.

Formalization of Learning Problem

LetV (T , θ)denote ametric that quantifiesmodel fit, i.e., howwell the set of distributions

characterized by a given parameter θ is able to describe a data set T in the form (40).
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A general approach for enabling a trade-off between goodness of model fit and model

complexity when identifying parameters in a model is to combine the model fit metric,

in the present case V (T , θ), with some metric that reflects the model complexity (Ljung,

1999; Söderström and Stoica, 1989).

In the context of this work, required computational effort rather than model com-

plexity is of direct interest. As said in Section 4.2, the required computational effort for

the residual evaluation algorithm presented in Section 4.2 is strongly dependent on the

dimension K ×M of θNF, and in particular the value of K. Since the larger the value of
K, the higher the computational requirements, a function C (K) that increases with K
is suitable for quantification of the computational effort. Typically, the actual choice of

C (K) is implementation dependent. In general, there are many options, see, e.g., Ljung

(1999); Söderströmand Stoica (1989). One alternative is to exploit the information criteria

due to Akaike (Akaike, 1974).

Given V (T , θ) and C (K), the learning problem as stated in Section 5.1 can be

formulated as the problem

(K⋆ , θNF) = arg max
K , θ∈Θ(K)

(V (θ , T ) − C (K)) , (41)

where the notation Θ(K) for the space defined in (9) is introduced to stress the depen-

dency between the space and K. The topic of the remaining of this section is to derive a

suitable metric V (T , θ) for quantification of model fit.

Quantification ofModel Fit

To be able to exploit the developments in previous sections, a likelihood-based framework

is adopted for quantification of model fit, and an expression for the (log)-likelihood

l (θ∣T ) is sought.
To this end, recall from Section 3.1 that under Assumption 1, the joint pmf for a set

of residual samples, in this caseRk ∈ T , can be written as

p (Rk ∣αk , θ) = ∏
rp∈Rk

p (rp ∣αk , θ)

= ∏
rp∈Rk

K
∑
i=1

αki p (rp ∣θ i) ,

(42)

where αk = (αk1 , αk2 , . . . , αkK) contains the mixture weights associated withRk . By the

construction in (39), it holds thatRi ∩R j = ∅ for any pairRi ∈ T andR j ∈ T , where

i ≠ j. This, Assumption 1 and (42), implies that

p (T ∣θ , α1 , α2 , . . . , αNT ) =
NT
∏
k=1

p (Rk ∣αk , θ)

=
NT
∏
k=1
∏

rp∈Rk

K
∑
i=1

αki p (rp ∣θ i)

(43)
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Let ck j denote the total number of residual samples inRk that takes value x j , c.f. (13).

The log-likelihood of θ and αk , k = 1, 2, . . . ,NT , given T , can then be written as

l (θ , α1 , α2 , . . . , αNT ∣T ) = log p (T ∣θ , α1 , α2 , . . . , αNT )

= log
NT
∏
k=1
∏

rp∈Rk

K
∑
i=1

αki p (rp ∣θ i)

= log
NT
∏
k=1

M
∏
j=1
(

K
∑
i=1

αki p (x j ∣θ i))

ck j

(44)

= log
NT
∏
k=1

M
∏
j=1
(

K
∑
i=1

αki θ i j)

ck j

=
NT
∑
k=1

M
∑
j=1

ck j log [
K
∑
i=1

αkiθ i j]

The likelihood function l (θ , α1 , α2 , . . . , αNT ∣T ) in (44) contains both the parameter

of interest θ, and the nuisance parameters αk , k = 1, 2, . . . ,NT . Thus, the nuisance param-

eters αk must be eliminated from (44). There are mainly two standard approaches (Basu,

1977) for doing this. The first approach is to fix a prior probability distribution for the nui-

sance parameters, compute the posterior, and then integrate out the nuisance parameter

from the posterior to arrive at the posterior marginal distribution of the parameter of in-

terest, see for example Berger et al. (1999). The second approach is to replace the nuisance

parameters in the original likelihood function with their conditional maximum likeli-

hood estimates. The resulting function, which not indeed is a pure likelihood function

anymore, is referred to as a profile likelihood ormaximized likelihood, see, e.g., Patefield
(1977); Murphy and Vaart (2000).

In the context of this section, the mixture weight αki specifies the probability that the

samples inRk were collected when operating mode i was present. As said Section 2.1,

this probability, and all other probabilities related to the nuisance parameters αk are

assumed to be unknown, which complicates the usage of the first approach mentioned

above.

Motivated by this discussion, the second approach is adopted for elimination of αk ,

k = 1, 2, . . . ,NT , from (44). The resulting profile likelihood of θ, given T , takes the form

l̂ (θ∣T ) = max
α1 ,α2 , . . . ,αNT ∈Υ

l (θ , α1 , α2 , . . . , αNT ∣T )

= max
α1 ,α2 , . . . ,αNT ∈Υ

NT
∑
k=1

M
∑
j=1

ck j log [
K
∑
i=1

αkiθ i j]

=
NT
∑
k=1

max
αk∈Υ

M
∑
j=1

ck j log [
K
∑
i=1

αkiθ i j]

(45)

Under the assumption that eachRk ∈ T contains residual samples from only one

operating mode, it holds that each αk , k = 1, 2, . . . ,NT , contains one and only one
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non-zero element, equal to one. In this case,

max
αk∈Υ

M
∑
j=1

ck j log [
K
∑
i=1

αkiθ i j] = max
i∈{1,2, . . . ,K}

M
∑
j=1

ck j log θ i j ,

and thus the (profile) likelihood (45) of θ, given T , can be written as

l̂ (θ∣T ) =
NT
∑
k=1

max
i∈{1,2, . . . ,K}

M
∑
j=1

ck j log θ i j . (46)

Motivated by these developments, the metric

V (T , θ) = l̂ (θ∣T ) =
NT
∑
k=1

max
i∈{1,2, . . . ,K}

M
∑
j=1

ck j log θ i j , (47)

will be used to quantify how well the set of distributions characterized by a given param-

eter θ is able to describe a data set T .

5.3 Learning Algorithm

Consider now the learning problem as formulated in (41). According to Section 2.2 and

the fact that it is required that K < M, the feasible set of K⋆ is bounded. Moreover, the

quantity C (K) is not dependent on θ. Thus, given that the problemmaxθ∈Θ(K) V (T , θ)
can be solved for a given K, the learning problem (41) can be solved by an exhaustive

search over the feasible set of K⋆.
The key step when searching for K⋆ and θNF that solve (41), is therefore to find, for a

given K, a θ(K) that satisfies

θ(K) = arg max
θ∈Θ(K)

V (T , θ) . (48)

This is the topic of the remainder of this section.

Method Outline

The basic idea of the proposed approach for finding θ(K) is to first calculate a distribution
parameter θk ∈ Θ(1) for eachRk ∈ T by exploiting Theorem 1 and form the set

Ψ = (θ1 , θ2 , . . . , θNT ) , (49)

where

θk = arg max
θ∈Θ(1)

l (θ∣Rk) , (50)

for k = 1, 2, . . . ,NT . Then group the distribution parameters in Ψ into K clusters

P1 , P2 , . . . , PK according to their similarity, and finally calculate the distribution parame-

ter θ⋆i , which constitute the i-th row of θ(K), from the distribution parameters in cluster

Pi .
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For an illustration of the approach, consider the residual sample sets

T = (R1 ,R2 , . . .R9) ,

defined according to Figure 5a. Note that the setsRk in Figure 5a have been generated

in an ideal way for the purpose of illustration. The set of corresponding distribution

parameters Ψ = (θ1 , θ2 , . . . θ9) is illustrated in Figure 5b, and the sought clusters are

P1 = {θ1 , θ2 , θ3}, P2 = {θ4 , θ5 , θ6}, and P3 = {θ7 , θ8 , θ9}. The resulting distribution

parameters θ⋆1 , θ⋆2 , and θ⋆3 , calculated as the mean of the parameters in the clusters P1,

P2, and P3, respectively, are shown in Figure 6. Note the similarity between Figure 6 and

Figure 3b, where the latter in fact shows the true distribution parameters.

Algorithm

The general algorithm for finding a solution to (48) is given below. The input to the

algorithm is a set of residual samplesD and constants n andK. The output is a distribution

parameter θ(K).
In the algorithm, D (p (r∣θk) ∥p (r∣θ⋆i )) denotes the Kullback-Leibler (KL) diver-

gence (Kullback and Leibler, 1951) between the probability distributions characterized

by p (r∣θk) and p (r∣θ⋆i ). The KL-divergence is one way to quantify the similarity of

probability distributions and is properly defined in Section 5.4.

Step 1: Let T be defined by (40).

Step 2: Let Ψ be defined by (49).

Step 3: Partition Ψ into P⋆ = (P1 , P2 , . . . , PK) such that

P
⋆
= argmin

P

K
∑
i=1
∑
θ k∈P i

D (p (r∣θk) ∥p (r∣θ⋆i )) , (51)

where

θ⋆i =
1

∣Pi ∣
∑
θ k∈P i

θk , i = 1, 2, . . . ,K . (52)

Step 4: Let

θ(K) =
⎛
⎜
⎜
⎜
⎝

θ⋆1
θ⋆2
⋮

θ⋆K

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

θ⋆11 θ⋆12 ⋯ θ⋆1M
θ⋆21 θ⋆22 ⋯ θ⋆2M
⋮ ⋮ ⋮ ⋮

θ⋆K1 θ⋆K2 ⋯ θ⋆KM

⎞
⎟
⎟
⎟
⎠

. (53)

The most crucial part of the above algorithm is Step 3, in which a particular partition

of the set Ψ should be computed. This problem in fact corresponds to a hard K-means

clustering problem (Bishop, 2006), for which efficient heuristic methods exists (Lloyd,

1982). Implementation issues are discussed in Section 5.5.

The justification of the algorithm, in terms of its ability to provide a solution to the

problem (48), is given in next section.
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R1 R2 R3 R4 R5 R6 R7 R8 R9

(a) Residual sample sets in T

θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

(b) Distribution parameters in Ψ

Figure 5: Illustration of the proposed learning algorithm. Figure 5a shows the residual

sample sets in T and Figure 5b the corresponding distribution parameters in Ψ.
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Figure 6: The distribution parameters learned from the training data in Figure 5a.

5.4 Justification of Learning Algorithm

This section contains technical developments necessary for proving that the algorithm

defined by Steps 1-4 in Section 5.3 indeed gives a solution to the problem (48) as output.

This is done in the following manner. First, a sufficient condition for a solution to the

problem (48) is given. The condition is given in terms of properties of a partition of the

set T , computed in Step 1 of the algorithm. Next, the sufficient condition is transformed

into a condition on a partition of the set Ψ, defined in Step 2. Finally, it is verified that

the partition of Ψ computed by means of K-means clustering in Step 3 satisfies this

condition.

A sufficient condition for a solution to the problem (48) is given below.

Theorem 4. Let D be a set of ND residual samples fulfilling Assumption 1, let n < ND,
and let T be defined by (40). For a given positive integer K, if T = (T1 , T2 , . . . , TK) is a
partition of T such that for each block Ti ∈ T and for each elementRk ∈ Ti , it holds that

l (θ⋆i ∣Rk) ≥ l (θ⋆p ∣Rk) , p = 1, 2, . . . ,K , (54)

where

θ⋆i = arg max
θ∈Θ(1)

∑
Rk∈T i

l (θ∣Rk) , i = 1, 2, . . . ,K , (55)

then

V (T , θ(K)) = max
θ∈Θ(K)

V (T , θ) , (56)

with V (T , θ) and θ(K) defined by (47) and (53), respectively.
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Proof. It is first noted that by Assumption 1, the joint pmf for the samples inRk ∈ T

is given by (42), which is equivalent to (12). From (15), and the fact that θ ∈ Θ(1) due
to (55), which implies that K = 1 and α1 = 1 in (15), it holds that

l (θ∣Rk) =
M
∑
j=1

ck j log θ j , (57)

where ck j , j = 1, 2, . . . ,M, denotes the total number of samples inRk that takes value x j .

Given is that T = (T1 , T2 , . . . , TK) is a partition of T , such that (54) is satisfied for each

block Ti ∈ T and for each elementRk ∈ Ti , with θ⋆i , i = 1, 2, . . . ,K, defined according

to (55). From (54) and (57) it follows that for each Ti ∈ T and for eachRk ∈ Ti , it holds

that

M
∑
j=1

ck j log θ⋆i j ≥
M
∑
j=1

ck j log θ⋆p j , (58)

for p = 1, 2, . . . ,K. Due to (58) it holds that for each Ti ∈ T and for eachRk ∈ Ti

max
p∈{1,2, . . . ,K}

M
∑
j=1

ck j log θ⋆p j =
M
∑
j=1

ck j log θ⋆i j . (59)

Due to (59) and the fact that T = (T1 , T2 , . . . , TK) is a partition ofT = (R1 ,R2 , . . . ,RNT ),

it holds that

V (T , θ⋆) =
NT
∑
k=1

max
p∈{1,2, . . . ,K}

M
∑
j=1

ck j log θ⋆p j

=
K
∑
i=1
∑
Rk∈T i

max
p∈{1,2, . . . ,K}

M
∑
j=1

ck j log θ⋆p j

=
K
∑
i=1
∑
Rk∈T i

M
∑
j=1

ck j log θ⋆i j

(60)

By definition (55), it holds that θ⋆i ∈ Θ(1), i = 1, 2, . . . ,K, and therefore that θ(K) ∈ Θ(K)
with θ(K) defined by (56). To show that (56) is satisfied, it is sufficient to show that

V (T , θ⋆) is a maximum value. Since θ⋆i = (θ⋆i1 , θ⋆i2 , . . . , θ⋆iM) only is present in the term

∑
Rk∈T i

M
∑
j=1

ck j log θ⋆i j , (61)

in (60), it follows that V (T , θ⋆) as given by (60) is a maximum if (61) is a maximum,

for each i = 1, 2, . . . ,M. It is now noted that, due to (57), (55) is equivalent to

θ⋆i = arg max
θ∈Θ(1)

∑
Rk∈T i

M
∑
j=1

ck j log θ j , i = 1, 2, . . . ,K ,

which completes the proof.
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The implication of Theorem 4, is that the solving of (48) can be reduced to finding a

partition T = (T1 , T2 , . . . , TK) of the set T , defined according to (40), that fulfills (54).

Next result, establishes a relation between the sought partition T of T and a partition P

of the set Ψ computed in Step 2 of the algorithm.

To this end, KL-divergence needs to be properly defined. In general, for two distribu-

tions of a discrete random variable R with range X that are characterized by the pmf ’s

f1(r) and f2(r), the KL-divergence between f1(r) and f2(r) is defined as

D ( f1(r)∥ f2(r)) = ∑
xk∈X

f1(xk) log
f1(xk)
f2(xk)

. (62)

It follows that D ( f1(r)∥ f2(r)) ≥ 0, with equality if and only if f1(r) ≡ f2(r).
A transformation of the sufficient condition in Theorem 4 on a partition T of T to a

partition P of the set Ψ is given by the following lemma.

Lemma 3. Let Pi ⊆ Ψ, let

Ti = {Rk ∈ T ∶ θk ∈ Pi} (63)

and let all residual samples in allRk ∈ Ti fulfill Assumption 1. Then, for any θ p , θq ∈ Θ(1)
and for eachRk ∈ Ti it holds that

l (θ p ∣Rk) ≥ l (θq ∣Rk) , (64)

if and only if for each θk ∈ Pi it holds that

D (p (r∣θk) ∣∣p (r∣θq)) ≤ D (p (r∣θk) ∣∣p (r∣θq)) . (65)

Moreover, it holds that
arg max

θ∈Θ(1)
∑
Rk∈T i

l (θ∣Rk) = arg min
θ∈Θ(1)

∑
θ k∈P i

D (p (r∣θk) ∣∣p (r∣θ)) . (66)

Proof. Given in Appendix A.

The problem of finding a partition T of T fulfilling the sufficient condition in Theo-

rem 4 can with aid of Lemma 3 be equivalently stated as the problem of finding a partition

P of Ψ fulfilling the condition (65). Next result verifies that a partition of Ψ computed in

Step 3 of the algorithm indeed satisfies (65).

Lemma 4. LetD be a set of ND residual samples fulfilling Assumption 1, let n < ND , let
T be defined by (40), let Ψ be defined by (49), and let K be a positive integer. Further,
let P⋆ = (P1 , P2 , . . . , PK) be a partition of Ψ such that (51) holds and θ⋆i , i = 1, 2, . . . ,K,
satisfies (52). Then, it holds that

θ⋆i = arg min
θ∈Θ(1)

∑
θ k∈P i

D (p (r∣θk) ∣∣p (r∣θ)) , (67)

for i = 1, 2, . . . ,K. Moreover, for each block Pi ∈ P
⋆ and for each element θk ∈ Pi it holds

that

D (p (r∣θk) ∣∣p (r∣θ⋆i )) ≤ D (p (r∣θk) ∣∣p (r∣θ⋆j )) , (68)

for j = 1, 2, . . . ,K.
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Proof. Given in Appendix A.

With help of Theorem 4, Lemma 3, and Lemma 4, it can be proved that the output

from the algorithm in Section 5.3 indeed is a solution to the problem (48).

Theorem 5. Let D be a set of ND residual samples fulfilling Assumption 1, let n < ND,
and let K be a positive integer. Further, letD, n, and K, be input to the algorithm defined
by Steps 1-4 in Section 5.3 and let θ(K) be the output. Then, θ(K) is a solution to (48).

Proof. Due to Step 3 in the algorithm, it is clear that the partition P⋆ = (P1 , P2 , . . . , PK)

fulfills (51) and that θ⋆i , i = 1, 2, . . . ,M, fulfills (52). Lemma 4 then implies that (68)

holds for each block Pi ∈ P
⋆ and for each element θk ∈ Pi , and that θ⋆i , i = 1, 2, . . . ,M,

fulfills (67). Now define T = (T1 , T2 , . . . , TK)with Ti according to (63) for i = 1, 2, . . . ,K.
Note that due to (49) and (63), it follows that there is block Ti ∈ T and an elementRk ∈ Ti
for each element θk ∈ Pi and for each block Pi ∈ P

⋆, and vice versa. The fact that P⋆ is a
partition of Ψ, then implies that T is a partition of T . Appliance of Lemma 3 to each block

Pi ∈ P
⋆ then asserts that the partition T satisfies l (θ⋆i ∣Rk) ≥ l (θ⋆j ∣Rk) for each block

Ti ∈ T and for each element Rk ∈ Ti , for all j = 1, 2, . . . ,K. Further, since (67) holds
for θ⋆i and due to (66) in Lemma 3, it follows that θ⋆i = argmaxθ∈Θ(1) ∑Rk∈T i l (θ∣Rk),

i = 1, 2, . . . ,M. The claim then follows directly from Theorem 4.

5.5 Implementation Issues

As said in Section 5.3, the most crucial part of the learning algorithm is Step 3, i.e., to

find a partition P of Ψ by means of hard K-means clustering (Bishop, 2006).

The complexity properties of the general K-means clustering problem depends on

which similarity measure, in the present case the KL-divergence, that is used in (51). For

instance, the problem is NP-hard (Aloise et al., 2009) when the (squared) Euclidean

distance is used, but can be solved in a polynomial time if a variance-based measure is

used (Inaba et al., 1994).

There are however a variety of heuristic algorithms available for solving the general

clustering problem approximately. One widely used (Berkhin, 2002) and in practice

often successful alternative, is the local search based K-Means algorithm (MacQueen,

1967; Lloyd, 1982), which also is referred to as Lloyd’s algorithm. For the particular, and

present, case when the KL-divergence is used as similarity measure, am approximate

solution to the clustering problem can be computed with the K-means algorithm in

polynomial time (Manthey and R0̈glin, 2009). For a general treatment of clustering

problems with similarity measures based on Bregman divergences, including the KL-

divergence, see Banerjee et al. (2005).

