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Abstract. A consistency relation is a constraint on the time evolution of

known variables (and their time derivatives) that is fulfilled if the known vari-

ables are consistent with a model. Such relations are useful in diagnosis and

can be derived using elimination theory. Unfortunately, even apparently small

elimination problems proves impossible to compute on standard computers.

An approach to lessen the computational burden is to divide the complete

elimination problem into a set of smaller elimination problems. This is done

by analysing the structure of the model equations using graph theoretical al-

gorithms from the field of sparse factorization of symmetric matrices.
The algorithms are implemented in Mathematica and exemplified on a fluid-

flow system where the original elimination problem does not terminate. Ap-
plying the proposed algorithms give an elimination strategy that terminates
with a solution in just a few seconds.

1. Introduction

Consistency based diagnosis is performed by determining consistency and in-
consistency between measured data and a model of the process under supervision.
One way to evaluate consistency between model and measured data is by using
precomputed consistency relations1.

A consistency relation is a constraint on the time evolution of known variables
(and their time derivatives) that is fulfilled if the known variables are consistent
with the model. Based on a consistency relation it is possible to compute a residual

which is a signal that ideally is 0 when the model is consistent with data and
non-zero when data can not be explained by the model. Inconsistencies is, in the
diagnosis application, ideally due to faults. By designing a carefully chosen set of
such relations where each relation validates different submodels it is possible to
derive a set of residuals each sensitive to different subsets of faults. In this way it is
possible not only to detect faults, but also isolate faults. This well known approach
to fault isolation is in the FDI-community known as structured residuals.

Deriving consistency relations can be done using a variable elimination approach.
For linear systems variable elimination is easy and straightforward but for non-
linear systems this is a much more difficult problem. Section 2 demonstrates a
procedure to derive consistency relations by variable elimination. It also illustrates
how the complexity of the elimination problems makes straightforward elimination
on a standard personal computer and a computer algebra package unfeasible, even
for apparently small models. Section 3 introduces the main ideas of how the elim-
ination problem can be systematically divided into a set of smaller subproblems
for which the elimination procedure is easier. This is done by a structural analysis
of the model equations. Two graph theoretical algorithms for this is described in

Key words and phrases. diagnosis, elimination theory, consistency relations, structural analy-
sis, elimination trees.

1Consistency relations are often also called Analytical Redundancy Relations (ARR).
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Section 4 and the approach is exemplified on an example in Section 5. Finally, some
conclusions in Section 6.

2. Deriving Consistency Relations by Variable Elimination

Before describing how consistency relations can be derived, a formal definition
taken from [KN02] of consistency relations:

Definition 1 (Consistency relation). Let x and z be unknown and known variables

respectively. Then, a scalar equation c(z) = 0 is a consistency relation for a set of

equations H(x, z) if and only if for all z it holds that

∃x.H(x, z) = 0 ⇒ c(z) = 0 (1)

and there is no proper subset of H that has property (1).

Relation c(z) = 0 is thus a test on consistency of equations H(x, z) with available
data. The task of the diagnosis system designer is then to find a set of such
relations with a suitable influence from faults to facilitate also fault isolation. From
a consistency relation c(z) = 0 a residual can be computed as

r = c(z)

which can be thresholded for a test of consistency. Note that for dynamic systems,
the consistency relation normally includes time differentiated variables which are
normally not known. The topic of how to estimate the derivatives to compute the
residual is not pursued further here.

A requirement on the set of equations H(x, z) = 0 to be able to form a con-
sistency relation is that it contains redundancy, i.e. the equations represents an
over-constrained set of equations. Moreover, it is assumed that H is a minimal
structurally over-constrained set of equations. This is formally defined as

Definition 2 (Minimal Structurally Singular, MSS). A finite set of equations H is

structurally singular with respect to variables X if the number of equations is larger

than the number of variables that appear in the equations, i.e. the set of equations

is over-constrained with respect to X. The set H is a minimal structurally singular

set if none of its proper subsets are structurally singular.

This final assumption simplifies the algorithms proposed in Section 3. It is also
important since if the set of equations is not an MSS, then it would be possible to
derive a consistency relation by eliminating a subset of the variables in a subset
of the equations, i.e. an unnecessary large equation set is used. Computing MSS
sets before eliminating can greatly influence computation time, see e.g. [Fri01] for
examples.

