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Abstract

A toolbox for parameterizing the ellipse model, that is a control-oriented compres-
sor model, to any given measured compressor map is described in detail in this do-
cument. The compressor model has been developed in previous publications and
shown to be capable of accurately reproducing the measured data obtained from
gas stand measurements, for a wide range of compressors, starting from small au-
tomotive applications to large compressors used in marine propulsion. In addition,
it has been shown that it is possible to extrapolate both mass flow and efficiency
to the unmeasured low speed region of the compressor in a physical way. The pa-
rameterization algorithm is based on Total Least Squares (TLS), which is shown
here and in previous publications to be a fast and reliable approach to fit the com-
pressor model to the map. The toolbox is implemented in a Matlab Graphical User
Interface (GUI) in order to make it easy for the user to parameterize the compres-
sor model. To demonstrate the workflow and ease of use, a complete step-by-step
example of how to work with the toolbox is provided. To further facilitate the user
in applying the model, the package also provides implementations of the ellipse
compressor model both as a Matlab function and as a Simulink block. This way,
the user can quickly and reliably use the results of the parameterization process in
a desired application, e.g. including the compressor model of a given compressor
map in a combustion engine simulation model.
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1 Introduction

LiU CPgui is a compressor model parameterization package implemented as a Mat-
lab Graphical User Interface (GUI). The GUI is built with the intention to simplify
the parameterization process of the complete compressor model proposed, thus
making it easy for any user to input a measured compressor map and obtain the
model parameters. This report contains a description of the implemented model
and parameterization procedure together with a tutorial about how to work with
LiU CPgui. The package work flow is explained with the help of a step-by-step
parameterization example using the toolbox.

1.1 Report outline

Section 2 contains an introduction to the measured compressor performance maps
and which signals are usually included. Section 3 describes the heat correction
method implemented in the LiU CPgui package that enables the user to obtain the
compressor adiabatic efficiency if needed. Section 4 introduces the model equa-
tions for the compressor flow and efficiency. The parameterization algorithm is
described in Section 5. How to work with the toolbox is illustrated in Section 6,
together with a step-by-step example.

2 Compressor performance maps

Compressor performance is normally measured together with a turbine in special
turbocharger test benches called gas stands. The measurements are done following
a standard procedure, see SAE [1]. For the compressor case, the provided data
usually include; inlet and outlet total pressures, p01 and p02, inlet and outlet to-
tal temperatures, T01 and T02, mass flow, Wc, and rotational speed ωc. Figure 1
contains a diagram of the compressor with the location of the surrounding measu-
rements.

To reduce the amount of measurements necessary to determine the compres-
sor performance, the compressor maps are usually provided in corrected variables.
This is done to cover different inlet conditions with a single set of measurements.
The corrected quantities are defined as in [2]

N̄c = Nc
1√

T01/Tc,ref
(1)

W̄c = Wc

√
T01/Tc,ref
p01/pc,ref

(2)

where Tc,ref and pc,ref are the reference values included in the map. The com-
pressor speed is usually given in revolutions per minute. Finally, the included map
signals are pressure ratio Πc = p02

p01
, efficiency ηc, corrected speed N̄c and corrected

mass flow W̄c.
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Figure 1: Diagram of a compressor with the surrounding pressures and temperatu-
res at the inlets and outlets.

The compressor performance is usually represented visually in a plot called
compressor map that contains the flow characteristics together with the device effi-
ciency. In the map, the operating points with the same speed are drawn together to
form Speed Lines (SpLs). Figure 2 shows an example of a compressor map with
its distinct operating zones.

3 Compressor efficiency correction

In the compressor map, the total to total efficiency is calculated from pressure and
temperature measurements as

ηc =
∆his
∆hact

=

p02

p01

γ−1
γ − 1

T02
T01
− 1

(3)

see Dixon and Hall [3] for more information. In gas stands, the compressor is
normally measured with a hot gas turbine side that will influence the compressor
temperature measurements, with a greater effect on low compressor speeds and
flows. Under these conditions, the measured temperatures will not represent the
temperature increase due to the air compression, since they will also contain the
temperature rise corresponding to the heat transfer. As a result, the calculated effi-
ciency will be lower than the real one. This issue has received substantial attention
in the research literature, see for example [4, 5, 6, 7, 8, 9, 10, 11, 12]. Since the
heat transfer in the gas stand is not the same as in the engine operation, having the
right adiabatic compressor efficiency is important in order to be able to simulate
the correct compressor-turbine power balance. If the right temperature at the com-
pressor outlet has to be achieved during simulation, a model for the heat transfer
present in the combustion engine operation can be included afterwards, see [5, 8].
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Figure 2: Compressor map sketch with different operating areas indicated. Choke
line is denoted with Ch0 to Chm and Zero Slope line with ZS0 to ZSm, while the
subscripts mean 0–stand still and m–maximum speed.

The LiU CPgui toolbox implements the efficiency correction method used in
Llamas and Eriksson [13]. This method is only summarized here, the authors refer
to the original publication from Casey and Fesich [9] for more information. The
key idea is that the different compressor SpLs should collapse into a single line in
the λEuler − φ2 plane, unless there is heat transfer affecting the efficiency measu-
rements. The compressor work coefficient is computed using the actual enthalpy
gain as

λ =
∆hact
U2

(4)

where U2 = ωcD2/2 is the compressor blade tip speed, with D2 denoting the
impeller diameter. The Euler compressor work coefficient can be computed from
the real work coefficient using the disk friction losses factor kfric, see Casey and
Schlegel [14].

λEuler =

(
1 +

kfric
φ1

)−1

λ (5)

where φ1 is the inlet flow coefficient calculated as

φ1 =
Wc

ρ01D2
2U2

(6)

with ρ01 as the inlet density. With the previous definitions, the aforementioned
linear relation can be derived from turbomachinery equations as

λEuler = 1− cs
U2

+ φ2 tanβ2 (7)
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where tanβ2 is negative for a back-swept impeller, and cs/U2 represents the slip
factor which can be considered reasonably constant. The difference between the
calculated Euler work input coefficient and the adiabatic, λEuler,ad, can be compu-
ted as

λEuler − λEuler,ad =
kq

φ2M3
U2

(8)

where MU2 is the tip-speed Mach number and kq is the dimensionless constant
that depends on the heat transfer rate and has to be adjusted to ensure that all SpLs
collapse into a single one in the λEuler − φ2 plane, see Casey and Fesich [9].
Thus, by adjusting a single parameter, kq, any compressor map can be potentially
corrected. This parameter is an input option of LiU CPgui. Note that the heat
correction method is only applicable if the compressor map was measured with
constant turbine inlet temperature, which is the usual case with SAE maps, see
SAE [1]. If the user is unsure whether or not the map is measured with constant
turbine inlet temperature, the parameter kq can be set to zero in the toolbox, which
will avoid applying the proposed correction method.