The K-means algorithm solves (51) by alternating two steps: i) given a set of distri-

bution parameters, assign each θk ∈ Ψ to the most similar, in a KL-divergence sense,

distribution parameter, ii) update the distribution parameters according to the new

assignments. These two steps are iterated until no assignments change, which eventually

will be the case after a finite number of iterations (Selim and Ismail, 1984; Bottou and

Bengio, 1995).
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As a remark, it is noted that the assignment and update steps in fact (Bishop, 2006)

correspond to the Expectation andMaximization steps, respectively, in the EM-algorithm

(Dempster et al., 1977). Thus, when the K-means algorithm is employed for solving

the clustering problem in Step 3, the learning algorithm in a sense resembles the EM-

algorithm.

It is also noted that in a practical implementation of the learning algorithm, the

training data set T is preferably split into an estimation data set E and a validation data

set V , in order to avoid over-fitting, see, e.g., Ljung (1999). In this setting, the estimation

data set E is used when solving (48) to obtain θ(K), for a fixed K, and then the validation

data set V is used to evaluate if the obtained solution θ(K) and K satisfies (41).

Parameter Choices

The only parameter involved in the learning problem (41) is n, the number of residual

samples used in eachRk when calculating the set T according to (40), which is done in

Step 1 of the algorithm.

The choice of n is determined by the properties of the considered system. As said

in Section 5.2, n should be chosen so that eachRk ∈ T contains residual samples from

only one operating mode of the system. In order to achieve this, n should be chosen so

that the time it takes to collect a set of n residual samples is less than the average time

that the system spends in one operating mode.

Before learning the parameter θNF, the quantization M of the residual, i.e., the size

of the residual range space and thereby the resolution of the residual distribution (1),

must be determined and the training data inD formated accordingly. Choosing M, in

fact, corresponds to the well-studied, but nevertheless difficult, problem of choosing the

number of bins in a regular histogram given a sample of data. Numerous approaches for

solving this problem exist, see for example Davies et al. (2009) and references therein.

Regardless of the method used to solve the problem, the choice of M is a trade-off

between accuracy and computational complexity, in terms of time and storage. A larger

M results in a more accurate discretization of the residual and higher resolution of the

probability distributions. On the other hand, a large M requires more memory and

involves more computations. The choice of M is also related to the choice of n and N ,

since a small n, or N , together with a large M will result in an inadequate estimation of

the distribution, i.e., a sparse histogram.

The resolution of the residual also affects the fault detection performance in the

sense that if the resolution is high, small deviations of the residual can be perceived and

thereby small faults can be detected. As a guideline, the resolution of the residual can be

matched to the size of the smallest fault that should be possible to detect.

6 Application Example

The proposed residual evaluation approach has been applied to the problem of fault

detection in the gas-flow system of a Scania 6 cylinder, 13 liter, truck diesel engine

equipped with Exhaust Gas Recirculation (EGR), Variable Geometry Turbine (VGT),
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and intake throttle. The overall purpose of the study was to evaluate and demonstrate

the proposed on-line residual evaluation algorithm, as well as the off-line algorithm

for learning no-fault residual distributions, using measurement data. In addition, it is

also illustrated how the fault detection performance of the residual evaluation test is

influenced by different values of the involved parameters, in particular the size N of the

residual sample setR, and the number K of no-fault distribution parameters in θNF.

6.1 Automotive Gas-Flow Diagnosis

The automotive gas-flow system, or rather the truck diesel engine itself, is a complex

system that operates in a variety of different operatingmodes characterized by for instance

ambient pressure and temperature, engine torque, engine speed, etc. Fault diagnosis of

the gas-flow system consists of detecting and isolating faults in sensors that measure

pressure, temperature, and mass-flow, actuators that control the EGR, VGT and intake

throttle, as well as faults related to, e.g., manifold leakages and clogged air filters. The

main incentives for gas-flow diagnosis are fault management by means of fault tolerant

control, On-Board Diagnosis (OBD) regulations, and repair and maintenance.

The model of the gas-flow system, which is described in Wahlström and Eriksson

(2011), relies on both fundamental first principle physics and gray-box modeling. For

diagnosis of the gas-flow system, a set of model-based residual generators were designed

with the sequential residual generation method described in Svärd and Nyberg (2010).

Naturally, the model does not describe all aspects of the system, leading to that all

residuals exhibit properties similar to those illustrated in Figure 1.

The particular residual considered in this study is sensitive to 10 faults: 3 leakages, 6

sensor faults, and 1 actuator fault. The value of the residual is based on a comparison of

two modeled values of the temperature before the cylinders.

6.2 Learning of No-Fault Distribution Parameters

The data set used for the learning contains measurements from parts of a test drive,

including both city and high-way driving, from Södertälje to Arvidsjaur in Sweden.

The data set contains in total 156,912 measurements sampled at a rate of 0.1 s, which

corresponds to more than 4 hours of driving. The measurements in the data set were

used as input to the considered residual generator and the residual samples used in the

study were computed off-line. In order to minimize the risk of over-fitting the no-fault

distribution parameters to the training data, the set of residual samples was divided into

an estimation data set, E , and a validation data set, V , of equal size.

Parameter Values

The value of the parameter M, i.e., the quantization of the residual samples, was chosen

to be M = 80. This makes it theoretically possible to detect faults that cause deviations

of the residual of about 3 kelvin. For this application, this is a good trade-off between

complexity, in terms of required memory and computational effort, and accuracy.
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Figure 7: Evaluation of model fit metrics V (E , θ(K)) (dashed, black) and V (V , θ(K))
(solid, red) for different of values of K.

By a brief analysis of the residual samples, it seems that the minimum time that the

gas-flow system spends in one operating mode is approximately 4 s. This can be seen in

Figure 1, which in fact shows a subset of the residual samples used in this study. Since

the sample rate is 0.1 s, the parameter n, which specifies the number of residual samples

in eachRk in the set T calculated in Step 1 of the algorithm, should be chosen to satisfy

n < 40, see Section 5.5. Based on this, the parameter was chosen to be n = 32.

Results

The algorithm for learning no-fault distribution parameters described in Section 5.3,

was implemented in Matlab. To solve the involved clustering problem, the K-means

algorithm (MacQueen, 1967; Lloyd, 1982) was employed. The algorithm was run with

K ∈ {1, 2, . . . , 79}.
Figure 7 shows the model fit metric (47) evaluated for the estimation data set E and

validation data setV , andwith the parameters θ(K), K ∈ {1, 2, . . . , 79}, obtained as output
from the algorithm. In Figure 7 it can first of all be seen that the quantitative behaviors

of V (E , θ(K)) and V (V , θ(K)) are similar, but that V (E , θ(K)) always is larger than
V (V , θ(K)). The latter seems natural since the data set E indeed was used as input to

the learning algorithm. Second, it can also be noticed that the improvement in model fit

as a function of K is larger for smaller K.
Based on the above observations, and with respect to the trade-off between model

fit and required computational effort stated by (41), K = 10 was chosen. The 10 no-fault

distribution parameters, i.e., the rows of θ(10), are shown in Figure 8. Note that the

characteristics of the learned distribution parameters are quite different, some are multi-
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Figure 8: The no-fault distribution parameters contained in θNF = θ 10.

modal and some have only one single mode. In addition, the distribution parameters are

overlapping.

6.3 Evaluation Setup

The set of residual samples used in the evaluation is based on the validation data set V ,

which contains in total 78,456 residual samples. Note that this data set is different than

the estimation data set used to learn the no-fault distribution parameters as described

above.

Considered Fault

The fault considered in the evaluation is a fault in the boost pressure sensor. The relation

between the boost pressure sensor signal ypim and the considered residual is dynamic,

and the residual value r depends on the derivative of the boost pressure sensor signal,

as well as the actual sensor signal, i.e., r = F(ypim , ẏpim , . . .), where F(⋅) is a non-linear
function. The considered fault scenario is a gain fault in the boost pressure sensor, that is,

the sensor signal ypim fed to the residual generator is ypim = δ ⋅ pim, where pim is the actual

boost pressure, and δ ≠ 1 indicates a gain fault. Gain faults in the range δ ∈ [0.2, 1.8]
were implemented off-line by modification of the sensor signal.

Fault Detection PerformanceMetrics

The main metric considered in the evaluation is the power function, in this context

defined as

βλR(δ) = Pr (detection∣δ) = Pr(λR (R) > J∣δ), (69)
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for the test λR (R) > J, defined in Section 4. Note that δ = 1 in the power function (69)

corresponds to that α ∈ Υ and θ = θNF in the power function (34).

To study another important aspect of the detection performance, the Mean Time
to Detection (MTD) will also be considered. Note that the choices of the values of the

parameters N and J, i.e., the size of the residual sample setR and the detection threshold,

respectively, are a trade-off between the metrics measured by the power function and

the MTD, see Section 4.2.

In order to be able to say something about the relative performance of the proposed

residual evaluation approach, it will be compared to the often in practice used norm-

based residual evaluation approach built upon the test statistic s(R) = 1

N ∑rk∈R̄ r̄2k
where R̄ = (r̄1 , r̄2 , . . . , r̄N) is a low-passed filtered version of the sampleR. Note that

the purpose of this comparison merely is to give a feeling of the relative performance

of the proposed residual evaluation approach, and the comparison is not claimed to

be exhaustive. The low-pass filtering was in this study performed with a first-order

Butterworth filter and for comparison, four different cut-off frequencies, f1 = 0.005

Hz, f2 = 0.05 Hz, f3 = 0.5 Hz, and f4 = 4.5 Hz, were used. The corresponding test

statistics are denoted s1, s2, s3, and s4. Recall that the residual is sampled at a rate of 0.1 s,

corresponding to a frequency of fs = 10 Hz.

Implementation Details

The residual evaluation algorithm described in Section 4.2, was implemented in Matlab.

To solve the optimization problem (28), a tailored solver was generated using the soft-

ware tool CVXGEN (Mattingley and Boyd, 2012), see Section 4.3. With this solver, the

optimization problem (28) in the setting of this study, could be solved in the time scale

of 10−4 s. Solving the corresponding problem using the Matlab optimization toolbox

results in solving times of the magnitude of 10−3 s. Solving the original numerator MLE

problem (25) using the Matlab optimization toolbox however renders solving times of

magnitude 10−1 s.

As said in Section 4, it is only justified, in terms of the probability of false detection,

to consider the relaxed problem (28) instead of the original MLE problem (25) if the size

N of the set of residual samples R is sufficiently large. To investigate the meaning of

sufficiently large in the context of this study, Figure 9 shows a comparison of the solutions

to the respective problems, as well as a comparison of the corresponding test statistics, for

different values of N in the no-fault case. Figure 9a shows a comparison of the solution

αR to the relaxed problem (28) and the solution αO to the original MLE problem (25),

by means of the quantity ∥ϕR − ϕO∥
2
2, where ϕR = ∑

K
i=1 αR

i θNF
i and ϕO = ∑

K
i=1 αO

i θNF
i .

Figure 9b shows a comparison of the test statistics λR(R), based on the relaxed problem

and λ(R), based on the original MLE problem, by means of the quantity
λ(R)
λR(R) . The

results shown in Figure 9 are the average of 150,000 runs. Based on Figure 9, it was

concluded that in the context of this study, N > 1000 is good enough to justify the

switch to the relaxed problem. Recall from Section 4.3 that the complexity of the relaxed

problem, in terms of computational time and memory, is independent of N .

The threshold J for the test λR(R) > J, as well as the thresholds for the norm-based
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Figure 9: Investigation of how the relation between the solutions αR and αO to the

relaxed (28) and original (25) MLE problems, respectively, as well as the corresponding

test quantities, λR(R) and λ(R), changes with the size N of the residual sampleR.

tests, was computed based on the estimation data set used in the learning of the no-fault

distribution parameters. All thresholds were computed in order to give a probability of

false detection of 5 %. All residual sample sets were taken from the validation data set by

using a sliding window, see Section 4.2.

6.4 Evaluation Results

Figure 10 shows the residual and the test statistics λR(R) and s1(R), for size N = 1024 of
the set of residual samplesR, in a test case when an abrupt fault occurs at time t = 450 s.
The fault is a 10 % gain fault in the boost pressure sensor, which correspond to δ = 1.1.
For the test statistic λR(R), the parameter θNF = θ(10) illustrated in Figure 8 was used.

It can be noted that, as in Figure 1, the residual in Figure 10 is non-zero in the no-fault

case, i.e., for t < 450 s, and its distribution exhibit non-stationary features in both the

no-fault and fault cases. Further, it can also be seen that the difference between the

residual in the no-fault and fault cases are small, but that there is a significant difference

between the test statistic λR(R) in the no-fault and fault cases. Since λR(R) is above the
threshold in the fault case, the present fault can be detected. The fault can however not

be detected in a reliable way with the test statistic s1(R), which in this case performed

better than each of the test statistics s2(R), s3(R), and s4(R).

Power as Function of N

To illustrate how the power of the test λR(R) > J varies with the number N of residual

samples inR, Figure 11 shows the power function for the test for different values of N
and parameter θNF = θ(10). Figure 11 clearly shows that the power of the test increases
with N .

In Figure 11, it can be seen that as small faults as δ ≈ 0.95 and δ ≈ 1.05, corresponding
to gain faults in the boost pressure sensor of about ± 5 %, may be possible to detect if N
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Figure 10: Residual r (top), test statistic λR(R) (middle), and test statistic s1(R) (bottom),

when an abrupt fault occurs at t = 450 s. The fault is a 10 % gain fault in the boost pressure

sensor, which corresponds to δ = 1.1.
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Figure 11: Power function βλR (δ) for the test λR(R) > J for different sizes N of the

sampleR. The power increases with N .

is sufficiently large. To further illustrate this, Figure 12 shows the Receiver Operating

Characteristic (ROC) curve for different values of N , for a test case with δ = 1.05. The

ROC curve shows the relation between the True Positive Rate (TPR) of detection (y-axis),

and the False Positive Rate (FPR) of detection (x-axis), i.e., the relation between correct

detections and false detections, when the detection threshold J is varied. Figure 12 again
shows that the detection performance increases with N , but also that the rate of false

detections can be made lower than the rate of actual detections even for moderate values

of N .

Power as Function of K

To analyze how the power of the test λR(R) > J varies with different values of the

parameter θNF = θ(K), specifying the set of no-fault residual distributions, or more

specifically with K, i.e., the number of operating modes of the system, Figure 13 shows

the power function for the test for different values of K. All considered parameters θ(K)
were obtained by means of the algorithm described in Section 5. To also see how the

power of the test depends on the relation between K and N , Figure 13 shows how the

power function depends on K for different values of N .

The general conclusion from the evaluation shown in Figure 13, is that for a given

256 ≤ N ≤ 1024, the power of the test λR(R) > J is almost equal for all considered K.
For small N , e.g., N = 64, however, the power increases with K and for large N , e.g.,

N = 4096, the power increases as K decreases. The liable rationale behind this is that a

small K results in a generic and averaged, in terms of operating modes, description of
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Figure 12: ROC for test λR(R) > J when δ = 1.05 for different sizes N of the sampleR.

the set of no-fault residual distributions. A large set of residual samples typically means

residual samples from a variety of operating modes, while a small set of residual samples

on the other hand means residual samples from only a few operating modes. This means

that a parameter θNF corresponding to a small K, typically can describe the distribution

of a large set of no-fault residual samples, i.e., a large N , better than the distribution of

a small set of no-fault residual samples, i.e., a small N . An accurate description of the

no-fault residual distribution makes it possible to distinguish such from a faulty residual

distribution, which indeed means good detection power.

Comparison of Tests

Figure 14 shows a comparison of the power functions for the tests based on the test

statistics λR (R), s1 (R), s2 (R), s3 (R), and s4 (R), for different values of the parameter

N , which specifies the number of residual samples inR. For the test statistic λR (R), the
parameter θNF = θ(10) illustrated in Figure 8 was used.

Figure 14 shows that the powers of all tests increases with N and that the differences

between the power of the tests seem to decrease with an increasing N . It can also be seen

that the power function for the test based on λR (R) is near symmetric for all N , while

the power functions for the other tests are asymmetric and tend to be less powerful for

faults sizes δ < 1. The difference in power for δ < 1 is for example significant for N = 64.
The mean time to detection (MTD) for each of the tests based on λR (R), s1 (R),

s2 (R), s3 (R), and s4 (R), is shown in Figure 15, for different sizes N of the sampleR.

In order to get comparable results, the MTD was computed as the mean of the

detection time for the two largest faults, corresponding to δ = 0.2 and δ = 1.8, since all
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Figure 13: Comparison of power functions for the test based on λR(R) for a set of no-fault
distribution parameters θ(K) with different values of K.

considered test statistics are able to detect these faults to some extent, see Figure 14. Each

fault was injected in the test sequence at 10 time instances.

In Figure 15, it can be seen that the MTD’s for all tests increase for N > 256. For

N < 256, however, the MTD decreases with N for the norm-based tests and increases

with N for the test based on λR(R). It is worth noting that the MTD for the test based

on λR(R) is smaller for all N than the MTD’s for all other tests.

7 Conclusions

As illustrated by Figure 1, residuals in practice often deviate from zero even in the

no-fault case due to uncertainties and disturbances caused by for example modeling

errors, measurement noise, and unmodeled phenomena. In addition, due to changes

in the operating mode of the underlying system, the magnitude of uncertainties and

disturbances is time-varying, causing the behavior of residuals to be non-stationary. To

handle these issues, a novel statistical residual evaluation approach has been proposed.

The main contribution is to base the residual evaluation on an explicit comparison of

the probability distribution of the residual, estimated on-line using current data, with a

no-fault residual distribution. The no-fault distribution is based on a set of a-priori known
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Figure 14: Comparison of power functions for the tests based on λR(R) (solid with dot

markers), s1(R) (solid), s2(R) (dashed), s3(R) (dash-dotted), and s4(R) (dotted), for
different sizes N of the sampleR.
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Figure 15: Comparison of the Mean Time to Detection (MTD) for the tests based on

λR(R) (solid with dot markers), s1(R) (solid), s2(R) (dashed), s3(R) (dash-dotted),
and s4(R) (dotted), for different sizes N of the sampleR.
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no-fault distributions, and is continuously adapted to the current operating mode of the

system by means of the likelihood maximization problem (26). A computational efficient

version of the residual evaluation test statistic suitable for online implementation has

been derived by considering a properly chosen approximation (28) to the maximization

problem (26). The fault detection properties of the resulting residual evaluation test have

been analyzed by means of Theorems 2 and 3.

As a second contribution, a method has been proposed for learning the required set

of no-fault residual distributions off-line from training data. Thus, by using this method,

the overall residual evaluation method is data-driven and no assumptions regarding the

properties of the probability distribution of the residual, nor the properties of the faults

to be detected, are needed. The method was given by means of an algorithm based on

K-means clustering, and was theoretically justified in Theorem 5.