Therefore, a first step for the diagnosis system designer is to find a set of minimal
over constrained subsystems with suitable fault influence structure, from which the
consistency relations can be derived. Finding these subsets is not the topic of this
report, see for example [KN02] for a structural approach to selecting the submodels
to be evaluated. Rather, the main topic of this work is to, given a submodel, derive
a consistency relation using elimination methods.

A variable elimination procedure to compute c(z) is conceptually simple and is
perhaps best shown by a small example.
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Example 1. Consider a state-space description

ẋ1 = −x1x2 + γu

ẋ2 = x3

ẋ3 = −γx1 (2)

y1 = x1

y2 = x2

where γ models a fault we wish to decouple, i.e. a consistency relation independent
of γ is wanted.

The following relations are immediate by differentiating both measurement equa-
tions and making obvious substitutions:

ẏ1 + y1y2 − γu = 0

ÿ2 + γy1 = 0

But none of these is a consistency relation since both relations include the unknown,
possibly time-varying, variable γ. But γ can easily be eliminated by multiplying
the first relation with y1, the second with u, and adding the two. The resulting
consistency relation is then

y1ẏ1 + y2

1y2 + uÿ2 = 0

which is a nonlinear consistency relation that holds for all y1, y2, γ that satisfies
model equations (2).

In the small example above, the elimination process was easy and could be
performed by hand. For larger problems, support from computer algebraic tools is
necessary. Therefore, the class of models considered from now on will be limited
to systems where automatic elimination can be done by computer algebraic tools.
This, more or less, limits the systems to polynomial systems and the elimination
process comes down to computing a Gröbner basis for the elimination ideal. See
[CLO96] for theoretical details on Gröbner bases and their properties.

However, even with this limitation in model description, the problem size need
not be particularly large before the time and space-complexity of the Gröbner basis
computations make elimination unfeasible on standard computers. It is not difficult
to find small example models where a computer algebraic package on a standard
PC2 does not terminate. For example, a small model consisting of 4 randomized
equations of second-order polynomials in 3 variables with symbolic coefficients,
elimination proved too difficult and memory consuming. Memory (both physical
and virtual) ran out before computations terminated.

However, a main point of this work is that physical systems are not randomized
but often exhibits structure. Next section introduces a way to utilize this structure
in the elimination problem to lessen the computational complexity.

3. Divide and Conquer by Structural Analysis

As noted in the last section, time and space complexity of computing Gröbner
bases are quite large. This also means that partitioning the elimination problem
into a set of smaller sub-problems would be an interesting approach. This section
proposes a simple idea how the structure of the model equations can be analyzed to
find a way to partition the elimination problem. As it shows, standard methods from
the field of factorization of sparse matrices and parallel computing schemes come
in handy for this. Descriptions of two standard ways to partition the elimination
problem is provided in Section 4.

2The author used a Pentium II-200 MHz with 128 Mb of memory running Windows 2000.
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If the system of equations were linear, dividing the elimination problem into a set
of smaller elimination problems would always be a good idea. However, for general
non-linear equations this might not always be the case and in particular problem
instances, feeding a larger set of equations to the solver might produce a smaller
solution in a shorter time than dividing the elimination into several steps. However,
the authors experience is that for physically motivated models, a divide and conquer
approach is fruitful and from now on, without any theoretical motivation, the basic
assumption is that the analytical form of the model equations is such that it is
a sound idea to divide the elimination problem into a set of smaller elimination
problems.

To proceed and describe the main idea, we need an exact definition of what is
meant by the structure of a model. Two representations, the incidence matrix and
an incidence indicator function is used throughout the text.

Definition 3 (Incidence matrix/incidence indicator function). Let X be a set of

variables and C a set of constraints. The incidence matrix for C with respect to X
is a binary matrix S such that

Si,j = 1 ⇔ variable i appears in constraint j

The incidence indicator function S : X × C → B = {True,False} is defined as

S(xi, cj) = True ⇔ Si,j = 1

The basic idea of the approach is perhaps most easily illustrated on a small
example.