Unfortunately, in order to calculate the outlet flow coefficient, φ2, geometri-
cal details of the compressor are required to compute the velocity triangles at the
impeller outlet. Since these details are usually not provided with standard SAE
compressor maps, the iterative method from Casey and Schlegel [14] is used in
the LiU CPgui implementation to obtain φ2 for vaneless automotive compressors.
This iterative method requires the compressor diameter D2 and the diffuser chan-
nel width, b2. If the latter one is unknown, a value between 7−10% of the diameter
D2 is a fair approximation as suggested in Llamas and Eriksson [13].

Figure 3 contains the Euler work coefficient plotted against outlet flow coef-
ficient for a compressor map with and without the described correction method
applied. As can be seen, the different SpLs collapse on top of each other when
the correction is applied in the right side of the figure. The corresponding change
in efficiency values for the same correction can be observed in Figure 4. As can
be observed, only the lower SpLs are affected by the correction. This is expected
since for a small flow going through the compressor, the heat transfer has the lar-
gest effect on the temperature.

To sum up, the implemented correction method only requires the user to tune
one parameter, kq. There is no guarantee that the obtained efficiency is indeed
the true adiabatic efficiency, but it can be used to obtain efficiency values that are
close to it. It is suitable for vaneless compressors measured with constant inlet
temperatures, and knowing the impeller diameter and diffuser width is preferable
but not necessary.

4 Compressor model

This Section contains a full description of the mathematical formulation of the
compressor model parameterized with LiU CPgui. More details about the motiva-
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Figure 3: Euler work input coefficient vs outlet flow coefficient. Left; no heat
transfer correction. Right; with the correction applied. The values in the legend
correspond to different tip-speed Mach numbers.
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Figure 5: A sketch of the Ellipse flow model. The zero slope and choking lines
are plotted in dashed-dotted blue lines. The speed lines (SpL) are drawn using red
lines.

tions for the model formulation can be found in the original work [15, 16], together
with the later papers [13, 17] and the provided references therein.

4.1 Ellipse mass flow model

The Ellipse flow model defines a mathematical relation between mass flow, pres-
sure ratio and rotational speed. The main characteristics of the model are shown in
the sketch of Figure 5. The Zero Slope (ZSL) and Choke lines (ChL) are defined
in the sketch, together with the compressor Speed Line (SpL) at standstill. The
ZSL is not necessary equal to the surge line, even if both lines can coincide at low
speeds, they tend to differ at higher speeds. This can be observed in the general
diagram of Figure 2. Four different equations for four distinct zones are required
to completely define the Ellipse mass flow model.

4.1.1 Between the ZSL and the ChL

The main compressor operation zone is between the ZSL and the ChL, (W̄ZS ≤
W̄c < W̄ch). In this zone, the compressor SpLs are modeled using an ellipse
function, which gives the name to the mass flow model.(

W̄c − W̄ZS

W̄Ch − W̄ZS

)CUR
+

(
Πc −ΠCh

ΠZS −ΠCh

)CUR
= 1 (9)

where W̄Ch, ΠCh, W̄ZS , ΠZS and CUR are base parameters that define the po-
sition of the modeled SpLs in the compressor maps. Note that in the notation its
dependency of compressor corrected speed is dropped for simplicity. These base
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functions depend on compressor corrected speed and the 14 model parameters,
C−,i.

W̄Ch(N̄c,n) = W̄c,max(CWch,1 + CWch,2 arctan(CWch,3N̄c,n − CWch,4))
(10a)

ΠCh(N̄c,n) = Πc,max(CΠch,1 + CΠch,2N̄
CΠch,3
c,n ) (10b)

W̄ZS(N̄c,n) = W̄c,max(CWzs,1N̄
CWzs,2
c,n ) (10c)

ΠZS(N̄c,n) = 1 + (Πc,max − 1)CΠzs,1N̄
CΠzs,2
c,n (10d)

CUR(N̄c,n) = Ccur,1 + Ccur,2N̄
Ccur,3
c,n (10e)

In the definitions, the base functions use the normalized corrected compressor
speed with the maximum measured speed of the compressor map as

N̄c,n = N̄c/N̄c,max (11)

Moreover, the base functions are also normalized with the maximum measured
corrected mass flow and pressure ratio in the map, W̄c,max and Πc,max.

The package LiU CPgui has the option to use another base function for the
Choke mass flow (W̄Ch). This alternative base function is used in [16, 17] and is
defined as a piecewise function

W̄Ch(N̄c,n ≤ N̄c,s) = CWch,1 + CWch,2 · N̄
CWch,3
c,n (12a)

W̄Ch(N̄c,n > N̄c,s) = CWch,4 + CWch,5 · N̄c,n (12b)

where the switching N̄c,s is a parameter to be estimated. To ensure the continuity
of both equations (12) at the switching speed (N̄c,s), a condition is introduced
between the two equations. This continuity condition reduces the number of pa-
rameters from six to five, since the parameter CWch,4 has to fulfill the following
equation

CWch,4 = CWch,1 + CWch,2N̄
CWch,3
c,s − CWch,5N̄c,s (13)

Note that the arctan base function from (10a) has one parameter less than this one.
The implicit equation (9) can be solved for either mass flow or pressure ra-

tio. Solving for mass flow, the following equation is obtained as function of the
surrounding pressures, the inlet temperature and the compressor speed

W̄c = W̄ZS + (W̄Ch − W̄ZS)

[
1−

(
Πc −ΠCh

ΠZS −ΠCh

)CUR] 1
CUR

(14)

On the other hand, equation (9) can also be solved for pressure ratio, in this
case the explicit equation becomes

Πc = ΠCh + (ΠZS −ΠCh)

[
1−

(
W̄c − W̄Ch

W̄Ch − W̄ZS

)CUR] 1
CUR

(15)
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4.1.2 Below the ChL

For pressure ratios smaller than the choking point, (Πc < ΠCh), the model is assu-
med to be vertical. Other approaches for this region are proposed in Leufvén and
Eriksson [16], and can be useful in case the mass flow saturation gives problems
during simulation.

4.1.3 Between zero flow and the ZSL

A third-order polynomial is used to model the pressure ratio for mass flows smaller
than the ZS flow, (0 < W̄c < W̄ZS).

Πc = Πc,0 + 3
ΠZS −Πc,0

W̄ 2
ZS

W̄ 2
el − 2

ΠZS −Πc,0

W̄ 3
ZS

W̄ 3
el (16)

whereWel is an artificial mass flow, introduced to give more flexibility to the shape
of the third order polynomial. More details are included in Llamas and Eriksson
[13]. This artificial mass flow is defined as

W̄el = W̄ZS

(
1−

(
1− W̄c

W̄ZS

)Cs)1/Cs

(17)

where the parameterCs is estimated from the data. For the caseCs = 1, both flows
are identical (Wel = W̄c). The pressure ratio at zero flow Πc,0 is defined as

Πc,0(N̄c,n) = ΠZS(N̄c,n)− ΓΠcs(ΠZS(N̄c,n)− 1) (18)

where, if surge measurements are available, the constant ΓΠcs can be adjusted to
the desired map. Unfortunately, surge measurements are not usually available, so
the suggested value from Eriksson et al. [18], ΓΠcs = 1/2, is used as a fixed value
in LiU CPgui.

