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Abstract

Linear residual generation for DAE systems has been considered. In
all results derived, no distinction between input and output signals is
done. A complete characterization and parameterization of all residual
generators is presented. Further, a condition for fault detectability in DAE
systems is given. Based on the characterization of all residual generators,
a design strategy for residual generators for DAE systems is presented.
Given that a set of faults are detectable, the design strategy will result
in a residual generator sensitive to all the detectable faults. Further the
residual generator is guaranteed to be of lowest possible order. Special
care has been devoted to assure this property also for non-controllable
systems.

1 Introduction

Fault diagnosis consists of detecting and isolating faults acting on a process.
In many methods, e.g. structured residuals [6], the concept of residuals play
a central role. Commonly, a set of residuals is used where different subsets of
residuals are sensitive to different subsets of faults and in this way isolation
between faults is possible.

In this paper, residual generation for models described by general linear
differential-algebraic equations (DAE) is considered. Previous works on residual
generation have all considered more specific classes of models, i.e. transfer
functions [6, 22], state-space models [5, 3, 2], or descriptor models e.g. [8, 11].
Since DAE models cover all these classes of models, the methods presented in
this paper are applicable to all the three previous cases.

In the context of residual generation, DAE-models are important because
they appear in large classes of engineering systems like electrical systems, chem-
ical processes, robotic manipulators, and mechanical systems. For example, in
mechanical systems, differential equations arise from equations of motion while
algebraic constraints model geometrical constraints. Further, DAE-models are
also the result when using a physically based object-oriented modeling approach
[14].
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The approach presented in this paper is an extension of the previous work
[5] and one main contribution is a new method for designing residual generators
for DAE-models. The method is guaranteed to find residual generators of lowest
possible order, and sensitivity to detectable faults is guaranteed. Another main
contribution is a criterion for fault detectability in DAE-systems, i.e. a criterion
that says if it is at all possible to find any residual generator sensitive to a fault.
A help in developing these results, but also a contribution on its own, is a
characterization of all possible residual generators has been derived.

Previous works on residual generation for linear DAE systems have all as-
sumed that the model is in descriptor form. As said above, the models con-
sidered here (see equation (1)) are more general. However, they can with a
straightforward transformation be taken to the descriptor form and therefore,
it makes sense to relate the present work to previous works dealing with de-
scriptor models. For descriptor models, two classes of approaches for residual
generation can be distinguished: observer-based approaches and parity-space-
like approaches. The approach presented in this paper belongs to the class of
parity-space-like approaches.

Observer-based approaches have been studied in [8, 11, 12, 13, 20]. A lim-
itation of these works compared to the present one is that they all assume
observability. Also, the order of the residual generator becomes generally not
minimal since the order equals the order of the model. Parity-space-like ap-
proaches have been studied in [21, 19, 12]. As in the observer based approaches,
also [21] and [19] assume observability. In [12], observability is not assumed
but the important problem of decoupling is not considered. The only work
discussing minimal order of the residual generator is [21].

2 Basic Definitions and Problem Formulation

The aim of this section is to introduce the class of models that is considered, state
basic definitions, and precisely state the problem formulation that is explored
in the remainder of the paper. The class of models considered is general linear
models in the form

H(p)x + L(p)z + F (p)f = 0 (1)

where x(t) ∈ R
nx , z(t) ∈ R

nz , and f(t) ∈ R
nf . The matrices H(p), L(p),

and F (p) are polynomial matrices in the differentiation operator p. The vec-
tor x contains all unknown signals, which includes internal system states and
unknown inputs such as disturbances. The vector z contains all known signals
such as control signals and measured signals and the vector f contains the fault-
signals that can affect the system. It is assumed that all signals are piece-wise
continuous apart from finitely many impulses and there is no assumption on the
initial conditions of any of the signals involved in the model. Also, solutions to
(1), and to other differential equations in the presentation as a whole, which are
not smooth are considered solutions in the distributional sense unless otherwise
stated. Each element of the vector f is associated with one specific fault and
when fault fi is not present, its associated element fi in the vector f is zero.

The presentation will be done assuming continuous time, but similar results
can be obtained by changing the differentiation operator p to the time-shift
operator q. For mathematical stringency we will sometimes switch to describe
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matrices in the complex variable s instead of the operator p; when describing
properties of signals and differential equations we use p but when discussing
properties of matrices we use s.

The only assumption imposed on the matrices describing the model (1) is
that [H(s) L(s)] has full row rank, i.e.

Rank [H(s) L(s)] = m (2)

where m is the number of equations in the model, i.e. rows in (1). This is a
reasonable assumption since it means that there are no linear dependencies in
the fault-free model equations.

Now as an example, consider a model given by the following descriptor equa-
tions:

Eẋ = Ax + Buu + Bdd + Bff (3a)

y = Cx + Duu + Ddd + Dff (3b)

where y is the vector of outputs, u the inputs, x the unknown state-space vari-
able, and d unknown disturbances to be decoupled, and f the faults. Letting
E = I in the equations above, an ordinary state-space description is obtained.
In general, E can be non-singular and even non-square. Matrices H(p), L(p),
and F (p) then becomes

H(p) =

»

C Dd

−(pE − A) Bd

–

, L(p) =

»

−I Du

0 Bu

–

, F (p) =

»

Df

Bf

–

(4a)

Thus we have shown how descriptor models fit into the general form (1).
Next we move on to formally define residual generator, what we mean by a

detectable fault, and a residual sensitive to a fault. But first, a characterization
of all possible measurements from a fault-free model is introduced. This set
of measurements is called the fault-free behavior of the system and is formally
defined as

M = {z | ∃x : H(p)x + L(p)z = 0} (5)

which is the same type of models that is used in the behavioral approach to
systems theory [18]. Fault detectability as a system property can now be defined
using the behavior M.

