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Abstract:
A fundamental part of a fault diagnosis system is the residual generator. Here a new method,
theminimal polynomial basis approach, for design of residual generators for linear systems,
is presented. The residual generation problem is transformed into a problem of finding
polynomial bases for null-spaces of polynomial matrices. This is a standard problem in
established linear systems theory, which means that numerically efficient computational tools
are generally available. It is shown that the minimal polynomial basis approach can find all
possible residual generators and explicitly those of minimal order.
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1. INTRODUCTION

The task of fault diagnosis is to, from known signals, i.e.
measurements and control signals, detect and locate any
faults acting on the system being supervised. A fundamental
part of a model baseddiagnosis system is theresidual
generator. The residual generator filters known signals and
generates a signal, theresidual, that should be small (ideally
0) in the fault-free case and large when a fault is acting on
the system.

This work is a study oflinear residual generation forlinear
systems with no model uncertainties where any faults and
disturbances acting on the system are modeled as input
signals. To be able to produce a correct diagnosis in all
operating conditions, influence from all disturbances on
the residual need to be decoupled. Also, to facilitate fault
isolation, not only disturbances need to be decoupled, but
also a subset of the faults. By generating a set of such scalar
residuals where different subsets of faults are decoupled

in each residual, fault isolation is possible. Therefore it
is convenient to distinguish betweenmonitoredand non-
monitoredfaults. Monitored faults are the fault signals that
the residual should be sensitive to. Non-monitored faults are
the fault signals that the residual should not be sensitive to,
i.e. the faults that are to be decoupled. With this approach,
the design of a residual generator becomes a decoupling
problem.

A number of design methods for designing linear residual
generators have been proposed in literature, see for exam-
ple (Chen & Patton 1999, W¨unnenberg 1990, Massoum-
nia, Verghese & Willsky 1989, Nikoukhah 1994, Chow &
Willsky 1984, Nyberg & Nielsen 2000). Natural questions
that have not gained very much attention before are the
following:

• Does the method find all possible residual generators?
• Does the method find residual generators of minimal
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Now follows a brief motivation to why low and minimal
order residual generators are interesting.

1.1 Why low-order Residual Generators?

Stochastic descriptions of measurement noise and model un-
certainties is not considered in this paper. For such stochastic
systems, low-order residual generators may have suboptimal
properties. Compare reduced observers with full order ob-
servers. Solutions for the stochastic problem is covered in
e.g. (Nikoukhah 1994).

The reason for the interest in the low and minimal order
properties of the residual generator is primarily that we want
to depend on the model as little as possible. A low order
usually implies that only a small part of the model is utilized,
i.e. local relationships in the model is utilized. Since all parts
of the model have errors, this further means that few model
errors will affect the residual. Also, lower complexity of the
residual generator means easier implementation and less on-
line computational burden.

The following small example will highlight this issue. Con-
sider a linear system with two sensors, one actuator, and a
modeled sensor fault in the second sensor.(
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The model consists of two model parameters,a and b. To
detect the fault, a second order residual

r1 = y2 − 1
(s + a)(s + b)

u

can be used. Examining the expression gives that the resid-
ual relies on the accuracy of both model parametersa andb.
Using straightforward manipulations of model equations, it
is possible to derive a new,first order residual representing
a local relationship between the two sensor signals:

r2 =
1

s + b
y1 − y2

As can be seen, residualr2 only depends on the accuracy of
parameterb. Thus, a lower order residual generator resulted
in a residual generator less dependent on the model accuracy.
Here, in this example, even complete invariance of model
accuracy of parametera was achieved. This is not a general
result, model dependency does not always decrease with the
order. However, if the model has such a property, systematic
utilization of low-order residual generators is desirable.

2. POLYNOMIAL BASES AND RATIONAL VECTOR
SPACES

This paper relies on established theory on polynomial matri-
ces, rational vector spaces, and polynomial bases for these

spaces (Kailath 1980, Forney 1975, Chen 1984). The main
notions used are presented in this section.

The row-degreeof a row vector of polynomials is defined
as the largest polynomial degree in the row-vector. In this
paper,polynomial basesandordersof polynomial bases are
of special interest. A polynomial basis is here represented
by a polynomial matrix where the rows are the basis vectors.
Theorder of a polynomial basisF (s) is defined as the sum
of the its row-degrees. Aminimal polynomial basisfor a
rational vector-spaceF is then any polynomial basis that
minimizes this order.

A matrix F (s) is irreducibleif and only if F (s) has full rank
for all s. A matrix F (s) can always be written as

F (s) = S(s)Dhr + L(s)

whereS(s) = diag{sµi , i = 1, . . . , p} whereµi is the
row-degrees ofF (s) and Dhr is the highest-row-degree
coefficient matrix. A matrix is row-reducedif its highest-
row-degree coefficient matrixDhr has full row rank.

In addition to these definitions, the following theorem will
be used:

Theorem 1.(Kailath,1980, Theorem 6.5-10). The rows of a
matrix F (s) form a minimal polynomial basis for the ra-
tional vector space they generate, if and only ifF (s) is
irreducible and row-reduced.

3. THE MINIMAL POLYNOMIAL BASIS APPROACH

This section introduces theminimal polynomial basis ap-
proachto the design of linear residual generators. All deriva-
tions are performed in the continuous case but the corre-
sponding results for the time-discrete case can be obtained
by substitutings by z andimproperby non-causal.