4.1.4 Negative mass flow

The usual assumption for negative flows is that the compressor is operating as a
poorly designed turbine, see Figure 2 for a qualitative representation. Hence, a
turbine mass flow model can be use to extend the compressor model in this region,
see [15, 19] for specific models. Inverting the flow model to obtain pressure ratio
yields

Πc = (Πc,0 − 1) +

(
1−

(
−W̄c

K0W̄c,max

)2
)−1

Kt

(19)

where K0 and Kt are model parameters, and Πc,0 is function of compressor speed
according to (18). Since this area is not measured, these parameters are not esti-
mated during the model parameterization described in Section 5. Instead the user
has to find the values that best represent the compressor operation during surge, see
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Eriksson et al. [20] for an example. As a rule of thumb, the following parameters
can be used: Kt ≈ 2 and K0 ≈ 0.3. Note that the product K0 · W̄c,max sets the
location of the vertical asymptote in the negative flow area, see Figures 24 and 25
for graphical examples.

4.2 Enthalpy-based efficiency model

The Enthalpy-based efficiency model is capable of extrapolating the efficiency to
low speed regions. It complements the Ellipse mass flow model and thus provides
a complete representation of the compressor performance. The model is developed
by starting from the physical definition of the compressor isentropic efficiency

ηc =
isentropic work

actual work
=
h02s − h01

h02 − h01
=

∆h0s

∆hact
(20)

with the isentropic work defined as in [3]

∆h0s = cpT01

[(
p02

p01

) γ−1
γ

− 1

]
(21)

where γ is the ratio of specific heats and cp is the specific heat at constant pressure.
To carry out the compression of the gas, the compressor consumes a shaft work

that can be computed using Euler’s equation on the compressor speed triangles, see
Dixon and Hall [3]. Rearranging the terms and taking assumptions about the flow
direction, the following expression is achieved

∆hact =
(
1 + kloss(N̄c, W̄c)

) (
b(N̄c,n)− a(N̄c,n)W̄c

)
(22)

see [13] for more details. The base functions a(N̄c,n) and b(N̄c,n) are defined as

b(N̄c,n) = ∆hact,max(Cb,1 · N̄2
c,n + Cb,2 · N̄3

c,n) (23a)

a(N̄c,n) =
∆hact,max
W̄c,max

Ca,1N̄c,n

[1 + Ca,2N̄2
c,n]Ca,3

(23b)

where ∆hact,max is the map’s maximum actual work value, calculated using (20),
(21), and the measured efficiency. The model parameters C are determined with
the parameterization algorithm.

Compressor wheel friction and other losses like flow recirculation at low flows
and leakage are represented in the term kloss(N̄c, W̄c). This loss term is calculated
as

kloss(N̄c, W̄c) =
Clossρ01D

3
2πN̄c

60W̄c
(24)

where Closs is a model parameter, D2 is the compressor impeller outlet diame-
ter and ρ01 is the inlet density. The value of D2 might not be provided with the
compressor map, however, it is not problematic to guess it since during the para-
meterization the model parameters will compensate for errors done in the guessing.
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The LiU CPgui has alternatives implemented for the base functions of the
Enthalpy-based efficiency model. The previously described base functions cor-
respond to the ones from Llamas and Eriksson [13], and are named SAE base
functions in the toolbox. The alternative base functions from Llamas and Eriksson
[17], are named ASME base functions in the toolbox and are defined as

b(N̄c,n) = ∆hact,max(Cb,1 · N̄c,n + Cb,2 · N̄2
c,n) (25)

a(N̄c,n) =
∆hact,max
W̄c,max

(Ca,1 · N̄c,n − Ca,2 · N̄2
c,n) (26)

For this case, the losses are not considered, and thus the kloss function is defined as

kloss(N̄c, W̄c) = 0 (27)

which results in the expression for ∆hact from Llamas and Eriksson [17]. The
complete derivation of the base functions for the two shown cases can be found in
the original publications [13, 17], together with an analysis of the model results.

4.3 Compressor model structure

The compressor model is structured to agree with a component-based modeling
framework. There are two main formulations, named forward and backward im-
plementation depending on the intended use. The forward implementation is the
most common way to represent the compressor, and it provides as outputs; mass
flow, efficiency, temperature and consumed power as function of the surrounding
pressures, inlet temperature and speed. On the other hand, the backward imple-
mentation is suitable if the model is to be used for surge phenomena simulation in
a More-Greitzer formulation [21].

4.3.1 Forward implementation

In the forward implementation the model is structured in four main functions of the
surrounding pressures, temperatures and compressor speed. The four equations are
defined as

Wc =fWc(p01, p02, T01, ωc) (28a)

ηc =fηc(p01, p02, T01, ωc,Wc) (28b)

Tc =T01 +
T01

ηc

{(
p02

p01

) γ−1
γ

− 1

}
(28c)

Pc =Wc cp,c (Tc − T01) (28d)

A distinct model equation has to be defined for the zone (0 < W̄c < W̄ZS)
described in Section 4.1.3 if the model is to be used in forward mode. This is
because if the model is used with pressure ratio as input, two different outputs
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Figure 6: Compressor model with the two different implementations for the unsta-
ble area. The forward implementation is plotted in red and the backward imple-
mentation with reverse flow is drawn in green.

cannot exist for the same input value, thus a linear model is used instead in the area
between zero flow and the ZSL. The mass flow in this area is computed as

W̄c = W̄ZS −
Πc −ΠZS

αkΠW0

(29)

where αkΠW0 defines the slope of the linear function and it is defined using the
maximum measured mass flow and pressure ratios in the map as

αkΠW0 = 0.15
Πc,max

W̄c,max
(30)

Graphically, this modifies the SpLs in this area as shown in Figure 6, with linear
SpLs that have the same slope. This parameter is not included in the estimation
algorithm, and any value can be used in order to affect the slope of the SpLs in this
area as desired.

Hence, for the forward mode the Ellipse mass flow model in implicit form is
calculated as

W̄c =


equation (29) if Πc > ΠZSL

equation (14) if ΠZSL ≤ Πc < ΠCh

W̄Ch if Πc < ΠCh

(31)

which is inserted in (28a), after uncorrecting the mass flow. The Enthalpy-based
efficiency model described in (20) with the selected subfunctions, (21) to (27), is
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Figure 7: More-Greitzer model approach to simulate surge. A model of a plug with
mass together with a control volume and a throttle are required.

inserted in (28b). The forward Simulink implementation provided with the LiU
CPgui package agrees to this equation structure. It is important to mention that
assuming linear SpLs in this area has no physical meaning, it is only done to have
a fully defined function. During simulations, it should be checked that the model
only enters this region during fast transients to later return to the ellipse equation
zone. If there is interest in obtaining a more realistic performance prediction, the
surge capable compressor model from the following section should be used.