Definition 1 (Fault Detectability). Fault i is detectable in (1) if there exist

signals fi, x, and z, consistent with (1), where fj = 0 for j 6= i, such that

z 6∈ M. ⋄

Earlier, see [16], fault detectability has been defined as the existence of a
residual generator such that the transfer function from fault to residual is non
zero. The here proposed definition is equivalent to the previous definition, but
has the advantage that it is more general in the sense that it covers also the case
of a non-linear model description. We are now ready to formally define residual
generator.

Definition 2 (Residual Generator). A linear time-invariant filter r = R(p)z
with the scalar r as output, is a residual generator for (1) if

z ∈ M ⇒ lim
t→∞

r(t) = 0

and its transfer function is proper. ⋄
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Note that Definition 2 requires that the limit of r(t) as t → ∞ is well defined
for all z ∈ M. It might seem that r could contain step functions and impulses,
thus making the definition questionable. However, it is shown in Lemma 2 that
Definition 2 implies that z ∈ M implies that the residual r becomes smooth
for all t. Since Definition 2 requires R(s) to be proper, a residual generator can
always be realized by a state-space description.

The goal is to detect faults included in the vector f , while faults that are
decoupled, for fault isolation purposes, are included among the unknown signals
in x. The definition of residual generator above does not require the residual
to respond to the faults in the vector f . But of course, fault sensitivity is an
important property of a residual generator. Fault sensitivity in the residual
generator, rather than the system property in Definition 1, is now defined as

Definition 3 (Fault Sensitivity). A residual generator r = R(p)z for (1) is

sensitive to fault i if Grfi
(s) 6= 0. ⋄

With these basic definitions we are ready to state the main problem formu-
lation.

Problem formulation: The first objective is to characterize and parame-
terize all residual generators for a model (1), using minimal number of param-
eters. Since the goal of residual generation is to detect faults, there is a need to
determine if this is at all possible based on the model (1). Therefore, a second
objective is to find detectability conditions for models in the form (1). The final
main objective is to, given a set of detectable faults, derive a design method that
finds residual generators sensitive to these faults. In the design method we are
especially interested in finding residual generators of minimal order. The reason
for using minimal order residual generators is to save valuable computer mem-
ory in embedded systems, and also that these should give the best numerical
on-line performance.

3 A Polynomial Characterization of All Resid-

ual Generators

In this section we will find a general expression that characterizes and param-
eterizes all residual generators for a given model (1). The parameterization
should be minimal in the sense that it uses a minimal number of parameters.
To do this we first introduce the basic idea of how residual generators can be
constructed and then the characterization is proven.

First, let the rows of NH(s) form an irreducible polynomial basis for the left
null-space of the matrix H(s). If we let f = 0 and multiply (1) from the left
with NH(p), we obtain the expression NH(p)L(p)z = 0. In this equation the
influence of the unknown signals x, such as disturbances, has been decoupled.
However, this equation defines the same set of trajectories of z as the original
model (1) with f = 0, see [18]. Thus the set M in (5) can alternatively be
written as

M = {z | NH(p)L(p)z = 0}

see Lemma 1. By picking one row in NH(p)L(p), or a linear combination
of rows specified by a row vector γ(p), we obtain a so called parity relation
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γ(p)NH(p)L(p)z = 0. By adding stable dynamics d(p) of sufficiently high order
we obtain a residual generator with transfer operator

R(p) = d−1(p)γ(p)NH(p)L(p) (6)

and that can be realized by an explicit state-space description. This is our basic
idea of how residual generators can be constructed for models in the form (1).
Later in Section 5, this design method is developed further and special care is
devoted to fault sensitivity and the order of the obtained residual generator.

With these principles in mind, we will now investigate if the expression (6)
is a general expression characterizing all residual generators where the scalar
polynomial d(s) and the row-vector γ(s) are the parameters. For this consider
the model equation

(p + 1)z1 − (p + 1)z2 = 0 (7)

where H(s) = 0 and L(s) = [s + 1 s + 1]. Then R(p) = [1 − 1] is a residual
generator since solving the differential equation (7) results in

r = R(p)z = z1 − z2 = e−t(z1(0) − z2(0)) (8)

which clearly satisfies Definition 2. However, since in this example NH(p)L(p) =
[p + 1 p + 1], there are no choices of d(s) and γ(s) such that (6) holds. Note
that the choice d(s) = (s+1) and γ(s) = 1 will not fulfill (6) since (p+1)−1[p+
1 p + 1] 6= [1 1].

Thus, we have shown that the expression (6) is not a general characteriza-
tion of all residual generators. The reason why (6) can not characterize the
residual generator (8) originates from the fact that the system (7) is not con-

trollable. Controllable here refers to a generalized controllability definition valid
also for non-causal DAE-systems [18]. In the context of this paper, a system is
controllable if the matrix [H(s) L(s)] has full rank for all s.

In general it holds that for systems with non-controllable stable modes,
all residual generators can not be characterized by (6). We will now give an
explanation to this. If [H(s) L(s)] has a stable zero for some s = s0, also
Q(s) , NH(s)L(s) will have a zero for s = s0. The matrix Q(s) can therefore
be factorized according to Q(s) = Qstab(s)Qr(s) where Qstab(s) is a square and
full-rank matrix with only strictly stable zeros, and Qr(s) has no strictly stable
zeros. Since Q(p)z = Qstab(p)Qr(p)z = 0 and Qstab(s) is full-rank and Hurwitz,
the signal Qr(p)z must be smooth and go asymptotically to zero [18]. All rows
in Qr(s) can therefore be used to form residual generators. However, not all
rows of Qr(s) can be written as γ(s)NH(s)L(s) and this is the answer to why
(6) does not work as a general characterization of all residual generators. Based
on the matrix Qr(s), we give in the following main theorem a correct alternative
to (6).