3.1 Problem Formulation

This section introduces the problem formulation which has
been addressed in many papers, e.g. (Gertler 1991).

The systems studied here are assumed to be on the form

y = G(s)u + H(s)d + L(s)f (1)

wherey is measurements,u is known inputs to the system,d
is disturbances including non-monitored faults, andf is the
monitored faults. A general linear residual generator can be
written

r = Q(s)
(

y
u

)
(2)

i.e.Q(s) is a multi-dimensional transfer matrix with known
signalsy andu as inputs and aresidualas output. Astable
filter Q(s) in (2) is a residual generator if and only ifr = 0
for all d andu whenf = 0. To be able to detect faults, it is
also required thatr 6= 0 whenf 6= 0.
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3.2 Derivation of Design Methodology

Inserting (1) into (2) gives

r = Q(s)
[
G(s) H(s)

I 0

] [
u
d

]
+ Q(s)

[
L(s)

0

]
f

To maker(t) = 0 when f(t) = 0, it is required that
disturbances and the control signal aredecoupled, i.e. for
Q(s) to be a residual generator, it must hold that

Q(s)
[
G(s) H(s)

I 0

]
= 0

This implies thatQ(s) must belong to the left null-space of

M(s) =
[
G(s) H(s)

I 0

]
(3)

This null-space is denotedNL(M(s)). The matrix Q(s)
need to fulfill two requirements: belong to the left null-space
of M(s) and give good fault sensitivity properties. If, in
the first step of the design,all Q(s) that fulfills the first
requirement is found, then in a second step a singleQ(s)
with good fault sensitivity properties can be selected. Thus,
in a first step of the design,f orL(s) need not be considered.
The problem is then to findall rationalQ(s) ∈ NL(M(s)).
Of special interest are residual generators of low order for
reasons discussed in Section 1.

Thus, a procedure to find allQ(s) ∈ NL(M(s)), and
explicitly those of minimal order, is wanted. This can be
done by finding aminimal polynomial basisfor the rational
vector-spaceNL(M(s)). Procedures for doing this will be
described in Section 4. For now, assume that such a basis has
been found and is formed by the rows of a matrix denoted
NM (s). By inspection of (3), it can be realized that the
dimension ofNL(M(s)) (i.e. the number of rows ofNM (s))
is

Dim NL(M(s)) = m− Rank H(s) ∗= m− kd (4)

wherem is the dimension ofy, ku is the dimension ofu, and
kd is the dimension ofd. The last equality, marked

∗=, holds
only if RankH(s) = kd, but this should be the normal case.

Forming the Residual Generator

The second and final design-step is to use the polynomial ba-
sisNM (s) to form the residual generator. For this, consider
the following theorem:

Theorem 2.(Kailath,1980, p.401). If the rows ofF (s) form
an irreducible polynomial basis for a rational vector space
F, then all polynomial row vectorsx(s) ∈ F can be written
x(s) = φ(s)F (s) whereφ(s) is apolynomialrow vector.

The minimal polynomial basisNM (s) is irreducible accord-
ing to Theorem 1, and then according to Theorem 2, all

decouplingpolynomialvectorsF (s) can be parameterized
as

F (s) = φ(s)NM (s) (5)

whereφ(s) is a polynomial vector of suitable dimension.
The row-vectorF (s) corresponds to a parity equation
F (s) ( y

u )=0, (Gertler 1991). SinceNM (s) is a basis, the
parameterization vectorφ(s) have minimal number of ele-
ments, i.e.NM (s) gives a minimal parameterization ofall
parity functions, not only minimal order. This is not accom-
plished with e.g. iterative parity space methods as described
in Section 6.1.

One of the rows ofNM (s) corresponds to a decoupling
polynomial vector of minimal row-degree. The reason for
this can be explained as follows. Consider a basisNM (s)
with three rows and the row-degrees ared1, d2, and d3

respectively. SinceNM (s) is a minimal polynomial basis,
d1 + d2 + d3 is minimal. Now assume that the minimal row-
degree of any decoupling vector isdmin and thatdmin < di

for all di. Then by using a minimal row-degree decoupling
vector, a new basis with less row-degree can be obtained.
ThusNM (s) can not be a minimal basis, which shows that
one of the rows ofNM (s) must correspond to a decoupling
vector of minimal row-degree.

A realizable rational transfer functionQ(s), i.e. the residual
generator, can be found as

Q(s) = c−1(s)F (s) (6)

where the scalar polynomialc(s) has greater or equal degree
compared to the row-degree ofF (s). The degree constraint
is the only constraint onc(s). This means that the dynamics,
i.e. poles, of the residual generatorQ(s) can be chosen
freely, e.g. to impose a low-pass characteristic of the residual
generator to filter out noise or high frequency uncertainties.
Thus,φ(s) and c(s) includes all design freedom that can
for example be used to shape the fault-to-residual response.
This also means that the order of a realization of a residual
generator is determined by the row-degree of the polynomial
vectorF (s).

4. METHODS TO FIND A MINIMAL POLYNOMIAL
BASIS TONL(M(s))

The problem of finding a minimal polynomial basis to the
left null-space of the matrix rationalM(s) can be solved by
transforming this to the problem of finding a polynomial ba-
sis for the null-space of apolynomialmatrix. This problem
is then a standard problem in linear system theory where
standard algorithms can be applied.