The proposed residual evaluation method has been evaluated with measurement

data on a residual for fault detection in the gas-flow system of a Scania truck diesel

engine. The proposed test statistic performs well despite non-conventional properties

of the considered residual. For instance, the method outperforms regular norm-based

methods using constant thresholding in the sense that small faults can be detected in cases

where these methods fail. It has been empirically investigated how the fault detection

performance of the proposed method is influenced by different values of the involved

parameters.
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A Proofs of Theorems and Lemmas

Lemma 5. Let {r1 , r2 , . . . , rN} be a set of iid samples from the pmf p (r∣ϕ) described by (1),
let ϕ⋆N be the MLE of ϕ based on {r1 , r2 , . . . , rN}, and let

Φ
′
=

⎧⎪⎪
⎨
⎪⎪⎩

ϕ ∈ RM
∶ ϕ j > 0,

M
∑
j=1

ϕ j = 1

⎫⎪⎪
⎬
⎪⎪⎭

. (70)

Then, for every ε > 0 and ϕ ∈ Φ′, it holds that

lim
N→∞

Pr (∣ϕ⋆N − ϕ∣ ≥ ε) = 0. (71)

Proof. According to (Casella and Berger, 2001,Theorem 10.1.6), (71) holds if the following

regularity conditions on p (r∣ϕ) are satisfied: i) r1 , r2 , . . . , rN are iid samples from p (r∣ϕ);
ii) the parameter ϕ is identifiable, i.e., if ϕ ≠ ϕ′, then p (r∣ϕ) ≠ p (r∣ϕ′); iii) the densities
p (r∣ϕ), for all ϕ ∈ Φ′, have common support, and p (r∣ϕ) is differentiable in ϕ; iv) the
parameter space Φ′ contains an open set φ of which the true parameter ϕ is an interior

point. It is first noted condition i) is trivially satisfied by assumption. For condition ii),
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assume that ϕ ≠ ϕ′. This implies that there exists k ∈ {1, 2, . . . ,M} such that ϕk ≠ ϕ′k ,
and it holds that

p (r = xk ∣ϕ) = ϕk ≠ ϕ′k = p (r = xk ∣ϕ) ,

and hence p (r∣ϕ) ≠ p (r∣ϕ′). Regarding condition iii), it is recalled that the support of a

function is the set of points where the function is non-zero zero. Thus, the first part of

condition iii) is trivially satisfied due to the form of the pmf p (r∣ϕ) in (1) and the prop-

erties of the parameter space Φ′ defined by (70). Considering next the differentiability, it
holds that

∂
∂ϕk

p (x j ∣ϕ) =
⎧⎪⎪
⎨
⎪⎪⎩

1 k = j
0 k ≠ j

for j = 1, 2, . . . ,M, and hence condition iii) is satisfied. For condition iv), it is noted that

the parameter space Φ′ is an open set. Therefore every ϕ ∈ Φ′ is an interior point of an

open set and condition iv) is satisfied. This completes the proof.

Lemma 6. LetR be a set of residual samples, c1 , c2 , . . . , cM be defined according to (13),
and let Assumptions 1 and 2 be valid. Further, let α⋆ ∈ Υ and θ⋆ ∈ Θ(K) fulfill

K
∑
i=1

α⋆i θ⋆i j =
c j
N
, (72)

where N = ∑M
j=1 c j . Then, for each α ∈ Υ and θ ∈ Θ(K) it holds that

D (p (r∣α⋆ , θ⋆) ∥p (r∣α, θ)) = 1

N
log
L (α⋆ , θ⋆∣R)
L (α, θ∣R)

, (73)

where p (r∣⋅) is given by (3) and L (⋅, ⋅∣R) by (14).

Proof. It is first noted that p (x j ∣α, θ) = p (r = x j ∣α, θ) = ∑K
i=1 α iθ i j according to (3)

and (1). By using this, (62), and (72), the left hand side of (73) can be written as

D (p (r∣α⋆ , θ⋆) ∥p (r∣α, θ)) =
M
∑
j=1

p (x j ∣α⋆ , θ⋆) log
p (x j ∣α⋆ , θ⋆)
p (x j ∣α, θ)

=
M
∑
j=1
(

K
∑
i=1

α⋆i θ⋆i j) log
∑

K
i=1 α⋆i θ⋆i j
∑

K
i=1 α iθ i j

=
M
∑
j=1

c j
N

log

c j
N

∑
K
i=1 α iθ i j

.

(74)

Consider next the right hand side of (73). Due to the prerequisites of the lemma, the

likelihood l (⋅, ⋅∣R) is given by (15). With this, the right hand side of (73) can be written



A. Proofs of Theorems and Lemmas 161

as

1

N
log
L (α⋆ , θ⋆∣R)
L (α, θ∣R)

=
1

N
(l (α⋆ , θ⋆∣R) − l (α, θ∣R))

=
1

N
⎛

⎝

M
∑
j=1

c j log [
K
∑
i=1

α⋆i θ⋆i j] −
M
∑
j=1

c j log [
K
∑
i=1

α i θ i j]
⎞

⎠

=
1

N

M
∑
j=1

c j log
∑

K
i=1 α⋆i θ⋆i j
∑

K
i=1 α i θ i j

=
1

N

M
∑
j=1

c j log
c j
N

∑
K
i=1 α i θ i j

,

which equals (74).

Proof of Lemma 3. First note that (63) implies that for each θk ∈ Pi there is an element

Rk ∈ Ti , and vice versa. By using the same arguments as in the proof of Theorem 4, it

holds that the log-likelihood l (θk ∣Rk) is given by (57). Thus, each MLE problem in (49)

is equivalent to (16) if K = 1 and α1 = 1, or equivalently (17), and Theorem 1 is applicable.

From Theorem 1 it then follows that θk j =
ck j
n , j = 1, 2, . . . ,M, for each θk ∈ Ψ. From

Lemma 6, again with K = 1 and α1 = 1, it follows that

D (p (r∣θk) ∥p (r∣θ)) =
1

n
log
L (θk ∣Rk)

L (θ∣Rk)

=
1

n
(l (θk ∣Rk) − l (θ∣Rk)) ,

(75)

for any θ ∈ Θ(1). Consider now the inequality (65). By exploiting (75), the inequality (65)

can be written as

D (p (r∣θk) ∥p (r∣θ p)) ≤ D (p (r∣θk) ∥p (r∣θq))
⇐⇒

1

n
(l (θk ∣Rk) − l (θ p ∣Rk)) ≤

1

n
(l (θk ∣Rk) − l (θq ∣Rk))

⇐⇒

l (θ p ∣Rk) ≥ l (θq ∣Rk) ,

and equivalence between (65) and (64) has been established. Consider now (66). By

again using (75) and (63), it follows that

arg min
θ∈Θ(1)

∑
θ k∈P i

D (p (r∣θk) ∥p (r∣θ)) = arg min
θ∈Θ(1)

∑
Rk∈T i

1

n
(l (θk ∣Rk) − l (θ∣Rk)) . (76)

Since θ only is present in the term l (θ∣Rk) in (76), and due to the minus sign in front

of this term, (76) can be written as

arg min
θ∈Θ(1)

∑
Rk∈T i

1

n
(l (θk ∣Rk) − l (θ∣Rk)) = arg max

θ∈Θ(1)
∑
Rk∈T i

l (θ∣Rk) ,
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and the proof is complete.

Proof of Lemma 4. First note that by using the same arguments as in Theorem 4 and

Lemma 3 it holds that the likelihood function l (θk ∣Rk) is given by (57) and that θk j =
ck j
n ,

j = 1, 2, . . . ,M, for each θk ∈ Ψ. Consider now the claim (67). Define Ti according to (63)

for i = 1, 2, . . . ,K. Due to (63), (52), and since θk ∈ Pi ∈ P
⋆ and P⋆ = ⋃P i∈P⋆ ⋃θ k∈P i θk =

Ψ, it follows that

θ⋆i j =
1

∣Pi ∣
∑
θ k∈P i

θk j =
1

∣Ti ∣
∑
Rk∈T i

ck j
n

=
∑Rk∈T i ck j
∣Ti ∣ ⋅ n

,

(77)

for i = 1, 2, . . . ,K and j = 1, 2, . . . ,M. It is now noted that∑Rk∈T i ck j denotes the number

of samples in allRk ∈ Ti that takes value x j , and that ∣Ti ∣ ⋅ n denotes the total number of

samples in allRk ∈ Ti , which indeed is equal to∑
M
j=1∑Rk∈T i ck j . From (77), it can thus

be deduced that θ⋆i j =
c j

∑M
j=1 c j

, where c j = ∑Rk∈T i ck j . Theorem 1 then implies that

θ⋆i = arg max
θ∈Θ(1)

l (θ∣ ∪Rk∈T i Rk) (78)

for i = 1, 2, . . . ,K. Now note that due to the properties of the log-likelihood function (57)

it holds that

l (θ∣ ∪Rk∈T i Rk) =
M
∑
j=1
∑
Rk∈T i

ck j log θ j

= ∑
Rk∈T i

M
∑
j=1

ck j log θ j

= ∑
Rk∈T i

l (θ∣Rk)

(79)

and thus (78) turns into

θ⋆i = arg max
θ∈Θ(1)

∑
Rk∈T i

l (θ∣Rk) , (80)

for i = 1, 2, . . . ,K. From (80), the claim (67) follows directly via (66) in Lemma 3. Now

turn to the claim (68) and denote

M(P⋆) =
K
∑
i=1
∑
θ k∈P i

D (p (r∣θk) ∥p (r∣θ⋆i )) , (81)

where, due to (67), it holds that

θ⋆i = arg min
θ∈Θ(1)

∑
θ k∈P i

D (p (r∣θk) ∣∣p (r∣θ)) , (82)
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for i = 1, 2, . . . ,K. To show that (68) holds by contradiction, assume that there exists

θ p ∈ Pi , for some Pi ∈ P
⋆, such that

D (p (r∣θ p) ∣∣p (r∣θ⋆i )) > D (p (r∣θ p) ∣∣p (r∣θ⋆j )) , (83)

for some j = 1, 2, . . . ,K. Now define

M̄ = M(P⋆) + D (p (r∣θ p) ∣∣p (r∣θ⋆j )) − D (p (r∣θ p) ∣∣p (r∣θ⋆i )) , (84)

and note that, due to (83), it holds that M̄ < M(P⋆). Define a new partition P′ of Ψ by

moving θ p from block Pi ∈ P
⋆ to block P j ∈ P

⋆, i.e., let P′ = (P′1 , P
′
2 , . . . , P

′
K) where

P
′
l =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Pi ∖ {θ p} , l = i
P j ∪ {θ p} , l = j
Pl , else.

(85)

Form

M(P′) =
K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ′l)) (86)

where

θ′l = arg min
θ∈Θ(1)

∑
θ k∈P′l

D (p (r∣θk) ∣∣p (r∣θ)) , (87)

for l = 1, 2, . . . ,K. It is first noted that due to Lemma 3, and a similar argument as above

including (79), (78), and (77), the distribution parameters θ′l , l = 1, 2, . . . ,K, satisfy (52).
Consider now the quantity M̄ −M(P′), which by using (84) and (86) can be written as

M̄ −M(P′) = M(P⋆) + D (p (r∣θ p) ∣∣p (r∣θ⋆j )) − D (p (r∣θ p) ∣∣p (r∣θ⋆i ))

−
K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ′l)) .
(88)

Due to (81) and the properties of the partition P′ as given by (85), it holds that

M(P⋆) + D (p (r∣θ p) ∣∣p (r∣θ⋆j )) − D (p (r∣θ p) ∣∣p (r∣θ⋆i ))

=
K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ⋆l )) ,

and therefore (88) can be written as

M̄ −M(P′) =
K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ⋆l )) −
K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ′l)) . (89)
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It is now noted that due to (87) it holds that

K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ′l)) ≤
K
∑
l=1
∑
θ k∈P′l

D (p (r∣θk) ∥p (r∣θ⋆l ))

and therefore (89) implies that M̄ −M(P′) ≥ 0, or equivalently that M(P′) ≤ M̄. Thus,

it holds that M(P′) ≤ M̄ < M(P⋆), which contradicts the statement (51). Hence, (83)

cannot hold and consequently (68) holds and the proof is complete.
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Abstract

Fault detection and isolation (FDI) in automotive diesel engines is important

in order to achieve and guarantee low exhaust emissions, high vehicle uptime,

and efficient repair and maintenance. This paper illustrates how a set of gen-

eral methods for model-based sequential residual generation and data-driven

statistical residual evaluation can be combined into an automated designmethod-

ology. The automated design methodology is then utilized to create a complete

FDI-system for an automotive diesel engine. The performance of the obtained

FDI-system is evaluated using measurements from road drives and engine

test-bed experiments. The overall performance of the FDI-system is good in

relation to the required design effort, in particular since no specific tuning of

the FDI-system, nor any adaption of the design methodology, were needed. It is

illustrated how estimations of the statistical powers of the fault detection tests

in the FDI-system can be used to further increase the performance, specifically

in terms of fault isolability.
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1 Introduction

Emission related legislations (United Nations, 2008; European Parliament, 2009; Califor-

nia EPA, 2010; United States EPA, 2009) require on-board diagnosis (OBD) of all faults

in automotive engines that may lead to increased exhaust emissions. In addition, fault

accommodation by, e.g., fault-tolerant control (FTC) (Blanke et al., 2006), and off-board

diagnosis, are means in order to meet dependability requirements in the form of high

vehicle uptime, high safety, and efficient repair. A necessity for both diagnosis and fault

accommodation is fault detection and isolation (FDI).

Automotive engines pose several challenges and difficulties when it comes to design

of FDI-systems. Typically, engines are optimized for low-cost and high functionality, and

not for FDI, which means that there is no hardware redundancy in the form of multiple

sensors. To obtain good detection and isolation of faults it is therefore necessary to

employ analytical redundancy and model-based FDI. Due to the inherent complexity of

automotive engines, as well as their multi-domain features due to chemical, mechanical,

and thermodynamic subsystems, modeling results in large-scale, dynamic, and highly

non-linear systems (Wahlström and Eriksson, 2011). Thus, such models must be handled

by the methods used in the design of the FDI-system.

As a consequence of the complexity of automotive engines, in combination with their

wide operating range, models are typically not fully capable of capturing their behavior

in all operating modes. This results in model errors, and in particular stationary model

errors (Höckerdal et al., 2011a,b), regardless of substantial modeling work. In addition, a

model may bemore accurate in one operatingmode than another and since the operating

mode of the engine varies in time, so does the magnitude and nature of the model errors.

These aspects must be taken into account in the design of the FDI-system.

It is clear that design of a complete model-based FDI-system for an automotive

engine, and for large-scale real-world systems in general, is an intricate task that de-

mands a substantial engineering effort. An optimal solution in general requires detailed

knowledge of the behavior of the system and well-defined requirements, which typically

not is available during early design stages. In order to make the overall design process

more systematic and efficient, and in this way enable re-design or re-configuration, and

eventually higher quality, a generic automated methodology for design of FDI-systems

has been developed.

The design methodology relies on previously developed methods for sequential

residual generation (Svärd and Nyberg (2010), Paper B), and statistical residual evalua-

tion (Paper C). The residual generation methods described in Svärd and Nyberg (2010)

and Paper B are together able to design residual generators for fault detection and isola-

tion in systems described by complex large-scale models. This was demonstrated in Svärd

and Nyberg (2012), where they were combined with a residual evaluation approach based

on the Kullback-Leibler divergence (Kullback and Leibler, 1951) and applied to the Wind

Turbine Benchmark (Fogh Odgaard et al., 2009). The residual evaluation approach

employed in Svärd and Nyberg (2012) was however not able to fully handle the issue

concerning time-varying uncertainties related to model errors and operating modes

discussed above. In this work, the automated design methodology is refined by means

of the data-driven statistical residual evaluation approach described in Paper C, which
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indeed is able to handle this issue.

This paper illustrates how an FDI-system for an automotive diesel engine can be

designed by application of this automated design methodology. The overall aim, and the

main contribution, is to demonstrate how a set of general methods may be combined

into a complete methodology in order to solve a real industrial problem, in this case the

indeed challenging problem of automotive diesel engine FDI (Nyberg and Stutte, 2004).

In this sense, this work serves as an illustration of the state-of-practice in model-based

FDI, and in particular sequential residual generation, e.g., Staroswiecki and Declerck

(1989); Cassar and Staroswiecki (1997); Staroswiecki (2002); Pulido and Alonso-González

(2004); Ploix et al. (2005); Travé-Massuyès et al. (2006); Blanke et al. (2006); Svärd and

Nyberg (2010), and statistical residual evaluation, e.g., Willsky and Jones (1976); Gertler

(1998); Basseville and Nikiforov (1993); Peng et al. (1997); Al-Salami et al. (2006); Blas and

Blanke (2011);Wei et al. (2011). Moreover, as a secondary contribution, the usefulness and

properties of the specific methods described in Svärd and Nyberg (2010), Paper B, and

Paper C, are illustrated and discussed. For instance, it is empirically shown how the usage

of residual generators utilizing both integral and derivative causality, i.e., mixed causality,

increases the fault isolability, and how time-varying model errors can be handled in the

framework of statistical likelihood-based residual evaluation.

The paper is structured as follows. Section 2 presents the considered automotive

diesel engine system and the model of the system used in the design of the FDI-system.

Section 3 gives an overview of the different stages in the automated design methodology

from a user perspective. The different methods and their key properties are briefly

discussed but technical details are kept at a minimum. Full details can be found in Svärd

and Nyberg (2010), Paper B, and Paper C. Sections 4 and 5 describe how the automated

methodology was applied to the diesel engine system and discuss details and different

aspects of the resulting FDI-system. In Section 6, the FDI-system is experimentally

evaluated and some final remarks are given in Section 7.

2 Automotive Diesel Engine System

The system considered in this work is a 13-liter six-cylinder Scania truck diesel engine

equipped with Exhaust Gas Recirculation (EGR), Variable Geometry Turbochargers

(VGT), and intake throttle. A schematic of the system is shown in Figure 1. This section

describes the system and the model used in the design of the proposed FDI-system.

2.1 System Description

Consider Figure 1. Air of temperature Tbc and pressure pbc enters the system and passes

the compressor side of the VGT. The compressed air, with mass-flow Wc, then enters

the intercooler after which the pressure of the air is denoted pic. The cooled air then

passes the intake throttle, whose position is given by xth, and which is used to control

the amount of air entering the intake manifold.

The air mass-flow after the intake throttle is denoted Wth, and the pressure and

temperature of the air in the intake manifold are denoted pim and Tim, respectively. In
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Figure 1: Schematic of the automotive diesel engine system. Locations of considered

faults are illustrated with triangles.

the intake manifold, the air is mixed with recirculated exhaust gases, whose mass-flow is

denotedWegr, before it enters the cylinders. The amount of recirculated gas is controlled

by the EGR-valve, whose position is denoted xegr. The total mass-flow of the gas entering

the cylinders is denotedWei.

In the cylinders, the gas is mixed with fuel and then combusted. The amount of fuel

injected into the cylinders is given by ρ, and the rotational speed of the engine is denoted
ne. After the combustion, the gas enters the exhaust manifold. The mass-flow of the

exhaust gas is denotedWeo, and the pressure and temperature of the gas in the exhaust

manifold pem and Tem, respectively. The exhaust gas then passes the turbine side of the

VGT, whose rotational speed is given by ωt, and leaves the system with mass-flowWt.

The geometry of the VGT is controlled with the VGT-valve, whose position is denoted

xvgt.

2.2 Sensors and Actuators

The system is equipped with 4 actuators, uxth , uxegr , uxvgt , uρ , and 7 sensors, ypamb
, yTamb

,

ypic , ypim , yTim
, ypem , yne

. See Table 1 for details.

2.3 Faults

Faults in all sensors and actuators in Table 1, except in actuator uρ and sensor yne
,

are considered. All faults along with their description can be found in Table 2. The
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Table 1: Sensors and Actuators.

Signal Description

uxth Throttle position actuator

uxegr EGR-valve position actuator

uxvgt VGT-valve position actuator

uρ Injected fuel actuator

yne
Engine speed sensor

ypamb
Ambient temperature sensor

yTamb
Ambient pressure sensor

ypic Inter-cooler pressure sensor

ypim Inlet manifold pressure sensor

yTim
Inlet manifold temperature sensor

ypem Exhaust manifold pressure sensor

approximate locations of the faults are marked with triangles in Figure 1.

Modeling of Faults

The faults are modeled as additive signals in corresponding equations in the nominal

model presented in next section. For example, fault ∆ypim , representing a fault in the

intake manifold pressure sensor ypim , is modeled by simply adding ∆ypim to the equation

describing the relation between the sensor value ypim and the actual intake manifold

pressure pim, i.e., ypim = pim + ∆ypim .

The main argument for using this fault modeling approach is that it is considered

to be hard, or even impossible, to know how a faulty component behaves in reality and

data for evaluation and validation of a more detailed fault model is seldom available.

Moreover, modeling faults in this way also results in a minimum of fault modes, which

gives a smaller model. This is beneficial since a smaller model simplifies several steps in

model-based diagnosis, for example residual generation or fault isolation. The last but

not least argument is simplicity, since extending the nominal model with additive fault

signals is straightforward and easy. Nevertheless, the approach has shown to provide

good results (Svärd and Nyberg, 2012).

