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Abstract:

A fundamental part of a fault diagnosis system is the residual generator. Here a new method,
theminimal polynomial basis approacfor design of residual generators for linear systems,

is presented. The residual generation problem is transformed into a problem of finding
polynomial bases for null-spaces of polynomial matrices. This is a standard problem in
established linear systems theory, which means that numerically efficient computational tools
are generally available. It is shown that the minimal polynomial basis approach can find all
possible residual generators and explicitly those of minimal order.
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1. INTRODUCTION in each residual, fault isolation is possible. Therefore it
is convenient to distinguish betweenonitored and non-

The task of fault diagnosis is to, from known signals, i.e. Monitoredfaults. Monitored faults are the fault signals that
measurements and control signals, detect and locate anf€ residual should be sensitive to. Non-monitored faults are
faults acting on the system being supervised. A fundamentafhe fault signals that the residual should not be sensitive to,
part of amodel baseddiagnosis system is theesidual i.e. the faults that are to be decoupled. With this approach,
generator The residual generator filters known signals and the design of a residual generator becomes a decoupling
generates a signal, thesidual that should be small (ideally ~ Problem.

0) in the fault-free case and large when a fault is acting ona number of design methods for designing linear residual
the system. generators have been proposed in literature, see for exam-
This work is a study ofinear residual generation fdmear ~ Ple (Chen & Patton 1999, Winenberg 1990, Massoum-
systems with no model uncertainties where any faults andnia, Verghese & Willsky 1989, Nikoukhah 1994, Chow &
disturbances acting on the system are modeled as inpuVillsky 1984, Nyberg & Nielsen 2000). Natural questions
signals To be able to produce a correct diagnosis in all that have not gained very much attention before are the
operating conditions, influence from all disturbances on following:

the residual need to be decoupled. Also, to facilitate fault o poes the method find all possible residual generators?
isolation, not only disturbances need to be decoupled, but o poes the method find residual generators of minimal
also a subset of the faults. By generating a set of such scalar 5 qer

residuals where different subsets of faults are decoupled



Now follows a brief motivation to why low and minimal spaces (Kailath 1980, Forney 1975, Chen 1984). The main
order residual generators are interesting. notions used are presented in this section.

The row-degreeof a row vector of polynomials is defined
as the largest polynomial degree in the row-vector. In this
paperpolynomial baseandordersof polynomial bases are

Stochastic descriptions of measurement noise and model un®! SPecial interest. A polynomial basis is here represented

certainties is not considered in this paper. For such stochasti®y & Polynomial matrix where the rows are the basis vectors.
systems, low-order residual generators may have suboptimal 1€ ©rder of a polynomial basis(s) is defined as the sum
properties. Compare reduced observers with full order ob-Of the its row-degrees. Aninimal polynomial basisor a
servers. Solutions for the stochastic problem is covered inra_tpngl vectpr-spac@ is then any polynomial basis that
e.g. (Nikoukhah 1994). minimizes this order.

A matrix F'(s) isirreducibleif and only if F'(s) has full rank

for all s. A matrix F'(s) can always be written as

1.1 Why low-order Residual Generators?

The reason for the interest in the low and minimal order
properties of the residual generator is primarily that we want
to depend on the model as little as possible. A low order F(s) = S(s)Dpr + L(s)
usually implies that only a small part of the model s utilized,
i.e.localrelationships in the modelis utilized. Since all parts
of the model have errors, this further means that few model . icjent matrix A matrix is row-reducedif its highest-
errors will affect the residual. AISC_), lower complexny of the row-degree coefficient matri;,,. has full row rank.

residual generator means easier implementation and less on-
line computational burden. In addition to these definitions, the following theorem will

be used:

where S(s) = diag{s",i = 1,...,p} wherey, is the
row-degrees ofF'(s) and Dy, is the highest-row-degree

The following small example will highlight this issue. Con-

sider a linear system with two sensors, one actuator, and &heorem 1(Kailath,1980, Theorem 6.5-10). The rows of a
modeled sensor fault in the second sensor. matrix F'(s) form a minimal polynomial basis for the ra-
1 tional vector space they generate, if and onlyFifs) is

<y1> = sTa u -+ <(1)> f irreducible and row-reduced.
Y2

(s +0)(s +a)

The model consists of two model parameterandb. To 3. THE MINIMAL POLYNOMIAL BASIS APPROACH
detect the fault, a second order residual
1 This section introduces theinimal polynomial basis ap-
M=y U proachto the design of linear residual generators. All deriva-
(s+a)(s+b) . ! :

o ] ) _ tions are performed in the continuous case but the corre-
can be used. Examining the expression gives that the residsyonding results for the time-discrete case can be obtained
ual_ relies on the accuracy qf both model paramectemc_lb. by substitutings by » andimproperby non-causal
Using straightforward manipulations of model equations, it

is possible to derive a neirst order residual representing

a local relationship between the two sensor signals: 3.1 Problem Formulation
1
e = Ty T2 This section introduces the problem formulation which has

As can be seen, residugl only depends on the accuracy of been addressed in many papers, e.g. (Gertler 1391).

parameteb. Thus, a lower order residual generator resulted The systems studied here are assumed to be on the form
in a residual generator less dependent on the model accuracy.