The transformation from a rational problem to a polynomial
problem can be done in several different ways. In this
section, two possibilities are demonstrated, where one is
used if the model is given on transfer function form and the
other if the model is given in state-space form. If there are
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no disturbancesd, the problem of finding a basis to the left
null-space ofM(s), is simplified and a method applicable
in this case will also be described. Altogether, the results in
this section will give us a computationally simple, efficient,
and numerically stable method, to find a polynomial basis
for the left null-space ofM(s).

Frequency Domain Solution

When the system model is given on the transfer function
form (1), the transformation from the rational problem to a
polynomial problem can be done by performing a right MFD
onM(s), i.e.

M(s) = M̃1(s)D̃−1(s) (7)

By finding a polynomial basis for the left null-space of the
polynomialmatrix M̃1(s), a basis is found also for the left
null-space ofM(s). Thus the problem of finding a minimal
polynomial basis toNL(M(s)) has been transformed into
finding a minimal polynomial basis toNL(M̃1(s)).

State-Space Solution

When the system model is available in state-space form, it is
here shown how thesystem matrixin state-space form can be
used to find the left null-space ofM(s). The system matrix
has been used before in the context of fault diagnosis, see
e.g. (Nikoukhah 1994, Magni & Mouyon 1994).

Assume that the fault-free system is described in state-space
form by,

ẋ = Ax + Buu + Bdd (8a)

y = Cx + Duu + Ddd (8b)

To be able to obtain a basis that is irreducible, it is required
that the statex is controllable from[uT dT ]T .

Denote the system matrixMs(s), describing the system with
disturbances as inputs:

Ms(s) =
[

C Dd

−sI + A Bd

]
Define a matrixP as

P =
[
I −Du

0 −Bu

]
Then the following theorem gives a direct method on how
to find a minimal polynomial basis toNL(M(s)) via the
system matrix.

Theorem 3.If the pair{A, [Bu Bd]} is controllable and the
rows of the polynomial matrixV (s) is a minimal polynomial
basis forNL(Ms(s)), thenW (s) = V (s)P is a minimal
polynomial basis forNL(M(s)).

Before this theorem can be proven, a lemma is needed:

Lemma 4.

Dim NL(M(s)) = Dim NL(Ms(s))

The proof of this lemma can be found in (Nyberg 1999).

Now, return to the proof of Theorem 3:

PROOF. In the fault free case, i.e.f = 0, consider the
following relation between the matricesM(s) andMs(s):

P

(
y
u

)
= PM(s)

(
u
d

)
= Ms(s)

(
x
d

)
If V (s)Ms(s) = 0, then the above expression is zero for all
x andd, which implies thatW (s)M(s) = V (s)PM(s) =
0, i.e.W (s) ∈ NL(M(s)). It is also immediate that ifV (s)
is polynomial,W (s) = V (s)P is also polynomial.

From Lemma 4, we have thatDim NL(Ms(s)) = DimNL(M(s)).
Then since bothV (s) andW (s) has the same number of
rows, the rows ofW (s) must span the whole null-space
NL(M(s)), i.e.W (s) must be a basis forNL(M(s)).

It is clear that the following relation must hold:

V (s)[P Ms(s)] = V (s)
[
I −Du C Dd

0 −Bu −(sI −A) Bd

]
=

= [W (s) 0] (9)

Since the statex is controllable fromu andd, the PBH test
(Kailath 1980, p. 366) implies that the lower part of the
matrix [P Ms(s)] has full rank for alls, i.e. it is irreducible.
Now assume thatW (s) is not irreducible. This means that
there exists as0 and aγ 6= 0 such thatγV (s0)[P Ms(s0)] =
γ[W (s0) 0] = 0. Since[P Ms(s0)] has full row-rank it must
hold thatγV (s0) = 0. However, this contradicts the fact
thatV (s) is a minimal polynomial basis. This contradiction
implies thatW (s) must be irreducible.

Now, partition V (s) = [V1(s) V2(s)] according to the
partition ofMs(s). SinceV (s) ∈ NL(Ms(s)), it holds that

V1(s)C = V2(s)(sI −A) = sV2(s)− V2(s)A

Also, since each row-degree ofsV2(s) is strictly greater than
the corresponding row-degree ofV2(s)A, it holds that for
each rowi

row-degi sV2(s) = row-degi V2(s) +1 = row-degi V1(s)C

The above equation can be rearranged into the inequalities

row-degi V2(s) < row-degi V1(s)C ≤ row-degi V1(s)

This implies thatVhr = [V1,hr 0] whereVhr and V1,hr

are the highest-row-degree coefficient matrices ofV (s) and
V1(s) respectively. SinceV (s) is a minimal polynomial
basisVhr has full row rank from which it follows thatV1,hr

has full row rank.
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From the definition ofP it follows that

[W1(s) W2(s)] = [V1(s) (−V1(s)Du − V2(s)Bu)] (10)

From (10) it follows that the highest-row-degree coefficient
matrix of W (s) looks likeWhr = [V1,hr ?] where? is any
constant matrix. SinceV1,hr has full row-rank so hasWhr,
i.e.W (s) is row reduced.

Thus we have shown thatW (s) is an irreducible basis and
row reduced, which implies that it is a minimal polynomial
basis thus ending the proof.

Remark:If the realization is not controllable from
[
uT dT

]T
,

then it can be shown (Nyberg 1999), that the matrixW (s) =
V (s)P becomes a basis but not necessarily irreducible. This
has the implication that all decoupling polynomial vectors
F (s) cannot be parameterized as in (5).

