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Abstract

In this report, a new algorithm for computing all minimal over-constrained sub-
systems in a structural model is proposed. To handle large differential algebraic
models in diagnosis, systematic structural approaches to find testable sub-systems
have been suggested. It is shown how the algorithm can be incorporated and im-
prove some of them. Previous algorithms are recalled and it is shown that the new
algorithm is 14000 times faster when applied to a Scania truck engine model.

1 Introduction

In model based diagnosis, the diagnostic system construction is based on a model of
the technical system to be diagnosed. To cope with large differential algebraic models,
systematic structural approaches to find testable sub-systems have been suggested in
e.g. [2], [1], [9] [11], and [6]. All these approaches have in common that testable
sub-systems are found among the over-constrained sub-systems. Furthermore, of all
over-constrained sub-systems, it is the minimal ones that are used to derive analytical
redundancy relations. Several algorithms for computing all minimal over-constrained
sub-systems have been proposed in [9], [6], and [1]. However all these algorithms run
into complexity problems when considering large industrial examples.

In this report we present a new algorithm for computing all minimal over-constrained
sub-systems in a structural model. For the new algorithm the computational complex-
ity is dependent on the order of structural redundancy, i.e. the difference between the
number of equations and unknowns. For a fixed order of structural redundancy, the
computational complexity is polynomial in the number of equations in contrast to pre-
vious algorithms where the complexity is exponential. In many applications, sensors
are expensive and thus the structural redundancy is low even if the models are large.
The algorithm is applied to a Scania truck-engine model with 126 equations. All min-
imal over-constrained sub-systems were computed with the new algorithm more than
14000 times faster than with previous algorithms.
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Three different types of structural representations used to describe differential al-
gebraic systems are recalled in Section 2. We introduce a notion, i.e.minimal struc-
turally overdetermined(MSO) set of equations, which characterize over-constrained
sub-systems independent of structural representation. Several other proposed structural
characterizations of over-constrained sub-systems are then recapitulated in Section 3.
All these are MSO sets of equations and this means that the proposed algorithm can
easily be used in any of these approaches to find over-constrained sub-systems. For
comparison, previous algorithms for finding over-constrained sub-systems are recalled
in Section 4. In Section 5 a basic algorithm for finding all MSO sets will be presented.
This algorithm illustrates the basic ideas and then in Section 6 further improvements
are described. Finally in Section 7, it is shown that the computation time for finding all
MSO sets in a Scania truck engine model is significantly decreased by using the new
algorithm compared to the previous ones and the complexity of the different algorithms
are discussed.

2 Structural Representations

The structure of a model is represented by a bipartite graph with variables and equations
as node sets. There is an edge connecting an equatione and an unknownx if x is
included ine. When considering differential algebraic systems, different alternatives
for handling derivatives exist. In this section, three different structural representations
of a differential algebraic system are recalled. These three variants will be exemplified
by the following differential algebraic system

ẋ1 = −x2
1 + u

x2 = x2
1

y = x2

(1)

whereu andy are known, andx1 andx2 are unknown signals.
The first structural representation of (1) is the following biadjacency matrix of the

bipartite graph:
equation unknown

x1 x2

e1 X
e2 X X
e3 X

(2)

In this representation all unknowns, i.e.x1 andx2, are considered as signals. There is
an “X” in position (i, j) in the biadjacency matrix ifxj or any of its time-derivatives
appear in equationei. This approach has been used in for example [5].

The second structural representation of (1) is

equation unknown
x1 ẋ1 x2

e1 X X
e2 X X
e3 X

Unknowns and their time-derivatives are, in contrast to previous representation, con-
sidered to be separate independent algebraic variables. New equations can be obtained
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by differentiation, for example

ė2 : ẋ2 = 2x1 ẋ1

ė3 : ẏ = ẋ2

The extended structure is then

equation unknown
x1 x′

1 x2 x′
2

e1 X X
e2 X X
ė2 X X X
e3 X
ė3 X

(3)

This modeling principle is used in [6].
In the third and final structural representation, unknowns and their time-derivatives

are, as in the second representation, considered to be separate independent algebraic
variables. Thus the equations are purely algebraic and differential relations of the form

ẋi =
d

dt
xi

are added. The structural representation of (1) is

equation unknown
x1 x′

1 x2

e1 X X
e2 X X
e3 X
d X X

(4)

whered is the added differential equation. This representation is used for diagnosis
in [1].

