Issues in Diagnosis, Supervision and
Safety

L.. Nielsen

Email: larsQisy.liu.se

M. Nyberg

Email: matny@isy.liu.se

E. Frisk

Email: frisk@isy.liu.se

C. Backstrom

Email: cba@Qida.liu.se

A. Henriksson

Email: andhe@ida.liu.se

[. Klein

Email: inger@isy.liu.se

F'. Gustafsson
Email: fredrik@isy.liu.se

S. Gunnarsson

Email: svanteQisy.liu.se

Abstract

[ssues concerning diagnosis, supervision and saftey are found in many techno-
logicaly advanced products. There is now a trend to extend the functionality
of diagnosis and supervision systems to handle more advanced situations. This
report collects some of the initiatives taking place in research and some of the
developments taking place in the industry.

This work has been supported by NUTEK within the ISIS competence centre
and by the Swedish research council for engineering sciences (TFR) under grant

Dnr. 93-731.
IDA Technical Report 1996 Department of Computer
LiTH-IDA-R-96-37 and Information Science,
ISSN-0281-4250 Linkoping University,

S-581 83 Linkoping, Sweden

Contents

1 Introduction
1.1 Problem formulation
1.2 Outline of the report

2 Industrial perspectives

2.1 Diagnosis, Supervision and Safety in process industry from an ABB
perspective L

2.2 Diagnosis, Supervision and Safety in automotive engines
2.3 Diagnosis, Supervision and Safety examples in AXE exchanges . .

2.4 Diagnosis, Supervision and Safety from a Saab Military Aircraft
Point of View

2.5 Diagnosis, Supervision and Safety examples in robotics

3 Continuous model based diagnosis
3.1 Why model based diagnosis? L.
3.2 Quantitative approaches to diagnosis
3.3 [Isolation strategies L
3.4 Robustness
3.5 Model structure
3.6 Parameter estimation L.
3.7 Geometric approach to residual generation
3.8 Residual evaluation L.
3.9 Non-linear residual generators
3.10 Performance issues

3.11 Parity equations

4 Statistical change detection

4.1 Residual generation oo

11

13
15

16
16
16
20
23
24
25
27
29
31
32
32

43

4.2 Performance measures 44
4.3 Change detection methods 45
4.4 Two-model approach 46
4.5 Multi-model approach o 0oL 47
4.6 Example: fuel monitoringo 48
Discrete model-based diagnosis 53
5.1 Introduction to diagnostic reasoning 53
5.2 Model-based diagnosis oo 54
5.3 Finding a solutiono 58
5.4 Selecting a solution 61
5.5 Speeding up model-based diagnosis L. 62
5.6 Diagnosisin DEDSo 63
Temporal Reasoning 65
6.1 Temporal-Constraint Reasoning 65
6.2 Some Examples in Detail 76
6.3 Reasoning about Knowledge and Time 84
6.4 Temporal-reasoning Systems 89
6.5 Further Reading L. 90

Chapter 1

Introduction

Diagnosis, supervision and safety are found in almost all technologically advanced
products. This includes automobiles, airplanes, robots, numerically controlled
machines, among others. There is now a trend to extend the functionality of
diagnosis and supervision systems to handle more cases in more operating situa-
tions. There are many reasons including economy, safety, and maintenance.

The purpose of this report is to collect some of initiatives taking place in
research and some of the developments taking place in industry.

1.1 Problem formulation

In [1989] Isermann defines the diagnostic task as the determination of kind, lo-
cation, size and time of a detected fault.

A term closely related to diagnosis is FDI (Fault Detection and Isolation) as
used by Frank [1991], Patton [1994] and Chow & Willsky [1984] where

e Fault detection
Detect when a fault has occured.

e Fault isolation
Isolate the fault, i.e. determine the faults origin

FDI is sometimes used as a synonym to diagnosis, e.g. in Gertler [1991].

When designing a diagnostic system important parameters are the false alarm
rate, i.e. how often the system signals a fault in a fault-free environment, and the
probability for missed fault detection. These measures can be hard to determine
forcing other performance measures as will be discussed in Section 3.10.

To perform diagnosis we need some sort of redundancy in the system and one
way of achieving this is to introduce hardware redundancy in the process. A criti-
cal component, e.g. an actuator or sensor, is then duplicated or triplicated (Triple
Modular Redundancy) and then using a majority decision rule any faults in the

3

duplicated hardware can be detected. Hardware redundancy is straightforward
to implement but has several drawbacks.

e Extra hardware can be very expensive.

e The extra hardware can be space consuming which can be of great im-
portance, e.g. in a space shuttle. The components weight can also be of
importance.

e Some components can’t be duplicated, e.g. in a system to detect leaks on
a pipeline it is not possible to duplicate the pipeline.

Instead of hardware redundancy we can utilize the system property analytical
redundancy which are the subject of this chapter and can be defined as

Definition 1.1 [Analytical redundancy]. A process is analytically redun-
dant if there exists functional relationships between measured or known variables,
e.g. control signals.

In [Chow and Willsky, 1984] analytical redundancy is said to exist in two
forms

e Direct or Static redundancy
The relationship among instantaneous outputs of sensors.

e Temporal redundancy
The relationship among histories of sensor outputs and actuator inputs.
It is based on these relationships that outputs of (dissimilar) sensors (at
different times) can be compared.

When the system model is given as analytical functions, analytical redundancy
is sometimes referred to as functional redundancy. One area where analytical
redundancy based diagnosis will have problems replacing hardware redundancy
is where the demands on fast reliable responses is very high, e.g. in an aircraft
where human life could depend on extremely fast response to component failure.

The faults acting upon a system can be divided into three types of faults.

1. Sensor (Instrument) faults
Faults acting on the sensors

2. Actuator faults
Faults acting on the actuators

3. Component (System) faults
A fault acting upon the system or the process we wish to diagnose.

4

Actuator faults Componﬁnt faults Sensor faults

Control signals Dynamic U Outputs
"l pcumrs] | PREE | ~{sensons |

Disturbance

.| Diagnosis
System

Diagnosis
decision

Figure 1.1: Structure of a diagnosis system

A general FDI scheme based on analytical redundancy can be illustrated as in
Figure 1.1, an algorithm with measurements and control signals as inputs and a
fault decision as output.

It may be unrealistic to assume that all signals acting upon the process can be
measured, therefore an important property of an algorithm is how it reacts upon
these unknown inputs. An algorithm that continue to work satisfactory even when
unknown inputs vary is called robust. It is desirable to make the fault decision
insensitive or even invariant to these unknown inputs, i.e. to perform exact or
approximative disturbance decoupling. Further discussions around robustness
issues can be found in section 3.2.

There are many ways to categorize the different diagnosis schemes described
in literature, but here we divide them into two groups: qualitative approaches,
emerging from the computer science field of studies, and approaches based on
signal processing, control theory etc. here called quantitative approaches.

1.2 Outline of the report

Chapter 2 describes some industrial perspectives on diagnosis. It was inspired by
the joint industrial and academic ISIS symposium on diagnosis, supervision and
safety in March 1996, but has also been extended during further discussions with
industrial partners. The chapters following reviews quite a number of possible
techniques from the research literature. In Chapter 3 a continuous model based
approach is described, and Chapter 4 deals with the problem of change detection.
Chapter 5 is devoted to discrete model based diagnoses, while temporal reasoning
is discussed in Chapter 6.

Bibliography

[Chow and Willsky, 1984] E.Y. Chow and A.S. Willsky. Analytical redundancy
and the design of robust failure detection systems. IEFFE Trans. on Automatic
Control, 29(7):603-614, 1984.

[Frank, 1991] P.M. Frank. Enhancement of robustness in observer-based fault
detection. In IFAC Fault Detection, Supervision and Safety for Technical Pro-
cesses, pages 99-111, Baden-Baden, Germany, 1991.

[Gertler, 1991] J. Gertler. Analytical redundancy methods in fault detection and
isolation-survey and synthesis. In IFAC Fault Detection, Supervision and Safety
for Technical Processes, pages 9-21, Baden-Baden, Germany, 1991.

[Isermann, 1989] R. Isermann. Process fault diagnosis based on dynamic models
and parameter estimation methods, chapter 7. In Patton et al. [1989], 1989.

[Patton et al., 1989] R.J. Patton, P. Frank, and R. Clark, editors. Fault diagnosis
in Dynamic systems. Systems and Control Engineering. Prentice Hall, 19809.

[Patton, 1994] R.J. Patton. Robust model-based fault diagnosis:the state of the
art. In IFAC Fault Detection, Supervision and Safety for Technical Processes,
pages 1-24, Espoo, Finland, 1994.

Chapter 2

Industrial perspectives

There are more issues involved in industrial diagnosis, supervision and safety than
can be covered in this text. A sample of industrial perspectives are given in the
following sections. These samples are based on contacts within ISIS (Information
Systems for Industrial control and Supervision) both from a joint industrial and
academic symposium in March 96 and from further contacts with the industries
involved in ISIS.

2.1 Diagnosis, Supervision and Safety in pro-
cess industry from an ABB perspective

ABB Industrial Systems AB develop, manufacture and sell control system prod-
ucts to the process industry, for example, the pulp and paper industry, chemical
industry, breweries, food industry and metal industry. One part of ABB In-
dustrial Systems is also dealing with motors, both AC and DC. The type of
control system products manufactured by ABB Industrial systems include oper-
ator stations, controllers, batch stations, information management stations and
engineering stations.

The situation today

Currently diagnoses is used on a component basis, i.e., each motor, pump, valve,
transformer and so on is treated individually. The diagnoses consists of either
localization of the fault after failure, or a detection algorithm giving an alarm for
a possible fault. There are many problems with the approach used today.

The localization of a fault after failure is done completely off-line, and is
totally separated from the control system. Often expensive sensors are used and
complicated signal processing is necessary. This leads to the fact that the results
can be understood only by a specialist.

One problem with the detection algorithms used today is that too many
alarms are created, and some of these alarms are false alarms. Furthermore,
it is difficult and very expensive to design these detection algorithms, since it
is done individually for each process. The customers are not willing to pay this
much for a fault detection algorithm. Additionally, considerable knowledge about
a process is gained during the first to years when running the process, and during
this time the industry learns what will cause them problems. This implies a great
need for changes in the algorithms when the system is up and running. Often
the industry is not willing to take these risks and costs, which in turn hampers
good alarm systems.

The future

The operators want information on
1. what to do to reduce the impact on production when a failure has occured,
2. what to do to remove the failure, and
3. how to put back production to normal again.

To be a control system vendor supplying tools for this is a big challenge. We
must make the functions easy to configure, validate, not CPU-demanding and
always giving the correct information.

In the future we expect a development towards integrated diagnoses systems
that use information from more than one component in order to make conclusions
on faults using redundant information. ABB Industrial Systems has investigated
methods like Diagnostic Model Processor. There are several benefits with this
method. It is possible to point out what is failing with a high degree of certainty,
and avoid false alarms. It also gives a possibility to suggest actions to eliminate
the failure. The drawback is that this method is very costly in configuration and
validation.

2.2 Diagnosis, Supervision and Safety in auto-
motive engines

Diagnosis of automotive engines has become increasingly important, mostly be-
cause of legislative regulations. Today it is one of the major application areas for
diagnosis, and the number of diagnosis systems in use is larger than for any other
application involving mechanics. Compared to many other applications automo-
tive diagnosis is constrained by economical reasons. Even the slightest costs gets
emphasized because of the large production volumes.

Background

Diagnosis of automotive engines has a long history. Since the first automotive
engines in the 18:th century, there has been a need for finding faults on the
engines. For a long time, the diagnosis was performed manually, but diagnostic
tools started to appear in the middle of the 20:th century. One example is the
stroboscope that is used for determining the ignition time. In the 1960s, exhaust
measurement, became a common way of diagnosing the fuel system. Until the
1980s, all diagnosis were performed manually and off-board. It was around that
time, electronics and gradually microprocessors were introduced in cars. This
opened up the possibility to use on-board diagnosis. The objective was to make
it easier for the mechanics to find faults. 1988, the first legislative regulations
regarding On-Board Diagnostics, OBD, were introduced by CARB (California Air
Resource Board). In the beginning these regulations applied only to California,
but EPA (Environmental Protection Agency) adopted similar regulations that
applied for all USA. This enforced the manufacturers to include more and more
on-board diagnosis capability in the cars. 1994, the new and more stringent
regulations, OBDII, were introduced in California. Today, software for fulfilling
OBDII is a major part of the engine management system. At least 50% has been
reported. Except for California and USA, few regulations have been introduced in
other countries. However, for example EU have announced regulations, starting
to apply in a few years.

Why On-Board Diagnosis?

There are several reasons for incorporating on-board diagnosis:

e The mechanics can check the stored fault code and immediately replace the
faulty component. This implies more efficient and faster repair work.

e If a fault occurs when driving, the diagnosis system can, after detecting
the fault, change the operating mode of the engine to limp home. This
means that the faulty component is excluded from the engine control and
a suboptimal control strategy is used until the car can be repaired.

e The engine can be repaired due to the condition of the engine and not due
to a repair schedule, thus saving repair costs.

e The diagnosis system can make the driver aware of faults that can damage
the engine, so that the car can be taken to a repair shop in time. This is a
way of increasing the reliability.

e A fault can often imply increased emission of harmful emission components,
dangerous for the environment. As an example, 1990 EPA estimated that

60% of the total hydro-carbon emissions originated from the 20% of the ve-
hicles with serious malfunctioning emission control systems. It is important
that such faults are detected so that the car can be repaired as quickly as
possible.

The first three items can be summarized as to increase the availability of the car.
Of all these reasons, the main reason for legislative regulations is the environ-
mental issues.

OBDII

OBDII is the most extensive on-board diagnosis requirements announced so far.
It started to apply 1994, but its requirements are made harder for every year until
year 2000. The main idea is that a instrument panel lamp called Malfunction
Indicator Light (MIL) must be illuminated in the case of a fault that can make
the emissions exceed the emission limits by more than 50%. The MIL should,
when illuminated, display the phrase “Check Engine” or “Service Engine Soon”.
The OBDII also contains standards for the scantools, connectors, communication,
and protocols that are used to exchange data between the diagnosis system and
the mechanics. Further, it says that the software and data must be encoded to
prevent unauthorized changes of the engine management system.

The requirements on the diagnosis system is formulated so that it must be
able to detect a fault during a drive cycle. A drive cycle is defined as a drive case
where all characteristics of a FTP75 test cycle is present. FTP75 is a standardized
test cycle used in USA and some other countries. When a fault occurs, the MIL
must be illuminated. If the fault is still present the next drive cycle, a Diagnostic
Trouble Code (DTC) and freeze frame data is stored. Freeze frame data is all
information available of the current state of the engine and the control system.
After three consecutive fault free drive cycles, the MIL should be turned off. Also,
the fault code and freeze frame is erased after 40 fault free drive cycles.

Generally, the components that must be diagnosed in OBDII, is all actuators
and sensors connected to the engine management system. Sensors and actuators
must be limit checked to be in range. Also the values must be consistent with each
other. Additionally, actuators must be checked using active tests. These general
specifications apply therefore to for example mass air flow sensor, manifold pres-
sure sensor, engine speed sensor, and the throttle. In addition to these general
specifications, OBDII contains specific requirements and technical solutions for
many components of the engine. Examples are:

e Misfire
One of the most important parts of OBDII are the requirements regarding
misfire. This is because a misfire means that unburned gasoline reach the
catalyst, which can be overheated and severely damaged. The diagnosis
system must be able to detect a single misfire and also to determine the

10

specific cylinder, in which the misfire occurred. During misfire, the MIL
must be blinking.

The technology used today is signal processing of the RPM-signal. Some-
times an accelerometer is used as a complement. Also, ion current based
methods are promising.

e Catalyst

Another central part of OBDII is catalyst monitoring. The catalyst is a
critical component for emission regulation. If the efficiency of the catalyst
falls below 60%, the diagnosis system must indicate a fault. The technology
used today is to use two lambda (oxygen) sensors, one upstream and one
downstream the catalyst. For a fully functioning catalyst, the variations,
due to the limit cycle enforced by the control system, in the upstream
lambda sensor should not be present in the downstream sensor.

e Lambda Sensors
A change in the time constant or an offset of the lambda sensors must
be detected. This is done by studying the frequency, comparing the two
sensors, and applying steps and studying step responses.

e Purge System
The purpose of the purge system is to take care of fuel vapor from the
fuel tank. Tt contains a coal canister and some valves to direct the fuel
vapor from the tank into the canister and from the canister into the intake
manifold. The diagnosis system must be able to detect malfunctioning
valves and also a leak in the fuel tank. The technology used here is heavily
based on active tests.

Other components for which OBDII contain detailed specifications are for exam-
ple EGR-systems, fuel-systems, and secondary air systems.

2.3 Diagnosis, Supervision and Safety examples
in AXE exchanges

This section briefly discusses diagnosis in the Ericsson AXE telephone exchange.

A telephone exchange is normally not considered a safety-critical system, al-
though it could be considered so in certain cases, eg. it may be very important
that a call for an ambulance succeeds without delay. Furthermore, the customers
are demanding increasingly higher reliability from the products. For instance,
telephone companies in Australia and the USA typically require that a telephone
exchange is non-operational for at most 5 mins. per year, specifying economic
penalties for the manufacturer if this requirement is not met.

11

Modern telephone exchanges, like the Ericsson AXE system, are complex
systems consisting of interacting hardware and software. An AXE telephone ex-
change basically consists of the blocks shown in Figure 2.1. The software in an

subscriber Access Switching Access network
Charging (':l;r&fgigl 0&M
i
operator

Figure 2.1: Block diagram of an AXE telephone exchange

AXE system contains several millions of lines of code (mostly written in Ericssons
own application-specific language PLEX). Only some 10% of this code can be di-
rectly related to the main functionality of the system, ie. traffic management,
charging and subscriber services. The remaining code is used for other pur-
poses, including operating system, administration (eg. adding new subscribers),
restart procedures, system extension, synchronization of systems etc. Most of
these latter functionalities are located in the block labelled O&M (operation and
management) in the figure. The O&M block consists of four subsystems:

MAS: Maintenance Subsystem (supervision of the hardware)
NMS: Network Management Subsystem (network load balancing)

STS: Statistical Subsystem (Collects statistics for number of calls, number of
failed calls etc.)