- . . . =G H(s)d+ L 1
Here, in this example, even complete invariance of model . 4 (s)u +_ () +. (s)f (@)
accuracy of parameterwas achieved. This is not a general Wherey is measurements,is known inputs to the systent,
result, model dependency does not always decrease with thig disturbances including non-monitored faults, ghid the
order. However, if the model has such a property, systemationonitored faults. A general linear residual generator can be

utilization of low-order residual generators is desirable. written
_ )
r=qe (1) @
2. POLYNOMIAL BASES AND RATIONAL VECTOR i.e. Q(s) is a multi-dimensional transfer matrix with known
SPACES signalsy andu as inputs and gesidualas output. Astable

filter Q(s) in (2) is a residual generator if and onlyrif= 0
This paper relies on established theory on polynomial matri-for all d andu when f = 0. To be able to detect faults, it is
ces, rational vector spaces, and polynomial bases for thesalso required that # 0 whenf # 0.

2



3.2 Derivation of Design Methodology decouplingpolynomialvectorsF'(s) can be parameterized

as

Inserting (1) into (2) gives F(s) = ¢(s)Ns(s) (5)
o G(s) H(s)| |u L(s) where¢(s) is a polynomial vector of suitable dimension.
r=0Q(s) 1 0 d +Q(s) 0 f The row-vector F'(s) corresponds to a parity equation

F(s)(¥)=0, (Gertler 1991). SinceV,,(s) is a basis, the
parameterization vecta#(s) have minimal number of ele-
ments, i.e.Ny/(s) gives a minimal parameterization aff
parity functions, not only minimal order. This is not accom-

To maker(t) = 0 when f(t) = 0, it is required that
disturbances and the control signal akecoupledi.e. for
Q(s) to be a residual generator, it must hold that

G(s) H(s)| _ 0 plished with e.g. iterative parity space methods as described
Ql) |7 g | = in Section 6.1.
This implies that)(s) must belong to the left null-space of One of the rows ofNy(s) corresponds to a decoupling
a(s) H polynomial vector of minimal row-degree. The reason for
M(s) = [ 5,3) és)} (3) this can be explained as follows. Consider a ba§is(s)

with three rows and the row-degrees atg do, and ds

This null-space is denote®, (M (s)). The matrix Q(s) respectively. SincéVy,(s) is a minimal polynomial basis,
need to fulfill two requirements: belong to the left null-space di + dz + d3 is minimal. Now assume that the minimal row-

of M(s) and give good fault sensitivity properties. If, in degree of any decoupling vectords,;,, and thatd,,;,, < d;

the first step of the desigmall Q(s) that fuffills the first ~ for all d;. Then by using a minimal row-degree decoupling
requirement is found, then in a second step a siy(e) vector, a new basis with less row-degree can be obtained.
with good fault sensitivity properties can be selected. Thus, Thus Ny (s) can not be a minimal basis, which shows that
in a first step of the desigtf,or L(s) need not be considered. one of the rows ofVy, (s) must correspond to a decoupling
The problem is then to findll rationalQ(s) € Ny (M (s)). vector of minimal row-degree.

Of special interest are residual generators of low order for
reasons discussed in Section 1.

generator, can be found as
Thus, a procedure to find alD(s) € Np(M(s)), and o
explicitly those of minimal orde(r,)is wante(d. EI'rzl)s can be Qs) = T ()F(s) ()
done by finding aninimal polynomial basifor the rational ~ where the scalar polynomia(s) has greater or equal degree
vector-spacé\Ny (M (s)). Procedures for doing this will be  compared to the row-degree 8s). The degree constraint
described in Section 4. For now, assume that such a basis has the only constraint on(s). This means that the dynamics,
been found and is formed by the rows of a matrix denotedi.e. poles, of the residual generatQ(s) can be chosen
Ny (s). By inspection of (3), it can be realized that the freely, e.g. toimpose alow-pass characteristic of the residual
dimension ofN (M (s)) (i.e. the number of rows a¥;(s)) generator to filter out noise or high frequency uncertainties.
is Thus, ¢(s) andc(s) includes all design freedom that can
. * for example be used to shape the fault-to-residual response.

Dim Np(M(s)) = m — Rank H(s) =m —ka  (4) T as0 means that the order of a realization of a residual
wherem is the dimension of, k., is the dimension of;,, and generator is determined by the row-degree of the polynomial
k4 is the dimension ofl. The last equality, marke&, holds ~ vectorF(s).
only if Rank H (s) = kg4, but this should be the normal case.