4.1 No Disturbance Case

If there are no disturbances, i.e.H(s) = 0, the matrixM(s)
has a simpler structure:

Mnd(s) =
[
G(s)

I

]
(11)

A minimal polynomial basis for the left null-space of
Mnd(s) is particularly simple due to the special structure,
and a minimal basis is then given directly by the following
theorem:

Theorem 5.If G(s) is a proper transfer matrix and̄DG(s),
N̄G(s) form an irreducible left MFD, i.e.̄NG(s) andD̄G(s)
are left co-prime andG(s) = D̄−1

G (s)N̄G(s), andD̄G(s) is
row-reduced, then

NM (s) = [D̄G(s) − N̄G(s)] (12)

forms a minimal polynomial basis for the left null-space of
the matrixMnd(s), i.e.NL(Mnd(s)).

PROOF. It is immediate to evaluate

[D̄G(s) − N̄G(s)]
[
G(s)

I

]
= 0

Also, the dimension of the left null-space ofMnd(s) has di-
mensionm, i.e. the number of measurements, which equals
the number of rows inNM (s). SinceD̄G(s) andN̄G(s) is
co-prime,NM (s) will be irreducible. LetDhr andNhr be
the highest row-degree coefficient matrices forD̄G(s) and
N̄G(s) whereDhr will be of full rank sinceD̄G(s) is row-
reduced.

Since the transfer functionG(s) is proper, i.e. the row
degrees ofN̄G(s) is less or equal to the row degrees of
D̄G(s). A high-degree coefficient decomposition of the basis
NM (s) will look like

[D̄G(s) − N̄M (s)] = SD(s)[Dhr ?] + L̃(s)

where? is any matrix. SinceDhr is full rank, so is[Dhr ?],
which gives that the basis is row-reduced which ends the
proof.

Remark 1:Note that not just any irreducible left MFD will
suffice. According to Theorem 5, matrix̄DG(s) need to
be row-reduced. An algorithm that gives such an MFD
is (Strijbos 1996) and is implemented inThe Polynomial
Toolbox 2.0 for Matlab 5(1998).

Theorderof the minimal polynomial basis forNL(Mnd(s))
is given by the following theorem:

Theorem 6.The set of observability indices of a trans-
fer function G(s) is equal to the set of row degrees of
D̄G(s) in any row-reduced irreducible left MFDG(s) =
D̄−1

G (s)N̄G(s).

A proof of the dual problem, controllability indices, can be
found in (Chen 1984, p. 284).

Thus, a minimal polynomial basis for the left null-space of
matrixMnd(s) is given by a left MFD ofG(s) and the order
of the basis is the sum of the observability indices ofG(s).

Remark 2:Note that, in the general case, the observability
indices of the pair{A, C} does not give the row-degrees
of a minimal polynomial basis forNL(M(s)). However,
the minimal observability index of{A, C} do give a lower
bound on the minimal row-degree of the basis (Frisk 2000).

Remark 3:The result (12) implies that finding the left null-
space of the rational transfer matrix (3), in the general case
with disturbances included, can be reduced to finding the left
null-space of the rational matrix

M̃2(s) = D̄G(s)H(s) (13)

In other words, this is an alternative to the use of the matrix
M̃1(s) in (7). This view closely connects with the so called
frequency domain methods, which are further examined in
Section 6.

4.2 Finding a Minimal Polynomial Basis for the null-space
of a General Polynomial Matrix

For the general case, with disturbances included, the only
remaining problem is how to find a minimal polynomial
basis to a general polynomial matrix. This is a well-known
problem in the general literature on linear systems. Sev-
eral algorithms exists but when numerical performance is
considered, a specific algorithm based on thepolynomial
echelon form(Kailath 1980) has been proven to be both fast
and numerically stable. Such an algorithm is implemented
in the commandnull in The Polynomial Toolbox 2.0 for
Matlab 5(1998).
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5. BOUNDS ON MAXIMUM AND MINIMUM
ROW-DEGREE OF THE BASIS

This section derives upper limits on the maximum and min-
imum row-degree of a matrix, whose rows form a minimal
polynomial basis for the left null-space of the matrix (3).
The notationn is used to denote the number of states in
a given state-space representation. The notationnx will be
used to denote the dimension of the state controllable from[
uT dT

]T
.

5.1 Upper Bound for the Maximum Row-Degree of the
Basis

Theorem 7.(Nyberg,1999). A matrix whose rows form a
minimal polynomial basis forNL(M(s)) has all row-
degrees≤ nx, wherenx is the number of states controllable

from
[
uT dT

]T
.

Before Theorem 7 can be proven, a few lemmas are needed.

Lemma 8.Let P (s) be a matrix with maximum row-
degree 1. Then the maximum row-degree of a minimal poly-
nomial basis forNL(P (s)) is less or equal toRankP (s).

Lemma 9.The row-degrees of a minimal polynomial basis
for NL(M(s)) is equal to the row-degrees of a minimal
polynomial basis forNL(Ms(s)), whereMs(s) is a system
matrix with the pair{A, [Bu Bd]} controllable.

Remark: Lemma 9 implies that the row-degrees ofNM (s)
equals the left Kronecker indices of the matrix pencilMs(s).
For proof of Lemma 8, see e.g. (Nyberg 1999) and for proof
of Lemma 9, see e.g. (Frisk 2000).

