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Abstract

A vehicular driveline is the system used to transfer engine torque to the wheels.
Resonances in the elastic parts of the driveline are important to handle when control
of the engine and the transmission is optimized.

Gear shifting by engine control is a new approach for automatic gear shifting
with disengaging the clutch replaced by engine control. Resonances are excited
in an uncontrolled driveline if the time for shifting to neutral gear is decreased.
This leads to problems with disengaging the old gear and synchronizing speeds for
engaging the new gear. Internal driveline torque control is a novel idea for handling
resonances and increasing shift quality. By estimating the transmitted torque and
controlling it to zero by engine control, the gear can systematically be disengaged
with minimized driver disturbances and faster speed synchronization. Field trials
show fast shifts to neutral gear, despite disturbances and driveline oscillations
at the start of the gear shift. The control scheme is simple and robust against
variations among different gears. Furthermore, damping of driveline resonances
can be obtained with an observer in combination with a PID feedback structure,
despite the higher order driveline system.

Traditional diesel engine speed control maintains a well damped engine speed
set by the driver. However, the resonance modes of the driveline are easily excited
by accelerator-position changes or by road disturbances. A speed-control strat-
egy is proposed that includes the behavior of the driveline, and reduces driveline
resonances and vehicle shuffle by engine control. Implementation shows significant
reduction, also when facing nonlinear torque limitations from maximum torque and
diesel smoke delimiters.

A basis for both applications is a driveline model with a drive-shaft flexibility,
and an analysis of the control problem. The model captures the first main resonance
mode of the driveline and is sufficiently detailed for control design. Furthermore,
the response time of the diesel engine is shown to be sufficient for reducing the first
resonance mode.
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1

Introduction

The main parts of a vehicular driveline are engine, clutch, transmission, shafts,
and wheels. Since these parts are elastic, mechanical resonances may occur. The
handling of such resonances is basic for functionality and driveability, but is also
important for reducing mechanical stress and noise. New driveline-management
applications and high-powered engines increase the need for strategies for how to
apply engine torque in an optimal way. Two systems where driveline oscillations
limit performance are fuel injection for speed control and automatic gear shifting
by engine control.

Low-frequent driveline resonances can be damped by having a strategy that
applies engine torque so that the engine inertia is forced to work in the opposite
direction of the oscillations. This is referred to as active damping or engine con-
trolled damping of driveline resonances. In order to derive these strategies, models
of the driveline are developed. The aim of the modeling and experiments is to find
the most important physical effects that contribute to driveline oscillations. The
frequency range of interest includes the first main resonance modes of the drive-
line. Experiments are performed with a heavy truck with different gears and road
slopes in order to excite driveline resonances for modeling. Some open questions
are discussed, regarding influence of sensor dynamics and nonlinear effects.

The first problem treated is wheel-speed oscillations following from a change in
accelerator pedal position or from impulses from towed trailers and road roughness,
known as vehicle shuffle [16, 21].

Traditional fuel-injection strategies are of torque control type or speed con-

trol type. Control performance is limited by driveline resonances for both control
schemes. For diesel engines, speed control is often referred to as RQV control [2].
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With RQV control there is no active damping of driveline resonances, and for low
gears this leads to wheel-speed oscillations and vehicle shuffle. A desired property
with RQV control is a load dependent velocity lag resulting from downhill and
uphill driving. Model based control is used to extend the RQV control concept
with engine controlled damping of wheel-speed oscillations, while maintaining the
desired velocity lag characteristic for RQV control.

In todays traffic it is desired to have an automatic gear shifting system on
heavy trucks. One approach at the leading edge of technology is gear shifting
by engine control [19]. With this approach, disengaging the clutch is replaced by
controlling the engine to a state where the transmission transfers zero torque, and
by that realizing a virtual clutch. After neutral gear is engaged, the engine speed
is controlled to a speed such that the new gear can be engaged. The gear shifting
system uses a manual transmission with automated gear lever, and a normal friction
clutch that is engaged only at start and stop.

The total time needed for a gear shift is an important quality measure. One
reason for this is that the vehicle is free-rolling, since there is no driving torque,
which may be serious with heavy loads and large road slopes. The difference in
engine torque before a gear shift and at the state where the transmission transfers
zero torque is often large. Normally, this torque difference is driven to zero by
sliding the clutch. With gear shifting by engine control, the aim is to decrease
the time needed for this phase by using engine control. However, a fast step in
engine torque may lead to excited driveline resonances. If these resonances are
not damped, the time to engage neutral gear increases, since one has to wait for
satisfactory gear-shift conditions. Furthermore, engaging neutral gear at a non-
zero transmission torque results in oscillations in the transmission speed, which is
disturbing for the driver, and increases the time needed to engage the new gear.
These problems motivate the need for using feedback control in order to reach zero
transmission torque. Two major problems must be addressed to obtain this. First,
the transmission torque must be estimated and validated. Then a strategy must
be derived that drives this torque to zero with damped driveline resonances.

A common architectural issue in driveline control is the choice of sensor location.
Different sensor locations result in different control problems, and the influence
in control design is investigated. A comparison is made between using feedback
from the engine-speed sensor or the wheel-speed sensor. The investigation aims at
understanding where to invest in increased sensor performance in future driveline
management systems.

1.1 Outline and Contributions

Chapter 2 gives more background to the applications described above, and an
outline of the goals for later derivation of various control strategies. Experiments
for modeling and testing the derived strategies are performed with two heavy trucks
with different engine types. One has an 8 cylinder in-line fuel-injection engine, and
the other has a 6 cylinder unit pump fuel-injection engine. The experimental
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platform is further described in Chapter 3.

Chapter 4 covers the derivation of three driveline models of different complexity,
that can explain driveline oscillations. Experiments with the heavy trucks are
described together with the modeling conclusions. The contribution of the chapter
is that a linear model with one torsional flexibility and two inertias is able to
capture the first main resonance of the driveline for both in-line and unit pump
fuel-injection systems. Parameter estimation of a model with a nonlinear clutch
and sensor dynamics explains the measured transmission speed. The difference
between experiments and model is explained to occur when the clutch transfers
zero torque.

Control of resonant systems with simple controllers is, from other technical
fields, known to have different properties with respect to sensor location. These
results are reviewed in Chapter 5. The extension to more advanced control design
methods is a little studied topic. The contribution of the chapter is a demonstra-
tion of the influence of sensor location in driveline control when using LQG/LTR
control [21].

Chapter 6 treats the design and simulation of the speed-controller concept. A
key contribution in this chapter is the formulation of a criterion for speed control
with engine controlled damping of wheel-speed oscillations, and with a retained
velocity lag characteristic for RQV control [20, 22].

The implementation of the speed-control concept in a heavy truck is covered
in Chapter 7. The main contribution is a demonstration of significantly reduced
driveline resonances in field trials. Hence, the response time of the diesel engine
is sufficient to reduce low-frequent driveline resonances and thus reducing vehicle
shuffle (which is valid for both engine types). Furthermore, it is verified that the
reduced linear driveline model with a drive-shaft flexibility is sufficiently detailed
for control design.

Chapters 8 to 10 deal with gear-shift control by using internal driveline torque
control. Two similar principles of internal torque control are covered. The first is
derived in Chapter 8, where a detailed analysis of the transmitted torque in the
transmission is performed. A key contribution is the derivation of a transmission-
torque control strategy, based on a model describing the transmission torque, and a
criterion for a controller that drives this torque to zero [20,23]. With this approach
the specific transmission-torque behavior for each gear is described and compen-
sated for. This investigation is important as a principle study in order to under-
stand the dynamic behavior of the transmission torque and for verifying simulation
studies.

However, in order to implement gear-shift control it is of great importance to
have a robust and simple control strategy with simple tuning rules for optimizing
shift quality. Chapter 10 considers this and describes a second variant of internal
torque control, where gear-shift control is obtained by controlling the drive-shaft
torsion to zero. A key contribution is the field-trial demonstration of gear shifts
by using the drive-shaft torsion controller with a short time for the torque control
phase, without leading to oscillations in the driveline speeds after engaged neutral
gear. Furthermore, engine controlled damping can be obtained by using an observer



4 Chapter 1 Introduction

together with a PID feedback structure. Chapter 9 discusses additional modeling
of the driveline when separated in two parts due to engaged neutral gear. This is
used for validation purposes in Chapter 10. The derivation of the gear-shift control
strategies and their demonstration in field trials form the main contribution of the
thesis.
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Problems with Driveline Handling

As a background, the first section gives the traditionally used techniques for speed
control and automatic gear shifting, which are the two vehicular applications con-
sidered. Field trials with the two applications are then shown to demonstrate the
limitations in performance imposed by driveline resonances. The goals of the con-
trol strategies for performance improvement are then outlined, being the basis for
later design and implementation work.

The control scheme of the traditional fuel-injection strategy is covered together
with measurements of how driveline resonances give wheel-speed oscillations, re-
sulting in vehicle shuffle. The second application is gear shifting by engine con-
trol, which utilizes engine control to engage neutral gear fast without sliding the
clutch. When minimizing the time needed, the excited driveline resonances must
be handled. The problem is demonstrated in field trials together with the resulting
increase in shift time if neutral gear is engaged at a torque level different from zero.

2.1 Background

Fuel-Injection Strategy for Speed Control

As described in the previous chapter, fuel-injection strategy can be of torque control
type or speed control type. For diesel engines, speed control is often referred to as
RQV control, and torque control referred to as RQ control [2]. With RQ control,
the driver’s accelerator pedal position is interpreted as a desired engine torque,
and with RQV control the accelerator position is interpreted as a desired engine
speed. RQV control is essentially a proportional controller calculating the fuel

5
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amount as function of the difference between the desired speed set by the driver
and the actual measured engine speed. The reason for this controller structure is
the traditionally used mechanical centrifugal governor for diesel pump control [2].
This means that the controller will maintain the speed demanded by the driver,
but with a stationary error (velocity lag), which is a function of the controller gain
and the load (rolling resistance, air drag, and road inclination). With a cruise
controller, the stationary error is compensated for, which means that the vehicle
will maintain the same speed independent of load changes. This requires an integral
part of the controller which is not used in the RQV control concept.

Automatic Gear Shifting in Heavy Trucks

Traditionally a gear shift is performed by disengaging the clutch, engaging neutral
gear, shifting to a new gear, and engaging the clutch again. In todays traffic it is
desired to have an automatic gear shifting system on heavy trucks. The following
three approaches are normally used:

Automatic transmission This approach is seldom used for the heaviest trucks,
due to expensive transmissions and problems with short life time. Another
drawback is the efficiency loss compared to manual transmissions.

Manual transmission and automatic clutch A quite common approach, which
needs an automatic clutch system [17]. This system has to be made robust
against clutch wear.

Manual transmission with gear shifting by engine control With this app-
roach the automatic clutch is replaced by engine control, realizing a virtual
clutch. The only addition needed to a standard manual transmission is an
actuator to move the gear lever. Lower cost and higher efficiency characterize
this solution.

With this last approach a gear shift includes the phases described in Figure 2.1,
where the engine torque during the shift event is shown.

2.2 Field Trials for Problem Demonstration

A number of field trials are performed in order to describe how driveline resonances
influence driveline management.

Driveline speed control

A specific example of how the RQV speed controller performs is seen in Figure 2.2.
The figure shows how the measured engine speed and wheel speed respond to a step
input in accelerator position. It is seen how the engine speed is well behaved with
no oscillations. With a stiff driveline this would be equivalent with also having
well damped wheel speed. The more flexible the driveline is, the less sufficient



2.2 Field Trials for Problem Demonstration

Start of
gear shift

Engine torque

/

zero trans-
mission torque

Torque control

phase

Neutral gear New gear
engaged engaged

Control passed
to the driver

/\ﬁ

Speed synchronization
phase

Figure 2.1 Engine torque during the different phases in automatic gear shifting
by engine control. The engine torque is controlled to a state where the transmission
transfers zero torque, whereafter neutral gear is engaged without using the clutch.
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Figure 2.2 Measured speed response of a step in accelerator position at t=32 s.
An RQV speed controller controls the engine speed to 2000 RPM. The engine speed
is well damped, but the resonances in the driveline is seen to give oscillating wheel

speed, resulting in vehicle shuffle.
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Figure 2.3 Engagement of neutral gear commanded at 14 s, with stationary
driveline at 1400 RPM and 2100 RPM on a flat road with gear 1. The engine
speed (dashed) and wheel speed (dash-dotted) are scaled to transmission speed
(solid) with the conversion ratio of the driveline. After a short delay time, neutral
gear is engaged, causing the driveline speeds to oscillate. The amplitude of the
oscillating transmission speed is higher the higher the stationary speed is.

a well damped engine speed is, since the flexibility of the driveline will lead to
oscillations in the wheel speed. This will be further discussed and demonstrated in
later chapters.

If it is desired to decrease the response time of the RQV controller (i.e. increase
the bandwidth), the controller gain must be increased. Then the amplitude of the
oscillations in the wheel speed will be higher.

Driveline torque control

When using gear shifting by engine control, the phases in Figure 2.1 are accom-
plished. First, control is transferred from the driver to the control unit, entering
the torque control phase. The engine is controlled to a torque level corresponding to
zero transferred torque in the transmission. After neutral gear is engaged, the speed
synchronization phase is entered. Then the engine speed is controlled to track the
transmission speed (scaled with the conversion ratio of the new gear), whereafter
the new gear is engaged. Finally, the torque level is transferred back to the level
that the driver demands.

The total time needed for a gear shift is important to minimize, since the
vehicle is free-rolling with zero transmission torque. In Figure 2.3, neutral gear is
engaged, without a torque control phase, at a constant speed. This means that
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there is a driving torque transferred in the transmission, which clearly causes the
transmission speed to oscillate. The amplitude of the oscillations is increasing
the higher the stationary speed is. This indicates that there must be an engine
torque step in order to reach zero transmission torque and no oscillations in the
transmission speed.

Figure 2.4 shows the transmission speed when the engine torque is decreased to
46 Nm at 12.0 s. Prior to that, the stationary speed 2200 RPM was maintained,
which requested an engine torque of about 225 Nm. Four trials are performed
with this torque profile with engaged neutral gear at different time delays after the
torque step. After 12.4 s there is a small oscillation in the transmission speed, after
13.3 s and 14.8 s there are oscillations with high amplitude, and at 13.8 s there are
no oscillations in the transmissions speed. This indicates how driveline resonances
influence the transmission torque, which is clearly close to zero for the gear shift at
12.4 s and 13.8 s, but different from zero at 13.3 s and 14.8 s. The amplitude of the
oscillating transmission torque will be higher if the stationary speed is increased or
if the vehicle is accelerating.

One way this can be handled is to use a ramp in engine torque according to the
scheme in Figure 2.1. However, this approach is no good for optimizing shift time,
since the ramp must be conservative in order to wait until the transmission torque
fluctuations are damped out.

The gear shift at 13.3 s in Figure 2.4 shows the effect of a gear shift at a
transmission torque different from zero. This leads to the following problems:

e Disturbing to the driver, both in terms of noise and speed impulse.
e Increased wear on transmission.

e Increased time for the speed synchronization phase, since the transmission
speed, which is the control goal, is oscillating. The oscillations are difficult to
track for the engine and therefore one has to wait until they are sufficiently
damped.

2.3 Goals

Based on the field-trial demonstration of problems with driveline handling, the
goals for reducing the influence from oscillations in performance and driveability are
outlined. These will be the basis when deriving strategies for driveline management,
to be used in field-trial experiments in later chapters.

Speed control is the extension of the traditionally used RQV speed control con-
cept with engine controlled damping of driveline resonances. The control strategy
should maintain a desired speed with the same velocity lag from uphill and down-
hill driving, as in the case with traditional control. All avaliable engine torque
should be applied in a way that driveline oscillations are damped out. The re-
sponse time of the controller should be made as fast as possible without exciting
higher resonance modes of the driveline.



10 Chapter 2 Problems with Driveline Handling

Shift at 12.4 s Shift at 13.3 s Shift at 13.8 s Shift at 14.8 s
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135
141 1
13.4} b i
135 1 13
13.2} 1 13 4 |
13} ]
12 ] -
@ 12
g 12.8} 1115 i
11} 111.5 1
12.6 ]
10.5¢ 1
12.41 7 10f 4 11 ]
12.2¢ 1957 1105
ol | ,
12 Il Il Il Il Il 10 Il Il Il Il Il
12 13 14 12 13 14 12 13 14 12 14 16
Time, [s] Time, [s] Time, [s] Time, [s]

Figure 2.4 Gear shifts with the engine at the stationary speed 2200 RPM with
gear 1. At 12.0 s there is a decrease in engine torque to 46 Nm in order to reach
zero transmission torque. The transmission speed is plotted when neutral gear is
engaged at 12.4 s, 13.3 s, 13.8 s, and 14.8 s (with the same torque profile). The
different amplitudes in the oscillations show how the torque transmitted in the
transmission is oscillating after the torque step. Note that the range of the vertical
axes differ between the plots.

Gear-shift control is a controller that controls the internal driveline torque to
a level where neutral gear can be engaged without using the clutch. During the
torque control phase, the excited driveline resonances should be damped in order
to minimize the time needed to complete the phase. The engagement should be
realized at a torque level that gives no oscillations in the driveline speeds. Hereby,
the disturbances to the driver and the time spent in the speed synchronization phase
can be minimized. The influence on shift quality from initial driveline resonances
and torque impulses from trailer and road roughness should be minimized.
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The control problems should be formulated so that it is possible to use es-
tablished techniques to obtain solutions. The designs should be robust against
limitations in the diesel engine as actuator. These limitations are:

e The engine torque is not smooth, since the explosions in the cylinder result
in a pulsating engine torque.

e The output torque of the engine is not exactly known. The only measure of
it is a static torque map from dynamometer tests.

e The dynamical behavior of the engine is also characterized by the engine
friction, which must be estimated. Many variables influence engine friction
and it is necessary to find a simple yet sufficiently detailed model of the
friction.

e The engine output torque is limited in different modes of operation. The
maximum engine torque is restricted as a function of the engine speed, and
the torque level is also restricted at low turbo pressures.

The resulting strategies should be possible to implement on both in-line pump and
unit pump injection engines, with standard automotive driveline sensors.
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3

Experimental Platform

Experiments are performed with two Scania heavy trucks. These have different
number of cylinders and different fuel-injection systems. The truck used for ex-
periments with automatic gear shifting is equipped with an actuator for moving
the gear lever. Field trials are performed by controlling the driveline from a PC
in the cab of the truck. Control strategies are implemented in a real-time system,
controlling engine torque and gear shifts. Engine torque and temperature are mea-
sured, together with the speed of the engine, the speed of the output shaft of the
transmission, and the wheel speed.

The configuration of the two trucks is described in Section 3.1. Measurement
and control of driveline variables via the CAN-bus of the truck is described in
Section 3.2. Finally, a few field trials with the aim of exciting driveline resonances
are shown in Section 3.3.

3.1 Trucks

Two Scania heavy trucks with different configurations are used for experiments.
The Scania 124L 6x2 (6 wheels, 2 driven) truck shown in Figure 3.1 has the following
configuration.

e 12 liter, 6 cylinder turbo-charged DSC12 diesel engine (Figure 3.2) with max-
imum power of 420 Hp and maximum torque of 1930 Nm. The fuel metering
is governed by unit-pump injectors [5].

e The engine is connected to a manual range-splitter transmission GRS900R
(Figure 3.3) via a clutch. The transmission has 14 gears and a hydraulic

13
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Figure 3.1 Scania 124L truck.

retarder, but no automatic gear shifting system.

e The weight of the truck is m = 24 000 kg.
Figure 3.4 shows a Scania 144L 6x2 truck that has the configuration as follows.

e 14 liter V8 turbo-charged diesel engine with maximum power of 530 Hp and
maximum torque of 2300 Nm. The fuel metering is governed by an in-line
injection pump system [5].

e The engine is connected to a manual range-splitter transmission GRS900R
(Figure 3.3) via a clutch. The transmission has 14 gears and a hydraulic
retarder. It is also equipped with the automatic gear shifting system Opti-
Cruise [19].

e The weight of the truck is m = 24 000 kg.

The main differences between the two trucks are the engines and the trans-
missions. The transmission control unit in the 144L truck makes it feasible for
experiments with gear shifts, since the transmission is equipped with actuators
that can move the gear lever. The 124L truck has no transmission control unit
and therefore the gears are shifted manually. This truck is used for experiments
for speed control with engine controlled damping of driveline resonances.
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Figure 3.2 Scania 12 liter DSC12 engine.

Figure 3.3 Scania GRS900R range-splitter transmission with retarder and Opti-
Cruise automatic gear-shifting system.
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Figure 3.4 Scania 144L truck.

3.1.1 Engine

The difference in engine type between the two trucks influences driveline modeling
and control. The engines differ in size (i.e. engine moment of inertia), number
of explosions per revolution, and in the way fuel is injected. The 124L 6 cylinder
engine has the more recently introduced unit-pump injection system with one fuel
pump for each cylinder. The V8 engine in the 144L truck, on the other hand, uses
the more traditionally in-line pump system with one fuel pump supplying all eight
cylinders with fuel.

Driveline modeling will be influenced by a number of subsystems of the engine
that are common for both engine types. These are

Maximum torque delimiter The injected fuel amount is restricted by the phys-
ical character of the engine (i.e. engine size, number of cylinders, etc.), to-
gether with restrictions that the engine control system uses, for utilizing the
engine in the best possible way. The maximum torque profiles for the two
engines are seen in Figure 3.5.

Diesel smoke delimiter If the turbo pressure is low and a high engine torque
is demanded, diesel smoke emissions will increase to an unacceptable level.
This is prevented by restricting the fuel amount to a level with acceptable
emissions at low turbo pressures.

Transfer function from fuel amount to engine torque The engine torque is
the torque resulting from the explosions in the cylinders. A static function
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Figure 3.5 Maximum torque profiles for Scania DSC12 and DSC14 diesel engines.

relating the engine torque to injected fuel can be obtained in a dynamometer
test. For a diesel engine this function is fairly static, and no dynamical models
are used in this work.

Engine friction The engine output torque transferred to the clutch is equal to
the engine torque (the torque resulting from the explosions) subtracted by the
engine internal friction. Friction modeling is thus fundamental for driveline
modeling and control.

3.1.2 Sensor System

The velocity of a rotating shaft is measured by using an inductive sensor [18],
which detects the time when cogs from a rotating cogwheel are passing. This time
sequence is then inverted to get the angle velocity. Hence, the bandwidth of the
measured signal depends on the speed and the number of cogs the cogwheel is
equipped with.

Three speed sensors are used to measure the speed of the flywheel of the engine
(61n), the speed of the output shaft of the transmission (;), and the speed of the
driving wheel (Hw) The transmission speed sensor has fewer cogs than the other
two sensors, indicating that the bandwidth of this signal is lower.

By measuring the amount of fuel, my, that is fed to the engine, a measure of
the driving torque, My, (my), is obtained from dynamometer tests, as mentioned
before. The output torque of the engine is the driving torque subtracted by the
engine friction, Myy.,. This signal, u = Mp,(my) — My, is the torque acting
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Measured Variables
Variable Node Resolution Rate
Engine speed, 6., Engine 0.013 rad/s 20 ms
Engine torque, M, Engine 1% of max torque | 20 ms
Engine temp, T, Engine 1° C 1s
Wheel speed, 6., ABS 0.033 rad/s 50 ms
Transmission speed, 6, | Transmission | 0.013 rad/s 50 ms

Table 3.1 Measured variables transmitted on the CAN-bus.

on the driveline, which is a pulsating signal with torque pulses from each cylinder
explosion. However, the control signal u = My, (my) — My is treated as a
continuous signal, which is reasonable for the frequency range considered for control
design. A motivation for this is that an eight-cylinder engine makes 80 strokes/s
at an engine speed of 1200 rev/min. This means that a mean-value engine model
is assumed (neglects variations during the engine cycle). This assumption will be
validated by field trials in later implementation chapters.

The truck is equipped with a set of control units, each connected with a CAN-
bus [4]. These CAN nodes are the engine control node, the transmission node,
and the ABS brake system node. Each node measures a number of variables and
transmits them via the bus.

3.2 Measurement and Control Platform

The measured signals are described in Table 3.1. The actuators available are the
engine, which is controlled by injecting different amounts of fuel, and the transmis-
sion which by command can perform gear shifts. Driveline management consists of
measuring the state of the driveline and the desire of the driver (i.e. desired speed
and gear). The driveline is then controlled by injecting an appropriate fuel amount
so that the speed is obtained and that gear shifts can be performed.