RMS: Remote Measurement System

The functions of the NMS block can be divided into four different types, as
follows:

Supervision: Raise an appropriate alarm when certain conditions are met (se-
rious errors)

Observation: Change system state when required (for instance, in the case of
system overload)

12

Control: There are two types of control actions:

e Protective control (eg. disallow certain types of calls in order to keep
the system running)

e Expansive control (eg. find new paths for routing calls in the network)

Many different types of errors can arise in software-controlled telephone ex-
changes, for instance the following:

e Bit errors

e Sporadic hardware errors, eg. errors caused by static electricity (single or
infrequent such errors need not always be reported)

e Synchronization slip, eg. a clicking sound caused by missed information due
to synchronization problems between exchanges

e Protocol errors, caused by different communication protocols in exchanges,
for instance, when modern digital and old analog exchanges are intercon-
nected (single errors need often not be reported).

Sporadic errors should only be reported when frequent. This is solved by
employing a so-called “leaking-bucket algorithm”, which is based on maintain-
ing a counter as follows: Whenever an error occurs, increment the counter by
one. Decrease the counter by some fixed amount, larger than one, at certain
predefined intervals. Raise an alarm whenever the value of the counter exceeds a
preset limit. The parameters, ie. the value to subtract and the limit, are deter-
mined empirically after installation. However, the designers do not receive much
feedback on how these parameters are set or how frequent alarms are in practice.

Many errors can also be attributed to the interfaces between system modules.

The AXE exchange collects a lot of statistics when operational. However, this
statistics is seldom used and it seems not quite clear what statistics is relevant
to use as feedback to the designers. A more intelligent way of collecting and
interpreting statistics is desired.

2.4 Diagnosis, Supervision and Safety from a
Saab Military Aircraft Point of View

Introduction

The work with flight safety and supervision are of very high priority at Saab
Military Aircraft mainly since one single failure can cause the loss of an aircraft
and human lives. There is also high priority in keeping the time the aircrafts are

13

grounded or not operational as short as possible by detecting and isolating faulty
equipment in the aircraft.

By showing the general framework for setting the demands on every part of
the aircrafts systems and giving two examples of how this can be achieved, we
hope to give a view of how SMA works with these kinds of problems.

Risk of Aircraft Loss

The customer has specified a maximum number of aircraft losses per hour of
flight and this number forms the basis for the work.

It is specified that 50% of these losses are allowed to be caused by techni-
cal problems and among these 50% one estimates that 50% can be caused by
unknown technical problems leaving us with 25% of the maximum number of
failures causing a loss of aircraft. This number is then divided in different parts
forming a requirement for each system.

The risk of losing the aircraft is determined for every type of fault in each
system and the probability of the fault is determined. These two numbers mul-
tiplied with each other and summed over every known fault for a system forms
that systems contribution to the risk for an aircraft loss per flight hour.

Failure Mode Effect Analysis (FMEA) and Failure Tree Analysis (FTA) is
used to predict the probabilities and the effects for all types of failures.

General Approach

To be able to keep the number of failures during flight down to an acceptable
level a sophisticated supervision and diagnosis methodology is used where all
systems have a Built-In-Test (BIT) using continuous monitoring during normal
operation. It also includes Safety Check at each power on, self diagnosis, and
test functions executed when a failure is detected or at predetermined intervals.
Many parameters are also stored at a fairly high rate during each flight making
it possible to do trend checking and to thoroughly investigate failure behavior.

Flight Control System

With the development of the fighter aircraft JAS39 Saab Military Aircraft took
a further step towards high maneuverable aircraft but at the same time raised
the risk of a crash in case of an undetected failure in the flight control system.
The development of the flight control system has then been aimed at keeping the
probability of an undetected failure down.

This has been achieved using an triplex redundant flight control system. The
redundancy includes the sensors, the computers, and the actuators including
redundancy in hydraulic and electrical power. A simple voting approach is used
to determine which sensor and which command shall be used. Since there must

14

be physical redundancy in case of a failure this approach is very fast in detecting
faults.

Since the supervision of the flight control system forms an important part of
the safety of the aircraft a lot of emphasize is put into verifying the functionality
of the system. This in addition to conventional software development testing also
achieved by using simulators with real hardware but simulated sensors, actuators
and flight dynamics. Different kinds of failures can then be introduced during
simulated flight and the effects on the flight control can be evaluated.

Integrated Navigation System

There is a trend towards better and better position determination methods but to
be able to use the achieved accuracy for other things than weapon delivery a fast
and reliable fault detection and supervision methodology have to be implemented.

An aircraft navigation system typically consist of an inertial navigation system
aided by GPS, Doppler radar, Terrain Referenced Navigation etc.. The systems
are integrated using a kalman filter forming an analytic redundancy which can
be used for model-based fault detection.

2.5 Diagnosis, Supervision and Safety examples
in robotics

High productivity and availability are important issues for industrial robots. The
productivity is determined by factors like the precision of the robot operation and
the speed by which the robot is able to operate, while the availability depends of
the overall operation of the robot and its components.

In order to improve the productivity there is big interest in developing the
robot control system towards higher precision. One limitation for what can be
achieved is determined by the quality of the mathematical model that is used for
the design of the robot control system. It is therefore of interest to study methods
that reduce the effects of modeling errors as much as possible. One approach to
this problem is to use identification to, for example, determine parameters that
are difficult to determine using physical modeling. A second approach is to utilize
that robots in many situations carry out the same operation repeatedly, and add
a correction to the control signal in order to improve the performance.

For high availability it is also important to have methods to detect, or even
predict, and isolate different types of faults that can occur. Each minute that
a production line has to be stopped represents a large economical loss. It is
therefore of interest to develop method for efficient and reliable handling of error
messages.

15

Chapter 3

Continuous model based
diagnosis

3.1 Why model based diagnosis?

Why is there a need for a mathematical model to achieve diagnosis? It is easy to
imagine a scheme where important entities of the dynamic process is measured
and tested against predefined limits. The model based approach instead performs
consistency checks of the process against a model of the process. There are several
important advantages with the model based approach

1. Outputs are compared to their expected value on the basis of process state,
therefore the thresholds can be set much tighter and the probability to
identify faults in an early stage is increased dramatically.

2. A single fault in the process often propagate to several outputs and therefore
causes more than one limit check to fire. This makes it hard to isolate faults
without a mathematical model.

3. With a mathematical model of the process the FDI scheme can be made
insensitive to unmeasured disturbances, e.g. in an SI-engine the load torque,
making the FDI-scheme feasible in a much wider operating range.

4. Tt might be possible to perform the diagnostic task without installing extra
sensors, i.e. the sensors available for e.g. control might suffice

There is of course a price to pay for these advantages in increased complexity in
the diagnosis scheme and a need for a mathematical model.

3.2 Quantitative approaches to diagnosis

In quantitative approaches the diagnosis procedure is explicitly parted into two
stages, the residual generation stage and the residual evaluation stage, as illus-

16

trated in Figure 3.1. The residual is a signal containing fault information, the

Diagnosis System

s \\
|
Control Signals Residual ! Measurements
2O .
Generator }
T |

A4

Residual
Evaluation

/
|
|
|
|
|
|
|
|
|
|
|
|
|
\

|
|
|
|
|
|
|
|
J

Diagnosis
decision

Figure 3.1: Two stage diagnosis system.

residual evaluation can in its simplest form be a thresholding test on the resid-
ual, i.e. a test if |r(¢)| > Threshold. More generally the residual evaluation stage
consists of a change detection test and a logic inference system to decide what
caused the change. A change here represents a change in normal behavior of the
residual.

The residual generation approaches can be divided into three subgroups, limit
& trend checking, signal analysis and process model based.

e Limit & trend checking
This approach is the simplest imaginable, testing sensor outputs against
predefined limits and/or trends. This approach needs no mathematical
model and are therefore simple to use but it is hard to achieve high perfor-
mance diagnosis as was noted in section 3.1.

e Signal analysis
These approaches analyses signals, i.e. sensor outputs, to achieve diagnosis.
The analysis can be made in the frequency domain, [Neumann, 1991], or
by using a signal model in the time domain. If fault influence are known
to be greater than the input influence in well known frequency bands, a
time-frequency distribution method as in [Olin and Rizzoni, 1991] can be
used.

e Process model based residual generation
These methods are based on a process model and will be further investigated
in this chapter. The process model based approaches are further parted
into two groups, parameter estimation, and geometric approaches. These
methods will be investigated further, later in this chapter.

17

Before we can discuss the methods in this section we need to make some defi-
nitions. The approaches to be discussed here generates residuals which can be
defined as

Definition 3.1 [Residual]. A residual (or parity vector) r(t) is a scalar or
vector that is 0 or small in the fault free case and # 0 when a fault occurs.

The residual is a vector in the parity space. This definition implies that a
residual r(¢) has to be independent of, or at least insensitive to, system states
and unmeasured disturbances.

We will now concentrate on linear systems because they can be systematically
analyzed, non-linear systems will be briefly discussed later in this chapter.

A general structure of a linear residual generator, can be described as in Figure
3.2. The transfer function from the fault f(¢) to the residual r(¢) then becomes

r(s) = Hy(s)G(s)f(s) = Grs(s)f(5)
What conditions has to be fulfilled to be able to detect a fault in the residual?

Process

c
~
=

y
®
[
—~
%)
~

Figure 3.2: General structure of a linear residual generator

In [Chen and Patton, 1994] detectability has a natural definition. To be able to
detect the i:th fault the i:th column of the response matrix [G,((s)]; has to be
nonzero, i.e.

Definition 3.2 [Detectability]. The i:th fault is detectable in the residual if
[Gry(s)li 70

This condition is however not enough in some practical situations. Assume
that we have two residual generators with structure as in Figure 3.2. When

18

15

0.5F b
0 1 1l 1
0 1 8 9 10
15
1r i
0.5F b
0 1 1 1
0 1 8 9 10

Figure 3.3: Example residuals

excited to a fault the residuals behave as in Figure 3.3. Here we see that we have
a fundamentally different behavior between r;(¢) and ry(t) as r{(¢) only reflects
changes on the fault signal and ry(¢) has approximately the same shape as the
fault signal. Thus r,(¢) can not be used in a reliable FDI application even though
it is clear that G, ¢(s) # 0.

The difference between the two residuals in the example are the value of
G,(0). It is clear that residual 1 has G, ((0) = 0 while residual 2 have G,,(0) #
0. This leads to another definition in [Chen and Patton, 1994]

Definition 3.3 [Strong detectability]. The i:th fault is said to be strongly
detectable if and only if

(G (0)]; # 0

The example show that it can be of great importance to perform a frequency
analysis of the residual generator.

Note that in Definition 3, the frequency w = 0 is made particularly important.
Which frequencies that is particularly important depends on which type of faults
that are interesting. There are three different types of temporal fault behaviour
as shown in Figure 3.4.

e Abrupt, step-faults a

e Incipient(developing) faults b

19

1.2

N — //
I I y
a I | g
ir I | .
7
| | s
/
I I
: | b .7
L = / i
0.8 ‘ ! I | 7
‘ ! I I Y
c ! | | L7
L I ! ! v o i
0.6 | | v r ‘
| | 7/ |
I o I
| | 7’ |
| | p | : |
| ! | 7 | I
0.4r | | | . | ! i b
| ! i I : |
| : /‘/ ! ! !
‘ ! e I ! I
0.2f | | P | ‘ ! i B
‘ (e | I ! |
‘ 17 | | : I
7
0 1 | 4 I ‘\ | 1 I I ! ‘\
0 1 2 3 4 5 6 7 8 9 10
t[s]

Figure 3.4: Different fault types

e Intermittant fault ¢

3.3 Isolation strategies

If we now have strongly detectable residuals, how can isolation be achieved? In
[Patton, 1994] two general methods are described

e Structured residuals

e Fixed direction residuals

Structured residuals

The idea behind structured residuals is that a vector valued of residuals is de-
signed making each element in the residual insensitive to different faults or subset
of faults whilst remaining sensitive to the remaining faults, i.e. if we want to iso-
late three faults we can design a three dimensional residual with components
r1(t), r2(t), and r3(t) to be insensitive to one fault each. Then if component r; ()
and r3(t) fire we can assume that fault 2 has occured.

Structured residuals can, e.g. be generated with a bank of observers. Here we
will present the structure for instrument fault diagnosis (IFD), the correspond-
ing structure for actuator fault diagnosis (AFD) and component fault diagnosis

20

(CFD) is trivial. There are two general structures for the observer bank, the dedi-
cated observer scheme (DOS) or the generalized observer scheme (GOS). In DOS
only one measurement is fed into each observer. The i:th observer are therefore
only sensitive to sensor faults in the i:th sensor. DOS is illustrated in Figure
3.5. Each observer in a GOS scheme on the other hand are fed by all but one

u

r
1
Observerl fB—»

1
|
. *
u 4
u k
> System »| Observerk
4 yk
|
|
|
)/
m »>| rI’T‘I
»| Observerm

u
Figure 3.5: Dedicated Observer scheme for IFD

measurement making the 7:th residual sensitive to all but the i:th measurement.
GOS is illustrated in Figure 3.6. Since there always exists modelling errors and

u > gl
»| Observer1

|

o | Observer k

\/
(9]
<
@
5]
LB

Yy
3

Observer m

Figure 3.6: Generalized Observer scheme for IFD

disturbances not modeled, residuals are never 0 even in the fault free case. This
can make some residuals fire that should not and vice versa. Therefore it is more
likely that a GOS-bank of residuals are more reliable than a DOS-bank in a realis-
tic environment. This is because that if one residual in a DOS-scheme happen to
fire in a fault free case this immediately results in a bad fault decision. However in

21

LA o fs T|A L fs WA fo fs
ri| 1 1 0 ri| 1 1 0 ri |0 1 1
ro | 1 1 1 ro| 1 0 1 ro | 1 0 1
rs| 1 1 1 rs| 1 1 1 rs |1 1 0

Table 3.1: Example coding sets

a GOS-scheme more than half of the residuals have to misfire (if a majority deci-
sion rule is used) to make a bad fault decision. If a residual pattern, i.e. a binary
vector describing which residuals that have fired, does not correspond to any fault
patterns a natural approach is to assume the faultpattern that has the smallest
Hamming distance to the residual pattern. The Hamming distance is defined as
the number of positions two binary vectors differ, e.g. d((1,1,0),(0,1,1)) = 2.

As always there is a price to pay for this increased reliability, or robustness, a
GOS-scheme can only detect one fault at a time while a DOS-scheme can detect
faults in all sensors at the same time. It is possible to extend a GOS scheme with
extra sensors and residuals to achieve possibilities to detect and isolate multiple
faults as in [Hsu et al., 1995].

To illustrate how a bank of residuals are structured so called coding sets
are used. In Table 3.1 three examples are presented and each row represents a
residual, a 1 in position j on row ¢ implies that fault f; affects residual r;. The
different columns in the coding sets in the table is called the fault code. A coding
set are a table that describes how different faults affect the residuals.

If for example in coding set I11 residuals r; and r3 fire while 75 does not, i.e.
fault code (101)7, it is probable that fault f, has occurred. To detect a fault,
no column can contain only zeros and to achieve isolation all columns must be
unique. If these two requirements are fulfilled, the coding set is called weakly
1solating.

A small fault might fire some but not all elements in the residual vector that
is sensitive to the specific fault. To prevent misisolation in these cases the coding
set, should be constructed so that no two columns can get identical when ones
in a column are replaced by zeros. A coding set that fulfills this requirement is
called a strongly isolating set.

In Figure 3.1 coding set I is non-isolating, I1 is weakly isolating and 11 is
strongly isolating.

Fixed direction residuals

The idea with fixed direction residuals is the basis of the fault detection filter
(FDF) where the residual vector get a specific direction depending on the fault
that is acting upon the system.

Figure 3.7 gives an geometrical illustration of this type of residuals when a

22

fault of type 1 has occurred. The most probable fault can then be determined by

Fault direction 3 Fault direction 2

Residual

/ -

Fault direction 1

Figure 3.7: Fixed direction residuals

finding the fault vector that has the smallest angle to the residual vector.

It can be noted that a DOS scheme can be viewed as a fixed direction residual
generator with the basis vectors as directions. A GOS scheme can however not
be viewed as a fixed directions residual generator as a residual there is confined
to a subspace of order n — 1 (if the residuals has dimension n) instead of only a
1-dimensional subspace (the direction).

3.4 Robustness

As mentioned earlier, it is unrealistic to assume a perfect model and no distur-
bances acting upon the process. This makes the diagnostic task even harder, this
problem is called the robustness problem and a diagnostic algorithm that contin-
ues to work satisfactory even when subjected to modeling errors and disturbances
is called robust.

Since the ideal situation never occur in a real application, the robustness
aspect is one of the most important issues when designing a diagnosis system.
The methods to tackle the robustness problem can be divided into two categories
[Frank and Ding, 1994]

e Robust residual generation, active robustness

e Robust residual evaluation, passive robustness

Robust residual generation

These methods strive to make the residuals insensitive or even invariant to model
uncertainty and disturbances, and still retain the sensitivity towards faults. There

23

are two different types of disturbances, structured and unstructured disturbances.
If it is “known” ezactly how a disturbance signal influences the process it is
called structured uncertainty and this high degree of disturbance knowledge is
enough to actively reduce or even eliminate the disturbance influence on the
residual. However if no knowledge of the disturbance is known, no active robust-
ness can be achieved. Examples of robust generation methods are Unknown In-
put Observers (UIO)[Frank and Wiinnenberg, 1989], Eigenstructure assignment
of observers [Patton and Kangethe, 1989, Patton, 1994], robust parity relations
[Chow and Willsky, 1984, Gertler, 1991].

Robust residual evaluation

The goal with robust evaluation methods is to enable reliable decision-making and
still keeping the false-alarm rate satisfactorily small. Examples of robust eval-
uation methods are adaptive thresholds [Ding and Frank, 1991], decision mak-
ing based on fuzzy logic [Frank, 1993], and statistical change detection methods
(sometimes referred to as statistical decoupling).

3.5 Model structure

To proceed in the analysis of residual generation approaches we need an analytical
model. In this report a state-representation of the model are used as

@(t) = fla),u(?))
y(t) = h(z(t),u(t)) (3.1)
The linear (time-continuous) state representation is

©(t) = Ax(t) + Bu(t)
y(t) = Cz(t) + Du(t) (3.2)

As we have noted earlier we have three general types of faults:

1. Sensor (Instrument) faults
Modeled as an additive fault to the output signal.

2. Actuator faults
Modeled as an additive fault to the input signal in the system dynamics

3. Component (System) faults
Modeled as entering the system dynamics with any distribution matrix.
Here it is seen that actuator faults only are a special case of component
faults.