A realizable rational transfer functiai(s), i.e. the residual

4. METHODS TO FIND A MINIMAL POLYNOMIAL
Forming the Residual Generator BASIS TONL(M(s))

The second and final design-step is to use the polynomial baThe problem of finding a minimal polynomial basis to the
sis N (s) to form the residual generator. For this, consider left null-space of the matrix rationdl/ (s) can be solved by

the following theorem: transforming this to the problem of finding a polynomial ba-
sis for the null-space of polynomialmatrix. This problem
Theorem 2(Kailath,1980, p.401). If the rows df(s) form is then a standard problem in linear system theory where

an irreducible polynomial basis for a rational vector space standard algorithms can be applied.
F, then all polynomial row vectors(s) € F can be written

2(s) — ¢(s)F(s) whereg(s) is apolynomialrow vector. The transformation from a rational problem to a polynomial

problem can be done in several different ways. In this
section, two possibilities are demonstrated, where one is
The minimal polynomial basid/,,(s) is irreducible accord-  used if the model is given on transfer function form and the
ing to Theorem 1, and then according to Theorem 2, all other if the model is given in state-space form. If there are
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no disturbanced, the problem of finding a basis to the left Lemma 4.
null-space ofM (s), is simplified and a method applicable

in this case will also be described. Altogether, the results in

this section will give us a computationally simple, efficient,

and numerically stable method, to find a polynomial basis The proof of this lemma can be found in (Nyberg 1999).
for the left null-space ofM (s).

Dim N (M (s)) = Dim N (M,(s))

Now, return to the proof of Theorem 3:
Frequency Domain Solution

When the system model is given on the transfer function
form (1), the transformation from the rational problem to a PROOF. In the fault free case, i.ef = 0, consider the
polynomial problem can be done by performing a right MFD following relation between the matricég (s) and M, (s):

(5)
o M(s) = Wi (5)D~1(s) ) P (2] = rae (3) =200 ()

By finding a polynomial basis for the left null-space of the If V'(s)M,(s) = 0, then the above expression is zero for all
polynomialmatrix M (s), a basis is found also for the left z andd, which implies thalV' (s)M(s) = V(s)PM(s) =
null-space ofM (s). Thus the problem of finding a minimal 0, i.e.W(s) € N(M(s)). Itis also immediate that ¥ (s)
polynomial basis tdNz (M (s)) has been transformed into is polynomial, IV (s) = V' (s)P is also polynomial.

finding a minimal polynomial basis &7, (11, (s)). From Lemma 4, we have thBim N (M,(s)) = Dim N (M (s)).
State-Space Solution Then since both/(s) andW(s) has the same number of

rows, the rows ofi¥’(s) must span the whole null-space
When the system model is available in state-space form, it 'SN (M(s)), i.e.W (s) must be a basis foX1, (M s)).

here shown how theystem matriin state-space formcanbe _ _
used to find the left null-space f (s). The system matrix  Itis clear that the following relation must hold:
has been used before in the context of fault diagnosis, see 71D o D
e.g. (Nikoukhah 1994, Magni & Mouyon 1994). V(s)[P Ms(s)] = V(s) 0 *BZ (sT - A) BZ =
Assume that the fault-free system is described in state-space —[W(s)0] (9)
form by,
Since the state is controllable fromu andd, the PBH test
. (Kailath 1980, p. 366) implies that the lower part of the
t=Aw+ Byu+ Bad (8a) matrix [P Mj(s)] has full rank for alls, i.e. itis irreducible.
y=Cxz+ Dyu+ Dad (8b)  Now assume thali¥/ (s) is not irreducible. This means that
there exists &, and ay # 0 such thatyV (so)[P Ms(so)] =
;Lo i:)tehablf :0 obtamta :Jla;,:s ]Ehat |sT|r:ierUC|bIe it is required ~+[W(s0) 0] = 0. Since|P M, (s0)] has full row-rank it must
at the state; is controllable fromu " hold thatyV (sp) = 0. However, this contradicts the fact

Denote the system matriX, (s), describing the system with  thatV'(s) is a minimal polynomial basis. This contradiction

disturbances as inputs: implies thatlV (s) must be irreducible.
C Dy Now, partition V(s) = [Vi(s) Va(s)] according to the
Mi(s)=1|_7 1 4 B, partition of M, (s). SinceV (s) € Nz (M,(s)), it holds that
Define a matrixP as Vi(s)C = Va(s)(sI — A) = sVa(s) — Va(s)A
pP— [I Du} Also, since each row-degree df,(s) is strictly greater than
0 =By the corresponding row-degree B (s) A, it holds that for

Then the following theorem gives a direct method on how €ach row
to find a minimal polynomial basis Nz, (M (s)) via the row-deg sVa(s) = row-deg Va(s) + 1 = row-deg Vi (s)C
system matrix.