3 Use of MSO Sets for Test Construction

Several structural approaches to find testable sub-systems have previously been sug-
gested. In this section a structural characterization of testable sub-systems is presented.

First some important structural properties will be defined. The biadjacency matrix
in Figure 1 shows a Dulmage-Mendelsohn canonical decomposition [3] of a bipartite
graph withM andX as node sets. Here we assume thatM is a set of equations andX
is a set of unknowns. The grey-shaded areas contain ones and zeros, while the white
areas only contain zeros. The thick line represents a maximal matching in the graph
defined by this biadjacency matrix. The modelM is decomposed into three parts where
the one denotedM+ is thestructurally overdetermined partwith more equations than
unknowns. The structurally overdetermined partM+ of M is the equationse ∈ M
such that for any maximal matching there exists analternating pathbetween at least
one free equation ande.

In consistency based diagnosis, redundancy in the model is used and this motivates
the following definitions.
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Figure 1: A Dulmage-Mendelsohn decomposition.

Definition 1 (Structurally overdetermined). A setM of equations isstructurally overde-
terminedif M has more equations than unknowns.

Definition 2 (Proper structurally overdetermined). A structurally overdetermined set
M is a proper structurally overdetermined(PSO) set ifM = M+.

Definition 3 (Minimal structurally overdetermined). A structurally overdetermined set
is aminimal structurally overdetermined(MSO) set if no proper subset is a structurally
overdetermined set.

Note that an MSO set is also a PSO set. All three structural representations of (1)
shown in (2)-(4) are examples of MSO models and have one more equation than the
number of unknowns. From the equation system (3) the equation

ẏ2 − 4y(u − y)2 = 0

can be derived by algebraic elimination. This is called an analytical redundancy re-
lation or a parity relation and can be used to check ifu andy are consistent with the
model (1). Hence the testable system (1) has a corresponding MSO model for each
structural representation.

Since MSO sets can be used in any structural representation, comparisons to other
structural characterizations of testable models using different representations are pos-
sible. In [6] and [5] MSO sets are used to find testable sub-systems. In [9]minimal
evaluable chainsare used, which are MSO models with the additional requirement that
they contain known variables. In [1] and [11]redundancy relationsare used, which
also correspond to MSO models.

In conclusion, MSO models are used in all structural approaches discussed above.
The example in (1)–(4) shows that MSO models can be interpreted in a similar way
independent of structural representation. By noting these similarities the algorithms
that will be proposed in Section 5 and 6 can be applied to any structural representation
considered and be used in the previously discussed approaches.

4 Previous Algorithms

Two main ideas for finding all MSO sets have previously been presented. These will be
recalled and compared. These will be used to compare the computational complexity
of the new algorithm proposed in this report.
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The first approach for finding all MSO sets is presented independently in [6] and [9].
The basic principle is to choose one equation as the redundant equation and then find
all possible ways to compute structurally all unknowns in the redundant equations. The
redundant equation is first chosen to be the first equation and then the second and so on
until the last equation is the redundant equation. When all possible ways to compute all
unknowns in the first equation are found, all MSO sets including the first equation have
been found. This means that the first equation will not be used further in the search for
more MSO models.

The second approach for finding all MSO sets is presented in [1]. All maximal
matchings are enumerated. For each maximal matching and for each free equation for
this matching, an MSO set is given by the equations reached by an alternating path
from the free equation.

The computation time of both approaches grows fast with the number of equations.
Therefore they cannot be used in practice for large industrial examples. Each set of
equations considered in the second approach is analyzed as least as many times as in
the first approach. Hence the computational complexity of the second approach is not
better than for the first one, and a comparison can be found in [10]. Therefore only the
first approach will be considered when comparing the computational complexity with
the new algorithm developed in this report.

5 New Algorithm

In this section we will present a new algorithm for finding all MSO sets. This algorithm
is based on a top-down approach in the sense that we start with the entire model and
then reduce the size of the model step by step until an MSO model remains. To illustrate
the ideas, a basic version is presented here and then in the next section, improvements
are discussed.