Theorem 1 (Characterization). Let Qr(s) be a matrix such that Qstab(s)Qr(s) =
NH(s)L(s) where Qstab(s) is a square and full-rank matrix with only strictly

stable zeros and Qr(s) has no strictly stable zeros. A proper filter with trans-

fer operator R(p) is a residual generator for (1) if and only if there exists a

polynomial row-vector γ(s) and a stable polynomial d(s) such that

R(p) = d−1(p)γ(p)Qr(p) (9)
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Proof. The if-part is proven by the discussion above the theorem and for the
only-if part, Lemma 3 gives that z ∈ M ⇒ limt→∞ K(p)z(t) = 0. This gives
that the scalar denominator d(s) must be stable since if v = K(p)z it holds that
d(p)r = v and when z ∈ M both r and v goes to zero. Also, using Lemma 4
gives that there exists a γ(s) such that K(s) = γ(s)Qr(s) which implies that
R(p) = d−1(p)γ(p)Qr(p) which ends the proof.

Since the matrix [H(s) L(s)] has full row rank, also the matrix Qr(s) also
has full row rank, which in turn implies that γ(s) will contain a minimal number
of elements. Thus, the parameterization (9) will be minimal.

It can be verified that in the example (7), Qr(s) = [1 − 1] and therefore (8)
can be written in the form (9). Before giving the proof to Theorem 1, a few
connections of the result above to the well known notion of parity functions [6]
is outlined. First, if no factorization of Q(s) is done, any expression in the form
γ(p)Q(p)z is a standard parity function, i.e. z ∈ M implies that γ(p)Q(p)z = 0
for all t. However, when performing the factorization Q(s) = Qstab(s)Qr(s), an
expression γ(p)Qr(p)z may not equal 0 for all t, it will however go to 0 as t → ∞
with a rate of decay according to the dynamics of Qstab(s). Thus, for a system
with non-controllable stable modes and a residual generator formed according
to (9), the residual will not be 0 for all t in a fault free case; it will go to 0.
However, this is typically the case for a proper residual generator constructed
with any other approach, e.g. see observer-based residual generators [2]. The
difference is that when Qstab(s) is not factored out, the decay rate is completely
determined by the design choice of d(s), and when Qstab(s) is factored out, the
decay rate is determined by the dynamics of both d(s) and Qstab(s).

4 Fault Detectability

A main objective of the paper is design of residual generators that are sensitive
to a specified set of faults. Sensitivity to a fault as defined in Definition 3 is a
property of the residual generator but is in fact closely related to the system
property fault detectability as defined in Definition 1. The exact relationship is
revealed by the theorem below.

Theorem 2. There exists a residual generator for (1) sensitive to all faults in

f if and only if all faults in f are detectable in (1). ⋄

Proof. If part: The fact that a fault fi is detectable means that

∃z, fi : Q(p)z = −NH(p)Fi(p)fi 6= 0 (10)

Let t0 be a time such that NH(p)Fi(p)fi(t) 6= 0 for some t > t0. Let f̄(t) = 0 for
t < t0 and f̄(t) = fi(t) for t ≥ t0. From the fact that [H(s) L(s)] has full row
rank, it follows that for any signal f there exist x and z such that the model
(1) is fulfilled. Thus, for f̄ there exists z such that Q(p)z = −NH(p)Fi(p)f̄ .
Since f̄(t) = 0 for all t < t0, it holds that NH(p)Fi(p)f̄(t) = 0 for t < t0. From
above we also know that NH(p)Fi(p)f̄(t) 6= 0 for some t > t0. Therefore it holds
that Q(p)z = 0 for all t < t0 and NH(p)Fi(p)f̄(t) 6= 0 for some t > t0. With a
constant row vector γi, we can now obtain a γiQ(p)z such that this property is
preserved. By having done this for all faults in f , we choose a γ =

∑

i γi.
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When considering one fault at a time, all other fault signals fi are considered
to be zero. Therefore, for each fault in f it holds that with a f̄ , as derived above,
it holds that γQ(p)z = 0 for all t < t0 and γQ(p)z = γNH(p)Fi(p)f̄(t) 6= 0 for
some t > t0. For each such f̄ the residual equation d(p)r = γQ(p)z has a
solution r where r(t) = 0 for all t < t0 and r(t) 6= 0 for some t > t0. Thus, we
have shown that there is a residual generator R(p) that is sensitive to each fault
in f .

Only-if part: From Theorem 1 we know that the residual generator R(p)
can be written as d(p)r = γ(p)Qr(p)z. The fact that the residual generator is
sensitive to a fault fi means that (10) and that there is a time t1 such that
γ(p)Qr(p)z(t) = 0 for t < t1 and γ(p)Qr(p)z(t) 6= 0 for some time t > t1.

Assume now that for all t, the homogeneous equation Qstab(p)Qr(p)z(t) = 0
holds. The fact that Qstab(s) has full rank limits the type of solutions v =
Qr(p)z(t) to sums of terms of the type qj(t) exp(τjt) where qj(t) is a poly-
nomial in t. This together with γ(p)Qr(p)z(t) = 0 for t < t1 implies that
γ(p)Qr(p)z(t) = 0 also for t ≥ t1. This contradiction means that v = Qr(p)z(t)
can not be a solution to the differential equation Qstab(p)v = 0. Thus we have
shown that Qstab(p)Qr(p)z 6= 0 which says that fi is detectable.

Thus, before starting the design of a residual generator, it is natural to
investigate if the faults are detectable.

Since Definition 1 deals with detectability of one single fault, testing de-
tectability of a set of faults will be done by considering one fault at a time. The
intuitive main result on fault detectability can now be stated.

Theorem 3. Fault i is detectable in (1) if and only if

Rank [H(s) Fi(s)] > RankH(s) (11)

Proof. If fault i is detectable, there exists fi, x, and z, consistent with (1) and
z 6∈ M. Then multiplying (1) from the left with NH(p) results in Q(p)z =
−NH(p)Fi(p)fi. Since z 6∈ M, it holds according to Lemma 1, that Q(p)z 6= 0.
This implies that NH(p)Fi(p)fi 6= 0 and it must therefore hold that NH(s)Fi(s) 6=
0 which is equivalent to (11).