24

There are also uncertainties about the model or unmeasured inputs to the process,
e.g. the load torque in an automotive engine. If these uncertainties are structured,
i.e. it is known how they enter the system dynamics, this information can be
incorporated into the model.

In the linear case and if model uncertainties are supposed structured, the
complete model becomes

i(t) = Ax(t) + Bu(t) + f.(t)) + Hf.(t) + Ed(t)
y(t) = Cz(t) + Du(t) + fs(t) (3.3)

where f,(t) denotes actuator faults, f.(f) component faults, fs(¢) sensor faults
and d(t) disturbances acting upon the system. H and FE is called the distribution
matrices for f.(¢) and d(¢).

3.6 Parameter estimation

As we noted in 3.2, process model based residual generators could be parted into
two approaches parameter estimation and geometric approaches. A parameter
estimation method, [Isermann, 1989, Isermann, 1991] is based on estimating im-
portant parameters in a process, e.g. frictional coefficients, volumes or masses,
and compare them with nominal values.

We first need to define the model structure to use. The process to be modeled
typically consist of both static relations and dynamics relations, both linear and
non-linear.

Theoretically there is no limit on the appearance of these relations, the param-
eter estimation could be done by e.g. a straightforward gradient-search algorithm.
But to enable efficient estimation of model parameters here it is assumed that
the model is linear in its parameters. A least squares solution are then easy to
extract. Note that this in no way implies a linear model. The equation

y(t) = a1 2°(t)

is linear in its parameter a; but is clearly non-linear.
With this assumption the model can be written as a linear regression model

y(t) =" ()0 (3.4)

where o(t) consists of inputs and old measured variables in a discrete model and
output derivatives in a continuous model. # are the model parameters to be
estimated.

Note that # is the model parameters, not the physical parameters. # can be
written as a function of the physical parameters p as

0 =f(p) (3.5)

25

Note that it can be of great importance how in- and out-signals are chosen as we
will see in the example below.
Example 3.1. Consider a simple linear system, a first order low pass RC-link.
Here there are two physical parameters, the resistance R and capacitance C.

If the input and output voltages, u; and us are chosen as in and out signals,
the system gets

us(t) = —RCus(t) + i (t) = " (1) = (—ua(t) (1)) (Rlc) (3.6)

In equation (3.6) we see that only one parameter appear in 6 as RC. We can
then conclude that the two parameters cannot be estimated with this choice of
input-output signals. If we instead considers the output current i, as output
signal the system gets:

is(t) = —RCis(t) + Ca(t) = T (1)0 = (—ia(t) (%)) (RCC) (3.7)

Here in (3.7) two parameters appear and both R and C are identifiable. In a
practical problem there might not be a choice in in-out signals but the example
shows that in a parameter estimation method, the in-out signal choice can be of
great importance and should be analyzed.

Now when the model structure is defined we can outline the typical parameter
estimation diagnosis method.

e Data processng
With the help of the model and measured output data, model parameters
can be estimated, e.g. by minimizing the quadratic estimation error

N

Ve (8) = 3 (w(i) — o7 (5)6)°

i=0
The LS-solution can easily be replaced by a RLS-estimator to achieve adapt-

ability to a time varying process.

e Fault detection
When an estimation of model parameters 0 is produced, an estimation of
process parameters p can be extracted by inverting equation (3.5), this is
also called feature extraction.

p=f'0)

Also Ap = ppomina — P and standard deviation o, can be extracted to be
used in a statistical test whether a fault is acting upon the system or not.

Ap and o, can be seen as residuals as they are small in the fault-free case.
They are also in parameter estimation articles called syndromes.

26

e Fault classification
If the statistical test mentioned above decides that a fault is present, isola-
tion of the fault source is the final stage in a parameter estimation method.

The algorithm outlined above is an example of a typical algorithm, another
approach is taken in [Isermann, 1989] where the detection and classification steps
are combined into one using a Bayes classification rule.

3.7 Geometric approach to residual generation

The approaches described in this section are called parity space approaches be-
cause they generate residuals who are vectors in the parity space. The methods
can be divided into open- and closed-loop approaches. In an open-loop approach
there are, as the name suggests, no feedback from previously calculated residuals.

The idea behind closed-loop approaches, i.e. observer based approaches, are
to use a state-estimator as a residual generator. Both structured residuals and
fixed direction isolation methods are achievable with both open- and closed-loop
design methods. There are a number of approaches suggested in literature, here
we will address

e State observers
e Fault detection filter
e Unknown Input Observers

— By parity equations
— By Kronecker canonical form
— By eigenstructure assignment of observer

Note that these are methods to design the residual generator. Several of these de-
signs may result in the same residual generator in the end as shown in [Gertler, 1991].

State observers

If there are no uncertainties acting upon the system, a straightforward approach
is to use a state estimator observer and compare the estimated outputs with the
measured.

Consider the special case of IFD. Assume a linear system with additive sensor
faults f, as

&t = Ax+ Bu
Cx + Du+ fs (3.8)

27

A state observer for system (3.8) can be stated as

Az + Bu+ K(y — 9)
Cz + Du

8>
Il

<
|

If r =y — ¢ is used as the residual it can be written

r=y—y=Cx+Du+ f, — Ct — Du=Ce+ f

where e is the state estimation fault e = x — . The estimation error dynamics
can be stated

é=(A—KCe—Kf,

Assume fs is a step from 0 to F' # 0. Since A, = A — KC' is a stable matrix, e
will go towards a stationary value

e AT'KF ast — oo

As r = Ce + f; and e goes towards a non zero value the residual will be # 0
if F'# 0 and A7'K + 1 # 0. Tt can be seen that in a single-output system
AYK + I # 0 is equivalent with det(A) # 0.

Fault detection filter

The idea with the fault detection filter [Gertler, 1991, Patton, 1994] is, as was
noted in earlier, to produce fixed direction residuals. The method is based on an
observer of the form

i = Ai + Bu+ K(y — C& — Du)
Considering a fault in the ¢ : th actuator we get estimation error e = x — =
dynamics as

e = (A=KQC)e+b;f,

ey, = y—y=Cr+Du—-Ci—Du=C(x—2)=_Ce

where b; is th ¢ : th column in B. By a special choice of K it is possible to
make e,, i.e. the residual, grow in a specified direction when the 7 : th fault has
occured.

An efficient design procedure including eigenstructure assignment of observer
has been found but in [Patton, 1994]. It is noted that the fixed direction approach
uses up more of the design freedom compared to other observer based approaches
described next who therefore supersedes the fault detection filter.

28

Unknown Input Observers

If disturbances are acting upon the system or model uncertainties are promi-
nant, robust methods has to be used. Robust observers is called Unknown Input
Observers, and can be designed in a number of ways.

Parity equations from a state-space model

Parity equations is at first sight no observer based residual generator, but it can
be shown [Patton and Chen, 1991] that discrete parity equations can be seen as
a dead-beat observer. This approach will be described in detail later on in this
chapter.

By Kronecker Canonical Form

By putting the system on a special form, an observer can be designed so that
disturbance influence on the state-estimate can be eliminated

[Frank and Wiinnenberg, 1989] and robust residuals can be generated. It is how-
ever not necessary to decouple disturbance influence in the state-estimate, only
disturbance decoupling in the output-estimate is needed.

Eigenstructure assignment of observer

The eigenstructure assignment [Patton and Kangethe, 1989] is a method of de-
signing identity observers, achieving disturbance decoupling in the residual.

3.8 Residual evaluation

Due to model uncertainties,measurement noise, and only approximate decoupling
from unmeasured disturbances is achievable, residuals will not be 0 in the fault-
free case. Therefore a non-zero threshold has to be selected. This is even more
important in the case of unstructured uncertainties where exact disturbance de-
coupling in the residuals is impossible.

In [Frank, 1991] it is noted that when deterministic decoupling, i.e. decou-
pling of structured disturbances in the residuals, is not possible there is a possi-
bility, if we know the statistical distribution of the residual, to use this knowledge
and achieve robust FDI. This is called statistical decoupling.

One method who achieves statistical decoupling is the GLR (Generalized Like-
lihood Ratio)[A.S.—Willsky and Jones, 1974] test where the & : th residual is
modeled as

re(t) = rox(t) + Ge(p) f(2)
where 74 (t) is white noise with zero mean and Gy, is the distribution matrix of
the k : th fault. p is the derivation operator, i.e. §(t) = py(¢).

29

A hypothesis test is then performed with the hypothesis

Ho Ty =Tok
H;, : ry=ror+ Gy fi the i:th fault has occured

The hypothesis decision can be made through a test of the likelihood ratio

Pr(ry,...,ro|H;, f = fz)

Li -
PT’(’I"l, - .,T’n|H0)

Where Pr(-) denotes the density function of the underlying stochastic process.

Since neither ﬁ nor the probability density function under assumption H; is know

these has to be estimated. This motivates the name Generalized Likelihood ratio.
The decision is then based on the rule

L; > T;: H;is assumed, i.e. the i:th fault is assumed present

L; < T;: Hyis assumed, i.e. no fault

The desired false alarm rate can be adjusted by choosing suitable thresholds 7T;.
This approach can be easily illustrated on a one dimensional residual by Fig-
ure 3.8. Assume the observed value of the residual is r. Assume Hj is the density

0.25

0.2

0.15

0.1

15

residual

Figure 3.8: GLR illustration

function of r under assumption Hy and H; is the density function of » under the
assumption H;. We can directly see that H| is the most probable hypothesis. L;
is then an estimation of ”1. In this example L; would be small as v; < v, and
hypothesis Hy would be assumed just as expected.

30

Another more intuitive approach to robust residual evaluation is that of adap-
tive thresholds. Since the model used does not model the system perfectly, the
residuals will fluctuate with changing inputs even in a fault-free situation. There
might be situations where these fluctuations are so great so that no threshold
level fulfills both satisfactory false alarm rate demands and missed detection
probabilities.

The adaptive thresholds approach is as noted above based on the fact that
the residuals tend to fluctuate with the input signals (unmeasured or measured).
Examples of adaptive thresholds can be that the threshold level is scaled with
the size of the input vector, i.e. T;(t) o ||u(t)||, or time-derivative of the input
vector, i.e. T;(t) o< ||a(t)|]. Also fuzzy systems has been proposed [Frank, 1994]
for residual evaluation.

In the end, we have to set the threshold levels. One simple approach is to
observe the residuals in the fault free case and set the level to get the desired
false-alarm rate. The residual evaluation rules used often get adapted to the
application, e.g. by using time-limits on how long the residual can be above the
threshold before a fault is assumed etc. It is easy to imagine a number of ad
hoc solutions to improve robustness, but a systematic approach based on Markov
theory choosing the thresholds has been suggested in [Walker, 1989].

3.9 Non-linear residual generators

As noted, all previously described residual generators are linear. When apply-
ing a linear residual generator, based on a linearization of a non-linear system,
modelling errors can become dominant very quickly as the system deviates from
the linearization point. One way to master this problem is to use a non-linear
residual generator taking full advantage of the knowledge in the non-linear model.
Non-linear residuals can be both closed-loop generators, [Frank, 1991], or open-
loop generators [Krishnaswami and Rizzoni, 1994]. Non-linear parity equations
is described in [Krishnaswami and Rizzoni, 1994].

In most applications it is not realistic to assume a linear model. In [Frank, 1993]
a class of nonlinear systems are presented where decoupling is possible if the dif-
ferential equations describing the system can be stated on the form

y = Cx+ FEydy+ Rof + Du

where dy, do are disturbance vectors and f are the fault vector. As the very
special nonlinearity B(y, u) only depends on measured variables, it can be com-
pensated for by non-linear decoupling. This class of systems is very limited but
e.g. industrial robots fits into this category.

As the above class is very limited, a larger class of non-linear systems where
robust observer design has been successful is when the differential equations can

31

be written on the form

T = A(x)+ B(x)u+ Ei(z)d, + Ri(z) f
= C(z)+ Eyds + Ry f + Du

3.10 Performance issues

What performance measures do we have to compare/evaluate different resid-
ual generators? Two natural measures are the false alarm rate and the prob-
ability for missed detection. It can however be difficult to design a diagnostic
system based on these measures, especially the latter one who is hard to esti-
mate. Instead a performance index can be defined that is used as an indicator
of residual generator performance. Examples of performance indexes is given
in [Gertler and Costin, 1994, Chow and Willsky, 1984, Patton, 1994]. The per-
fomance index 7 is often in the shape of

fault-influence on the residual

T = - : .
residual insecurity

where the denominator can e.g. be the variance of the residual in fault free
operation and the numerator can be e.g. |r(¢)| when the residual is subjected to
a fault. This performance index can be used for both optimization purposes and
to compare different methods.

3.11 Parity equations

In this section parity equations [Gertler, 1991, Chow and Willsky, 1984] are de-
scribed in detail and a design example is presented. Parity equations can be
defined as consistency relations between inputs and outputs.

Consider the system:

y(t+1) = ay(t) + bu(t) + £(£)
In the fault-free case (f(t) = 0) the relation
y(t) —ay(t—1)—bu(t—1)=0
should hold. By using the lefthandside of the relation we get a residual generator
r(t) =y(t) —ay(t —1) — bu(t — 1)

It is easy to see that r(t) = 0 in the fault-free case and r(t) # 0 when f(¢) # 0.
This is an example of a parity equation. A systematic method of finding parity
equations with desired properties is described below.

32

Method description

Restating the model given in equation (3.3), here a time-discrete form is used as
it is more suited for this approach. First we consider the fault free, no disturbance
case, i.e. fo=f.=f=d=0.

z(t+1) = Ax(t)+ Bu(t
y(t) = Cz(t) + Du(t) (3.9)

~—"

It is not necessary to have the model on state-space form to develop the residual

generator, it can just as well be developed using an input-output formulation of

the model. The state-space form is chosen as it produces a clean notation.
Since we are going to utilize temporal redundancy we need an expression for

the output based on previous states.

The output at time t + 1, +2,...,t + s, s > 0 then becomes

y(t+1) = CAx(t) + CBu(t) + Du(t+ 1)
y(t+2) = CA?x(t) + CABu(t) + CBu(t + 1) + Du(t + 2)

y(t+s) = CAz(t) +CA* 'Bu(t) +...+ CBu(t +s — 1)+ Du(t + s)

Collecting y(t — s),...,y(t) in a vector yields

Y (t) = Rz(t — s) + QU(t) (3.10)
where
D 0 0
CB D 0 ... 0
Q=| CAB CB D 0 0

CAs~'B CA*2B ... CB D

y(t —s) u(t —s) C

y(t —s+1) u(t—s+1) CA

Yit)=| vit—5+2) | Ug)=| ult-s+2) | R=| CA°

y(t) u(t) CA?
Assuming k inputs and m measurements vector Y is [(s + 1)m] long and U is

[(s+1)k] long. Matrix R has dimensions [(s+ 1)m x n] and Q has [[(s + 1)m] x
[s + 1]k]. Note that y(¢) and u(t) are vectors and not scalar values.

33

In equation (3.10), Y, U and Q are known. Premultiplying with a vector w’

of length [(s + 1)m] and moving all known variables to the left side yields

r(t) = w" (Y (t) — QU(t)) = w' Ra(t — s5) (3.11)

As was described in section 3.2, equation (3.11) will qualify as a residual if the
residual is invariant to state variables, i.e.

w'Rx(t —5) =0 (3.12)

Given a vector w that satisfies (3.12) we have a residual generator where the
left hand side of (3.11) is the computational form and the right hand side is the
internal form.

Residual invariance

Earlier we have assumed it possible to achieve invariance to unmeasured signals,
here a method for achieving invariance is presented. If we drop the fault-free no
disturbance assumption made in (3.9) the residual generator (3.11) transforms
into

r(t) = w'(Y() - QU(t) =
w? (Ro(t — s) + QF4(t) + VF(t) + TN(t) + S(t)) (3.13)
where

F, is a vector of (unknown) actuator faults

F. is a vector of (unknown) component faults

N is a vector of (unknown) disturbances

S is a vector of (unknown) sensor faults

T relates to N(¢) as Q relates to U(t). 'V relates to F.(t) as Q relates to
U(t). It can be seen that T has the same structure as Q with B changed to F
and D = 0.

If we also want the residual (3.13) to be insensitive to the unknown distur-
bances or actuator faults we add the additional constraint:

w” [T QV] =1[000] (3.14)

where Q are the Q matrix where only the columns in the B and D matrices
corresponding to inputs to decouple are left and V are the V matrix where only
the columns in the H matrix corresponding to component faults to decouple are
left.

If we want the residual to be insensitive to sensor faults we make sure that all
w; that appears in front of the sensor whose fault we wish to make the residual
insensitive to are set to 0. This implies (s+1) zeros per sensor fault.

34

Diagnostic limits

Of course it is not possible to make the residual insensitive to an arbitrary number
of disturbances and faults. We will now derive some of those limits.

What conditions must be fulfilled to make it possible to find a w that satisfies
(3.12), (3.14) and then how many actuator/sensor faults are possible to decouple
from the residual.

We first note that if we see disturbance as an (unknown) input we only need
to consider actuator and sensor fault decoupling. Further we assume that the
number of inputs, n, < n where n is the system order and n, includes the
number of disturbances acting upon the system.

Denote the number of actuator faults and disturbances we want to decouple
by s, and the number of sensor faults by s,. We note that

e To decouple the state influence on the residual, i.e. fulfill (3.12), we have
to impose n constraints on w.

e When decoupling s, outputs we set s,(s + 1) elements in w = 0.

e To decouple s, actuator faults we impose s,(s + 1) if D # 0 and s,s if
D =0 constraints on w. The special case when D = 0 is easy to see when
the last column in Q then becomes all zero.

In [Gertler, 1991] s is chosen as s = n if D # 0 and s > n — s, if D = 0.
Summarizing and assuming s = n if D # 0 and s =n — s, if D = 0, we can see
that the number of constraints on w are:

0 n+ (su+5y)(n+1) ,if D#0
ol ntsun—s,)+sy(n—s,+1) ,if D=0

The w vector have as we earlier noted [(s+1)m] elements and to ensure a solution
other than the trivial w = 0 we need (s + 1)m > n,, i.e. an under determined
equation system.

That is if D # 0

(n+1)m >n+ (s, +s,)(n+1)

n 1
= Syt sy<m———=m-—1+——
n+1 n+1
We also know that n > 0 = n+r1 > (), which yields the upper limit on how many

faults/disturbances we can decouple.