Before presenting the algorithm, we need the notion ofstructural redundancy.
Given a bipartite graph, let varX(M) ⊆ X be the subset of variables inX connected to
at least one equation inM . Given a proper structurally overdetermined set of equations
M , the structural redundancȳϕM is defined by

ϕ̄M = |M | − |varX(M)|

The algorithm will be based on the following three lemmas.

Lemma 1. If M is a proper structurally overdetermined set of equations ande ∈ M ,
then

ϕ̄ (M \ {e}) = ϕ̄ (M) − 1 (5)

Lemma 2. The set of equationsM is an MSO set if and only ifM is a proper struc-
turally overdetermined set and̄ϕ M = 1.

Lemma 3. If M is a set of equations,E ⊆ M is an PSO set, ande ∈ M \ E, then

E ⊆ (M \ {e})+

The proofs of all lemmas and theorems can be found in Appendix. The first lemma
reveals how the structural redundancy decreases when one equation is removed. It fol-
lows from this lemma that if we start with any proper structurally overdetermined set of
equations we can alternately remove equations and computing the overdetermined part
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until the structural redundancy becomes 1. We have then found an MSO-set, accord-
ing to Lemma 2. Finally, Lemma 3 implies that an arbitrary MSO set can be obtained
recursively this way. By using this principle in combination with a complete search the
algorithm becomes as follows. The input setM is assumed to be a PSO set.

Algorithm 1. MMSO := FindMSO(M)
if ϕ̄ M = 1 then

MSO := {M};

else

MSO := ∅;

for eachequatione in M do

M ′ := (M \ {e})+;

MSO := MSO ∪ FindMSO(M ′);

end for

end if
return MMSO

From the discussion above, it follows that the sets found inMSO are MSO sets
and that all MSO sets are found.

To illustrate the steps in the algorithm, consider the following proper structurally
overdetermined model consisting of four equations and two unknown variables:

equation unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X

(6)

The structural redundancy of this set of equations is 2. When entering the algorithm,
e1 is removed and the setM ′ becomes(M\{e1})+ = {e3, e4}. In this casēϕ M ′ = 1
and the equation set is saved as an MSO inMMSO. Thene2 is removed andM ′ =
(M\{e2})+ = {e3, e4}. This means that the same MSO set is found once again. Next
e3 is removed and the MSO set{e1, e2, e4} is found. Finallye4 is removed and the
MSO set{e1, e2, e3} is found.

Since the same MSO set{e3, e4} is found twice, we can suspect that the algorithm
is not optimal in terms of efficiency. The next section will therefore present improve-
ments in order to increase the efficiency.

6 Improvements

A straightforward improvement is of course to prohibit that any of the MSO sets are
found more than once. Another and more sophisticated improvement is that sets of
equations can be lumped together in order to reduce the size and the complexity of the
structure. The proposed reduction preserves structural redundancy and it is therefore
possible to use the reduced structure to find all MSO sets in the original structure.
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6.1 Structural Reduction

The reduction is based on a new unique decomposition of the overdetermined part
of a bipartite graph. An illustration of the decomposition is shown in Figure 2 as a
biadjacency matrix. IfM is the set of all equations andX is the set of all unknowns,
the decomposition can be defined as follows. LetR be a relation on the setM of
equations defined by(e′, e) ∈ R if

e′ /∈ (M \ {e})+ (7)

Now we show thatR is an equivalence relation. It follows directly from the definition
that R is reflexive. If (e′, e) ∈ R, then it follows from (7) and Lemma 3, withE
replaced by(M\{e})+, that(M\{e})+ ⊆ (M\{e′})+. Lemma 1 and Lemma 3 imply
that both sets have the same structural redundancy and that(M \{e})+ = (M \{e′})+.
Hence(e, e′) ∈ R andR is therefore symmetric. Furthermore if(e1, e2) ∈ R and
(e2, e3) ∈ R, then it holds that(M \ {e1})+ = (M \ {e2})+ = (M \ {e3})+, which
implies thatR is transitive. The relationR is therefore an equivalence relation and the
equivalence class containinge is denoted by[e].