Example 2. Consider a set of four polynomial equations e1, . . . , e4 in variables
x1, . . . , x3, and y. Variable y is known and the xi:s are unknown. Also assume that
the structure with respect to the unknown variables is according to the incidence
matrix:

x1 x2 x3

e1 1 1
e2 1
e3 1 1
e4 1

The model consists of 4 equations and 3 unknown variables to be eliminated, i.e
the equations form a (minimal) structurally singular set of equations. Based on the
structure it is easy to see that variable x1 can be eliminated using only equations
e1 and e2 and x2 using e3 and e4. This further means that variables x1 and x2

can be eliminated in parallel using only 2 equations each. This is due to the fact
that they both appear in disjunct subsets of equations. The set {x1, x2} are said
to be an independent set of variables. The resulting equations after elimination are
joined and used to eliminate the final variable x3. This elimination strategy can be
represented as the list {{x1, x2}, {x3}}. Other elimination strategies are of course
possible, however there exists no shorter strategy. In particular, elimination of x3

before x1 or x2 gives a longer elimination strategy.

In the example above, the elimination order was easy to see directly in the inci-
dence matrix. In the next section, two graph theoretic algorithms are presented that
automatically, based on the model structure, computes good elimination strategies.

4. Graph-Theoretical Algorithms

This section will describe how to formulate the stated problem into finding a
so called elimination order. For this problem, finding an elimination order with
suitable properties, two standard approaches from the field of sparse factorization



EFFICIENT ELIMINATION ORDERS FOR THE ELIMINATION PROBLEM IN DIAGNOSIS 5

is reviewed. Detailed descriptions of the basic concepts from sparse factorization
can be found in e.g. [GL81].

In diagnosis, an often used graph theoretic description of the structural model is
the bi-partite graph with equations and variables as vertices [SCD00]. Here, another
graph description is used, suited for the problem posed here. A formal definition
of this graph is given by:

Definition 4 (Graph induced by S). Let S : X ×C → B be an incidence indicator

function. The vertices in the graph G =< E, V > induced by S equal the set of

variables V = X and the set of edges is defined by

(xi, xj) ∈ E ⇔ ∃c ∈ C. S(xi, c) ∧ S(xj , c)

The graph induced by incidence matrix S will be denoted G(S), or only G if S

is clear by context. The set of vertices of the graph is denoted V (G) and the set
of edges E(G). This graph represent which variables that are directly connected
through the equations and which variables that are only indirectly connected. Anal-
ysis of this graph is the basis for the algorithms to follow.

First it will be demonstrated how, using the graph introduced above, the problem
of dividing the elimination problem can be stated as finding a “good” elimination

order. It will also be demonstrated what is meant by a “good” elimination order.
Since elimination orders is of central importance in this presentation, a proper
definition is included.

Definition 5 (Elimination order of a graph). An elimination order is a complete

order of the vertices in the graph.

Variables ordered (or ranked) first are eliminated before variables that are ranked
higher. Given an elimination order and the graph, an elimination tree can be
computed in which it is easy to see which variables that can be eliminated in
parallel. Thus, a “good” elimination order will be characterized by the resulting
elimination tree. A formal definition of elimination trees and an example of how to
compute the tree structure is given in Appendix A.

Consider for example the small set of equations in Example 2 using elimination
orders x1 ≺ x2 ≺ x3 and x3 ≺ x2 ≺ x1. The corresponding elimination trees are
shown in Figure 1. The first elimination tree is of height 1 and the second of height 2.

x1 x2

x3

(a)

x1

x2

x3

(b)

Figure 1. Elimination trees for Example 2 using elimination or-
ders x1 ≺ x2 ≺ x3 (a) and x3 ≺ x2 ≺ x1 (b).

Also in the first tree, since vertices x1 and x2 are nodes in separate branches of
the elimination tree they are independent and can be eliminated in parallel. It
is evident that in the second tree, no such possibilities exists. A necessary and
sufficient condition on when variables can be eliminated in parallel is given by
Theorem 1.
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Now we can state what is meant by a good elimination order. In sparse fac-
torization, it is often desired that the elimination order minimizes what is called
fill. Here the main objective is to get an order in which many variables can be
eliminated independently, i.e. with as large parallelism as possible. Orders corre-
sponding to such situations correspond to elimination trees of minimal (or low)
height. The problem is therefore set to find an elimination order corresponding to
minimal height elimination trees. Unfortunately, finding such elimination orders
for general graphs has been proven NP-hard [Pot88] and we are forced to settle for
heuristics finding low elimination trees. For special classes of graphs, e.g. when G is
a tree or an interval graph, efficient algorithms have been designed that computes
minimum height elimination tree orderings.