If NH(s)Fi(s) 6= 0, there exists a signal fi such that NH(p)Fi(p)fi 6= 0.
For this signal fi, because of (2) there exist also signals x and z such that
(1) is fulfilled. Multiplying (1) from the left with NH(p) results in Q(p)z =
−NH(p)Fi(p)fi 6= 0. Lemma 1 then gives that z 6∈ M which means that the
fault is detectable.

In principle, this condition assures that when decoupling the unknown signals
x, the fault fi should not also be decoupled. Detectability conditions have been
presented in previous literature. e.g. see [4, 15]. For a survey and comparison
of detectability conditions for systems in state-space form and transfer function
form, see [16]. The above criterion is different from previous criterions in the
way that it is valid for any kind of linear DAE system. However, if for example
state-space systems are considered, the criterion (11) becomes equivalent to
previous published criterions, see [16].
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5 Design of Residual Generators

When it has been concluded that the faults considered are detectable it is time
to start the design of a residual generator to be used in the diagnosis system.
The basic principle for residual generation has already been given in Theorem 1.
However, the parameter vector γ(s) is in Theorem 1 a free parameter, and it
will here be shown how this parameter should be chosen to obtain a residual
generator that is sensitive to all detectable faults. Further, the completeness
property in Theorem 1 will here make it possible to also guarantee that the
obtained residual generator is of lowest possible order.

First a brief comment on decoupling and fault isolation. For isolation pur-
poses, a subset of the faults may need to be decoupled in each residual. To
decouple a fault fi in the residual, temporarily consider fi to be an unknown
signal in x, i.e. modify H(s) to be

[

H(s) Fi(s)
]

and remove the corresponding column Fi(s) from F (s). Decoupling of more than
one fault is a straightforward generalization of this procedure. Now, assume that
the model is in the form (1), any fault to be decoupled is considered an element
in vector x and that each fault in f is detectable. The proposed design method
is then as follows:

1. Compute an irreducible polynomial basis NH(s) for the left null-space of
H(s) and form Q(s) = NH(s)L(s). If the model has no H(s), let instead
Q(s) = L(s).

2. Factorize Q(s) as Q(s) = Qstab(s)Qr(s), where Qstab(s) is square and full
rank, and Qr(s) has no strictly stable zeros and Qstab(s) has no unstable
zeros.

3. If Qr(s) is not row-reduced, find a unimodular matrix U(s) such that
U(s)Qr(s) is row-reduced and rows ordered, from top to bottom, with
increasing row degrees.

4. Choose a constant row vector γ′, of minimal length, such that

[γ′ 0 . . . 0]U(s)adj Qstab(s)NH(s)Fi(s) 6= 0 (12)

Let γ(s) = [γ′ 0 . . . 0]U(s).

5. Choose a stable and scalar polynomial d(s) such that deg d(s) = deg γ(s)Qr(s).

6. Find a minimal realization of the filter R(p) = d−1(p)γ(p)Qr(p).

The existence of a γ′ in step 4 and other important properties of the method
are proven in the following theorem.

Theorem 4. If each fault in the vector f is detectable in (1), the design method

above will find a residual generator R(p) for (1). Further, the residual generated

by R(p) will be sensitive to all the faults in f , and R(p) will be of lowest order.⋄
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Proof. Since R(p) = d−1(p)γ(p)Qr(p), d(s) is stable, R(p) is according to The-
orem 1 a residual generator.

Since all faults in f are detectable, we know from Theorem 3 that for all
i it holds that NH(s)Fi(s) 6= 0. Since the square matrix U(s)adj Qstab(s) has
full rank it holds that for all i, U(s)adjQstab(s)NH(s)Fi(s) 6= 0. The existence
of a γ′ in step 4 is therefore guaranteed which implies that the residual will be
sensitive to all faults in f .

We will now show that R(p) is of lowest possible order. From Theorem 1
it follows that any other residual generator sensitive to the same set of faults
can be written as d̄−1(p)α(p)Qr(p). Let m be the number of elements in the
vector γ′. Let α′ be defined by [α′(s) 0 . . . 0] = α(s)U−1(s) where α′(s) has n
number of elements and the last element of α′(s), denoted α′

n(s), is non-zero.
Note first that n ≥ m. Otherwise γ′ can not have minimal number of elements.
Next note that deg [α′(s) 0 . . . 0]U(s)Qr(s) is, according to the predictable degree

property [10], at least as large as deg α′

n(s) plus the degree of the n:th row of
U(s)Qr(s). The n:th row of U(s)Qr(s) has a degree higher or equal to the m:th
row of U(s)Qr(s). Further, since γ′ is constant, and the rows of U(s)Qr(s)
are ordered in increasing row order, the predictable degree property gives that
deg [γ′ 0 . . . 0]U(s)Qr(s) is always equal to the degree of the m:th row. All this
means that deg α(s)Qr(s) ≥ deg γ(s)Qr(s). This implies that any other residual
generator has an order higher than deg γ(s)Qr(s) which is the order of R(p).

In some cases it is desirable to form the frequency response of a fault. Dis-
cussion on this is not included in the design method but the freedom available
in the parameters γ′ and d(s) can be used for this. In addition, the residual can
of course also be post-filtered by a low-pass filter.

Step 1, 2, and 3 contain operations that involve non-trivial manipulations
of polynomial matrices. These operations can for example be carried out using
Polynomial Toolbox for Matlab [1], which contains functions for each of these
steps. A detailed discussion about underlying algorithms can be found in [7].
Using these algorithms, the first step of deriving the basis for the null-space is
numerically sound. Also the second and third step are numerically sound as
long as the zeros of Q(s) have low multiplicities and if Q(s) is of reasonable size
[7]. This can normally be expected in this case since the number of rows in Q(s)
equals the number of redundant equations in the model and the zeros of Q(s)
corresponds to uncontrollable modes of the model.