The setM can then be partitioned into disjoint equivalence classesMi. For each
equation setMi, the setXi is defined as the unknowns only included inMi and

X0 = X \ (
⋃

i6=0

Xi)

It follows from Lemma 1, by considering the complementary sets, that

|Mi| = |Xi| + 1

for all 1 ≤ i ≤ m, i.e. there is one more equation than unknown in each block.
Furthermore forn + 1 ≤ i ≤ m in the figure,Mi has cardinality 1 andXi = ∅.
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Figure 2: A structural decomposition of a PSO set.

Theorem 4. If E ⊆ M is a PSO set, thenE is a union of equivalence classes defined
by (7), i.e.

E =
⋃

i∈I

Mi

whereI ⊆ {1, 2, . . . m}.
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This theorem motivates why the equations in each equivalence class can be lumped
together when computing all PSO sets. A new bipartite graph is formed with equiva-
lence classes{Mi} and the unknownsX0 as node sets. The unknowns connected to
Mi are varX0(Mi). The reduction of (6) is

equivalence class unknown
Mi x2

{e1, e2} X
{e3} X
{e4} X

and the decomposition is given byM1 = {e1, e2}, M2 = {e3}, M3 = {e4}, X0 =
{x2}, X1 = {x1}, andX2 = X3 = ∅. Note that it is only equivalence classes of
cardinality greater than one that give a reduction. An interpretation of this reduction is
that the two first equations are used to eliminate the unknownx1. In the lumped struc-
ture, each equivalence class is considered as one equation and the definitions of PSO
set, MSO set, and structural redundancy are thereby extended to lumped structures. In
the example above we havēϕ {{e1, e2}, {e3}, {e4}} = 2. The structural redundancy
for the lumped and the original structure are always the same.

The reduction is justified by the following theorem, which together with Theorem 4
shows that there is a one-to-one correspondence between the PSO sets in the original
and in the lumped structure.

Theorem 5. The set{Mi}i∈I is a PSO set in the lumped structure if and only if∪i∈IMi

is a PSO set in the original structure.

It follows from the discussion above that the reduced structure can be used to find
all PSO sets in the original structure.

6.2 Improved Algorithm

A drawback with Algorithm 1, presented in Section 5, is that some of the MSO sets are
found more than once. There are two main reasons why this happens and these can be
illustrated using the following example:

equation unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X
e5 X

(8)

First, the same PSO set{e3, e4, e5} is obtained, if eithere1 or e2 is removed. This
is avoided by using the lumping described in the previous section. Second, the same
MSO set is obtained if the removed equations are permuted. For example, the MSO set
{e4, e5} is obtained if firste1 and thene3 is removed but also if the order of removal
is reversed. In the next algorithm such permutations are prevented and the setR is an
additional input argument, in the recursive calls, that contains the equations that are
allowed to be removed.

Lumping can be extended and applied to subsets of previously lumped structures.
Sets of equations are then lumped together into new sets of equations by taking the
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union of the sets in the equivalence class. In each call of the subroutine, lumping of
the equivalence classes is used. We illustrate this with a new example. Assume that
we start with 6 equations and thate2 ande3 are lumped together and the following
structure is obtained:

equation unknown
x1 x2

{e1} X
{e2, e3} X
{e4} X X
{e5} X
{e6} X

(9)

In the first recursive call{e1} is removed and the graph corresponding to the remaining
part has the same structure as (6). Now, lumping is performed and the sets{e2, e3} and
{e4} are lumped together into the set{e2, e3, e4}.

A problem is how to form the new set of equations that is allowed to be removed,
i.e. the set corresponding toR, for the lumped structure and the following principle
will be used. If all the original equivalence classes in a lumped set are included inR,
then the lumped set is included in the new set, denoted byR′. Otherwise the lumped
set is excluded fromR′. It will be shown that, in this way, all MSO sets are found once
and only once. The algorithm can formally be defined as follows.