A PC with CAN communication is used to access the variables on the CAN-bus
and transmit control signals. The situation is described in Figure 3.6. A PPCan
CAN board [24] is attached to the parallel port of the PC and to the CAN-bus in
the cab of the truck according to Figure 3.7. A real-time system [6] based on the
RTKernel [25] real-time kernel is implemented together with the PPCan drivers.

As mentioned before, the 124L truck is not equipped with OptiCruise transmis-
sion control unit, and therefore the variables from the transmission node cannot
be accessed. Hence, no transmission speed can be measured, and no gear shift can
be commanded from the computer for this truck.
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Figure 3.6 Description of the driveline management system interfacing with the
truck. Variables from the engine node, the transmission node, and the ABS node
are transmitted on the CAN-bus. The driveline management system is imple-
mented on a PC, attached to the bus in the cab of the truck.

3.3 Experiments for Driveline Modeling

A number of test roads at Scania were used for testing. They have different known
slopes. The variables in Table 3.1 are logged during tests that excite driveline
resonances. In Figure 3.8 it is seen how impulse inputs in engine torque excite
driveline resonances, giving oscillating wheel speed and engine speed on the 124L
truck.

When using the 144L truck, also the transmission node can be accessed via the
CAN-bus. Figure 3.9 shows a test with the 144L truck where step inputs in acceler-
ator position excite driveline oscillations. The oscillations have different character
depending on which truck that is being used. For example, the difference in engine
inertia gives different oscillations. In Figure 3.9 it is seen that the main flexibility
of the driveline is located between the output shaft of the transmission and the
wheel, since the largest difference in speed is between the measured transmission
speed and wheel speed.
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Figure 3.7 Experiment situation. A PC with parallel-port CAN board attached
to the CAN-bus in the cab of the truck.
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Figure 3.8 Logged data on the CAN-bus during engine torque impulse experi-
ments with the 124L truck.
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Figure 3.9 Logged data on the CAN-bus during step inputs in accelerator position
with the 144L truck. The transmission speed (dashed) and the wheel speed (dash-
dotted) are scaled to engine speed in solid. The main flexibility of the driveline
is located between the output shaft of the transmission and the wheel, since the
largest difference in speed is between the measured transmission speed and wheel
speed.

Preprocessing Data

Since the sampling is not equidistant in time, the data sets are resampled. A new
data set is obtained by interpolating the old data using linear interpolation. This
introduces higher frequencies than those in the original data set. Therefore, the
interpolated data is low-pass filtered with a frequency corresponding to half the
sampling frequency in the original data. This is done off-line and without phase
shifts in the signals.
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Driveline Modeling

The driveline is a fundamental part of a vehicle and its dynamics has been modeled
in different ways depending on the purpose. The frequency range treated in this
work is the regime including the first resonance modes of the driveline [16,21].
Vibrations and noise contribute to a higher frequency range [8,28] which is not
treated here.

The aim of the modeling is to find the most important physical effects explain-
ing the oscillations in the measured engine speed, transmission speed, and wheel
speed. The models are combinations of rotating inertias connected by damped shaft
flexibilities. The generalized Newton’s second law is used to derive the models.

A stationary torque map is assumed to be sufficient for describing the dynamic
behavior of the diesel engine, together with a friction model as function of the
engine speed and the engine temperature.

Measurements indicate that the main flexibility of the driveline is located be-
tween the output shaft of the transmission and the wheel, as pointed out in the
previous chapter. This leads to a first model capturing the first main resonance
of the driveline. The model assumes a stiff driveline up to the output shaft of the
transmission, and a drive-shaft flexibility between the transmission and the wheel.

In order to explain the oscillations in the measured transmission speed, the
drive-shaft model is extended with a clutch flexibility and a sensor filter. This
model is able to capture the first two resonance modes of the driveline, and it will
be used to explain the open question about the reason for the difference between
the measured engine speed and transmission speed.

The main part of the experiments used for modeling considers low gears. The
reason for this is that the lower the gear is, the higher the torque transferred in

23
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Figure 4.1 A rear-driven vehicular driveline.

the drive shaft is. This means that the shaft torsion is higher for lower gears, and
hereby also the problems with oscillations. Furthermore, the amplitudes of the
resonances in the wheel speed are higher for lower gears, since the load and vehicle
mass appear reduced by the high conversion ratio.

Section 4.1 covers the derivation of basic equations describing a driveline. The
engine friction is then modeled in Section 4.2, for both the 144L and the 124L trucks
(described in the previous chapter). Specific modeling and parameter estimation
for the 144L truck (Section 4.3) and the 124L truck (Section 4.4) are then covered.
Finally, the modeling conclusions are summarized in Section 4.5.

4.1 Basic Driveline Equations

Figure 4.1 depicts a rear-driven heavy truck driveline. It consists of engine, clutch,
transmission, propeller shaft, final drive, drive shafts, and wheels. Fundamental
equations for the driveline will be derived by using the generalized Newton’s second
law of motion [15]. Some basic equations regarding the forces acting on the wheel
are obtained, influenced by the complete dynamics of the vehicle. This means that
effects from, for instance, vehicle mass and trailer will be included in the equations
describing the wheels. Figure 4.2 shows the labels, the inputs, and the outputs of
each subsystem of the driveline type considered in this work. Relations between
inputs and outputs will in the following be described for each part.

Engine: The output torque of the engine is characterized by the driving torque
(M,,) resulting from the combustion, the internal friction from the engine
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Figure 4.2 Subsystems of a vehicular driveline with their respective angle and
torque labels.

(M¢r.m), and the external load from the clutch (M.). Newton’s second law
of motion gives the following model

Jbm = My — Mfpn — M, (4.1)

where J,,, is the mass moment of inertia of the engine and 6, is the angle of
the flywheel.

Clutch: A friction clutch found in vehicles equipped with a manual transmission
consists of a clutch disk connecting the flywheel of the engine and the trans-
mission’s input shaft. When the clutch is engaged, and no internal friction
is assumed, M. = M; is obtained. The transmitted torque is a function of

the angular difference (6, — 6..) and the angular velocity difference (6,, — 6,)
over the clutch

M. = M; = fc(em - 06: em - 06) (4-2)

Transmission: A transmission has a set of gears, each with a conversion ratio
i¢. This gives the following relation between the input and output torque of
the transmission

Mp = ft(Mt; Mfr:ta 06 - 0tit7 éc - étita Zt) (43)
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where the internal friction torque of the transmission is labeled My,.;. The
reason for considering the angle difference 6. — 6;4; in (4.3) is the possibility
of having torsional effects in the transmission.

Propeller shaft: The propeller shaft connects the transmission’s output shaft
with the final drive. No friction is assumed (= M, = M), giving the
following model of the torque input to the final drive

M, = My = f,(6: — 6,, 6, — 6),) (4.4)

Final drive: The final drive is characterized by a conversion ratio ¢ in the same
way as for the transmission. The following relation for the input and output
torque holds

Mg = fr(Mg, Myyz, 0, = Ogiy, 0, = Opiy,is) (4.5)
where the internal friction torque of the final drive is labeled Mp,..;.

Drive shafts: The drive shafts connect the wheels to the final drive. Here it is
assumed that the wheel speed is the same for the two wheels. Therfore, the
drive shafts are modeled as one shaft. When the vehicle is turning and the
speed differs between the wheels, both drive shafts have to be modeled. No
friction (= M,, = M) gives the model equation

My = My = fa(8; — O, 05 — 0.) (4.6)

Wheel: Figure 4.3 shows the forces acting on a vehicle with mass m and speed v.
Newton’s second law in the longitudinal direction gives

F, =m0+ F, + F, + mgsin(«) (4.7
The friction force (Fy,) is described by the sum of the following quantities [8].

e F,, the air drag, is approximated by

F, =

zchaanQ (48)

where ¢, is the drag coefficient, A, the maximum vehicle cross section
area, and p, the air density. However, effects from, for instance, open
or closed windows will make the force difficult to model.

e F)., the rolling resistance, is approximated by
F. =m(cy1 + ¢rav) (4.9)

where ¢,1 and ¢, depend on, for instance, tires and tire pressure.

e mgsin(a), the gravitational force, where « is the slope of the road.
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Figure 4.3 Longitudinal forces acting on a vehicle.

The coefficients of air drag and rolling resistance, (4.8) and (4.9), can be
identified e.g. by an identification scheme [9].

The resulting torque due to F, is equal to Fr,, where r, is the wheel
radius. Newton’s second law gives

Juwbw = My — Fuyty — My (4.10)

where J,, is the mass moment of inertia of the wheel, M,, is given by (4.6),
and My, is the friction torque. Including (4.7) to (4.9) in (4.10) together
with v = r,0,, gives

. 1 .
(Jw +mr2)0y = My — Mgy — ichapar;iJer (4.11)
—rym(cy + cmrwéw) — rymgsin(a)

The dynamical influence from the tire has been neglected in the equation
describing the wheel.

A complete model of the driveline with the clutch engaged is described by
Equations (4.1) to (4.11). So far the functions fe, fi, fp, fr, fa, and the friction
torques Myy.¢, My, f, and My,.,, are unknown. In the following section assumptions
will be made about these, resulting in a series of driveline models, with different
complexities.

Parameter Estimation Software

To estimate the parameters of the linear models derived in this chapter the System
Identification Toolbox [13] is used. The prediction error estimation method (PEM)
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for parameterized state-space representations is used to estimate the unknown pa-
rameters and initial conditions.

In order to estimate the parameters and the initial condition of the nonlinear
model derived, the continuous model is discretized. This is done by using Euler’s
method. For a continuous differential equation, the discrete version is

Tn = Tn—1 + hf(Tpn_1,Up_1) (4.12)

where h is the sampling time. The global truncation error with this method equals
O(h). Therefore it is necessary to keep h small. A too small h can give numerical
problems and it also gives unnecessarily long iteration time. The data is resampled
at a sampling frequency of 1 kHz. Furthermore, the differential equations describing
the model, are scaled to be of the same magnitude.

For a given set, of parameters, initial conditions, and control signal sequence u,
the state vector is calculated at each sample. By comparing the model output (3,
Yt, Yw) With the measured signals (6, 0;, 6,,) a cost function can be evaluated.
After some comparison between different cost functions, the following is selected

S (B @) = gm0 + E6:6) = 0 + 2536ui) = yu(0)?)  (413)

Vi

where Vi means that the sum ranges over all samples in the estimation data. The
optimal parameters and initial conditions are the ones minimizing (4.13). The data
sets are divided into two parts, one to be used in the parameter estimation phase,
and one used for validation purposes.

Each derived model is written in state-space form with the velocity of each
inertia, and the torsion of each shaft flexibility as states. More details about the
state-space representation can be found in Chapter 5.

4.2 Engine Friction Modeling

The engine friction My, is modeled as a function of the engine speed and the
engine temperature
Mfr:m = Mfr:m(ema Tm) (414)

The influence from the load is neglected. With neutral gear engaged, the engine
speed is controlled to 20 levels between 600 and 2300 RPM, while measuring the
engine torque and temperature. The resulting friction map is shown in Figure 4.4
for the 124L truck with unit-pump injection system. The corresponding friction
map for the 144L truck with in-line injection pump system is shown in Figure 4.5.

The logged engine torque, M,,(my), as a function of the fuel amount, is recal-
culated to control signal to the driveline by subtracting the engine friction from
the engine torque as

w = Mp(my) = MmO, T (4.15)
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Figure 4.4 Engine friction for the 124L truck, modeled as a function of engine

speed and engine temperature.

4.2 Engine Friction Modeling

Engine Friction, [Nm]

350

o
[Te}
N

, [rad/s]

Speed

50

40

Temperature, [C]
Figure 4.5 Engine friction for the 144L truck, modeled as a function of engine

speed and engine temperature.
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4.3 Modeling the Driveline of the 144L Truck

The measured engine speed, transmission speed, and wheel speed for the 144L truck
is explained by deriving a set of models of increasing complexity. Figure 3.9 shows
that the main difference in speed is between the measured transmission speed and
wheel speed, indicating that the important flexibility of the driveline is located
between the output shaft of the transmission and the wheel. This leads to a first
model with a lumped engine and transmission inertia connected to the wheel inertia
by a drive-shaft flexibility. The reason for this is that the drive shaft is subject to
the relatively largest torsion. This is mainly due to the high torque difference that
results from the amplification of the engine torque by the conversion ratio of the
transmission (i;) and the final drive (iy). This number (i;if) can be as high as 60
for the lowest gear. A total of three models will be derived for the 1441 truck, all
based on the basic driveline equations derived in Section 4.1. The 124L truck will
be modeled in the section following.

4.3.1 Model with Drive-Shaft Flexibility

The simplest model with a drive-shaft flexibility is developed first. Assumptions
about the fundamental equations in Section 4.1 are made in order to obtain a model
with a lumped engine and transmission inertia and a drive-shaft flexibility. Labels
are according to Figure 4.2. The clutch and the propeller shafts are assumed to be
stiff, and the drive shaft is described as a damped torsional flexibility. The trans-
mission and the final drive are assumed to multiply the torque by the conversion
ratio, without losses.

Clutch: The clutch is assumed to be stiff, which gives the following equations
for the torque and the angle

M. =M, 6, =0, (4.16)

Transmission: The transmission is described by one rotating inertia J;. The
friction torque is assumed to be described by a viscous damping coefficient
b:. The model of the transmission, corresponding to (4.3), is
Hc = 0tit (417)
Ji6;, = Myi; — by — M, (4.18)

By using (4.16) and (4.17), the model can be rewritten as

Ji0m = Mei7 — by — Myiy (4.19)

Propeller shaft: The propeller shaft is also assumed to be stiff, which gives the
following equations for the torque and the angle

M, =M;, 6,=8, (4.20)
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Final drive: In the same way as for the transmission, the final drive is modeled
by one rotating inertia Jy. The friction torque is assumed to be described by
a viscous damping coefficient by. The model of the final drive, corresponding
to (4.5), is

0, = 0y (4.21)
Jb; = Myip—bpp — My (4.22)

Equation (4.22) can be rewritten with (4.20) and (4.21) which gives
T8 = Myi% — bpby — Myiy (4.23)

Converting (4.23) to a function of engine speed is done by using (4.16) and
(4.17) resulting in

T0m = Mpi%iy — b — Maigiy (4.24)

By replacing M, in (4.24) with M, in (4.19), a model for the lumped trans-
mission, propeller shaft, and final drive is obtained

(J4i% + Jp)0pm = Mi7iG — b0ni% — bpb, — Myipiy (4.25)

Drive shaft: The drive shaft is modeled as a damped torsional flexibility, having
stiffness k, and internal damping c. Hence, (4.6) becomes

My=M; = k(ff —0y)+c0f —00) = k(B /iriy —0u) (4.26)
+ (B /iviy — 6u)

where (4.16), (4.17), (4.20), and (4.21) are used. By replacing My in (4.25)
with (4.26) the equation describing the transmission, the propeller shaft, the
final drive, and the drive shaft, becomes

(Jei% + Jp)bm = McifiG — byfmit — bpbm (4.27)

KO — Ouitif) — c(Om — Ouivis)

Wheel: If (4.11) is combined with (4.26), the following equation for the wheel is
obtained:

(Juw +m12)00 = k(O Jirif — 0) + (B /irip — Ou) (4.28)

—bwBy — §CwAa,0a7"i;912u — mepar by — rem (cp + gsin(a))

where the friction torque is described as viscous damping, with label b,,.

The complete model, named the Drive-shaft model, is obtained by inserting M.
from (4.27) into (4.1), together with (4.28), which gives the following equations.
An illustration of the model can be seen in Figure 4.6.
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Figure 4.6 The Drive-shaft model consists of a lumped engine and transmission
inertia connected to the wheel inertia by a damped torsional flexibility.

The Drive-Shaft Model

(T + T3 /i3 +Jf/ztzf) = Mm—Mfr:m—(bt/zt +bf/lt'Lf) (4.29)
—k(Om/iriy — Ow)/iriy
(O [iziy — Ou)/iti

(Juw +mr2) 00 = k(O /ivip — 0u) + c(Om/izip — 0,)  (4.30)

1 .
— —chapariﬁfU

—(by + mcrgri,)éw 5

—rym (cp1 + gsin(a))

The Drive-shaft model is the simplest model of three considered. The drive-shaft
torsion, the engine speed, and the wheel speed are used as states according to

r = 0m/Zth — 0w; Ty = ém, r3 = éw (431)

More details of state-space descriptions are given in Chapter 5. For low gears, the
influence from the air drag is low and by neglecting ¢y Aqpars 02, in (4.30), the
model is linear in the states, but nonlinear in the parameters.

Parameter estimation of the Drive-shaft model

A data set containing engine torque, engine speed, and wheel speed measurements
are used to estimate the parameters and the initial conditions of the Drive-shaft
model. The estimated parameters are

i = g, l=rym(c + gsin(a))
Jio= Jm+ B )i} 4 Tp[i7iG, Ty = Jw +mr, (4.32)
bl = bt/Zf-i-bf/ZfZ?, b2 :bw+mcr2r12”
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together with the stiffness, k, and the internal damping, ¢, of the drive shaft. The
estimated initial conditions of the states are labeled z1g, 229, and z3g, accord-
ing to (4.31). More details about the parameter estimation software is found in
Section 4.1.

Figure 4.7 shows an example of how the model fits the measured data. The
measured driveline speed are shown together with the model output, z1, z2, and z3.
According to the model, the clutch is stiff, and therefore, the transmission speed
is equal to the engine speed scaled with the conversion ratio of the transmission
(it). In the figure, this signal is shown together with the measured transmission
speed. The plots are typical examples that show that a major part of the driveline
dynamics is captured with a linear mass-spring model with the drive shafts as the
main flexibility.

Results of parameter estimation

e The main contribution to driveline dynamics from driving torque to engine
speed and wheel speed is the drive shaft, explaining the first main resonance
of the driveline.

e The true drive-shaft torsion (z1) is unknown, but the value estimated by the
model has physically reasonable values. These values will be further validated
in Chapter 10.

e The model output transmission speed (z2/i;) fits the measured transmis-
sion speed data reasonably well, but there is still a systematic dynamics lag
between model outputs and measurements.

4.3.2 Influence from Propeller-Shaft Flexibility

The Drive-shaft model assumes stiff driveline from the engine to the final drive.
The propeller shaft and the drive shaft are separated by the final drive, which has
a small inertia compared to other inertias, e.g. the engine inertia. This section
covers an investigation of how the model parameters of the Drive-shaft model are
influenced by a flexible propeller shaft.

A model is derived with a stiff driveline from the engine to the output shaft of
the transmission. The propeller shaft and the drive shafts are modeled as damped
torsional flexibilities. As in the derivation of the Drive-shaft model, the transmission
and the final drive are assumed to multiply the torque with the conversion ratio,
without losses.

The derivation of the Drive-shaft model is repeated here with the difference that
the model for the propeller shaft (4.20) is replaced by a model of a flexibility with
stiffness k, and internal damping c,

M, = M; = ky(8; — 0,) + ¢, (0: — 0,) = k(B /it — 6,) + cp(Om /it — 6,)  (4.33)

where (4.16) and (4.17) are used in the last equality. This formulation means that
there are two torsional flexibilities, the propeller shaft and the drive shaft. Inserting
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Figure 4.7 The parameters of the Drive-shaft model estimated on data with step
inputs in accelerator position using gear 1. The top figure shows the estimated
drive-shaft torsion, and the bottom figures show the model outputs (zs, x3) in
dashed lines, together with the measured driveline speeds in solid. The plots are
typical examples of that a major part of the dynamics is captured by a linear model
with a drive-shaft flexibility.
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(4.33) into (4.19) gives

Tl = Meif = b = (p(Om /it = 0p) + cp(Om /it = 0y) ) i (4.34)

By combining this with (4.1) the following differential equation describing the
lumped engine and transmission results

(o + J1 /i) = My — Mppan — by [i26,, (4.35)
—% (ko fis — 0,) + o (B it — 6,))
The final drive is described by inserting (4.33) in (4.22) and using (4.21)
0, = 0Oyif (4.36)
T = i (kp(ﬂm/it —8,) + (0 )it — é,,)) — by — M, (4.37)
Including (4.36) in (4.37) gives
Tpby = i3 (k0w /it = 0y) + cp (O fit = 6,)) = by, — i My (4.38)
The equation for the drive shaft (4.26) is repeated with new labels
My = Mg =ka(0; — 0) + ca(@f — 0) = ka(0,)i; — bu) + ca(Bp)is — 0) (4.39)

where (4.36) is used in the last equality.
The equation for the final drive (4.38) now becomes

Tiby = % (ko(Om /it = 85) + o fis = 6)) —bsf,  (4.40)
—if (kd(9p/if —0.) +ca(By/if — 9w))

The equation for the wheel is derived by combining (4.11) with (4.39). The equation
describing the wheel becomes

(Juw +mr2 )0y = ka(0p/if — 0u) + ca(By/is — 6u) (4.41)
. 1 . .
—bwByw — Echapariﬁfu — mepar By — rem (cr + gsin(a))
where again the friction torque is assumed to be described by a viscous damping

coefficient b,,. The complete model with drive shaft and propeller shaft flexibilities
is the following, which can be seen in Figure 4.8.

(Jm + Je )iV = My — Mypon — by /i260,, (4.42)
1 ) ST
=5 (ko O it = 8y) + ey O it = 8,))

Tiby = % (Ko /it = 8y) + cp(Bm fis = 6,)) = by, (4.43)
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My + Mprom rwm (¢ + gsin(a))

Im + i /i3 Jy Jw +mr,

Figure 4.8 Model with flexible propeller shaft and drive shaft.

—if (kd(ﬁ’p/if —0.) + ca(By/is — 9w))
(Jw + mrz)éw = kd(ep/if - ew) + Cd(ép/if - Hw) (4.44)

1 . .
—(by + mecpar? )0y, — Echapariﬁfu —rym (e + gsin(a))

The model equations (4.42) to (4.44) describe the Drive-shaft model extended
with the propeller shaft with stiffness &k, and damping ¢,. The three inertias in the
model are

J = Jn+ Jt/Zf
Jo = Jy (4.45)
J3 = Ju+ mrfu

If the magnitude of the three inertias are compared, the inertia of the final drive
(Jr) is considerably less than J; and Jy in (4.45). Therefore, the model will act
as if there are two damped springs in series. The total stiffness of two undamped
springs in series is

kpitkaq
k=L 4.46
kpZ?c + kd ( )
whereas the total damping of two dampers in series is
cpize
=1 (4.47)
Cply + Cd

The damping and the stiffness of the drive shaft in the previous section will thus
typically be underestimated due to the flexibility of the propeller shaft. This effect
will increase with lower conversion ratio in the final drive, iy. The individual
stiffness values obtained from parameter estimation are somewhat lower than the
values obtained from material data.
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Figure 4.9 Measured engine speed (solid) and transmission speed (dashed). The
transmission speed is multiplied with the conversion ratio of the transmission, i;.

4.3.3 Deviations between Engine Speed and Transmission
Speed

As mentioned above, there is good agreement between model output and exper-
imental data for u = M,, — M., O, and 6, but there is a slight deviation
between measured and estimated transmission speed. With the Drive-shaft model,
stiff dynamics between the engine and the transmission is assumed, and hence the
only difference between the model outputs engine speed and transmission speed is
the gain 4; (conversion ratio of the transmission). However, a comparison between
the measured engine speed and transmission speed shows that there is not only a
gain difference according to Figure 4.9. This deviation has a character of a phase
shift and some smoothing (signal levels and shapes agree). This indicates that there
is some additional dynamics between engine speed, ém, and transmission speed, 6,.
Two natural candidates are additional mass-spring dynamics in the driveline, or
sensor dynamics. The explanation is that there is a combined effect, with the major
difference explained by the sensor dynamics. The motivation for this is that the
high stiffness of the clutch flexibility (given from material data) cannot result in
a phase shift form of the magnitude shown in Figure 4.9. Neither can backlash in
the transmission explain the difference, because then the engine and transmission
speeds would be equal when the backlash is at its endpoints.