Here it is important to remember that it is assumed that the set of equations
form an MSS, i.e. all equations are needed to eliminate the unknown variables.
Also, it is structurally certain that it is not possible to choose a subset of equations
to perform elimination of all variables. This further means that an elimination
order must include all variables, i.e. a consistency relation can not be obtained
eliminating only a subset of the variables. Also, under some regularity assumption
on the analytic expressions it is also guaranteed that it is possible to eliminate all
variables into a consistency relation.

Now, the following two sections will introduce two standard variable ordering
algorithms. Here, a brief description is given. See for example [GL81; GL78;
Geo73; LRT79] for detailed descriptions (although in a different problem setting)
of their characteristics and theoretical properties.

4.1. Nested Dissection Elimination Orders. In order to get a low elimination
tree we need to have as many branches as possible in the tree and also a well
balanced tree. This basic observation is the basis for the variable ordering described
in this section, nested dissection.

Vertices in different branches of an elimination tree are unrelated. Nested dissec-
tion is a top-down approach to achieve such a tree where the variable to eliminate
last is found first. For this, an important property to characterize is when two vari-
ables are unrelated, i.e. can be eliminated in parallel. A necessary and sufficient
condition is given by the following result:

Theorem 1. Let G be a graph, α an elimination order, and Tα(G) the corre-

sponding elimination tree and let x and y be two distinct nodes in V (G) such that

x, y 6= root(Tα). Let z be the lowest common proper ancestor of x and y in Tα, and

let C be the set of all nodes on the path z, . . . , root(Tα). Then x and y are unre-

lated in Tα if and only if C is a separator in G such that x and y are in different

components of G − C.

Proof. See [Liu90]. ¤

The result implies that if a separator C of graph G is found, the elimination tree
will branch. This naturally leads to the nested dissection heuristic

Heuristic 1 (Nested Dissection Ordering).

(1) Compute the graph G based on the structural model.
(2) Find a “good” separator of the graph. Order the variables in the separa-

tor last. If the graph is a clique, i.e. all vertices are connected to every
other vertex, no separator exists and any elimination order gives the same
elimination tree height (a single chain of all variables).

(3) Apply the heuristic recursively for all components in G − C.

A “good” separator is a small separator C such that G−C has many components,
i.e. many branches in the elimination tree, and where the components are roughly
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the same size. The size requirement is imposed to produce a well balanced tree
such that further branching further down in the elimination process is possible.
Also note that

Lemma 1. If S is the incidence matrix of an MSS E, then the graph G induced

by S is connected.

Proof. Assume that the graph G consist of more than one component, i.e. G is
the union of a number of subgraphs Gi =< Vi, Ei > with Vi ∩ Vj if i 6= j. The
variable sets Vi partition the complete set of variables and, by definition, E is
structurally singular. This means that there exist at least one component Gk such
that EquVk

(E) is also structurally singular. This is a contradiction since E is an
MSS and no proper subset of E is structurally singular which ends the proof. ¤

Remark 1. The converse of this result is not true, a structurally singular set that
is not minimal may or may not have a connected graph induced by its structure.

This means that when starting the heuristic we begin with a single connected
component. The complete procedure is now illustrated on a small example.

Example 3. Consider a set of 9 equations in 8 unknown variables (known variables
need not be included in the analysis) with the incidence matrix

x1 x2 x3 x4 x5 x6 x7 x8

c1 1 0 1 0 0 0 0 0
c2 1 0 0 0 1 0 0 0
c3 0 0 1 0 0 1 0 0
c4 0 0 0 0 1 1 0 0
c5 0 1 0 0 1 0 0 0
c6 0 0 0 1 0 1 0 0
c7 0 1 0 1 0 0 1 0
c8 0 0 0 0 0 0 1 1
c9 0 0 0 0 0 0 1 1

Since we have more equations than unknowns, the set is over-constrained. It can
also be proven that it is a minimally over-constrained set of equations, i.e. an MSS.
This can be proved e.g. by removing an arbitrary equation and finding a perfect
matching in the bi-partite graph. Figure 2 shows the bi-partite graph corresponding
to S. Neither the incidence matrix nor the bi-partite graph gives, at first sight, little

c1 c2 c3 c5 c4 c6 c7 c8 c9

x1 x2 x3 x4 x5 x6 x7 x8

Figure 2. A bi-partite graph description of the MSS.