Syt sy =m—1

If D=0 we get
(n—sy+1)m>n+s,(n—s,)+s,(n—=s,+1) =
= (su+s)(n—s,+1)+n—s,
= + 5, < oo 1+
Sutsy<m—-——=m—-14——
“ Y n—=s,+1 n+1—s,

35

We also know from the discussion above concerning an upper limit on number of

inputs n, that n > n, > s, = n+11_5 > 0 which yields the upper limit on how

many faults/disturbances we can decouple even here gets

Sy + sy =m—1

Design example

The example system is a linearized mean-value model of an SI-engine. The model
has two states, n the crankshaft rotational speed and p,,.,, the pressure in the
intake manifold. One structured disturbance is acting upon the system, the road-
load, i.e. up/down-hill etc. There are 3 sensors measuring

e Crankshaft revolution speed (rpm)

e Intake manifold pressure p,,., (kPa)

e Air flow past the throttel 1, (kg/h)
The process also consists of two actuators

e Throttle actuator

e Fuel injector

We are here considering sensor faults on all sensors, actuator faults on both
actuators, and a component fault as leakage in the intake manifold. The linearized
model are:

fal(t)
Azx(t+1) = AAz(t)+ BAu(t)+ Ed(t) + Hy | fa2(?)
fa ()
far (%)
A _ fa()
y(t) = CAx(t) + DAu(t) + Ho Folt)
fsS(t)
4 — [—L0688 4.1250) B — 0 410.3077
—0.2926 —15.8177 55.6064 0
B —23.3822 H — 0 410.3077 0
0 ! 55.6064 0 5.3471
1.0000 0 00
C = (0 1.0000) D = (00)
0 —0.6655 10.3995 0
0 1.0000 0 0
H, = (0 0 1.0000 0)
10.3995 0 0 1.0000

36

)

aj | az | s1 | S2 | 83 | Mipaa | C1
ril 0|1 0] 1|11 0 1
ml1lol1]11] o |1
rs| 1 00| 1]1 0 0
ml1lol1]o0ol1] o |1
110110 0o |1
sl1]0l0ol 11| 0o |o

Table 3.2: Coding set

ay | S92 | S3 | C1
ml o111
rgy | 117011
s 111101
re| 1111110

Table 3.3: Reduced coding set

An A«
where Az = (Apran), Au = < Aty >, d = Mioad,

fa1 Throttle actuator fault .
(fa2) - < Fuel injector fault)’ Jer = Manifold leak and

fs1 rpm-sensor fault

fs2 | = | Pman-sensor fault

fs3 ma-sensor fault

To isolate all 6 different type of faults we can design a residual vector of
dimension 6, each component independent of one fault each. All components
should also be independent of the disturbance d. This is however not possible
for this model, this can easily be seen as the disturbance d enters the system
dynamics in the same way as faults in the 7g-sensor, foo. This means that
any component decoupling disturbance, automatically decouples any faults in
the my;-sensor. This is seen in the resulting coding set in table 3.2, the second
column corresponding to ay is all zero. We also note that the ¢; and the s;
columns are equal indicating that this scheme is not able to distinguish between
the two faults. Usually the rpm-sensor s; is very reliable, therefore can the fault
code for these two columns be assumed indicating a manifold leakage.

As we now only have 4 faults left to diagnose, we can reduce the dimension
to 4. Removing the columns for as, s; and M;,,q and residuals r and r3 results
in the reduced coding set in table 3.3 that is a strongly isolating coding set.

The time window, s, is chosen as described earlier (D # 0) to s = n =
2. Matlab code to generate the first residual component r{, insensitive to load

37

disturbances and faults in the rpm-sensor, can be written as

Q
T

[[D;C*B;CxA*B], [zeros(size(D));D;CxB], [zeros(size([D;CxB]));D11;

[[zeros(3,1) ;CxE;CxA*E], [zeros(3,1);zeros(3,1);CxE],

[zeros(size([zeros(3,1);C*E])) ;zeros(3,1)1];

R = [C;CxA;C*xA*A];

%hih’h Decoupling, dl + actuatorl faults

Qtilde = [[D(:,1);C*xB(:,1);CxA*B(:,1)], [zeros(size(D(:,1)));D(:,1);CxB(:,1)],
[zeros(size([D(:,1);CxB(:,1)1));D(:,1)1];

Z = zeros(7,9);

Z(1:2,:) = R’;

Z(3:4,:) T(:,1:2);

Z(5:7,:) = Qtilde(:,1:3)7;

w_temp = Z(:,[1:4,6:7,91)\(-Z(:,5)-5%Z(:,8));

wli = [w_temp(1:4);1;w_temp(5:6);5;w_temp(7)];

Components r4, r5 and rg are generated with similar code. This residual generator
is now simulated in Figure 3.9. Note how the step in load (& uphill) affects the
speed at £t = 2. The lowest plot, the a-plot, illustrates how the assumed throttle
angle is 28° but at ¢t = 5 a 3° fault happens as indicated by the dotted line, also
note how this (unwanted) increase in throttle angle affects the crank-shaft speed.
Figure 3.10 shows the corresponding residuals. As expected (column 1 in table

3000 T T T T T T T T T
B
52500 J
<
2000 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
100F
8
S o5t ,
=
90 8
85 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
32
© |
230r | b
s I
© |
28
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
t[s]

Figure 3.9: Linear throttle fault simulation

3.3) r4, 75 and rg fires at ¢ = 5 while r; does not. Note the invariance to the Mjyq
step at t = 2.

38

1 20
15
0.5
10
¢ 0 ¥ 5
0
-05
-5
-1 -10
0 5 10 5 10
10 100
80
5 60
wn [{e]
= = 40
0
20
0
-5
0 10 0 5 10
t t

Figure 3.10: Residuals of linear throttle fault simulation

39

Bibliography

[A.S.—Willsky and Jones, 1974] A.S.—Willsky and H.L. Jones. A generalized
likelihood ratio approach to state estimation in linear systems subject to abrupt
changes. Proc. IEEE Conf. on Decision and Control, pages 846-853, Pheonix,
USA, November 1974.

[Chen and Patton, 1994] J. Chen and R.J. Patton. A re-examination of fault
detectability and isolability in linear dynamic systems. In IFAC Fault Detec-

tion, Supervision and Safety for Technical Processes, pages 567-573, Espoo,
Finland, 1994.

[Chow and Willsky, 1984] E.Y. Chow and A.S. Willsky. Analytical redundancy
and the design of robust failure detection systems. IEEE Trans. on Automatic
Control, 29(7):603-614, 1984.

[Ding and Frank, 1991] X. Ding and P.M. Frank. Frequency domain approach
and threshold selector for robust model-based fault detection and isolation.
IFAC Fault Detection, Supervision and Safety for Technical Processes, pages
271-276, Baden-Baden, Germany, 1991.

[Frank and Ding, 1994] P.M. Frank and X. Ding. Frequency domain approach
to optimally robust ersidual generation and avaluation for model-based fault
diagnosis. Automatica, 30(5):789-804, 1994.

[Frank and Wiinnenberg, 1989] P.M. Frank and J. Wiinnenberg. Robust fault
diagnosis using unknown input observer schemes, chapter 3. In Patton et al.
[1989], 1989.

[Frank, 1991] P.M. Frank. Enhancement of robustness in observer-based fault
detection. In IFAC Fault Detection, Supervision and Safety for Technical Pro-
cesses, pages 99-111, Baden-Baden, Germany, 1991.

[Frank, 1993] P.M. Frank. Advances in observer-based fault diagnosis. Proc.
TOOLDIAG’93, pages 817-836, Toulouse, France, 1993. CERT.

[Frank, 1994] P.M. Frank. Application of fuzzy logic to process supervision and
fault diagnosis. In IFAC Fault Detection, Supervision and Safety for Technical
Processes, pages 507-514, Espoo, Finland, 1994.

40

[Gertler and Costin, 1994] J. Gertler and M. Costin. Model-based diagnosis of
automotive engines. IFAC Fault Detection, Supervision and Safety for Tech-
nical Processes, pages 393-402, Espoo, Finland, 1994.

[Gertler, 1991] J. Gertler. Analytical redundancy methods in fault detection and
isolation-survey and synthesis. In IFAC Fault Detection, Supervision and Safety
for Technical Processes, pages 9-21, Baden-Baden, Germany, 1991.

[Hsu et al., 1995] P.L. Hsu, K.L. Lin, and L.C. Shen. Diagnosis of multiple sensor
and actuator failures in automotive engines. IEEFE transactions on vehicular
technology, 44(4):779-789, November 1995.

[I[sermann, 1989] R. Isermann. Process fault diagnosis based on dynamic models
and parameter estimation methods, chapter 7. In Patton et al. [1989], 1989.

[Isermann, 1991] R. Isermann. Fault diagnosis of machines via parameter esti-
mation and knowledge processing. In IFAC Fault Detection, Supervision and
Safety for Technical Processes, pages 43-55, Baden-Baden, Germany, 1991.

[Krishnaswami and Rizzoni, 1994] V. Krishnaswami and G. Rizzoni. Non-linear
parity equation residual generation for fault detection and isolation. In IFAC
Fault Detection, Supervision and Safety for Technical Processes, pages 305—
310, Espoo, Finland, 1994.

[Neumann, 1991] D. Neumann. Fault diagnosis of machine-tools by estimation of
signal spectra. In IFAC Fault Detection, Supervision and Safety for Technical
Processes, pages 147-152, Baden-Baden, Germany, 1991.

[Olin and Rizzoni, 1991] P.M. Olin and G. Rizzoni. Robust fault detection. In
IFAC Fault Detection, Supervision and Safety for Technical Processes, pages
259-264, Baden-Baden, Germany, 1991.

[Patton and Chen, 1991] R.J. Patton and J. Chen. A review of parity space
approaches to fault diagnosis. In IFAC Fault Detection, Supervision and Safety
for Technical Processes, pages 65—-81, Baden-Baden, Germany, 1991.

[Patton and Kangethe, 1989] R.J. Patton and S.M. Kangethe. Robust fault diag-
nosis using eigenstructure assignment of observers, chapter 4. In Patton et al.
[1989], 1989.

[Patton et al., 1989] R.J. Patton, P. Frank, and R. Clark, editors. Fault diagnosis
in Dynamic systems. Systems and Control Engineering. Prentice Hall, 19809.

[Patton, 1994] R.J. Patton. Robust model-based fault diagnosis:the state of the
art. In IFAC Fault Detection, Supervision and Safety for Technical Processes,
pages 1-24, Espoo, Finland, 1994.

41

[Walker, 1989] B.K. Walker. Fault detection threshold determination using
Markov theory, chapter 14. In Patton et al. [1989], 1989.

42

Chapter 4

Statistical change detection

In this section we will review statistical change detection methods. We will discuss
residual generation, a key theme in fault detection, overview some algorithms
and relevant performance measures. An application example is given as well, for
which two algorithms are explained in detail. The subject of diagnosis will not
be treated explicitely. However, a common property of this approach is that it
provides an estimate of the change in the system, which may facilitate in the
diagnosis step.

There are a number of survey papers in this field, but state of the art is
the book [Basseville and Nikiforov, 1993]. As a research field, statistical change
period was at its top in the late seventies and early eighties, but during the last
few years the interest has increased again.

4.1 Residual generation

There are basically two different ways to generate residuals, that are both based
on a model:

e Completely known model. In this case, we essentially run the model in
parallel with the system and compute the residual as the difference. In a
statistical setting, this is achieved via state estimation by a Kalman filter.

e Parametrized model. The parameters in the model, assumed to be of a
linear regression structure, are estimated recursively. The output from the
estimated model is then compared to the system. The filter that does this
operation is the Recursive Least Squares (RLS) filter.

To get a good understanding of the Kalman and RLS filter a complete course in
model-based signal processing would be necessary. However, for understanding
statistical change detection, we only need to know the following property: The
Kalman and RLS filter take the measured signals and transform them to a se-
quence of residuals, as illustrated in Figure 4.1. From a change detection point

43

of view, it does not matter which case we have and the modeling phase can be
seen as a standard task.

Yt | System St

Figure 4.1: A whitening filter takes the observed input u; and output y; and
transforms them to a sequence of residuals &;.

In a perfect world, the residuals would be zero before a change and non-zero
afterwards. Since measurement noise and process disturbances are fundamental
problems in the statistical approach to change detection, the actual value of
the residuals cannot be predicted. Instead we have to rely on their behavior in
average.

If there is no change in the system, and the model is correct, then the residuals
are so called white noise, that is a sequence of independent stochastic variables
with zero mean and known variance.

After the change either the mean or variance or both changes, that is, the
residuals become ”large” in some sense. The main problem in statistical change
detection is to decide what ”large” is.

4.2 Performance measures

A general on-line statistical change detector can be seen as a device that takes
a sequence of observed variables and at each time makes a binary decision if the
system has undergone a change. The following measures are critical:

e Mean time between false alarms (MTFA). How often do we get alarms when
the system has not changed?

e Mean time to detection (MTD). How long do we have to wait after a change
until we get the alarm?

e Average run length function, ARL(#). A function that generalizes MTFA
and MTD. How long does it take before we get an alarm after a change of
size 6.

In practical situations, either MTFA or MTD is fixed, and we optimize the choice
of method and design parameters to minimize the other one. For instance, in an
airborn navigation system the MTFA might be specified to one false alarm per
105 flight hours, and we want to get the alarms as fast as possible under these
premises.

44

In off-line applications, we have a batch of data and want to find the time
instants for system changes as accurately as possible. This is usually called
segmentation. Logical performance measures are:

e Estimation accuracy. How accurate can we locate the change times?

e The Minimum Description Length (MDL). How much information is needed
to store a given signal?

The latter measure is relevant in data compression and communication areas,
where disk space and bandwidth are limited. MDL measures the number of
binary digits that are needed to represent the signal and segmentation is one
tool for making this small. Many telephone systems are modelling the signal
as autoregressive models over a certain segmentation of the signal, and then
transmits only the model parameters, change times (in practice fixed to every
50 ms) and the residuals. The receiver can then recover the signal from this
information.

4.3 Change detection methods

Algorithmically, all proposed change detectors can be put in one of the following
three cathegories.

e Methods using one model.
e Methods using two models.
e Methods using many model.

In the next subsections, these will be briefly described. Let us already here note
that the computational complexity of the algorithm is proportional to how many
models that are used. Before reviewing these methods, we need a tool for deciding
whether a result is significant or not.

Stopping rules

Many change detection problems, among these algorithms in the classes of one-
model and two-model approaches below, can be recast into the problem of decid-
ing on the following two hypotheses:

This is essentially achieved by low-pass filtering s; and comparing this value to a
threshold. Below are two such low-pass filters listed:

45

e The Cumulative sum (CUSUM) test of [Page, 1954]:
g(t) = max(g(t — 1) + s(t) — v,0), alarmif g(t) > h

The drift parameter v influences the low-pass effect, and the threshold h
(and also v) influences MTFA and MTD.

e The geometric moving average (GMA) test in [Roberts, 1959
gty =MXg(t — 1)+ (1 = N)s(t), alarmif g(¢t) > h

Here the forgetting factor A is used to tune the low-pass effect and the
threshold h to tune MTFA and MTD.

One-model approach

Statistical whiteness tests can be used to test if the residuals are white noise as
they should be if there is no change. Among these tests, we mention

e Change in the mean. The residual itself is used and s; = &;.

e Change in variance. The squared residual subtracted by known residual
variance A is used and s, = &7 — .

e Change in correlation. The correlation between the residual and past inputs
and/or inputs are used and s; = £,y or §; = g,y for some k.

The first approach is the original CUSUM test of [Page, 1954]. The second one
is usually labelled just the x? test, since the test statistic is x? distributed, while a
variant of the last one is called the local asymptotic approach in [Benveniste et al., 1987].

4.4 'Two-model approach

A model based on only recent data is compared to a model based on data from
an infinite time horizon, see figure 4.2. By recent data is often meant data from
a sliding window, whose size is denoted L below.

If the former model gives smaller residuals,

lell > llegll,

then a change is detected. The problem here is to choose a norm that correspond
to a relevant statistical measure. Two norms that have been proposed are:

e The generalized likelihood ratio (GLR), see [Appel and Brandt, 1983].

e The divergence test, see [Basseville and Benveniste, 1983].

46

MOdelM1
Data : Y1,Y2y o5 Yt—Ly Yt—L+1,5 -5 Yt
—_——
MOdelMg

Figure 4.2: The two-model approach. A model (M) based on data from a sliding
window of size L is compared to a model (M;) based on all data or a substantially
larger sliding window.

Both these criteria provide an s; to be put in a stopping rule in Section 4.3, for
instance the CUSUM test.

The choice of window size L is critical here. On one hand, a large value is
needed to get an accurate model in the sliding window and on the other hand a
small value is needed to get a short time to detection.

4.5 Multi-model approach

An important property of the Kalman filter and RLS filter is the following obser-
vation: If the change time, or set of change times, is known, then the filter can
be tailored to this knowledge and give white residuals even after the change(s).
Such filters are usually called matched filters, because they are matched to specific
assumptions on the true system.

The idea in the multi-model approach is to enumerate all conceivable hypothe-
ses about change times and compare the residuals from their matched filters. The
filter with the “smallest” residuals wins, and we have an estimate of the change
times that usually is quite accurate. The formulation is in a sense off-line, but
many proposed algorithms are on-line.

Again, we must decide what is meant by “small” residuals. By just taking
the norm of the residuals, we can make it smaller and smaller by increasing
the number of hypothesized change times. That is, a penalty on the number of
changes must be built-in. The following ones have been proposed:

e The generalized likelihood ratio (GLR) test, see [Willsky and Jones, 1976],
and the marginalized likelihood ratio (MLR) test, see [Gustafsson, 1996a].

e The maximum likelihood (ML) approach, see [Gustafsson, 1996b].
e The MDL approach, proposed in [Rissanen, 1978] in a different context.

It is clearly infeasible to apply all possible matched filters to the data. Since
there can be a change or no change at each time instant, there are 2! possible
matched filters at time . Much effort has been spent in developing intelligent
search schemes that only keep a constant number of filters at each time.

47

CUN

|
Ut
Yt | System - Et,
I
I
|
|
"
Ut
Yt | System L ct,

Figure 4.3: A bank of matched filters, each one based on a particular assumption
on the set of change times Q = {k;}7_,.