The above equation can be rearranged into the inequalities
Theorem 3.If the pair{ A4, [B, B4} is controllable and the
rows of the polynomial matri¥ (s) is a minimal polynomial
basis forNy (M (s)), thenW (s) = V(s)P is a minimal  This implies thatV}, = [Vi. 0] whereVj, and Vi j,
polynomial basis folNf (M (s)). are the highest-row-degree coefficient matrice¥ ¢4) and
Vi(s) respectively. Sincd/(s) is a minimal polynomial
basisV},. has full row rank from which it follows thak;
has full row rank.

row-deg Vz(s) < row-deg Vi (s)C < row-deg Vi (s)

Before this theorem can be proven, a lemma is needed:



From the definition of? it follows that
[(Wi(s) Wa(s)] = [Vi(s) (=Vi(s)Dy — Va(s)By)] (10)

From (10) it follows that the highest-row-degree coefficient

matrix of W (s) looks like W, = [Vi 1, x| Wherex is any
constant matrix. Sinc& . has full row-rank so hasl’;,.,
i.e. W (s) is row reduced.

Thus we have shown th@¥ (s) is an irreducible basis and
row reduced, which implies that it is a minimal polynomial
basis thus ending the proof.

Remarkif the realization is not controllable frof” d” | T
then it can be shown (Nyberg 1999), that the maitvixs) =

wherex is any matrix. Sincé)y,. is full rank, so is[Dp,. %],
which gives that the basis is row-reduced which ends the
proof.

Remark 1Note that not just any irreducible left MFD will
suffice. According to Theorem 5, matri®:(s) need to
be row-reduced. An algorithm that gives such an MFD
is (Strijbos 1996) and is implemented irhe Polynomial
Toolbox 2.0 for Matlab §1998).

Theorder of the minimal polynomial basis fo¥ 1, (M,,4(s))
is given by the following theorem:

Theorem 6.The set of observability indices of a trans-

V(s) P becomes a basis but not necessarily irreducible. Thisfer function G(s) is equal to the set of row degrees of
has the implication that all decoupling polynomial vectors D(s) in any row-reduced irreducible left MFI(s) =

F(s) cannotbe parameterized as in (5).

4.1 No Disturbance Case

If there are no disturbances, i¥(s) = 0, the matrix} (s)
has a simpler structure:

Mya(s) = [GES)]

A minimal polynomial basis for the left null-space of
M,.q4(s) is particularly simple due to the special structure,
and a minimal basis is then given directly by the following
theorem:

(11)

Theorem 5.If G(s) is a proper transfer matrix anfl (s),
N (s) form an irreducible left MFD, i.eN¢(s) and D¢ (s)
are left co-prime andi(s) = D' (s)Ng(s), andDg(s) is
row-reduced, then

Nu(s) = [Dc(s) — Ne(s)] (12)
forms a minimal polynomial basis for the left null-space of
the matrixM,,4(s), i.e. N (M,a(s)).

PROOF. Itis immediate to evaluate

Dats) ~ oo | 1] <o

Also, the dimension of the left null-space &f,,4(s) has di-

D' (s)Ng(s).

A proof of the dual problem, controllability indices, can be
found in (Chen 1984, p. 284).

Thus, a minimal polynomial basis for the left null-space of
matrix M,,4(s) is given by a left MFD ofG(s) and the order
of the basis is the sum of the observability indice&:9§).

Remark 2:Note that, in the general case, the observability
indices of the paif{ A, C'} does not give the row-degrees
of a minimal polynomial basis folNy (M (s)). However,
the minimal observability index of A, C} do give a lower
bound on the minimal row-degree of the basis (Frisk 2000).

Remark 3:The result (12) implies that finding the left null-
space of the rational transfer matrix (3), in the general case
with disturbances included, can be reduced to finding the left
null-space of the rational matrix

Ms(s) = De(s)H(s) (13)

In other words, this is an alternative to the use of the matrix
M;(s) in (7). This view closely connects with the so called
frequency domain methods, which are further examined in
Section 6.

4.2 Finding a Minimal Polynomial Basis for the null-space

mensionm, i.e. the number of measurements, which equalsof & General Polynomial Matrix

the number of rows inVy, (s). Since D (s) and Ng(s) is
co-prime, Ny, (s) will be irreducible. LetDy, and Ny, be
the highest row-degree coefficient matrices fag (s) and
N¢(s) whereDy,,. will be of full rank sinceDg(s) is row-
reduced.

Since the transfer functiod:(s) is proper, i.e. the row
degrees ofNg(s) is less or equal to the row degrees of
N (s) will look like

[Da(s) — Naa(s)] = Sp(s)[Dir #] + L(s)

For the general case, with disturbances included, the only
remaining problem is how to find a minimal polynomial
basis to a general polynomial matrix. This is a well-known
problem in the general literature on linear systems. Sev-
eral algorithms exists but when numerical performance is
considered, a specific algorithm based on podynomial

~ echelon form(Kailath 1980) has been proven to be both fast
D¢ (s). Ahigh-degree coefficient decomposition of the basis n ) P

and numerically stable. Such an algorithm is implemented
in the commandull in The Polynomial Toolbox 2.0 for
Matlab 5(1998).