The adopted approach is nonetheless general, and no assumptions aremade regarding

for example the time-behavior of faults. Note for example that the approach is able

to handle multiplicative faults even though the fault signal is assumed to be additive.

Consider for example a multiplicative fault in ypim given by ypim = δ ⋅ pim, δ ≠ 1, which
can be equivalently described by ∆ypim = pim (δ − 1).

2.4 Model

The model of the automotive diesel engine can be found in Appendix A. The model

contains in total 46 equations, 43 unknown variables, 11 known variables, of which 4 are

actuators and 7 sensors, and 9 faults. Of the 46 equations, 5 are differential equations
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Table 2: Considered Faults.

Fault Description

∆ypamb
Fault, ambient pressure sensor

∆yTamb
Fault, ambient temperature sensor

∆ypic Fault, intercooler pressure sensor

∆ypim Fault, intake manifold pressure sensor

∆yTim Fault, intake manifold temperature sensor

∆ypem Fault, exhaust manifold pressure sensor

∆uxth
Fault, throttle position actuator

∆uxegr
Fault, EGR-valve position actuator

∆uxvgt
Fault, VGT-valve position actuator

and the rest algebraic equations.

Themodel describes the gas-exchange systemof the engine and is described inWahlström

and Eriksson (2011). The model relies on both fundamental first principle physics and

gray-box modeling.

Non-LinearModel Equations

Due to the non-linear characteristics of the considered engine system, the model in

Appendix A contains several non-linear functions. For instance, the function Ψ
γth
th
(Πth)

found in equation e7 is given by

Ψth(Πth) =

⎧⎪⎪
⎨
⎪⎪⎩

Ψ∗th(Πth) if Πth ≤ Πth,lin

Ψ∗th(Πth,lin)
1−Πth

1−Πth,lin
if Πth > Πth,lin

, (1)

where

Ψ
∗
th(Πth) =

√
2γth
γth − 1

(Π
2/γth
th
−Π

1+1/γth
th

),

and Πth,lin and γth are parameters.

For more details, see Wahlström and Eriksson (2011). For notational simplicity,

complicated non-linearities like (1) have in the model given in Appendix A been denoted

by functions named in analogy with Ψ
γth
th
(Πth). For instance, fTeWf

(Wf) in e13 and
ηtm,ωt

(ωt) in e18.

3 Overview of DesignMethodology

This section presents an overview of the automated methodology used to design the

FDI-system for the automotive diesel engine. The actual methods used in the different

design stages are explained and discussed. First, however, a brief description of the

structure of the FDI-system is given.
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3.1 Structure of FDI-System

The proposed FDI-system for the engine contains the subsystems: residual generation,

residual evaluation, and fault isolation, see Figure 2.

Measured signals, y, in this case from the actuators and sensors listed in Table 1,

are used as input to the residual generation block. This block contains a set of residual

generators, R1 , R2 , . . . , Rn , each used to monitor a part of the system. The output from

the residual generation block is a set of residual signals, r1 , r2 , . . . , rn , with r i = R i (y).
The residual signals are used as input to the residual evaluation block, which contains a

set of residual evaluators, T1 , T2 , . . . , Tn . The aim of the residual evaluation is to detect

changes in the residual signal behavior caused by faults in the system. The output from

the residual evaluation block is a set of binary fault detection signals, d1 , d2 , . . . , dn ,
with d i = Ti (r i). Each d i indicates if a fault is present or not in the part of the system

monitored by the corresponding residual generator R i . The set of fault detection signals

d1 , d2 , . . . , dn is finally used as input to the fault isolation block, where they are used to

isolate the detected fault(s).

3.2 Automated DesignMethodology

An overview of the overall methodology used to design the residual generators and

residual evaluators, is shown in Figure 3.

The design methodology depicted in Figure 3 have been developed with the aim to

be automated to a high extent and requires limited human interaction. The methodology

requires the following input:

• Amodel M = (E,X,D,Y, F) of the system, where E is a set of differential-algebraic

equations relating the unknown variables X, differentiated variables D, known
variables Y, and fault variables F.

• A diagnosis requirement F , given as a set of ordered fault pairs (∆ i , ∆ j) ∈ F × F.
The interpretation of (∆ i , ∆ j) ∈ F is that fault ∆ i should be isolable from fault ∆ j .
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• No-fault data Y , given in the form of measurements of the variables in Y.

The output is a set of residual generators R1 , R2 , . . . , Rn , and a set of residual evaluators,

T1 , T2 , . . . , Tn . The specific methods used to design the residual generators and residual

evaluators are described in subsequent sections. Design of the fault isolation subsystem

is briefly discussed in Section 5.3.

3.3 Residual Generation

The method used to design the individual residual generators is described in Svärd

and Nyberg (2010) and belongs to a class of methods referred to as sequential residual
generation, based on ideas originally described in Staroswiecki and Declerck (1989).

Similar approaches are described and exploited in for example Cassar and Staroswiecki

(1997); Staroswiecki (2002); Pulido and Alonso-González (2004); Ploix et al. (2005);

Travé-Massuyès et al. (2006); Blanke et al. (2006).

This class of methods has shown to be successful for real applications (Dustegor et al.,

2004; Izadi-Zamanabadi, 2002; Cocquempot et al., 1998), and also has the potential to

be automated to a high extent (Svärd and Nyberg, 2012). The key property of the specific

method described in Svärd and Nyberg (2010) is its ability to handle mixed causality,
which greatly increases the possibility to detect and isolate faults in large-scale complex

models. This issue is discussed and illustrated in Section 4.

In general, it is possible to create thousands of residual generators with the method

from (Svärd and Nyberg, 2010) for large models. Regarding implementation aspects

such as complexity and computational load it is infeasible, or even impossible, to use all

these residual generators in the FDI-system. In addition, it is often possible to meet the

stated diagnosis requirement with a small subset of all residual generators. Therefore,

the set of residual generators to be contained in the FDI-system is selected by means of a

two-step approach, as also elaborated in Nyberg (1999); Krysander (2006); Nyberg and

Krysander (2008), which is described next.

Two-Step Approach

Given the model M of the system and the diagnosis requirement F , the two steps

illustrated in Figure 4 are conducted. In the first step, a large set of candidate residual
generators, in the form of subsets of the model equations, is found. This step is done in

an exhaustive manner, in the sense that all model equation subsets that can be used as

input to the sequential residual generation method (Svärd and Nyberg, 2010) are found.

For this particular method, it can be shown (Svärd and Nyberg, 2010) that candidate

residual generators by necessity should be based on Minimal Structural Overdetermined

(MSO) sets of equations. There exists efficient algorithms for finding all MSO sets, given

a model, see, e.g., Krysander et al. (2008).

In general, all candidate residual generators found in the first step are not realizable,
i.e., it is not possible to create residual generators from all found candidate residual

generators with the considered method. Therefore, in the second step, a set of realizable

candidate residual generators that fulfills the diagnosis requirement F are selected and

the final set of residual generators R1 , R2 , . . . , Rn is created.
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Realizability of Candidate Residual Generators

Realizability is a general property of a candidate residual generator, i.e., a set of equations,

with respect to a given residual generation method, see Paper B. In the context of the

method (Svärd and Nyberg, 2010), a set of of equations S ⊆ E is said to be realizable if it

can be written in the form

ż = f (z,w1 ,w2 , . . . ,wm , y) (2a)

w1 = g1 (z, y) (2b)

w2 = g2 (z,w1 , ẇ1 , y) (2c)

⋮

wm = gm (z,w1 , ẇ1 ,w1 , ẇ2 , . . . ,wm−1 , ẇm−1 , y) (2d)

where z is a vector of differentiated variables, wi , i = 1, 2, . . . ,m, vectors of algebraic

variables, and y a vector of known variables. In addition, it is for realizability required

that (2) is stable.

A sufficient condition for the ability to transform the equations in S into the form (2),

is the existence of a computation sequence for the unknown variables contained in z and
wi , i = 1, 2, . . . ,m. The existence of a computation sequence depends naturally on the

properties of the equations in S, but also on the causality assumption, i.e., regarding
whether integral and/or derivative causality (Blanke et al., 2006) may be used to handle

differential equations in the computation sequence, and a given set of algebraic equation
solving tools. For further details, see Svärd and Nyberg (2010).

Selection of Residual Generators

Motivated by implementation aspects, it is in the second step desirable to find a minimal

cardinality set of realizable residual generators that fulfills the diagnosis requirement F .

If the number of found candidate residual generators is large, which typically is the case

for large-scale models such as the one considered in this work, the problem of finding

such a minimal set of residual generators is hard, or even impossible, to solve optimally.

However, by relaxing the minimal cardinality requirement, a near optimal solution to the

selection problem can be efficiently computed by means of the greedy residual generator

selection algorithm developed in Paper B.

In the greedy selection algorithm, in each iteration given the set of already selected

candidate residual generators, the candidate residual generator able to isolate most of the
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not already isolable faults in the given diagnosis requirement F is selected, and added to

the solution if it is realizable. This procedure is repeated until F is fulfilled, or no useful

candidate residual generators remains.

In addition to make the selection problem tractable, the greedy selection algorithm

has some additional properties. Specifically, it can be shown (Paper B that if, and

only if, the given diagnosis requirement can be fulfilled for the given model with the

method (Svärd and Nyberg, 2010), then the algorithm will provide a solution.

3.4 Residual Evaluation

The method used to design residual evaluators is described in Paper C. The key property

of this statistical and data-drivenmethod is its ability to handle residuals whose stochastic

behavior vary with the current operating mode of the underlying system. The method is

based on a comparison of the probability distribution of the residual, estimated online

using current data, with a no-fault residual distribution. The no-fault distribution is

based on a set of distributions estimated off-line using training data, and is continuously

adapted to the current operating mode of the system.

Themethod used for design of residual evaluators is illustrated in Figure 5. Given a set

of residual generators R1 , R2 , . . . , Rn and no-fault dataY in the form of measurements of

the input to the residual generators, the residual generators are run and no-fault residual

samples created. By application of the method developed in Paper C which utilizes

K-Means clustering (MacQueen, 1967; Lloyd, 1982), the set of no-fault residual samples

is then used to estimate a set θNF
i of K no-fault distributions for each of the residuals

r1 , r2 , . . . , rn , obtained as output from the residual generators R1 , R2 , . . . , Rn .

Test Statistic

The obtained no-fault residual distributions are then used to create a residual evaluator Ti
for each of the residuals r1 , r2 , . . . , rn . The residual evaluator Ti , with the binary detection

signal d i as output, comprises a fault detection test

d i = Ti (Ri) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if λ i (Ri) > J i ,
0 else,

(3)

where λ i is a test statistic,Ri is a set of discretized samples from residual r i , and J i is a
constant detection threshold.

The test statistic λ i in each fault detection test is designed with the method developed

in Paper C and based on the Generalized Likelihood Ratio (GLR) test. Given a set
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Ri of samples of the residual r i , and the matrix θNF
i containing the estimated no-fault

distributions of r i , the test statistic is given by

λ i (Ri) = −2 log
max
α
L (α, θNF

i ∣Ri)

max
α , θ
L (α, θ∣Ri)

, (4)

where L (α, θ∣Ri) denotes the likelihood of the parameters α and θ, given the residual

samples inRi . The parameters α and θ fully specify the probability distribution of the

samples inRi . In this sense, the quantity in the denominator of (4) corresponds to the

most likely distribution of the samples inRi , and the quantity in the numerator to the

most likely no-fault residual distribution.

Maximum Likelihood Estimations

In Paper C, it is shown that an explicit solution to the maximum likelihood estimation

(MLE) problem in the denominator of (4) can be obtained from the normalized histogram

of the samples inRi . The MLE problem in the numerator however needs to be solved

numerically. In order to enable implementation of the residual evaluators in an online

environment subject to real-time constraints, this problem can be relaxed and posed

as a constrained linear least square problem. This problem can be efficiently solved in

real-time using methods based on convex optimization (Mattingley and Boyd, 2010).

For technical details, see Paper C.

4 Design of Residual Generators

As said in Section 1 it is by OBD-legislations required that emission critical faults in

an automotive engine are detected and isolated. For the considered engine, all faults

found in Table 2 are emission critical. In addition, if not accommodated in time, the

faults in Table 2 may also lead to decreased safety, increased fuel consumption, decreased

driveability, or even engine breakdown. The latter indeed reduces vehicle uptime.

Motivated by this, it is required that all faults found in Table 2 can be detected and

isolated from each other. Thus, the diagnosis requirementF for the diesel engine consists

of all unique pairwise combinations of the 9 faults in Table 2, i.e.,

F = {(∆ypamb
, ∆yTamb

) , (∆ypamb
, ∆ypic ) , . . . , } (5)

with ∣F ∣ = 9 × 9 − 9 = 72.

4.1 Candidate Residual Generators

The model of the engine given in Appendix A together with the diagnosis requirement

F , were used as input to a Matlab implementation of the two-step residual generation

methodology outlined in Section 3.3 and Figure 4.

In total 14, 242 candidate residual generators could be found for the engine model.

These are based on 270MSO sets, found using the algorithm described in Krysander et al.
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(2008). An MSO set by definition contains one more equation than unknown variables.

Given an MSO set, a sequential residual generator is created by removing one equation

and then finding a computation sequence for the unknown variables in the remaining

just-determined set of equations. The number of candidate residual generators that can

be created from a single MSO set thus equals the number of equations in the MSO set.

This is the rationale behind the number of 14, 242 candidate residual generators.

4.2 Residual Generator Selection and Realization

The algorithm (Svärd and Nyberg, 2010) for finding computation sequences for the candi-

date residual generators was configured to allow both integral and derivative causality, i.e.,

mixed causality, and also to use Maple as algebraic equation solving tool, see Section 3.3.

Using the greedy selection algorithm (Paper B) described in 3.3, 8 residual generators,

R1 , R2 , . . . , R8, were selected and realized. For instance, the residual generator R3 has

the form

ω̇t =
Ptηm − Pc

Jtωt

(6a)

Ṫem =
ReTem

pemVemcve
(Wincve (Tem,in − Tem) + Re (Tem,inWin − TemWout)) (6b)

ṗem =
ReTem
Vem

(Weo −Wegr −Wt + ∆Wem
) +

Re

Vemcve
(Wincve (Tem,in − Tem) (6c)

+Re (Tem,inWin − TemWout))

pamb = ypamb
(6d)

pbc = pamb (6e)

xvgt = uxvgt (6f)

⋮

Tem,in = Tamb + (Te − Tamb) exp (−
htotπdpi pe lpi penpi pe

Weocpe
) (6g)

Wegr =
(ṗimVim − RaTimWth +WeiRaTim)

RaTim
(6h)

⋮

Pc =
WccpaTbc

ηc
(Π

1−1/γa
c − 1) , (6i)

with the residual equation r = ypem − pem, corresponding to equation e43 in Appendix A.

Clearly, the structure of residual generator R3 is in accordance with (2). Moreover,

it is noted that residual generator R3 exploits mixed causality. Integral causality is for

example used in (6b) when variable Tem is computed. Derivative causality is employed

when variableWegr is computed in (6h), since ṗim, the derivative of pim, is used.
The use of derivative causality in general assumes that derivatives of known or pre-

viously computed variables can be computed or estimated. In this work, estimation of
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Table 3: Fault Signature Matrix.
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R1 x x x x x x x

R2 x x x x x x x x

R3 x x x x x x x x

R4 x x x x x x x x

R5 x x x x x x x x

R6 x x x x x x x x

R7 x x x x x x x x

R8 x x x x x x x x

derivatives is done by appliance of a low-pass FIR-filter with coefficients calculated accord-

ing to Vainio et al. (1997). This approach was used since it is simple and straightforward

to implement, and gave good results.

The use of integral causality presupposes that ordinary differential equations can be

solved, which in general assumes that consistent initial conditions for the state-variables

are available. There are 5 different state variables present in the set of selected residual gen-

erators: the intake manifold pressure pim, the exhaust manifold pressure pem, intercooler
pressure pic, the exhaust manifold temperature Tem, and the turbine speed ωt. As seen in

Table 1, the three pressures are measured directly. Thus, the values of the corresponding

measured variables at the starting time instant are used as initial conditions for these

variables, e.g., pim(t0) = ypim(t0). For the non-measured state-variable Tem, the initial
condition is set to the value of the measured inlet air temperature yTim

at the starting

time instant. The initial condition for the state-variable ωt is set to a constant nominal

value.

Fault Detectability

Table 3 shows the fault signature matrix (FSM) for the 8 selected residual generators

with respect to the faults in Table 2. In this context, the FSM contains an “x” in position

(R i , ∆x) if the equation containing fault ∆x is used in the computation sequence on

which the residual generator R i is based. This should be interpreted as that residual

generator R i may be sensitive to fault ∆x , meaning that it may respond to the fault. The

sensitivity of residual generator R i to the fault ∆x however strongly depends on the

properties of R i , the size and temporal properties of ∆x , and also on for example the

current operating mode of the system. In order to verify that R i is indeed sensitive to

∆x , it is necessary to implement and run R i using representative data from relevant fault

cases. This will be done in Section 6.

Clearly, assuming that Table 3 reflects the fault sensitivity, there is more than one

residual generator that is sensitive to each of the 9 considered faults and thus all 9 faults

can, in theory, be detected.
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Table 4: Isolability Matrix.
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Fault Isolability

In general, given a set of residual generators, a fault ∆x is said to be isolable from a fault

∆y if the set contains a residual generator that is sensitive to fault ∆x but not to fault ∆y ,

see for example Paper B. As seen in Table 3, all 8 residual generators may be sensitive to

the faults ∆ypamb
and ∆uxvgt

. This is also indicated in Table 4, which shows the resulting

isolability matrix for the 8 selected residual generators. In Table 4, for instance, the “x” in

position (∆yTamb
, ∆ypamb

) denotes that fault ∆yTamb
is not isolable from fault ∆ypamb

using

the residual generators R1 , R2 , . . . , R8.

Clearly, according to Table 4, the diagnosis requirement F in (5) not is met since,

for example, ∆yTamb
not is isolable from ∆ypim . Nevertheless, due to the properties of

the greedy selection algorithm discussed in Section 3.3, Table 4 shows the maximum

attainable isolability for the engine model, given the method for residual generation

considered in this work. The cardinality of the set of selected residual generators may

however not be minimal. See Paper B for more details.

4.3 Properties of Selected Residual Generators

Some additional properties for the 8 selected residual generators can be found in Table 5.

The first column in Table 5 shows which residual equation the corresponding residual

generator uses, i.e., which model equation that is used to compute the residual in the

corresponding residual generator. It can be noted that a majority of the 8 residual

generators use either equation e39, or equation e41, as residual equation, corresponding
to r = ypim − pim and r = ypem − pem, respectively. This is a direct consequence of that the

greedy selection algorithm was supplemented with an additional heuristic in order to

make the final deployment of the residual generators as simple as possible. In those cases

when the greedy heuristic described in Section 3.3 identified more than one candidate,

the algorithm was configured to prefer small candidate residual generators, in terms

of number of equations, before large candidate residual generators, and also to prefer

candidate residual generators using sensor equations, i.e., e36 , e37 , . . . , e41, as residuals.



4. Design of Residual Generators 185

Table 5: Properties of the Selected Residual Generators.

Residual IC DC #Equations #Inputs

R1 e41 x x 42 (5) 9

R2 e7 x x 43 (5) 10

R3 e41 x x 43 (4) 10

R4 e39 x 44 (4) 10

R5 e39 x x 44 (4) 10

R6 e41 x 44 (4) 10

R7 e41 x 41 (3) 10

R8 e39 x x 43 (5) 10

Columns 2 and 3 in Table 5 show if the corresponding residual generator uses integral

causality (IC) and/or derivative causality (DC), respectively. Clearly, 5 out of 8 residual

generators employs mixed causality. Column 4 shows the number of equations contained

in the computation sequence on which the corresponding residual generator is based,

and the value in parenthesis how many of those equations that are differential equa-

tions. Recalling that the model contains in total 46 equations, of which 5 are differential

equations, it can be concluded that all residual generators uses a substantial part of the

complete model in spite of the above mentioned heuristic. This issue is further illustrated

by column 5 in Table 5, which shows how many of the 11 available signals in Table 1 that

each residual generator uses as input.