clue on which order to eliminate the variables. Figure 3 shows the graph induced
by the structure S and here a possible elimination strategy becomes more clear.
The procedure now is to find a good separator for this graph. There is only one
separator consisting of a single vertex C1 = {x7}. However, this separates G into
two ill-balanced components of sizes 1 and 6. A better choice is to use separator
C = {x2, x6}. This separates G into two more well balanced components of sizes
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x1

x3

x5

x6

x2

x4

x7 x8

Figure 3. Graph induced by the structure S

3 and 3. For this reason are variables x2 ≺ x6 ranked highest. The situation after
the separator C has been removed is shown in Figure 4-a. The same procedure
is then applied recursively on the two components and the separators for each
component is {x1} and {x7} respectively. Finally, in the last step when also these
separators have been removed we are left with four single vertices in Figure 4-b,
for which separators of course does not exist. The final elimination order is then

x1

x3

x5

x4

x7 x8

(a)

x3

x5

x4

x8

(b)

Figure 4. Graph after the first (a) and second (b) recursive call of
the nested dissection heuristic where vertices {x2, x6} and {x1, x7}
respectively has been removed.

x3 ≺ x5 ≺ x1 ≺ x4 ≺ x8 ≺ x7 ≺ x2 ≺ x6 and the corresponding elimination
tree is shown in Figure 5. From the elimination tree it is easy to deduce which

x6

x2

x1 x7

x3 x5 x4 x8

Figure 5. Elimination tree given by the nested dissection ordering.

variables that can be eliminated in parallel (or independently). All leafs in the
elimination tree are independent according to Theorem 1. Therefore, in a first step
can variables {x3, x4, x5, x8} be eliminated independently. This is easily verified in
the initial incidence matrix where the variables all occur in pairwise disjunct sets
of equations. Remove these variables from the elimination tree and a new set of
independent vertices are {x1, x7}. This is also possible to verify (but not as easy
as in the first step) from the initial incidence matrix. In a third and final step, the
last two variables x2 and x6 are eliminated.
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4.2. Maximal Independent Set Orders. In the last section it was utilized that
a low elimination tree have many branches. Another way of characterizing low trees
is that a low tree have many leafs. Since leafs in an elimination tree corresponds to
independent variables, a bottom-up approach can be used where at each step the
maximum number of variables that can be eliminated in parallel are determined.
These variables are ranked lowest. After these variables are eliminated and we have
obtained a new model structure, the procedure is iterated.

The above heuristic will now be described using the graph induced by the model
structure. Variables that can be eliminated in parallel are called independent vari-
ables and are formally defined as

Definition 6 (Independent Set of Vertices). A set of vertices I is said to be inde-

pendent in the structural model S if and only if

∀v1, v2 ∈ I ⇒ (v1, v2) 6∈ E(G)

where G is the graph induced by S.

Note that this is equivalent to that the variables vi all appear in pairwise disjunct
sets of equations and therefore can be eliminated in parallel. To keep track of how
the graph changes when variables are eliminated we utilize elimination graphs. See
Definition 7 in Appendix A for a formal definition and a description. Now, the
heuristic can be described as

Heuristic 2 (Maximum Independent Sets Ordering).

(1) Compute the graph G induced by the structure S

(2) Set i = 1
(3) If the variables of the Gi form a clique, i.e. all vertices are adjacent to all

other vertices, order the variables in any order and exit.
(4) If the graph is not a clique, find the maximum independent set of variables

Ci and order these (in any order) first.
(5) Compute the elimination graph where the variables in Ci have been elimi-

nated.
(6) Iterate from 3 until all variables are eliminated
(7) The elimination order is then defined by C1 ≺ C2 ≺ . . . .

The maximum independent set heuristic is now demonstrated on the same model
as was used in Example 3.

Example 4. The initial graph is of course the same as in Figure 3. The next step
is to find the largest set of independent variables, i.e. variables that are not adjacent
in the graph. The largest such set has 4 vertices, for example {x3, x4, x5, x8}. The
next step is to compute the elimination graphs when these four variables are elim-
inated. Figure 6-a and 6-b show the result when x3 and x4 respectively have been
eliminated. Introduced fill edges are dashed. Continuing in this fashion give that
in a next step, the maximum set of independent variables are {x1, x7}. Finally, we
are left with vertices x2 and x6 that form a clique. The final maximum independent
set elimination order is thus x3 ≺ x4 ≺ x5 ≺ x8 ≺ x1 ≺ x7 ≺ x2 ≺ x6. Note that
this is not the same order as was found by the nested dissection procedure, however
it can be verified that it corresponds to the same elimination tree, i.e. the tree in
Figure 5.