4.3.2 Surge-capable backward implementation

The capacity of the ellipse equation to be inverted, enables the model to be used
in for surge simulation. Surge is simulated using the More-Greitzer formulation
described in [21]. Figure 7 contains a diagram of the compressor model in the
More-Greitzer setup, and Figure 6 shows the unstable area speed lines in the bac-
kward implementation. The extra components are the plug with mass that models
the acceleration of mass flow though the outlet pipe, and the control volume before
the throttle.

The model structure then becomes

dWc

dt
=
πD2

4L
(p̂c − pc) (32a)

p̂c = p01 · fΠ̂c
(Wc, T01, ωc) (32b)

ηc = fηc(p01, p02, T01, ωc,Wc) (32c)

Tc = T01 +
T01

ηc

{(
p02

p01

) γ−1
γ

− 1

}
(32d)

Pc = Wc cp,c (Tc − T01) (32e)

where the mass flow becomes a dynamic state of the model that has to be integrated.
And pc is the dynamic pressure of the control volume downstream of the plug. The
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compressor operating compression ratio is calculated as

fΠ̂c
(Wc, T01, ωc) =


equation (19) if W̄c < 0

equation (16) if 0 ≤ W̄c < W̄ZSL

equation (15) if W̄ZSL ≤ W̄c < W̄Ch

(33)

with the corresponding unit changes and speed and mass flow corrections. The
backward Simulink implementation provided with the LiU CPgui package follows
this model structure.

5 Parameterization algorithm

With the compressor model already described, the next step is to parameterize the
model to a measured compressor map. This is not a trivial task because of the
nonlinearities of the proposed model, as well as the asymptotic shape of the com-
pressor map SpLs close to the choke and surge areas, see Pachner et al. [22]. Due
to this, parameterizing the model using a regular least-squares approach tends to
either fail or produce unsatisfactory results. To remedy this and provide satisfac-
tory parameterization results, a Total Least Squares (TLS) method is used. The
TLS method implementation in the LiU CPgui toolbox is described in detail in this
section.

5.1 Ellipse mass flow model parameterization

The parameterization process first focuses on the Ellipse mass flow model, in the
Πc−W̄c plane. Figure 8 shows a representation of the model errors to be minimized
when applying a regular least-squares approach with the corrected mass flow as
independent variable. As can be seen in the figure, the errors close to the choke
region become very large even if the measured points are not that far away from the
modeled SpL, which numerically complicates the optimization problem. Note that
if the errors are computed with the corrected mass flow value and using pressure
ratio as independent variable, this issue will be located close to the Zero Slope line
insead.

This issue, is addressed by minimizing instead the orthogonal distance between
the modeled SpL and the measured points. This approach was shown to be a suit-
able way to deal with this problem in Llamas and Eriksson [17]. However, the
orthogonal projections needed to solve a system of equations each iteration which
slowed down the algorithm. In Llamas and Eriksson [13], a faster approach was de-
veloped to compute the orthogonal distance based on TLS, which is the algorithm
implemented in LiU CPgui. More details about TLS can be found in Nocedal and
Wright [23]. Figure 9 contains a diagram of the TLS algorithm applied to the
Ellipse flow model for a single SpL. The main difference is that TLS allows devia-
tions (δ) in the independent variable, in this case mass flow. Then the model errors
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Figure 8: Regular least-squares errors of the Ellipse mass flow model. The modeled
curve is seen in solid red. The blue crosses represent measurement points with the
computed distance to the model as gray arrows.

are computed at the deviated measured point. In the TLS algorithm, the deviati-
ons (δ) are included in the parameter vector and also in the residual vector to be
minimized. As can be seen in Figure 9, the model errors in gray are substantially
reduced in the choke region.

The mathematical expression of the TLS algorithm applied to the Ellipse mass
flow model is as follows

min
θ,δ

m∑
k=1

(ε2k + δ2
k) (34a)

s.t.

εk = Πc,k − f(θ; W̄c,k + δk), for k = 1, 2, ...,m, (34b)

θl ≤ θ ≤ θu (34c)

where m is the number of measured points and θ is the parameter vector

θ = [CWch, CΠch, CWzs, CΠzs, Ccur, Cs]
T (35)

where each base function correspond to a set of parameters, e.g CΠch has 3 pa-
rameters see (10b). Therefore, depending on the choice of base functions, the
parameter vector is of different length. The parameter vector is restricted by fixed
upper and lower limits, respectively θu and θl. The objective function is the sum of
squared perpendicular distances, ε and δ, from the model to the measured points.
Which geometrically correspond to the orthogonal distance between the SpL and
measurements squared.

Since it is required to have a properly defined function for all map regions, the
vertical line in the choke region is changed for a very steep linear function during
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Figure 9: TLS algorithm with the deviations δ depicted as blue arrows. The blue
dots represent measurement points and the red curve is the modeled SpL. The com-
puted distance to the model is drawn as gray arrows.

the parameterization

Πc =
(1 + klin)ΠCh

klin
− ΠCh

W̄Chklin
W̄c (36)

where klin is a parameter that defines the slope, here it is fixed to 0.01. Note also
that the values of ΠCh and W̄Ch are given by the corresponding base functions
and its dependency on the corrected compressor speed and the model parameters
is omitted in the notation. The function f calculates the model pressure ratio and
it is defined as a piecewise function

f(θ; W̄c) =


equation (16) W̄c < W̄ZSL

equation (9) W̄ZSL ≤ W̄c < W̄Ch

equation (36) W̄c > W̄Ch

(37)

where its compressor speed dependency is omitted in the notation. In practice, the
measured corrected compressor speed for the considered SpL is used as input in f .

5.2 Including the enthalpy-based efficiency model

Ideally, we would like to parameterize the enthalpy-based efficiency model alone.
However, as discussed in Section 4.2, the efficiency model requires the flow pre-
diction from the Ellipse mass flow model as input together with the pressure ratio to
compute the efficiency values. This issue implies that, when used in real simulati-
ons, the errors of the Ellipse mass flow model will affect the efficiency predictions.
Hence, this issue has to be properly addressed during the parameterization in order
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Figure 10: Three dimensional diagram of the modeled SpL in solid lines vs measu-
red SpL in dot connected lines. Yellow corresponds to the highest speed and blue
to the lowest.

to achieve the best model fit. This is done by solving a complete model parameteri-
zation of both mass flow and efficiency submodels at the same time to gave a good
overall fit. Which in practice means minimizing the orthogonal distance between
SpL and measured points in the three dimensional space defined by (W̄c,Πc, ηc).
Figure 10 shows a sketch of the modeled and measured SpLs in the considered
three dimensional space.