Columns 4 and 5 explain why most of the 8 selected residual generators may be

sensitive to most of the 12 faults, as illustrated in Table 3. In fact, this property holds

for all candidate residual generators which on average use about 40 equations, and is a

direct consequence of the properties of the automotive engine system. Specifically, the

system contains many physical interconnections, for example due to the shaft connecting

the turbine and the compressor and thus the intake and the exhaust parts of the engine,

see Figure 1. This leads to a model with coupled equations, in the sense that there are

sets of equations containing the same set of unknown variables. This fact implies that

a fault affecting one of these equations influences a large amount of the other model

equations. This fact, in combination with the relatively small number of sensors, makes

fault decoupling non-trivial and results in the situation shown in Table 3.

4.4 Comments on Realizability

The results presented above were obtained using mixed causality, i.e., computation

sequences with both integral and derivative causality were allowed. For comparison,

the algorithm (Svärd and Nyberg, 2010) for finding computation sequences was also

configured to use solely integral and derivative causality. For the case with derivative

causality, no realizable candidate residual generator were found. In the integral causality

case, a set of 4 residual generators was selected. In fact, two of these residual generators

were also found when adopting mixed causality and can be found as R6 and R7 in Table 5.

Before termination, the greedy selection algorithm discarded in total 4,739 of the
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Table 6: Isolability Matrix when using Integral Causality.
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14,242 candidate residual generators for not being realizable in the mixed causality case,

and 7,133 candidates in the integral causality case. The corresponding numbers in terms

of MSO sets are 91 and 135, respectively, out of 270. In the derivative causality case, ap-

parently, all candidate residual generators were discarded due to non-realizability. It can

be concluded that mixed causality improves realizability, in the sense that considerably

more candidate residual generators can be realized, which implies that more faults can be

isolated. This can be seen by comparing Table 4 with Table 6, which shows the resulting

isolability matrix when using only integral causality.

The large amount of discarded candidate residual generators, independent on the

causality assumption, is due to that no computation sequence can be found for these

candidate residual generators. This in turn is to a large extent caused by non-invertible

non-linear functions in the model. To illustrate this aspect, consider the equation

e7 ∶ Wth =
picAth,max
√
TimRa

Ψ
γth
th
(Πth) fth(xth),

whereWth, pic, Tim, Πth, and xth are unknown variables, Ath,max and Ra are parameters,

and Ψ
γth
th
(⋅) and fth(⋅) are non-linear functions, with Ψ

γth
th
(Πth) given by (1). Clearly, the

function Ψ
γth
th
(Πth) is not invertible with respect to Πth which implies that the variable

Πth can not be computed from the equation e7. The same holds for the variable xth,
since the function fth(⋅) is non-invertible with respect to xth. This implies that only the

variablesWth, pic, and Tim, can be computed from equation e7. Most of the equations in

the diesel engine model exhibit this property, and this substantially limits how unknown

variables in the model can be computed, which in turn explains the large amount of

non-realizable, and thus discarded, candidate residual generators.

Stability Analysis

In comparison, only a fraction of the discarded candidate residual generators were

discarded due to not being stable. Nevertheless, the stability analysis is an important part
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of the realization algorithm since stability is an important property in order to guarantee

good dynamical behavior of residual generators. In fact, the considered diesel engine

system exhibit a non-minimum phase behavior, see Wahlström and Eriksson (2011) for

an analysis regarding this, which imply that there indeed are unstable candidate residual

generators.

For sake of simplicity, combined with the urge to be able to conduct the stability

analysis in an automated manner with a minimum of user input, the stability analysis is

based on linearization. In each of 20 different equilibrium points, the non-linear residual

generator obtained from the series of computations described by the corresponding

computation sequence, is first linearized. If any of the eigenvalues of the linearized

residual generator is greater or equal to zero in any of the 20 equilibrium points, the

residual generator is discarded.

The 20 equilibrium points correspond to stationary operating points of the engine,

parameterized by the injected fuel amount, uδ , and engine speed, une . The linearization is

done by finite difference approximation. Although the adopted stability analysis approach

is simple, it is able to discard the residual generators that were observed to be unable to

use due to instability. This has been verified through extensive experimental evaluations.

5 Design of Residual Evaluators

As said in Section 3.4, the first step in the residual evaluator design method is to estimate

the probability distributions of the residuals r1 , r2 , . . . , r8 obtained as output from the

residual generators R1 , R2 , . . . , R8, given the no-fault data set Y .

5.1 Estimation of No-Fault Residual Distributions

To capture the behavior of the residuals in a variety of the operating modes of the

diesel engine system, the no-fault data set Y was formed from two data sets of different

characteristics. The first data set is about half an hour long and contains engine test-bed

measurements from a World Harmonized Transient Cycle (WHTC) test cycle. The

second data set is approximately 2 hours long and contains measurements from a part of

a test drive in the south of Sweden, including both city and high-way driving. To reduce

the risk of over-fit, the data sets were split into an estimation data set and a validation

data set, of equal size. The data was sampled at a rate of 100 Hz, and consequently the

estimation and validation data sets contain approximately 450,000 samples, each.

The 8 residual generators were run off-line using the measurements in Y as input to

obtain no-fault residual samples. A set of samples from residuals r5 is shown in Figure 6.

Note the non-ideal behavior of the residual caused by uncertainties, mainly model errors

of time-varying nature and magnitude, mentioned in Section 1.

Using a Matlab implementation of the algorithm in Paper C, a set θNF of K = 20
probability density functions were estimated for each residual, see Section 3.4. Figure 7

shows the 20 estimated no-fault residual distributions for the residual r5 obtained as

output from residual generator R5.
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Figure 6: A subset of no-fault samples from residual r5.
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Figure 7: The set of 20 estimated no-fault distributions for residual r5.
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Figure 8: Fit of the set of estimated no-fault distributions for different values of K, i.e.,
for different number of distributions in the set, to the estimation and validation data sets.

The figure shows the average of the fit for all 8 residuals.

For this application, 20 distributions per residual is a good trade-off between model

fit and complexity since the gain in model fit obtained when choosing a higher number

is marginal in comparison with the corresponding increase in computational effort. This

is illustrated in Figure 8, which shows the model fit in the form of the log-likelihood

ℓ (θNF∣Y) of the distributions in θNF given the no-fault data Y . The quantity shown in

Figure 8 is the averaged model fit for all 8 residuals, evaluated for different number of

distributions and for both the estimation and validation data.

5.2 Residual Evaluators

For each of the residuals r1 , r2 , . . . , r8, a residual evaluator Ti in the form (3) was created.

The sampling of residual values for the sets Ri , i = 1, 2, . . . , 8, was done by means of

a sliding window. The number of samples in each sliding window was chosen to be

1024. The choice of this number is a trade-off between detection performance and

computational complexity. For a thorough discussion of this issue, see Paper C.

To solve the relaxed version of MLE problem in the numerator of (4), see Section 3.4,

a tailored solver was generated using the software tool CVXGEN (Mattingley and Boyd,

2012). The detection thresholds J i , i = 1, 2, . . . , 8, were computed in order to give a

probability of false detection of 1%, by using the validation data set used in Section 5.1.
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5.3 Fault Isolation Strategy

As illustrated in Figure 2, the binary fault detection signals based on the residual evalua-

tors (3), are used as input to the fault isolation block. This section briefly describes the

strategy used for fault isolation.

Due to the issue regarding fault sensitivity discussed in Section 4.2, and since the

complete behavior of the no-fault residuals not are captured by the estimated no-fault

distributions, the statistical power of the fault detection tests in (3) are not ideal. That is,

the probability for detection is not one for all faults, in all situations, and the probability

for false detections is not always zero. To take this into account, the fault isolation scheme

is configured to interpret an “x” in a certain row of the FSM in Table 3 as if the test in

the corresponding residual evaluator may respond, if the corresponding fault occurs.

Consequently, no conclusion is drawn if a residual evaluator not alarms, see Nyberg

(1999).

Given a set of alarming residual evaluators, i.e., non-zero detection signals d i , the

fault signatures of the corresponding residuals are matched using the FSM in Table 3.

For an example, if only d1 = 1, the row corresponding to R1 in Table 3 is considered and it

is concluded that either of the faults ∆ypamb
, ∆yTamb

, ∆ypim , ∆yTim , ∆ypem , ∆uxegr
, and ∆uxvgt

,

may be present in the system. If also the detection signals d2, d3, d4, d5, d7, and d8, are
non-zero, it is concluded that either of the faults ∆ypim , ∆ypamb

, and ∆uxvgt
, may be present.

This is in accordance with standard consistency-based diagnosis, see, e.g., de Kleer and

Williams (1987); Reiter (1987); Greiner et al. (1989).

6 Experimental Evaluation

This section presents an experimental evaluation of the designed FDI-system. The

evaluation consists of two parts, with different purposes. The first part, presented in

Section 6.1, focus on the fault detection performance of the individual residual generators

and residual evaluators, whereas the second part, presented in Section 6.2, focus on the

detection and isolation performance of the complete FDI-system.

6.1 Fault Detection Performance

The purpose of this part of the evaluation is to investigate the fault detection performance

of the individual fault detection tests, comprised of the residual generators along with

their corresponding residual evaluators.

Metrics

The fault detection performance is studied by means of the statistical power of the fault

detection tests, for different sizes of the considered faults in Table 2. To quantify the

power of a test, the power function (Casella and Berger, 2001) will be used. In this context,
the power function for the fault detection test (3) for residual r i is defined as

β i (δ) = Pr (d i = 1∣δ) = Pr (λ i (Ri) > J i ∣δ) , (7)
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where λ i is the test statistic, Ri a set of samples from residual r i , J i is the detection
threshold, and δ is a fixed fault size. In the no-fault case, i.e., when δ corresponds to a
fault of size zero, the power function (7) gives the probability of false detection, or Type

I error (Casella and Berger, 2001). Otherwise, the power function gives the probability

of detection for fixed δ, or equivalently the probability of missed detection or Type II

error, by 1 − β i (δ).
In order to obtain a scalar metric for the detection performance of a specific detection

test with respect to a set D of different fault sizes, the quantity

1

∣D∣ ∑δ∈D
β i (δ) , (8)

will also be considered, where β i (δ) is the power function for detection test i. The

quantity (8) in some sense reflects the average detection performance of the detection

test. It may be noted that for an ideal test, i.e., whose probability for detection is one for

all fault sizes, the quantity (8) is equal to one.

Setup

In total 5 data sets were used in the evaluation. The data is not the same as the data

described in Section 5. Each data set contains measurements collected during a drive

on the Swedish west coast. The data sets contain measurements from in total approxi-

mately 2.5 hours of driving, and includes both high-way and city driving under different

conditions.

The considered fault type is gain fault. In the case of for example sensor fault ∆ypamb
,

this means that the sensor signal ypamb
fed to the residual generators is ypamb

= δ ⋅ pamb

where δ ≠ 1 indicates a fault. The gain faults were implemented off-line by modification

of the corresponding sensor or actuator measurement signals.

Behaviors of Residuals and Test Statistics

Before presenting quantitative results bymeans of themetrics (7) and (8) some qualitative

results are presented in order to provide some insight of the properties of the residuals

and test statistics on which the fault detection tests are based.

Figure 9 shows the residuals r1 , r2 , . . . , r8 and test statistics λ1 , λ2 , . . . , λ8 when fault

∆ypic of size δ = 1.2 is abruptly injected at time t = 700 s. Figure 10 shows the residuals

and test statistics when fault ∆uxth
of size δ = 0.3 is injected at time t = 700 s.

First of all, it is noted that the residuals in Figures 9a and 10a are all non-zero in both

the no-fault and fault cases. In addition, all residuals exhibit non-stationary behaviors.

It is clear that a conventional residual evaluation approach by means of for example

constant thresholding would not be sufficient for these residuals. Moreover, consider

for instance residual r5 in Figure 10a whose response to the fault is quite subtle, in the

sense that the behavior of the residual before and after the fault injection is similar.

Nevertheless, the test statistic λ5 clearly indicates the presence of a fault.
According to the FSM in Table 3, residuals r1 and r8 may be sensitive to fault ∆ypic .

This is hard to deduce from Figure 9a, but evident in Figure 9b since all test statics but λ1
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Table 7: Averaged Power for all Tests and all Faults.
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T1 .01 .03 0 .17 .18 .74 .01 .05 .11 .22

T2 .38 .06 .62 .32 .01 .38 .09 .01 .11 .28

T3 .07 .05 .75 .40 .07 .25 .06 .01 .16 .23

T4 .01 0 .83 .47 .02 0 .11 0 .02 .49

T5 .01 0 .75 .53 .12 .44 .16 .01 0 .41

T6 .09 .10 .81 .01 .40 .86 .11 .06 .34 .35

T7 .01 .04 0 .19 .13 .39 .01 .07 .12 .16

T8 .65 .41 .02 .45 .59 .84 .12 .05 .33 .43

.31 .12 .76 .36 .26 .56 .11 .07 .20

and λ8 respond clearly to the injected fault. However, the test statistic λ7 do not cross the
detection threshold. It is noted that this indeed corresponds to a typical situation and is

taken into account in the fault isolation scheme, see Section 5.3. It may be noted that a

traditional column matching approach (Gertler, 1998) not is sufficient for this, typical,

case.

For the fault ∆uxth
, Table 3 states that residuals r1 and r7 should not be sensitive

to the fault. Again, this is hard to tell from Figure 10a but Figure 10b clearly shows

that test statistics λ1 and λ7 do not respond to the fault. As also seen in Figure 10b,

the response from the test statistic λ3 is weak and it only barely crosses the detection

threshold. The responses from test statistics λ2 and λ8 are even weaker and they do not

cross the detection thresholds at all. This issue will be further discussed in Sections 6.1

and 6.2.

Results and Comments

Table 7 shows the quantity (8) for the fault detection test based on the residual evaluators

T1 , T2 , . . . , T8 and all faults in Table 2. Entries close to zero, specifically ≤ 0.02, have been

marked bold. The right most column gives the average of each row, with the bold entries

removed, and the same holds for the last row, but instead for the columns. Figure 11

explicitly shows the estimated power functions β1 , β2 , . . . , β8 for the faults ∆ypic and

∆uxth
. The power functions were estimated by means of the fraction of samples for which

the corresponding test alarmed, i.e., where d i = 1.

As seen in both Figure 11 and Table 7, the powers of all tests are not ideal for all faults

and all fault sizes. For example, some tests, e.g., T2, respond only to sizes δ > 1 for some

faults, and only to sizes δ < 1 for other faults. However, for instance fault ∆ypic result in

nice test power for almost all tests.

By considering the right most column in Table 7, it can be deduced that the average

fault detection performances for all tests are comparable, but that tests T4, T5, T6, and

T8, seem to be slightly better than the other tests. By considering the last row in Table 7,

it can be deduced that the pressure sensor faults, ∆ypic , ∆ypim , and ∆ypem , seem to result
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Figure 9: Residuals r1 , r2 , . . . , r8 and test statistics λ1 , λ2 , . . . , λ8 when fault ∆ypic is in-

jected at time t = 700 s.
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Figure 10: Residuals r1 , r2 , . . . , r8 and test statistics λ1 , λ2 , . . . , λ8 when fault ∆uxth
is

injected at time t = 700 s.
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Figure 11: Power functions β i(δ), i = 1, 2, . . . , 8, for faults ∆ypic and ∆uxth
.

in best overall averaged test power than all other faults. Faults ∆yTamb
, ∆uxth

, and ∆uxegr
,

result in quite poor test power in comparison. This can also be seen in Figure 11.

The correspondence between the FSM in Table 3 and the averaged test powers in

Table 7 when it comes to non-sensitive residual generators is good, in the sense that an

empty entry in Table 3 always corresponds to a zero, or almost zero, entry in Table 7.

However, the converse is not always true, since there are zero, or almost zero, entries in

Table 7 where there are an “x” in Table 3. In particular, this holds for faults ∆ypamb
and

∆uxvgt
. According to Table 3, all residual generators may be sensitive to faults ∆ypamb

and

∆uxvgt
. However, as indicated by Table 7, all tests do not respond to these faults.

6.2 Performance of FDI-System

The aim of this part of the evaluation is to investigate the detection and isolation perfor-

mance of the complete FDI-system.

Metrics

To this end, the following metrics are considered.

Detection Time (DT): Time from fault injection to first detection by any test that may

be sensitive to the fault.

Isolation Time (IT): Time from fault injection to first correct fault isolation statement.

Missed Detection Rate (MDR): The fraction of test runs for which the injected fault

not is detected by any of the tests that may be sensitive to the fault.

Missed Isolation Rate (MIR): The fraction of test runs for which a correct fault isola-

tion statement not is obtained.
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Table 8: Fault Specifications.

Fault Specification

∆ypamb
ypamb

= 0.5 ⋅ pamb

∆yTamb
yTamb

= 1.3 ⋅ Tamb

∆ypic ypic = 1.2 ⋅ pic
∆ypim ypim = 0.9 ⋅ pim
∆yTim yTim

= 0.7 ⋅ Tim
∆ypem ypem = 0.8 ⋅ pem
∆uxth

uxth = 0.3 ⋅ uxth
∆uxegr

uxegr = 0.4 ⋅ uxegr
∆uxvgt

uxvgt = 0.5 ⋅ uxvgt

False Detection Rate (FDR): The fraction of samples for which the injected fault is

detected by a test that should not be sensitive to the fault, or a fault is detected by

any test in a no-fault condition.

Note that all metrics are defined with respect to the complete FDI-system, and not

in the context of the individual tests. This means, for instance, that a run in which where

only one out of several sensitive tests responds, not will be regarded as a missed detection.

A situation where only one out of several possible tests responds falsely, will on the

other hand be counted as a false detection. Also note that missed detections and missed

isolations are counted on test run basis, whereas false detections are counted on sample

basis.

Moreover, note that with a correct fault isolation statement it is meant an isolation

statement in accordance with the isolability matrix in Table 4. That is, when fault ∆ypamb

has occurred, the correct fault isolability statement is that either of the faults ∆ypamb
or

∆uxvgt
has occurred.

Setup

In total 12 different data sets were used in this part of the evaluation. As in the previous

study, the data sets contain measurements from drives with both high-way and city parts

under different conditions. Each fault specified in Table 8 was injected abruptly after

a fixed time one at a time in each of the 12 data sets. This means that there were in

total 12 test runs per fault. The sizes of the faults as specified in Table 8 were chosen in

consultation with experienced engineers in order to be realistic for the considered diesel

engine.

Results and Comments

Table 9 gives the mean, minimum, and maximum, detection time (DT), mean, mini-

mum, and maximum, isolation time (IT), as well as the missed detection rate (MDR),

missed isolation rate (MIR), and false detection rate (FDR), for all considered faults. The

detection times and isolation times are given in seconds.
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Table 9: Results
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DT

Mean 49.1 78.4 33.2 41.1 86.5 39.2 66.5 75.0 90.9

Min 5.0 2.3 18.7 18.7 4.8 11.9 9.4 2.9 6.1

Max 83.6 35.9 72.5 115.0 290.5 61.3 166.8 116.9 144.3

IT

Mean - - 221.0 149.0 - 523.0 308.8 - -

Min - - 97.0 96.6 - 261.4 227.2 - -

Max - - 437.9 223.8 - 784.7 369.5 - -

MDR 0 0 0 0 0 0 0 0 0

MIR 1 1 0.75 0.67 1 0.83 0.75 1 1

FDR 0.043 0.076 0.057 0.067 0.043 0.049 0.056 0.051 0.043

First of all, it can in Table 9 be noted that all faults can be detected within reasonable

time, meaning that there were no missed detections. As seen, however, ideal isolation

statements were not obtained for all faults. Nevertheless, the injected fault was contained

in each of the obtained isolation statement. The occurrence of missed isolations can be

explained by the fact that the FSM in Table 3 used in the isolation scheme, see Section 5.3,

does not completely reflect the fault sensitivity of the tests in the FDI-system. This was

illustrated in Figures 9b and 10b and will be further considered in next section.