4.3. Final Comments. The tools described in this section was originally designed
to solve large scale systems of linear, symmetric, and positive definite equations.
This makes an obvious difference to the non-linear diagnosis problem where we
have, instead of maybe 50000 variables, perhaps at most 50 variables. This differ-
ence makes more elaborate search alternatives possible due to a drastically smaller
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x1

x5

x6

x2

x4

x7 x8

(a)

x1

x5

x6

x2

x7 x8

(b)

Figure 6. Elimination graphs when variables x3 (a) and x4 (b)
are eliminated. Introduced fill edges are dashed.

problem size. Consider for example the nested dissection heuristic proposed in
[GL78] and [GL81] based on the level structure of a pseudo peripheral vertex. This
heuristic is very fast even for very large systems and give a decent separator. How-
ever, it is rather coarse and in Example 3, this ordering heuristic would give

ND : x7 ≺ x8 ≺ x3 ≺ x5 ≺ x1 ≺ x6 ≺ x2 ≺ x4

which corresponds to an elimination tree of height 4 instead of height 3 found with
a more thorough search heuristic. It is noteworthy to state that for problems this
size (8 variables) a complete search3 takes no more than approximately 40 seconds.
A complete search seem to be feasable for up to ≈ 8 − 10 variables, beyond that
the problem size increase very quickly rendering exhaustive search impossible.

This also illustrates that, for a general graph, no nested dissection and no max-
imum independent set ordering will give a minimum height elimination tree. This
fact is nicely illustrated in [Man91a; Man91b] where also an algorithm is proposed to
try local reorderings of a given elimination order to reduce elimination tree height.
The algorithm, minimal cutset reorderings, is guaranteed not to increase the height
of the elimination tree. Such algorithms is here used in Section 5 to strengthen the
assumption on minimum elimination tree height.

When an elimination order has been computed, the next step is to decide an
elimination strategy. Assuming that the strategy is selected such that in each step,
the largest set of independent variables are eliminated. This corresponds to the
highest possible degree of parallelism in a given elimination order. The only thing
left to decide is how to eliminate chains of variables, or equivalently cliques in the
elimination graphs. For example, consider variables x2 and x6 in the elimination
tree in Figure 5. These could, according to the structure, be eliminated in a single
step or one at a time in any order. One straightforward heuristic could be to divide
chains into a number of subchains of a maximum length and where the variables in

3Using the sparse matrices toolbox in Matlab.
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each subchain is eliminated in a single step. The maximum length of a chain can
be set according to available computing power.

5. Example: A Water Tank System

The variable ordering techniques described in the last section has been imple-
mented in a computer algebraic language for Mathematica and the approach is in
this section demonstrated on an example. Details on the exact implementation of
the heuristics is not given here. Interested readers are referred to the code.

Consider the tank system depicted in Figure 7. The process is controlled by the

yh

FDFB

FCFA

Tank

u

Mixer

yp

Pump

Figure 7. A small water tank system.

in-flow u and measured variables are the water level h in the tank and the pressure
pm in the mixer. A simple and normalized model can be stated as

e1 : FA(t) = u(t)

e2 : 0 = h(t) + patm − F 2

B(t) − pm(t)

e3 : 0 = pm(t) − patm − F 2

C(t) + (1 − fC(t))

e4 : 0 = pm(t) − patm − F 2

D(t) − fD(t)

e5 : 0 = FB(t) − FC(t) − FD(t)

e6 : ḣ(t) = FA(t) + FC(t) − FB(t)

e7 : yh(t) = h(t) + fh(t)

e8 : yp(t) = pm(t)

where FA, FB , FC , and FD are flows, patm is the atmospheric pressure, pm the mixer
pressure, and yh the measured water level, and yp the measured mixer pressure.
There are three faults acting on the process, fC , fD, and fh, each representing a
fault in the mixer, a leakage, and a sensor fault respectively.