Algorithm 2. MSO = MSO(M)
M := {{e}|e ∈ M+};
MSO := MSOsubsets(M,M);
return MSO;

Subroutine:MSO := FindMSO(M,R)
if ϕ̄M = 1 then

MSO := {∪E∈ME};

else

R′ := ∅;M′ := M;

whileR 6= ∅ do

Select anE ∈ R;

Lump[E] in M′;

if [E] ⊆ R then

R′ := R′ ∪ {∪E′∈[E]E
′};

end if

R := R \ [E];

end while

MSO := ∅;

whileR′ 6= ∅ do

Select anE ∈ R′
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R′ := R′ \ {E};

MSO := MSO ∪ FindMSO(M′ \ {E},R′);

end while

end if
return MSO

By lump [E] in M′, in the algorithm, we mean that only the equivalence class[E]
in M′ is lumped and that the other equations remain unchanged. Note that only classes
that intersectR are lumped in the subroutine, which is sufficient in order to avoid that
the same MSO set is found more than once.

Theorem 6. If Algorithm 2 is applied to a setM , then each MSO set contained inM
is found once and only once.

To illustrate the algorithm, we use the set (8) and describe the first steps in the recur-
sion. First, the subroutine is called with input setsM = R = {{e1}, {e2}, {e3}, {e4}, {e5}}.
In the first while loop, lumping is performed with the resulting setsM′ = R′ =
{{e1, e2}, {e3}, {e4}, {e5}}. Then the subroutine is called recursively with the fol-
lowing four pairs of input sets

M′ \ {{e1, e2}} andR′ = {{e3}, {e4}, {e5}},
M′ \ {{e3}} andR′ = {{e4}, {e5}},
M′ \ {{e4}} andR′ = {{e5}},
M′ \ {{e5}} andR′ = ∅

6.3 Computational Complexity

The structural redundancy depends on the number of available sensors, which are often
expensive, and therefore the structural redundancy is low in many applications. One
example of this is given in the next section. For a fixed order of structural redundancy,
the computational complexity is polynomial in the number of equations, in contrast
to previous algorithms where the complexity is exponential. This follows from the
fact that the number of subroutine calls are equal to the number of PSO sets, which
grows polynomially, and that the computational complexity to obtain the setM+ is
polynomial. It should be pointed out that, in the case of few unknowns, the roles are
reversed. For a fixed number of unknowns, the complexity of the new algorithm is
exponential and the complexity of the old algorithm is polynomial in the number of
equations. However, this situation is not common in diagnosis applications.

7 Application to a Large Industrial Example

To demonstrate the efficiency of the algorithm, described in the previous section, we
will here apply it to a real industrial process. The process is a Scania truck diesel-
engine and a sketch is shown in Figure 3. This engine has two actuators, namely the
fuel injection δ and the EGR-valve. It has eight sensors, namely ambient pressure
pamb, ambient temperatureTamb, air flow Wcmp, inlet pressurepim, inlet temperature
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Figure 3: Example of a Scania truck engine.

Tim, exhaust pressurepem, engine speedneng, and turbine speedntrb. Further details
of the application is presented in [4].

A simulation model of the engine was provided in Simulink. This model has 4
states and 4 outputs. These 4 outputs areWcmp, pim, pem, andntrb. The rest of the
sensors are in the Simulink model implemented as inputs. To analyze the model, it was
transferred to a flat list of equations. The number of equations is 126 and the structural
redundancy is 4. The fact that the structural redundancy is 4 is a consequence of that
the number of outputs is 4.

For comparison, three algorithms were tested on the set of 126 equations. The
first is the old MSO algorithm presented in [6], where an alternative partial reduction
is used. Without any reduction, the old MSO algorithm is practically intractable for
this example. The second is the new basic algorithm presented in Section 5 with the
structural reduction in Section 6.1 applied initially, reducing the number of equations
to 28. The third is the new improved algorithm presented in Section 6.

All algorithms were implemented in Matlab and executed on a PC with a 1 GHz
processor. The execution times were measured in seconds and are presented in Table 1.

Algorithm Execution time
The old MSO algorithm 5900 s
The new basic algorithm 18 s
The new improved algorithm 0.42 s

Table 1: A comparison of three MSO algorithms.

In the table we can see that the new MSO algorithm is more than 14000 times faster
than the old algorithm!