5. BOUNDS ON MAXIMUM AND MINIMUM
ROW-DEGREE OF THE BASIS

This section derives upper limits on the maximum and min-
imum row-degree of a matrix, whose rows form a minimal
polynomial basis for the left null-space of the matrix (3).

The notationn is used to denote the number of states in
a given state-space representation. The notatjowill be

used to denote the dimension of the state controllable from

[u? d”]".

5.1 Upper Bound for the Maximum Row-Degree of the
Basis

Theorem 7(Nyberg,1999). A matrix whose rows form a
minimal polynomial basis forNy (M (s)) has all row-
degrees< n,, wheren,, is the number of states controllable

from [u” dT]T.

PROOF. Let P(s) be a polynomial basis faF with row-
degreesm;. Let the rows inP(s) be ordered such that
my < -0 < Mg

The theorem is proved by contradiction. Assume hat<

Lyeeoyfticn < my—1 but u; > m;. Since F(s) is an
irreducible basis, it holds that

pi(s) = fis)au(s) j=1,...,i (14)
=1
whereg; (s) is polynomials.
If i =1,thendew:(s) < pu; j=1,...,q i.e. according

to the predictable degree propepiy(s) can not be a linear
combination of the rows in the row reduced matfiXs).
However, this contradicts (14).

If i > 1, according to the assumption, the following relations
hold:

degp;(s) <m; < pi
According to the predictable degree property it must hold
that in (14),¢(s) = 0,1 = 4,...,a. Thus, the upper
summation limit can at maximum bie- 1, i.e. equation (14)

j=1,...,i

Before Theorem 7 can be proven, a few lemmas are needed:an be rewritten as:

Lemma8.Let P(s) be a matrix with maximum row-

degree 1. Then the maximum row-degree of a minimal poly-

nomial basis folN (P(s)) is less or equal tRRank P(s).

Lemma 9.The row-degrees of a minimal polynomial basis
for N (M (s)) is equal to the row-degrees of a minimal
polynomial basis folN, (M, (s)), whereM;(s) is a system
matrix with the pair{ A, [B,, Bg]} controllable.

Remark: Lemma 9 implies that the row-degrees¥f;(s)
equals the left Kronecker indices of the matrix peA¢il(s).

pj(s) = ifl(s)ql(s) j=1,...,i
=1

This contradicts the linear independence ofth@), . . ., pi(s)
polynomial row vectors since they are spannedfy), . . ., fi—1(s)
ending the proof.

Now return to the proof of Theorem 7:

PROOF. Let n, be the order of a minimal state-space

For proof of Lemma 8, see e.g. (Nyberg 1999) and for proof realization of (8), controllable fronu” dT}T. Let M(s)

of Lemma 9, see e.g. (Frisk 2000).

Lemma 10(Predictable-degree Property of row-reduced matrices).

Let D(s) be a polynomial matrix of full row-rank, and for
any polynomial vectop(s), let

q(s) = p(s)D(s)
Then,D(s) is row-reduced if and only if

max [degp;(s) + ]

degq(s) = itpi ()20

wherep;(s) is the i:th entry ofp(s) andy; is the degree of
the i:th row of D(s).

Lemma 11.Let the rows ofF'(s) form a minimal polyno-

mial basis for a rational vectorspagé Denote the row-

degrees ofF'(s) with u; < .-+ < p,. Then it holds that

w; < mg,i = 1,...,a wherem; is the row-degrees of any
polynomial basis forF.

be the corresponding system matrix, i.e.

i) 3

and let the rows ofVp 5 be a basis for the left null-space of
(DT BIT. Then we have that

M(s)

C
NppM,(s) = [Npp [_(81_ A)] ,0] (15)
The left part of the matrix (15) has rank n,. From
Lemma 8 we know that a minimal polynomial basis for (15)
has row degrees less or equahta Let the rows of a matrix
Q(s) form such a basis.

The matrix@Q(s) Npp forms a polynomial basis fox, (M;(s))
and sinceQ(s) has row degrees less or equalstg, the
row degrees of the bas@(s)Npp is also less or equal to
ng. Thus, according to Lemma 11,minimal polynomial
basis forNy, (Ms(s)) has lower or equal row-degrees than
the polynomial basi€)(s) Npp.