4.6 Example: fuel monitoring

The following application illustrates the use of change detection for improving
signal quality. The data consist of measurements of instantaneous fuel consump-
tion available from the electronic injection system in a Volvo 850 GLT used as
a test car. The raw data are quite noisy and need some kind of filtering before
being displayed to the driver at the dashboard. There are two requirements on
the filter:

e Good attenuation of noise is necessary in order to being able to tune the
accelerator during cruising.

e Good tracking ability. Tests show that fuel consumption very often changes
abruptly, especially in city traffic.

These requirements are contradictory for standard linear filters. Figure 4.4 shows
the raw data together with a filter implemented by Volvo'. Volvo uses a quite
fast low-pass filter to get good tracking ability and then quantize the result to
a multiple of 0.3 to attenuate some of the noise. However, the quantization
introduces a difficulty when trying to minimize fuel consumption manually and
the response to changes could be faster.

! This is not exactly the same filter as Volvo uses, but the functionality is the same.

48

Below two of the algorithms are detailed.

Algorithm 1 (The two-sided CUSUM test)

S = &t
S% = —&
1 _ 1 1
9, = max(g, ; +s, —1v,0)
g = max(g;, +s;—v,0)
Alarm if g/ >horg >h

After an alarm, reset g =0, g> =0 and to = t.
Design parameters: v, h.
Output: 6,

Algorithm 2 (Brandt’s GLR)

R 1 t
9% = ¢ Yk
— b k=to+1
- 1 zt:
9t = 7 Yk
t—L k=L+1
11 1 é A1\ 2
A= ¢ Z (yk - et)
0 k=to+1
{2 1 i A2\ 2
No= —— (yr — 67)
t—1L k=L+1
5% = Yt 9}71
5? = Y — 9t2—1

5\1 1\2 2\2
sy = log <A—';> + (gfl) — (ng)
A A A

g = max(g1+ s —v,0)
Alarm if g, > h
After an alarm, reset g, = 0 and tg = t.
Design parameters: v, h, L.

Output: 6!

49

These algorithms are only capable to follow abrupt changes. For incipient
changes, the algorithm will give an alarm only after the total change is large or
after a long time. In both algorithms, it is advisable to include data forgetting
in the parameter estimation to allow for a slow drift in the mean of the signal.

Table 4.1 shows how some change detection algorithms perform on this signal.

‘ Method ‘ Design parameters ‘ n ‘ MDL ‘ kFlops ‘
RLS A=0.9, quant =03 | - |- 19
CUSUM h=3 v=2 141839 |20

Brandt’s GLR | h=20, v =3, L=3 | 13 | 840 | 60
Divergence h=20,v=3, L=3]|14 | 8.66 | 63
ML 0?=3 14 | 8.02 | 256

Table 4.1: Simulation result for fuel consumption

Figure 4.5 shows the result using the recursive ML detector as a non-linear
filter. A changing mean model was used with 5 parallel filters. Compared to the
existing filter, the tracking ability has improved slightly and, more importantly,
the accuracy gets better and better in segments with constant fuel consumption.

Low-pass filtered and quantitized measurements (Volvo)
25 T T T T T T T

= = N
o 13 =]
T T T

Fuel consumption [liters / 100 km]

o
T

0
0 10 20 30 40 50 60 70 80 90 100
Time [s]

Figure 4.4: Measurements of fuel consumption, dotted, and Volvo’s proposed
filter, solid.

20

Filtered and raw data
25 T

i
13

Fuel consumption [liters / 100 km]
=
o

.
0 20 40 60 80 100 120
Time [s]

Figure 4.5: Filtering with recursive ML detection

ol

Bibliography

[Appel and Brandt, 1983] U. Appel and A.V. Brandt. Adaptive sequential seg-
mentation of piecewise stationary time series. Information Sciences, 29(1):27—
56, 1983.

[Basseville and Benveniste, 1983] M. Basseville and A. Benveniste. Design and
comparative study of some sequential jump detection algorithms for digital sig-
nals. IEFE Transactions on Acoustics, Speech and Signal Processing, 31:521—
535, 1983.

[Basseville and Nikiforov, 1993] M. Basseville and I.V. Nikiforov. Detection of
abrupt changes: theory and application. Information and system science series.
Prentice Hall, Englewood Cliffs, NJ., 1993.

[Benveniste et al., 1987] A. Benveniste, M. Basseville, and B.V. Moustakides.
The asymptotic local approach to change detection and model validation. IEEFE
Transactions on Automatic Control, 32:583-592, 1987.

[Gustafsson, 1996a] F. Gustafsson. The marginalized likelihood ratio test for
detecting abrupt changes. IEEE Trans. on Automatic Control, 41(1):66-78,
1996.

[Gustafsson, 1996b] F. Gustafsson. Optimal segmentation of linear regression
parameters. Accepted for publication in IEEE Trans. on Signal Processing and
available at http://www.control.isy.liu.se/ fredrik/journal, 1996.

[Page, 1954] E.S Page. Continuous inspection schemes. Biometrika, 41:100-115,
1954.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data description. Automatica,
14:465-471, 1978.

[Roberts, 1959] S.W. Roberts. Control charts based on geometric moving aver-
ages. Technometrics, 8:411-430, 1959.

[Willsky and Jones, 1976] A.S. Willsky and H.L. Jones. A generalized likelihood
ratio approach to the detection and estimation of jumps in linear systems.
IEEE Transactions on Automatic Control, pages 108-112, 1976.

02

Chapter 5

Discrete model-based diagnosis

This chapter starts out with an introduction to diagnostic reasoning before fo-
cusing on model based diagnosis.

5.1 Introduction to diagnostic reasoning

Reasoning in this context means reasoning about a physical system. If we let
the physical system be our device then diagnostic reasoning can be viewed as
reasoning about what is wrong with that device.

There are several approaches to diagnostic reasoning. The simplest and most
straightforward is fault-based or rule-based reasoning. Fault-based reasoning imi-
tates a repair-manual to maintain heuristic knowledge about the device. This is
used to guide the diagnosis. The problem is that this approach can only deal with
problems known in the “manual”.

Another approach taken by Poole [1988] and Reiter [1987] is default reasoning.
Default reasoning provides the ability to reason with incomplete information by
allowing assumptions to be made based on default rules when actual information
is missing. While the ability to make assumptions is the strength of this approach
it is also it’s weakness. All it takes is one wrong assumption for this approach to
fail.

The case-based reasoning approach attempts to use knowledge about previous
cases to guide the diagnosis. This may work well in cases where the same or
very simlilar cases have been encountered before but when the current case is
new there are problems. Usually a diagnosis is based on the most similar previ-
ously encountered case. To evaluate how close two cases are usually involves some
heuristic measurement. Unless this measurement is very good the wrong previous
case may be choosen. Also, even if the closest previous case is choosen the actual
diagnosis may be completely different.

The last approach accounted for here is model-based diagnosis. This is the ap-
proach taken by Colsole and Torasso [1991], de Kleer and Williams [1987, 1989]

53

and Derssler and Struss[1996]. All of these are based on the same idea. A model
of the correct device is used to compare the observed behaviour of the device
to that predicted by the model. Differences between predicted and observed be-
haviour are symptoms of one or more faults. Diagnosis is done by finding the
changes in the model that explains the observed behaviour of the device. Those
changes are the diagnosis. The problem with model-based diagnosis is combina-
toric explosion, if there are n things that can go wrong with the device there are
2" possible diagnoses. Finding a diagnosis is a search problem among these 2"
possible solutions. Needless to say some efficient way to find the correct diagnosis
is needed.

5.2 Model-based diagnosis

The basic idea of model-based diagnosis is to compare certain measured val-
ues from the device to be diagnosed with the values predicted by a model of
that device. Any differences between measured and predicted values are called
discrepancies'. The diagnosis task is to identify the fault(s) causing the discrep-
ancy.

The remainder of this section is a more detailed description of model-based di-
agnosis based on Console and Torrasso’s framework [1991].

Some basic definitions

To use Console and Torasso’s framework some basic definitions are needed, first
of all a device to be diagnosed.

Definition 1 D is the device to be diagnosed.
A device is built out of components.
Definition 2 Let COMP = {cy,...,c,} be the set of components of D.

Console and Torasso’s framework uses behaviour-modes® to describe and iden-
tify faulty components. Each component ¢; is characterised by a set of behaviour-
modes.

Definition 3 For each component c; in COM P there is a set of behaviour-modes
BM; = {correct;, fault;,, ..., fault; }.

! Discrepancies are also called symptoms by some authors. In this text both discrepancies
and symptoms will be used.
2A behaviour-mode corresponds to what is called fault-mode by some authors.

04

For each component there is one correct behaviour and a number of faulty
behaviours. The behaviour of the device D can be represented as the consequence
of the behaviour-modes of its components.

As suggested by de Kleer and Williams [1989] a behavior-mode for unknown faults
could (and should?) be added to cover possible unforseen behaviour-modes. A
revised definition would look something like this.

Definition 4 For each component c; in COM P there is a set of behaviour-modes
BM; = {correct;, unknown;, fault;, ..., fault; }.

To assist in the definition of the model later on two sets are defined, abducible
and non-abducible symbols.
The union of all sets of behaviour-modes is called the set of abducible symbols.

Definition 5 The set of abducible symbols ABDSY M = BM; U ...U BM,,.

Every abducible symbol corresponds to a behaviour-mode for one of the com-
ponents in the device D. The following definition helps to express the fact that a
certain component is in a certain behaviour-mode.

Definition 6 Let o be an abducible symbol (behaviour-mode) for component c;.
Component ¢; is in behaviour-mode o is written a(c;).

For each behaviour-mode (abducible symbol) there is one or more conse-
quences.

Definition 7 For each behaviour-mode « there is a set
CONS, = {consequencey, ..., consequencep, }.

The union of all sets of consequences defines a set of non-abducible symbols.

Definition 8 The set of non-abducible symbols
NONABDSYM =CONS,, U..UCONS,, .

The model and system description

A model of the device D is built from the abducible and non-abducible symbols
expressed as Horn clauses’.

Definition 9 Let v be a Horn clause built from symbols 3 € ABDSY M U
NONABSY M. Then the model for the device D is the set of Horn clauses
MODEL = {v,...,v} describeing the behaviour of the device.

3A Horn clause is a disjunction of negated litterals and at most one positive litteral —=; V
VAl VI

95

The main reason for restricting the model to Horn clauses is efficiency. It is possi-
ble to test satisfiability of a set of Horn clauses in linear time [Dowling and Gallier, 1984].
Given a model and it’s components a system description is defined like this.

Definition 10 Given a model (MODEL) and components (COMP) for a de-
vice D a system description for the device D is a pair
SD = (MODEL,COMP).

The diagnostics problem

To define a diagnostics problem contextual data and observations have to be
added. Contextual data and observations are expressed as atoms.

Definition 11 The atom f(a) expresses that a is the value of parameter f.

Now contextual data can be defined as a set of atoms representing the inputs
to the device D. Console and Torrasso [1991] defines contextual data as a set of
parameters providing information about the specific case under examination.

Definition 12 Let f1, ..., f, be inputs to the device D and ay, ..., a, their values.
The contextual data CT X 1is the set of atoms

CTX = {fl(al)a) fn(an)}

Contextual data need not be accounted for by a diagnosis but is used to predict
the behaviour of the device.

Observations can be defined as a set of atoms representing the outputs of the
device D. The definition is very much like the one for contextual data.

Definition 13 Let fi, ..., f, be outputs of the device D and aq, ..., a, their values.
The observations OBS is the set of atoms OBS = { fi(a1), ..., fn(an)}.

The important difference from contextual data is that the observations have to
be accounted for by a diagnosis.

The following constraint makes sure a parameter can’t have more than one value
and that it can’t be both an input and an output.

Constraint 1 FEach parameter can only appear once in CTX UOBS.

Now a diagnostics problem can be defined as a triple consisting of a system
description, contextual data and observations.

Definition 14 Let SD be the system description for device D, CTX be the con-
textual data and OBS be the observations. Then the diagnostics problem DP is
defined as a triple DP = (SD,CTX,0BS).

26

The solution to the diagnostics problem

Solving the diagnostics problem for a device is equivalent to identifying the
behaviour-modes of it’s components that “explain” the observations. To do this
two notions of explanation are defined. First a weak notion of explanation.

Definition 15 Fzxplanation as consistency: A diagnosis explains an observation
m if does not contradict m.

Then there is the strong notion of explanation.

Definition 16 Ezplanation as covering: A diagnosis explains an observation m
if it directly supports m.

These two defintions are the basis for two classical approaches to solving the
diagnosis problem. The consistensy based approach relies on a weak notion of
explanation. In this approach it is sufficient that the assigned behaviour-modes
are consistent with the observations. The abduction based approach relies on a
strong notion of explanation and requires that the observations are covered by
the assigned behaviour modes.

Console and Torrasso [1991] uses an abduction with consistensy constraints ap-
proach. This is a combination of the two classical approaches that relies both on
strong and weak notion of explanation.

Two sets ¥ and U~ are defined.

Definition 17 The set ¥ C OBS is the set of observation atoms (f;(a;)) that
have to be covered by a diagnosis.

Definition 18 The set ¥V~ = {=f(z) | f(y) € OBS,xz # y} is the set of negated
atoms that conflict with the observations in U,

The set ¥~ can be interpreted as the set of consistency constraints that the
solution must satisfy*.
Now an abduction problem can be defined as follows.

Definition 19 Given a diagnostic problem DP = (SD,CTX,0BS) the corre-
sponding abduction problem AP is a triple
AP = (SD,CTX, (¥, Ut)).

Solving diagnostic problem DP for a device D is equivalent to identifying the
behaviour modes of the components in D. Thus the solution is an assignment
that assigns exactly one behaviour mode to each component.

4This means that ruling out a value a for a parameter f is the same as putting —f(a) in ¥~.
Then the parameter f can’t assume the value a without breaking the consistency constraints.

o7

Definition 20 Given a system description SD = (MODEL,COMP) and the
set of abducible symbols ABDSY M in MODEL. An assigment W for COMP
is a set of abducible atoms («) such that for each component ¢ € COMP W
contains ezxactly one element of the form a(c).

A solution (explanation) to an abduction problem is an assignment that cover
Ut and is consistent with U~.

Definition 21 Given an abduction problem
AP = ((MODEL,COMP),CTX, (¥t ¥)).

An assignment W is an explanation for AP iff

1. W covers U, that is, for each m € U, we have that MODFEL U
CTXUWFm.

2. W s consistent with W=, that is, MODEL U CTX UW U V¥~ is
consistent.

5.3 Finding a solution

The previous section clearly defines the solution to the abduction problem but
does not say anything about how to find that solution. Finding a solution means
finding an assignment W that satisfies the conditions in Definition 21. The
reminder of this section presents algorithms for finding an assignment.

Simple algorithm

First lets take a closer look at a very simple algorithm. The algorithm is based
on pure intuition and simply goes through all possible assignments, testing them
and filtering out those that are valid assignments.

Algorithm 1
For each possible assignment W .
If W covers Ut and W is consistent with ¥~ Then

W s a solution.
End for.

This algorithm will find every possible assignment W that satisfies Definition
21 but does this at the cost of testing all possible assignments. In the simplest
possible case with n components that each have two possible behaviour-modes®
this algorithm has to test 2" assignments. For very small problems this approach
may be possible but as n grows a more effective algorithm is needed.

5Correct or faulty.

o8

Fault probabilites

In the simple algorithm no knowledge about the components is assumed. For all
we know every assignment is equally likely to be a valid diagnosis and we have no
way of choosing one before the other. To improve on the simple algorithm more
information about the components is needed. This enables us to make intelligent
choices when selecting assignments for testing.

Let us assume that we have some knowledge about the components in the shape
of fault-frequencies and that we are only interested in finding the most likely
assignment. This next algorithm will do exactly that. For simplicity all possible
assignments are assumed to be on a list sorted by fault-frequency with the as-
signment with the highest fault-frequency first. The algorithm goes through the
list untill an assignment is found that fullfills the conditions in Definition 21.

Algorithm 2
Let LW be a list of all possible assignments W sorted by fault-frequency.
Let Found be a boolean variable initiated to FALSE.
Let W be a variable initiated to the first element on LW .
While not Found
If W covers U and W is consistent with ¥~ Then
W is a solution set Found = TRUFE
Else
W is not a solution set W to be the next element in LW
End While

This algorithm may appear to be better then the simple algorithm but this is not
always true, if the only valid assignment is the last one on the list they are just
as bad. This is the worst case however, in the average case this algorithm will be
better.

Still there are some apperent flaws to this algorithm. It starts testing assignments
in the same order every time without considering any information about the
specific case.

Dependencies

In the two previous algorithms we haven’t considered any information given by
the observations. Let us assume that all observations are atoms. Then a symptom
can be defined [de Kleer and Williams, 1987] but first the definition of an atom
(Definition 11) need to be expanded.

Definition 22 If f is a parameter and a is a value then:

e f(a): f has the value a.

29

e fm(a): f has been measured to value a.
e f,(a): f has been predicted to value a.

Now a symptom is a measured parameter value that significantly deviates from
the predicted parameter value.

Definition 23 A symptom sy is a pair sy = (fm(a), f,(b)) where a # b.

Symptoms can be used to narrow down the search for a valid assignment. If a
parameter f is measured from a component ¢ then the correct value of parameter
f depends on the correct operation of component ¢. Normally the component ¢
depends on other components (cy, ..., ¢,) which depends on other components and
so on. Now when a symptom for parameter f is found we know that something
has to be wrong with the components it depends on. Using symptoms and de-
pendencies a more efficient algorithm® can be built.

This algorithm assumes that a symptom for a parameter f has been observed.
Since f depends on the correct operation of all the components in DEPy thus
the faulty component(s) we are looking for must be in this set. All possible com-
binations of components in DEP; are in DEPSET;. Assume that we want to
find the valid assignment with the fewest number of faulty components. To do
this DEPSETY is sorted in the order of the smallest subset of DE Py first. Now
finding the assinment we want is only a matter of walking through DEPSETY
and for each element DEP build the corresponding assignment W then test if
W fullfills Definition 21.