It is evident from Table 9 that the conclusion in Section 6.1 regarding the ability to

detect the pressure sensor faults ∆ypic , ∆ypim , and ∆ypem in a reliable way, is supported

by Table 9. All of these faults result in comparatively short detection times, low rates of

false detections, and can in addition be isolated to a higher extent than the other faults.

The same holds for the conclusions in Section 6.1 regarding the faults ∆yTamb
and ∆uxegr

,

which according to Table 9 results in longer detection times, and higher rates of false

detection.

The absolute values of the metrics in Table 9 depend mainly on the value of the

detection thresholds. The higher the detection thresholds, the lower the rate of false

detection, the higher the rate of missed detection, and the longer the detection and

isolation times, and vice versa. In addition, as said in Section 5.2, the detection and

isolation times is affected by the size of the sliding windows used to collect samples for

the residual evaluation.

6.3 Final Tuning

Until now, no specific tuning of the FDI-system has been performed. In this section it

is illustrated how the FDI-system can be tuned in order to give lower rates of missed

isolation for all faults.

As said in Section 6.2, the missed isolations is a direct consequence of the mismatch

between the fault sensitivity as specified by the FSM used in the isolation process, and the

actual fault sensitivity. There are at least two approaches for solving this issue. The first

approach is to lower the detection thresholds. This would obviously resolve situations
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Table 10: Adjusted Fault Signature Matrix.
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T1 x x x x x x

T2 x x x x x x x

T3 x x x x x x x x

T4 x x x

T5 x x x x x

T6 x x x x x x x x

T7 x x x x x x

T8 x x x x x x x x

similar as those depicted in Figures 9b and 10b, where a test responds but the response

not is sufficient in order for the test statistic to cross the threshold. However, this would

also increase the amount of false detections. In addition, the situation where a test do

not respond at all to a fault, is not handled.

The second approach is to instead adjust the FSM so that it indeed represent the actual

fault sensitivity of the tests. This can for example be done by exploiting the averaged

test powers in Table 7. The benefit with this approach is that, in addition, the detection

thresholds can be adjusted in order to achieve desired detection times, and desired

rates of false and missed detections. The main drawback is that it may affect the overall

detectability and isolability properties of the FDI-system, due to additional zeros in the

adjusted FSM. See (Krysander, 2006, Chapter 11) for a more general treatment of this

issue. Moreover, it should be noted that the adjustment of the FSM typically relies on

estimated test power, which strongly depends on the features of the available data.

Results

Both approaches were applied. However, the first approach did not give satisfactory

results. Despite detection thresholds resulting in fault detection rates in the magnitude

of 30-40 %, the resulting missed isolation rates were not lower for all faults.

Using the second approach, the averaged powers of the residual evaluation tests as

given in Table 7 were used in order to adjust the entries of the FSM in Table 3. Specifically,

each “x” in the FSM in Table 3 was removed if the corresponding entry in Table 7 was

lower than 0.02. The removed entries are marked with bold in Table 7. The adjusted

FSM, now for residual evaluators instead of the residual generators, is given in Table 10.

The resulting isolability matrix is shown in Table 11, which should be compared with

the original isolability matrix given in Table 4. It can be noted that the isolability in fact

has increased in the sense that a larger fraction of the diagnosis requirement F in (5) is

fulfilled. Specifically, 58 of the 72 fault pairs in F can now be isolated from each other, in

comparison with 56 before.

Results in accordance with Table 9 are given for the FDI-system with the adjusted

FSM in Table 12. The same detection thresholds and data were used as in the evaluation
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Table 11: Isolability Matrix based on Adjusted Fault Signature Matrix.
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Table 12: Results with Adjusted Fault Signature Matrix.
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DT

Mean 48.1 82.9 33.2 41.1 87.0 39.2 66.5 77.8 90.7

Min 5.0 2.3 18.7 18.7 4.8 11.9 9.4 2.9 6.1

Max 83.6 35.9 72.5 115.0 290.5 61.3 166.8 116.9 144.3

IT

Mean 168.7 228.6 47.2 148.0 142.7 190.4 246.8 315.7 430.5

Min 45.5 173.3 28.5 96.6 142.7 57.1 62.0 5.3 129.8

Max 346.3 283.2 94.0 223.8 142.7 784.7 329.6 545.8 612.8

MDR 0 0 0 0 0 0 0 0 0

MIR 0.42 0.75 0 0.58 0.83 0.25 0.42 0.67 0.67

FDR 0.11 0.082 0.064 0.067 0.053 0.049 0.056 0.063 0.069

presented in Table 9.

It can be seen in Table 12 that the missed isolation rate (MIR) is lower for all faults,

in comparison with Table 9. In addition, the isolation times are lower for all faults, and

for some faults, e.g., ∆ypic , the difference is significant. Furthermore, the detection times

are identical, or comparable, with those given in Table 9. It may be noted that there is

a slight increase in false detection rate. This is a direct consequence of the additional

empty entries in the adjusted FSM shown in Table 10. Every detection of a fault by a

test whose corresponding entry in Table 10 has been removed, now counts as a false

detection.

7 Conclusions

It has been illustrated how an FDI-system for an automotive diesel engine can be de-

signed by application of a generic automated design methodology. No specific adaption
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of the methodology to the automotive diesel engine system was made. Through the appli-

cation, it has been empirically shown that employment of mixed causality substantially

increased the number of realizable residual generators. Foremost, this leads to increased

fault isolability as is evident by comparison of Tables 4 and 6. Moreover, it has been

demonstrated how model errors of time-varying nature and magnitude can be handled

in the framework of statistical likelihood-based residual evaluation. Illustrations are

given in Figures 9 and 10.

The FDI-system, and thus the potential of the automated design methodology, has

been evaluated using road and test-bed measurements. The overall performance of the

FDI-system is good in comparison with the required design effort. The fault sensitivities

of the individual fault detection tests have been investigated by means of the estimated

averaged test power (8). It was concluded that the fault sensitivity indicated in the FSM

in Table 3, not fully corresponded to the fault sensitivity as given by the averaged test

powers shown in Table 7. Specifically, this results in high missed isolation rates. It has

been illustrated that an adjustment of the original FSM by utilization of the averaged

test powers, resulting in the adjusted FSM in Table 10, gives an FDI-system capable

of isolating more faults from each other, as can be seen by a comparison of Tables 11

and 4. In addition, this also resulted in increased fault isolation performance, in terms of

substantially lower missed isolation rater and lower isolation times, in comparison with

the original FSM, which can be seen by a comparison of Tables 12 and 9.
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A Model Equations

e1 ∶ ṗic =
RaTim
Vic

(Wc −Wth)

e2 ∶ ṗim =
RaTim
Vim

(Wth +Wegr −Wei)

e3 ∶ ṗem =
ReTem
Vem

(Weo −Wegr −Wt) +
Re

Vemcve
(Wincve (Tem,in − Tem)

+ Re (Tem,inWin − TemWout))

e4 ∶ Ṫem =
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pemVemcve
(Wincve (Tem,in − Tem) + Re (Tem,inWin − TemWout))

e5 ∶ Win = max(Weo , 0) +max(−Wegr , 0) +max(−Wt , 0)

e6 ∶ Wout = max(−Weo , 0) +max(Wegr , 0) +max(Wt , 0)

e7 ∶ Wth =
picAth,max
√
TimRa

Ψ
γth
th
(Πth) fth(xth)
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e8 ∶ Πth = fΠth
(pim , pic)

e9 ∶ Wei =
ηvolpimneVd

120RaTim

e10 ∶ ηvol = cvol1
rc − ( pempim )

1/γe

rc − 1
+ cvol2W2

f + cvol3Wf + cvol4

e11 ∶ Wf =
10−6

120
δnenc y l

e12 ∶ Weo =Wf +Wei
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qHV fTeWf

(Wf) fTene
(ne)

cpeWeo

e14 ∶ Tem,in = Tamb + (Te − Tamb) exp(−
htotπdpi pe lpi penpi pe

Weocpe
)

e15 ∶ Wegr = fWegr
(pim , pem , Tem , xegr)

e16 ∶ ω̇t =
Ptηm − Pc

Jtωt

e17 ∶ Ptηm = ηtmWtcpeTem (1 −Π1−1/γe
t )

e18 ∶ ηtm = ηtm,BSR(BSR)ηtm,ωt
(ωt)ηtm,xvgt(xvgt)

e19 ∶ BSR = Rtωt
√

2cpeTem (1 −Π1−1/γe
t )

e20 ∶ Πt =
pt
pem

e21 ∶ Wt =
Avgt,maxpem
√
TemRe

fΠt
(Πt) fωt

(ωt,corr) fvgt(xvgt)

e22 ∶ ωt ,corr =
ωt

100
√
Tem

e23 ∶ Pc =
WccpaTbc

ηc
(Π

1−1/γa
c − 1)

e24 ∶ Πc =
pic
pbc

e25 ∶ ηc = ηc ,W(Wc ,corr , Πc)ηc ,Π(Πc)

e26 ∶ Wc,corr =

√
(Tbc/Tref)
√
(pbc/pref)

Wc

e27 ∶ Wc =
pbcπR3

cωt

RaTbc
Φc

e28 ∶ Φc =
kc1 − kc3Ψc

kc2 − Ψc
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e29 ∶ kc1 = kc11 (min(Ma,Mamax))
2
+ kc12min(Ma,Mamax) + kc13

e30 ∶ kc2 = kc21 (min(Ma,Mamax))
2
+ kc22min(Ma,Mamax) + kc23

e31 ∶ kc3 = kc31 (min(Ma,Mamax))
2
+ kc32min(Ma,Mamax) + kc33

e32 ∶ Ma = Rcωt
√
γaRaTbc

e33 ∶ Ψc =
2cpaTbc (Π1−1/γa

c − 1)

R2
cω2

t

e34 ∶ pbc = pamb

e35 ∶ Tbc = Tamb

e36 ∶ ypamb
= pamb + ∆ypamb

e37 ∶ yTamb
= Tamb + ∆yTamb

e38 ∶ ypic = pic + ∆ypic

e39 ∶ ypim = pim + ∆ypim

e40 ∶ yTim
= Tim + ∆yTim

e41 ∶ ypem = pem + ∆ypem

e42 ∶ uxth = xth + ∆uxth

e43 ∶ uxegr = xegr + ∆uxegr

e44 ∶ uxvgt = xvgt + ∆uxvgt

e45 ∶ uδ = δ
e46 ∶ yne

= ne
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Abstract

We propose an FDI-system for the wind turbine benchmark designed by appli-

cation of a generic automated method. No specific adaptation of the method

for the wind turbine benchmark is needed, and the number of required human

decisions, assumptions, as well as parameter choices, is minimized. The method

contains in essence three steps: generation of candidate residual generators,

residual generator selection, and diagnostic test construction. The proposed

FDI-system performs well in spite of no specific adaptation or tuning to the

benchmark. All faults in the pre-defined test sequence can be detected and all

faults, except a double fault, can also be isolated shortly thereafter. In addition,

there are no false or missed detections.

209
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1 Introduction

Wind turbines stand for a growing part of power production. The demands for reliability

are high, since wind turbines are expensive and their off-time should be minimized. One

potential way to meet the reliability demands is to adopt fault tolerant control (FTC),

i.e., prevent faults from developing into failures by taking appropriate actions. A typical

action is reconfiguration of the control system. An essential part of an FTC-system is

the fault detection and isolation (FDI) system, see, e.g., Blanke et al. (2006). To obtain

good detection and isolation of faults, model-based FDI is often necessary.

Design of a complete model-based FDI-system is a complex task and involves by

necessity several decisions, for example, method choices, tuning of parameters, and

assumptions regarding noise distributions and the nature of the faults to be diagnosed. In

general, an optimal solution requires detailed knowledge of the behavior of the considered

system, something that is rarely available for real applications. In this paper, inspired

by work with real industrial applications, we propose an automated design method that

minimizes the number of required human decisions and assumptions. Furthermore, we

investigate the potential of designing an FDI-system for the wind turbine benchmark,

see Fogh Odgaard et al. (2009), using this automated method.

The design method is composed of three main steps. In the first step, a large set of

candidate residual generators are generated using the algorithm described in Krysander

et al. (2008). In the second step, the residual generators most suitable to be included in

the final FDI-system are selected and realized by means of a greedy selection algorithm,

based on ideas elaborated in Svärd et al. (2011). The realization, or construction, of

residual generators is done by use of the algorithms presented in Svärd and Nyberg

(2010). In the third and final step, we design diagnostic tests based on the residuals

obtained as output from the selected set of residual generators. The diagnostic tests

relies on a novel methodology based on a comparison of the probability distributions of

no-fault residuals, estimated offline using no-fault training data, and the distributions of

residuals estimated online using current data.

As it turns out, the proposed FDI-system performs well when evaluated on the test

sequence described in Fogh Odgaard et al. (2009). A tailor-made FDI-system perfectly

tuned for the wind turbine benchmark would probably perform better than the one

we propose. However, in relation to the minimal effort required for application of the

automated design method, and in spite of no extra tuning or specific adaptation to

the benchmark, the performance of the FDI-system is satisfactory; all faults in the test

sequence can be detected within feasible time, and there are no false or missed detections.

Further, all faults, except a double fault, can also be isolated.

The wind turbine benchmark model and the strategy used for modeling of faults,

are described in Section 2. Section 3 presents an overview of the design method. The

method for constructing residual generators is described in Section 4, and the approach

used for selecting residual generators is described in Section 5. The method for design

of diagnostic tests, and the fault isolation scheme is considered in Section 6. Some

implementation specific details are discussed in Section 7. The performance of the

designed FDI-system is evaluated and discussed in Section 8, and Section 9 concludes

the paper.
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Figure 1: Overview of the wind turbine system.

2 TheWind TurbineModel

The wind turbine system is described and modeled in Fogh Odgaard et al. (2009), to

which is referred for details. The considered wind turbine system has three rotor blades

and the system contains four sub-systems: blade and pitch system, drive train, generator

and converter, and controller, see Figure 1 and Table 1.

2.1 State-Space Realization of Transfer Functions

The pitch system and converter are modeled as frequency domain transfer functions. The

residual generation algorithmwe intend to apply, assume amodel described in differential

and algebraic equations. To obtain amodel in this form, the transfer functions are realized

as time-domain state-space systems.

The relation between pitch angle reference βr and pitch angle output β i , for each

of the three blades and thus for i = 1, 2, 3, can be realized in state-space form using

observable canonical form, see, e.g., Rugh (1996), as follows

ẋβ i1(t) = −2ζωnxβ i1(t) + xβ i2(t) (1a)

ẋβ i2(t) = −ω
2
nxβ i1(t) + ω

2
nβr(t) (1b)

β i(t) = xβ i1(t), (1c)

where ζ , ωn are parameters, and xβ i1 , xβ i2 state variables. Using the same approach, the

relation between converter reference τg ,r and output τg can be written as

ẋτ g(t) = −αgcxτ g(t) + αgcτg ,r(t) (2a)

τg(t) = xτ g(t), (2b)

where αgc is a parameter, and xτ g the state variable.
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Table 1: Signals in the wind turbine system.

Signal Description

vw Wind speed

vw ,m Wind speed measurement

βr Pitch angle reference

βm Pitch angle measurement

ωr Angular rotor speed

ωr ,m Angular rotor speed measurement

ωg Generator rotor speed

ωg ,m Generator rotor speed measurement

τr Rotor torque

τg Generator torque

τg ,r Generator torque reference

τg ,m Generator torque measurement

Pr Power reference

Pg Generator power

2.2 FaultModeling

The set of faults to consider for the wind turbine is specified in Fogh Odgaard et al. (2009)

and given by

F ={∆β1 , ∆β2 , ∆β3 , ∆τg , ∆ωg , ∆β1,m1 , ∆β1,m2 , ∆β2,m1 , ∆β2,m2 , ∆β3,m1 , ∆β3,m2 ,

∆ωr ,m1 , ∆ωr ,m2 , ∆ωg ,m1 , ∆ωg ,m2} ,

where ∆β1, ∆β2, ∆β3, and ∆τg are actuator faults, ∆ωg a system fault, and ∆β1,m1, ∆β1,m2,

∆β2,m1, ∆β2,m2, ∆β3,m1, ∆β3,m2, ∆ωr ,m1, ∆ωr ,m2, ∆ωg ,m1, and ∆ωg ,m2, sensor faults.

To incorporate fault information in the nominal model, we have chosen to model

all faults as additive signals in corresponding equations. Thus, we are not taking into

account all information regarding the nature of faults given in Fogh Odgaard et al. (2009).

Consider for example fault ∆β1 which represents an actuator fault in pitch system 1, see (1),

resulting in changed dynamics of β1 due to droppedmain line pressure or high air content

in the oil. One possible way to model this fault would be as a deviation in parameters

ωn and ζ in (1a) and (1b). With the chosen approach, the fault is instead modeled as an

additive signal in (1c) for i = 1, i.e., β1 = xβ11 + ∆β1.
Note that the adopted fault modeling approach is general and no assumptions are

made regarding for example the time-behavior of faults. Thus, the approach is able to

handle for example multiplicative faults even though the fault signal is assumed to be

additive. Consider for example a multiplicative fault in β1 given by β1 = δ ⋅ xβ11 where
δ ≠ 1, which can be equivalently described by β1 = xβ11 + ∆β1, where ∆β1 = xβ11(δ − 1).

The main argument for using this, more general, approach is that we consider it

hard, or even impossible, to know exactly how a faulty component behaves in reality.

Furthermore, data from all fault-cases for evaluation and validation of a more detailed

model are seldom available. Modeling faults in this way also results in a minimum of
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fault modes. This is beneficial since it gives a smaller model which simplifies several steps

in model-based diagnosis, e.g., residual generation and isolation. In addition, regarding

how diagnosis information is utilized, e.g., for Fault Tolerant Control, it is unnecessary

to distinguish between different fault modes if they are associated with the same action

or consequence. Indeed, this applies to all sensor faults in the wind turbine, since the

system should be reconfigured regardless of the type of sensor fault, i.e., fixed value or
gain factor, see Table 2 in Fogh Odgaard et al. (2009). Last, but not least, an additional

important motivator is simplicity, since extending the nominal model with additive fault

signals in this way is straightforward and easy.

2.3 Model Extensions

According to Fogh Odgaard et al. (2009), the same pitch angle reference signal βr is
fed to all three pitch systems (1), i.e., β i ,r = βr for i = 1, 2, 3. However, according to the
provided Simulink© model, see Fogh Odgaard (2011), the individual reference signals

are instead calculated in a control loop outside the pitch system as

β i ,r = βr + β i − (
β i ,m1 + β i ,m2

2
) , i = 1, 2, 3 (3)

where β i is given by (1), and β i ,m1 and β i ,m2 are sensor measurements. To incorporate

this information in the design of the FDI system, the original wind turbine model is

extended with the relations between β i ,r and βr given by (3).