Lemma 10.(Predictable-degree Property of row-reduced matrices).
Let D(s) be a polynomial matrix of full row-rank, and for
any polynomial vectorp(s), let

q(s) = p(s)D(s)

Then,D(s) is row-reduced if and only if

degq(s) = max
i:pi(s) 6≡0

[degpi(s) + µi]

wherepi(s) is the i:th entry ofp(s) andµi is the degree of
the i:th row ofD(s).

Lemma 11.Let the rows ofF (s) form a minimal polyno-
mial basis for a rational vectorspaceF . Denote the row-
degrees ofF (s) with µ1 ≤ · · · ≤ µα. Then it holds that
µi ≤ mi, i = 1, . . . , α wheremi is the row-degrees of any
polynomial basis forF .

PROOF. Let P (s) be a polynomial basis forF with row-
degreesmi. Let the rows inP (s) be ordered such that
m1 ≤ · · · ≤ mα.

The theorem is proved by contradiction. Assume thatµ1 ≤
m1, . . . , µi−1 ≤ mi−1 but µi > mi. SinceF (s) is an
irreducible basis, it holds that

pj(s) =
α∑

l=1

fl(s)ql(s) j = 1, . . . , i (14)

whereql(s) is polynomials.

If i = 1, then degp1(s) < µj j = 1, . . . , α, i.e. according
to the predictable degree propertyp1(s) can not be a linear
combination of the rows in the row reduced matrixF (s).
However, this contradicts (14).

If i > 1, according to the assumption, the following relations
hold:

degpj(s) ≤ mi < µi j = 1, . . . , i

According to the predictable degree property it must hold
that in (14), ql(s) ≡ 0, l = i, . . . , α. Thus, the upper
summation limit can at maximum bei−1, i.e. equation (14)
can be rewritten as:

pj(s) =
i−1∑
l=1

fl(s)ql(s) j = 1, . . . , i

This contradicts the linear independence of thep1(s), . . . , pi(s)
polynomial row vectors since they are spanned byf1(s), . . . , fi−1(s)
ending the proof.

Now return to the proof of Theorem 7:

PROOF. Let nx be the order of a minimal state-space

realization of (8), controllable from
[
uT dT

]T
. Let Ms(s)

be the corresponding system matrix, i.e.

Ms(s) =
[

C Dd

−(sI −A) Bd

]
and let the rows ofNDB be a basis for the left null-space of
[DT

d BT
d ]T . Then we have that

NDBMs(s) =
[
NDB

[
C

−(sI −A)

]
, 0
]

(15)

The left part of the matrix (15) has rank≤ nx. From
Lemma 8 we know that a minimal polynomial basis for (15)
has row degrees less or equal tonx. Let the rows of a matrix
Q(s) form such a basis.

The matrixQ(s)NDB forms a polynomial basis forNL(Ms(s))
and sinceQ(s) has row degrees less or equal tonx, the
row degrees of the basisQ(s)NDB is also less or equal to
nx. Thus, according to Lemma 11, aminimal polynomial
basis forNL(Ms(s)) has lower or equal row-degrees than
the polynomial basisQ(s)NDB.
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Since a minimal polynomial basis forNL(Ms(s)) has max-
imum row-degree≤ nx, Lemma 9 implies that also a min-
imal polynomial basis forNL(M(s)) has maximum row-
degree≤ nx, ending the proof.

The result of Theorem 7 is important for several reasons,
the residual generators obtained directly from the vectors of
the minimal basis, are in one sense the only ones needed.
All other are filtered versions (i.e. linear combinations) of
these residual generators. With this argument, Theorem 7
shows that we do not need to consider residual generators of
orders greater thannx. Also, in the Chow-Willsky scheme,
see Section 6.1, the maximum orderρ needs to be specified.
By letting ρ = nx, it is guaranteed that all vectors in the
minimal polynomial basis can be generated.

Remark 1 It is also possible to show Theorem 7 by using
results from (Henrion & Sebek 1999, Lemma 1).

Remark 2 Related problems have been investigated in
(Chow & Willsky 1984) and (Gertler, Fang & Luo 1990).
In (Chow & Willsky 1984), it was shown that, in the no-
disturbance case, there exist a parity function of order≤ n.
In (Gertler et al. 1990), it was shown that for a restricted
class of disturbances, there exist a parity function of order
≤ n. However the result of Theorem 7 is stronger since it
includesarbitrary disturbances and shows that there exist a
basisin which the maximum row-degree is≤ nx.

5.2 Upper Bound for the Minimal Row-Degree of the Basis

Theorem 12.(Frisk,2000). An upper bound for the minimal
row-degreeρmin of a basis forNL(M(s)) is given by

ρmin ≤ bnx + k̃d

m− k̃d

c

where

k̃d = Rank

(
Bd

Dd

)
is the number of linearly independent disturbances.

Before Theorem 12 can be proven, some more results are
needed. Ifk̃d < kd, i.e. there exists linear dependencies
between disturbances, rewrite the system description with a
new set of̃kd linearly independent disturbances. That is, find
B̃d andD̃d with dimensionsnx×k̃d andm×k̃d respectively
such that

Im

(
Bd

Dd

)
= Im

(
B̃d

D̃d

)
Then, denote

M̃ρ =

︸ ︷︷ ︸
(ρ + 2)(nx + k̃d)


Q R

Q R
. . .
Q R


 (ρ + 1)(m + nx)

whereMs(s) = Q + sR. Then, the following lemma can be
stated:

Lemma 13.(Karcanias & Kalogeropoulos,1988). The space
NL(Ms(s)) contains aρ-degree polynomial vector if and
only if M̃ρ does not have full row rank.