Since a minimal polynomial basis fov7, (M;(s)) has max- QR

imum row-degree< n,, Lemma 9 implies that also a min- N QR
imal polynomial basis forV (M (s)) has maximum row- M, = . (p+1)(m + ng)
degree< n,, ending the proof. '
QR
N—————
The result of Theorem 7 is important for several reasons, (p+2)(n, + l}d)

the residual generators obtained directly from the vectors of

the minimal basis, are in one sense the only ones neededvhereM;(s) = Q + sR. Then, the following lemma can be
All other are filtered versions (i.e. linear combinations) of stated:

these residual generators. With this argument, Theorem 7

shows that we do not need to consider residual generators dfemma 13(Karcanias & Kalogeropoulos,1988). The space
orders greater than,. Also, in the Chow-Willsky scheme, N (M(s)) contains ap-degree polynomial vector if and
see Section 6.1, the maximum ordemneeds to be specified. only if Mp does not have full row rank.

By letting p = n,, it is guaranteed that all vectors in the

minimal polynomial basis can be generated.
Now, return to the proof of Theorem 12.

Remark 1 It is also possible to show Theorem 7 by using

PROOF. Using Lemma 9 and 13 it is clear thapadegree
results from (Henrion & Sebek 1999, Lemma 1). sing itis padeg

polynomial vector is inNy (M (s)) if and only if M,, does
not have full row rank. A sufficient condition fdgp not to
Remark 2 Related problems have been investigated in have full row-rank is that the number of rows is larger than
(Chow & Willsky 1984) and (Gertler, Fang & Luo 1990). the number of columns, i.e.

In (Chow & Willsky 1984), it was shown that, in the no- ~
disturbance case, there exist a parity function of order. (p+1)(m+na) > (p+2)(na + ka)

In (Gertler et al. 1990), it was shown that for a restricted Straightforward manipulations of the inequality results in
class of disturbances, there exist a parity function of order -

< n. However the result of Theorem 7 is stronger since it p> Na + ffd 1

includesarbitrary disturbances and shows that there exist a m — kg

basisin which the maximum row-degree & n.

Note that the inequalityn > k, always holds if a residual
generator exists which can be seen directly in (4). Therefore,

the smallest integes that fulfills the inequality is{%
5.2 Upper Bound for the Minimal Row-Degree of the Basis Which completes the proof.

Theorem 12(Frisk,2000). An upper bound for the minimal Remark: A similar result without disturbance decoupling,
row-degreepmin Of a basis fotN (M (s)) is given by i.e. whenk, = 0, can be found in (Mironovskii 1980).

n, —|—l§:
pmingl_ £ ~dJ
mfkd

6. RELATION TO OTHER RESIDUAL GENERATOR
where DESIGN METHODS

~ Bd
kq = Rank D . . . . -
d This section discusses the relation between the minimal

is the number of linearly independent disturbances. polynomial basis approach and two other design methods
for linear residual generation.

Before Theorem 12 can be proven, some more results are

needed. Ifk; < kg, i.e. there exists linear dependencies

between disturbances, rewrite the system description with -1 The Chow-Willsky Scheme

new setpﬂ%d linearly independent disturbances. Thatis, find

B, andD, with dimensions:,, x k; andm x k4 respectively A method for constructing linear residual generators was

such that presented in (Chow & Willsky 1984). This method is usually
By By referred to as the Chow-Willsky scheme (or tparity-
Im (Dd) =1m B space approach Originally it was only described for the
d no-disturbance case. However, in (Frank 1990), the method

Then, denote was generalized to also include decoupling of disturbances.



Since the Chow-Willsky scheme is well known, only a short original algorithm, it is possible to obtain a modified Chow-
description is given here. Designing residual generators withWillsky scheme which will produce a minimal polynomial
the Chow-Willsky scheme comes down to finding a veator  basis for the left null-space adf/(s). The modified Chow-
in the left null-space of a constant matfi®, H,|, where Willsky scheme and the equivalence with the minimal poly-
nomial basis approach is described in (Nyberg 1999).
Op — [CT ATCT o ApTcT]T pp ( y g )

. . . . L Although the Chow-Willsky scheme can be made alge-
andH, is a lower triangular Toeplitz matrix describing the braically equivalent to the minimal polynomial basis ap-

propagation of the disturbances through the system. The, oach " the numerical properties are still not as good. The
constani is determined by the user. Letbe a row VECWOr  \aason is that, for anything but smallthe matrix|©, H,)]
in the left null-space of0,, f,] and form the polynomial iy inciude high powers ofd. It is likely that this results in

vectorfey (s) as that[0, H,] becomes ill-conditioned. Thus to find the left

Fow(s) = w[¥,(s) —Q,V.(s)] null-space ofO, H,| canimply severe numerical problems.
When the minimal polynomial basis approach is used, and a
basis for the left null-space of the system matrix is derived

W, (s) =Ly 8L ... SP]m]T W (s) =[Ii sIj, ... SP]k]T using the polynomial echelon-form algorithm, these prob-

) . . . o lems of high power of4, or any other term, will not arise.
and @, is a lower triangular Toeplitz matrix describing

the propagation of the inputs through the system. Compare
Fow (s) with F(s) in 5. It can be shown thaFcyw (s)
always belongs to the left null-space bf(s). This means
that the Chow-Willsky scheme is a method for finding poly-

Cv(i)twlzigenitﬁirﬁwlz; thglliférr::gl'sg):;:f (Sr)é;r;scgo:g:ﬁzc:ble called frequency domain methodsghere the residual gen-
poly pp ' erators are designed with the help of different transfer

res_|dual generator can be achieved by adding poles as deﬁ1atrix factorization techniques. Examples are (Frank &
scribed by the formula (6).