Mathematically, the formulation of the three dimensional case in TLS is very
similar to the previous case (34). The difference is that the efficiency errors have to
be computed composing the Ellipse mass flow model equation inside the Enthalpy-
based efficiency model. By doing so, it results in

min
θ̃,δ

m∑
k=1

(κ2
k + ε2k + δ2

k) (38a)

s.t.,

κk = ηc,k − g(θ̃; W̄c,k + δk, f(θ̃; W̄c,k + δk)), (38b)

εk = Πc,k − f(θ̃; W̄c,k + δk), (38c)

for k = 1, 2, ...,m,

θ̃l ≤ θ̃ ≤ θ̃u (38d)

where the parameter vector θ̃ now contains all model parameters

θ̃ = [CWch, CΠch, CWzs, CΠzs, Ccur, Cs, Cb, Ca, Closs]
T (39)
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Figure 11: Zero slope line mass flow initialization results on 234 different com-
pressor maps. Top left corner parameters correspond to the red curve fit. More
information in the original publication Llamas and Eriksson [13].

The efficiency function g is defined by combining (20) (21) and (22) as follows

g(θ̃; W̄c,Πc) =

cpT01

[
Π
γc−1
γc

c − 1

]
∆hact

(40)

The corrected compressor speed dependency is also omitted in the notation for
simplicity. More details and results of the proposed algorithm can be found in
Llamas and Eriksson [13].

5.3 Algorithm initialization

The initial parameters define the starting point of the nonlinear optimization pro-
blems defined in the previous section. To obtain good results, and even sometimes
to be able to solve the problem, good initial values are essential. The automatic
generation of suitable initial values is done in LiU CPgui by using the normalized
compressor database results from Llamas and Eriksson [13]. An example of the
initialization functions from [13] is shown in Figure 11 for the Zero Slope Mass
flow base function. A separate set of initialization parameters is defined for large
marine-size maps, since those have a slightly different shape as can be seen by
comparing Figures 24 and 25. Table 1 contains the initialization values of the dif-
ferent base functions used in the toolbox. The distinction between marine-size or
automotive-size values is done based on the maximum mass flow value measured
in the compressor map.

In LiU CPgui, the model shape with this automatic initialization parameters
can be compared to the current map and modified if necessary with a convenient
graphical drag and drop method described in Section 6.5.
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Table 1: Initialization values for the different base functions parameters.
Parameters (eq.) Automotive-size Marine-size
CWch,0 (10a) [0.795, 0.278, 2.491, 1.441]T [0.769, 0.354, 3.726, 2.929]T

CWch,0 (12) [0.491, 0.617, 1.274, 0.314, 0.804]T [0.336, 0.758, 2.371, 0.856, 0.896]T

CΠch,0 [0.109, 0.387, 3.493]T [0.066, 0.641, 2.931]T

CWzs,0 [0.671, 2.155]T [0.874, 2.149]T

CΠzs,0 [0.995, 2.274]T [1.020, 2.620]T

Ccur,0 [2.092, 0.984, 5.001]T [2.453, 1.887, 2.421]T

Cs,0 1 1

Cb,0 (23a) [1.022, 0.0979]T [0.988, 0.086]T

Cb,0 (25) [0.091, 1.249]T [0, 1.382]T

Ca,0 (23b) [0.403, 0.0177, 2.568]T [0.311, 0.071, 5.209]T

Ca,0 (26) [0.757, 0.216]T [0.635, 0.216]T

Closs,0 0.0114 0.0161

6 How to work with LiU CPgui

This section provides a complete tutorial about the different steps to follow to pa-
rameterize a given compressor map using LiU CPgui. Every step is described in
detail using a compressor map parameterization example.

Figure 12 contains a flow diagram of the different steps to be followed from
inputing a compressor map to getting the model parameters. Four main parame-
terization steps have to be performed, which can be repeated if the results are not
satisfactory. Figure 12 represents this repetition after the blocks “is shape ok?” and
“model fit ok?” going back to the previous parameterization block. Note that in
the toolbox, it is possible to repeat any previous parameterization step, not only the
latest executed, which is represented in Figure 12 by a dashed line. When repe-
ating a parameterization step, the initial parameters to be used and the parameter
constraints can be chosen from the available ones to modify the result. The names
of the steps coincide with the titles used in the different button groups of the LiU
CPgui, see Figure 13.

6.1 Software requirements

LiU CPgui requires Matlab 2013b or newer. If lsqnonlin is the chosen least-
squares solver, the Matlab Optimization Toolbox is required, otherwise a basic
Matlab installation is sufficient. When LiU CPgui is started, the toolbox checks
automatically whether or not the Optimization Toolbox is installed and enables or
disables the lsqnonlin solver appropriately.
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Figure 12: Flow chart of the parameterization steps with LiU CPgui. The four
parameterization steps contain the name of the parameter variable created/updated
when executed. The dashed line represents the possibility to go back and repeat
any previous parameterization step if the results are not satisfactory.
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6.2 Starting LiU CPgui with a compressor map

First of all, LiU CPgui needs to be initialized. This is done by calling the function
init_LiU_CPgui from the Matlab prompt, which adds the necessary folders to
the Matlab path.

The required compressor map measurements and its format are listed in Table
2. The impeller diameter is optional and it does not need to be specified if the
user does not have the value available. If the diameter is unknown, the numerical
rule depicted in Figure 8 from [18] is used to get an estimate of the compressor
diameter from the maximum speed measured in the map.

Table 2: Required compressor map data inputs to LiU CPgui.
Variable Units Description Type

NcCorr [rpm] Corrected compressor speed Column vector
WcCorr [kg/s] Corrected compressor mass flow Column vector
PiC [-] Compressor pressure ratio Column vector
etaC [-] Compressor efficiency Column vector
TCref [K] Compressor map reference temperature Scalar
pCref [Pa] Compressor map reference pressure Scalar
D_2 [m] Compressor outer impeller diameter Scalar

Once the required data is available, the compressor map can be structured in
the required format using the provided function get_mapStruct. This function
requires the map variables as inputs and returns the compressor map in a Matlab
structure array. Running this command in the matlab prompt results in the follo-
wing structure array with a field for each map variable:

map = get_mapStruct(NcCorr,WcCorr,PiC,etaC,TCref,pCref,D_2)
map =

struct with fields:

NcCorr: [25x1 double]
WcCorr: [25x1 double]
PiC: [25x1 double]
etaC: [25x1 double]
TCref: 298
pCref: 100000
D_2: 0.0300

Once the map is in the required format, the GUI can be started by running the
command LiU_CPgui(map).

The file example_LiU_CPgui.m contains an example call of the GUI with a
representative but fictive compressor map (note that the provided map is not a real
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Figure 13: LiU CPgui after being loaded with most of the buttons disabled initially.

measured compressor map). A step-by-step parameterization process of the repre-
sentative compressor map is described in the following sections, the user can later
use this file as a template to load any desired compressor map. Start by running
the example_LiU_CPgui.m command in the Matlab prompt. This will set the
required folders to the path and load the GUI with the fabricated compressor map.
Figure 13 shows the GUI after being loaded with most of the buttons disabled at
the step displayed.

6.3 Select options and initialize algorithm

As is in Figure 13, the top right part of the LiU CPgui is where all the paramete-
rization options are selected before initializing the algorithm. The following sub-
sections provide a description of each of them. Once all options are selected, the
lower left button, Initialize Algorithm , has to be pressed so all the required varia-
bles are created. Once the Algorithm is initialized, more GUI buttons are enabled.
To follow the example_LiU_CPgui.m parameterization steps, taken here, keep
the default options and press Initialize Algorithm .