Now, return to the proof of Theorem 12.

PROOF. Using Lemma 9 and 13 it is clear that aρ-degree
polynomial vector is inNL(M(s)) if and only if M̃ρ does

not have full row rank. A sufficient condition for̃Mρ not to
have full row-rank is that the number of rows is larger than
the number of columns, i.e.

(ρ + 1)(m + nx) > (ρ + 2)(nx + k̃d)

Straightforward manipulations of the inequality results in

ρ >
nx + k̃d

m− k̃d

− 1

Note that the inequalitym > k̃d always holds if a residual
generator exists which can be seen directly in (4). Therefore,
the smallest integerρ that fulfills the inequality isbnx+k̃d

m−k̃d
c

which completes the proof.

Remark: A similar result without disturbance decoupling,
i.e. whenk̃d = 0, can be found in (Mironovskii 1980).

6. RELATION TO OTHER RESIDUAL GENERATOR
DESIGN METHODS

This section discusses the relation between the minimal
polynomial basis approach and two other design methods
for linear residual generation.

6.1 The Chow-Willsky Scheme

A method for constructing linear residual generators was
presented in (Chow & Willsky 1984). This method is usually
referred to as the Chow-Willsky scheme (or theparity-
space approach). Originally it was only described for the
no-disturbance case. However, in (Frank 1990), the method
was generalized to also include decoupling of disturbances.
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Since the Chow-Willsky scheme is well known, only a short
description is given here. Designing residual generators with
the Chow-Willsky scheme comes down to finding a vectorw
in the left null-space of a constant matrix[Oρ Hρ], where

Oρ = [CT AT CT . . . AρT CT ]T

andHρ is a lower triangular Toeplitz matrix describing the
propagation of the disturbances through the system. The
constantρ is determined by the user. Letw be a row vector
in the left null-space of[Oρ Hρ] and form the polynomial
vectorFCW (s) as

FCW (s) = w [Ψy(s) −QρΨu(s)]

where

Ψy(s) =[Im sIm . . . sρIm]T Ψu(s) =[Ik sIk . . . sρIk]T

and Qρ is a lower triangular Toeplitz matrix describing
the propagation of the inputs through the system. Compare
FCW (s) with F (s) in 5. It can be shown thatFCW (s)
always belongs to the left null-space ofM(s). This means
that the Chow-Willsky scheme is a method for finding poly-
nomial vectors in the left null-space ofM(s). In accordance
with the minimal polynomial basis approach, a realizable
residual generator can be achieved by adding poles as de-
scribed by the formula (6).

It has been shown in (Nyberg & Nielsen 2000) that for
some systems, the Chow-Willsky scheme can not generate
all possible residual generators. This is the case when there
are dynamics controllable from the faults but not from
inputs or disturbances. However, by imposing the same
requirement as in Theorem 3, about controllability from
[Bu Bd], the Chow-Willsky scheme can be modified so that
it can generate all possible residual generators.

The row degree of the vectorFCW (s) will in most cases be
equal toρ. Therefore, the Chow-Willsky scheme does not
automaticallyfind residual generators of minimal order. By
iteratively increasingρ it is straightforward to find a minimal
order parity relation, however such an approach isnotable to
produce a basis such asNM (s) and to ensure that all parity
relations is found,ρ = n is needed.

Commonly, the Chow-Willsky scheme is formulated in the
following way. First a basis for the left null-space of[Oρ Hρ]
is found. Let the rows of a matrixW define this basis.
Then the vectorw, used to form the polynomial vector
FCW (s), is taken as one of the rows inW or possibly
a linear combination of several rows. It is worth to point
out that the first step to find the basisW , does not result
in a polynomial basis to the left null-space ofM(s), i.e.
W [Ψy(s) −QρΨu(s)] is not a basis forNL(M(s)). This
is easy to realize since the number of rows inW is in general
much larger than the dimension of the null space.

In conclusion, the Chow-Willsky scheme does not give
residual generators of minimal order and also, a basis is
not obtained. However, by using several modifications to the

original algorithm, it is possible to obtain a modified Chow-
Willsky scheme which will produce a minimal polynomial
basis for the left null-space ofM(s). The modified Chow-
Willsky scheme and the equivalence with the minimal poly-
nomial basis approach is described in (Nyberg 1999).

Although the Chow-Willsky scheme can be made alge-
braically equivalent to the minimal polynomial basis ap-
proach, the numerical properties are still not as good. The
reason is that, for anything but smallρ, the matrix[Oρ Hρ]
will include high powers ofA. It is likely that this results in
that [Oρ Hρ] becomes ill-conditioned. Thus to find the left
null-space of[Oρ Hρ] can imply severe numerical problems.
When the minimal polynomial basis approach is used, and a
basis for the left null-space of the system matrix is derived
using the polynomial echelon-form algorithm, these prob-
lems of high power ofA, or any other term, will not arise.

6.2 Frequency Domain Approaches

A number of design methods described in literature are
called frequency domain methodswhere the residual gen-
erators are designed with the help of different transfer
matrix factorization techniques. Examples are (Frank &
Ding 1994) for the general case with disturbances and (Ding
& Frank 1990, Viswanadham, Taylor & Luce 1987) in the
non-disturbance case. The methods can be summarized as
methods where the residual generator is parameterized as

r = R(s)[D̃(s) − Ñ(s)]
(

y
u

)
=

= R(s)(D̃(s)y − Ñ(s)u) (16)

whereD̃(s) andÑ(s) form a left co-prime factorization of
G(s) overRH∞. Note the close relationship with Equa-
tion (12) where the factorization is performed over polyno-
mial matrices instead of overRH∞.