Ding 1994) for the general case with disturbances and (Ding

It has been shown in (Nyberg & Nielsen 2000) that for & Frank 1990, Viswanadham, Taylor & Luce 1987) in the
some systems, the Chow-Willsky scheme can not generat@on-disturbance case. The methods can be summarized as
all possible residual generators. This is the case when therenethods where the residual generator is parameterized as
are dynamics controllable from the faults but not from

inputs or disturbances. However, by imposing the same , — R(s)[D(s) _N(S)] (y) =
requirement as in Theorem 3, about controllability from L7 B
[B. Bg), the Chow-Willsky scheme can be modified so that = R(s)(D(s)y — N(s)u) (16)
it can generate all possible residual generators.

where

6.2 Frequency Domain Approaches

A number of design methods described in literature are

whereD(s) and N (s) form a left co-prime factorization of
The row degree of the vectdicyy (s) will in most cases be  G(s) over RH... Note the close relationship with Equa-
equal top. Therefore, the Chow-Willsky scheme does not tion (12) where the factorization is performed over polyno-
automaticallyfind residual generators of minimal order. By mial matrices instead of ov&@H ..

iteratively increasing it is straightforward to find a minimal
order parity relation, however such an approactoisable to
produce a basis such &5,(s) and to ensure that all parity
relations is foundp = n is needed.

Inserting (1) into Equation (16) and as before assuming
f=0,gives

r = R(s)D(s)H(s)d
Therefore, to achieve disturbance decoupling, the parame-
terization transfer matriR(s), must belong to the left null-
space ofD(s)H (s), i.e.

Commonly, the Chow-Willsky scheme is formulated in the
following way. First a basis for the left null-space[6f, H ]

is found. Let the rows of a matriX/ define this basis. -
Then the vectorw, used to form the polynomial vector R(s)D(s)H(s) =0
Few (s), is taken as one of the rows W or possibly

a linear combination of several rows. It is worth to point
out that the first step to find the badig, does not result
in a polynomial basis to the left null-space &f(s), i.e.

W [¥,(s) —Q,¥.(s)] is not a basis foV (M (s)). This

is easy to realize since the number of rowslins in general
much larger than the dimension of the null space.

Here, note the close connection Wi%(s) in (13). This so-
lution however does not generally generate a residual gener-
ator with minimal order. In (Ding & Frank 1990) and (Frank

& Ding 1994), the co-prime factorization is performed via

a minimal state-space realization of the complete system,
including the disturbances as in Equation (8). This results in
D(s) andN (s) of a degree that, in the general case, is larger
In conclusion, the Chow-Willsky scheme does not give than the lowest possible order of a disturbance decoupling
residual generators of minimal order and also, a basis isresidual generator. Thus, to find a lowest order basis that
not obtained. However, by using several modifications to thespans all residual generatagss) = R(s)[D(s) — N(s)],
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extra care is required since “excess” states need to be canet G,(s) = Q(s) (Ggs) H(()s) ), which should be zero if
celed out. infinite precision arithmetics were used. Calculating the
size of G4(s) using the infinity norm givedGa(s)||c ~
—220 dB which is close to machine precision, i.e. control
7. DESIGN EXAMPLES signals and the decoupled fault has no significant influence

on the residual.
7.1 Design Example 1: Aircraft Dynamics

Figure 1 show how the monitored faults influence the resid-
The model used in this example is taken from (Maciejowski ual and the leftmost plot shows that the DC-gain frginto
1989) and represents a linearized model of vertical-planethe residual i$). Therefore f, is difficult to detect since the
dynamics of an aircraft. The model has three inputs, three€ffectin the residual of a constant fault disappears. By using
outputs. Numerical values for model equations can be founddetectability criterions given in (Nyberg 1999), it can be
in (Maciejowski 1989). Suppose the faults of interest are Shown that it is impossible to construct a residual generator
sensor-faults (denoteﬂl' f2' and fd): and actuator-faults in which the DC-gain fron'fl to the residual becomes non-
(denotedyfy, f5, and fg) and assume additive fault models. Z€ro.