Assume that the objective is to derive a consistency relation for isolating the fault
fh from the other two faults, i.e. a consistency relation decoupling fh is needed. A
structural analysis as described in [KN02] give that

H = {e1, ė2, e3, ė3, e4, ė4, e5, ė5, e6, e8, ė8}

form an MSS where fault fh is decoupled. That H is structurally singular is direct
since H includes 11 equations and 10 unknown variables, namely

{pm, ḞC , ḞD, FA, FB , ḣ, ḞB , ṗm, FC , FD}

That fh is decoupled in H is easily verified since fh only appears in model equation
e7 which is not included in the MSS. The internal form of the consistency relation,



12 ERIK FRISK

i.e. how the faults fC and fD enters the consistency relation, is also a desired result
of the analysis. This means that variables fC and fD cannot be set to 0 in the
model equation before eliminating. Doing so would reduce the (space-)complexity
of the elimination problem.

Direct elimination of these 10 unknown variables proves impossible on the com-
puter used by the author4, the Gröbner basis computation never terminates. This
motivates the use of techniques from the last section and the first step is to com-
pute the graph induced by the model structure. This graph is shown in Figure 8.
Computing both a nested dissection (ND) ordering and a maximal independent set

pm

FAFB

FCFD

ḣḞB

ḞC

ḞD

ṗm

Figure 8. The graph induced by the structure of the water tank
example model.

ordering (MI) for this model results in the orderings

ND : pm ≺ ḞC ≺ ḞD ≺ FA ≺ FB ≺ ḣ ≺ ḞB ≺ ṗm ≺ FC ≺ FD

MI : ḞD ≺ ḣ ≺ pm ≺ ḞC ≺ FB ≺ ṗm ≺ ḞB ≺ FD ≺ FC ≺ FA

and the corresponding elimination trees are shown in Figure 9. Both elimination
trees are of equal height 6 and corresponds to elimination strategies

ND : {{FA, ḞC , pm}, {FB , ḞD}, {ḣ}, {ḞB}, {ṗm}, {FC}, {FD}} (3a)

MI : {{ḞD, ḣ, pm}, {FB , ḞC}, {ṗm}, {ḞB}, {FD}, {FC}, {FA}} (3b)

Thus, both orderings give elimination strategies of equal length and equal paral-
lelism.

Performing the elimination according to any of the two strategies result (in 2-3
seconds) in a consistency relation c(z) = 0 (with patm set to 1)

c(z) = y6

p + ẏ4

p + 2ypẏ
2

p(−1 + u2 − 6uẏp + 5ẏ2

p) − 2y5

p(2 + u2 − 6uẏp + 13ẏ2

p)+

+ y2

p((1 + u2)2 − 12(u + u3)ẏp + (30 + 44u2)ẏ2

p − 48uẏ3

p + 15ẏ4

p)−

− 2y3

p(2 + 3u2 + u4 − 6u(3 + 2u2)ẏp + (40 + 46u2)ẏ2

p − 60uẏ3

p + 25ẏ4

p)+

+ y4

p(6 + 6u2 + u4 − 12u(3 + u2)ẏp + (78 + 46u2)ẏ2

p − 60uẏ3

p + 25ẏ4

p)

which is a relation in the known variables yp, ẏp, and u only.

4Pentium II-200 MHz with 128 Mb of memory running Windows 2000.
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FD

FC

ṗm
pm

ḞB

ḞD ḣ

ḞC
FB

FA

(a) TND(G)

FA

FC

FD

pmḞB

ṗm

ḞC

ḞD

FB

ḣ

(b) TMI(G)

Figure 9. Elimination tree for the nested dissection ordering (a)
and the maximum independent set ordering (b).

As was discussed in Section 4.3, neither nested dissection or maximum inde-
pendent sets are guaranteed to deliver orders corresponding to minimum height
elimination trees. For example, the ordering

ṗm ≺ pm ≺ FA ≺ ḞD ≺ ḞC ≺ ḞB ≺ ḣ ≺ FD ≺ FC ≺ FB

is also a maximum independent set ordering. This order however, results in an
elimination tree of height 7. This difference is because in the first step when com-
puting the MI-order, several independent set of vertices of equal cardinality are
found. In this greedy algorithm they are considered equal, but in a next step they
turn out to have different properties.

A way to decrease the height of an elimination tree is e.g. by using local reorder-
ings of the elimination orders. But in this case, for example in the nested dissection
ordering, all chains are cliques which means that none of the reordering algorithms
in [Man91b] will reduce the height of the elimination tree. A similar result holds
for the tree corresponding to the maximum independent set ordering. Therefore it
is likely, but not proven, that a minimum height elimination tree for this problem
has height 6 and that no shorter elimination strategy exists than (3).