As mentioned before, the bandwidth of the measured transmission speed is
lower than the measured engine and wheel speeds, due to fewer cogs in the sensor.
It is assumed that the engine speed and the wheel speed sensor dynamics are
not influencing the data for the frequencies considered. The speed dependence of
the transmission sensor dynamics is neglected. The following sensor dynamics are
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T + Je /i + Jp [i}i} Ju +mr?,

Figure 4.10 The Drive-shaft model with sensor dynamics.

assumed, after some comparison between sensor filters of different order,

fm =

1
o (1.48)
.fw = 1

where a first order filter with an unknown parameter v models the transmission
sensor. Figure 4.10 shows the configuration with the Drive-shaft model and sensor
filter fy., f:, and f,,. The outputs of the filters are y,,, y:, and yy,.

Now the parameters, the initial condition, and the unknown filter constant ~y
can be estimated such that the model outputs (ym, y¢, ¥w) fit the measured data.
The result of this is seen in Figure 4.11 for gear 1. The conclusion is that the main
part of the deviation between engine speed and transmission speed is due to sensor
dynamics. Figure 4.12 shows an enlarged plot of the transmission speed, with the
model output from the Drive-shaft model with and without sensor filtering.

Results of parameter estimation

e If the Drive-shaft model is extended with a first order sensor filter for the
transmission speed, all three velocities (ém, 9t, Hw) are estimated by the
model. The model outputs fit the data except for some time intervals where
there are deviations between model and measured data (see Figure 4.12).
However, these deviations will in the following be related to nonlinearities at
low clutch torques.

4.3.4 Model with Flexible Clutch and Drive Shaft

The clutch has so far been assumed stiff and the main contribution to low-frequency
oscillations is the drive-shaft flexibility. However, measured data suggests that
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Figure 4.11 Parameter estimation of the Drive-shaft model as in Figure 4.7,
but with sensor dynamics included. The top figure shows the estimated drive-
shaft torsion, and the bottom figures show the model outputs (Ym, Yt, Yw) in
dashed, together with the measured data in solid. The main part of the deviation
between engine speed and transmission speed is due to sensor dynamics. See also
Figure 4.12.
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Figure 4.12 Enlargement of part of Figure 4.11. Measured transmission speed
(solid), output from the Drive-shaft model without sensor filtering (dashed), and
output from the Drive-shaft model with sensor filtering (dash-dotted). The param-
eters are estimated based on experiments with gear 1.

there is some additional dynamics between the engine and the transmission. The
candidate which is most flexible is the clutch. Hence, the model will include two
torsional flexibilities, the drive shaft, and the clutch. With this model structure,
the first and second resonance modes of the driveline are explained. The reason to
this ordering in frequency is the relatively higher stiffness in the clutch, because
the relative stiffness of the drive shaft is reduced by the conversion ratio.

A model with a linear clutch flexibility and one torsional flexibility (the drive
shaft) is derived by repeating the procedure for the Drive-shaft model with the
difference that the model for the clutch is a flexibility with stiffness k. and internal
damping ¢,

M. = M; = k(B — 0.) + co(Bm — 0.) = ke(Or — 01i) + co(Bm — Byiy)  (4.49)

where (4.17) is used in the last equality. By inserting this into (4.1) the equation
describing the engine inertia is given by

Jmem = M,, — Mfr:m - (k/'c(am - atit) + Cc(ém - etlt)) (450)
Also by inserting (4.49) into (4.18), the equation describing the transmission is

Jtét = it (kc(em — etit) + Cc(ém - 0tzt)) - btét - Mp (451)
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M, is derived from (4.23) giving
(Jo+ Ty [i2)0; = iy (kc(om — Byis) + o — étit)) — (b+by [i2)6: — Mufiy (4.52)

which is the equation describing the lumped transmission, propeller shaft, and final
drive inertia.
The drive shaft is modeled according to (4.26) as

My, = My = k(B — 0u) + ca(By — 6w) = ka(B: /iy — ) + ca(6/is — 6u) (4.53)

where (4.20) and (4.21) are used in the last equality.

The complete model, named the Clutch and drive-shaft model, is obtained by
inserting (4.53) into (4.52) and (4.11). An illustration of the model can be seen in
Figure 4.13.

The Clutch and Drive-Shaft Model

T = My — My — (kc(om — O4iz) + coBm — étit)) (4.54)

(Jo+ Jp /28 = iy (kc(em — Byis) + Ce(fm — étit)> (4.55)
~(be + by /i)y % (ka(60/is — 0u) + calbefis — b))

(Juw +mr2)by = ka(0:)if — O0uw) + ca(Bi /i — bu) (4.56)

1 .. .
—(by + crarw)bw — ichapar?UGfH —rym (¢ + gsin(a))

The clutch torsion, the drive-shaft torsion, and the driveline speeds are used as
states according to

ry = Hm — th't, Ty = 0t/Zf - Hw, T3 = ém, Ty = ét, T = éw (457)

More details about state-space representations and parameters are covered in Chap-
ter 5. For low gears, the influence from the air drag is low and by neglecting
tcwAapari 02 in (4.56), the model is linear in the states, but nonlinear in the pa-
rameters. The model equipped with the sensor filter in (4.48) gives the true sensor

outputs (Ym, Yt, Yuw)-

Parameter estimation of the Clutch and drive-shaft model

The parameters and the initial conditions of the Clutch and drive-shaft model are
estimated with the sensor dynamics described above, in the same way as the Drive-
shaft model in this section. A problem when estimating the parameters of the Clutch
and drive-shaft model is that the bandwidth of the measured signals is not enough
to estimate the stiffness k. in the clutch. Therefore, the value of the stiffness given
from material data is used and fixed, and the rest of the parameters are estimated.
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Figure 4.13 The Clutch and drive-shaft model: Linear clutch and drive-shaft
torsional flexibility.
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Figure 4.14 Clutch torsion (top figure) and drive-shaft torsion (bottom figure)
resulting from parameter estimation of the Clutch and drive-shaft model with sensor
filtering, on data with gear 1. The true values of these torsions are not known, but
the plots show that the drive-shaft torsion has realistic values.

The resulting clutch torsion (z;) and the drive-shaft torsion (zs) are shown
in Figure 4.14. The true values of these torsions are not known, but the figure
shows that the amplitude of the drive-shaft torsion has realistic values that agree
with material data. However, the clutch torsion does not have realistic values
(explained later), which can be seen when comparing with the static nonlinearity
in Figure 4.15.

The model output velocities (ém, 6;, éw) show no improvement compared to
those generated by the Drive-shaft model with sensor dynamics, displayed in Fig-
ure 4.11.
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Figure 4.15 Nonlinear clutch characteristics.

Results of parameter estimation

e The model including a linear clutch does not improve the data fit. The
interpretation of this is that the clutch model does not add information for
frequencies in the measured data.

4.3.5 Nonlinear Clutch and Drive-Shaft Flexibility

When studying a clutch in more detail it is seen that the torsional flexibility is
a result of an arrangement with smaller springs in series with springs with much
higher stiffness. The reason for this arrangement is vibration insulation. When the
angle difference over the clutch starts from zero and increases, the smaller springs,
with stiffness k.1, are being compressed. This ends when they are fully compressed
at f.1 radians. If the angle is increased further, the stiffer springs, with stiffness k.o,
are beginning to be compressed. When 6.» is reached, the clutch hits a mechanical
stop. This clutch characteristics can be modeled as in Figure 4.15. The resulting
stiffness k.(0,, — 6.) of the clutch is given by

kcl if |CU| S 001
kc(:n) = kc2 if 051 < |l‘| S 902 (458)
oo otherwise
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The torque My, (0, — 6.) from the clutch nonlinearity is

keax if |z| <0,

kclgcl + kc2 (I - 061) if 0c1 <z S 902
_kclecl + ka (1‘ + 901) lf _902 <z S _001
00 otherwise

Mye(z) = (4.59)

If the linear clutch in the Clutch and drive-shaft model is replaced by the clutch
nonlinearity according to Figure 4.15, the following model, called the Nonlinear
clutch and drive-shaft model, is derived.

The Nonlinear Clutch and Drive-Shaft Model

Jnbm = My — M — Myo(0n — i) (4.60)
—Ce(0 — Otit)
(Jo+ Tp )i = iy (Mkc(em — Byit) + celbm — ém)) (4.61)
(b + by /i2)6s — % (ka6 /is — 0) + calbfig — 0.)
(Ju +mr2)by = ka(8:)if — 0u) + caBe/is — ) (4.62)
— (b + M7 )00y — %chapari,éfu — rwm (cr1 + gsin(a))

Nonlinear driveline model with five states. (The same state-space representation
as for the Clutch and drive-shaft model can be used.) The function My, (-) is given
by (4.59). The model equipped with the sensor filter in (4.48) gives the true sensor

outputs (Ym, Y, Yw)-

Parameter estimation of the Nonlinear clutch and drive-shaft model

When estimating the parameters and the initial conditions of the Nonlinear clutch
and drive-shaft model, the clutch static nonlinearity is fixed with known physical
values and the rest of the parameters are estimated, except for the sensor filter
which is the same as in the previous model estimations.

The resulting clutch torsion (z; = 6,, — 64i;) and drive-shaft torsion (zo =
0:/iy — 6,) after minimizing (4.13) are shown in Figure 4.16. The true values
of these torsions are not known as mentioned before. However, the figure shows
that both angles have realistic values that agree with other experience. The model
output velocities (6, 6¢, 0,,) show no improvement compared to those generated
by the Drive-shaft model with sensor dynamics, displayed in Figure 4.11.

In Figure 4.12 it was seen that the model with the sensor filtering fitted the
signal except for a number of time intervals with deviations. The question is if this
is a result of some nonlinearity. Figure 4.17 shows the transmission speed plotted
together with the model output and the clutch torsion. It is clear from this figure
that the deviation between model and experiments occurs when the clutch angle
passes the area with the low stiffness in the static nonlinearity (see Figure 4.15).
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Figure 4.16 Clutch torsion (top figure) and drive-shaft torsion (bottom figure)
resulting from parameter estimation of the Nonlinear clutch and drive-shaft model
with sensor filtering, on data with gear 1. The true values of these torsions are not
known, but the plots show that they have realistic values.

Results of parameter estimation

e The model including the nonlinear clutch does not improve the overall data
fit for frequencies in the measured data.

e The model is able to estimate a clutch torsion with realistic values.

e The estimated clutch torsion shows that when the clutch passes the area
with low stiffness in the nonlinearity, the model deviates from the data. The
reason is unmodeled dynamics at low clutch torques [3].

4.3.6 Model Validity

As mentioned before, the data sets are divided into two parts. The parameters are
estimated on the estimation data. The results are then evaluated on the validation
data, and these are the results shown in this chapter.

In the parameter estimation, the unknown load, I, which vary between the
trials, is estimated. The load can be recalculated to estimate road slope, and the
calculated values agree well with the known values of the road slopes at Scania.
Furthermore, the estimation of the states describing the torsion of the clutch and
the drive shaft shows realistic values. This gives further support to model structure
and parameters.
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Figure 4.17 Clutch torsion (top figure) and measured and estimated transmission
speeds (bottom figure) from the Nonlinear clutch and drive-shaft model with sensor
dynamics with gear 1. The result is that the main differences between model
(dashed) and experiments (solid) occur when the clutch torsion passes the area
with the low stiffness (|8| < 6.1) in the static clutch nonlinearity.
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Figure 4.18 Measured step response from 1100 RPM to 1900 RPM at t=32 s, with
an RQYV controller for speed control in solid. Simulations with the same controller
and the Drive-shaft model is shown in dashed lines. The Drive-shaft model captures
the main resonance in the measured engine speed and wheel speed.

The assumption about sensor dynamics in the transmission speed influencing
the experiments, agrees well with the fact that the engine speed sensor and the
wheel speed sensor have considerably higher bandwidth (more cogs) than the trans-
mission speed sensor.

When estimating the parameters of the Drive-shaft model, there is a problem
when identifying the viscous friction components b; and by. The sensitivity in the
model to variations in the friction parameters is low, and the same model fit can be
obtained for a range of friction parameters. However the sum b;i% + by is constant
during these tests. The problem with estimating viscous parameters will be further
discussed in later design chapters.

4.4 Modeling the Driveline of the 124L Truck

The driveline of the 1441 V8 truck has successfully been modeled in the previous
section. The 124L truck has a 6 cylinder engine with a smaller engine inertia.
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Furthermore, the fuel injection system is different, and there is no transmission
node to access via the CAN-bus. This means that the modeling of the driveline is
limited to models having the engine speed and the wheel speed as outputs. The
Drive-shaft model considers these two outputs.

The parameters and the initial conditions of the model are estimated on data
described in Chapter 3 in the same way as for the 144L truck in Section 4.3,
and with similar results. Figure 4.18 shows validation of model structure and
parameters in a closed-loop test. Field trials are performed with the 124L truck
with an RQV fuel-injection controller (see Chapter 2) controlling the engine speed
from 1100 RPM to 1900 RPM at ¢t = 32 s. The same controller is used in simulations
with the Drive-shaft model with parameters estimated for the 124L truck. There
is good agreement between model outputs and experiments, which shows that the
model captures the main resonance in the engine speed and the wheel speed, also
for the unit-pump injection system.

4.5 Summary

Parameter estimation shows that a model with one torsional flexibility and two
inertias is able to fit the measured engine speed and wheel speed in a frequency
regime including the first main resonance of the driveline. This result is valid for
both in-line and unit pump fuel-injection systems. By considering the difference
between measured transmission speed and wheel speed it is reasonable to deduce
that the main flexibility is the drive shafts.

In order for the model to also fit the measured transmission speed, a first order
sensor filter is added to the model, in accordance with properties of the sensor
system. It is shown that all three velocities are fitted accurately enough. Parameter
estimation of a model with a nonlinear clutch explains that the difference between
the measured data and the model outputs occurs when the clutch transfers zero
torque.

Further supporting facts of the validity of the models are that they give values
to the non-measured variables, drive shaft and clutch torsion, that agree with expe-
rience from other sources. Furthermore, the known road slopes are well estimated.

The result is a series of models that describe the driveline in increasing detail
by, in each extension, adding the effect that seems to be the major cause for the
deviation still left.

The result, from a user perspective, is that, within the frequency regime inter-
esting for control design, the Drive-shaft model with some sensor dynamics gives
good agreement, with experiments. It is thus suitable for control design. The ma-
jor deviations left are captured by the nonlinear effects in the Nonlinear clutch and
drive-shaft model, which makes this model suitable for verifying simulation studies
in control design.
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Architectural Issues for Driveline
Control

As seen in the previous chapters, there are significant torsional resonances in a
driveline. Active control of these resonances is the topic of the rest of this thesis.
Besides formulating the control problem in this chapter, there is one architectural
issue that will be given special attention. There are different possible choices in
driveline control between using different sensor locations, since the driveline nor-
mally is equipped with at least two sensors for rotational speed, but sometimes
more. If the driveline was rigid, the choice of sensor would not matter, since the
sensor outputs would differ only by a scaling factor. However, it will be demon-
strated that the presence of torsional flexibilities implies that sensor choice gives
different control problems. The difference can be formulated in control theoretic
terms e.g. by saying that the poles are the same, but the zeros differ both in
number and values. The issue of sensor location seems to be a little studied topic
[11,12], even though its relevance for control characteristics. This principle study
should not be understood as a study on where to put a single sensor. Instead, it
aims at an understanding of where to invest in increased sensor performance in
future driveline management systems. This issue will also be investigated in later
design chapters.

The driveline model equations in Chapter 4 are written in state-space form
in Section 5.1. The formulation of performance output and controller structures
used in the rest of the thesis is given in Section 5.2. Control of resonant systems
with simple controllers is known to have structural properties e.g. with respect
to sensor location [27], as mentioned before. In Section 5.3, these differences are
illustrated for driveline models. In Section 5.4, forming the main contribution of
this chapter, an investigation is made about how these properties transfer when

49
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using more complicated controller structures like LQG/LTR. This part is based on
the material in [21].

5.1 State-Space Formulation

The input to the open-loop driveline system is u = M,,, — M., i.e. the difference
between the driving torque and the friction torque. Possible physical state variables
in the models of Chapter 4 are torques, angle differences, and angle velocity of any
inertia. In this work, the angle difference of each torsional flexibility and the
angle velocity of each inertia are used as state variables, as already mentioned in
Chapter 4. The state space representation is

&t = Az+Bu+HI (5.1)

where A, B, H, x, and [ are defined next for the Drive-shaft model and for the
Clutch and drive-shaft model defined in Chapter 4.

State-space formulation of the linear Drive-shaft model:

ry = em/ltlf — Hw
o = O (5.2)
r3 = éw
I = rym(cq + gsin(a))
giving
0 1/i -1
A= —k/’LJl —(b1 +C/i2)/J1 C/’iJl R (53)
k/.]g C/i.]g —(C+b2)/J2
0 0
B = 1/Ji |, H= 0 (5.4)
0 -1/J
where
A
Ji = Jm+ Ji/i; + Jp/iiG
Jo = Jy+mrd (5.5)
bi = b/i; +bs/ijis
by = by, + mc,,gr;zlJ

State-space formulation of the linear Clutch and drive-shaft model:

r1 = Oy — Oy

Ty = et/if—ew
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5 = 6O (5.6)
Trqa = ét
Irs = éw
A is given by the matrix
0 0 1 —i 0
0 0 0 1/iy -1
—kc/Jl 0 —Cc/Jl Ccit/Jl 0
k?cit/J2 —kd/ifJ2 Ccit/J2 —(Cci%+b2+cd/i?)/J2 Cd/ifJQ
0 kd/Jg 0 Cd/ifjg —(bg-l-cd)/Jg
and
0 0
0 0
B = 1/, |, H= 0 (5.7)
0 0
0 -1/J
where
Joo= Jn
Jy = o+ Jp]i}
Jo = Ju+mrl (5.8)
by = b+ bf/'L?
b3 = bu) + CroTw

The model equipped with the sensor filter derived in (4.48) gives the true
sensor outputs (Ym, ¥¢, Yw), according to Chapter 4.

5.1.1 Disturbance Description

The influence from the road is assumed to be described by the slow-varying load [
and an additive disturbance v. A second disturbance n is a disturbance acting on
the input of the system. This disturbance is considered because the firing pulses
in the driving torque can be seen as an additive disturbance acting on the input.
The state-space description then becomes

t=Ar+Bu+DBn+ H I+ Hv (5.9)
with z, A, B, H, and [ defined in (5.2) to (5.5) or in (5.6) to (5.8), depending on

model choice.

5.1.2 Measurement Description

For controller synthesis it is of fundamental interest which physical variables of the
process that can be measured. In the case of a vehicular driveline the normal sensor
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Figure 5.1 Plant and controllers F, and F),.

alternative is an inductive sensor mounted on a cogwheel measuring the angle, as
mentioned before. Sensors that measure torque are expensive, and are seldom used
in production vehicular applications.

The output of the process is defined as a combination of the states given by the
matrix C in

y=Cx+e (5.10)

where e is a measurement disturbance.

In this work, only angle velocity sensors are considered, and therefore, the
output of the process is one/some of the state variables defining an angle velocity.
Especially, the following C-matrices are defined (corresponding to a sensor on 6,
and 6, for the Drive-shaft model).

Cp = (5.11)
Co = (001) (5.12)

—~
o
[y

=

5.2 Controller Formulation

The performance output z is the combination of states that has requirements to
behave in a certain way. This combination is described by the matrices M and D

in the following way
z=Mz+ Du (5.13)

The resulting control problem can be seen in Figure 5.1. The unknown con-
trollers F, and F, are to be designed so that the performance output (5.13) meets
its requirements (defined later).
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If state-feedback controllers are used, the control signal « is a linear function
of the states (if they are all measured) or else the state estimates, #, which are
obtained from a Kalman filter [14]. The control signal is described by

u = lor—K.2 (5.14)

where r represents the commanded signal with the gain [y, and K. is the state-
feedback matrix. The equations describing the Kalman filter is

&= Aé + Bu+ Ks(y — C#) (5.15)

where K is the Kalman gain.
Identifying the matrices F.(s) and F(s) in Figure 5.1 gives

F,(s) = K.(sI-A+BK.+K;C) 'K; (5.16)
F.(s) = lp(l1-K.(sI—A+BK.+K;C) 'B)

The closed-loop transfer functions from r, v, and e to the control signal u are
given by

Gro = (I—-K.sI —A+BK.) "'B)lor (5.17)
G = Ko (sI—A+K;C)"'N —K.(sI —A+ BK.)™'N (5.18)

—K.(sI — A+ BK.)"'BK.(sI - A+ K;C)"'N
Gew = K.((sI —A+BK.) 'BK.—1)(sI-A+K;C) 'K; (5.19)

The transfer functions to the performance output z are given by

Gr. = (M(sI—A7'B+D)G,. (5.20)

Gy. = M(sI— A+ BK,) 'BK.(sI - A+ K;C) 'N (5.21)
+M(sI — A+ BK,) 'N + DG,

Ge. = (M(sI —A)"'B+D)Gy, (5.22)

Two return ratios (loop gains) result, which characterize the closed-loop behav-
ior at the plant output and input respectively

GF, = C(sI-A) 'BF, (5.23)
F,G F,C(sI—A)'B (5.24)

When only one sensor is used, these return ratios are scalar and thus equal.

LQG/LTR is not directly applicable to driveline control with more than one
sensor as input to the observer. This is because there are unequal number of sensors
and control signals. This gives further motivation for the type of investigation about
sensor location made in this chapter, before extending to more sensors.
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5.3 Some Feedback Properties

The performance output when controlling the driveline to a certain speed is the
velocity of the wheel, defined as

z2=0,= Cyz (5.25)

When studying the closed-loop control problem with a sensor on 6,, or éw, two
different control problems result. Figure 5.2 shows a root locus with respect to a
P-controller gain for two gears using velocity sensor 6, and 6,, respectively. The
open-loop transfer functions from control signal to engine speed G, has three
poles and two zeros, as can be seen in Figure 5.2. (G, on the other hand has one
zero and the same poles. Hence, the relative degree [10] of G, is one and Gy,
has a relative degree of two. This means that when 6,,-feedback is used, and the
gain is increased, two poles must go to infinity which makes the system unstable.
When the velocity sensor 6,, is used, the relative degree is one, and the closed-loop
system is stable for all gains. (Remember that f,, is the performance output and
thus desirable to use.)

The same effect can be seen in step response tests when the P-controller is used.
Figure 5.3 demonstrates the problem with resonances that occur with increasing
gain for the two cases of feedback. When the engine-speed sensor is used, the
engine speed is well damped when the gain is increased, but the resonance in the
drive shaft makes the wheel speed oscillate. When using 6,,-feedback it is difficult
to increase the bandwidth, since the poles moves closer to the imaginary axis, and
give a resonant system.

The characteristic results in Figures 5.2 and 5.3 only depend on the relative de-
gree, and are thus parameter independent. However, this observation may depend
on feedback structure, and therefore a more detailed analysis is performed in the
following section.

5.4 Driveline Control with LQG/LTR

Different sensor locations result in different control problems with different inherent
characteristics, as illustrated in the previous section. The topic of this section is to
show how this influences control design when using LQG/LTR with design of the
return ratio at the output of the plant [14]. The design in the rest of this thesis
will be with the dual method with design of the return ratio at the plant input.
The reason for using LQG/LTR, in this principle study, is that it offers a control
design method resulting in a controller and observer of the same order as the plant
model, and it is also an easy method for obtaining robust controllers.

5.4.1 Transfer Functions

When comparing the control problem of using 6,, or 6, as sensor, the open-loop
transfer functions G, and G, results. These have the same number of poles but
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Figure 5.2 Root locus with respect to a P-controller gain, for gear 1 (top figures)
and gear 8 (bottom figures), with sensor on 0, (left figures), or 8,, (right figures).
The cross represent the open-loop poles, while the rings represent the open-loop
zeros. The system goes unstable when the éw—gain is increased, but is stable for all
0, -gains.

different number of zeros, as mentioned before. Two different closed-loop systems
are obtained depending on which sensor that is being used.