6.3.1 Base functions

Four of the model base functions have to be chosen from two different alternatives
per base function. These options are listed in Table 3.
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Table 3: Base function options.
Base Function Option 1 Option 2

W̄Ch Atan: defined as (10a) Switch: defined as (12)
a SAE: defined as (23b) ASME: defined as (26)
b SAE: defined as (23a) ASME: defined as (25)
Kloss SAE: defined as (24) ASME: defined as (27)

The base function selection is performed using the pop-up menus. When the
button Initialize Algorithm is pressed, the selected base functions are loaded for
the parameterization steps. If the user decides to change the base functions after
the initialization is performed, the LiU CPgui buttons are disabled until the button
Initialize Algorithm is pressed again.

6.3.2 Solver

Two solvers can be selected with the corresponding pop-up menu; lsqnonlin
and LSOptim. The default solver is lsqnonlin, which is a least-squares solver
provided with the Matlab Optimization Toolbox. Thus, the user needs to have
this toolbox available if the solver lsqnonlin is selected. On the other hand,
the alternative solver LSOptim is provided in case the user does not have access
to the Optimization Toolbox. LSOptim is a custom built least-squares solver by
Professor Lars Eriksson. More information about it can be obtained by contacting
the author.

6.3.3 Heat correction parameter

The heat correction method implemented in LiU CPgui is described in Section 3.
In the top right corner of the LiU CPgui, a numeric value can be specified for the
correction parameter kq, by default this value is zero. After Initialize Algorithm
button is pressed, the equation (8) is calculated again. The authors suggest to start
with a small number, e.g. a value around kq ≈ 0.002. The general criterion to know
if the heat correction is suitable is to check that all SpLs collapse on top of each
other in a work coefficient vs flow coefficient plot. This plot can be performed by
selecting the work coefficient option in the preliminary plots menu. This process
can be repeated until a suitable kq value is found.

6.3.4 Constraint thresholds

The constraints of the different base functions can be modified by changing the
value box corresponding to the upper and the lower bound constraints for each
of the base function parameters. In this case, a value of xthr = 0.1 corresponds
to a relative 10% margin (upper or lower) of the current parameter value. The
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parameter threshold limits can be written, for upper and lower case as

θlim = θo ± |θo · xthr| (41)

where θo is the initial vector of parameters. Hence, increasing xthr will result
in wider bound constraints, so more space to adjust the shape of the base functi-
ons. On the other hand, decreasing xthr will make sure that the solver has little
room to modify the current base function parameters. The thresholds can be mo-
dified at any time before the parameterization, it is not necessary to press the
Initialize Algorithm button for the changes to take place.

6.4 Preliminary Plots

Once the initialization has been done, the Preliminary Plots menu is enabled. This
menu allows the user to do four different plots of the current compressor map. By
selecting the type of plot in the pop-up menu and then pressing the Plot button,
the desired figure is displayed at one of the two GUI axes. Figure 14 shows the
pressure ratio and efficiency plots as function of mass flow, while Figure 15 shows
the other two available plots, Actual Enthalpy and Work Coefficient. The Legend
corresponds to the blade Mach number MU2 . Under the GUI axes, there is a check
box that enables or disables the hold plot option together with a Clear Plot button.
At the opposite side under the axes there is an Export Figure button, its function
is to export the current plot from the corresponding axes to a new figure outside the
GUI.

6.5 Ellipse model initialization

Starting with a good initial guess for the Ellipse model is crucial in order to obtain
good results. Hence, a point and click with drag and place function is implemen-
ted to modify the default initial guess is implemented in the package to help the
user define a suitable initial guess for the given compressor map. Pressing the
Plot Initial Guess button shows what will be send to the solver as initial guess,

see Figure 16. The check box Edit Initial Guess lets the user drag and drop the dif-
ferent points in the Choke and Zero Slope lines, see Figure 17, where the red color
indicates that the lines are currently modifiable. The drag and drop functionality
works with the following sequence: mouse click on the desired point and hold the
mouse button pressed, move the cursor to the desired position and release the but-
ton, the point is moved accordingly. Once the Zero Slope and Choke lines are at
the desired positions, uncheck the checkbox and the lines become black again, see
Figure 18.

Now that the Ellipse model initial guess is suitable, the model is initialized
by pressing Initialize Ellipse . Essentially what the algorithm does is to solve
separated least squares problems for each compressor speed line, and then use the
results to initialize the base function parameters. This will create a Matlab struct
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Figure 14: LiU CPgui after plotting Pressure ratio and efficiency. The correspon-
ding panel is highlighted in red.

26



Figure 15: LiU CPgui after plotting Enthalpy and Work Coefficient. The corre-
sponding panel is highlighted in red
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Figure 16: LiU CPgui with the default Ellipse model initial guess. The correspon-
ding button is highlighted in red.
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Figure 17: LiU CPgui with the Ellipse model initial guess being edited in red. The
corresponding button is highlighted in red.
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Figure 18: LiU CPgui with the Ellipse model initial guess after the drag and drop
process. The corresponding button is highlighted in red.
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Figure 19: LiU CPgui with the initialized Ellipse model plot in green. Note that the
plots are being added on top of each other because the Hold plot option is enabled.
The corresponding buttons are highlighted in red.

variable named paramEll_i that contains the model parameters. paramEll_i
can be selected in the Plots and Postprocess>Selected Parameters pop-up menu in
order to plot the ellipse model in green on top of the compressor map, see Figure
19 to see how it looks like in the GUI. If the results are not satisfactory, the initial
guess can be further edited with the drag and drop functionality and the constraint
thresholds can be adjusted accordingly.

6.6 Ellipse model parameterization

After initializing the Ellipse model and obtaining a suitable model shape, the El-
lpise Model Parameterization block in the LiU CPgui is enabled. In the Initial
Guess pop-up menu the initial guess parameters can be selected (currently only
paramEll_i are available). Pressing the button Fit Ellipse Model will adjust the
Ellipse model parameters to best represent the given compressor map in the Mass
flow - Pressure Ratio plane. The resulting parameters are stored in a struct named
paramEll, that becomes available in the pop-up menus for plotting in red or for
being selected as initial guess for other parameterization steps. Figure 20 shows
the LiU CPgui after plotting the Ellipse model on top of the previous parameteriza-
tion. Note also that the parameterization process writes the solver iterations in the
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Figure 20: LiU CPgui with the parameterized Ellipse model in red. Note that the
plots are being added on top of each other because the Hold plot option is enabled.
The corresponding buttons are highlighted in red.

Matlab prompt together with the calculated model relative errors in percentage.
If the results are not satisfactory, this parameterization step can be repeated

changing the parameter threshold constraints. Furthermore, the initial guess can be
changed using the pop-up menu, the initialization parameters paramEll_i can be
used again, or the results from the current parameterization step, paramEll, can
be chosen. Remember that the parameter struct variables are updated every time
the corresponding parameterization button is pressed, see Figure 12. The parameter
struct variables can be exported to the workspace using the button Return Parameters
in case the user wants to save them before they are updated in a parameterization
step. More details about exporting the parameters are given in Section 6.9.1.