8 Conclusions

A new approach to compute minimal structurally overdetermined sets of equations was
developed. The proposed algorithm can be used in other structural approaches for find-
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ing testable sub-systems. There are three main ideas that are used in the new algorithm.
First, it is based on a top-down approach as described in Section 5. Second, a structural
reduction is used where subsets of equations are lumped together in order to reduce
the size of the structural model. Third and last, it is prohibited that any MSO set is
found more than once. For a fixed order of structural redundancy, the computational
complexity, of the new algorithm, is polynomial in the number of equations, in con-
trast to previous algorithms where the complexity is exponential. The efficiency of the
algorithm was demonstrated by applying the new and previous algorithms to a model
of a Scania truck engine.

References

[1] M. Blanke, M. Kinnert, J. Lunze, and M. Staroswiecki.Diagnosis and Fault-
Tolerant Control. Springer-Verlag, 2003.

[2] J. P. Cassar and M. Staroswiecki. A structural approach for the design of fail-
ure detection and identification systems. InIFAC Control of Industrial Systems,
Belford, France, 1997.

[3] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs.Canadian
Journal of Mathematics, 10:517–534, 1958.

[4] Lars Eriksson. Structural algorithms for diagnostic system design using simulink
models. Master’s thesis, Linköpings universitet, 2004.
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Appendix: Theory

The following concepts and their theoretical foundation are given in [8]. Letϕ : 2M →
Z be defined by

ϕM = |M | − |varX (M)| (10)

This numberϕM will be called thesurplus ofM . Note thatϕ ∅ = 0. The surplus
functionϕ is a supermodular function on the family of equation subsets inM since

ϕ (M1 ∪ M2) + ϕ (M1 ∩ M2) ≥ ϕM1 + ϕM2 (11)

for all M1 ⊆ M andM2 ⊆ M. A setM is said to be aminimal set of surplusϕM if

ϕE < ϕM (12)

for all E ⊂ M .
Let M be an arbitrary subset ofM. Each subsetE of M defines a surplusϕE and

we defineϕ̄ by
ϕ̄ M = max

E⊆M
ϕE (13)

This number will be called thestructural redundancy ofM and it holds that̄ϕ M ≥ 0.
The surplus ofM is clearly less or equal to the structural redundancy ofM , i.e.

ϕ̄ M ≥ ϕM (14)

and the structural redundancȳϕ is a supermodular function [8], i.e.̄ϕ satisfies in-
equality (11). A setM is said to be aminimal set of structural redundancȳϕ M if

ϕ̄ E < ϕ̄M (15)

for all E ⊆ M .
Let M be any subset inM. Among all subsetsE of M with maximal surplus, i.e.

ϕE = ϕ̄M (16)

there exists a unique minimal subset [8]. This set will be denotedM+ and will be
called thestructurally overdetermined part ofM . In [8] it is shown that the setM can
be partitioned intoM+ ∪ (M \ M+) such that

ϕ̄ M = ϕ̄ M+ (17)

and
ϕ̄ (M \ M+) = 0 (18)

This means thatM+ contains all structural redundancy ofM . The Dulmage-Mendelsohn
decomposition can be used to compute the structurally overdetermined part in an effi-
cient way [7, 3].

Definition 4 (Proper structurally overdetermined). A structurally overdetermined set
M is aproper structurally overdetermined(PSO) set ifM = M+.

Note that given any setM of equations such that

M+ 6= ∅ (19)

it follows from (16) and Definition 4 thatM+ is an PSO set. This means that properties
of M+ sets carry over to PSO sets.
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Lemma 7. The following three statements about a setM are equivalent:

(i) The setM is a PSO set.

(ii) The setM is a minimal set of surplusϕM > 0.

(iii) The setM is a minimal set of structural redundancȳϕ M > 0.

Proof. (i) ⇒ (ii). Since M = M+ andM 6= ∅, it follows from (16) thatM is a
minimal set of surplusϕM > 0.

(ii) ⇒ (iii). SinceM is a minimal set of surplusϕM > 0, i.e. satisfies (12) for all
E ⊂ M . Let M1 be an arbitrary proper subset ofM . It follows that

ϕ̄ M1 = max
E⊆M1

ϕE < max
Ē⊆M

ϕ Ē = ϕ̄ M

according to (12). SinceM1 is an arbitrary proper subset ofM , it follows thatM is a
minimal set of structural redundancȳϕ M = ϕM > 0.