Some of the steps in the design method, in particular steps 2 and 3, may
in many cases be omitted depending on properties of the particular model con-
sidered rendering a simplified design algorithm. For example, if the system is
controllable the matrix [H(s) L(s)] will be irreducible which implies that Q(s)
has no zeros. Thus step 2 becomes unnecessary, and Qr(s) and Qstab(s) in
the remaining steps can be chosen as Qr(s) = Q(s) and Qstab(s) = I. Also,
for state-space models (and many other models) controllability is sufficient for
Q(s) to be both irreducible and row-reduced [5], i.e. also step 3 can be omitted.

6 Example

Consider the cart on rail illustrated in Fig. 1. The back wheel-pair is powered
and both wheel pairs have suspension. The force applied at the back wheel-
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Figure 1: Cart on rail.

pair is Fu, the vertical position of the cart is ym, the other variables θ, y1,
y2, F1, and F2 are indicated in the figure. It is assumed that the force Fu is
controlled by a control signal u, and that the distances y1 and y2 are measured
by sensors y1s and y2s respectively. The task in this example is to diagnose
faults in the actuator and also in the sensors. These faults are modeled by
additive fault-signals f1s, f2s, and fu. A linearized model for this cart is given
by the equations

ym = y1 − lθ, y1s = y1 + f1s, F2 = −ky2 − µẏ2

ym = y2 + lθ, Fu = u + fu, Jθ̈ = lF1 − lF2 + (C − mg/(2k))Fu

mÿm = F1 + F2, F1 = −ky1 − µẏ1, y2s = y2 + f2s (13)

The constants are assumed to have values µ = 0.1, k = 0.5, l = 1, J = 0.02,
and m = 5, C = 0.3.

The design goal is now to find a residual generator that is sensitive to f2s

and fu. Further, the fault f1s should be decoupled for fault isolation purposes.
Then the vector of known signals is z = [y1s y2s u]T and the vector of unknown
signals x = [θ ym y1 y2 F1 F2 Fu f1s]

T . The vector of faults to be detected is
f = [f2s fu]T . Using all equations (13), it is now straightforward to set up the
matrices H(s), L(s), and F (s). All matrices have 9 rows and the number of
columns will match the dimensions of the vectors x, z, and f respectively.

The design will now be described and the calculations have been performed
using Matlab and Polynomial Toolbox [1]. Before we start the design, we check
that the design goal is at all achievable. This means that faults f2s and fu

should be detectable. By using the simple rank condition (11) for each fault
respectively, it can be checked that they are detectable. Theorem 4 now tells us
that the design will result in a residual generator, of minimal order, sensitive to
both faults f2s and fu.

Following the design method, we start in Step 1 by calculating the basis
NH(s). The matrix Q(s) is in Step 2 then formed as Q(s) = NH(s)L(s). The
matrix Q(s) has zeros in s = −0.02 ± i0.4468 and the factorization Q(s) =
Qstab(s)Qr(s) then consists of

Qstab(s) =
[

s2 + 0.04s + 0.2
]

, Qr(s) =
[

0 0.00041s2 + 0.0041s + 0.0205 −1
]

(14)
Since Qr(s) has only one row it is trivially row-reduced which implies that Step 3
becomes unnecessary. In Step 4 we set up the matrix

U(s)adjQstab(s)NH(s)F (s) = 10−2
[

0.04s4 + 0.4s3 + 2s2 + 0.16s + 0.4 −98s2 − 3.9s − 20
]

Since Qr(s) has only one row, selection of γ is trivial and is set to γ = 1. In
Step 4 we see that deg γQr(s) = 2 and d(s) is then selected as, for example,
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d(s) = (s + 3)2. This means finally that R(p) becomes

R =
1

s2 + 6s + 9

[

0 0.00040984s2 + 0.0040984s + 0.020492 −1
]

According to Theorem 4 this residual generator has now the lowest possible
order among residual generators sensitive to the faults. It can be seen that
without the factorization (14), lowest order would not have been achieved.

This design example has shown the case where one residual is designed where
one fault is decoupled. If instead full isolation is of interest, it would be desirable
to have three residuals where in each, one of the faults is decoupled. The only
principle difference compared to the design shown above is that vectors x, and
f need to be redefined for each design and the matrices H(s) and F (s) must
also be changed accordingly.

7 Illustrative Example

Here is a second example used to illustrating the design procedure. The example
is based on, but not identical to, a descriptor model described in [9] and used
for diagnosis in [8]. The model is an idealized description of a three-link planar
manipulator/robot seen in Figure 2. The process works by moving the end

B

A

y

x

Figure 2: An idealized three-link manipulator

effector repeatedly, e.g. cleaning a facade. The manipulator is equipped with
three actuators that can apply torques at all three joints. Three sensors is used
measuring the height of the end effector, the contact force in the x-direction,
and a tracking signal. The fault-free model is stated on descriptor form in [9]
where also numerical values for model parameters can be found. The model has
8 states: Cartesian coordinates of the end effector (3 states), derivatives of the
Cartesian coordinates (3 states), and two Lagrangian multipliers.

In Section 1, the benefits and consequences of component and object-oriented
based modeling is discussed. To illustrate these matters, an additional sensor
and two fault models are added. The first state x1 is the height of the end
effector. Now, assume that an accelerometer is also attached to the end-effector,
thus ẍ1(t) is measured. Also, two faults are modeled, one fault acting on the
first actuator and a sensor fault on the first sensor. Collecting the original
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model, the additional sensor, and the fault models results in the following model
description:

pEx(t) = Ax(t) + Buu(t) + B1f1(t) (15a)

y1(t) = x2(t) + f2(t) (15b)

y2(t) = x7(t) (15c)

y3(t) = x8(t) (15d)

y4(t) = p2x1(t) (15e)

where B1 is equal to the first column in Bu. Note that the new sensor-equation
(15e) was straightforward to introduce and no parts of the model equations had
to be modified. In a state-space/descriptor setting, additional states would have
been necessary all depending on the original system. This illustrates the model-
ing principles discussed in Section 1 regarding modularity, object-oriented, and
component based modeling. If the model was to be used for control, perhaps a
state-space/descriptor formulation would have been preferable, but for diagnosis
applications this general class of models is equally useful.