Feedback from éw

A natural feedback configuration is to use the performance output, 6,,. Then
among others the following transfer functions result

GuwaFr
G = ————— =T,F, 5.26
rz 1+ Guwa whir ( )

1

G = _—_— —
nu 1+Guwa

Sw (5.27)
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Figure 5.3 Step responses when using a P-controller with different gains on the
Drive-shaft model with gear 1. With 0,,-feedback (top figure), increased gain results
in instability. With 6,-feedback (bottom figures), increased gain results in a well
damped engine speed, but an oscillating wheel speed.

where (5.17) to (5.22) are used together with the matrix inversion lemma [10], and
n is the input disturbance. The transfer functions S,, and Ty, are the sensitivity
function and the complementary sensitivity function [14]. The relation between
these transfer function is, as usual,

Sw+ Ty =1 (5.28)

Feedback from ém

The following transfer functions result if the ,,-sensor is used.

GuwaFr
G, = —L 5.29
rz 1 + GumFy ( )
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1
Gnu = m (5.30)

The difference between the two feedback configurations is that the return difference
is 14+ GyuwFy, or 1+ GymF).
It is desirable to have sensitivity functions that corresponds to y = 6,, and

z = 6. The following transfer functions are defined

1 GumF,

Sm= g, Tm= oamb
l—l—GumFy 1+GumFy

(5.31)

These transfer functions correspond to a configuration where 6,, is the output (i.e.
y =2z =0y). Using (5.29) it is natural to define T, by
eal Guwa Guw

= . 5.32
1+ GunmF, Gum (5.32)

The functions S,, and T, describe the design problem when feedback from 8, is
used.
When combining (5.31) and (5.32), the corresponding relation to (5.28) is

T Gum
m Tm
S + Goo

=1 (5.33)

If S, is made zero for some frequencies in (5.33), then T,, will not be equal to
one, as in (5.28). Instead, T, = Guw/Gum for these frequency domains.

Limitations on Performance

The relations (5.28) and (5.33) will be the fundamental relations for discussing
design considerations. The impact of the ratio G, /Gum will be analyzed in the
following sections.

Definition 5.1 T,, in (5.32) is the modified complementary sensitivity function,
and G/, = Guw/Gum is the dynamic output ratio.

5.4.2 Design Example with a Simple Mass-Spring Model

Linear Quadratic Design with Loop-Transfer Recovery will be treated in four cases,
being combinations of two sensor locations, 6,, or éw, and two models with the
same structure, but with different parameters. Design without pre-filter (F,. = 1)
is considered.

The section covers a general plant with n inertias connected by & — 1 torsional
flexibilities, without damping and load, and with unit conversion ratio. There are
(2n — 1) poles, and the location of the poles is the same for the different sensor
locations. The number of zeros depends on which sensor that is used, and when
using 6,, there are no zeros. When using feedback from 6,,, there are (2n — 2) zeros.
Thus, the transfer functions G, and Gy, have the same denominators, and a
relative degree of 1 and (2n — 1) respectively.
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Structural Properties of Sensor Location

The controller (5.16) has a relative degree of one. The relative degree of Gy, Fy is
thus 2, and the relative degree of G, F), is 2n. When considering design, a good
alternative is to have relative degree one in G'Fy, implying infinite gain margin and
high phase margin.

When using G, Fy, one pole has to be moved to infinity, and when using
GuwFy, 2n —1 poles have to be moved to infinity, in order for the ratio to resemble
a first order system at high frequencies.

When the return ratio behaves like a first order system, also the closed-loop
transfer function behaves like a first order system. This conflicts with the design
goal of having a steep roll-off rate for the closed-loop system in order to attenuate
measurement noise. Hence, there is a trade-off when using 6,,-feedback.

When using ém—feedback, there is no trade-off, since the relative degree of Gy,
is one.

Structure of G/,

We have in the previous simple examples seen that the relative degree and the
zeros are important. The dynamic output ratio contains exactly this information
and nothing else.

For low frequencies the dynamic output ratio has gain equal to one,

(if the conversion ratio is equal to one). Furthermore, G\, /., has a relative degree
of 2n — 2 and thus, a high frequency gain roll-off rate of 20(2n — 2) dB/decade.
Hence, the dynamic output ratio gives the closed-loop transfer function T',, a high
frequency gain roll-off rate of ¢, + 20(2n — 2) dB/decade, where ¢, is the roll-off
rate of GymFy,. When using 6,,-feedback, T, will have the same roll-off rate as
GuwFy.

Parametric properties of GG/,

Typical parametric properties of G,/ can be seen in the following example.

Example 5.1 Two different plants of the form (5.2) to (5.5) are considered with
the following values:

a) J; =0.0974, J, = 0.0280, k = 2.80, ¢ = 0, by = 0.0244, b, = 0.566, [ = 0.

b) J1 =0.0974, J, = 0.220, k = 5.50, ¢ =0, b; = 1.70, b, = 0.660, [ = 0.

with labels according to the state-space formulation in Section 5.1. The shape of
G'w/m can be seen in Figure 5.4. The rest of the chapter will focus on control design
of these two plant models.
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Figure 5.4 Dynamic output ratio G, for Example 5.1a (solid line) and Exam-
ple 5.1b (dashed line).

LQG Designs

Integral action is included by augmenting the state to attenuate step disturbances
in v [14]. The state-space realization A,, By, My, Cyq, and Cp, results. The
Kalman-filter gain, K, is derived by solving the Riccati equation [14]

Py AT + AP — PCTVICP; + BWBT =0 (5.34)

The covariances W and V, for disturbances v and e respectively, are adjusted until
the return ratio
C(sI — A)7'Ky, K;=P,0TV™! (5.35)

and the closed-loop transfer functions S and T show satisfactory performance.
The Nyquist locus remains outside the unit circle centered at —1. This means that
there is infinite gain margin, and a phase margin of at least 60°. Furthermore, the
relative degree is one, and |S| < 1.

Design for 6,-feedback. W is adjusted (and thus F(s)) such that S,, and T,
show satisfactory performance, and that the desired bandwidth is obtained. The
design of the driveline models in Example 5.1 is shown in Figure 5.5. Note that
the roll-off rate of Ty, is 20 dB/decade.

Design for 6,,-feedback. W is adjusted (and thus F,(s)) so that S,, and T,,
(and thus 6,,) show satisfactory performance. Depending on the shape of G,, /m
for middle high frequencies, corrections in W must be taken so that T, achieves
the desired bandwidth. If there is a resonance peak in G/, the bandwidth in T
is chosen such that the peak is suppressed. Figure 5.5 shows such an example (the
plant in Example 5.1b with 6,,-feedback), where the bandwidth is lower in order
to suppress the peak in G, /,,,- Note also the difference between S, and S, .

The parameters of the dynamic output ratio are thus important in the LQG
step of the design.
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Figure 5.5 Closed-loop transfer functions S (left figures), and T (right figures).
Feedback from 8, is seen in solid lines, and feedback from 6,, in dashed lines. T,
is seen in the right figures in dash-dotted lines. For the ém—design, W =5-10*
(Ex. 5.1a) and W = 50 (Ex. 5.1b) are used, and for the f,,-design, W = 15
(Ex. 5.1a) and W = W = 5- 10> (Ex. 5.1b) are used.

Loop-Transfer Recovery, LTR

The next step in the design process is to include K., and recover the satisfactory re-
turn ratio obtain previously. When using the combined state feedback and Kalman
filter, the return ratio is GF, = C(s — A)"'BK.(sI — A+ BK.+ K;C)'K;. A
simplistic LTR, can be obtained by using K, = pC and increasing p. As p is in-
creased, 2n — 1 poles move towards the open system zeros. The remaining poles
move towards infinity (compare to Section 5.1). If the Riccati equation

ATP.+P.A—P.BR'B"P, +CTQC =0 (5.36)

is solved with @ = p, and R = 1, K. = /pC is obtained in the limit, and to
guarantee stability, this K. is used for recovery.
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Figure 5.6 Closed-loop transfer functions S (left figures), and T (right figures)
after recovery. Feedback from 6y, is seen in solid lines, and feedback from 6,,, in
dashed lines. T, is seen in the right figures in dash-dotted lines. For the 6,~design,
p=10% (Ex. 5.1a) and p = 10° (Ex. 5.1b) are used, and for the 8,,-design, p = 10%,
108, and 10" are used in both Ex. 5.1a and b.

Figure 5.6 shows the recovered closed-loop transfer functions for Example 5.1.
Nyquist locus and control signal transfer function, G, = Fy/(1 + Gy F)), are
shown in Figure 5.7.

Recovery for 6,,-feedback. There is a trade-off when choosing an appropriate
p- A low p gives good attenuation of measurement noise and a low control signal,
but in order to have good stability margins, a high p must be chosen. This gives
an increased control signal, and a 20 dB/decade roll-off rate in T, for a wider
frequency range.

Recovery for 6,,-feedback. There is no trade-off when choosing p. It is possi-
ble to achieve good recovery with reasonable stability margins and control signal,
together with a steep roll-off rate.

The structural properties, i.e. the relative degrees are thus dominant in deter-
mining the LTR step of the design.
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Figure 5.7 Nyquist plot of return ratio (left figures) and control signal transfer
function Fy /(1 + GuwF),) (right figures). Feedback from 6,, is seen in solid lines,
and feedback from 6, in dashed lines. For the 6,,-design, p = 10° (Ex. 5.1a) and
p =10° (Ex. 5.1b) are used, and for the 8,,-design, p = 10%, 108, and 10'! are used
in both Ex. 5.1a and b. A dash-dotted circle with radius one, centered at -1, is
also shown in the Nyquist plots.

5.5 Summary

Control and damping of torsional oscillations in vehicular drivelines are important
problems. Different sensor locations give different transfer functions, Gy, or G .
These functions have the same poles, but have different relative degrees and differ-
ent zeros. The dynamic output ratio, G, exactly captures these differences and
nothing else. The problem that the performance output signal is not the same as
the measured output signal is handled by introducing a modified complementary
sensitivity function, being modified with G,/,,. Both structural and parameter
dependent aspects of sensor location have been characterized. In LQG/LTR, pa-
rameter dependent properties dominate in the LQG step of the design, whereas
structural properties, i.e. sensor location, dominate in the LTR step.
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Speed Controller Design and
Simulations

The background and problems with traditional diesel engine speed control (RQV)
were covered in Chapter 2. Speed control is here defined as the extension of RQV
control with engine controlled active damping of driveline resonances. Active damp-
ing is obtained by using a feedback law that calculates the fuel amount so that the
engine inertia works in the opposite direction of the oscillations, at the same time
as the desired speed is obtained. The calculated fuel amount is a function of the
engine speed, the wheel speed, and the drive-shaft torsion, which are states of the
Drive-shaft model, derived in Chapter 4. These variables are estimated by a Kalman
filter with either the engine speed or the wheel speed as input. The feedback law is
designed by deriving a criterion in which the control problem is given mathematical
formulation.

Two different observer problems result depending on if the engine speed or
the wheel speed is used as input to the observer. The difference in disturbance
rejection between the two sensor locations will be demonstrated. The RQV con-
trol scheme gives a specific character to the driving feeling e.g. when going uphill
and downhill. This driving character is important to maintain when extending
RQV control with active damping. Traditional RQV control is further explained
in Section 6.1. Thereafter, the speed control problem keeping RQV characteristics
is formulated in Section 6.2. The problem formulation is then studied in the fol-
lowing sections using available computationally powerful methods like LQG/LTR.
Finally, the design based on the Drive-shaft model is simulated together with the
more complicated Nonlinear clutch and drive-shaft model as vehicle model. Some
important disturbances are simulated that are difficult to generate in systematic
ways in real experiments.

63



64 Chapter 6 Speed Controller Design and Simulations

6.1 RQYV Control

RQV control is the traditional diesel engine control scheme covered in Chapter 2.
The controller is essentially a proportional controller with the accelerator as refer-
ence value and a sensor measuring the engine speed. The RQV controller has no
information about the load, and a nonzero load, e.g. when going uphill or downhill,
gives a stationary error. The RQV controller is described by

u=ug+ Kp(ri —6y) (6.1)

where ¢ = i;i7 is the conversion ratio of the driveline, K, is the controller gain, and
r is the reference velocity. The constant ug is a function of the speed, but not the
load since this is not known. The problem with vehicle shuffle when increasing the
controller gain, in order to increase the bandwidth, is demonstrated in the following
example.

Example 6.1 Consider the 144L truck modeled in Chapters 4 traveling at a speed
of 2 rad/s (3.6 km/h) with gear 1 and a total load of 3000 Nm (~ 2 % road slope).
Let the new desired velocity be r = 2.3 rad/s. Figure 6.1 shows the RQV control
law (6.1) applied to the Drive-shaft model with three gains, K,. In the plots, ug
from (6.1) is calculated so that the stationary level is the same for the three gains.
(Otherwise there would be a gain dependent stationary error.)

When the controller gain is increased, the rise time decreases and the overshoot
in the wheel speed increases. Hence, there is a trade-off between short rise time
and little overshoot. The engine speed is well damped, but the flexibility of the
driveline causes the wheel speed to oscillate with higher amplitude the more the
gain is increased.

The same behavior is seen in Figure 6.2, which shows the transfer functions from
load and measurement disturbances, v and e, to the performance output, when the
RQYV controller is used. The value of the resonance peak in the transfer functions
increases when the controller gain is increased.

6.2 Problem Formulation

The goals of the speed control concept were outlined in Chapter 2. These are here
given a mathematical formulation, which is solved for a controller using established
techniques and software. )

The performance output for the speed controller is the wheel speed, z = 6,,, as
defined in Chapter 5, since the wheel speed rather than the engine speed determines
vehicle behavior. Figure 6.3 shows the transfer functions from control signal (u)
and load () to the wheel speed (z) for both the Drive-shaft model and the Clutch and
drive-shaft model. The Clutch and drive-shaft model adds a second resonance peak
originating from the clutch. Furthermore, the high frequency roll-off rate is steeper
for the Clutch and drive-shaft model than for the Drive-shaft model. Note that the
transfer function from the load to the performance output is the same for the two
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Engine speed, O

Speed, [rad/s]

115 1 1 1 1 1 1 1
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Wheel speed, 6, (performance output)
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2000 T T T
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Figure 6.1 Response of step in accelerator position at t=1 s, with RQV control
(6.1) controlling the Drive-shaft model. Controller gains K, =8, K,=25, and K,=85
are shown in solid, dashed, and dash-dotted lines respectively. Increased gain
results in a well damped engine speed and an oscillating wheel speed.

models. This chapter deals with the development of a controller based on the
Drive-shaft model, neglecting the influence from the clutch for higher frequencies.

A first possible attempt for speed control is a scheme of applying the engine
torque to the driveline such that the following cost function is minimized

T
lim (z —71)? (6.2)
T—o0 Jg
where r is the reference velocity given by the driver. The cost function (6.2) can
be made arbitrarily small if there are no restrictions on the control signal u, since
the plant model is linear. However, a diesel engine can only produce torque in a
certain range, and therefore, (6.2) is extended such that a large control signal is
penalized in the cost function.



66 Chapter 6 Speed Controller Design and Simulations

Closed-loop transfer functions G,

-80 B B o =

-100

Gain [dB]

-120

-140-
10

|
al
(=]
T
Via
L

Gain [dB]
/
/

|
=
o
o

T
7

7

i

_150 1 1 L L
10 10 10° 10" 10° 10°
Frequency [rad/s]

Figure 6.2 Closed-loop transfer functions G,. and G.. when using the RQV
control law (6.1) for the controller gains K,,=8 (solid), K,,=25 (dashed), and K,=85
(dash-dotted). The resonance peaks increase with increasing gain.

The stationary point z = r is reached if a stationary control signal, ug, is used.
This torque is a function of the reference value, r, and the load, I. For a given
wheel speed, 6,,, and load, the driveline has the following stationary point

_ bo/k 1)k J _
20(fw,l) = i 0 W) = 5,0, + 0l (6.3)
0 A (%) :
wo(Bu,l) = ( (bii® +bo)/i 1/i) ( 9;” ) = Ao + Nl (6.4)

The stationary point is obtained by solving
Ar+Bu+ HIl =0 (6.5)

for  and u, where A, B, and H are given by (5.2) to (5.5).

The cost function is modified by using (6.3) and (6.4), such that a control
signal that deviates from the stationary value ug(r,l) adds to the cost function.
The extended cost function is given by

T
lim (z —7)% +n(u — up(r,1))? (6.6)

T—oo Jg

where 7 is used to control the trade-off between short rise time and control signal
amplitude.
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Figure 6.3 Transfer functions from control signal, u, and load, l, to performance
output, z. The Drive-shaft model is shown in solid and the Clutch and drive-shaft
model is shown in dashed. The modeled clutch gives a second resonance peak and
a steeper roll-off rate.

The controller that minimizes (6.6), called the speed controller, has no station-
ary error, since the load, [, is included and thus compensated for. However, it is
desirable that the stationary error characteristic for the RQV controller is main-
tained in the speed controller, as mentioned before. A stationary error comparable
with that of the RQV controller can be achieved by using only a part of the load
in the criterion (6.6), as will be demonstrated in Section 6.3.1.

6.3 Speed Control with Active Damping and RQV
Behavior

The problem formulation (6.6) will be treated in two steps. First without RQV
behavior i.e. using the complete load in the criterion, and then extending to RQV
behavior. The problem formulation (6.6) is in this section solved with LQG tech-
nique. This is done by linearizing the driveline model and rewriting (6.6) in terms
of the linearized variables. A state-feedback matrix is derived that minimizes (6.6)
by solving a Riccati equation. The derived feedback law is a function of i which is
chosen such that high bandwidth together with a feasible control signal is obtained.
The model (5.1)

&= Ar + Bu+ HI (6.7)
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is affine since it includes a constant term, [. The model is linearized in the neigh-
borhood of the stationary point (zg,uo). The linear model is described by

Az = AAz + BAu (6.8)
where
Ar = z—x9
Au = u—up (6.9)
Tro = l’o($30, l)
up = uo(30,0)

where the stationary point (zg,uo) is given by (6.3) and (6.4) (230 is the initial
value of z3). Note that the linear model is the same for all stationary points.

The problem is to devise a feedback control law that minimizes the cost function
(6.6). The cost function is expressed in terms of Az and Awu by using (6.9)

T
Tlim (M (zo + Az) — 1) + n(uo + Au — up(r,1))? (6.10)
—00 0
T
= lim (MAz +r1)? +n(Au + rp)? (6.11)
T—o0 Jg
with
rn = Mzy—r (6.12)
re = up— ug(r,l)

In order to minimize (6.10) a Riccati equation is used. Then the constants r; and
ro must be expressed in terms of state variables. This can be done by augmenting
the plant model (A, B) with models of the constants r; and 7. Since these models
will not be controllable, they must be stable in order to solve the Riccati equation
[14]. Therefore the model 7; = 7 = 0 is not used because the poles are located on
the imaginary axis. Instead the following models are used

7.“1 = —0n (613)
732 = —0ry (614)

which with a low ¢ indicates that r is a slow-varying constant.
The augmented model is given by

0 0
A 0 0

A, = o o0 |, (6.15)
000 — 0
000 0 -0
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B
B.=| 0 |, 2 =(Az" ry ry)T (6.16)
0
By using these equations, the cost function (6.10) can be written in the form
T
lim T Qx, + RAU? 4+ 22T NAu (6.17)
T—oo /g
with
Q = M10)"(M10)+n00001)700001)
N = po0ooo1nT” (6.18)
R = g
The cost function (6.10) is minimized by using
Au = —-K.z, (6.19)
with
K.=Q ' (BfP.+NT") (6.20)
where P, is the stabilizing solution to the Riccati equation
ATP.+ P.A, + R— (P.B, + N)Q™'(P.B, + N)T =0 (6.21)
The control law (6.19) becomes
AU, = —KCCU,- = — ( Kcl KCQ KC3 ) AZL” — Kc47“1 — Kc5r2 (622)
By using (6.9) and (6.12) the control law for the speed controller is written as
u= Koxsy + K;l + K,r — ( K. K. Kg; )LL‘ (623)
with
Ky = ( Ko Koy Kes )5x_Kc4M5x+>\x_K05>\x
K, = Kgy+Ks\, (6.24)
K = (Ko Ko Keg )6 — KMo+ X

where d,, 0, Az, and A; are described in (6.3) and (6.4).
When this control law is applied to Example 6.1 the controller gain becomes

u = 0.230a30 + 4470r + 0.125] — ( 7620 0.0347 2.36 )z (6.25)

where n = 5-107% and ¢ = 0.0001 are used. With this controller the phase margin is
guaranteed to be at least 60° with infinite amplitude margin [14]. A step-response
simulation with the speed controller (6.25) is shown in Figure 6.4.

The rise time of the speed controller is shorter than for the RQV controller. Also
the overshoot is less when using speed control. The driving torque is controlled
such that the oscillations in the wheel speed are actively damped. This means that
the controller applies the engine torque in a way that the engine inertia works in
the opposite direction of the oscillation. Then the engine speed oscillates, but the
important wheel speed is well behaved as seen in Figure 6.4.
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Engine speed, O
T T

Speed, [rad/s]

0 1 2 3 4 5 6 7 8
Wheel speed, 0., (performance output)
T

1 2 3 4 5 6 7 8
Control signal, u
2000 T T T

Time, [s]

Figure 6.4 Response of step in accelerator position at t=1 s. The Drive-shaft
model is controlled with the speed control law (6.25) in solid lines. RQV control
(6.1) with K,=25 is seen in dashed lines. With active damping, the engine speed
oscillates, resulting in a well damped wheel speed.

6.3.1 Extending with RQV Behavior

The RQV controller has no information about the load, I, and therefore a stationary
error will be present when the load is different from zero. The speed controller
(6.23) is a function of the load, and the stationary error is zero if the load is
estimated and compensated for. There is however a demand from the driver that
the load should give a stationary error, and only when using a cruise controller the
stationary error should be zero.

The speed controller can be modified such that a load different from zero gives
a stationary error. This is done by using Sl instead of the complete load [ in (6.23).
The constant 8 ranges from 3 = 0 which means no compensation for the load, to
3 = 1 which means fully compensation of the load and no stationary error. The
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Figure 6.5 Wheel-speed response of step in accelerator position at t=1 s. The
Drive-shaft model is controlled with the RQV controller (6.1) in dashed line, and
the speed controller with stationary error (6.26) with = 0, 0.5, 1 in solid lines.
The speed controller achieves the same stationary level as the RQV controller by
tuning (3.

compensated speed control law becomes
u=K0$30+Klﬂl+Kr7“— ( Kcl KCQ ch )CU (626)

In Figure 6.5, the RQV controller with its stationary error (remember the reference
value r = 2.3 rad/s) is compared to the compensated speed controller (6.26) applied
to Example 6.1 for three values of 3. By adjusting (3, the speed controller with
active damping is extended with a stationary error comparable with that of the
RQV controller.

6.4 Influence from Sensor Location

The speed controller investigated in the previous section uses feedback from all
states (1 = Om/isip — Ow, T2 = ém, and x3 = Bw) A sensor measuring shaft
torsion (e.g. 1) is normally not used, and therefore an observer is needed to
estimate the unknown states. In this work, either the engine speed or the wheel
speed is used as input to the observer. This results in different control problems
depending on sensor location. Especially the difference in disturbance rejection is
investigated.
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The observer gain is calculated using Loop-Transfer Recovery (LTR) [14]. The
speed control law (6.23) then becomes

u= Koxsy + K,r + Kl — ( K. K. Kg )i‘ (627)

with Ky, K,, and K; given by (6.24). The estimated states & are given by the
Kalman filter

Az = AA#+ BAu+ Kp(Ay — CAZ) (6.28)
Ky = pPiCctv! (6.29)

where P; is derived by solving the Riccati equation
Py AT + APy — PCTVICP + W =0 (6.30)

The covariance matrices W and V correspond to disturbances v and e respectively.
The output matrix C is either equal to Cy, (5.11) when measuring the engine speed,
or Cy (5.12) when measuring the wheel speed.

To recover the properties (phase margin and amplitude margin) achieved in
the previous design step when all states are measured, the following values are
selected [14]

=1
pBBT (6.31)
= (C,, or Cy

= Pm O Py

= Q3 <
I

Equations (6.29) and (6.30) are then solved for K.

When using LQG with feedback from all states, the phase margin, ¢, is at least
60° and the amplitude margin, a, is infinity as stated before. This is obtained
also when using the observer by increasing p towards infinity. For Example 6.1 the
following values are used

Pm 5-10° = @, =60.5%, a, =00 (6.32)
pw = 10" = ¢, =59.9°, a, =35.0

where the aim has been to have at least 60° phase margin. The large difference
between p,, and p,, in (6.32) is due to the structural difference between the two
sensor locations, according to Chapter 5.