6.7 Efficiency model initialization

Once paramEll becomes available, the block Efficiency Model Initialization is
enabled. The first thing to do is to plot the default initial guess, shown in Figure 21.
Once this is done, the option to initialize the Efficiency model becomes available.
By default the previous Ellipse parameters paramEll are selected to initialize the
Efficiency parameters. Note that there is a link between the efficiency and the mass
flow submodels, as described in Sections 4 and 5. This initialization process creates
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Figure 21: LiU CPgui with the Efficiency model initial guess plotted in red. The
corresponding button is highlighted in red.
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Figure 22: LiU CPgui with the initialized Efficiency model plotted in black. Note
that the plots are being added on top of each other because the Hold plot option is
enabled. The corresponding buttons are highlighted in red.

the parameter struct paramT_i that becomes available for plots in the Plots and
Postprocess block of the GUI. For this example, the plotted initialized efficiency
model is shown in Figure 22, plotted using black color. As can be seen in the
figure, the efficiency curves are not very close together to the measured values,
nevertheless, this issue is not very problematic because the complete model will be
parameterized in the next step. However, if the results are too far away from the
measured values, this step and the previous ones can be repeated until the efficiency
model initialization produces a model that is close to the measured values.

6.8 Complete model parameterization

With the parameters paramT_i, the complete parameterization of the ellipse flow
and the efficiency models can be executed. By pressing Fit Complete Model , the
complete model parameters, named paramT, are created. Figure 23 shows the
model results after the complete parameterization in the three dimensional space
Mass Flow - Pressure Ratio - Efficiency. For the paramT parameters, the plotting
color is blue. The solver iterations are written in the Matlab prompt together with
the calculated model relative errors in percentage for the three compressor map
dimensions.

34



Figure 23: LiU CPgui with the final model parameterization plotted in blue. Note
that the plots are being added on top of each other because the Hold plot option is
active. The corresponding buttons are highlighted in red.
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If the results are not satisfactory, this step is repeated using for example the
current final parameters paramT and changing the model parameter Constraint
Thresholds in the menu.

6.9 Plots and postprocess

The Plots and Postprocess menu works in a similar way as the Preliminary Plots
menu. Once the Selected Parameters and the Plot Type are chosen from the Pop-up
Menus, pressing the Plot button will execute the plot combination. Note that those
buttons become enabled once the algorithm has some model parameters available.
The different plotting options are summarized in Table 4.

Table 4: Different plot type options available.
Plot Type Description

Ellipse Model Ellipse mass flow model in the top axes.
Efficiency Model Efficiency model in the bottom axes.
Base Functions Base functions in a different figure.
Eff. Iso Lines Ellipse model together with the model efficiency isovalue

lines in the top axes.
3D plot Model in the mass flow-pressure ratio-efficiency space in

the top axes. Use the rotate option in the top left bar of
LiU CPgui to rotate the obtained figure.

Enthalpy gain Modeled actual enthalpy vs mass flow in the bottom axes.
Work Coefficient Modeled work vs inlet flow coefficients in the top axes.

6.9.1 Return Parameters

Pressing the button Return Parameters in the Plots and Postprocess menu sends
the current model parameters chosen in the Selected Parameters Pop-up menu to
the Matlab workspace. Once this is executed, a struct with the same name is created
to be used outside of the LiU CPgui environment. The parameters can then be used
together with the provided model implementations in Matlab code and Simulink.
The paramT struct contains the fields described in Table 5

6.10 Model implementations

An implementation of the compressor model in Matlab code is provided and na-
med CompressorModel.m. The implementation follows the forward formula-
tion from (28). Two different Simulink implementations of the compressor mo-
del are provided in the Simulink library LiU_Compressor_Model_Lib.slx. A
forward implementation following the formulation in (28) is provided and named
Forward_CompressorModel. A backward implementation capable to simulate
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Table 5: paramT struct field names and description
Field name Description

vector Column vector with the model parameters; θ or θ̃.
delta_Wc Column vector with the δ deviations, see (34).
C Vectors with the corresponding model parameters C

(Using same subscripts as this text).
F_X Names of the base functions used in the estimation.
T_ref Compressor map reference temperature.
p_ref Compressor map reference pressure.
Nc_max_map Compressor map maximum corrected speed.
Wc_max_map Compressor map maximum mass flow.
PI_max_map Compressor map maximum pressure ratio.
Delta_h_max Compressor map maximum actual enthalpy gain.
gamma_air Ratio of specific heats of the compressed air.
rho1 Density at the compressor inlet.
D_2 Compressor outer impeller diameter.
Cp_air Specific heat at constant pressure of the compressed air.
Gamma_PIcs Surge parameter ΓΠcs from (18).
alpha_kPiW0 Linear function parameter αkΠW0 from (29).

surge phenomena (32) is provided in the library and named Surge_CompressorModel
. Note that for the surge model some extra parameters need to be specified; Model
plug length L and diameter D, and the compressor reverse operation parameters
K0 and Kt for which the values from Section 4 can be used.

The Simulink library also contains implementations of the different compressor
model base functions. In case the user wants to change the base functions when
parameterizing the model in the GUI, later the Simulink implementation can be
modified accordingly. The Simulink implementations require that the parameter
struct variable obtained from LiU CPgui is renamed as ParamComp, the structure
field names are the same. Moreover, the Simulink library is saved in different
Matlab versions to minimize compatibility problems.

7 Parameterization examples

This section provides examples of the model parameterization to two very dif-
ferent types of compressors. Figure 24 contains the results for a standard small
automotive-size vaneless compressor. As can be seen the agreement of the model
and the measured values is very good for both mass flow and efficiency values.

The proposed model and parameterization method is able to deal with different
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Figure 24: Parameterized automotive compressor map. Measured SpL drawn as
solid blue lines. Left: Pressure ratio vs corrected mass flow with efficiency as
contour lines. Right: Efficiency vs corrected mass flow. Note that the first two
speed lines efficiency values are higher than the following measured point due to
measurement errors.

compressor sizes, Figure 25 shows the parameterization results on a big marine
vaned compressor map. As can be observed, the shape of the compressor map
is significantly different compared to the automotive-size compressor from Figure
24. Despite the differences, the model is also able to adapt to the measured map
using the toolbox parameterization method.
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Figure 25: Parameterized marine compressor map. Measured SpL drawn as solid
blue lines. Left: Pressure ratio vs corrected mass flow with efficiency as contour
lines. Right: Efficiency vs corrected mass flow.
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8 Summary

The LiU CPgui toolbox functionality has been described together with all mathe-
matical equations of the compressor model that is parameterized with the toolbox.
How to work with the toolbox has been explained in detail by following a step-by-
step compressor map parameterization procedure.
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dreas Horn. Apparent and real efficiency of turbochargers under influence
of heat flow. In 14th International Symposium on Transport Phenomena and
Dynamics of Rotating Machinery (ISROMAC-14), Honolulu, HI, February
2012.