Algorithm 3
Assume that a symptom for the parameter f have been found.
Let DEP; be a list of all components parameter f is depending on.
Let DEPSETy be a set of all possible subsets of DEPy sorted from the
smallest subset to the largest.
Let DEP be a variable initialized to the first element in DEPSETY.
Let Found be a boolean variable initiated to TRUE.
While not Found
Let W be an assignment that assigns all components in DEP to be faulty
and all other components to be correct.
If W covers Ut and W is consistent with W~ Then
W is a solution set Found = TRUFE
Else
W is not a solution set DEP to be the next element in DEPSET}
End While

6This algoritm is simplified for illustrative purposes, a complete algorithm using dependen-
cies would be GDE [de Kleer and Williams, 1987].

60

This algorithm only has to test 2" possible assignments where n is the number of
components the parameter f depends on. Since n should be less than the total
number of components this algorithm should have a significant advantage over

the two previous algorithms. However if the parameter f depends on all the com-
ponents then this information is useless and this algorithm is just as bad as the

two previous.

There is still plenty of room for improvements in this algorithm. One possible im-
provement is to make use of fault-frequencys like the second algorithm. It should

also be able to make use of multiple symptoms like GDE [de Kleer and Williams, 1987].

5.4 Selecting a solution

In many cases there will be more than one explanation to a given abduction
problem. Some way of selecting the correct diagnosis is needed.

Minimal diagnosis

This is the approach taken by Console and Torrasso [1991] and Reiter [1987]. The
diagnosis with the least faulty components is selected. To be able to compare ex-
planations each explanation is partitioned into two parts. One partition contains
the correct modes.

Definition 24 correct(W) = {correct(c) | correct(c) € W} where ¢ is a compo-
nent in D and correct corresponds to the correct mode of c.

Another partition contains the faulty components.
Definition 25 faulty(W) =W — correct(W).

Now it is possible to compare explanations and define minimal explanation as
the explanation with the least faulty components.

Fault Probabilities

This is the approach used in Sherlock [de Kleer and Williams, 1989]. When using
fault probabilities each faultmode is assigned a fault probability”. To select the
correct diagnosis simply select the explanation with the highest probability mass.
This can also be used together with Console and Torasso’s framework, the only
thing that is needed is to calculate the probability mass of the candidates. De
Kleer and Williams is a bit more advanced however since they also use the fault
probabilites to guide the diagnosis process.

"The fault probability can also be thought of as a fault frequency.

61

5.5 Speeding up model-based diagnosis

Since efficiency is an important issue for any on-board diagnosis system this
section is devoted to methods speeding up model-based diagnosis. The number of
possible diagnoses grows fast as the model-becomes more advanced. For example
if you have a system with n components that can be either correct or faulty® the
number of possible diagnoses is 2”. This is a very large number even for quite
small n and if we want to add more behavoiur modes for each component the
situation is even worse. Since diagnosis can be seen as search thru these possible
diagnoses an efficient searchmethod is needed that (hopfully) does not need to
search all possibilites to find a diagnosis.

Case based reasoning

Another approach [Portinale et al., 1996] is to use case based reasoning (CBR)
to guide the diagnosis process. The basic idea is to use knowledge about previous
diagnosis cases to find a solution to the current one. When the current case
matches some previously known case this method is very fast, the diagnosis is
found immediately. The problems with this approach occurs when there is no
exact match for the current case with previous cases. The brave way to approach
this problem is to attempt to find the previously known solution that is closest by
some measure? and, if needed, adapt this to the current case. The problem is that
even though the two cases may be close their solutions may be very far from each
other. The adaption process may be very extensive to the point where the used
case is missguiding the diagnosis process. The safe way to deal with the problem
is to fall back on model-based diagnosis and dissguard previously known and
maybe misleading cases but then not much is gained from the knowledge about
previous cases. One solution would be to attempt to adapt the previous case and
abandon the adaption process when it becomes too extensive. The problem is
then to find some good way of telling when to abandon the adaption process.

Multiple models

Dressler and Struss [1996] take a different approach to accomplish higher effi-
ciency. Instead of trying to speed up or guide the search for the correct diagnosis
they suggest reducing the size of the model. They use a simplified model to guide
the search. By observing that some faults can’t occur!® together some faults rule
out others the simplified model can be replaced by more accurate ones as the
diagnosis becomes more accurate. These models can be arranged in a tree with

8That is each component has two faultmodes, correct and faulty.

9This is one weakness of this brave approach, there is no “perfect” way to measure how close
two cases are.

10 Also some faults make it impossible to diagnose some other components.

62

the top node being the most general and most simplified model. Each branch in
the tree represents more accuratee models where the leaf models are the most
accuratee.

This method has the potential'! to reduce the number of possible diagnoses and
thus make the diagnosis more efficient. This is done at the cost of multiple models.

5.6 Diagnosis in DEDS

Discrete event dynamic systems (DEDS) are systems where all variables can take
only discrete values. We restrict ourselves to such systems where each variable
belongs to a finite set. Inspired by the mathematical description for continuous
systems & = f(x,u) we write a DEDS with n states, p inputs and m outputs as

t = f(x,u) (5.1)

where zt (next state), x,u belong to finite sets X, X" U? and the transition
function is a mapping f : X" xU? — X". The expression (5.1) models an explicit
behavior whereas f(z*, x,u) = 0 models an implicit behavior. For outputs we
write y = g(z,u), y € Y™,

The variables z,u, " and y are regarded as signals and the models f, g are
signal models. This differs, in respect to representation, from a pure event based
approach where a value (or symbol) represents a change in the environment.
Instead we say that the environment can always be measured and we do not need
to remember values on the inputs. Signal based models has a closer connection to
physical systems controlled by some sampling device. Pure event based models
can be translated to signal based models, see Gunnarsson [1995].

The relations f and ¢ can be described in several different ways, for example
as a table. We will use binary decision diagrams (BDD)[Bryant, 1986] to store
these relations efficiently.

Diagnosis or fault detection is in this environment the same as an observer.
We have to model the system (including possible faults) and then find the set
of states which corresponds to the available observations. Unmodelled faults can
be discovered if they lead to an abnormal behaviour. The set of possible states
delivered by the observer will in this case be an empty set.

1 This is not a general result, it is possible to create “dumb” cases where it is not true. One
simple example is using the same model on every level.

63

Bibliography

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677-691, August
1986.

[Console and Torasso, 1991] L. Console and P. Torasso. A spectrum of logical
definitions of model-based diagnosis. Comput. Intell., 7:133-141, 1991.

[de Kleer and Williams, 1987] J. de Kleer and B.C. Williams. Diagnosing multi-
ple faults. Artificial Intelligence, 32:97-130, 1987.

[de Kleer and Williams, 1989] J. de Kleer and B.C. Williams. Diagnosis with
behavioural modes. In Procedings of the 11th international joint conference on
artificial intelligence, 1989.

[Dowling and Gallier, 1984] W.F Dowling and J.H Gallier. Linear-time algo-
rithms for testing the satisfiability of propositional horn formulae. J. logic
programming, 3:267-284, 1984.

[Dressler and Struss, 1996] O. Dressler and P. Struss. The consistency based ap-
proach to automated diagnosis of devices. In Gerhard Brewka, editor, Princi-
ples of knowledge representation, chapter 8, pages 269-313. CSLI Publications,
1996.

[Gunnarsson, 1995] Johan Gunnarsson. On modeling of discrete event dynamic
systems, using symbolic algebraic methods. Technical Report LiU-TEK-
LIC-1995:34, Dept. of Electrical Engineering, Linkoping University, S-581 83
Linkoping, Sweden, June 1995.

[Poole, 1988] D. Poole. A logical framework for default reasoning. Artificial
Intelligence, 36:27-47, 1988.

[Portinale et al., 1996] L. Portinale, P. Torraso, C. Ortalda, and A. Girardino.
Using case-based reasoning to focus model-based diagnostic problem solving.
Torino, Italy, 1996.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32:57-95, 1987.

64

Chapter 6

Temporal Reasoning

This chapter surveys some of the work on temporal reasoning within artificial
intelligence. Section 6.1 introduces reasoning about temporal constraints, that
is, various algebras and methods for drawing conclusions from sets of temporal
relationships. Important issues here are the ontological choices and the resulting
computational consequences. Since the area is still immature and evolving, there
is no common theory to present. Hence, in order to give the interested reader
some feeling of the technical details, some in-depth examples are provided in the
subsequent section. Section 6.3 then briefly discusses formalisms and methods
for reasoning about time together with other information which is temporally
qualified (reasoning about knowledge and time). Finally, the last two sections
briefly discusses some examples of implemented systems and gives some references
to further reading.

6.1 Temporal-Constraint Reasoning

Temporal constraint reasoning is an important task both in Al and elsewhere,
having relevance to such diverse areas as planning; natural language processing;
model-based diagnosis; time serialization in archeology, history and paleontol-
ogy, etc. Isomorphic problems also arise in areas such as spatial reasoning and
molecular biology.

In most applications, information about temporal constraints is expressed as
collections of relations between time intervals or time points. Typical reasoning
tasks include determining the satisfiability of such collections and deducing new
relations from those that are known. There are several ontological choices to
make, eg. should time points or time intervals be used as basic primitives, should
time be quantitative or qualitative etc.? These choices affect both the modelling
power and the computational complexity, as will be discussed later. However, be-
fore going into technical details, we consider an example of a temporal-constraint
reasoning problem.

65

Example: A Murder Scenario

Professor Jones has been found shot on the beach near her house. Rumours tell
that she was almost sure of having a proof that P#NP, but had not yet shown it
to any of her colleagues. The graduate student Hill is soon to defend his thesis
on his newly invented complexity class NRQPsy (%)°°, which would unfortunately
be of no value were it to be known for certain that P#£NP. Needless to say, Hill
is thus one of the prime suspects and inspector Smith is faced with the following
facts and observations:

Professor Jones died between 6 pm and 11 pm, according to the post-
mortem.

Mr Green, who lives close to the beach, is certain that he heard a gunshot
at some time in the evening, certainly after the TV news.

The TV news is from 7.30 pm to 8.00 pm.

A reliable neighbour of Hill claims Hill arrived at home sometime between
9.15 pm and 9.30 pm.

Furthermore, the following pieces of general information are known:

e [t takes between 10 and 20 mins. to walk or run from the place of the crime
to the closest parking lot.

e It takes between 45 and 60 mins. to drive from this parking lot to Hill’s
home.

As a help in solving this crime, Inspector Smith could use temporal-constraint
reasoning as a help to rule out suspects. For instance, in order to see if Hill
can be ruled out as a suspect based on the temporal information, Smith could
proceed as follows. First he has to check that the set of temporal facts and
observations above is consistent—if not, then some observation or fact must be
wrong. As a next step, further information may be deduced from what is known.
For instance, as is shown in Figure 6.1, the fact that Jones died between 6 pm
and 11 pm together with the fact that the shot was heard after the TV news
makes it possible to narrow down the time of death to the interval between 8
pm and 11 pm. Now, in order to see if Hill could have been at the beach at the
time of the crime, Smith adds the hypothesis that Hill did go (or run from the
beach) and then drive home. It is known that Smith did arrive home at some
time during the interval from 9.15 pm to 9.30 pm so it is possible to calculate
backwards to see when he must have left the beach (if he ever was there). This
time can only be determined within some upper an lower bound, but interesting
question is whether it is possible for this time point to have occurred during the
interval of the death, that is, between 8 pm and 11 pm. If not, then inspector

66

6-90 Jones dies (medical judgement) HiOO
I 1
7-|30 8.|00 Green hears shot
| 1
8-|00 Jones died (deduced) 11i00
| A I
Hill arrives home
during? 'f'
9.15 9.30
{ Go to car . Drive home %during
[10,200 " [45,60]

Figure 6.1: Temporal constraints in the murder scenario

Smith can rule out Hill as a suspect. This can be done by testing if the set of
known facts and observations together with the hypothesis is inconsistent. If so,
then Hill could not have been at the beach at the time of the crime and so is no
longer a suspect, while in the other case Smith does not gain any new knowledge
so Hill is still a suspect.’

It is obvious from this example that there are several different types of tempo-
ral entities and different types of relations between these. For instance, the time
of death can be viewed as a time point which is known to occur at some time
during an interval which starts at 6.00 pm and ends at 11.00 pm, ie. we have
a time point with unknown occurrence time related to an interval with known
metric starting and ending times.

Ontological Choices

As was mentioned in the introduction, we can choose either time points or time
intervals as our primitive temporal entities. Although the question which of
these concepts should be regarded as primitive has spurred much philosophical
debate, we need not usually be concerned with that question; time points and
time intervals can co-exist since a time interval can be viewed as a pair of time
points—denoting the starting and ending time respectively of the interval. We
will use the symbol ¢ for time points and the symbol I for time intervals (using
subscripts whenever necessary). Furthermore, for each interval I, we will denote
its starting and ending time points by I~ and I' respectively, that is, we have
for all intervals I that I =[I—,I"].

IThe alert reader will probably already have observed that Hill will be in need of juridical
assistance.

67

Another distinction to make is between qualitative (or relative) time and
quantitative (or metric) time. If using only qualitative time we may, for instance,
say that a time point ¢; is strictly before another time point ¢5, denoted t; < t5 or
that they are the same time point?, denoted t; = t,. However, it is not possible
in the first case to express how long before ¢, the time point ¢; occurs. Neither
can we say when ¢; and ¢, occur in the second case, although we know they both
occur at the same time. Similarly, for two time intervals I; and I> we may, for
instance, know that I; occurs strictly before I, denoted I {<}I5 or we may know
that I either ends exactly when I, starts (ie. I} meets I5) or that I; starts before
I, starts and ends after I starts but before I, ends (ie. I overlaps I5), which is
denoted I;{m o}I,. However, there is no information about the metric durations
of the two intervals, or about how long before I starts does I; start.

If using quantitative time, on the other hand, we express actual occurrence
times of time points, eg. t; = 17, and distances between time points, eg. t; —
ty = 5. By treating intervals as pairs of time points we may similarly represent
durations of intervals, eg. d(I) = I" — I~ = 5, distances between the starting
times of intervals, eq. I, — I; = 7, etc. All these examples represent exact
metric information. However, we may also consider allowing uncertain metric
information, saying, for instance, that time point ¢; occurs somewhere between
the exact times 5 and 7, te. 5 < t; < 7, or that the duration of interval I; is
at most 8 time units, ie. I; 7 — I, < 8. It is worth noting that if we allow full
metric time with uncertainty, then we can express also qualitative relations.

Temporal Algebras

Given some ontological choice of temporal entities and relations, we can also de-
fine certain operations in order to get an algebra. The usual operations considered
for temporal algebras are converse, intersection and composition. The converse of
a relation corresponds to interchanging its arguments, eg. the converse of t; < t,
is t; > to (note, not the inverse ¢; > t5). As will be discussed below, relations
are viewed as sets of basic relations, so the relation >, for instance, is really an
abbreviation for the set {= >}. The intersection between two relations is simply
the intersection between the two sets of basic relations, eg. the intersection of
t; <ty and t; > t9, which really denotes the intersection between t;{< =}t5 and
ti{= >}ts, is t1{=}ts, ie. t1 = to in ‘sloppy’ notation. Finally, composition is
essentially a transitivity operation, but is slightly more complex since it has to
handle different relations. For instance, the composition of ¢; < t, and ¢y < t3 is

2Strictly speaking, we should call ¢; and ¢, not time points, but rather time tokens or time-
point symbols, since they are only variables denoting time points. The tokens ¢; and o are
two distinct symbols which may or may not denote distinct points on the time line. However,
trusting the benevolent reader not to be confused by this abuse of language, we will somewhat
sloppily refer to time tokens as time points in order to simplify the presentation. An analogous
note applies also to time intervals.

68

t1 < t3, while the composition of t; <ty and t, < t3 is t; < t3.

Qualitative Algebras

The point algebra (more precisely the qualitative time point algebra) [Vilain, 1982]
uses only time points and only qualitative relations between these. There are
three basic relation between time points: before (<), equals (=) and after (>).
We further allow composite relations, formed as sets of basic relations and denot-
ing the disjunction of its constituent basic relations. For instance, the expression
t1{< =}ty denotes that either t; < t5 or #; = 5 and is usually abbreviated as
t1 < ty. Similarly we can also form the two relations {= >} and {< >}, which
are abbreviated as > and # respectively. The two remaining composite relations
are the non-relation {< = >} denoting the empty constraint, which is equivalent
to having no constraint at all, and the inconsistent relation {}, which can never
be satisfied. All in all, this totals eight different relations, three basic and five
composite, corresponding to the eight subsets of {< = >}. It is worth noting
that the two relations < and # are sufficient to express all the other point-algebra
relations and that this fact is exploited in many temporal-reasoning systems in
order to simplify the data structures and algorithms. It is also common to view
a set of relations as a directed graph with arcs labelled by < or #.

The interval algebra [Allen, 1983] (often called the Allen algebra after its
inventor®) uses time intervals as primitive entities and does not include time
points explicitly. While two time points can only be related in three basic ways,
two intervals can be related in more complex ways. More precisely the possible
relations are: before (<), meets (m), overlaps (o), starts (s), during (d), finishes
(f) and equals (=). In addition, there are also the converses of these seven
relations, denoted by adding an “4” after the relation symbol, with two exceptions:
the inverse of before is called after and is denoted >, and equals is the inverse of
itself. This totals 13 different basic relations, which are illustrated in Figure 6.2.
Just as in the case of the point algebra, we also allow composite relations formed
by disjunctions of basic relations, eg. I;{m o}, denotes that either I meets I
or I; overlaps I,. This gives rise to a total number of 2!3 = 8192 basic and
composite relations.

A somewhat less common algebra is the point-interval algebra (and its con-
verse, the interval-point algebra) [Vilain, 1982], which allows only relations be-
tween a time point and an interval. The point-interval algebra has five basic
relations, before, starts, during, ends and after, as shown in Figure 6.3. The
point-interval algebra thus has a total of 2° = 32 relations, basic and composite.
Note that it is not possible to directly relate two time points or two intervals to
each other, which makes its usage somewhat limited. However, it is useful in at

3In fact, Allen was not first to consider interval relations. Bruce [1972] defines many, though
not all, of Allen’s interval relations. In fact, Bruce also allows intervals which are points, thus
not being a proper subclass of the interval algebra.

69

<L A
I {m} Iy
I {o}I,
I {8},

Il{d}Iz

L{f}I2

L{=}I

Ly R iy
. L , I
Li{mi}l, ————
I
oy 22—
| I
. Il
]1{82}]2 |—|
;g |
L{di} I, ——
1> |
Lifith ——>o

Figure 6.2: The 13 basic relations in the interval algebra.

s} ——
p
p{s}I f--i--ﬁ
p
p{d}1 F-—%;——ﬂ
p

playt ——
p
i ——
p

Figure 6.3: The five basic relation in the point-interval algebra.