The observer dynamics is cancelled in the transfer functions from reference value
to performance output (2 = 6,,) and to control signal (u). Hence, these transfer
functions are not affected by sensor location. However, the observer dynamics will
be included in the transfer functions from disturbances v and e to both z and u.
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Figure 6.6 Closed-loop transfer functions from load disturbance, v, to perfor-
mance output, z, and to control signal, u. Feedback from 6,, is shown in solid
and feedback from 6,, is shown in dashed lines. With 6,,-feedback the transfer
functions have a resonance peak, resulting from the open-loop zeros.

6.4.1 Influence from Load Disturbances

Figure 6.6 shows how the performance output and the control signal are affected by
the load disturbance v. There is a resonance peak in G,,, when using feedback from
the engine-speed sensor, which is not present when feedback from the wheel-speed
sensor is used. The reason for this can be seen when studying the transfer function
Gy in (5.21). By using the matrix inversion lemma [10] (5.21) is rewritten as

(G ) _ sz + Fy(Guvaz - Guvay)
vz )l 1+ GuyFy

(6.33)

where G4, denotes the transfer function from signal a to b, and ¢l stands for closed
loop. The subscript y in (6.33) represents the output of the system, i.e. either 6,
or 6,,. The controller Fy is given by (5.16) as

F,(s) =K.sI —A+BK,+ K;C)"'K; (6.34)

with C either being Cp, for engine-speed feedback, or €, for wheel-speed feedback.
For the speed controller (z = 6,,), Equation (6.33) becomes

va

(sz)cl = HTUUJ‘F?J

(6.35)
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when the sensor measures the wheel speed. Equation (6.35) is obtained by replacing
the subscript y in (6.33) by the subscript w. Then the parenthesis in (6.33) equals
zero. In the same way, the resulting equation for the 6,,-feedback case is

_ va + Fy (Guvaw - Guvam)
(Ges)a = L+ GumF,

(6.36)

Hence, when using the wheel-speed sensor, the controller is cancelled in the numer-
ator, and when the engine-speed sensor is used, the controller is not cancelled.
The optimal return ratio in the LQG step is

K.(sI —A)™'B (6.37)

Hence, the poles from A is kept, but there are new zeros that are placed such
that the relative degree of (6.37) is one, assuring a phase margin of at least 60°
(¢ > 60°), and an infinite gain margin. In the LTR step the return ratio is

F,Guy = K.(sI — A— BK, — K;C) 'K;C(sI — A)"'B (6.38)

When p in (6.31) is increased towards infinity, (6.37) equals (6.38). This means that
the zeros in the open-loop system C(sI — A)~!'B are cancelled by the controller.
Hence, the open-loop zeros will become poles in the controller Fy. This means
that the closed-loop system will have the open-loop zeros as poles when using the
engine-speed sensor. The closed-loop poles become —0.5187+3.07537, which causes
the resonance peak in Figure 6.6.

6.4.2 Influence from Measurement Disturbances

The influence from measurement disturbances e is shown in Figure 6.7. The transfer
functions from measurement noise to output, (5.22), can be rewritten via the matrix
inversion lemma as

Gy F,
G = 6.39
( ez)cl 1 + GuyFy ( )
The complementary sensitivity function is defined for the two sensor alternatives
as
uwF umF
T, = M, 7, = Gumfy (6.40)
1—|—Guwa 1+GumFy

Then by replacing the subscript y in (6.39) with m or w (for 0,,-feedback or 0,,-
feedback), and comparing with (6.40), the following relations hold

(Ge.),, = —Tu with 8, —feedback (6.41)
(Ger)y = —ngﬁ = TG y/m with 6, —feedback (6.42)

where the dynamic output ratio G, /,, was defined in Definition 5.1. For the Drive-
shaft model the dynamic output ratio is

cs+k
i(J282 + (c+ba)s+ k)

Guw/m = (6.43)
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Figure 6.7 Closed-loop transfer functions from measurement noise, e, to perfor-
mance output, z, and to control signal, u. Feedback from 6,, is shown in solid
and feedback from 6, is shown in dashed lines. The difference between the two
feedback principles is described by the dynamic output ratio. The effect increases
with lower gears.

where the state-space description in Chapter 5 is used. Especially for low frequen-
cies, Gy /m(0) = 1/i = 1/iyiy. The dynamic output ratio can be seen in Figure 6.8
for three different gears.

When p in (6.31) is increased towards infinity, (6.37) equals (6.38), which means
that Ty, = T\». Then (6.41) and (6.42) gives

(Gez) o = (Gez) g0y Guojm (6.44)

where ¢, m and cl, w means closed loop with feedback from 6,,, and 6,, respectively.
The frequency range in which T}, = T, is valid depends on how large p in (6.31)
is made. Figure 6.9 shows the sensitivity functions

1 1

Sv=7T—"F—5 Sm=7T—F7—5
1+ GuuF, 1+ GunF,

(6.45)

and the complementary sensitivity functions Ty, and T, (6.40) for the two cases
of feedback. It is seen that T, = T, is valid up to about 100 rad/s (~ 16 Hz).
The roll-off rate at higher frequencies differ between the two feedback principles.
This is due to that the open-loop transfer functions G, and G, have different
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Figure 6.8 The dynamic output ratio G/, for gear 1 (solid), gear 7 (dashed),
and gear 14 (dash-dotted).

relative degrees. (G, has a relative degree of two, and G, has a relative degree
of one. Therefore, T, has a steeper roll-off rate than T,.

Hence, the difference in G.. depending on sensor location is described by the
dynamic output ratio G,,/,,- The difference in low-frequency level is equal to the
conversion ratio of the driveline. Therefore, this effect increases with lower gears.

6.4.3 Load Estimation

The feedback law with unknown load is
u=Kozzo+ K;r + Kl = ( Kt Koo Kez )& (6.46)

where [ is the estimated load. In order to estimate the load, the model used in
the Kalman filter is augmented with a model of the load. The load is hard to
model correctly since it is a function of road slope. However it can be treated as a
slow-varying constant. A reasonable augmented model is

x4 =1, with @4=0 (6.47)

This gives )
z=A1 + Bu+ Kf (y - Cli‘l) (6.48)

with

wo= (& 1), (6.49)
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Figure 6.9 Sensitivity function S and complementary sensitivity function T.
The dash-dotted lines correspond to the case with all states known. When only
one velocity is measured, the solid lines correspond to 6,,-feedback, and the dashed
lines correspond to 6, -feedback.

0

A 0
A = “1/5 | (6.50)

0 0 O 0

B
B - (0> G=(C 0) (6.51)
The feedback law is

u = K[)l‘go + KTT‘ — ( Kcl Kc2 ch _Kl ) i‘l (652)

6.5 Simulations

An important step in demonstrating feasibility for real implementation is that
a controller behaves well when simulated on a more complicated vehicle model
than it was designed for. Even more important in a principle study is that such
disturbances can be introduced that hardly can be generated in systematic ways in
real experiments. One such example is impulse disturbances from a towed trailer.

The control law based on the reduced driveline model is simulated with a more
complete nonlinear model, derived in Chapter 4. The purpose is also to study
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. z (B)
r Vehicle |
The Nonlinear clutch and
drive-shaft model (4.60)-(4.62)

Controller
Drive-shaft model

Control law (6.27)
Observer (6.28)

Figure 6.10 Simulation configuration. As a step for demonstrating feasibility for
real implementation, the Nonlinear clutch and drive-shaft model is simulated with
the controller based on the Drive-shaft model.

effects from different sensor locations as discussed in Section 6.4. The simulation
situation is seen in Figure 6.10. The Nonlinear clutch and drive-shaft model, given by
(4.60) to (4.62), is used as vehicle model. The steady-state level for the Nonlinear
clutch and drive-shaft model is calculated by solving the model equations for the
equilibrium point when the load and speed are known.

The controller used is based on the Drive-shaft model , as was derived in the
previous sections. The wheel speed or the engine speed is the input to the observer
(6.28), and the control law (6.27) with 8 = 0 generates the control signal.

The simulation case presented here is the same as in Example 6.1, i.e. a velocity
step response, but a load disturbance is also included. The stationary point is given
by

b, =2,1=3000 = xo=(00482 119 2.00)", up=109  (6.53)

where (6.3) and (6.4) are used, and the desired new speed is 6,, = 2.3 rad/s. At
steady state, the clutch transfers the torque ug = 109 Nm. This means that the
clutch angle is in the area with higher stiffness (8.1 < 6, < 6.2) in the clutch
nonlinearity, seen in Figure 4.15. This is a typical driving situation when speed
control is used. However, at low clutch torques (6. < 6.1) the clutch nonlinearity
can produce limit cycle oscillations [3]. This situation occurs when the truck is
traveling downhill with a load of the same size as the friction in the driveline,
resulting in a low clutch torque. This is however not treated here. At ¢t =6 s, a
load impulse disturbance is simulated. The disturbance is generated as a square
pulse with 0.1 s width and 1200 Nm height, added to the load according to (5.9).

In order to simulate the nonlinear model, the differential equations (4.60) to
(4.62) are scaled such that the five differential equations (one for each state) have
about the same magnitude. The model is simulated using the Runge Kutta (45)
method [26] with a low step size to catch the effect of the nonlinearity.

Figures 6.11 to 6.13 show the result of the simulation. These figures should be
compared to Figure 6.4, where the same control law is applied to the Drive-shaft
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Figure 6.11 Wheel-speed response of step in accelerator position at t=1 s with the
speed controller (6.27) derived from the Drive-shaft model, controlling the Nonlinear
clutch and drive-shaft model. The solid line corresponds to 6,-feedback and feedback
from 6, is seen in dashed line. At t=6 s, an impulse disturbance v acts on the
Ioad. The design still works when simulated with extra clutch dynamics.
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Figure 6.12 Control signal corresponding to Figure 6.11. There is only lit-
tle difference between the two sensor alternatives in the step response at t=1 s.
However, the load impulse (at t=6 s) generates a control signal that damps the
impulse disturbance when feedback from the wheel-speed sensor is used, but not
with engine-speed feedback.
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Angle difference, [rad]
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Figure 6.13 Clutch-angle difference corresponding to Figure 6.11. The influence
from the clutch nonlinearity can be neglected, because the area with low stiffness
(6. < 0.1) is never entered.

model. From these plots it is demonstrated that the performance does not critically
depend on the simplified model structure. The design still works if the extra
dynamics is added. Further evidence supporting this is seen in Figure 6.13. The
area with low stiffness in the clutch nonlinearity (6. < 6.1) is never entered. The
load impulse disturbance is better attenuated with feedback from the wheel-speed
sensor, which is a verification of the behavior that was discussed in Section 6.4.

6.6 Summary

Speed control with engine controlled damping of driveline resonances has been
proposed in this chapter. RQV control is the traditional way speed control is
performed in diesel engines, which gives a certain driving character with a load
dependent stationary error when going uphill or downhill. With RQV, there is no
active damping of wheel-speed oscillations, resulting in vehicle shuffle. An increased
controller gain results in increased wheel-speed oscillations while the engine speed
is well damped.

A major contribution of this chapter is a formulation of a criterion for speed
control with active damping of wheel-speed oscillations and a stationary error giving
RQV behavior. To solve the criterion, a linear driveline model with drive-shaft
flexibility, and with parameters estimated from experiments is used. Simulations
show that the performance of the design, based on the simplified model, works well
for a more complicated model, with a nonlinear clutch characteristics.
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An investigation of the influence from different sensor locations on the control
design shows that when using LQG/LTR the open-loop zeros are cancelled by
the controller. With engine-speed feedback this is critical, because the open-loop
transfer function has a resonant zero couple. It is shown that this zero couple
becomes poles of the transfer functions from load disturbances to wheel speed.
This results in undamped load disturbances when engine-speed feedback is used.
When feedback from the wheel-speed sensor is used, no resonant open-loop poles
are cancelled. Load disturbances are thus better attenuated with this feedback
configuration.

Measurement disturbances are better attenuated when the engine-speed sensor
is used, than when using the wheel-speed sensor. This effect increases with lower
gears. Two different closed-loop transfer functions result, depending on feedback
configuration. The difference between these two is described by the dynamic output
ratio. As mentioned before, both sensors are normally avaliable on a driveline, but
the principle study can be used as a guideline on where to invest in improved sensor
quality.

In conclusion, the use of active damping significantly improves the behavior
for both sensor cases. Furthermore, the formulation is natural, it allows efficient
solution, and there is a simple tuning of the amount, of RQV feeling,.
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7

Speed Controller Experiments

A speed control strategy with engine controlled damping of driveline resonances
was derived in the previous chapter. The topic of this chapter is to demonstrate
that the method is applicable for real implementations in a heavy truck. The goal
is further to demonstrate that the simplified treatment of the diesel engine (smooth
torque, dynamical behavior, etc, according to Chapter 2) holds in field trials.

The speed control strategy is implemented by discretizing the feedback law and
the observer. The controller parameters are tuned for the practical constraints
given by the measured signals. Step response tests in engine speed are performed
with the strategy and the results are compared to the traditionally used RQV con-
troller for speed control. In order to have as small restrictions on the control signal
as possible, tests are first performed without a diesel smoke delimiter, limiting the
engine torque for low turbo pressures. It is then demonstrated how this nonlinear
torque limitation can be handled.

Section 7.1 covers controller discretization and parameter tuning. The main
contribution of the chapter is the demonstration of active damping in field trials
in the sections following.

7.1 Controller Implementation

The speed controller is implemented in a real-time system on a PC, as described
in Chapter 3. The controller, developed in Chapter 6, consists of an observer
and a feedback law, which are implemented in the C programming language. The

83
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observer is described by (6.28) as
A% = AAG + BAu+ K;(Ay — CA%) (7.1)
and the feedback law is described by (6.26) as

u = Koxzg + K18l + K,r — ( K. Ko Kga )CE (72)

7.1.1 Controller Discretization

The observer is discretized by Tustin’s method [7]. This method results in a discrete
version of the observer equation (7.1) of the form

41 = Exp + F(ug + ug—1) + G(yk + yr—1) (7.3)

where z, is the state vector, uy is the control signal, and yy is the output (either
the wheel speed or the engine speed) at iteration k& and

E = H(QI-I-T(A—KfC’))

F = HBT (7.4)
G = HEK,T
H

- (21 —T(A- KfC)) B

where A, B, and C describes the model, T is the sampling time, and K is the
observer gain.

Equation (7.4) is calculated off-line prior to execution in order to save on-line
execution time. This means that a total of 15 multiplications and 8 additions are
needed every iteration to implement the observer (7.3).

After computing the states by using (7.3), the control signal is obtained by the
state-feedback law (7.2). The complete algorithm computed every iteration is as
follows.

Control algorithm

1. Read engine speed (8,,) and engine temperature (T,,).

2. Calculate engine friction torque, My, (6, T)), as function of the engine speed
and the engine temperature. The friction values are obtained from a map,
described in Section 4.2, by an interpolation routine.

3. Read the engine torque (M,,) and the variable used as input to the observer
(engine speed, 6,,, or wheel speed, 6,,).

4. Calculate the control signal uy, = (M, — Mfr(ém,Tm)), and update the ob-
server equations (7.3).

5. Read the reference value (ry), and use the feedback law (7.2) to calculate the
new control signal, ug.y1.
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6. The new control signal is transferred to requested engine torque by adding
the engine friction torque to the control signal (ug+1 + Myr(04,Trm)). The
requested engine torque is then sent to the engine control unit.

The repetition-rate of the algorithm is chosen the same as the sampling rate
of the input variable to the observer. This means that the sampling-rate is 50 Hz
when using feedback from the engine-speed sensor, and 20 Hz with feedback from
the wheel-speed sensor. More information about the measured variables are found
in Table 3.1.

The parameters of the implemented algorithm are in the following sections
tuned for the practical constraints given by the sensor characteristics.

7.1.2 Tuning the Controller Parameters o and [

The controller parameter o, introduced in (6.13), is used for describing the reference
signal in the cost function (6.10) as states, and thus be able to solve the criterion.
The parameter has little influence on control performance as long as it has a value
close to zero. As in the simulations described in Section 6.5, o = 0.0001 is used.

The controller parameter 3, introduced in (6.26), is used to obtain the sta-
tionary error characteristic for RQV control, as described in Section 6.3.1. The
stationary error is not considered further in this chapter, and therefore, 3 = 1 is
used, giving no stationary error.

7.1.3 Tuning the Controller Parameter 7

A third controller parameter 7 is introduced in (6.6) in Section 6.3, which is used to
control the trade-off between control signal amplitude and closed-loop bandwidth.
It is desired to have as low 7 as possible (giving high bandwidth), but if the control
signal reaches its limitations, no active damping is obtained, which must be avoided.
This is of specific interest in this application due to varying restrictions on the
control signal as a function of engine speed and turbo pressure, as described in
Chapter 3.

Figure 7.1 shows the closed-loop transfer functions from reference value (r) to
performance output (2) and to control signal (u) for n = 5-107%. A bandwidth
of about 7 rad/s (= 1 Hz) is obtained. However, this bandwidth is only achieved
for small changes in reference value, since this n leads to control signals reaching
the limits for larger changes in the reference value. The large control signals are
mainly a result of the high gain in G, for high frequencies, according to Figure 7.1.
The gain at high frequency in G, is low and decreasing, and therefore, the main
effect from high frequencies in the reference value is seen in high control signal
amplitudes. By pre-filtering the reference value with a low-pass filter, the result
will be a reduced control signal amplitude with little effect on the bandwidth of
the performance output (wheel speed).

Figure 7.2 shows closed-loop control with reference value without filtering com-
pared to one that is filtered with a first order filter with a bandwidth of 25 Hz.
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Figure 7.1 Closed-loop transfer functions from reference value, r, to performance
output (z =wheel speed) and to control signal, w. The main reason to large control
signal amplitudes at fast changes in reference value is the high gain in G,,, at high
frequencies.

The control signal becomes

u = Kox3g + K;8l + K, - K.z (75)

1
0.0ds + 1"
It is demonstrated that the control signal is reduced to half its peak value, and
that the rise-time of the wheel speed is little affected.

7.1.4 Tuning the Controller Parameter p

The parameter p, introduced in the LTR step (6.31) of the design in Section 6.4,
parameterizes the observer such that the optimal feedback properties (when all
states are measured) can be obtained also when an observer is used to estimate
some states. If p is increased towards infinity, the optimal properties are obtained,
as discussed before. Increasing p means that the algorithm is ’told” that an in-
creasing proportion of the variance in the plant output is due to state variations,
and a decreasing proportion to measurement errors. A large p together with mea-
surement disturbances will result in an observer tracking the measured signal with
its errors, giving a poor estimation of the other states. Hence, there is a trade-off
between having good robustness properties and estimation quality when using LTR,
technique, and having measured outputs with poor quality.
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Figure 7.2 Speed controller simulated with and without pre-filtering the reference
value, according to (7.5) and (7.2). The dashed lines show a case where the reference
value is filtered with a first order low-pass filter with cut-off frequency 25 Hz. Pre-
filtering can reduce control signal peaks with only a small decrease in bandwidth
of the wheel speed.

Estimator performance

In the simulation study in Section 6.5, there were no measurement, errors in the
measured outputs, and high values of p (p,, = 5-10° and p,, = 10'*) were possible
to use. With these values, about the same phase margin (60°) in the closed-loop
system was obtained. In real implementations, where the measured signals are
distorted by measurement noise and quantification errors, p is tuned to a lower
value. After tests with observers with different p, the following values were used
throughout the experiments, p,, = p,, = 10°.

Figure 7.3 shows a test with an observer estimating the states using pp,, = pw =
105. In the first experiment (when the engine speed is used as input to the observer)
the quality of the measurements is such that p can be increased to almost the level
used in the simulation study. This means that there is little difference between the
measured and estimated engine speed.
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Figure 7.3 Experiments with two observers estimating the engine speed (top
figures) and wheel speed (bottom figures). The observer with feedback from engine
speed is seen in left figures, and wheel-speed feedback to the right. Measured
signals are seen in solid lines and the estimated signals are seen in dashed lines.
The wheel-speed sensor is of lower quality than the engine-speed sensor.

In the second experiment (when the wheel speed is used as input to the ob-
server), p cannot be increased to the value used in the simulations, due to the
quantification errors in the measurement signal (the relative size of the quantifi-
cation error is higher for the wheel speed than for the engine speed, according
to Table 3.1). This results in an observer that filters the measured wheel speed,
without following the measurement errors.

After tuning p for both feedback principles, the estimated states have only
small deviations from the measured signals, for low-frequency driveline oscillations.
However, the closed-loop performance will not only depend on the quality of the
estimations, but also the value of p, which will be investigated next.

Closed-loop performance

The robustness properties of a closed-loop design can be studied by investigating
the sensitivity function, S, and the complementary sensitivity function, 7. These
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Figure 7.4 Complementary sensitivity function, T', and sensitivity function, S. In
solid lines the optimal case (all states are measurable) is shown, and in dashed lines
the case with feedback from the wheel speed is shown. Feedback from engine speed
is seen in dash-dotted lines, and the observer gain is calculated with the values
Pm = pw = 10°. The difference is mainly due to a difference in sensor quality.

transfer functions describe sensitivity to state disturbances (S) and measurement
disturbances (T"). Note, that the differences in sensitivity depending on sensor
location discussed in this section are mainly a result of sensor signals with different
quality, and not the structural difference depending on sensor location, covered in
Section 6.4.

Figure 7.4 shows the sensitivity functions, S and T, for the two cases of feedback,
together with the optimal case (i.e. when all states are measured).

The parameter p,, (for engine-speed feedback) has a value such that the sen-
sitivity is close to the optimal sensitivity functions. The difference in T" at high
frequencies is desirable in order to have good attenuation of high-frequency mea-
surement noise (hence, p should not be increased higher than necessary).

The sensitivity when using feedback from the wheel speed have larger deviations
from the optimal functions. This is due to the low p,, forced by the lower quality
sensor. This is seen to result in lower sensitivity to measurement disturbances
(T'), compared to when using feedback from the engine speed. The sensitivity
to state disturbances and modeling errors (S) is hereby higher for this feedback
configuration. The sensitivity is even higher than one for some frequencies, which
can be serious if they are excited.
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7.1.5 Influence from Sampling Time and Bus Delay

Before performing field trials with the speed controller, it is necessary to investigate
how sampling and bus delay will affect the closed-loop performance. This is done
by using a driveline real-time simulator. This simulator consists of the PC where
the real-time system and controller is implemented. This PC is connected via
a CAN-bus to another PC where the driveline model is simulated in real-time.
The interface between the two computers is the same as between the PC and the
truck. By this arrangement, hardware and software can be tested, together with
the effects that discretization, sampling, and bus delay have on the performance of
the controller.

Figure 7.5 shows such a simulation where the speed controller design is simu-
lated in Simulink [26], together with the real-time simulator, when using feedback
from both the engine speed and the wheel speed. In the simulations in Simulink,
only the linear model and feedback law are used, and no sensor models or quantifi-
cation effects are included. Remember that the sampling frequency is 50 Hz with
engine-speed feedback and 20 Hz with wheel-speed feedback.

The simulations differ in the time interval t=30-32 s. When simulating with
sampling and bus delay, the control signal oscillates more than when using Simulink.
The discrepancies are larger when using feedback from the wheel speed. The over-
shoot, is also larger when using wheel-speed feedback.

The reasons for the deviation between the simulations are the time delay (re-
sulting from sampling and bus delay), differences between the continuous and the
discrete models, and estimation quality. In the real implementation also effects
from unmodeled dynamics will add to the source of errors. The main reason for
the oscillations in the control signal, seen in Figure 7.5, is the time delay which adds
negative phase in the loop. This can be compensated for by using State-Feedback
Redesign [1]. This approach has been tested, but the result from a wheel-speed
perspective is that little is gained. The effect that is most tricky to handle is
the combination of slow sampling and relatively high quantification errors in the
wheel-speed measurements. The situation in Figure 7.5 works well, but if a higher
bandwidth is wanted (i.e. lower n according to (6.6)) the situation will be worse
with a larger overshoot that is difficult to suppress.

7.2 Experiments without Smoke Delimiter

Field trials are performed with the 124L truck equipped with a 6 cylinder diesel
engine. An almost flat test road has been used for field trials with a minimum of
changes from test to test. The focus of the tests is low gears, with low speeds and
thus little impact from air drag. Reference values are generated by the computer
to generate the same test situation from time to time. Only one direction of the
test road is used so that there will be no difference in road inclination.