[13] Xavier Llamas and Lars Eriksson. Control-oriented compressor model with
adiabatic efficiency extrapolation. SAE International Journal of Engines, 10
(4), 2017. doi: 10.4271/2017-01-1032.

[14] M.V. Casey and M. Schlegel. Estimation of the performance of turbochar-
ger compressors at extremely low pressure ratios. Proc Inst Mech Eng
A: Journal of Power and Energy, 2(224):239–250, November 2009. doi:
10.1243/09576509JPE810.

[15] Oskar Leufvén and Lars Eriksson. A surge and choke capable compressor
flow model - validation and extrapolation capability. Control Eng. Pract., 21
(12):1871–1883, December 2013. doi: 10.1016/j.conengprac.2013.07.005.

[16] Oskar Leufvén and Lars Eriksson. Measurement, analysis and modeling of
centrifugal compressor flow for low pressure ratios. Int. J. Engine Res., 17
(2):153–168, February 2016.

[17] Xavier Llamas and Lars Eriksson. Parameterizing compact and extensible
compressor models using orthogonal distance minimization. ASME J Gas
Turb Pwr, 139(1), 2017. doi: 10.1115/1.4034152.

[18] Lars Eriksson, Vaheed Nezhadali, and Conny Andersson. Compressor flow
extrapolation and library design for the modelica vehicle propulsion library -
vehprolib. In SAE Technical Paper 2016-01-1037. SAE International, April
2016. doi: 10.4271/2016-01-1037.

[19] Lars Eriksson and Lars Nielsen. Modeling and Control of Engines and Dri-
velines. John Wiley & Sons, Hoboken, NJ, 2014.

[20] Lars Eriksson, Xavier Llamas, Kristoffer Ekberg, and Viktor Leek. Dynamic
Modeling, Simulation and Control of Turbochargers, pages 176–206. Nova
Science Publishers, Inc., 2017.

[21] E. M. Greitzer. The stability of pumping systems - the 1980 Freeman scholar
lecture. Journal of Fluids Engineering, 103:193–242, 1981.

[22] Daniel Pachner, Lukas Lansky, David Germann, and Markus Eigenmann.
Fitting turbocharger maps with multidimensional rational functions. In

41



SAE Technical Paper 2015-01-1719. SAE International, April 2015. doi:
10.4271/2015-01-1719.

[23] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
New York, 2nd edition, 2006.

42



A License

Version 1.2: 2017-12-20
Copyright (C) 2017, Xavier Llamas

LiU CPgui is free software: you can redistribute it and/or
modify it under the terms of the GNU Lesser General
Public License as published by the Free Software
Foundation, version 3 of the License.

This package is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General
Public License along with LiU CPgui. If not, see <http
://www.gnu.org/licenses/>.

B List of files in LiU CPgui

==========================================================
Package Contents
==========================================================
init_LiU_CPgui - Initializes the compressor parameterization

package and sets the required path.
example_LiU_CPgui - Example call of the CP GUI with a

example compressor map, created to resemble a measured
one, the user is supposed to load the compressor map in
the provided fields.

ExampleMap - mat file which contains the example compressor
map (not measured from any real compressor).

LiU_CPgui - Compressor parameterization Graphical User
Interface.

Simulink Implementations
==========================================================
CompressorModel - m-function implementation of the

compressor model in the forward implementation.
CompModel - Simulink implementation of the compressor model

in usual forward mode.
CompModel_Surge - Simulink implementation of the compressor

model for surge simulation in the More-Greitzer
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framework.
BaseFunc_Blocks - Simulink library of the different model

base functions, implemented to be used in case the user
selects different base functions in the LiU CPgui tool.

Subfunctions used inside the GUI
==========================================================
lsoptim - Solves an uncostrained non-linear least squares

problem using a Levenberg-Marquardt like method.
initialize_algorithm - Creates all initial signals required

for the parameterization process depending on the user
inputs

get_signals - Creates all initial signals required for the
given compressor map, in thegiven map struct.

get_vector - Returns a vector of the mean of each column in
the Matrix M

get_mapStruct - Creates the map structure required by the
parameterization GUI as input.

Ellipse_Initialization - Returns the Ellipse parameters
given the Initial guess, the Constraints and solver
options.

Ellipse_Parameterization - Solves a Total Least Squares
problem to optimize the Ellipse parameters given the
Initial guess, the Constraintsand solver options.

Efficiency_Initialization - Provides an initial guess of the
efficiency parameters by fitting each SpL independently
and then parameterizing the base functions.

Complete_Parameterization - Solves a Total Least Squares
problem to optimize the complete compressor model
parameters given the Initial guess, the Constraintsand
solver options.

Plotting Subfunctions
==========================================================
plot_modelMassFlow - Plots the model pressure ratio vs mass

flow in the given axes handle.
plot_modelEfficiency - Plots the model efficiency vs mass

flow in the given axes handle.
plot_modelContour - Plots the model pressure ratio vs mass

flow in the given axes handle with the efficiency
extrapolation as contour levels.

plot_model3D - Plots a number of speed lines in the 3D space
formed by mass flow, pressure ratio and efficiency.
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plot_lambda - Plots the work coefficient vs flow coefficient
or the enthalpy vs mass flow for the given map and

parameter sets
plot_baseFunctions - Plots each model base function vs

corrected speed.
compute_grid - Creates the compressor mass flow grid area

given the model parameters and the options.
compute_PiC - Computes the pressure ratio given the gridded

compressor mass flow area and the model parameters.
compute_etaC - Computes the efficiency given the gridded

compressor mass flow and pressure ratio areas and the
model parameters.

compute_basefunctions - Computes the base functions in a
dense grid given the model parameters and the gridding
options.

Base functions
==========================================================
F_WZSL - Computes the Zero Slope Line Mass Flow given the

parameters and normalized corrected speed vector.
F_WChL_switch - Computes the choke line mass flow given the

parameters and normalized corrected speed vector.
F_WChL_atan - Computes the choke line mass flow given the

parameters and normalized corrected speed vector.
F_PIZSL - Computes the Zero Slope Line pressure ratio given

the parameters and normalized corrected speed vector.
F_PIChL - Computes the choking pressure ratio given the

parameters and normalized corrected speed vector.
F_PI0 - Computes the pressure ratio at zero flow given the

parameters and normalized corrected speed vector.
F_kloss_none - Computes k_loss values given the parameters

and the corrected speed and mass flow values.
F_kloss - Computes k_loss values given the parameters and

the corrected speed and mass flow values.
F_CUR - Computes CUR values given the parameters and the

normalized corrected speed vector.
F_b_SAE - Computes B value given the parameters and the

normalized corrected speed vector.
F_b_ASME - Computes B value given the parameters and the

normalized corrected speed vector.
F_a_SAE - Computes A value given the parameters and the

normalized corrected speed vector.
F_a_ASME - Computes A value given the parameters and the

normalized corrected speed vector.
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