Now, the model (15) can easily be stated on form (1) with unknown vari-
ables x(t), and observables z(t) = [yT (t) uT (t)]T . It is obvious that the model
above is not on state-space or descriptor form. Although it is possible to trans-
fer the model to a descriptor form, it is not a trivial operation and with the
proposed design algorithm, model equations (15) can be used directly without
any additional transformations.

7.1 Designing Residual Generators

In this example, two residual generators R1(p) and R2(p) are to be designed,
used for detection and isolation of the two faults f1 and f2. In the residual gen-
erators fault f1 and f2 should be decoupled in R1(p) and R2(p) respectively, i.e.
residual r1 should only react to fault f2 and vice versa. Before constructing the
residual generators R1(p) and R2(p), the detectability condition from Section 4
can now be applied. It is seen that both f1 and f2 are detectable when the
other fault is decoupled.

Then the design of R1(p) and R2(p) starts by computing rank and greatest
left divisor of the matrix [H(s) L(s)]. It is seen to have full row-rank and no
zeros, which together with the discussion at the end of Section 5 gives that some
of the steps from the design algorithm can be omitted. Full Matlab code for
design of a residual generator is given below.

1 Q = null(H.’).’*L;

2 gamma = [1 1 1];

3 d = (s+2)^3;

4 [Ra,Rb,Rc,Rd] = lmf2ss(gamma*Q,d);

5 R = ss(Ra,Rb,Rc,Rd);

The code uses two toolboxes, [1] and control toolbox. Note that all op-
erations are standard operations in these toolboxes and no diagnosis-specific
algorithms need to be developed and/or written. The model matrices H(s) and
L(s) are assumed to be defined and the resulting residual generator R(s) is in
state-space form (an LTI object in control toolbox).

12



All steps are self explanatory except maybe line 4 which transforms a left
MFD to a state-space description. For both designs, Q(s) is a polynomial ma-
trix of degree 2 with 3 rows, i.e. there exists exactly 3 linearly independent
consistency relations where f1 respectively f2 are decoupled. The two design
choices that exists in the design are the choice of γ(s) and the choice of denomi-
nator c(s) such that the residual generator is stable and realizable on state-space
form. Here these choices are done ad-hoc since no additional design specifica-
tions are given. The row vector γ(s) is selected to use all consistency relations
with γ(s) = [1 1 1] and all poles of the residual generator, i.e. zeros of c(s), are
placed in s = −2. For the residual generator to be proper, it turns out that the
denominator polynomial need to be of at least degree two, here a third order
denominator polynomial is used.

A first step when evaluating the designs is to validate that the desired de-
coupling properties are satisfied. Computing the sizes of the transfer functions
from the decoupled faults to residuals in Matlab we get ‖Gr1f1

(s)‖∞ = 0 and
‖Gr2f2

(s)‖∞ = 0. This verifies that faults f1 and f2 are decoupled in r1 and
r2 respectively according to design specifications. Figure 3 shows transfer func-
tions from faults to the residuals, and it is clear that each residual will react
according to design specifications. Also, the cut-off frequency is, as specified by
the denominator polynomial, approximately 2 rad/s. One important thing that
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Figure 3: Transfer function from fault f2 to residual r1 (solid line), and from
fault f1 to residual r2 (dashed line).

has not been mentioned is numerical performance of the design procedure. This
is not pursued further here, interested readers is referred to previous works on
both state-space and descriptor models that shows good numerical performance
(compared to other approaches) on example models [5].
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8 Conclusions

Linear residual generation for DAE systems in the form (1) has been consid-
ered. This is an important model class since physically based models are often
described by DAE systems. The more common model classes state-space form,
descriptor systems, and transfer functions can all be considered as special cases
of (1) and all results presented are valid also for these cases.

Throughout the presentation, no distinction between input and output sig-
nals have been done. In this way we have shown that what is important for
diagnosis, and in particular residual generation, is to distinguish between known
and unknown signals.

The notions of residual generator, fault detectability, and fault sensitivity

have been formally defined in the framework of DAE models. Then a complete
characterization and parameterization of all residual generators has been pre-
sented. A condition for fault detectability in DAE systems has been derived and
the notions of fault detectability and fault sensitivity has been linked together.

Based on the characterization of all residual generators, a design method for
residual generators for DAE systems was presented. Given a set of detectable
faults, the design method results in a residual generator sensitive to all de-
tectable faults. Further, the residual generator is guaranteed to be of lowest
possible order.

With the aim to make all the results as general as possible, we have devoted
special care to non-controllable systems. Without this attention, the charac-
terization derived would not have been complete and the residual generator
designed would not have been of lowest possible order in the case of systems
with non-controllable stable modes.

References

[1] The Polynomial Toolbox 2.5. Polyx, Czech Republic. URL:
http://www.polyx.com, 2001.

[2] J. Chen and R. J Patton. Robust Model-Based Fault Diagnosis for Dynamic

Systems. Kluwer Academic Publishers, 1999.

[3] E.Y. Chow and A.S. Willsky. Analytical redundancy and the design of
robust failure detection systems. IEEE Trans. on Automatic Control,
29(7):603–614, 1984.

[4] X. Ding and P.M. Frank. Frequency domain approach and threshold se-
lector for robust model-based fault detection and isolation. IFAC Fault
Detection, Supervision and Safety for Technical Processes, pages 271–276,
Baden-Baden, Germany, 1991.

[5] E. Frisk and M. Nyberg. A minimal polynomial basis solution to residual
generation for fault diagnosis in linear systems. Automatica, 37:1417–1424,
2001.

[6] J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel
Dekker, 1998.

14



[7] D. Henrion and M. Sebek. An algorithm for polynomial matrix factor
extraction. International Journal of Control, 73(8):686–695, 2000.

[8] M. Hou. Fault detection and isolation for descriptor systems. In R.J.
Patton, P.M. Frank, and R.N. Clark, editors, Issues of Fault Diagnosis for

Dynamic Systems, chapter 5. Springer, 2000.