The test presented here is a velocity step response from 2.1 rad/s to 3.6 rad/s
(about 1200 RPM to 2000 RPM) with gear 1. At first the smoke delimiter (see
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Figure 7.5 Simulation of a step response at t=30 s with the speed controller. Sim-
ulation in Simulink, in solid lines, is independent of sensor location. The dashed
lines correspond to simulation with the real-time simulator with engine-speed feed-
back. The dash-dotted lines show the corresponding result when using wheel-speed
feedback. The difference between the simulations is mainly a result of time delay
and quantification errors.

Chapter 3) is not used in order to be able to investigate the control design with as
small restrictions on the control signal as possible.

In Figure 7.6, the speed controller is compared to traditional RQV control.
The engine torque, the engine speed, and the wheel speed are shown. The speed
controller uses feedback from the engine speed, and the RQV controller has the
gain K, = 50. With this gain the rise-time and the peak torque output is about
the same for the two controllers. A high torque output is possible because no smoke
delimiter is used.

With RQV control, the engine speed reaches the desired speed but the wheel
speed oscillates, as in the simulations made earlier. Speed control with active
damping significantly reduces the oscillations in the wheel speed. This means that
the controller applies the engine torque in a way that the engine inertia works in
the opposite direction of the oscillation. This gives an oscillating engine speed,
according to Figure 7.6. Hence, it is demonstrated that the assumption about the
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Figure 7.6 Speed step at t=32 s with active damping and engine-speed feedback
(solid) compared to traditional RQV control with K,=>50 (dashed). Experiments
are performed without smoke delimiter on a flat road. After 32.5 s, the control
signals differ depending on control scheme. With speed control, the engine inertia
works in the opposite direction of the oscillations, which are significantly reduced.
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Figure 7.7 Speed control with active damping and wheel-speed feedback (solid)
compared to traditional RQV control with K,=50 (dashed). Experiments are
performed without smoke delimiter on a flat road.

simplified model structure (Drive-shaft model) is sufficient for control design. It is
further demonstrated that the design is robust against nonlinear speed dependent
torque limitations (maximum torque limitations), and the assumption about static
transfer function between engine torque and fuel amount is sufficient.

In Figure 7.7 the corresponding plot is shown for wheel-speed feedback. Active
damping is more difficult to obtain when using the wheel speed as sensor. (Compare
to Figure 7.6 where engine-speed feedback is used.) The main reason is the poor
sensitivity to unmodeled dynamics (state disturbances) due to poor sensor quality,
as discussed in the previous section.

7.3 Experiments with Smoke Delimiter

The design works well when no smoke delimiter is used. This results in smoke
emissions at the peak values in the control signal (e.g. at ¢ = 32 s in Figure 7.6).
This must be avoided to reduce emissions.

The restrictions on the design imposed by the smoke delimiter are depicted in
Figure 7.8. Speed control with active damping is demonstrated with and without
smoke delimiter. It is seen how the maximum engine torque is restricted when
using the smoke delimiter. The diesel smoke is reduced, since the peak values in
the control signal are limited.

Limitations in engine torque for diesel smoke attenuation is seen to have little
impact on the performance of the speed controller. Also, this case is well behaved
and active damping of wheel-speed oscillations is obtained. The only detectable
effect is a small reduction in bandwidth, giving larger rise-time.
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Figure 7.8 Speed control with active damping with and without smoke delimiter.
The dashed lines correspond to experiments with smoke delimiter. At t=32 s, a
speed step is commanded. When using smoke delimiter, a reduced torque level is
obtained. Also the case with torque limitations is well handled and active damping
is obtained.

7.4 Controller Robustness

It is important to have a design that is as robust as possible to changes in the
environment like road inclination and vehicle mass. Differences in load is seen
mainly as a difference in offset in the estimated drive-shaft torsion, x1. The vehicle
mass will have greater influence on the driveline dynamics and it is necessary to
have the control strategy adjusted for different weights of the vehicle.

A detailed investigation about controller robustness is not performed here, but
an example of the robustness of the design against errors in conversion ratio is
shown in Figure 7.9. Errors in conversion ratio means that the controller is based on
an erroneous vehicle mass and load (these parameters are reduced by the conversion
ratio). Since the road is flat (small load), the test emulates an error in vehicle mass.
The speed controller designed for gear 1 is tested on gear 3. It is seen that the
design is robust against this type of parameter errors since active damping is still
obtained.
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Figure 7.9 Example of robustness of the design to parameter deviations. Error
in vehicle mass is emulated by testing the speed controller designed for gear 1 on
gear 3 in solid. RQV control of gear 3 with K, =50 is shown in dashed lines. Both
experiments are with smoke delimiter. The design is robust against this types of
parameter errors in vehicle mass.

7.5 Summary

Speed control is the extension of the traditionally used diesel engine speed-control
scheme with engine controlled damping of wheel-speed oscillations. The simplified
linear model with drive-shaft flexibility is used to derive a controller which shows
significant reduction in wheel-speed oscillations in field trials with a heavy truck.

The response time of the diesel engine, with unit-pump injection system, is
demonstrated to be fast enough for controlling the first resonance mode of the
driveline. This means that the static torque map used for relating injected fuel
amount, to engine torque, together with a friction model as function of the engine
speed and temperature, is sufficient for dynamic control. It is further demonstrated
that the design works when restrictions in the implementation are at hand. Ex-
ample of such important restrictions that are well handled are nonlinear torque
limitations for maximum torque and diesel smoke reduction. The design is shown
to be robust against parameter errors in vehicle mass.

To summarize, the controller improves performance and driveability since driv-
ing response is increased while still reducing vehicle shuffle.
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3

Gear-Shift Controller Design and
Simulations

Gear shifting by engine control realizes fast gear shifts by controlling the engine
instead of sliding the clutch to a torque-free state in the transmission, as described
in Chapter 2. This is done by controlling the internal torque of the driveline, which
is the overall goal of the rest of the thesis. Internal torque control is treated in
two cases, being similar strategies for gear-shift control. The topic of this chap-
ter is to derive a control strategy based on a model of the transmitted torque in
the transmission. This results in a detailed study of the dynamical behavior of
the transmission torque, which should be zero in order to engage neutral gear.
A transmission-torque controller is derived that controls the estimated transmis-
sion torque to zero while having engine controlled damping of driveline resonances.
With this approach, the specific transmission-torque behavior for each gear is de-
scribed and compensated for. This investigation is important as a principle study
for understanding how to optimize gear-shift quality, and for verifying simulation
studies. A secondary goal is to formulate the control problem in a way that estab-
lished techniques and software can be applied to find solutions.

This transmission-torque control method requires estimation of the parameters
describing the different parts in the transmission for each gear. In order to im-
plement gear-shift control, it is desired to have a strategy that is as simple and
robust as possible, but still maintains high gear-shift quality. This is the aim when
deriving a second variant of internal driveline torque control, which is covered in
Chapter 10.

A model of the transmission is developed in Section 8.1, where the torque trans-
mitted in the transmission is modeled as a function of the states and the control
signal of the Drive-shaft model. The controller goal was stated in Chapter 2, and is

97
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formulated in mathematical terms as a gear-shift control criterion in Section 8.2.
This is the key result of this chapter, together with the derivation of a control law
in Section 8.3, that minimizes the criterion. Influence from sensor location and
simulations are presented in the sections following.

8.1 Internal Driveline Torque

There are many possible definitions of internal driveline torque. Since the goal is to
engage neutral gear without using the clutch, it is natural to use the minimization of
the torque transferred in the transmission as a control goal. The following sections
cover the derivation of an expression for this torque, called the transmission torque,
as function of the state variables and the control signal.

8.1.1 Transmission Torque

The performance output, z, for the gear-shift controller is the transmission torque
transferred between the cogwheels in the transmission. A simplified model of the
transmission is depicted in Figure 8.1. The input shaft is connected to bearings
with a viscous friction component b;;. A cogwheel is mounted at the end of the
input shaft which is connected to a cogwheel mounted on the output shaft. The
conversion ratio between these are i;, as mentioned in Chapter 4. The output shaft
is also connected to bearings with the viscous friction component bys.

By using Newton’s second law, the transmission can be modeled by the following
two equations

Jtlﬂc = Mt - btléc — 2 (81)
Jt20t = itZ - btggt - Mp (82)
In the following subsections, the expression for the transmission torque is derived

for the three models developed in Chapter 4. Furthermore, assumptions are made
about the unknown variables characterizing the different parts of the transmission.

8.1.2 Transmission Torque for the Drive-Shaft Model

The Drive-shaft model is defined by Equations (4.29) and (4.30). The model is
here extended with the model of the transmission depicted in Figure 8.1, and the
expression for the transmission torque is derived. By using the equation describing
the engine inertia (4.1)

Jnbm = My — Mfpn — M, (8.3)
together with (4.16)
M, = M,;, O, =0, (8.4)

equation (8.1) is expressed in terms of engine speed

(Jm + Jtl)em = Mm - Mfr:m - btlém —Zz (85)
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Figure 8.1 Simplified model of the transmission with two cogwheels with con-
version ratio i;. The cogwheels are connected to the input and output shafts
respectively. The torque transmitted between the cogwheels is the transmission
torque, z.

To describe the performance output in terms of state variables, . (which is not
a state variable) is replaced by (4.29), which is one of the differential equations
describing the Drive-shaft model

(T + T3 /i3 +Jf/ztzf) = Mm—MfT:m—(bt/zt—l—bf/ztzf) (8.6)
—k(am/ltlf — w)/ltlf
—c(Om/iziy — Ou)/iti

which together with u = M,,, — M., gives

u—bﬂém—z =

Im + Ja (
I + i 1§ + Tt [ifis

k(O fivis = 0u) fivig —cOn fisig — bu) fivig)  (8.7)

(bt/lt + bf/ltlf)

From this equation it is possible to express the performance output, z, as a function
of the control signal, u, and the state variables, =, according to the state-space
description (5.2) to (5.5).
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Transmission Torque for the Drive-Shaft Model

z = Mx+ Du with
(Jm~+Je1)k
Jyi
MT = JmJ;l‘I“(bl + C/i2) — btl (88)
~_ (Jm+Je1)c
Jyi
JIm + Ji
D = 1————
Ji

The transmission torque, z, is modeled as a function of the states and the control
signal for the Drive-shaft model, where the labels from (5.5) are used.

The unknown parameters in (8.8) are J,,, + Ji1 and by . The other parameters
were estimated in Chapter 4. One way of estimating these unknowns would be
to decouple the Drive-shaft model into two models, corresponding to neutral gear.
Then a model including the engine, the clutch, and the input shaft of the transmis-
sion results, in which the performance output is equal to zero (z = 0). Trials with
neutral gear would then give a possibility to estimate the unknowns. This will be
further investigated in Chapter 9.

In the derivation of the Drive-shaft model in Chapter 4 the performance output,
z, is eliminated. If z is eliminated in (8.1) and (8.2) and (8.4) is used, the equation
for the transmission is

(Joi2 + J2)bm = i2M, — iy My, — (by1i? + by2)0rm (8.9)

By comparing this with the equation describing the transmission in Chapter 4,
(4.19)

T = i7 M. — by, — iy M, (8.10)

the following equations relating the parameters are obtained
Jo = ijdu +Je (8.11)
be = ;b + b (8.12)

In order to further investigate control and estimation of the transmission torque,
the unknowns are given values. It is arbitrarily assumed that the gear shift divides
the transmission into two equal inertias and viscous friction components, giving

Ju = Jp (8.13)
bt = b

A more detailed discussion of these parameters will be performed in Chapter 10.
Equations (8.11) and (8.12) then reduce to

Ji
- 14
b
by = t (8.15)
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The following combinations of parameters from the Drive-shaft model were esti-
mated in Chapter 4

Ji= Jm+ Jefi + i fiiG (8.16)
by = b/i; +bs/ijis (8.17)

according to the labels from the state-space formulation in (5.5). From (8.14) and
(8.16) Jp, + Ji1 can be derived as

— Ji _ Z? -2 +2
I+ = Jm+1+i%_Jm+1+i%(J1 Im — Jg[i}i})
1 i2 1
= J J—t=5 -1 A 8.18
mire Ty e T2 +i3) (8.18)
A combination of (8.15) and (8.17) gives by
bt Zf -2 -2
by = —— (b1 —by/iziy) (8.19)

1+ 1+

For low gears i; has a large value. This together with the fact that Jy and by
are considerably less than J; and b; gives the following approximation about the
unknown parameters

Jm ‘I‘ J ~ J A 8-20
i ! 1+ Z% ( )
i ! 1+ 'L% )

8.1.3 Transmission Torque for the Clutch and Drive-Shaft Model

The performance output expressed for the Clutch and drive-shaft model is given by
replacing M; in (8.1) by equation (4.49)

M, = My = k(6 — 04i) + ce(B — Osiy) (8.22)
Then the performance output is
zZz = kc(ﬂm — th't) + Cc(ém - étit) - btlitét - Jtlitét (823)

This is expressed in terms of state variables by using (4.55)

o+ Jp[i2)6 = i, (kc(em — Byis) + co(bm — étit)) (8.24)
—(bs + by /i7)00 — % (kd(et/if —0u) + ca(Be /iy — éw))
(8.25)

leading to the following model.
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Transmission Torque for the Clutch and Drive-Shaft Model

z = Mgz with (8.26)
he(1 - 250)

Jirickq

Jzif .
T _ Ji1i;
Mt = ] ce(1— 7 )
Jtli 4 -2 - -
J—Z‘(ztcC + by + cd/zf) — Celip — by iy
_ Jidseq
Jzif

with states and labels according to to the state-space description (5.6) to (5.8).

The following combinations of parameters from the Clutch and drive-shaft model
were estimated in Chapter 4

Jo = Ji+ Jf/l?c (827)

by = be+bsfi; (8.28)

according to (5.8). From (8.14), (8.15), (8.27), and (8.28), Ji; and by can be

written as

i2

Ji1 T2 -|-tz'2 (Jo = T /i%) (8.29)
t
-2
bn = (b —by/i}) (8.30)
1+ 37
which are approximated to
it
Jn =~ T+ Ja (8.31)
i
by = s bo (8.32)

since Jy and by are considerably less than .J; and b;.

8.1.4 Transmission Torque for the Nonlinear Clutch and Drive-
Shaft Model

The performance output for the Nonlinear clutch and drive-shaft model is derived
in the same way as for the Clutch and drive-shaft model, with the difference that
(8.22) is replaced by

M.=M; = Mkc(am - atit) + cc(ém - étit) (833)

where My, is the torque transmitted by the clutch nonlinearity, given by (4.59).
Then the performance output is defined as
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Transmission Torque for the Nonlinear Clutch and Drive-Shaft Model

1
Jtllt'kd
o T
z = (Mkc ot/lf—ew Hm 0t 0w) Cc(l — %) (834)
)
J}%(Z’%CC + b2 + Cd/Z?) — Ccit — btlit
_Juiitca
JQZf

The parameters not estimated in the definition above are approximated in the
same way as for the performance output for the Clutch and drive-shaft model.

Model Comparison

Figure 8.2 shows the transmission torque during a test with step inputs in accelera-
tor position with the 144L truck using gear 1. The transmission torque is calculated
with (8.8) for the Drive-shaft model, and with (8.26) for the Clutch and drive-shaft
model. Figure 8.3 shows the performance output in the frequency domain. The
low-frequency level differs between the two models, and the main reason for this is
the difficulties to estimate the viscous damping coefficients described in Chapter 4.
The difference at higher frequencies is due to the clutch, which gives a second res-
onance peak for the Clutch and drive-shaft model. Furthermore, the roll-off rate of
the Clutch and drive-shaft model is steeper than for the Drive-shaft model.

8.2 Transmission-Torque Control Criterion

Problem Formulation

The transmission-torque controller is the controller that drives the transmission
torque to zero with engine controlled damping of driveline resonances. Then the
time spent in the torque control phase (see Chapter 2) is minimized. The engage-
ment of neutral gear should be at a torque level that gives no oscillations in the
driveline speeds. Hereby, the disturbances to the driver and the time spent in the
speed synchronization phase can be minimized. The influence on shift quality from
initial driveline resonances, and torque impulses from trailer and road roughness
should be minimized.

Control Criterion

The transmission-torque controller is realized as a state-feedback controller, based
on the Drive-shaft model. The controller is obtained by deriving a control criterion
that describes the control problem of minimizing the transmission torque. The
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Figure 8.2 Estimated transmission torque, z, in (8.8) and (8.26) for a test with
step inputs in accelerator position with the 144L truck. The solid line corresponds
to the Drive-shaft model and the dashed line corresponds to the Clutch and drive-
shaft model.
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Figure 8.3 Transfer functions from control signal, u, and load, [, to transmission
torque, z. The Drive-shaft model is shown in solid and the Clutch and drive-shaft
model is shown in dashed lines. The modeled clutch adds a second resonance peak
and a steeper roll-off rate.
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criterion is then minimized by standard software for a controller solving the control
problem.

The gear-shift problem can be described as minimizing the transmission torque,
z, but with a control signal, u, possible to realize by the diesel engine. Therefore,
the criterion consists of two terms. The first term is 22 which describes the deviation
from zero transmission torque. The second term describes the deviation in control
signal from the level needed to obtain z = 0. Let this level be upip, which will be
speed-dependent as described later. Then the criterion is described by

T
lim 22+ n(u — ushige)? (8.35)
T—oo Jg
The controller that minimizes this cost function will utilize engine controlled damp-
ing of driveline resonances (since z? is minimized) in order to obtain z = 0. At the
same time, the control signal is prevented from having large deviations from the
level ugpire. The trade-off is controlled by tuning the parameter 7.
In the following subsections, the influence from each term in the criterion (8.35)
will be investigated, and then how these can be balanced together for a feasible
solution by tuning the parameter 7.

Unconstrained Active Damping

The influence from the first term in the criterion (8.35) is investigated by mini-
mizing 2z2. The performance output, z = Mx + Du, is derived in (8.8) for the
Drive-shaft model as a function of the states and the control signal. The term 22
can be minimized for a control law, since z includes the control signal and D is
scalar. If u is chosen as

u=-D""Mzx (8.36)

z = 0 is guaranteed. This control law is called unconstrained active damping and
the reason for this is illustrated in the following example.

Example 8.1 Consider the 144L truck modeled in Chapters 4 traveling at a
speed of 3 rad/s (5.4 km/h) with gear 1 and a total load of 3000 Nm (~ 2 % road
slope).

Figure 8.4 shows the resulting transmission torque, the control signal, the engine
speed, and the wheel speed, when a gear shift is commanded at t=1 s, with the
control signal chosen according to (8.36). Unconstrained active damping is achieved
which obtains z = 0 instantaneously. The wheel speed decreases linearly, while the
engine speed is oscillating.

Unconstrained active damping (8.36) fulfills the control goal, but generates a
control signal that is too large for the engine to generate. It can be noted that
despite z = 0 is achieved this is not a stationary point, since the speed is decreasing.
This means that the vehicle is free-rolling which can be critical if lasting too long.
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Figure 8.4 Unconstrained active damping of the Drive-shaft model. At t=1 s, a
gear shift is commanded and the control law (8.36) calculates the engine torque
such that the transmission torque is driven to zero instantaneously. The oscillations
in the transmission torque are damped with an unrealizable large control signal.
The wheel speed decreases linearly.

Gear-Shift Condition

The influence from the second term in the criterion (8.35) is investigated by mini-
mizing (u — uspift)?, resulting in the control law

U = Ughift (8.37)

where the torque level ugp; ¢ is the control signal needed to obtain zero transmission
torque, without using active damping of driveline resonances. Hence, ugp;¢+ can be
derived from a stiff driveline model, by solving for z = 0.

By using the labels according to Chapter 5, the differential equation describing
the stiff driveline is

(Jyi+ Jo)i)by = u — (byi + by /)0y — /i (8.38)
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This equation is developed by using the Drive-shaft model in (4.29) and (4.30), and
eliminating the torque transmitted by the drive shaft, k(6,,/i —0y) 4+ c(0m /i — ).
Then, by using 6,, = 6, (i.e. stiff driveline), (8.38) results.

Equation (8.5) expressed in terms of wheel speed is

z=u—bniby — (S + Jo1)iby (8.39)
Combining (8.38) and (8.39) gives the performance output for the stiff driveline.

(Jm + J31)i>
Jyi2 + Ty

(Jm + Jn)i

bii® +b2))6y
(ii™ 4020+ 55

z=(1- Yu — (b1 — [ (8.40)

The control signal to force z = 0 is given by solving (8.40) for v while z = 0. Then
the torque level wuzp;p¢ becomes

Ushift (éw, ) = uzéw + pl with
. (J’m + Jtl)i .2 (Jm + Jtl)i2 1
1% ( t1? AR ( 107 + 2))( T+ )
(Jm + J1)i (Jm + Je1)i%
= - 1- 8.41
H e T hEr L) (8.41)

This control law is called the gear-shift condition, since it implies zero trans-
mission torque. The following example illustrates the control performance when
using (8.41).

Example 8.2 Consider the 144L truck in the same driving situation as in Ex-
ample 8.1. The stationary point is obtained by using (6.3) and (6.4).

230 =3, [=3000 = mo= (00511 178 3.00 ), up =138 (8.42)

Figure 8.5 shows the resulting transmission torque, the control signal, the engine
speed, and the wheel speed when a gear shift is commanded at t=1 s, with the
control signal chosen according to (8.41).

This control law achieves z = 0 with a realizable control signal, but the oscillations
introduced are not damped. Therefore, the time needed to obtain zero transmission
torque is not optimized. The performance of this approach is worse if the driveline
is oscillating at the time for the gear shift, or if there are disturbances present.

Final Control Criterion

The final cost criterion for the transmission-torque controller is obtained by includ-
ing (8.41) in the cost criterion (8.35)

T
lim [ 2+ (= wonigi (6, 1)’ (8.43)
T— 00 0
T .
= lim (Mz + Du)? 4+ n(u — ppby — ml)?

T—o0 Jg
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Figure 8.5 The Drive-shaft model controlled with the gear-shift condition (8.41).
At t=1 s, a gear shift is commanded. The speed dependent realizable control signal
drives the transmission torque to zero. Undamped oscillations in the transmission
torque increase the time needed to fulfill the goal of controlling the transmission
torque to zero.

If the driveline is stiff, there is no difference between the two terms in the cost
function (8.43). Furthermore, the point at which the cost function is zero is no
stationary point, since the speed of the vehicle will decrease despite z = 0 and
U = Ushift-

8.3 Transmission-Torque Control Design

The new idea for gear-shift control is in this section given efficient treatment by
solving (8.43) for a control law by using LQG technique, and available software.
This is done by linearizing the driveline model and rewriting (8.43) in terms of the
linearized variables. A state-feedback matrix is derived that minimizes (8.43) by
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solving a Riccati equation. The derived feedback law is a function of 7, which is
chosen such that high bandwidth together with a feasible control signal is obtained.

The linearized driveline model is given by (6.8) and (6.9) in Section 6.3. The
cost function is expressed in terms of Az and Au by using (6.9)

T
lim (MAz + DAu + Mxzg + Dug)?

T—oo Jg

+  n(Au — p Ay + ug — ppxz0 — pul)’

T
= lim (MAz + DAu+11)* + n(Au — py Azz +12) (8.44)
T—00 0
with
r = Ml‘() + DUO (845)
Ty = g — T30 — Ml

The constants r; and ro are expressed as state variables, by augmenting the plant
model (A, B) with models of the constants 1 and ry. This was done in (6.13) to
(6.16).

By using these equations, the cost function (8.44) can be written in the form

T
lim T Qx, + RAU? + 22T NAu (8.46)
T—o0 0
with
Q = (M10)"(M10)4+300 —pu, 01)TO0 — p, 01)
N = M10)"D+n00 —p, 01)T (8.47)

R = D?’+n
The cost function (8.46) is minimized by the state-feedback gain
K,=Q '(BI'P.+ NT) (8.48)

where P, is the stabilizing solution to the Riccati equation (6.21). The resulting
control law is

Au =K.z, = — ( K., Ko K.z ) Ax — Kory — Kesra (8.49)
which by using (8.45) gives
u=Kozzo+ Kl—( Kn Ko Ke)o (8.50)
with

Ko = (A 0 )T (8.51)
K = (N & w)T
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where T is given by

1-KuyD - K
T=| ( Ko Koo Keg ) — KM (8.52)
KCB

with A, 4, and p given by (6.3), (6.4), and (8.41).