70

least two contexts. It is used in Meiri’s QA algebra [Meiri, 1991] as a ‘glue’ for
integrating reasoning about time points and intervals. Furthermore, it is suffi-
cient to express information about partially ordered plans.* A consequence of
this asymmetry is further that not all of the normal algebraic operations can be
defined in the usual way. In fact, Vilain [1982] does not discuss this problem, but
an alternative to transitivity, 3-composition, has recently been introduced in the
literature [Jonsson et al., 1996].

Quantitative Algebras

A number of quantitative temporal algebras have been proposed in the literature,
most or all of them based on time points. The ancestor of most of these algebras is
the time map manager (TMM) [Dean and McDermott, 1987], which maintains a
network of time points and metric relations between these. A relation consists of
upper and lower bounds on the temporal distance between two time points. This
is what Dechter et. al. [1991] refers to as a binary constraint, which can be written
as ¢ < t; —ty < d, where t; and %, are time points and ¢ and d are constants.
One may also wish to locate a single time point within an interval on the time
line, which can be done via a unary constraint of the form ¢ < ¢t < d. Note,
however, that by introducing a reference time point #,.; defined to occur at time
0 a unary constraint ¢ <t < d can always be replaced by the binary constraint
¢ <t —tps < d. Further note that the expressions ¢t = ¢ and t; — t; = ¢ can
be expressed as the unary and binary constraints ¢ <t < candc <t; —ty <c¢
respectively. Most quantitative algebras are based on sets of unary and/or binary
constraints, sometimes augmented also with inequality formulae of the forms ¢ # ¢
and t; —ty # c¢. Some algebras use only one-sided constraints, that is, constraints
of the forms t < d and t; — t, < d. This is no restriction, however, since a two-
sided constraint corresponds to two one-sided constraints. Furthermore, most of
the quantitative algebras are really mixed qualitative and quantitative algebras
in sense that they can express some, or all, qualitative relations over time points,
ie. they subsume the point algebra. Some of those not subsuming the whole point
algebra are augmented with the full set of qualitative relations in order to do so.

There are also more expressive algebras, allowing more complex relations
and/or more complex relationships between relational expressions. For instance,
the temporal constraint satisfaction problem (TCSP) [Dechter et al., 1991] allows
a set, of formulae which are either disjunctions of unary constraints or disjunc-
tions of binary constraints, restricted to one time point/pair of time points per
constraint. That is, each formula is either of the form

41f treating the actions as time points and the temporal intervals between them as intervals,
both the partial order between the action and exclusion of actions from protection intervals can
be modelled.

71

or
(01§t2~—tj§d1)v...v(cn§ti—tj§dn).

A set of TCSPs obviously correspond to a formula in conjunctive normal form
with binary temporal constraints as atoms.

A more general approach which subsumes TCSP and extends it in several
ways, for instance by allowing inequalities and more-than-binary constraints, is is
the language of disjunctive linear relations (DLRs) [Jonsson and Béckstrom, 1996b].
A DLR is a disjunction of linear relations, the latter being expressions on the form
a r 3, where o and (3 are linear expressions (ie. polynomials of degree one) with
rational coefficients over the set of time points and r € {<,<,=,>,>,#}. For
instance, the formula

(3ty + 542ty — 0.Tt5 < 12) V (ty + 3ts + 0.55t, > t7) V (b1 + 2t5 # ty)

is a DLR. That is, a set of DLRs is a formula in conjunctive normal form over
linear relations, so it constitutes a full propositional logic over the set of linear
relations and is powerful enough to subsume all other algebras, qualitative as
well as quantitative, discussed so far. Note, for instance, that DLRs are sufficient
for encoding all relations in the interval algebra, which is not possible using only
conjunctions of linear relations or unary/binary constraints. Hence, the DLR
formalism is strictly more expressive than TCSP formalism.?

Kautz and Ladkin [1991] define a language for mixed qualitative and metric
temporal reasoning which contains both intervals and time points. All interval
relations are allowed between intervals, while time points and differences between
two time points can be related to constants using either < or <. Furthermore,
all interval end-points are by definition in the set of time points, thus forming
a connection between interval formulae and time-point formulae. The actual
reasoning system uses separate reasoners for time-point relations and interval
relations, and uses translation algorithms to cross-post constraints between these
two reasoners. A similar approach is taken by Meiri [1991] who extends his
qualitative algebra QA with metric reasoning capabilities.

Computational Issues

While the choice of ontology and a particular algebra certainly affects how easy
it is to model a particular problem, and even whether it is possible at all, these
choices also have computational implications. Different temporal algebras may
have strikingly different computational properties, so it is interesting to study
various restricted algebras.

5 Actually, from a computational point of view this is not quite true, as will be seen below,
but there seems to be no straightforward, obvious way of transforming a set of DLRs into a set
of TCSPs.

72

Reasoning Problems

Before discussing the complexity of reasoning in an algebra, we have to define
exactly what reasoning problem we are analysing. Several interesting reasoning
problems can be defined, but the most common and basic one is the satisfiability
problem. Given a set of relational expressions, interpreted as the conjunction
of these expressions, over some temporal algebra the satisfiability problem asks
whether this set of expressions is satisfiable—that is, whether there exists an in-
terpretation (an assignment of exact times to all time points/interval end points)
such that all expressions are simultaneously true. Such an interpretation is re-
ferred to as a model.

Another common reasoning problem is the minimal labelling problem: given
a set of temporal entities and relations between these, decide for two particular
entities what is the least constrained relation that may hold between these s.t.
all other constraints are still satisfied.

Reasoning with Qualitative Algebras

It has been known for a number of years that the satisfiability problem for the
point algebra can be solved in polynomial time (ée. it is computationally tractable)
[van Beek and Cohen, 1990].°

The satisfiability problem for the interval algebra, on the other hand, is known
to be NP-complete [Kautz and Ladkin, 1991]. Intuitively, this is hardly surpris-
ing since we cannot rewrite an arbitrary set of interval relations as a pure conjunc-
tion of point relations. For instance, the relation I;{< >}l must be encoded as
the disjunction (I,;* > I,7) V (I," < I;7)." Despite its apparently lower expres-
sivity, also the point-interval algebra is known to be NP-complete with respect
to satisfiability [Meiri, 1991].

The NP-completeness result for the interval algebra has provoked research
into identifying subalgebras where the satisfiability problem is tractable. The
most well-known such subalgebras in the literature are the pointisable algebra
[van Beek and Cohen, 1990], the fragment of the interval algebra that can be
reencoded in the point algebra, and the ORD-Horn algebra [Nebel and Biirckert, 1995],
the fragment of the interval algebra which can be reencoded as Horn clauses of the

Indeed, this problem can be solved in linear time in the number of constraints)
[Gerevini et al., 1993].

TActually, the relation {< >} alone is not a sufficient cause for NP-completeness. More
interestingly, the seemingly harmless relation meets alone is sufficient to express all 13 basic
relations, and together with either < or > it causes NP-completeness—the relation {< m}
generates the whole interval algebra. It is further interesting to note that the relation {< >} in
the point algebra does not cause any computational problem since it excludes only a point, not
an interval, on the time line. This can be understood as follows. First note that the relations
< and # are sufficient to replace all other relations of the point algebra. Now, any cycle of <
relations is unsatisfiable if any two time points in the cycle are related by a # constraint and
otherwise is satisfiable and can be collapsed to a single time point.

73

relations <, = and # over time points.® The ORD-Horn algebra is further inter-
esting since it is proven to be the unique maximal tractable subalgebra allowing
all 13 basic relations (but obviously not all disjunctions of these). The ORD-Horn
algebra was claimed better than the pointisable algebra, since it contains 868 el-
ements (ie. more than 10% of the full algebra) in contrast to the 188 relations
covered by the pointisable algebra. However, recent research by Drakengren and
Jonsson [1996a, 1996b] has identified 17 new maximal tractable subalgebras, all
of them containing considerably more relations than the ORD-Horn algebra. As
is obvious from the maximality result for the ORD-Horn algebra, none of these
new algebras properly includes the ORD-Horn algebra or contains all the basic
relations. Furthermore, these new results also question the value of using the size
of a subalgebra as a measure for its goodness; the largest of the new algebras con-
tains half of the full interval algebra, but cannot express anything of interest. It
is not known how many tractable subalgebras that exist, and this is a non-trivial
question to answer—the interval algebra has 28!92 ~ 10?** subclasses.

On the other hand, a complete classification of all subalgebras of the point-
interval algebra into tractable and NP-complete respectively has recently been
reported [Jonsson et al., 1996]—nine out of the 2%? subclasses being maximal
tractable subalgebras.

Furthermore, Golumbic and Shamir [1993] have studied algebras formed by
collapsing sets of basic relations into macro relations. For instance, one such
algebra has the relations { <, N, >} where N denotes the set of all the other 11 basic
interval relations. They report a number of tractability and intractability results,
but it is worth noting they do not always allow two intervals to be unrelated,
making comparisons with other work somewhat difficult.

Quantitative Algebras

Satisfiability for a set of DLRs is NP-complete [Jonsson and Béackstrém, 1996b],
which is obvious since the interval algebra can be encoded as a set of DLRs. On
the other hand, there is no straightforward encoding of interval-algebra satisfiabil-
ity into TCSP—yet, TCSP is also NP-complete. Hence, it is obviously interesting
to study tractable subalgebras also in the case of quantitative temporal reasoning.

Various tractable algebras based on unary/binary constraints, often aug-
mented with inequalities and/or qualitative relations have been reported in the
literature, including the following:

e Dechter et. al. [1991] consider sets of simple temporal constraints (STP), a
restricted version of TCSP allowing only formulae of the form ¢ < (z—y) <
d, where x and y are time points and ¢ and d constants. Simple temporal

8The term Horn clause is here generalized to mean a disjunction of relations where at most
one relation is < or =.

74

constraints are equivalent to simple metric constraints [Kautz and Ladkin, 1991]
and the constraints use in Barber’s [1993] system.

e Koubarakis [1992] considers sets of formulae on either of the three forms (1)
(x —y)re, (2) zreor (3) adisjunction of formulae of the form (x —y) # ¢
or x # ¢, where r € {<, >, #}.

e Meiri [1991] considers sets of CPA/single interval formulae, that is, for-
mulae on either of the two forms (1) c¢ry(z — y)rod; or (2) zry where
re{<,<,=,#,>,>}and r,r € {<, <}

e The TimeGraph II system [Gerevini et al., 1993] allows formulae on either
of the three forms (1) ¢ <z < d, (2) ¢ < x—y < d or (3) xry where
re{<, <= #2,>}

A recent exception is the Horn-DLR formalism by Jonsson and Béackstrom
[1996a, 1996b], which is the DLR formalism restricted to Horn DLRs, that is,
DLRs where at most one relational expression contains the < relation. As an
example, the two formulae

(Bty £ty —4) V (t1+ 2t — 1#£ 1.4t3) V (1 +4t3 <ty +7)

are both Horn-DLR formulae, while the formula
(b £ 1) V (6 <4) V (ty <ty)

is a DLR, but not a Horn-DLR.

Satisfiability for a set of Horn DLRs can be solved in polynomial time using
an algorithm based on linear-programming. The Horn-DLR formalism subsumes
all of the tractable quantitative algebras listed above, thus serving as a unifying
formalism for these. Furthermore, the Horn DLR formalism also subsumes some
of the tractable interval subalgebras, including the ORD-Horn algebra. Hence,
the qualitative fragment of Horn DLR inherits the maximality result for the
ORD-Horn algebra, while at the same time adding a capability of reasoning
about metric time, thus constituting a mixed qualitative/quantitative tractable
algebra. (The proof of tractability for the Horn DLR formalism will be provided
as an example in the following section.) There is also recent work on integrating
other tractable interval subalgebras with quantitative temporal reasoning using
the Horn DLR formalism [Drakengren and Jonsson, 1996b]. The algorithm for
the Horn DLR algebra is, although polynomial, less efficient than the specialized
algorithms for many of the less expressive tractable algebras listed above. In
contrast to these specialized algorithms, however, the Horn-DLR algorithm works
for all these algebras.

75

6.2 Some Examples in Detail

The previous section mostly discusses ontological and computational aspects of
temporal algebras in a somewhat coarse and survey-like style. Hence, this chapter
provides two examples of proofs of claims from the previous section in order to
allow the interested reader to get a flavour of the character of such proofs and the
computational issues involved. Since the major computational question to ask
about satisfiability in a temporal algebra (as about any other problem) is whether
it can be proven computationally tractable or intractable® one proof of each type
is provided here. The first of these proves that satisfiability is tractable for the
Horn-DLR formalism, which is done by means of providing an algorithm and
proving that it is correct and polynomial time. The other proof, which is of the
opposite type, shows that the subalgebra {{s f},{b d a}} of the point-interval
algebra is NP-complete.

Tractability for the Horn-DLR Algebra

The following material oringally appears in Jonsson and Béckstrom [1996a].

Disjunctive Linear Relations

We begin by defining som different types of linear relations.

Definition 6.2.1 Let X = {xy,...,z,} be a set of real-valued variables. Let
a, 3 be linear polynomials (ie. polynomials of degree one) over X. A linear
disequation over X is an expression of the form o # 3. A linear equality over
X is an expression of the form o = 3. A linear relation over X is an expression
of the form arf where r € {<,<,=,#,>,>}. A convex linear relation over X
is an expression of the form ar.f where r, € {<,<,=,>>}. A disequational
linear relation over X is an expression of the form a # (3. A disjunctive linear
relation (DLR) is a disjunction of one or more linear relations.

Example 6.2.1 A typical DLR over {1, x2, 3} is (1.221+x9 < x3+5)V (1223 #
751’2) vV (1‘2 = 5)

In the following, we assume all sets of DLRs to be finite. The definition of
satisfiability for DLRs is straightforward.

Definition 6.2.2 Let X = {xy,...,2,} be a set of real-valued variables and let
R = {Ry,..., Ry} be a set of DLRs over X. We say that R is satisfiable iff
there exists an assignment of real values to the variables in X that makes at least
one member of each R;, 1 < i <k, true.

Tt may, of course, be quite difficult to provide such proofs, and some problems have so
far defied attempts to prove either case. Further, the term intractable must usually be taken
liberally, meaning intractable under the assumption that P # N P.

76

It is important to note that we only consider assignments of real values, thus
assuming that time is linear, dense and unbounded. (We will see that it is
sufficient to consider assignments of rational values further on.) We continue by
classifying different types of DLRs.

Definition 6.2.3 Let v be a DLR. C(v) denotes the convex relations in v and
NC(v) the disequational relations in . We say that v is convex iff INC(y)] =0
and that 7y is disequational iff |C(y)| = 0. If 7y is convex or disequational we say
that v is homogeneous and otherwise heterogeneous. Furthermore, if |C(v)]| <1
then v 1s Horn. We extend these definitions to sets of relations in the obvious
way. For example, if I is a set of DLRs and all v € I' are Horn, then I" is Horn.

This classification provides the basis for the forthcoming proofs. One detail to
note is that if a Horn DLR is convex then it is a unit clause, ie. a disjunction
with only one member.

For Horn DLRs, we restrict ourselves only to use < and # in the relations.
This is no loss of generality since we can express all the other relations in terms
of these two. For example, a DLR of the form = < y vV D can be replaced by the
disjunctions {x < yV D,z # yVvD}. Observe that the resulting set of disjunctions
can contain at most twice as many disjunctions as the original one. Hence, this
is a polynomial time transformation. (Note, however, that this does not hold for
general DLRs.)

Definition 6.2.4 Let A be a satisfiable set of DLRs and let v be a DLR. We say
that v blocks A iff for every d € NC(~), AU {d} is not satisfiable.

Observe that if A U {~} is satisfiable and 7 blocks A then there must exist a
relation § € C(7) such that A U {d} is satisfiable. This observation will be of
great importance in forthcoming sections.

Linear Programming

The method for deciding satisfiability of Horn DLRs is based on linear-program-
ming techniques so some of the basic facts about linear programming are repeated
here for the readers convenience.

Definition 6.2.5 Let A be an arbitrary m X n matriz of rationals in finite pre-
cision and let x = (x1,...,2,) be an n-vector of variables over the real num-
bers. Then an instance of the linear programming (LP) problem is defined by:
{min T subject to Az < b} where b is an m-vector of rationals and ¢ an n-vector

of rationals. The computational problem is as follows:

1. Find an assignment to the variables x4, ..., x, such that the condition Ax <
b holds and ¢ Tz is minimial subject to these conditions, or

7

algorithm SAT(T)

A« U{C(y)]y € T is convex}

if A not satisfiable then reject

if 3y € T" that blocks A and is disequational then reject

if 3y € T that blocks A and is heterogeneous then SAT((I' — {v})UC(y))
accept

YT W N~

Figure 6.4: Algorithm for deciding satisfiability of Horn DLRs.

2. Report that there is no such assignment, or

T

3. Report that there is no lower bound for ¢* x under the conditions.

Analogously, we can define an LP problem where the objective is to maximize
T

¢ x under the condition Az < b. We have the following important theorem.
Theorem 6.2.6 [Khachiyan, 1979] The linear programming problem is solvable
in polynomial time.

Although polynomial, Khachiyans algorithm was not very efficient, and in
practice it was often outperformed by the non-polynomial Simplex method. More
recent work, starting with the algorithm by Karmarkar [1984], has changed this
however and the polynomial methods are now generally considered the best also in
practice. In the following, we assume all coeffecients to be rationals represented
in finite precision, which is no restriction in practice since computers (almost
without exception) use finite precision arithmetics.

Satisfiability of Horn DLRs

The problem of deciding satisfiability for a set of Horn DLRs is denoted
HORNDLRSAT and we will show below that this problem can be solved in poly-
nomial time using the algorithm SAT (Figure 6.4).

We begin by exhibiting a simple method for deciding whether a set of convex
linear relations augmented with one disequation is satisfiable or not.

Note that for this methods, as well as for the final algorithm, the purpose
has only been to prove tractability, and not to attempt finding the best possible
upper bound. That is, simplicity is stressed rather than tuning of efficiency.

Lemma 6.2.7 Let A be an arbitrary m x n matriz, b be an m-vector and v =
(x1,...,2,) be an n-vector of variables over the real numbers. Let «, 3 be linear
polynomial over xy,...,x,. Deciding whether the system S = {Ax < b, # [}
15 satisfiable or not is polynomial.