The conclusion of this example is that, in this case, derivation of a consistency
relation by computing a Gröbner basis involving all equations in the MSS is not
possible. Instead, a divide and conquer approach was used and the computation
time was reduced to a few seconds.

6. Conclusions

Elimination of unknown variables to derive a consistency relation for fault di-
agnosis has been considered. It is shown that, even apparently small elimination
problems proves impossible to compute on a standard PC. A basic assumption of
this work is that it is sound to divide the elimination problem into a set of smaller
elimination problems. For this, several graph-theoretic heuristics from the field of
sparse matrix factorization is presented. In sparse factorization, the problem size
is huge, including possibly tens of thousands of variables, while in the diagnosis



14 ERIK FRISK

application typically no more than 10-20 variables appear in the problem. Conse-
quences of this change of problem size if discussed and how this can be utilized for
diagnosis.

The algorithms has been implemented in Mathematica and tested on a model of
a fluid flow system. For the problem posed in the example the elimination problem
boils down to eliminating 10 variables using 11 non-linear equations. Feeding the
complete problem into Mathematica does not terminate, but when using the pro-
posed algorithms the elimination problem terminates with a consistency relation in
just a few seconds.

Appendix A. Basic Notions From Graph Theory and Sparse

Factorization

This appendix includes a brief description and formal definitions of some concepts
used in the text. Most definitions are taken from [GL81]. Elimination trees are used
heavily in the text and is of central importance, but before elimination trees can
be defined, we need some additional tools.

Definition 7 (Elimination Graphs). Given an initial graph G0 and a sequence of

variables x1 ≺ · · · ≺ xn, a sequence of elimination graphs can be obtained according

to the recursion:

(1) From graph Gi, remove vertex xi and all its incidient edges.

(2) Add edges so that all vertices in Adj (xi) are pairwise adjecent.

The resulting graph Gj is the j:th elimination graph.

The interpretation of this is straightforward, when eliminating the variable xi all
variables adjacent to xi will be connected after the elimination. This is of course
under the assumption that no “accidental” eliminations occur, i.e. that when elim-
inating xi also variable xj Â xi is eliminated. Edges included in the elimination
graphs, not included in the original graph is called fill and represent variable con-
nections that occur during the elimination process that was not present in the
original model.

Definition 8 (Filled Graph). The filled graph of graph G =< X,E > with respect

to elimination order α is denoted Gα =< Xα, Eα >. The set of vertices of the filled

graph equal the set of vertices in the original graph. The edges equal the edges in

the original graph and the fill edges introduced during the elimination process.

The filled graph represent relations between variables that exists in the original
graph and also relations that are introduced during the elimination process. Fig-
ure 10 show an example of a filled graph. Now, with the definition of a filled graph,

x1

x3

x5

x6

x2

x4

x7 x8

Figure 10. Filled graph of the graph in Figure 3 with respect to
the elimination order x3 ≺ x5 ≺ x1 ≺ x4 ≺ x8 ≺ x7 ≺ x2 ≺ x6.
Introduced fill edges are dashed.

a formal definition of an elimination tree is straightforward:
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Definition 9 (Elimination tree). Node xj is the parent of node xi if and only if

xi ≺ xj and xj is the lowest ranked variable among the higher ranked neighbours of

xi in the filled graph Gα.

Consider again the graph in Figure 3 and the nested dissection elimination order
x3 ≺ x5 ≺ x1 ≺ x4 ≺ x8 ≺ x7 ≺ x2 ≺ x6. From the definition of an elimination
tree and Figure 10 it is now straightforward to compute the parent-function p(x)

p(x1) = x2 p(x2) = x6 p(x3) = x1 p(x4) = x7

p(x5) = x1 p(x6) = − p(x7) = x2 p(x8) = x7

which corresponds to the elimination tree in Figure 5.

Definition 10 (Tree height). The height of a rooted tree equal the length of the

longest path from the root to a leaf.

Definition 11 (Clique). A set of vertices V form a clique in graph G =< X,E >

if and only if

vi, vj ∈ V, i 6= j ⇒ (vi, vj) ∈ E

Definition 12 (Chain). A chain v1, . . . , vn in a tree T is a path such that each

node, with the exception if the last, has exactly one child.

References

[CLO96] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms -

an introduction to computational algebraic geometry and commutative

algebra, second ed., Springer Verlag, 1996.
[Fri01] E. Frisk, Residual generation for fault diagnosis, Ph.D. thesis, Linköping
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