(iii) ⇒ (i). SinceM is a minimal set of structural redundancyϕM > 0, it follows
from (17) thatM = M+ andM 6= ∅, i.e. M is a PSO set.

Now, follows the proof of Lemma 1.

Proof. From the definition of the surplus functionϕ in (10) it follows that

ϕ (M \ {e}) ≥ ϕ (M) − 1 (20)

This, (14), andϕM = ϕ̄M give that

ϕ̄ (M \ {e}) ≥ ϕ̄ (M) − 1 (21)

SinceM is a PSO set, Lemma 7 states thatM is a minimal set of structural redundancy
ϕ̄ M , i.e.

ϕ̄ (M) > ϕ̄ (M \ {e}) ≥ ϕ̄ (M) − 1 (22)

which implies (5).

From this theorem, (16), and (19), it follows that for any PSO set with structural
redundancȳϕ 1 > 1 there exists a proper subset which is an PSO set with structural
redundancȳϕ 1 − 1.

Corollary 8. If M is a PSO set then for all its equivalence classesMi defined by (7):

|Mi| = |Xi| + 1 (23)

Proof. Let Mi be an arbitrary equivalence class which according to the decomposition
implies that for anye ∈ Mi, (M \ {e})+ = M \ Mi. Then we form

ϕ (M) − ϕ (M \ {e})+ = (|M | − |X|) − (|M \ Mi| − |X \ Xi|)
which can be simplified to

ϕ (M) − ϕ (M \ {e})+ = |Mi| − |Xi|
SinceM and(M \ {e})+ are PSO sets, it follows that

ϕ̄ (M) − ϕ̄ (M \ {e})+ = |Mi| − |Xi|
Then Lemma 1 and (17) imply (23).
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Next the proof of Lemma 2 is stated.

Proof. Assume thatM is an MSO set. The setM is therefore an SO set and it follows
that0 < ϕM ≤ ϕ̄M . This and (17) imply thatM+ 6= ∅, i.e. M+ is a PSO set and
therefore also an SO set. SinceM is an MSO set, it follows thatM = M+, i.e. M is
a PSO set.

Assume thatM has structural redundancȳϕ M > 1. Then, it follows from Lemma 1
that

ϕ̄ (M \ {e}) = ϕ̄ (M) − 1 ≥ 1 (24)

This implies that(M \ {e})+ 6= ∅ and that(M \ {e})+ ⊂ M is a PSO set which
contradicts thatM is an MSO set. HencēϕM = 1.

Assume thatM is a PSO set and that̄ϕM = 1. This and (16) imply thatϕM = 1.
By using Lemma 7, it follows that all proper subsetsE ⊂ M haveϕE = 0, i.e. E is
not an SO set. HenceM is an MSO set.

Lemma 9. Given two PSO setsM1 andM2, it follows thatM1 ∪M2 is a PSO set and
that

ϕ̄ (M1 ∪ M2) ≥ max(ϕ̄ M1, ϕ̄ M2) (25)

Equality is obtained if and only if̄ϕ M1 ≤ ϕ̄ M2 andM1 ⊆ M2 or ϕ̄ M2 ≤ ϕ̄ M1 and
M2 ⊆ M1.

Proof. See Theorem 1.2.1 in [8].

Lemma 10. If E andM are two equation sets such thatE ⊆ M , thenE+ ⊆ M+.

Proof. The fact thatE ⊆ M implies thatE+ ∪ M+ ⊆ M and from (17) also that

ϕ̄ (M+ ∪ E+) ≤ ϕ̄ M = ϕ̄ M+ (26)

Lemma 9 implies that

ϕ̄ M+ ≤ max(ϕ̄ M+, ϕ̄ E+) ≤ ϕ̄ (M+ ∪ E+) (27)

The inequalities (26) and (27) give that

ϕ̄ (M+ ∪ E+) = ϕ̄ M+ (28)

andϕ̄ E+ ≤ ϕ̄ M+. This, and the equality in (28) imply thatE+ ⊆ M+ according to
Lemma 9.