The total model, including the faults then becomes: f o s fa fs
o 50 100 -15 -10 10
s ;
n U1 Ja J1 = w0 _z: - 0
Y2 | =G(s) | |u2| + |fs| | + | fo <
T 50 o 30 w0 -10
Y3 u3 fo f3 o s B
WhereG(s) is the nominal system model. TN 10 10100 100 107 10° 1{)" " ]10;430’5 10°  10°10°  10°  10°
w [rad/s;

The design example is intended to illustrate the design pro-

cedure and also illustrate how available design freedom carfig. 1. Magnitude bode plots for the monitored faults to the
be utilized. The goal is to design a residual generétor) residual.

that decouples the fault in the elevator angle actuatorfd.e.

is a non-monitored fault. Therefore the matfis) in (1),
corresponding to non-monitored faults and disturbances, be
comes equal to the third column 6f(s). The matrixL(s)
corresponds to the monitored faults and therefofe) be-
comeg s g1(s) g2(s)], whereg;(s) denotes the:th column

of G(s).

According to formula (4), the dimension of the null-space
Np(M(s)) is 2, i.e. there exists exactly two linearly in-
dependent polynomial row-vectors that decouplesThe-
orem 12 gives an upper bound on the minimum degree
residual generator of>+;| = 3. Calculations using'he
Polynomial Toolbox 2.0 for Matlab 8.998) and Theorem 3

In the example, the dimension of the null-space when de-
coupling f¢ was2 as seen in (17). This indicates that there
exists additional freedom that can e.g. be used to attenuate
noise or to decouple more than one fault in each residual to
facilitate multiple-fault isolation. Further investigations on
this example can be found in (Frisk & Nyberg 1999).

7.2 Design Example 2: A Turbo-Jet Engine from Volvo Aero
Corporation

This second example is included to illustrate numerical and
other properties of the algorithm described. Here, a short

give: discussion is included, a more detailed discussion on this
Nar(s) 0.0705s s+ 0.0538 ... example can be found in (Frisk 1998).
M\S) = 2
22.7459s% + 14.5884s  —6.6653 ... A model of a jet-engine developed by Volvo Aero Corpora-
0.091394 0.12 —-10 (17) tion, Trollhattan, Sweden, is used in this example. A high-

5% —0.93678s — 16.5141 31.4058 0 0

The row-degrees of the basislisand?, i.e. it is a basis of
order3.

order non-linear model of the engine is used for analysis and
control design. This model can also be used for diagnosis
purposes. The model was linearized in a working point and
the resulting model, after that non-controllable and non-
Forming the Residual Generator observable modes are eliminated, &ah order model. The

From the basis (17) it is clear that a proper filter of least or- M0del used includessensors and actuators.

der, which decouplefs, is a first order filter corresponding  The model is numerically stiff due to modeling of fast dy-
to the first row in the basis. A realizable residual generator namics, such as thermodynamics in small control volumes,
can be formed by setting in (5) to ¢ = [1 0] andc(s) to  and slow dynamics such as heating phenomena of metal.
c(s) = 1+ s which results in: The largest time-constant in the model is abb@it times
1 larger than the smallest time constant. This, together with
Q(s) = 1+s [0.07055 s +0.0538 0.091394 0.12 —1 0] the high-order, makes the model numerically sensitive which
(18) demands good numerical properties of the design algorithm.



In the design example, faults in sensors and actuators ar@he residual generator design problem is formulated with
considered. A residual that indicates a sensor failure is to bestandard notions from linear algebra and linear systems the-
designed, i.e. all actuator faults are to be decoupled. Usingory such as polynomial bases for rational vector spaces and it
Theorem 12 it is clear that there exists residual generatorss shown that the design problem can be seen as the problem
with degree less than or equal t@%J = 7 which is of findingpolynomialectors in the left null-space of a ratio-
significantly less than system order. Worth noting is how this nal matrix M (s). Within this framework, the completeness
limit depends omy. If a residual were to be designed that of solution, i.e. issue (1) above, and minimality, i.e. issue (2),
decoupled only one fault, i.e.; = 1, then the upper bound are naturally handled by the conceptoihimal polynomial

on the minimum degree residual generator would be as lowbasesFinding a minimal polynomial basis for a null-space
as 3. is a well-known problem and there exists computationally
simple, efficient, and numerically stable algorithms, i.e. is-

Experiments in Matlab shows that the algorithm performs sue (3), to generate the bases.

well on the full model resulting in d:th order filter giving
~ 0 dB gain from the sensor faults to the residual while Simple bounds on the row-degrees of such a minimal poly-
the actuators has: -200 dB gain to the residual, i.e. the nomial basis are derived and it is also shown how these
decoupling succeeded. To illustrate the numerical difficultiesdegrees are closely related to the order of the residual gen-
in this example, a design is also performed with the Chow- erators. These bounds can help the designer to estimate
Willsky scheme (Chow & Willsky 1984). Performing the complexity of the diagnosis system.

same design with thbasic Chow-Willsky design method,

i.e. exactly as outlined in Section 6.1 with = n, on a

balanced realization of the model result in an infeasible 9. REFERENCES
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