[9] M. Hou and P.C. Müller. Tracking control for a class of descriptor systems.
In Proc. 13th IFAC World Congress, pages 109–114, San Fransisco, USA,
1996.

[10] Thomas Kailath. Linear Systems. Prentice-Hall, 1980.

[11] F. Kratz, S. Bousghiri, and W. Nuninger. A finite memory observer struc-
ture of continuous descriptor systems. In Proc. American Control Confer-

ence, pages 3900–3904, Seattle, USA, 1995.

[12] D. Maquin, B. Gaddouna, and J. Ragot. Generation of parity equations
for singular systems. application to diagnosis. In Proceedings. International

Conference on Systems, Man and Cybernetics., volume 3, pages 400–405,
1993.

[13] B. Marx, D. Koenig, and D. Georges. Robust fault diagnosis for linear de-
scritor systems using proportional integral observers. In Proceedings. IEEE

Conference on Decision and Control, volume 3, pages 457–462, Hawaii,
USA, 2003.

[14] S.E. Mattson, H. Elmqvist, and M. Otter. Physical system modeling with
modelica. Control Engineering Practice, 6(4):501–510, 1998.

[15] R. Nikoukhah. Innovations generation in the presence of unknown inputs:
Application to robust failure detection. Automatica, 30(12):1851–1867,
1994.

[16] M. Nyberg. Criterions for detectability and strong detectability of faults
in linear systems. International Journal of Control, 75(7):490–501, 2002.

[17] R.J. Patton, P.M. Frank, and R.N. Clark, editors. Issues of Fault Diagnosis

for Dynamic Systems. Springer, 2000.

[18] J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems

Theory: A Behavioral Approach. New York: Springer Verlag, 1997.

[19] D. Sauter, H. Noura, F. Hamelin, and D. Theilliol. Parity space approach
for fault diagnosis in descriptor systems. In In Proceedings CESA ’06

IMACS Multiconference. Computational Engineering in Systems Applica-

tions, volume 1, pages 380–383, 1996.

[20] D.N. Shields. Robust fault detection for generalized state space systems.
In International Conference on Control, pages 1335–1339, 1994.

[21] A. Varga. On computing least order fault detectors using rational nullspace
bases. Safeprocess’2003, pages 229–234, Washington, USA, 2003.

15



[22] N. Viswanadham, J.H. Taylor, and E.C. Luce. A frequency-domain ap-
proach to failure detection and isolation with application to GE-21 turbine
engine control systems. Control - Theory and advanced technology, 3(1):45–
72, March 1987.

A Proofs and Lemmas

This section includes technical lemmas used in the proofs of the main theorems
of the report.

In the proofs to follow, the set of all z ∈ M will, instead of (5), be char-
acterized by using a differential equation, sometimes referred to as a kernel

representation of the behavior. This is summarized in the following lemma,
adapted from [18].

Lemma 1.

M = {z | NH(p)L(p)z = 0} (16)

where NH(s) is a minimal polynomial basis for the left null-space of H(s). ⋄

The following lemma proves that, when z ∈ M, a residual will be smooth.

Lemma 2. If R(s) is a residual generator, z ∈ M, and r fulfills r = R(p)z,
then r can be written as

r(t) =
∑

i

qi(t)e
cit (17)

where qi are polynomials in t. ⋄

Proof. The fact that z ∈ M is according to Lemma 1 equivalent to that z fulfills

Q(p)z = 0 (18)

where Q(s) = NH(s)L(s). Since Q(s) has full rank, we can partition Q(s) into
[Q1(s) Q2(s)] such that Q1(s) is square and has full rank. Also let K1, K2, z1,
z2 correspond to the partition of Q(s). Since Q1(s) is square and full rank, for
any choice of z2, there will always be a z1 such that (18) is fulfilled.

Now choose an arbitrary z2. Then there exist a z1 such that z ∈ M where
z = [zT

1 zT
2 ]T . Let r be a signal satisfying r = R(p)z. This means that

[

d(p)
0

]

r =

[

K1(p)
Q1(p)

]

z1 +

[

K2(p)
Q2(p)

]

z2 (19)

By multiplying (19) with the row-vector [n(s)M(s)] from the left, where

[n(s)M(s)]

[

K1(s)
Q1(s)

]

= 0 (20)

we obtain
n(p)d(p)r =

(

n(p)K2(p) + M(p)Q2(p)
)

z2 (21)

Using the definition of residual generator together with the facts that z ∈ M
and r = R(p)z implies that r(t) → 0. In summary, we have shown that for all
z2, there exists an r fulfilling (21) where r(t) → 0. It can then be realized that
it must hold that n(s)K2(s) + M(s)Q2(s) = 0.
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For the z that is given in the condition of the lemma, take out the z2-part.
The z1-part will, together with z2, then fulfill (18). Further, the given r will
fulfill (21), and therefore also n(p)d(p)r = 0. Thus, r has been proven to be a
solution to the differential equation n(p)d(p)r = 0. From this, together with the
fact that the functional class considered for solutions is piece-wise continuous
functions with finitely many impulses, it follows that r can be written as

r(t) =
∑

i

qi(t)e
cit

where qi are polynomials in t which ends the proof.

Lemma 3. A proper filter R(p) with transfer operator R(p) = d−1(p)K(p) is a

residual generator if and only if for all z ∈ M it holds that limt→∞ K(p)z(t) =
0. ⋄

Proof. For the only-if part, we assume that z ∈ M, and according to Lemma 2,
all solutions r to d(p)r = K(p)z can then be written as (17). Further, since
R(s) = K(s)/d(s) is a residual generator, it holds that limt→∞ r(t) = 0. There-
fore all nonzero parts (i.e. qi 6= 0) of the sum (17) are stable. All orders of deriva-
tives of r are trivially also stable. Thus d(p)r(t) → 0, and also K(p)z(t) → 0,
when t → ∞.