The solution to the gear-shift criterion (8.43) is the transmission-torque con-
troller (8.50), which obtains active damping with a realizable control signal. The
parameter 7 is tuned to balance the behavior of the unconstrained active damp-
ing solution (8.36) and the gear-shift condition (8.41). The transmission-torque
controller with tuned 7 is studied in the following example.

Example 8.3 Consider the 144L truck in the same driving situation as in Ex-
ample 8.1. The transmission-torque controller (8.50) then becomes

w=237-10"*z5 — 0.03271 — ( 4.2123 0.0207 —1.2521 )z (8.53)

where n = 0.03 and o = 0.0001 are used. With this controller the phase margin is
guaranteed to be at least 60° and the amplitude margin is infinite [14].

Figure 8.6 shows the resulting transmission torque, the control signal, the engine
speed, and the wheel speed when a gear shift is commanded at t=1 s, with the
control signal chosen according to (8.53).

The transmission-torque controller achieves z = 0 with a realizable control signal.
The oscillations in the driveline are damped, since the controller forces the engine
inertia to work in the opposite direction of the oscillations. Therefore, the time
needed for the torque control phase and the speed synchronization phase is mini-
mized, since resonances are damped and engagement of neutral gear is commanded
at a torque level giving no oscillations in the transmission speed.

8.4 Influence from Sensor Location

The transmission-torque controller investigated in the previous section uses feed-
back from all states (21 = O /isip — 0w, 2 = ém, and z3 = Hw) A sensor
measuring shaft torsion (e.g. x1) is not used, and therefore an observer is needed
to estimate the unknown states. In this work, either the engine speed or the wheel
speed is used as input to the observer. This results in different control problems
depending on sensor location. Especially the difference in disturbance rejection is
investigated.

The observer gain is calculated using Loop-Transfer Recovery (LTR) [14]. The
unknown load can be estimated as in Section 6.4.3.

The transmission-torque control law (8.50) becomes

UZK01‘30+KIZ—( K. K. K )i‘ (854)



8.4 Influence from Sensor Location 111

Transmission torque, 2 Engine torque, u
200
60 —
100
50
IS S
z % Z 0
- 2
5 20 5100
[ [
10
-200
0
~10 -300
0 1 2 3 4 0 1 2 3 4
Engine speed, O Wheel speed, O
200 3.5
180
3
5160 %)
g -‘3 25
—140 -
2
120
100 15
0 1 2 3 4 0 1 2 3 4
Time, [s] Time, [s]

Figure 8.6 The Drive-shaft model controlled with the transmission-torque con-
troller (8.53), solving the gear-shift criterion (8.43). At t=1 s, a gear shift is
commanded. A realizable control signal is used such that the transmission torque
is driven to zero, while oscillations are actively damped.

with Ko and K; given by (8.51). The estimated state & is given by the Kalman
filter
Az = AA# + BAu+ K;(Ay — CA%) (8.55)
Ky = pictv? (8.56)
where Py is found by solving the Riccati equation (6.30).
When using a LQG-controller with feedback from all states, the phase margin,
p, is at least 60°, and the amplitude margin, a, is infinite, as stated before. This
is obtained also when using the observer by increasing p towards infinity. For
Example 8.3 the following values are used
pm = 10* = ¢, =77.3° a,, =282 (8.57)
pw = 10" = ¢, =743° a, =284 (8.58)

where the aim has been to have at least 60° phase margin.
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Figure 8.7 Closed-loop transfer functions from load disturbance, v, to perfor-
mance output, z, and to control signal, u. Feedback from 6,, is shown in solid
and feedback from 6,, is shown in dashed lines. With 6,,-feedback the transfer
functions have a resonance peak, resulting from the open-loop zeros.

The observer dynamics is cancelled in the transfer functions from reference
value, r, to performance output, z, and to control signal, u. Hence, these transfer
functions are not affected by the sensor location. However, the dynamics will be
included in the transfer functions from disturbances to both z and wu.

8.4.1 Influence from Load Disturbances

Figure 8.7 shows how the performance output and the control signal are affected
by load disturbances, v. In Section 6.4 it was shown that for the speed controller,
the resonant open-loop zeros become poles of the closed-loop system when feed-
back from the engine-speed sensor is used. The same equations are valid for the
transmission-torque controller with the minor difference that the D matrix in the
performance output, (8.8), is not equal to zero, as for the speed controller. Hence,
also the transfer function DG, should be added to (6.33). The closed-loop transfer
function G, is given by
_ FGy
1+ FyGyy
according to (5.18) and the matrix inversion lemma. Thus, the closed-loop transfer

function from v to w also has the controller Fj in the numerator. Hence, the
closed-loop transfer function from v to z has the open-loop zeros as poles. For

(Gou)y = (8.59)
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Figure 8.8 Closed-loop transfer functions from measurement noise, e, to perfor-
mance output, z, and control signal, u. Feedback from 6,, is shown in solid and
feedback from ,, is shown in dashed. The difference between the two feedback
principles are described by the dynamic output ratio. The effect increases with
lower gears.

ém—feedback, this means that a resonance peak is present in the transfer functions
from v to performance output and to control signal.

8.4.2 Influence from Measurement Disturbances

The influence from measurement disturbances e are shown in Figure 8.8. According
to (6.39) the closed-loop transfer function from e to z is

G..F,

Ge:)y=—7T7—""7""7 8.60
( ~)cl 1 + GuyFy ( )
Then
GUZ . A
(Gez)y = —TwG with 6, —feedback (8.61)
G’LLZ . A
(Gez)y = —Tnm with 6, —feedback (8.62)
Gum
with the transfer functions T, and T}, given by (6.40).
When p in (6.31) is increased towards infinity, T}, = T\, as was discussed in

Section 6.4. Then (8.61) and (8.62) give
(GeZ)ch = (GeZ)cl,w Gw/m (8.63)
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Figure 8.9 Sensitivity function S and complementary sensitivity function T.
The dash-dotted lines correspond to the case with all states known. When only
one velocity is measured, the solid lines correspond to 6,,-feedback, and the dashed
lines correspond to 6, -feedback.

where cl, m and cl, w denote closed loop with feedback from 6,,, and 6., respectively.
The dynamic output ratio G,/ was defined in Definition 5.1, and is given by
(6.43).

The frequency range in which the relation T, = T,, is valid depends on how
large p in (6.31) is made, as discussed in Section 6.4. Figure 8.9 shows the sensitivity
functions (6.45) and the complementary sensitivity functions Ty, and T, (6.40) for
the two cases of feedback. It is seen that T,, = T, is valid up to about 10 rad/s
(=~ 1.6 Hz). The roll-off rate at higher frequencies differ between the two feedback
principles. This is due to that the open-loop transfer functions G, and Gy, have
different relative degrees. T,, has a steeper roll-off rate than T,,,, because that G,
has a relative degree of two, and G, has a relative degree of only one.

Hence, the difference in G, depending on sensor location is described by the
dynamic output ratio G, /,,- The difference in low-frequency level is equal to the
conversion ratio of the driveline. Therefore, this effect increases with lower gears.

8.5 Simulations

As in the case of the speed controller in Section 6.5, the feasibility of the gear-
shift controller is studied by simulating a more complicated vehicle model than it
was designed for. Also here, the disturbances that are difficult to systematically
generate in real experiments are treated in the simulations. The control design is
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Figure 8.10 Simulation configuration. As a step for demonstrating feasibility for
real implementation, the Nonlinear clutch and drive-shaft model is simulated with
the controller based on the Drive-shaft model.

simulated with the Nonlinear clutch and drive-shaft model, according to Figure 8.10.
The effects from different sensor locations are also studied in accordance with the
discussion made in Section 8.4.

The Nonlinear clutch and drive-shaft model is given by Equations (4.60) to (4.62).
The steady-state level for the Nonlinear clutch and drive-shaft model is calculated
by solving the model equations for the equilibrium point when the load and speed
are known. By using the parameter relationship (8.13), the equation for the trans-
mission torque is computed by (8.34).

The transmission-torque controller used is based on the Drive-shaft model, and
was developed in the previous sections. The wheel speed or the engine speed is
input to the observer (8.55), and the control law (8.54) generates the control signal.

Three simulations are performed with the driving situation as in Example 8.3,
(i.e. with wheel speed 6,, = 3 rad/s, and load [ = 3000 Nm). In the simulations, a
gear shift is commanded at ¢ = 2 s. The first simulation is without disturbances.
In the second simulation, the driveline is oscillating prior to the gear shift. The
oscillations are a result of a sinusoid disturbance acting on the control signal. The
third gear shift is simulated with a load impulse at ¢ = 3 s. The disturbance is
generated as a square pulse with 0.1 s width and 1200 Nm height.

In order to simulate the nonlinear model, the differential equations (4.60) to
(4.62) are scaled such that the five differential equations (one for each state) have
about the same magnitude. The model is simulated using the Runge Kutta (45)
method [26] with a low step size to catch the effect of the nonlinearity.

Figure 8.11 shows the simulation without any disturbances. This plot should
be compared to Figure 8.6 in Example 8.3, where the design is tested on the
Drive-shaft model. The result is that the performance does not critically depend
on the simplified model structure. The design still works if the extra nonlinear
clutch dynamics is added. In the simulation, there are different results depending
on which sensor that is used. The model errors between the Drive-shaft model
and the Nonlinear clutch and drive-shaft model are better handled when using the
wheel-speed sensor.
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Figure 8.11 Simulation of the Nonlinear clutch and drive-shaft model with observer
and control law based on the Drive-shaft model. A gear shift is commanded at t=2 s.
Feedback from the wheel-speed sensor is shown in solid lines, and feedback from
the engine-speed sensor is shown in dashed lines. The design still works when
simulated with extra clutch dynamics.
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Figure 8.12 Same simulation case as in Figure 8.11, but with driveline oscillations
at the start of the transmission-torque controller. Feedback from the wheel-speed
sensor is shown in solid lines, and feedback from the engine-speed sensor is shown
in dashed lines. The conclusion is that the control law works well despite initial
driveline oscillations.
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Figure 8.13 Same simulation case as in Figure 8.11, but with a load disturbance
at t=3s. Feedback from the wheel-speed sensor is shown in solid lines, and feedback
from the engine-speed sensor is shown in dashed lines. The conclusion is that the
load disturbance is better attenuated when using feedback from the wheel-speed
sensor.

However, neither of the sensor alternatives reaches z = 0. This is due to the
low-frequency model errors discussed in Section 8.1. In Figure 8.12 the simulation
with driveline oscillations prior to the gear shift is shown. The result is that the
performance of the controller is not affected by the oscillations. Figure 8.13 shows
the simulation with a load disturbance. The disturbance is better damped when
using feedback from the wheel-speed sensor, than from the engine-speed sensor,
which is a verification of the discussion in Section 8.4.

8.6 Summary

Driveline oscillations are a limiting factor in gear shifting by engine control. Internal
driveline torque control is a new idea for handling resonances and optimizing shift
quality. A criterion for a gear-shift controller is obtained, based on a model of the
transmitted torque in the transmission, characterizing the behavior for each gear.
The resulting transmission-torque controller drives the transmission torque to zero
with damped driveline resonances.

When using a linear driveline model with drive-shaft flexibility, it is possible to
solve the criterion for a control law that minimizes the cost function. The control
law is derived with LQG/LTR technique. Simulations show that the controller,
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based on the simplified model, works well for a more complicated model with
a nonlinear clutch characteristics. However, there can be problems with a low-
frequency level that gives a stationary error. This difference in level is a result of
the difficulty to estimate driveline friction parameters.

An investigation of the influence that different sensor locations have on the con-
trol design results in the same conclusions as in Chapter 6. When using LQG/LTR
design methodology the open-loop zeros are cancelled by the controller. This re-
sults in undamped load disturbances when engine-speed feedback is used. There-
fore, load disturbances are better attenuated with feedback from the wheel-speed
sensor.

Measurement disturbances are better attenuated when the engine-speed sensor
is used, than when using the wheel-speed sensor. This effect increases with lower
gears. Two different closed-loop transfer functions result, depending on feedback
configuration. The difference between these two is captured by the dynamic output
ratio. As mentioned before, both sensors are normally avaliable on a driveline, but
the principle study can be used as a guideline on where to invest in improved sensor
quality.

In conclusion, actively damped transmission-torque control works well also in
the case of existing initial oscillations. Furthermore, disturbances occuring during
the control action are actively damped, and thus reducing the time needed for a
gear shift.
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Additional Modeling and Analysis
for Gear-Shift Control

Gear-shift control is based on control of internal torque in the driveline. A basic
question when evaluating field tests is how to validate the controller performance
since a measurement of the torque of interest is not available. A number of other
indicators must then be used, e.g. the possibility of disengaging a gear, indicating
low torque in the transmission. Another important basis for validation is the
dynamic behavior of the driveline before and after going from a gear to neutral.
This requires additional modeling of the driveline since it is separated in two parts
when in neutral. This is the topic of this chapter together with an analysis of
the possible oscillation patterns of the decoupled driveline. Besides being used for
validation in the next chapter, this analysis will cast light on the sometimes, at
first sight, surprising oscillations that occur in an uncontrolled driveline. It will
also be used as a further indication for the value of feedback control.

The oscillations in the driveline speeds, following a gear shift, are investigated
by performing a number of field trials in Section 9.1. Experiments with three
different types of oscillations are presented, which are analyzed in Section 9.2.

9.1 Open-Loop Gear-Shift Experiments

The field-trial platform was described in Chapter 3, and neutral gear is engaged
by sending a specific CAN message to the transmission node, which then performs
the shift by using a gear lever actuator, driven by air pressure. A delay-time from
commanded gear shift to activated gear-lever movement is seen in the experiments.
This is a combined effect from a delay in the actuator, and a delay in building up
the air pressure needed to overcome friction.

119
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9.1.1 Stationary Trials

First, a series of gear-shifts with a stationary driveline are performed without us-
ing driveline torque control. This means that an RQV speed controller controls
the engine speed to a desired level, and when the driveline speeds have reached
stationary levels, engagement of neutral gear is commanded.

Figure 9.1 shows two of these trials where the engine speed is 1400 RPM and
2100 RPM respectively, on a flat road with gear 1. The behavior of the engine
speed, the transmission speed, and the wheel speed is shown in the figure. At
t = 14 s, a shift to neutral is commanded and there is a delay time before the
engagement is completed. This delay is longer the higher the speed is.

After the shift, the driveline is decoupled into two parts. The movement of
the engine speed is independent of the movement of the transmission speed and
the wheel speed, which are connected by the propeller shaft and the drive shaft,
according to Figure 4.1. The RQV controller maintains the desired engine speed
also after the gear shift. The transmission speed and the wheel speed, on the
other hand, are only affected by the load (rolling resistance, air drag, and road
inclination), which explains the decreasing speeds in the figure.

The transient behavior of the transmission speed and the wheel speed differ
however, and the energy built up in the shafts is seen to affect the transmission
speed more than the wheel speed, giving an oscillating transmission speed. The
higher the speed is, the higher amplitude of the oscillations is obtained. The
amplitude value of the oscillations for 1400 RPM is 2.5 rad/s, and 5 rad/s for 2100
RPM.

9.1.2 Dynamical Trials

In the previous trials there was no relative speed difference, since the driveline was
in a stationary mode. If a relative speed difference is present prior to the gear-shift,
there will be a different type of oscillation. Figures 9.2 and 9.3 describe two trials
where neutral gear is engaged with an oscillating driveline without torque control.
The oscillations are a result of an engine torque pulse at 11.7 s.

There is only a small difference between the measured engine speed and trans-
mission speed prior to the gear shift. This difference was in Chapter 4 explained
to be a result of a sensor filter and a stiff clutch flexibility. After the gear shift,
the energy built up in the shafts is released, which generates the oscillations and
minimizes the difference between the transmission speed and the wheel speed. The
two speeds then decrease as a function of the load. Hence, a relative speed dif-
ference between the transmission speed and the wheel speed at the shift moment
gives oscillations in the transmission speed. The larger the relative speed difference
is, the higher the amplitude of the oscillating transmission speed will be.

Figure 9.3 shows a similar experiment as in Figure 9.2, but with neutral gear
engaged at 13.2 s. The relative speed difference has opposite sign compared to
that in Figure 9.2. The transmission speed transfers to the wheel speed, and these
two decrease as a function of the load. However, initially the transmission speed
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Figure 9.1 Engagement of neutral gear commanded at 14 s, with stationary
driveline at 1400 RPM and 2100 RPM on a flat road with gear 1. Engine speed
(dashed) and wheel speed (dash-dotted) are scaled to transmission speed which is
seen in solid lines. After a delay time, neutral gear is engaged, causing the driveline
speeds to oscillate. The amplitude of the oscillating transmission speed is higher
the higher the speed is.

deviates in the opposite direction compared to how the relative speed difference
indicates, which seems like a surprising behavior.

The three different types of oscillations described by Figures 9.1, 9.2, and 9.3
will in the following be analyzed and explained.

9.2 Predicting Gear-Shift Quality

Engaging neutral gear can be described as in Figure 9.4. Before the gear shift, the
driveline dynamics is described by the Drive-shaft model (derived in Chapter 4).
This model assumes a lumped engine and transmission inertia, as described previ-
ously. When neutral gear is engaged, the driveline is separated into two parts as
indicated in the figure. The two parts move independent of each other, as men-
tioned before. The engine side of the model consists of the engine, the clutch, and
part of the transmission (characterized by the parameters J;; and by according
to Chapter 8). The parameters describing the lumped engine, clutch, and part of
transmission are J; and b; according to the figure. The wheel side of the model
consists of the rest of the transmission (characterized by the parameters J;» and
bi2) and the drive-shaft flexibility out to the wheels, which is named the Decoupled
model. The model is described by the following equations.
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Figure 9.2 Engaged neutral gear without torque control at 12.5 s in a trial with
oscillating driveline as a result of a provoking engine torque pulse at 11.7 s in the
left figure. Engine speed (dashed) and wheel speed (dash-dotted) are scaled to
transmission speed (solid) in the right figure. After the gear shift the transmission
speed oscillates.
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Figure 9.3 Same field trial as in Figure 9.2, but with engaged neutral gear
at 13.2 s. Engine speed (dashed) and wheel speed (dash-dotted) are scaled to
transmission speed (solid) in the right figure. After the gear shift the transmission
speed oscillates.
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Figure 9.4 Description of how the driveline model changes after engagement of
neutral gear. The first model is the Drive-shaft model (see Chapter 4), which is
then separated into two sub-models when neutral gear is engaged. The left part
consists of the engine and one part of the transmission. The right part of the model
consists of the rest of the transmission and the drive shaft out to the wheels, called
the Decoupled model.

The Decoupled Model

Joby = —bpb — k(0 )if —0u) /iy —c(B:)if — 0y) /iy (9.1)
Joby = k(0 )if —0u) +c(8;)if — ) — boby — 1
The model equipped with the sensor filter in (4.48) gives the true sensor outputs
(yta Z/w)

All these parameters were estimated in Chapter 4, except the unknown parameters
Ji2 and by, The model is written in state-space form by using the states x; =
drive-shaft torsion, zs = transmission speed, and x3 = wheel speed.

This section is concentrated to the study of the behavior of the Decoupled model
after the gear shift. The model structure is the same as the Drive-shaft model, but
with the difference that the first inertia is considerable less in the Decoupled model,
since the engine and part of the transmission are decoupled from the model.
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Figure 9.5 Measured oscillations after a gear shift at 13.0 s in solid line. The
outputs of the Decoupled model are fitted to data, shown in dashed line. The De-
coupled model is able to capture the main resonance in the oscillating transmission
speed after the gear shift.

9.2.1 Quality of the Decoupled Model

The unknown parameters J;» and b can be estimated if the dynamics described
by the Decoupled model is excited. This is the case when engaging neutral gear at
a transmission torque level different from zero, giving oscillations. One such case
is seen in Figure 9.5, where the oscillating transmission speed is seen together with
the Decoupled model with estimated parameters .J;2 and bo, and initial drive-shaft
torsion, x19. The rest of the parameters are the same as in the Drive-shaft model,
which were estimated in Chapter 4. The rest of the initial condition of the states
(transmission speed and wheel speed) are the measured values at the time for the
gear shift. The model output (y; and y,, with sensor filter) are fitted to the mea-
sured transmission speed and wheel speed. The conclusion is that the Decoupled
model is able to capture the main resonance in the oscillating transmission speed.

If the initial states (drive-shaft torsion, transmission speed, and wheel speed) of
the Decoupled model are known at the time for engaging neutral gear, the behavior
of the speeds after the shift can be predicted. In order to explain the different
behavior in the transmission speed seen in Section 9.1, a simulation study with
different initial values are performed in the following two subsections.

9.2.2 Simulation of Gear Shifts with Stationary Driveline

First, the Decoupled model is simulated with a stationary driveline, i.e. without
relative speed difference between the transmission speed and the wheel speed. The
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Figure 9.6 Transmission speed oscillations after engagement of neutral gear. The
Decoupled model is simulated with different initial values of the drive-shaft torsion,
x10. The relative speed difference, x, = x2/i — x3, is equal to zero. The dashed
line with no oscillations has the initial value x19 = —0.004 rad. The higher the
drive-shaft torsion is, the higher the amplitude of the oscillations will be.

influence from different initial drive-shaft torsions on the transmission speed are
studied in Figure 9.6.

The higher the drive-shaft torsion is, the higher the amplitude of the oscillations
will be. This was also the case in the experiments shown in Section 9.1 (Figure 9.1),
since a higher speed requires a higher drive-shaft torsion to maintain the speed.
However, in order to have no oscillations in the transmission speed, there must be
a small negative drive-shaft torsion (z19 = —0.004 rad in the figure). The reason
for this is to balance the torque resulting from the viscous friction component b;s.
This effect is seen in the simulations, but in experiments, the effect is not detectable
together with measurement disturbances.

9.2.3 Simulation of Gear Shifts with Driveline Oscillations

To analyze gear shifts with oscillating driveline, simulations are performed with
a constant relative speed difference. Figure 9.7 shows the transmission speed for
three simulations with the same initial speed difference, =, = 3 rad/s, but with
different initial drive-shaft torsions, z1g.

The transmission speed oscillates also when the drive-shaft torsion has a value
that gave no oscillations in the stationary simulations (Figure 9.6). The reason for
this is that the energy stored in the drive shaft is transferred to speed oscillations,
and since the first inertia of the Decoupled model is almost 900 times smaller than
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Figure 9.7 'Transmission speed oscillations after engagement of neutral gear.
The Decoupled model is simulated with a relative speed difference, x, = x2/i — x3,
equal to 3 rad/s, and with three different initial values of the drive-shaft torsion,
z10 = —0.050 rad (dash-dotted), x19 = —0.004 rad (solid), and x1o = 0.050 rad
(dashed).

the wheel inertia, almost all energy is released as transmission speed oscillations.
The transmission speed is transferred to wheel speed, and the higher the speed
difference is, the higher the oscillations will be before the difference between the
speeds is minimized.

If the drive-shaft torsion is different from zero, the oscillation is a combined
effect from the relative speed difference and the drive-shaft torsion. This means
that the oscillation is increased if 1 has a value greater than zero (according to
the dashed line in Figure 9.7). If 2y has a value less than zero, the initial direction
of the oscillation will be opposite the oscillation resulting from the relative speed
difference (according to the dashed-dotted line in Figure 9.7). This analysis explains
the different characteristics seen in Section 9.1 (Figures 9.2 and 9.3).

Summary

The different characteristic oscillations seen in the experiments after engaged neu-
tral gear are explained by the value of the drive-shaft torsion and the relative speed
difference at the time of engagement. The Decoupled model can be used to pre-
dict the behavior of the driveline speeds if these initial variables are known. The
demonstration of problems with an uncontrolled driveline motivates the need for
feedback control in order to minimize the oscillations after a gear shift.
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Gear-Shift Controller Experiments

The quality of gear shifts can be optimized by internal driveline torque control
when using automatic gear shifting by engine control. This was demonstrated in
Chapter 8 where a transmission-torque controller was derived, based on a model
of the transmission. In order to implement this strategy and validate the results,
the unknown parameters describing the transmission torque must be estimated for
each gear. The values of these parameters are difficult to estimate, since the truck
used for experiments has no sensor measuring the transmission torque.