2.4 TheModel with Faults

The complete model of the wind turbine model, with fault signals denoted by ∆, used in

this work for design of an FDI-system is given below.

e1 ∶ τr =
3

∑
i=1

ρπR3Cq (λ, β i) v2w
6

e2 ∶ λ = ωrR
vw

e3 , e5 , e7 ∶ ẋβ i1 = −2ζωnxβ i1 + xβ i2 , i = 1, 2, 3
e4 , e6 , e8 ∶ ẋβ i2 = −ω

2
nxβ i1 + ω

2
nβ i ,r , i = 1, 2, 3

e9 , e10 , e11 ∶ β i = xβ i1 + ∆β i , i = 1, 2, 3

e12 ∶ ω̇g = (
ηdtBdt

Ng Jg
)ωr +

⎛
⎜
⎝

−
ηdtBdt
N2

g
− Bg

Jg

⎞
⎟
⎠
ωg + (

ηdtKdt

Ng Jg
) θ∆ − (

1

Jg
) τg + ∆ωg

e13 ∶ ω̇r = −(
Bdt − Br

Jr
)ωr + (

Bdt

Ng Jr
)ωg − (

Kdt

Jr
) θ∆ + (

1

Jr
) τr

e14 ∶ θ̇∆ = ωr − (
1

Ng
)ωg
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Figure 2: Schematic overview of the FDI-system.

e15 ∶ ẋτ g = −αgcxτ g + αgcτg ,r
e16 ∶ τg = xτ g + ∆τg
e17 ∶ Pg = ηgcωgτg

e18 , e20 , e22 ∶ β i ,m1 = β i + ∆β i ,m1 , i = 1, 2, 3
e19 , e21 , e23 ∶ β i ,m2 = β i + ∆β i ,m2 , i = 1, 2, 3

e24 , e25 ∶ ωr ,m j = ωr + ∆ωr ,m j , j = 1, 2
e26 , e27 ∶ ωg ,m j = ωg + ∆ωg ,m j , j = 1, 2

e28 ∶ vw ,m = vw
e29 ∶ τg ,m = τg
e30 ∶ Pg ,m = Pg

e31 , e32 , e33 ∶ β i ,r = βr + β i − (
β i ,m1 + β i ,m2

2
) , i = 1, 2, 3

3 Overview of DesignMethod

The proposed FDI-system for thewind turbine is comprised of three sub-systems: residual

generation, fault detection and fault isolation, see Figure 2.

Measurements, i.e., sensor readings, from the wind turbine are fed to a bank of

residual generators whose output is a set of residuals. The residuals are used as input to

the fault detection block, which contains diagnostic tests based on the residuals. The

output from this block, one signal for each residual, indicates if a fault has been detected

in the part of the system monitored by the corresponding residual. The result from the

fault detection is fed to the fault isolation block in which the detected fault(s) are isolated.

The proposed method supports design of the residual generation and fault detection

blocks. Design of the fault isolation block is briefly discussed in Section 6.2. The method

contains three essential steps:

1. Generate candidate residual generators,

2. Select and realize residual generators,

3. Construct diagnostic tests,

see Figure 3. In the first step, a large set of candidate residual generators are generated.

In the second step, the residual generators most suitable to be included in the final FDI-
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Figure 3: Overview of the design method.

system are selected and realized. In the third and final step, we design diagnostic tests

based on the residuals obtained as output from the selected set of residual generators.

In the subsequent sections, we describe in detail the different steps of the design

method used to create the proposed FDI-system for the wind turbine benchmark system.

As input to the design method, or prerequisites, we assume a model of the system and

no-fault training data. The data is assumed to be expressed as measurements, either

real or simulated, of the inputs and outputs of the model in realistic and representative

no-fault operating conditions.

4 Residual Generation

The set of residual generators used in the FDI-system are based upon the ideas originally

described in Staroswiecki and Declerck (1989), where unknown variables in a model

are computed by solving equation sets one at a time in a sequence and a residual is

obtained by evaluating a redundant equation. Similar approaches are described and

exploited in for example Cassar and Staroswiecki (1997); Staroswiecki (2002); Pulido and

Alonso-González (2004); Ploix et al. (2005); Travé-Massuyès et al. (2006); Blanke et al.

(2006); Svärd and Nyberg (2010). This class of residual generation methods, referred

to as sequential residual generation, has shown to be successful for real applications and

also has the potential to be automated to a high extent.

4.1 Sequential Residual Generation

Some concepts and results of sequential residual generation given in Svärd and Nyberg

(2010), to which we also refer for technical details, will now be briefly recapitulated.

We consider a model (E,X,D,Y) to be a set of differential and algebraic equations

E = {e1 , e2 , . . . , enE} containing unknown variables X = {x1 , x2 , . . . , xnX}, differential

variables D = {ẋ1 , ẋ2 , . . . , ẋnX}, and known variables Y = {y1 , y2 , . . . , ynY}. The equa-

tions in E are, without loss of generality, assumed to be on the form

e i ∶ f i (ẋ, x, y) = 0, i = 1, 2, . . . , nE , (4)

where ẋ, x and y are vectors of the variables in D, X, and Y respectively. Note that the

model of the wind turbine presented in Section 2.4 can trivially be cast into this form.

Computation Sequence

As said above, the main idea in sequential residual generation is to compute unknown

variables in the model by solving equation sets one at a time in a sequence, and then
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evaluate a redundant equation to obtain a residual. An essential component in the design

of a residual generator is therefore a computation sequence, which describes the order in

which the variables should be computed. In Svärd and Nyberg (2010), a computation

sequence is defined as an ordered set of variable and equation pairs

C = ((V1 , E1) , (V2 , E2) , . . . , (Vk , Ek)) , (5)

where Vi ⊆ X⋃D and Ei ⊆ E. The computation sequence C implies that first the

variables in V1 are computed from equations E1, then the variables in V2 from equations

E2, possibly using the already computed variables in V1, and so forth.

For an example, consider the computation sequence

C = (({τg} , {e29}) , ({ωr} , {e24}) , ({θ̇∆} , {e14}) , ({ω̇g} , {e12})) (6)

for computation of a subset of the unknown variables in wind turbine model presented

in Section 2.4. According to the computation sequence (6), the series of computations

begins with computation of variable τg using equation e29, then variable ωr is computed

using equation e24, and so on, ending with computation of variable ω̇g , or in fact ωg
from equation e12.

By construction, see Svärd and Nyberg (2010), it is guaranteed that no variable is

needed before it has been computed. Hence, the series of computations described by

the computation sequence exhibit an upper triangular structure. For the computation

sequence (6), this series of computations is given by

τg = τg ,m (7a)

ωr = ωr ,m1 (7b)

θ̇∆ = ωr − (
1

Ng
)ωg (7c)

ω̇g = (
ηdtBdt

Ng Jg
)ωr +

⎛
⎜
⎝

−
ηdtBdt
N2

g
− Bg

Jg

⎞
⎟
⎠
ωg + (

ηdtKdt

Ng Jg
) θ∆ − (

1

Jg
) τg (7d)

Whether it is possible or not to compute the specified variables from the corresponding

equations depends naturally on the properties of the equations. Equally important are

however prerequisites in terms of causality assumption, i.e., regarding integral and/or
derivative causality, and the properties of the computational tools, that are available
for use, for a detailed discussion see, e.g., Svärd and Nyberg (2010). The computation

sequence (6) makes use of solely integral causality when the variables θ∆ and ωg are

computed using equations e14 and e12, respectively.

Sequential Residual Generator

Having computed the unknown variables in V1⋃V2⋃ . . .⋃Vk according to the compu-

tation sequence C in (5), a residual can be obtained by evaluating a redundant equation e,
i.e., e ∈ E ∖ E1⋃ E2 . . .⋃ Ek with varX(e) ⊆ varX(E1⋃ E2 . . .⋃ Ek), where the operator
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varX(⋅) returns the unknown variables that are contained in an equation set. A residual

generator based on a computation sequence C and redundant equation e is referred to as
a sequential residual generator.

The computation sequence (6), together with equation e26 constitute a sequential
residual generator for the wind turbine model. When all variables in the computation

sequence (6) have been computed according to (7), the residual is computed as r =
ωg ,m1 − ωg .

Finding Sequential Residual Generators

Regarding implementation aspects, e.g., complexity and computational load, it is un-

necessary to compute variables that are not contained in the residual equation, or not

used to compute any of the variables contained in the residual equation. Furthermore, it

is also desirable that computation of variables in each step is performed from as small

equation sets as possible. It can be shown, see Svärd andNyberg (2010), that the equations

in a computation sequence fulfilling the above properties, together with a redundant

residual equation, in fact correspond to a Minimal Structurally Overdetermined (MSO)

set, see Krysander et al. (2008). In other words, a necessary condition for the existence

of a sequential residual generator for a model is that the model, or a sub-model, is an

MSO set.

4.2 Candidate Residual Generators

As indicated above, a first step when searching for a sequential residual generator for a

model may be to find an MSO set in the model. Thus, an MSO set can be regarded as a

candidate residual generator. There are efficient algorithms for finding all MSO sets in

large equation sets, see, e.g., Krysander et al. (2008).

Consider now the model of the wind turbine described in Section 2.4, with equations

E = {e1 , e2 , . . . , e33}, unknown variables

X = {τr , β1 , λ, vw , β2 , β3 ,ωr , xβ11 , xβ12 , β1,r , xβ21 , xβ22 ,
β2,r , xβ31 , xβ32 , β3,r ,ωg , θ∆ , τg , xτ g , Pg} ,

and known, i.e., measured, variables

Y ={βr , τg ,r , β1,m1 , β1,m2 , β2,m1 , β2,m2 , β3,m1 ,

β3,m2 ,ωr ,m1 ,ωr ,m2 ,ωg ,m1 ,ωg ,m2 , vw ,m , τg ,m , Pg ,m} .

In summary, the model contains 33 equations, 21 unknown variables, and 15 known

variables. By utilizing the structure, i.e., which unknown variables are contained in which
equation, see, e.g., Blanke et al. (2006), and a Matlab© implementation of the algorithm

presented in Krysander et al. (2008), 1058 MSO sets were found in total.
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5 Selecting Residual Generators

It is not feasible to implement and use all 1058 candidate residual generators, i.e., MSO

sets, in the final FDI-system. A more attractive approach is instead to pick, from the

set of all candidate residual generators, a smaller set of residual generators with desired

properties.

5.1 Desired Properties of Residual Generators

The desired properties of the sought set of residual generators are:

1. the set of residual generators should enable us to isolate all single faults from each

other;

2. a set of residual generators of smaller cardinality is preferred before a larger one,

given that the two sets have equal isolability properties;

3. a residual generator based on an MSO set of smaller cardinality is preferred before

a residual generator based on an MSO set of larger cardinality, given that the two

sets have equal detectability and isolability properties.

Properties 2 and 3 are mainly motivated by implementation aspects such as complexity,

computational load, and numerical issues.

We will base the selection of residual generators on quantitative, structural, proper-

ties of the MSO sets instead of more qualitative or analytical properties on the actual

residual generators. The latter may result in better isolation performance but is consid-

ered intractable since it require that residual generators are implemented, executed and

evaluated, and also access to representative measurement data for all fault cases.

5.2 Fault Detectability and Isolability

To be able to formally state the selection problem, the notions of detectability and

isolability are needed. Assuming that each fault occurs in only one equation, let e f i
denote the equation in an equation set E containing fault f i , for example e∆β1,m1

= e18,
see Section 2. Note that if a fault f j occurs in more than one equation, the fault f j can be

replaced with a new variable x f j in these equations, and the equation x f j = f j added to

the equation set. This added equation will then be the only equation where f j occurs.
To proceed, let (⋅)

+
denote an operator extracting the overdetermined part of a set of

equations. According to Krysander and Frisk (2008), a fault f i is structurally detectable
in the equation set E if e f i ∈ (E)

+
and structurally isolable from fault f j in the equation

set E if e f i ∈ (E)
+
and e f j /∈ (E)

+
.

For an example, consider the equation set M = {e26 , e29 , e24 , e14 , e12} containing
the residual equation and equations from the computation sequence (5), studied in

Section 4.1. First we note that the equation set M is an MSO set due to the property of

sequential residual generators mentioned in Section 4.1. Further, since M is an MSO

set, it holds that (M)+ = M, see for example Krysander et al. (2008). Thus, it can for
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instance be deduced that fault ∆ωg is structurally isolable from fault ∆β1,m1 in M, since

e∆ω g = e12, e∆β1,m1
= e18, and it holds that e12 ∈ M and e18 /∈ M, see Section 2.4.

By again utilizing the structure of the wind turbine model, the structural isolability

properties of the model were calculated. All considered faults, see Section 2.2, can be

(structurally) isolated from each other in the wind turbine model.

5.3 Selection Problem Formulation

We will now formulate the selection problem in terms of properties on a set of MSO

sets. To this end, letM denote the set of all MSO sets in the model, and F the set of

considered faults. Let f i , f j ∈ F and define the isolation class for ( f i , f j) as

I f i f j = {S ∈M ∶ e f i ∈ (S)
+
∧ e f j /∈ (S)

+
} , (8)

that is, I f i f j contains the MSO sets inM in which fault f i is structurally isolable from
fault f j . Further, let

I = {I f i f j ∶ ∀ ( f i , f j) ∈ F × F , f i ≠ f j} (9)

denote the set of all isolation classes needed for full isolation of all faults in F. For the
wind turbine benchmark model and the set of 15 faults considered in Section 2.2, the set

I contains in total 15 × 15 − 15 = 210 isolation classes for single fault isolation of all 15

faults, i.e., ∣I ∣ = 210, where the operator ∣⋅∣ returns the cardinality of a set.

To be able to satisfy the isolability property 1 stated above, we want to find a set

S ⊆M with a non-empty intersection with all isolation classes, that is,

∀I f i f j ∈ I S ∩ I f i f j ≠ ∅. (10)

The property (10) on S implies that we should find a so called hitting set for I . To satisfy
the property 2 we want to find an S so that ∣S ∣ is minimized. Thus, the sought hitting set

for I should be of minimal cardinality and we should find a so calledminimal cardinality
hitting set (MHS) for I .

There are several possibilities for a metric that helps us find an S that satisfies prop-

erty 3. We opt for simplicity and have therefore chosen to minimize ∑S∈S ∣S∣. As an
additional requirement, on top of 1, 2, and 3 in Section 5.1 we require that at least one

residual generator can be constructed from every S ∈ S .

5.4 Solving the Selection Problem

The problem of finding a minimal cardinality hitting set is known to be NP-hard, see,

e.g., Garey and Johnson (1979). To overcome the complexity issues, we have chosen to

compute an approximate solution to the problem in an iterative manner with a greedy

selection approach as elaborated in Svärd et al. (2011).

To accomplish this, we need to specify a utility function, i.e., a function that evaluates

the usefulness of a given MSO set, and also state the properties of a complete solution to

the selection problem. Following the greedy selection approach, we add to the solution

the MSO set with the largest utility until the solution is complete. Furthermore, we only

add MSO sets from which at least one residual generator can be constructed.
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Characterization of a Solution

We will now characterize a complete solution to the selection problem for use in the

selection algorithm. First, we define the isolation class coverage of a set of MSO sets

S ⊆M as

σI (S) = {I f i f j ∈ I ∶ ∃S ∈ S , S ∈ I f i f j} , (11)

which states which of the isolation classes in I that are covered by theMSO sets in S . The

property 1 in Section 5.1, i.e., the isolation or hitting set property, can with the isolation

class coverage notion be formulated as σI (S) = I . This characterizes a complete solution

of the selection problem.

Utility Function

To evaluate a specific MSO set, we want to take into account the properties 1, 2, and 3,

above. For a given MSO set S, we will use the utility function

µI (S) = γ (
∣σI ({S}) ∣
∣I ∣

) + (1 − γ)(1 − ∣S∣
∣Ŝ∣
) , (12)

where Ŝ is the MSO set inM with largest cardinality, and γ, 0 ≤ γ ≤ 1, a weighting factor.
The term

∣σI({S})∣
∣I∣ in (12) tells how many of the isolation classes in I that are covered by

the MSO set S. Since we aim at covering all isolation classes with a minimum of MSO

sets, property 2, we want to pick an MSO set that maximizes this term. The term 1 −
∣S∣
∣Ŝ∣

relates the cardinality of S to the cardinality of all other sets inM. Picking an MSO set

that maximizes this term in (12) hence corresponds to picking the MSO set with smallest

cardinality inM. This will help us satisfy property 3. The weighting factor γ is used to

trade between the two properties reflected by these two terms.

Note that an MSO set maximizing one term in (12) may minimize the other since

an MSO set of larger cardinality likely cover more isolation classes than an MSO set of

smaller cardinality.

5.5 The Selection Algorithm

The function selectResidualGenerators used for selecting residual generators by

means of greedy selection is given in Algorithm 4. Input to the function is a set of MSO

setsM, i.e., a set of candidate residual generators, and a set of isolation classes I . The

output is a set of MSO sets S ⊆M and a set of residual generatorsR based on S . The

function findComputationSequence, described in Svärd and Nyberg (2010), is used to

find a computation sequence in accordance with Section 4.1, given a just-determined set

of equations. The function findComputationSequence can be found in Algorithm 5

in Appendix A.

For a formal discussion regarding the qualification of using a greedy heuristic for

solving the residual generation selection problem, as well as the complexity properties of

such algorithms, please refer to Svärd et al. (2011) and references therein.
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Algorithm 4 Greedy Selection of Residual Generators

function selectResidualGenerators(M, I)

S ∶= ∅

R ∶= ∅

while I ≠ ∅ do
S ∶= argmaxS∈M µI (S)
x ∶= varX(S)
R ∶= ∅
for all e ∈ S do

S′ ∶= S ∖ {e}
C ∶= findComputationSequence(S′ , x)
if C ≠ ∅ then

R ∶= R ∪ {(C , e)}
end if

end for
if R ≠ ∅ then
S ∶= S ∪ {S}
R ∶=R ∪ {R}

end if
M ∶=M ∖ {S}
I ∶= I ∖ σI ({S})

end while
return (S ,R)

end function
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Selecting Residual Equation

Note that the total number of sequential residual generators that potentially can be

constructed from an MSO set equals the number of equations in the set. All residual

generators created from the same MSO set however have equal fault detectability and

isolability properties according to Section 5.2. Nevertheless, their actual fault detectability

and isolability may differ due for example different sensitivity for noise, etc. To make the

final selection of which of the residual generators created from an MSO set that should

be included in the final diagnosis system, evaluation by means on execution using real

measurements from different fault cases is needed. Since we in this work only assume

that no-fault data is available, see Section 3, this is not possible.

In this work, the selection of which residual generator to create from a given MSO

set is done so that the final deployment of the FDI-system becomes as simple as possible.

First of all, findComputationSequence was configured to prefer algebraic equations

as residuals before differential equations, if possible. Second, in order to avoid imple-

mentation issues related to numerical differentiation, findComputationSequence was

configured to prefer computation sequences using integral causality. Using this two-step

heuristic, the selection of which residual generator to create from anMSO set, in practice,

is more or less unambiguous. In those few cases where more than one candidate remains,

we make an arbitrary selection.

5.6 Selected Residual Generators

Both functions selectResidualGenerators and findComputationSequence were

implemented in Matlab©. As computational tool, see Svärd and Nyberg (2010), the

algebraic equation solverMaple© was utilized, which allows symbolic solving of algebraic

loops. The input to the algorithm was the set of all 1058 MSO sets for the wind-turbine

benchmark model, see Section 4.2, and the set of all 210 isolation classes for single fault

isolation of all considered faults, see Sections 2.2 and 5.3.

To investigate the sensitivity of selectResidualGenerators to the parameter γ,
i.e., the trade-off between properties 2 and 3 stated in Section 5.3 and reflected by ∣S∣ and
∑S∈S ∣S∣, the algorithm was run with the wind turbine model and 0 ≤ γ ≤ 1. The result is

shown in Table 2, where S denotes the set returned by selectResidualGenerators.

When γ = 1 the aim is to fulfill the isolation property with as few MSO sets as possible,

no matter the size of the MSO sets. As seen in Table 2 this results in few, but large, MSO

sets. The smaller the γ, the more attention is paid to the size of the MSO sets. It turns out

that 0.1 ≤ γ ≤ 0.6 gives a decent trade-off between ∣S ∣ and∑S∈S ∣S∣ for the wind turbine

model.