Inserting (1) into Equation (16) and as before assuming
f = 0, gives

r = R(s)D̃(s)H(s)d

Therefore, to achieve disturbance decoupling, the parame-
terization transfer matrixR(s), must belong to the left null-
space ofD̃(s)H(s), i.e.

R(s)D̃(s)H(s) = 0

Here, note the close connection with̃M2(s) in (13). This so-
lution however does not generally generate a residual gener-
ator with minimal order. In (Ding & Frank 1990) and (Frank
& Ding 1994), the co-prime factorization is performed via
a minimal state-space realization of the complete system,
including the disturbances as in Equation (8). This results in
D̃(s) andÑ(s) of a degree that, in the general case, is larger
than the lowest possible order of a disturbance decoupling
residual generator. Thus, to find a lowest order basis that
spans all residual generatorsQ(s) = R(s)[D̃(s) − Ñ(s)],
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extra care is required since “excess” states need to be can-
celed out.

7. DESIGN EXAMPLES

7.1 Design Example 1: Aircraft Dynamics

The model used in this example is taken from (Maciejowski
1989) and represents a linearized model of vertical-plane
dynamics of an aircraft. The model has three inputs, three
outputs. Numerical values for model equations can be found
in (Maciejowski 1989). Suppose the faults of interest are
sensor-faults (denotedf1, f2, andf3), and actuator-faults
(denotedf4, f5, andf6) and assume additive fault models.
The total model, including the faults then becomes:y1

y2

y3

 = G(s)

u1

u2

u3

+

f4

f5

f6

+

f1

f2

f3


whereG(s) is the nominal system model.

The design example is intended to illustrate the design pro-
cedure and also illustrate how available design freedom can
be utilized. The goal is to design a residual generatorQ(s)
that decouples the fault in the elevator angle actuator, i.e.f6

is a non-monitored fault. Therefore the matrixH(s) in (1),
corresponding to non-monitored faults and disturbances, be-
comes equal to the third column ofG(s). The matrixL(s)
corresponds to the monitored faults and thereforeL(s) be-
comes[I3 g1(s) g2(s)], wheregi(s) denotes thei:th column
of G(s).

According to formula (4), the dimension of the null-space
NL(M(s)) is 2, i.e. there exists exactly two linearly in-
dependent polynomial row-vectors that decouplesf6. The-
orem 12 gives an upper bound on the minimum degree
residual generator ofb 5+1

3−1c = 3. Calculations usingThe
Polynomial Toolbox 2.0 for Matlab 5(1998) and Theorem 3
give:

NM (s) =
[

0.0705s s + 0.0538 . . .
22.7459s2 + 14.5884s −6.6653 . . .

0.091394 0.12 −1 0
s2 − 0.93678s− 16.5141 31.4058 0 0

]
(17)

The row-degrees of the basis is1 and2, i.e. it is a basis of
order3.

Forming the Residual Generator

From the basis (17) it is clear that a proper filter of least or-
der, which decouplesf6, is a first order filter corresponding
to the first row in the basis. A realizable residual generator
can be formed by settingφ in (5) to φ = [1 0] andc(s) to
c(s) = 1 + s which results in:

Q(s) =
1

1 + s

[
0.0705s s + 0.0538 0.091394 0.12 −1 0

]
(18)

Let Gd(s) = Q(s)
(

G(s) H(s)
I 0

)
, which should be zero if

infinite precision arithmetics were used. Calculating the
size ofGd(s) using the infinity norm gives‖Gd(s)‖∞ ≈
−220 dB which is close to machine precision, i.e. control
signals and the decoupled fault has no significant influence
on the residual.

Figure 1 show how the monitored faults influence the resid-
ual and the leftmost plot shows that the DC-gain fromf1 to
the residual is0. Therefore,f1 is difficult to detect since the
effect in the residual of a constant fault disappears. By using
detectability criterions, given in (Nyberg 1999), it can be
shown that it is impossible to construct a residual generator
in which the DC-gain fromf1 to the residual becomes non-
zero.
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Fig. 1. Magnitude bode plots for the monitored faults to the
residual.

In the example, the dimension of the null-space when de-
couplingf6 was2 as seen in (17). This indicates that there
exists additional freedom that can e.g. be used to attenuate
noise or to decouple more than one fault in each residual to
facilitate multiple-fault isolation. Further investigations on
this example can be found in (Frisk & Nyberg 1999).

7.2 Design Example 2: A Turbo-Jet Engine from Volvo Aero
Corporation

This second example is included to illustrate numerical and
other properties of the algorithm described. Here, a short
discussion is included, a more detailed discussion on this
example can be found in (Frisk 1998).

A model of a jet-engine developed by Volvo Aero Corpora-
tion, Trollhättan, Sweden, is used in this example. A high-
order non-linear model of the engine is used for analysis and
control design. This model can also be used for diagnosis
purposes. The model was linearized in a working point and
the resulting model, after that non-controllable and non-
observable modes are eliminated, is a26:th order model. The
model used includes8 sensors and4 actuators.