Now, the proof of Lemma 3 follows.

Proof. This theorem follows immediately from Lemma 10 by noting thatE is a PSO
set, i.e.E = E+ andE ⊆ (M \ {e}).
Lemma 11. LetM be a PSO set andMi an arbitrary equivalence class defined by (7).
If E is a PSO set such thatE ⊆ M andE ∩ Mi 6= ∅, thenMi ⊆ E.

Proof. Assume that there exists ane ∈ Mi \ E ⊆ M \ E. From Lemma 3, it follows
thatE ⊆ (M \ {e})+. This and the definition ofMi imply thatE ⊆ M \ Mi, which
contradicts the assumption and the lemma follows.

Now, follows the proof of Theorem 4.
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Proof. Follows immediately from Lemma 11.

Lemma 12. If M is a PSO set and{Mi}i∈I are its equivalence classes, then

ϕ (∪i∈I′Mi) = ϕ ({Mi}i∈I′) (29)

for all I ′ ⊆ I.

Proof. By using the notation of the structural decomposition described in Section 6.1
the surplus of∪i∈I′Mi can be expressed as

ϕ (∪i∈I′Mi) = | ∪i∈I′ Mi| − | ∪i∈I′ Xi| − |varX0(∪i∈I′Mi)| (30)

which can be rewritten as

ϕ (∪i∈I′Mi) =
∑

i∈I′
(|Mi| − |Xi|) − |varX0(∪i∈I′Mi)| (31)

Corollary 8 states that|Mi| = |Xi| + 1 for all i ∈ I, and consequently that

ϕ (∪i∈I′Mi) = |I ′| − |varX0(∪i∈I′Mi)| (32)

which is equal toϕ ({Mi}i∈I′).

Now, the proof of Theorem 5 follows.

Proof. Assume that∪i∈JMi is a PSO set. From Lemma 7, it follows that

ϕ (∪i∈J′Mi) < ϕ (∪i∈JMi) (33)

for all J ′ ⊂ J . From Lemma 12, it then follows that

ϕ ({Mi}i∈J′) < ϕ ({Mi}i∈J) (34)

for all J ′ ⊂ J . Hence{Mi}i∈J is a minimal set of surplusϕ ({Mi}i∈J), i.e. {Mi}i∈J

is a PSO set according to Lemma 7.
Now, we will show the reverse implication. Assume that{Mi}i∈J is a PSO set. If

M ′ ⊂ ∪i∈JMi, then
M ′ ⊇ (M ′)+ = ∪i∈J′Mi (35)

for someJ ′ ⊂ J according to Theorem 4. Since{Mi}i∈J is a PSO set, it follows from
Lemma 7 and Lemma 12 that

ϕ (∪i∈JMi) = ϕ ({Mi}i∈J) > ϕ ({Mi}i∈J′) = ϕ (∪i∈J′Mi) (36)

From (16) and (35), it follows that

ϕ (∪i∈J′Mi) = ϕ (M ′)+ ≥ ϕM ′ (37)

The inequalities (36) and (37) imply that∪i∈JMi is a minimal set of surplusϕ (∪i∈JMi),
i.e. ∪i∈JMi is a PSO set according to Lemma 7.

Finally, the proof of Theorem 6 follows.
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Proof. First of all, the lumping in the algorithm is justified by Theorem 5. Now, it is
shown that each MSO set is found at least once. LetE ⊆ M be an arbitrary MSO
set. A branch in the recursive tree that results in this MSO set can be obtained in the
following way: In each recursive step, chose thefirst branch where an equivalence class
not included inE is removed. It follows from Lemma 3 that by following this branch,
the setE is found.

Finally, it is shown that the same MSO setE can not be found if we deviate from the
branch described above, i.e. that the MSO setE is found only once. In each recursive
step, in all branches that precede this branch, only equivalence classes contained inE
have been removed. Therefore, these branches do not result in the setE. On the other
hand all succeeding branches contain thefirst equivalence class not contained inE,
i.e. the class removed in the branch that gives the setE. Hence, the branch described
above is the only branch that results in the MSO setE. This completes the proof.
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