With γ = 0.5, the algorithm selected 16 MSO sets, i.e., ∣S ∣ = 16, and ∑S∈S ∣S∣ = 61.
Of the 16 selected MSO sets, 7 contain algebraic equations only. The other 9 MSO sets

contain both algebraic and differential equations. Thus, 7 of the 16 residual generators

used in the final FDI-system are static and the remaining 9 are dynamic. All 9 dynamic

residual generators, due to the configuration of the algorithm, use integral causality. The

total number of found residual generators is 34, that is, ∣R∣ = 34, see Section 5.5. Of these

34 residual generators, 18 are static and the remaining 16 are dynamic.
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Table 2: selectResidualGenerators sensitivity to parameter γ.

γ ∣S ∣ ∑S∈S ∣S∣
0.0 20 82

0.1 16 61

0.2 16 61

0.3 16 61

0.4 16 61

0.5 16 61

0.6 16 61

0.7 16 65

0.8 17 72

0.9 16 87

1.0 8 108

Fault SignatureMatrix

Given an MSO set S its fault signature F (S), with respect to the faults in F, is defined as

F (S) = { f i ∈ F ∶ e f i ∈ S} .

For instance, the fault signature of the MSO set S1 = {e26 , e27} ⊆ M is F (S1) =
{∆ωg ,m1 , ∆ωg ,m2}. A convenient representation of the fault signature of a set of MSO

sets S = {S1 , S2 , . . . , Sk} with respect to F is the fault signature matrix (FSM) S with

elements defined by

S i j =
⎧⎪⎪
⎨
⎪⎪⎩

x, if f j ∈ F(S i), S i ∈M
0, else.

The FSM for the 16 MSO sets on which the selected residual generators are based, is

given in Table 3.

6 Fault Detection and Isolation

For fault detection and isolation, diagnostic tests based on the output from each of the

16 residual generators are constructed. Since no assumptions are made regarding the

nature of the faults that should be detected, see Section 2.2, nothing is known about the

fault’s temporal properties, size, rate of occurrence, etc. Hence, we may not be able to

fully exploit the potential of some general method for change detection as for example

the CUSUM-test, see, e.g., Gustafsson (2000).

As said in Section 3 we however assume that no-fault training data is available. To

take advantage of this fact, and also handle uncertainties in terms of modeling errors

and measurement noise, we base our diagnostic tests on a comparison of the estimated

probability distributions of no-fault and current residuals. The former probability dis-

tributions are estimated offline using the available no-fault training data and the latter
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Table 3: Fault Signature Matrix
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R1 (S1) x x

R2 (S2) x x

R3 (S3) x x

R4 (S4) x x

R5 (S5) x x

R6 (S8) x

R7 (S11) x x x

R8 (S27) x x

R9 (S29) x x

R10 (S31) x x

R11 (S7) x

R12 (S6) x

R13 (S14) x x x

R14 (S28) x x

R15 (S30) x x

R16 (S32) x x

online using current data. A clear advantage with this approach is that changes in mean

and variance are handled in a unified way, since we consider the complete distribution

of the residual.

6.1 Diagnostic Test Design

Let PNF be a discrete estimate of the probability distribution of a residual from no-fault

data, and P a discrete estimate of the distribution of the same residual from present data,

both having n bins. Then the Kullback-Leibler (K-L) divergence, (Kullback and Leibler,

1951), between P and PNF is given by

D (P∥PNF) =
n
∑
j=1

P ( j) log P ( j)
PNF ( j)

, (13)

where P ( j) denotes the j:th bin of the discrete distribution P.
To apply the K-L divergence for construction of a diagnostic test, we proceed as

follows. Given a representative batch of no-fault dataZNF , i.e., in our case measurements

of the variables in the set Z which contains the inputs and outputs to the model, we run

the set of residual generators and obtain a set of residuals. For each residual r i , we then
estimate its probability distribution and obtain PNF

i , i.e., actually PNF
i ≈ P (R i ∣Z

NF)

where R i is a stochastic variable, discretized in n bins, representing residual r i . As said,
this procedure can be done off-line. To estimate a probability distribution, we create a
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normalized histogram with n bins for the data from which the distribution should be

estimated.

On-line, we continuously estimate the distribution of the current residual r i using a
sliding window containing N samples of r i . If we by P t

i denote the estimated distribution

of r i calculated at time t, i.e., P t
i ≈ P (R i ∣Z

t), where Z t denotes the batch of data in the

sliding window at time t, the diagnostic test is designed as

Ti(t) =
⎧⎪⎪
⎨
⎪⎪⎩

1, if D (P t
i ∥PNF

i ) ≥ J i ,
0, else,

(14)

where J i is the threshold for alarm. The K-L divergence D (P t
i ∥PNF

i ) is referred to as the

test quantity of the diagnostic test Ti .

6.2 Fault Isolation Strategy

Due to uncertainties not captured by the given model nor present in the no-fault training

data, the power of diagnostic tests are not ideal for all faults. That is, the probability of

detection given a certain fault is not always 1. To take this into account, the isolation

scheme will interpret an “x” in a certain row in Table 3 as if the testmay respond if the

corresponding fault occurs and consequently no conclusions are drawn if a test does not

respond, see Nyberg (1999).

To obtain the total diagnosis statement from a set of alarming diagnostic tests, we

simply match their fault signatures with the FSM given in Table 3. For example, if only

test T10 alarms, we look at the row corresponding to R10 and conclude that either fault

∆β1 or ∆β1,m2 are present. If then also T16 alarms, we combine the row corresponding to

R16 with the row corresponding to R10 and conclude that fault ∆β1 must be present.

To handle also multiple faults, we use the fault signatures in the original FSM in

Table 3 to create an extended FSM with fault signatures also for multiple faults. This is

done by column-wise OR-operations in the original FSM. For instance, the column in

the FSM for the double fault ∆ωg ,m1 ∧ ∆ωg ,m2 will get “x” in rows corresponding to R1,

R7, R11, R12, and R13 and zeros elsewhere. In the fault isolation scheme, we first attempt

to isolate all single faults using the original FSM in Table 3. If this does not succeed, we

try to isolate double faults, and so forth.

7 Implementation Details

The final FDI-system was implemented in Simulink© according to the structure in

Figure 2. The 16 residual generators were implemented as Embedded Matlab Functions

(EMF) in which the code was automatically generated from the structures obtained

from the functions findComputationSequence and findResidualGenerators. The

initial conditions for the states in the dynamic residual generators were derived from

the corresponding sensor measurements, if available, otherwise set to zero. For instance,

θ∆(t0) = 0, xβ i1(t0) =
β i ,m1(t0)+β i ,m2(t0)

2
, and ωg(t0) =

ω g ,m1(t0)+ω g ,m2(t0)
2

. This may cause

transients in the residuals, but this is not considered a problem.
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7.1 Parameter Discussion

Although the aim is to keep the number of parameters in the automated design method

at a minimum, there are nevertheless some parameters that must be set. This section

lists the needed parameters and discusses their influence on the performance of the

FDI-system.

Number ofHistogram Bins and Size of SlidingWindow

The number of bins n in the histograms used as distribution estimates, is a trade-off

between detection time, noise sensitivity, and complexity, in terms of computational

power and memory. A large n results in fast detection, but on the other hand also in

increased sensitivity for noise. Also, a large n requires more memory and involves more

computations, in comparison with a smaller n.
The size N of the sliding window used to batch data for creation of the histograms is

a trade-off between detection performance, noise sensitivity, and complexity. A large N
will give the K-L test quantity low-pass characteristics, resulting in a smoothed K-L test

quantity. This makes it possible to detect small changes in the estimated distributions.

On the other hand, a large N requires more memory. The choice of N is also related to

the number of bins n in the histograms and vice versa, since a small N together with a

large n, will result in a sparse histogram. Hence, the choices of N and n must match.

For the wind turbine benchmark model, investigations however indicate that the

method is quite insensitive to the values of n and N if 15 ≤ n ≤ 50 and 2000 ≤ N ≤ 6000.
A decent trade-off, taking this into account, but also the complexity issues discussed

above, is n = 20 and N = 3000, which are the values used in the final FDI-system.

Alarm Thresholds

The choice of alarm thresholds J i , i = 1, 2, . . . , 16, is a trade-off between detection time

and the number of false detections. The higher the thresholds, the longer the detection

time and the lower the rate of false alarms. The choice of alarm thresholds is related to the

choices of n and N since both affect how sensitive a K-L test quantity is to noise, which in

turn affects the rate of false detections. We aim at choosing the alarm thresholds so that

the number of false detections is minimized, implying that the choice of J i must match

the choices of n and N . For the wind turbine benchmark model, the alarm thresholds

were computed as a safety factor α = 1.1 times the maximum value of the corresponding

K-L test quantities from 100 simulations with no-fault data.

Isolation Validation Time

The only parameter involved in the fault isolation is the isolation validation time tvalI .

This parameter is used to compensate for the fact that the power of diagnostic tests not

is ideal, see Section 6.2. This may for example result in that the detection times, for the

same fault, are different for different diagnostic tests. To handle this, we demand that the

output from the isolation has been equal for tvalI samples before reporting the isolation

result. By choosing a large tvalI , we decrease the probability of false isolation, but on
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Table 4: Fault Sequence

Fault Time (s) Description

∆ωr ,m2 1000 - 1100 ωr ,m2 = 1.1ωr ,m2

∆ωg ,m2 1000 - 1100 ωg ,m2 = 0.9ωg ,m2

∆ωr ,m1 1500 - 1600 ωr ,m1 = 1.4 rad/s

∆β1,m1 2000 - 2100 β1,m1 = 5
○

∆β2,m2 2300 - 2400 β2,m2 = 1.2β2,m2

∆β3,m1 2600 - 2700 β3,m1 = 10
○

∆β2 2900 - 3000 ωn = ωn2, ζ = ζ2
∆β3 3400 - 3500 ωn = ωn3, ζ = ζ3
∆τg 3800 - 3900 τg = τg + 2000 Nm

the other hand increase the isolation time. For the wind turbine benchmark model, the

isolation validation time tvalI was set to 4 samples.

8 Evaluation and Results

To evaluate the performance of the proposed FDI-system, we use the test cases described

in Fogh Odgaard et al. (2009). The test cases are based on measured wind data and

a sequence of injected faults. The set of injected faults, their time of occurrence and

description, is specified in Table 4. The sequence contains 5 sensor faults and 3 actuator

faults. Note that two faults are injected at 1000-1100 s, i.e., at this time we have the double

fault ∆ωr ,m2 ∧ ∆ωg ,m2.

The no-fault distributions used in the evaluation were estimated from residual data

stemming from 100 Monte Carlo simulations with no-fault data, i.e., inputs, correspond-

ing to the measured variables in Z. Each set of no-fault data was generated with the

provided wind turbine model with different noise realizations according to the model.

8.1 Results and Analysis

By means of Monte Carlo simulations, the FDI-system was simulated 100 times with

data from the provided wind turbine model set-up according to the above described test

sequence.

Based on the results from the 100 runs, the mean time of detection TD , maximum

time of detection Tmax
D , minimum time of detection Tmin

D , mean time of isolation T I ,

minimum time of isolation Tmin
I , the total number of missed detections MD, and the

total number of false detections FD, for each of the faults in the test sequence, were

computed. The results along with the specified detection requirements (Fogh Odgaard

et al., 2009), given in the row Req., are shown in Table 5, where all time values are given

in seconds. Note that the specified requirements concern detection, and not isolation.
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Table 5: FDI Results. Time values in seconds.
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Req. 0.1 0.1 0.1 0.1 0.1 0.08 6 0.05

TD 0.040 0.16 0.058 4.30 0.069 51.57 18.1 7.94

Tmax
D 0.04 0.27 0.07 6.10 0.07 51.88 19.05 7.98

Tmin
D 0.03 0.06 0.05 0.40 0.06 50.57 16.37 7.90

T I - 2.53 0.12 88.85 0.13 56.95 31.84 7.99

Tmax
I - 3.13 0.12 114.26 0.13 120.73 111.96 8.03

Tmin
I - 1.89 0.11 13.17 0.12 51.62 17.91 7.95

MD 0 0 0 0 0 0 0 0

FD 0 0 0 0 0 0 0 0

According to the row corresponding to Tmax
D in Table 5, all faults in the test sequence

could be detected. For faults ∆ωg ,m2 ∧ ∆ωr ,m2, ∆β1,m1, ∆β3,m1 detection requirements

are met, by means of both TD and Tmax
D .

All faults, except the double fault ∆ωg ,m2 ∧ ∆ωr ,m2 could also be isolated. However,

the mean time of isolation, T I , for some faults, e.g., ∆β2,m2, is substantially longer than

the corresponding mean time of detection. The main reason for this is that some tests

respond slower to faults than other. As said, fault ∆ωg ,m2 ∧ ∆ωr ,m2 could not be isolated.

In fact, this fault is not uniquely isolablewith the isolation strategy described in Section 6.2

since the test response of fault ∆ωg ,m2 ∧ ∆ωr ,m2 is a subset of the test response of fault

∆ωg ,m2 ∧ ∆ωr ,m1, see Table 3. Both faults ∆ωg ,m2 and ∆ωr ,m2 are however contained in

the diagnosis statement computed after the faults have been detected.

It seems like sensor faults, e.g., ∆β3,m1 tend to be easier to detect than actuator faults

as for example ∆τg and ∆β2. One possible explanation may be that actuator faults in

general cause changes in dynamics, whose effects are attenuated by modeling errors,

noise, etc.

As can be seen in the last two rows of Table 5, there are no missed or false detections

in any of the 100 test runs.

8.2 Case Study of Fault ∆ωr,m1

To study in more detail how the FDI-system handles faults, we consider the sensor fault

∆ωr ,m1. The fault corresponds to a fixed value of 1.4 rad/s beingmeasured by sensor ωr ,m1

and occurs at time t = 1500 s. According to the FSM in Table 3, the residuals sensitive

to fault ∆ωr ,m1 are r2 and r13, obtained as output from the residual generators R2 and

R13, respectively. These residuals along with the corresponding K-L test quantities are

shown in Figure 4. As can be seen, both the residuals and the test quantities respond

distinctively to the fault.

To also illustrate the isolation procedure, we show in Figure 5 the result of the

diagnostic tests T2 and T13 (top), the isolation result associated to faults ∆ωr ,m1 (middle)
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Figure 4: Affected residuals r2 (top-left) and r13 (top-right), and the corresponding K-L

test quantities D (P t
2∥PNF

2 ) (bottom-left) and D (P t
13∥PNF

13 ) (bottom-right) at the time of

occurrence of fault ∆ωr ,m1.

and ∆ωr ,m2 (bottom), and also the signal that indicates when the isolation procedure

is done (middle and bottom). As can be seen in Figure 5, the first test that reacts to the

fault is T2. This occurs at t = 1500.23 s. Since T2 is sensitive to both fault ∆ωr ,m1 and

∆ωr ,m2 and no other test has alarmed, the diagnosis statement is that either ∆ωr ,m1 or

∆ωr ,m2 may be present, and no fault can be isolated. At t = 1502.55 s, test T13 alarms.

Test T13 is sensitive to faults ∆ωg , ∆ωr ,m1, and ∆ωr ,m2, and the updated total diagnosis

statement based on that both T2 and T13 have alarmed thus becomes ∆ωr ,m1, see Table 3.

This occurs at time t = 1502.59 s.

9 Conclusions

We have proposed an FDI-system for the wind turbine benchmark designed by applica-

tion of a generic automated design method, in which the number of required human

decisions and assumptions are minimized. No specific adaptation of the method for

the wind turbine benchmark was needed. The method contains in essence three steps:

generation of candidate residual generators; residual generator selection; and diagnostic

test construction. The second step is done by means of greedy selection, and the third

step is based on a novel method utilizing the K-L divergence.

The performance of the proposed FDI-system has been evaluated using the pre-

defined test sequence for the wind turbine benchmark. The FDI-system performs well;

all faults in the test sequence were detected within feasible time and all faults, except a



230 Paper E. Automated Design of an FDI-System . . .

1500 1501 1502 1503 1504 1505 1506
0

0.5

1

T
2
,
T

1
3

 

 

T2
T13

1500 1501 1502 1503 1504 1505 1506
0

0.5

1
∆

ω
r,

m
1

 

 

isolationResult
isolationDone

1500 1501 1502 1503 1504 1505 1506
0

0.5

1

∆
ω

r,
m

2

Time [s]

 

 

isolationResult
isolationDone

Figure 5: Isolation procedure for fault ∆ωr ,m1. Top figure shows diagnostic tests T2 and

T13. Middle and bottom figures show the isolation result corresponding to faults ∆ωr ,m1

and ∆ωr ,m2, respectively, and when the isolation procedure is done.

double fault, could be isolated shortly thereafter. In addition, there are no false or missed

detections. A tailor-made, finely tuned, FDI-system for the benchmark would probably

perform better. However, in relation to the required design effort, and that no specific

adaptation or tuning of the method to the benchmark was done, the performance is

satisfactory.
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A Algorithm for Finding a Computation Sequence

To make the paper more self-contained, the function findComputationSequence

described in Svärd and Nyberg (2010) is given below as Algorithm 5. The function takes

a just-determined equation set E′ ⊆ E and a set of unknown variables X′ ⊆ X, and returns
an ordered set C as output. The algorithm assumes availability of a computational tool in

the form of a algebraic equation (AE) solver such as for example Maple, see Svärd and

Nyberg (2010) for a thorough discussion regarding this. The function findAllSCCs

is assumed to return an ordered set of equation and variable pairs, where each pair

corresponds to a strongly connected component (SCC) of the structure of the equation

set with respect to the variable set. There are efficient algorithms for finding SCCs in

directed graphs, for example the DM-decomposition (Dulmage and Mendelsohn, 1958).
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In Matlab, the DM-decomposition is implemented in the function dmperm. Other

functions used in findComputationSequence are:

• Diff and unDiff, takes a variable set as input and returns its differentiated and

undifferentiated correspondence.

• isInitCondKnown determines if the initial conditions of the given variables are

known and consistent, and the function isDifferentiable determines if the given

variables can be differentiated with the available differentiation tool.

• isJustDetermined is used to determine if the structure of the given equation set,

with respect to the given variable set, is just-determined. This is essential, since

otherwise the computation of SCCs makes no sense.

• getDifferentialEquations takes a set of equations and a set of differentiated

variables as input, and returns the differential equations in which the given differ-

entiated variables are contained.

• isToolSolvable determines if the available algebraic equation solver can solve

the given equations for the given set of variables.

• Append, takes an ordered set and an element as input and simply appends the

element to the end of the set.

• The operator ∣ ⋅ ∣, taking a set as input, is assumed to return the number of elements

in the set and the notion A(i) is used to refer to the i:th element of the ordered

set A.
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Algorithm 5 Find a Computation Sequence

1: function findComputationSequence(E′ ,X′)
2: C ∶= ∅

3: S ∶= findAllSCCs(E′ ,X′)
4: for i = 1, 2, . . . , ∣S∣ do
5: (Ei ,Xi) ∶= S (i)
6: Di ∶= Diff(Xi)

7: Zi ∶= varD(Ei) ∩Di
8: Wi ∶= X i ∖ unDiff(Zi)

9: if not isInitCondKnown(Zi) then
10: return ∅
11: end if
12: EZ i ∶= getDifferentialEquations(Ei ,Zi)

13: EW i ∶= Ei ∖ EZ i

14: SZ i ∶= findAllSCCs(EZ i ,Zi)

15: for j = 1, 2, . . . , ∣SZ i ∣ do
16: (E j

Z i
,Z j

i) ∶= SZ i ( j)
17: if isToolSolvable(Z j

i , E
j
Z i
) then

18: Append(C , (Z j
i , E

j
Z i
))

19: else
20: return ∅
21: end if
22: end for
23: if isJustDetermined(EW i ,Wi) then
24: SW i ∶= findAllSCCs(EW i ,Wi)

25: for j = 1, 2, . . . , ∣SW i ∣ do
26: (E j

W i
,W j

i) ∶= SW i ( j)
27: if isToolSolvable(W j

i ,E
j
W i
) then

28: Append(C , (W j
i , E

j
W i
))

29: else
30: return ∅
31: end if
32: end for
33: else
34: return ∅
35: end if
36: end for
37: return C
38: end function
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