The model is numerically stiff due to modeling of fast dy-
namics, such as thermodynamics in small control volumes,
and slow dynamics such as heating phenomena of metal.
The largest time-constant in the model is about105 times
larger than the smallest time constant. This, together with
the high-order, makes the model numerically sensitive which
demands good numerical properties of the design algorithm.
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In the design example, faults in sensors and actuators are
considered. A residual that indicates a sensor failure is to be
designed, i.e. all actuator faults are to be decoupled. Using
Theorem 12 it is clear that there exists residual generators
with degree less than or equal tob 26+4

8−4 c = 7 which is
significantly less than system order. Worth noting is how this
limit depends onnd. If a residual were to be designed that
decoupled only one fault, i.e.nd = 1, then the upper bound
on the minimum degree residual generator would be as low
as 3.

Experiments in Matlab shows that the algorithm performs
well on the full model resulting in a4:th order filter giving
≈ 0 dB gain from the sensor faults to the residual while
the actuators has≈ -200 dB gain to the residual, i.e. the
decoupling succeeded. To illustrate the numerical difficulties
in this example, a design is also performed with the Chow-
Willsky scheme (Chow & Willsky 1984). Performing the
same design with thebasicChow-Willsky design method,
i.e. exactly as outlined in Section 6.1 withρ = n, on a
balanced realization of the model result in an infeasible
design. The design fails due to severe numerical difficulties
during the design. The main point of this comparison isnot
to make any statement whether it is possible to perform
a feasible design on this example with the Chow-Willsky
method or not. It is merely used to illustrate that this example
is numerically difficult and numerical concern is important.

It is also worth noting that, a design method not considering
the order of the resulting residual generator easily results
in a residual generator of the same order as the process
model, here 26. However, with the minimal polynomial basis
approach, a 4:th order residual generator was found which
shows how the minimality property here results in a filter
with substantially less order than the order of the design
model. This order gain, i.e. reduced order of the residual
generator, can be substantial, especially when using detailed,
high-order design models.

Another possibility to decrease filter order is to utilize some
order reduction technique on the high-order model, and
then design the residual generator. The minimal polynomial
approach has advantages compared to such an approach,
mainly due to that it avoids an unnecessary decrease in
model accuracy. In the jet-engine example, it was not possi-
ble to reduce the model order to 4, design a residual genera-
tor, and end up with a filter with the same performance as the
resulting filter from the minimal polynomial basis approach.

8. CONCLUSIONS

Design of residual generators to achieve perfect decoupling
in linear systems is considered. The goal has been to develop
a design method where especially three issues have been
addressed: (1) the method is able to generateall possible
residual generators, (2) explicitly gives the solutions with
minimal order, and (3) has good numerical properties.

The residual generator design problem is formulated with
standard notions from linear algebra and linear systems the-
ory such as polynomial bases for rational vector spaces and it
is shown that the design problem can be seen as the problem
of findingpolynomialvectors in the left null-space of a ratio-
nal matrixM(s). Within this framework, the completeness
of solution, i.e. issue (1) above, and minimality, i.e. issue (2),
are naturally handled by the concept ofminimal polynomial
bases. Finding a minimal polynomial basis for a null-space
is a well-known problem and there exists computationally
simple, efficient, and numerically stable algorithms, i.e. is-
sue (3), to generate the bases.

Simple bounds on the row-degrees of such a minimal poly-
nomial basis are derived and it is also shown how these
degrees are closely related to the order of the residual gen-
erators. These bounds can help the designer to estimate
complexity of the diagnosis system.
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Frisk, E. (2000). Order of residual generators – bounds and
algorithms, SAFEPROCESS’2000, Budapest, Hun-
gary.

Frisk, E. & Nyberg, M. (1999). Using minimal polynomial
bases for fault diagnosis, European Control Confer-
ence.

Gertler, J. (1991). Analytical redundancy methods in fault
detection and isolation; survey and synthesis, IFAC
Fault Detection, Supervision and Safety for Technical
Processes, Baden-Baden, Germany, pp. 9–21.

Gertler, J., Fang, X. & Luo, Q. (1990). Detection and diag-
nosis of plant failures: the orthogonal parity equation
approach,Control and Dynamic Systems37: 159–216.

10



Henrion, D. & Sebek, M. (1999). Reliable numerical meth-
ods for polynomial matrix triangularization,IEEE
Trans. on Automatic Control44(3): 497–508.

Kailath, T. (1980).Linear Systems, Prentice-Hall.
Karcanias, R. & Kalogeropoulos, G. (1988). Right, left char-

acteristic sequences and column, row minimal indices
of a singular pencil,Int. J. of Control47(4): 937–946.

Maciejowski, J. (1989).Multivariable Feedback Design,
Addison Wesley.

Magni, J. & Mouyon, P. (1994). On residual generation by
observer and parity space approaches,IEEE Trans. on
Automatic Control39(2): 441–447.

Massoumnia, M., Verghese, G. & Willsky, A. (1989). Failure
detection and identification,IEEE Trans. on Automatic
Control AC-34(3): 316–321.

Mironovskii, L. (1980). Functional diagnosis of linear
dynamic systems,Automation and Remote Control
pp. 1198–1205.

Nikoukhah, R. (1994). Innovations generation in the pres-
ence of unknown inputs: Application to robust failure
detection,Automatica30(12): 1851–1867.

Nyberg, M. (1999).Model Based Fault Diagnosis: Methods,
Theory, and Automotive Engine Applications, PhD the-
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