A different variant of internal driveline torque control is proposed in this chap-
ter, where control of the drive-shaft torsion to zero is assumed to give sufficient
gear-shift quality. This is motivated by the fact that the drive shaft is the main
flexibility of the driveline, according to Chapter 4. If this torsion is small it is
reasonable to believe that the transmission torque also is small, if the dynamical
effects in the transmission are neglected. The estimation of the drive-shaft torsion
is easier performed than estimating the transmission torque. No extra parameters
are requested, because the drive-shaft torsion is one of the states in the Drive-shaft
model. The controlling of the drive-shaft torsion is a more robust method, since
the different behavior for each gear is neglected, and the drive shaft is the same
for all gears. Another advantage with using a simpler scheme, utilizing a consis-
tent physical variable, is that extensions to monitoring, supervision, and adaptive
control are simpler.

In order to validate these assumptions, it is necessary to demonstrate that the
estimated drive-shaft torsion is sufficiently accurate for gear-shift control. Since
there is no transmission-torque sensor that can be used for validation, the only
measure of gear-shift quality is to use the measured driveline speeds. If neutral gear

127
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is engaged at an improper torque level, there will be oscillations in the transmission
speed as discussed in Chapter 9.

The reasons for using control of the drive-shaft torsion are further motivated in
Section 10.1. The derivation and validation of a virtual drive-shaft torsion sensor
is covered in Section 10.2. The torsion is estimated by using the measured engine
speed and wheel speed in a Kalman filter and is validated in field trials. Finally, the
controlling of the drive-shaft torsion to zero is given experimental and theoretical
treatment in Section 10.3, which forms a major contribution of the chapter.

10.1 Internal Driveline Torque

In Chapter 8, internal torque control was investigated by controlling the estimated
transmitted torque in the transmission. The aim of this chapter is to develop a
simpler and more robust scheme, that is feasible for implementation with standard
automotive sensors, as mentioned before. The proposed strategy is to control the
drive-shaft torsion to zero with the use of a virtual drive-shaft torsion sensor,
derived later. This section will give further motivation for selecting the drive-
shaft torsion as internal driveline torque, together with a demonstration of the
problems of estimating the correct parameters describing the transmission torque.
In Section 10.3, the choice of control scheme will be validated in closed-loop tests.

Estimation of transmission-torque parameters

The transmission torque, z, for the Drive-shaft model is derived as a function of the
control signal, u, and the states, 1, z2, and z3 in (8.8) as

z = Max+ Du with
(Jm+Je1)k
Tt i
MT = | dmthny o) by (10.1)
_ (Im+Je1)e
i
JIm + Ji1
D = 1—-———
J1

The unknown parameters in the transmission are J;1, Jio, b1, and bs2. The relation
between these is given by (8.11) and (8.12) as

Jp = i%Jtl + Jio (102)
bt i7be1 + beo (10.3)

where J; and b; are the total inertia and viscous friction components of the trans-
mission, according to Chapter 8. The parameters Ji;» and bz were estimated in
Section 9.2 and therefore J;; and by in (10.1) can be solved for if .J; and b; are
known, by using (10.2) and (10.3).

The first inertia of the Drive-shaft model has the estimated parameters

Ji = Jm+ L/i; + Jp]ifi} (10.4)
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bi = bfi; +bs/iji;

Hence, J; and by are not directly estimated by the procedure used in Chapter 4.
Test have been performed in order to fully estimate the unknowns in (10.1), but
with poor results. The main reason is that there is no actual measure of the
transmitted torque in the transmission.

Influence from drive-shaft torsion

Real experiments and a simulation study in the previous chapter have concluded
that the oscillation in the transmission speed is a function of the drive-shaft torsion,
x1, and the relative speed difference, z,, at the moment of engagement. Is it the
same thing to have z = 0 in (10.1) as to have no oscillations in the transmission
speed? Equation (10.1) shows that the answer is no, since the transmission torque
is also a function of the control signal, which has no influence on the Decoupled
model (9.1) and (9.2). However, this effect is probably very small since the term
w(l = (Jm + J1)/J1) is small compared to other terms in (10.1).

The dominating term in (10.1) is 2y (Jy, + Ji1)k/Jii, which is an indication of
how important the drive-shaft torsion is for describing the transmission torque.
Further support to this is seen in Figures 10.1 and 10.2, where the estimated drive-
shaft torsion, z1, and the measured relative speed difference, z,, are shown. It is
demonstrated that the delay time from commanded to engaged neutral gear, which
is a measure of how easily neutral gear can be engaged, depends strongly on how
close to zero z; is. The figures show that neutral gear is not engaged until x; is
close to zero again.

Influence from relative speed difference

The actual torque transferred in the drive-shaft is also a function of the relative
speed difference, z,, due to internal damping (the torque transferred is kz; +
cz,). However, the relative speed difference has little influence on the ability to
engage neutral gear, which can be seen in Figure 10.1. During the delay time from
commanded to engaged neutral gear, x, varies from negative to positive values,
but neutral gear is not engaged until 2, is small again. Another motivation is seen
in Figure 10.2. Neutral gear is engaged at a low drive-shaft torsion, 1 = —0.0078
rad, after a short delay time, but at the moment of engagement, x, has a negative
value.

Hence, neutral gear can successfully be engaged if the drive-shaft torsion, x;,
is close to zero. This is true also if the relative speed difference is different from
zero. The rest of this chapter treats the hypothesis that it is sufficient to control
the drive-shaft torsion to zero for gear shifts with acceptable quality.

10.2 Virtual Drive-Shaft Torsion Sensor

Control of the drive-shaft torsion is performed with a virtual drive-shaft torsion
sensor, since the truck used for experiments uses no torsion sensor. The derivation
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Figure 10.1 Field trial with gear shift when the driveline is oscillating. The
estimated drive-shaft torsion and the measured relative speed difference between
the transmission speed and the wheel speed are shown for a gear shift commanded
at 12.63 s. Neutral gear is not engaged until x, is close to zero (at 13.40 s indicated
by the second vertical line), after a large delay time.
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Figure 10.2 Field trial with gear shift when the driveline is oscillating. The
estimated drive-shaft torsion and the measured relative speed difference are shown
for a gear shift commanded at 12.50 s. Neutral gear is engaged after 12.63 s,
indicated by the second vertical line, after a small delay time.
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and validation of this sensor is the topic of this section. The modeling in Chapter 4
concluded that the Drive-shaft model estimated a drive-shaft torsion with realistic
values. A virtual sensor is constructed by using this model together with the
measured engine speed and wheel speed.

The drive-shaft torsion has in previous chapters been estimated by an observer
with either the engine speed or the wheel speed as input. The quality of the torsion
estimate is in this chapter of central importance, and to eliminate sources of errors,
both engine speed and wheel speed measurements are used as inputs to the observer
in this chapter. (By this way, not only the drive-shaft torsion is estimated, but also
the total torque transmitted in the drive shaft, which is equal to kx; +c(x2 /i —x3).)

The observer gain was determined by solving a Riccati equation with weights
adjusted such that the engine speed and wheel speed are estimated as close as
possible, without following quantification errors and measurement errors. The
observer was implemented in the same way as the observer with one input in
Chapter 7.

An example of how the observer with engine speed and wheel speed inputs
performs on-line is seen in Figure 10.3. It is shown how the measured signals are
closely estimated, which gives support to the estimated drive-shaft torsion.

In the following subsections, the estimated drive-shaft torsion will be validated.
There is no direct way of validating the estimate, since there is no sensor to compare
with. On the other hand, the previous chapter described a way in which the
drive-shaft torsion could be found by studying the oscillations in the transmission
speed after neutral gear is engaged. The on-line estimated drive-shaft torsion
should be equal to the initial drive-shaft torsion explaining the oscillations in the
transmission speed after neutral gear is engaged. Hence, a series of experiments
with engagement at different on-line estimated values of x; are performed in the
following subsections.

10.2.1 Validation in Stationary Trials

The estimated drive-shaft torsion is validated by first performing field trials with
stationary driveline, of the form described in Section 9.1 (Figure 9.1). Neutral gear
is engaged with different stationary speeds. For every trial, the initial drive-shaft
torsion, x19, and the parameters J;» and bgy of the Decoupled model, derived in
Chapter 9, are fitted to the measured oscillation after the shift.

The result is that the estimated z19 agree well with the on-line estimates of the
drive-shaft torsion. However, validation with this type of experiments only covers
a small range of drive-shaft torsions. To maintain the stationary speed, it only
requires a small torque amount, which means that the drive-shaft torsion is small.

10.2.2 Validation in Dynamical Trials

To validate the estimated torsion in dynamical trials, the driveline is set to oscillate
by an engine torque pulse, as described before (see e.g. Figure 10.3). Neutral gear
is then commanded at different time delays after the torque pulse has occured.
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Figure 10.3 Field trial with driveline oscillations excited by an engine torque
pulse (at 11.7 s). Measured engine torque, engine speed, and wheel speed are

represented by solid lines. The observer estimates the engine speed, the wheel
speed, and the drive-shaft torsion, on-line (dashed lines).

Figures 10.4, 10.5, and 10.6 show three different trials generated in the same way,

with the only difference that the gear-shift is commanded after 0.50, 0.60, and
0.63 s after the engine torque pulse has occured.

The measured transmission speed and the on-line estimated drive-shaft torsion,
x1, are seen in the figures. From the oscillation after the gear shift, the initial drive-

shaft torsion z1q is estimated and this value agrees well with the on-line estimate,
which is a validation of the virtual drive-shaft sensor.

In Figure 10.4, the delay time from commanded shift to completed shift is
small due to a low transmission torque at the shift moment. In Figures 10.5, the
gear shift is commanded 0.1 s later, but neutral gear is not engaged until after
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Figure 10.4 Measured transmission speed and estimated drive-shaft torsion dur-
ing a test with oscillating driveline and a commanded gear shift at 12.5 s. Neutral
gear is engaged at 12.63 s. The output of the fitted Decoupled model is the dash-
dotted line with the estimated initial drive-shaft torsion value, x1o, plotted as a
dashed horizontal line. The estimated initial value =,y agrees well with the on-line
estimated x; at the time of engagement.
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Figure 10.5 Similar experiment as in Figure 10.4, but the gear shift is commanded
at 12.60 s, and neutral gear is engaged at 13.38 s. The long delay time from
commanded to completed shift is due to the large negative values of x.
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Figure 10.6 Similar experiment as in Figure 10.4, but the gear shift is commanded
at 12.63 s, and neutral gear is engaged at 13.40 s. The long delay time from
commanded to completed shift is due to the large negative values of x.

0.78 s, indicating a high transmission torque during the delay time. About the
same observation can be seen in Figure 10.6. For these trials, where there is a long
time delay from commanded to engaged gear, the on-line estimated torsion, zy,
sometimes has a higher value than the initial value of the Decoupled model, 1.

10.3 Drive-Shaft Torsion Control

The goal is now to control the drive-shaft torsion to zero with damped driveline
resonances, and verify that sufficient gear-shift quality is obtained. The controller
goal means that both x; and z, are driven to zero, since the driveline resonances
are minimized. The oscillations in the transmission speed and the wheel speed
after the gear shift are then minimized, according to Section 9.2.

10.3.1 Controller Structure for Active Damping

Active damping was in Chapter 8 achieved by minimizing a criterion, giving a state-
feedback law that calculates the fuel amount. Before selecting controller structure
for drive-shaft torsion control, the open-loop transfer function from control signal,
u, to drive-shaft torsion, z1, is investigated. The poles and zeros of the transfer
function are shown in Figure 10.7. One interesting fact is that the zero and the
real pole are close to cancel each other. If they do cancel, the third order system
will act as if it is a second order system with no zero. The same result is also
valid for higher gears. When controlling a second order system with no zero, it is
sufficient to have a second order controller in order to be able to move the poles to
any location.
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Figure 10.7 Poles and zeros of the transfer function from control signal to drive-
shaft torsion. (Calculated from the Drive-shaft model fitted to data in Chapter 4
for gear 1.) The third order model is reduced to a second order model by the
cancellation of the real pole by the zero. Similar results are found for higher gears.

A PID controller controlling the drive-shaft torsion is simulated with a gear
shift commanded at a stationary speed of 1900 RPM and gear 1. The resulting
drive-shaft torsion with and without derivative part is shown in Figure 10.8. The
controller parameters are obtained by first tuning the proportional parameter such
the negative peak values of the engine torque is possible to generate for the diesel
engine. The integral parameter is then adjusted so that z; = 0 is obtained after
the oscillations are damped out. Finally, the derivative parameter is tuned until
the drive-shaft torsion is well damped, according to Figure 10.8.

Hence, active damping can be obtained with a simple PID controller structure.
This controller structure has natural parameter tuning properties with a derivative
part that determines the amount of active damping of driveline resonances. The
integral part guarantees that the control signal is such that there is no stationary
error. This means that the procedure of calculating the gear-shift condition (8.41)
(as a function of the working point) is not needed.

10.3.2 Demonstration of Active Damping in Field Trials

A PID controller with anti-windup is implemented which controls the output of the
virtual sensor to zero. Figure 10.9 shows a first trial with a PI controller in dashed
lines. The proportional part of the controller gives the speed of the controller,
but is not sufficient for damping out the oscillations in the driveline. This was
also demonstrated in the simulations, and is due to the resonant pole-pair seen in
Figure 10.7, which cannot be damped by a proportional controller. Finally, the
derivative part is adjusted to obtain active damping, which is seen in Figure 10.9
in solid lines.



136 Chapter 10 Gear-Shift Controller Experiments

Drive-shaft torsion,
0.04 T T T T

0.02

[rad]

-0.02

Il Il Il Il
9.5 10 105 11 115 12 125 13 135 14

Control signal, u

L L L L L L
9.5 10 10.5 11 115 12 125 13 135 14
Time, [s]

Figure 10.8 Simulated control of the drive-shaft torsion to zero with a PID
controller starting at 10.0 s. Prior to that, the engine has the stationary speed
1900 RPM with gear 1 engaged. A PI controller (dashed lines) is used that obtains
xy = 0, but with undamped driveline resonances. The solid lines are extension
with derivative part in the controller. Active damping is obtained with a simple
PID controller structure.

Hence, active damping is obtained in field trials with a PID controller and a
virtual sensor measuring the drive-shaft torsion. This gives additional support to
the Drive-shaft model structure and parameters, derived in Chapter 4, since the
observation with cancellation of a pole and a zero also holds in field trials.

10.3.3 Validation of Controller Goal

The drive-shaft torsion is controlled to zero with damped driveline resonances,
which was the goal of the controller. However, it is not yet proved that this actu-
ally is sufficient for engaging neutral gear with sufficient quality (short delay and
no oscillations). The way to prove this is to use the controller demonstrated in
Figure 10.9, and engage neutral gear and measure the oscillations in the transmis-
sion speed. This is done in Figures 10.10 to 10.12, where the controller is started
at 12.0 s and gear shifts are commanded every 0.25 s, starting at 12.25 s.

From these figures, it is clear that controlling the drive-shaft torsion to zero
is sufficient for obtaining gear shifts with short delay time (compare this with the
results in Figures 10.5 and 10.6). Oscillations in transmission speed are minimized
to under 1 rad/s in amplitude with different signs, which is well in the range for
giving no disturbance to the driver. Furthermore, the speed synchronization phase,
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Figure 10.9 Control signal and drive-shaft torsion when using the gear-shift
controller that controls the drive-shaft torsion to zero, started at 12.0 s. Prior
to that, the engine has the stationary speed 1900 RPM with gear 1 engaged. In
dashed lines, a PI controller is used that gives x1 = 0, but with undamped driveline
resonances. The solid lines are extension with derivative part in the controller. A
PID controller structure is sufficient for obtaining active damping in field trials.

where the engine speed is controlled to match the propeller shaft speed, can be done
fast, since there are only minor oscillations in the transmission speed.

Figure 10.10 also shows that a gear shift can be commanded after only 0.25 s
after the controller has started, and an acceptable shift quality is obtained. These
results are for gear 1, where the problems with oscillations are largest. The time
to a commanded engagement of neutral gear can be decreased further for higher
gears.

10.3.4 Gear Shifts with Initial Driveline Oscillations

One important problem, necessary to handle, is when a gear shift is commanded
at a state where the driveline is oscillating. This was discussed in Chapter 8 where
the controller was simulated with initial driveline oscillations. To verify that the
PID controller structure can handle this situation and that it also works in real
experiments, driveline resonances are excited by an engine torque pulse at 11.7 s,
according to Figure 10.13.

Figures 10.13 to 10.15 show the same type of experiments, but the controller
is started at different time delays after the engine torque pulse has occured. For
all three experiments, the resulting engine torque, calculated by the feedback con-
troller, actively damps the initial driveline oscillations and obtains z; = 0.
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Figure 10.10 Field trials with start of the gear-shift controller at 12.0 s, all with
the same PID controller controlling the drive-shaft torsion to zero. Engagement of
neutral gear is commanded every 0.25 s after the start of the controller, indicated
by the vertical lines. The transmission speed is seen when neutral gear is engaged
after a delay time. The amplitudes of the transmission speed oscillations after the
gear shift are less than 1 rad/s with different signs, which is an acceptable level.

Shift at 13.0 s
12— ;

Shift at 13.25 s
12— , ;

Shift at 13.5 s
12— , ;

Transmission speed, [rad/s]

©
© o

~
3

951

©

1 115

11f

1 115

11p

14
Time, [s]

12 13 15

13 14
Time, [s]

12 15

13 14
Time, [s]

12 15

Figure 10.11 Same type of field experiment as in Figure 10.10, but with com-
manded engagement of neutral gear at 13.0, 13.25, and 13.5 s. The amplitudes of
the transmission speed oscillations after the gear shift are less than 1 rad/s with
different signs, which is an acceptable level.
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Figure 10.12 Same type of field experiment as in Figure 10.10, but with com-
manded engagement of neutral gear at 13.75, 14.0, and 14.25 s. The amplitudes of
the transmission speed oscillations after the gear shift are less than 1 rad/s with
different signs, which is an acceptable level.
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Figure 10.13 Control signal and drive-shaft torsion during field trials with start
of the gear-shift controller at 13.0 s. The driveline is oscillating prior to the gear
shift due to an engine torque pulse at 11.7 s. The controller controls the drive-shaft
torsion to zero with damped resonances despite initial driveline oscillations.
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Figure 10.14 Control signal and drive-shaft torsion during field trials with start
of the gear-shift controller at 14.0 s. The controller controls the drive-shaft torsion
to zero with damped resonances despite initial driveline oscillations.
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Figure 10.15 Control signal and drive-shaft torsion during field trials with start
of the gear-shift controller at 14.25s. The controller controls the drive-shaft torsion
to zero with damped resonances despite initial driveline oscillations.
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The difference in control signal in Figures 10.13 to 10.15 is a strong evidence
that driveline dynamics affects shift performance so much that feedback control is
motivated. An open-loop scheme would not be able to handle these initial oscilla-
tions, leading to longer time for gear shifts.

10.4 Summary

The main contribution of this chapter is a demonstration of gear-shift control with
optimized shift quality, implemented with standard automotive sensors. The idea
used is that gear-shift control can be obtained by controlling the drive-shaft torsion
to zero. This approach is motivated by the following two main advantages

e When the drive-shaft torsion is zero, neutral gear can be engaged fast, with
only small oscillations in the transmission speed and no oscillations in the
wheel speed.

e By controlling the drive-shaft torsion, it is sufficient to use an observer in
combination with a PID controller structure, with simple tuning rules, for
obtaining active damping of driveline resonances. The reason for this is that
the third order system can be treated as a second order system when consid-
ering the drive-shaft torsion as output.

Control of the drive-shaft torsion is implemented by estimating the drive-shaft
torsion from the measured engine speed and wheel speed. This is shown to give
sufficient accuracy for gear-shift control.

Active damping of driveline resonances gives a way of optimizing the time
needed for the torque control phase, and since there will be no oscillations in the
transmission speed, the new gear can be engaged with a minimum of time spent in
the speed synchronization phase, and thus leading to a minimized time for a gear
shift.

The problems with low-frequency errors due to friction parameter errors, de-
scribed in Chapter 8, are avoided by the use of feedback. This also means that
there is a measure of gear-shift quality, since the deviation from zero in drive-shaft
torsion implies a gear shift with oscillating transmission speed.

By using feedback control, initial driveline oscillations are handled indepen-
dently of the state at which the gear shift is commanded. The difference in control
signal, depending on the start time of the gear shift, is another strong motivation
that feedback control is necessary, since an open-loop scheme would not be able to
handle these oscillations.
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11

Conclusions

The theme of this work is speed control and torque control of a vehicular driveline
with engine controlled damping of driveline resonances. Novel strategies for two
driveline management applications are derived and validated in field trials with a
heavy truck.

One application is automatic gear shifting utilizing engine control to shift to
neutral and synchronize speeds during the shift sequence, without using the clutch.
The main contribution of the thesis is the derivation and implementation of a
new strategy for fast engine control to a torque-free state in the transmission.
The idea behind the strategy is to use internal driveline torque control. A key
contribution is the derivation of a transmission-torque control strategy, based on
a model describing the transmission torque, and a criterion for a controller that
drives this torque to zero. This gives a way of systematically disengaging the
gear with minimized driver disturbances and faster speed synchronization, despite
disturbances and driveline resonances at the start of the gear shift. Field-trial
demonstrations show that it is sufficient to control the drive-shaft torsion to zero,
and still maintain high gear-shift quality. This scheme is simple and robust against
variations among different gears. Furthermore, damping of driveline resonances
can be obtained with an observer in combination with a PID feedback structure,
with simple tuning rules for active damping. The strategy has successfully been
implemented with a virtual drive-shaft torsion sensor based on standard automotive
speed sensors and a Kalman filter. Another advantage with using the simpler
scheme, utilizing a consistent physical variable, is that extensions to monitoring,
supervision, and adaptive control are simpler.
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Another application is wheel-speed control using engine control, aiming at re-
duced vehicle shuffle. A new speed-control strategy, that includes the behavior of
the driveline in the control scheme, is proposed. The derived model-based state-
feedback controller calculates the fuel amount such that driveline oscillations are
reduced. At the same time the speed is maintained with the same type of ve-
locity lag (when going uphill or downhill) as with the traditional control scheme.
Implementation shows significantly reduced driveline oscillations, also when facing
nonlinear torque limitations from maximum torque and diesel smoke delimiters.

A common basis for the two control strategies is the modeling conclusions.
Three driveline models of increasing complexity are derived that explain the os-
cillations in the measured driveline speeds. The main flexibility of the driveline
is shown to be the drive shaft, located between the final drive and the wheels. A
key result is that a simple linear model with a drive-shaft flexibility can capture
the first main resonance of the driveline. The derived strategies are based on this
model, which is shown to be sufficiently detailed for control design, and is easy to
implement with only three states.

Successful implementations show that the response time of the diesel engine is
clearly sufficient for reducing low-frequent driveline oscillations, despite the sim-
plified treatment of the dynamical behavior of the engine. Sufficient accuracy in
the estimated values can be obtained with standard automotive sensors. However,
an investigation about how different sensor locations influence control performance
has demonstrated the importance of the wheel-speed sensor for disturbance rejec-
tion and robustness properties. This investigation aims at understanding where to
invest in increased sensor quality in future driveline management systems, which is
interesting since successful field trials have demonstrated the advantage of active
damping.
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Notations

Variables

r Radius, reference signal
u Control signal

z Performance output

x State vector

Yy Sensor output

v State disturbance, velocity
e Measurement disturbance
n Input disturbance

l Load

0 Angle

«a Road slope

F, Air resistance force

F, Rolling resistance force
Symbols

J Mass moment of inertia
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Notations
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Subscripts

BEOTE 2T 03

Conversion ratio

Torsional stiffness

Torsional damping

Viscous friction component

Vehicle mass

Rolling resistance coefficients

Air drag coefficient

Air density

Vehicle cross-section area

Torque, performance output state matrix
State-space matrix

Input state matrix

Output state matrix

Load state matrix
Performance-output control-signal matrix
Transfer function

Dynamic output ratio

Sensitivity function
Complementary sensitivity function
State-feedback gain

Observer gain

Phase margin

Amplitude margin

Sensor filter constant

Engine

Clutch
Transmission
Propeller shaft
Final drive

Drive shafts

Wheel

Friction

Stationary value
Transmission input
Transmission output
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