For the if-part, we know that K(p)z(t) → 0 and that the signal K(p)z(t) is
filtered through a stable filter (i.e. d(s) is stable). Therefore, it must hold that
also r(t) → 0.

Lemma 4. Let the row-vector K(p) satisfy z ∈ M ⇒ limt→∞ K(p)z(t) = 0.
Then there exists a polynomial row-vector γ(s) such that K(s) = γ(s)Qr(s). ⋄

Proof. First we prove that there exists a rational φ(s) = b−1(s)n(s) such that
K(s) = φ(s)Qr(s). For this, let U(s) be a matrix whose columns form a polyno-
mial basis for the right null-space of Qr(s). Then, for any vector and also K(s),
it holds that there exists a scalar polynomial b(s) and polynomial row-vectors
n(s) and m(s) such that b(s)K(s) = n(s)Qr(s) + m(s)UT (s). This implies that
b(s)K(s)U(s) = m(s)UT (s)U(s) and from the definition of U(s) it follows that
Q(p)U(p)ν = 0 for all ν(t). Equation (16) and the assumption in the lemma
formulation gives that ∀ν : K(p)U(p)ν → 0 when t → ∞. It then follows
that K(p)U(p) = 0 which implies that m(s)UT (s)U(s) = 0. Since U(s) has full
column rank this implies that m(s) = 0 which ends the proof of the existence
of a rational φ(s).

Now, given such a rational φ(s) = n(s)
b(s) such that K(s) = φ(s)Qr(s) where

the polynomial b(s) and the polynomial row-vector n(s) are co-prime. Assume
that φ(s) is not polynomial, i.e. b(s) has a zero at s = s0. Then

n(s)Qr(s) = b(s)K(s) (22)

Since n(s) and b(s) are co-prime, it holds that n(s0) 6= 0. Therefore, n(s0) 6= 0
must reside in the left null-space of Qr(s0). By definition it follows that Qr(s)
has no stable zeros and from the assumption that [H(s) L(s)] has full row rank
it follows that Qr(s) has full row rank. This means that Qr(s) can only lose
rank if s = s0 is an unstable zero, i.e. Re{s0} ≥ 0. Thus, if b(s) has a zero
s = s0, it must be an unstable zero.
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Therefore assume that s0 is an arbitrary unstable zero of b(s). By using the
Smith form, Qr(s) can be written

Qr(s) = U(s)[diag(ǫ1(s), . . . , ǫn−1(s), ǫn(s)) 0]V (s) (23)

where U(s) and V (s) are unimodular. Then (22) can be written as n(s)U(s)S(s) =
b(s)K(s)V −1(s). This means that n(s0)U(s0)S(s0) = 0. Because of the co-
primeness, n(s0) must be nonzero. Further since U(s0) has full rank, also the
vector n(s0)U(s0) must be nonzero. Let i be the position of one nonzero element
αi in n(s0)U(s0). Then

0 = n(s0)U(s0)S(s0) = [. . . αi . . . ]S(s0) = [. . . αiǫi(s0) . . . ] (24)

Thus αiǫi(s0) = 0 which means that ǫi(s) must have a zero in s = s0, i.e.
ǫi(s) = ǫ′i(s)(s − s0). The polynomial ǫ′i(s) can also contain the factor (s − s0).
Let the multiplicity of this factor be µ, i.e. ǫ′i(s) = ǫ′′i (s)(s − s0)

µ.
Next choose a solution z̄i in accordance with Lemma 5. This means that

(s − s0)
µ+1z̄i = 0. Now define z̄ = [0 . . . 0, z̄i, 0, . . . , 0]T , and choose z as z =

V −1(p)z̄. Next note that Qr(p)z = U(p)S(p)V (p)V −1(p)z̄ = U(p)S(p)z̄. Since
ǫi(s) = ǫ′′i (s)(s − s0)

µ+1 and z̄i is a solution to (s − s0)
µ+1z̄i = 0, it holds that

S(p)z̄ = 0 and thus, Qr(p)z = 0 and also Q(p)z = 0.
By factorizing b(s) as b(s) = b′(s)(s − s0), the i:th element of the vector

equation n(s)U(s)S(s) = b(s)K(s)V −1(s) can be written

n(s)Ui(s)ǫ
′

i(s)(s − s0) = b′(s)(s − s0)[K(s)V −1(s)]i (25)

where Ui(s) is the i:th column of U(s). Cancelling (s− s0) on both sides results
in

n(s)Ui(s)ǫ
′′

i (s)(s − s0)
µ = b′(s)[K(s)V −1(s)]i (26)

Since αi 6= 0, n(s)Ui(s) has no zero in s = s0. Therefore it follows from Lemma 5
that n(p)Ui(p)ǫ′′i (p)(p− s0)

µz̄i 6→ 0. Using (26) gives that b′(p)K(p)V −1(p)z̄ 6→
0 and further that b′(p)K(p)z 6→ 0. This means that K(p)z 6→ 0. Thus we
have proven that there exists a z ∈ M such that K(p)z(t) 6→ 0. This is a
contradiction and thus b(s) can not have an unstable zero.

Lemma 5. If s = s0 is an unstable zero, there exists a solution z̄i to the

differential equation (p − s0)
µ+1z̄i = 0 such that for all polynomials β(s) with

no zero in s = s0 it holds that β(p)(p − s0)
µz̄i 6→ 0.

Proof. Let z̄i = tµes0t. Its Laplace transform is µ!
(s−s0)(µ+1) . Then the Laplace

transform of the signal v = (p − s0)
µz̄i is

V (s) =
µ!(s − s0)

µ

(s − s0)(µ+1)
=

µ!

(s − s0)
(27)

Inverse Laplace transform gives that v = µ!es0t. Now take an arbitrary polyno-
mial β(s) with no zero in s = s0. Then β(p)v = β(s0)µ!es0t. Since s = s0 is an
unstable zero, and β(s0) 6= 0, it holds that β(p)v 6→ 0.
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