Proof: Let o/ = a — cand ' = 3 — d where ¢ and d are the constant terms in
a and (3, respectively. Consider the following instances of LP:

78

LP1= {min o/ — (' subject to Ax < b}
LP2= {max o' — (' subject to Az < b}

If LP1 and LP2 have no solutions then S is not satisfiable. If both LP1 and LP2
yield the same optimal value d — ¢ then S is not satisfiable since every solution
to LP1 and LP2 forces o to equal 3. Otherwise S is obviously satisfiable. Since
we can solve the LP problem in polynomial time by Theorem 6.2.6, the lemma
follows. a

Before proceeding, we recapitulate some standard mathematical concepts.

Definition 6.2.8 Given two points x,y € R", a convex combination of them
is any point of the form z = Ax + (1 — Ay where 0 < X < 1. A set S C R" is
convex iff it contains all convexr combinations of all pairs of points x,y € S.

Definition 6.2.9 A hyperplane H in R"™ is a non-empty set defined as
{z € R"|a1z1 + ...+ ayx, = b} for some ay,...,a,,b € R.

Definition 6.2.10 Let A be an arbitrary m X n matriz and b be an m-vector.
The polyhedron defined by A and b is the set {x € R"|Az < b}.

The connection between polyhedrons and convex sets is expressed in the following
well-known fact.

Fact 6.2.11 Every non-empty polyhedron is convex.

Consequently, the convex relations in a set of Horn DLRs defines a convex set
in R". Furthermore, we can identify the disequations with hyperplanes in R".
These observations motivate the next lemma.

Lemma 6.2.12 Let S C R™ be a convex set and let Hy, ..., H, C R"™ be distinct
hyperplanes. If S C U¥_, H; then there exists a j, 1 < j < k such that S C H;.

Proof: Ifit is possible to drop one or more hyperplanes from H and still have a
union containing S then do so. Let H' = {H],..., H }, m <k, be the resulting
minimal set of hyperplanes. Every H] € H' contains some point x; of S not in
any other H € H'. We want to prove that there is only one hyperplane in H'.
If this is not the case, consider the line segment L adjoining z:; and x5. (The
choice of z; and x5, is not important. Every choice of z; and z;, 1 < i,7 < m
and i # j, would do equally well.) By convexity, L C S. Each H] € H' either
contains L or meets it in at most one point. But no H] € H' can contain L,
since then it would contain both z; and x5. Thus each H; has at most one point
in common with L, and the rest of L would not be a subset of U2, H] which
contradicts that L C S C U, H/. O

We can now tie together the results and end up with a sufficient condition for
satisfiability of Horn DLRs.

79

Lemma 6.2.13 Let I be a set of arbitrary Horn DLRs. Let C' C T' be the set of
conver DLRs in T and let D = {Ds,..., Dy} C T be the set of DLRs that are not
convex. Under the condition that C' is satisfiable, T' is satisfiable if D; does not
block C' for any 1 <i < k.

Proof: Pick one disequation d; out of every D; such that {C,d;} is satisfiable.
This is possible since no D; blocks C. We show that T' = {C,dy,...,d;} is
satisfiable and, hence, T' is satisfiable. Assume that d; = (o; # ;). Define
the hyperplanes Hy,..., Hy such that H; = {r € R" | oy(z) = B;(x)}. Since
every {C, d;} is satisfiable, the polyhedron P defined by C' (which is non-empty
and hence convex by Fact 6.2.11) is not a subset of any H;. Suppose I" is not
satisfiable. Then P — Ule H, = @ which is equivalent with P C Ule H;. By
Lemma 6.2.12, there exists a H;, 1 < j < k such that S C H;. Clearly, this
contradicts our initial assumptions. O

It is important to note that the previous lemma does not give a necessary con-
dition for satisfiability of Horn DLRs, so it remains to prove that the algorithm
in Figure 6.4 correctly solves HORNDLRSAT in polynomial time. To show this,
we need an auxiliary lemma which is a formal version of an earlier observation.

Lemma 6.2.14 Let T be a set of Horn DLRs and let C' C T' be the set of convex
DLRs in T'. If there exists a heterogeneous DLR v € T such that v blocks C, then
[is satisfiable iff (T —{~v}) UC(7) is satisfiable.

Proof: if: Trivial.
only-if: If T is satisfiable, then 7 has to be satisfiable. Since v blocks C, C(7)
must be satisfied in any solution of I'. a

We can now prove the soundness and completeness of SAT.

Lemma 6.2.15 Let T be a set of Horn DLRs. If SAT(T') accepts then T is
satisfiable.

Proof: Induction over n, the number of heterogeneous DLRs in T'.

Basis step: If n = 0 and SAT(T") accepts then the formulae in A are satisfiable
and there does not exist any v € I' that blocks A. Consequently, T' is satisfiable
by Lemma 6.2.13.

Induction hypothesis: Assume the claim holds for n =k, k > 0.

Induction step: T contains k + 1 heterogeneous DLRs. If SAT accepts in line
5 then (I' — {7}) U C(v), which contains k heterogeneous DLRs, is satisfiable
by the induction hypothesis. By Lemma 6.2.14, this is equivalent with I" being
satisfiable. If SAT accepts in line 6 then there does not exist any disequational
or heterogeneous v € I" which blocks A. By Lemma 6.2.13, this means that I is
satisfiable. a

80

Before proving the completeness of SAT we need the following lemma.

Lemma 6.2.16 Let I' be a set of Horn DLRs. Let C' C ' be the set of convex
DLRs in T'. If there exists a disequational DLR v € T that blocks C' then I is not
satisfiable.

Proof: In any solution to I', the relations in C'U {7} must be satisfied. Since
v is disequational and blocks C' this is not possible and the lemma follows. O

Lemma 6.2.17 Let T be a set of Horn DLRs. If SAT(T) rejects then T is not
satisfiable.

Proof: Induction over n, the number of heterogeneous DLRs in T'.

Basis step: If n = 0 then SAT can reject in lines 3 and 4. If SAT rejects in line
3 then, trivially, I" is not satisfiable. If SAT rejects in line 4 then there exists a
disequational v € T that blocks A. Hence, T" is not satisfiable by Lemma 6.2.16.
Induction hypothesis: Assume the claim holds for n = k, k£ > 0.

Induction step: T' contains k + 1 heterogeneous DLRs. If SAT rejects in line 3
then I' is not satisfiable. If SAT rejects in line 4 then I' is not satisfiable by
Lemma 6.2.16. If SAT rejects in line 5 then (I' — {v}) U C(7), which contains k
heterogeneous DLRs, is not satisfiable by the induction hypothesis. By Lemma
6.2.14, this is equivalent with " not being satisfiable. O

Finally, we can show that SAT is a polynomial-time algorithm and, thus, show
that HORNDLRSAT is polynomial.

Theorem 6.2.18 HORNDLRSAT is polynomial.

Proof: By Lemmata 6.2.15 and 6.2.17, it is sufficient to show that SAT is poly-
nomial. The number of recursive calls is bounded by the number of heterogeneous
DLRs in the given input. By Lemma 6.2.7, we can in polynomial time decide
whether a linear inequality system with one disequation is satisfiable. Since we
need only check a polynomial number of such systems in each recursion, the
theorem follows. O

Comparison

Below we show that Horn DLRs subsumes several other tractable methods for
temporal constraint reasoning. Let x,y be real-valued variables, ¢, d constants
and A Allen’s algebra [Allen, 1983] in the definitions below.

Definition 6.2.19 [Nebel and Biirckert, 1995] An ORD clause is a disjunction
of relations of the form xry where r € {<,=,#}. The ORD-Horn subclass H is
the relations in A that can be written as ORD clauses containing only disjunctions
with at most one relation of the form x =y or x <y and an arbitrary number of
relations of the form x # y.

81

Note that the ORD-Horn class subsumes the pointisable endpoint algebra [van Beek and Cohen, 1

Definition 6.2.20 [Koubarakis, 1992] Let r € {<,>,#}. A Koubarakis for-
mula is a formula on one of the following forms (1) (x — y)re, (2) xre or (3) a
disjunction of formulae of the form (x — y) # ¢ or x # c.

Definition 6.2.21 [Dechter et al., 1991] A simple temporal constraint is a for-
mula on the form ¢ < (z —y) < d.

Simple temporal constraints are equivalent with the simple metric constraints
[Kautz and Ladkin, 1991].

Definition 6.2.22 [Meiri, 1991] A CPA/single interval formula is a formula
on one of the following forms: (1) ¢y (x —y)rad; or (2) xry where r € {<, <
,=,7,>,>} and ri,r9 € {<,<}.

Definition 6.2.23 [Gerevini et al., 1993] A TG-II formula is a formula on one
of the following forms: (1) ¢ < x < d, (2)c < x—y < d or (3) xry where
r e {<7 S’ :7 %7 Z’ >}'

We can now state the main theorem of this section.

Theorem 6.2.24 The formalisms defined in Definitions 6.2.19 to 6.2.23 can
trivially be expressed as Horn DLRs.

Note that Meiri [1991] considers two further tractable classes that cannot (in any
obvious way) be transformed into Horn DLRs. The finding that the ORD-Horn
algebra can be expressed as Horn DLRs is especially important in the light of the
following theorem.

Theorem 6.2.25 [Nebel and Biirckert, 1995] Let S be any subclass of A that
contains all basic relations. Then either

1. § CH and the satisfiability problem for S is polynomial, or

2. Satisfiability for S is NP-complete.

By the previous theorem, we cannot expect to find tractable classes that are
able to handle all basic relations in A and, at the same time, are able to handle
any single relation that cannot be expressed as a Horn DLR. In other words, the
qualitative fragment of HORNDLRSAT inherits the maximality of the ORD-Horn
algebra.

As a concluding discussion to this comparison it seems in place to mention that
several researchers in the field of temporal constraint reasoning have expressed
a feeling that their proposed methods should be extended so they can express

82

relations between more than two time points. As a first example, Dehter et.
al. [1991] write “The natural extension of this work is to explore TCSPs with
higher-order expressions (e.g. “John drives to work at least 30 minutes more
than Fred does”; Xy — X; + 30 < Xy — X3)...” Even though they do not define
the exact meaning of “higher-order expressions” we can notice that their example
is a simple Horn DLR. Something similar can be found in Koubarakis [1992] who
wants to express “the duration of interval I exceeds the duration of interval J”.
Once again, this can easily be expressed as a Horn DLR. These claims seem
to indicate that the use of Horn DLRs is a significant contribution to temporal
reasoning.

NP-completeness of the {{s f},{b d a}} Algebra

While the previous subsection presented an example where we could prove tractabil-
ity for an algebra, this subsection provides an example of an algebra that is rather
proven computationally difficult. More precisely, we reproduce a proof from Jon-
sson et.al. [1996] that the subalgebra of the point-interval algebra that allows
only the two relations {b d a} and {s f} is NP-complete.'°

Theorem 6.2.26 Satisfiability is NP-complete for the point-interval subalgebra

{{b d a}, {s f}}.

Proof: Proof by reduction from GRAPH 3-COLOURABILITY, which is NP-
complete. Let G = (V, E) be an undirected graph. Construct a corresponding
set of temporal constraints as follows.

In the proof We will make repeated use of the concept of a separator, a
construction which forces two points to have distinct values in all models. Given
two points p,q we construct a separator by introducing a new interval I and
adding the relations p{s f}I and ¢{b d a}I. Clearly, all models M must satisfy
M(p) # M(q).

We now construct set of temporal constraints stepwise. First, we construct a
paint-bozr by introducing two points p; and py, two intervals I; and I plus the
relations

pi{s fH, pi{s f}2, po{s f}11, pa{b d a}l,

over these. Note that the interval I, acts as a separator for p; and p,, which are
thus forced to take on different values. Further, the intervals I; and I, must have
some common end-point, coinciding with p;. We use the constant r to denote
this value. Hence, the remaining end-point of I; must coincide with p, and the

10The proof that satisfiability for a set of DLRs is NP-complete would, of course, have
provided a natural continuation of the previous example. However, this proof is one of the rare
examples where it is trivial to prove NP-completeness for a temporal algebra, and so is better left
as an exercise for the reader (or see Jonsson and Béckstrom [Jonsson and Béackstrom, 1996b])
in order to leave space for the more intricate and interesting proof presented here.

83

remaining end-point of I, must be distinct from both p; and p;. We denote the
values of these two remaining end-points g and b respectively. We can think of
the values r, ¢ and b as colours, constituting our palette. Of course, the actual
denotations of these three values differ between models, but the important thing
is only that they denote three distinct values in each and every model.

Now, for each vertex v; € V', we construct a selector consisting of three points
¢, g! and ¢? plus two intervals J° and .J;*, connected as follows. First introduce
a separator for ¢! and ¢2, using interval J;**, ie. introduce the relations

g s fYT% @b d a} .

Then connect the points to the remaining interval by adding the relations

g {s F}I7, ai{s F}), ai{s f}T}.

Finally, connect this whole gadget to the paint-box by adding the relations

a{s f 1, ai{s f} L.

The selector works as follows. The endpoints of I; correspond to the colours r
and g, so ¢ is forced to have either of these values. Similarly, ¢ must have
either of the values r and b. Now, ¢/ and ¢? are separated, so together they
select a subpalette of two colours, assigning one colour each to the end-points
of J?. Finally, ¢? selects one of these two colours. So far, there are no further
constraints, so ¢) may be freely assigned any of the three colours from our palette.

Finally, for each edge {v;,v;} € E we introduce a separator, consisting of the
new interval Kj;; and the two relations

g {s [YKij, q){b d a}K;;,

preventing ¢? and q;’ to have the same value whenever there is an edge between
the vertices v; and v;.

It is obvious that G is 3-colourable iff the temporal network just constructed
is satisfiable, so NP-hardness of the algebra follows. The algebra is further in NP,
since it is a subalgebra of an NP-complete algebra. O

As an example, Figure 6.5 shows the construction in the proof above for the
connected two-vertex graph Go = ({1,2}, {{1,2}}).
6.3 Reasoning about Knowledge and Time

Reasoning about time points or time intervals is usually only interesting in the
context where something we want to reason about is attached to these temporal
entities. For instance, we may want to say that something is known to be true at

84

- (s 1)
--» {bd a}

Figure 6.5: An example of the construction in the proof of Theorem 6.2.26 for a
connected two-vertex graph.

a certain time point or over a certain time interval, or that an action is executed
over a certain time interval. A choice to make here is whether to keep time
and other types of knowledge separate or integrated. This choice arises also on
several different layers; we may, for instance, use an integrated representation for
communicating with the user but separate time from other knowledge internally
in the reasoner. Both approaches will be briefly discussed below.

Separating Time From Other Knowledge

One way to build a reasoner for temporally qualified knowledge is to use sepa-
rate knowledge bases and reasoners for time and other knowledge (propositions,
actions or whatever) and let these cooperate. This principle is illustrated in Fig-
ure 6.6. In this system, we have a knowledge base (KB) and a time manager
(TM), which are interconnected. The KB can represent and reason about logical
formulae which are qualified by temporal intervals, indicating when they are true.
For instance, the formula p@I means that the proposition p is true over the inter-
val I. However, the KB cannot reason about time, the intervals are just symbols
without meaning in the KB. The TM, on the other hand, can only represent and
reason about time intervals, it has no ‘knowledge’ whatsoever of logical formulae.
The figure also illustrates how the two reasoners may cooperate. Suppose the
KB knows that p holds over the interval I; and that ¢ holds over the interval
I5. This does not allow it to draw any conclusions, since it has no knowledge of

85

(p A q)QlI;

pQrL
KB Yal,
2 A
Il N IQ? [3
vl
T™

Figure 6.6: Separating reasoning about propositions and time

time or the meaning of I; and I,. If the reasoner now need to know when the
conjunction of the formulae p and q is true, it can progress as follows.

1. The KB asks the TM for the maximal interval which is common to the
intervals I; and Is.

2. The TM introduces a new interval I3 and constrains this interval to be
exactly the requested interval (or it may find that such an interval already
exists) and returns it to the KB. In the case the two intervals do not overlap,
the TM may instead say that no such interval exists.

3. The KB now adds to its knowledge the fact that the formula p A ¢ holds
over the interval I3.

For pedagogical reasons, the TM’s data base has been illustrated graphically in
the figure. In reality it would rather contain interval-algebra formula. That is,
initially it would perhaps contain the formula I1{o} I, and after computing the
request from the KB it would also contain the formulae I3{f}I; and I3{s}I5, or
some other equivalent formulae. An example of a separated approach appears in
Schwalb et. al. [1994].

Integrating Time With Other Knowledge

Another approach is to integrate both facts and time within the same formal-
ism, which is usually done by defining a temporal logic, that is a logic which is

86

augmented to qualify formulae temporally. One generally distinguishes between
tense logics and explicit temporal logics,'* which will both be briefly described
below.

Tense logic

A tense logic is a form of modal logic [Chellas, 1980, Hughes and Cresswell, 1984],
with relative time, but no metric time. The usual modalities are F, P, G, H and
formulae are interpreted relative to the reference time now in the following way:

« means that « is true now
Fa means that o will be true at some future time point
Pa means that o was true at some past time point
Ga means that a will be true at all future time points

Ha means that o was true at all past time point

As an example, let the proposition p denote the claim that there exists a country
named Sweden. Then the formula

P(H=p A Fp)

denotes the claim that until some time point in the past there never was a country
called Sweden and since that time point there has always been and will always
be a country called Sweden. An extensive treatment of tense logic can be found
in Rescher and Urquhart [1971].

Although basic tense logic has no concept of metric time, there are approaches
to adding such capabilities. For instance, one might consider a modification to
the P operator s.t. the formula Pra says that o was true k time steps ago.

Explicit Temporal Logic

An explicit temporal logic can refer to explicit time points and may or may
not define a metric over these, so the previous choice between qualitative and
quantitative time prevails also here. There are several common ways to define
syntaxes for explicit temporal logics.

An elegant approach to introduce time in a logic is to augment the syntax
so that arbitrary formulae can be qualified by time stamps in the following way.
For instance, the fact that the formula P(z) A Q(z,y) holds between time points
t; and t, could be expressed as

[t1, t2](P(x) A Q(z,Y)).

1 Many authors use the term temporal logic for tense logic, while other authors use temporal
logic as a subsuming term for both tense logic and explicit temporal logic.

87

This is a syntactically elegant approach favoured by some authors [Shoham, 1987,
Sandewall, 1994]. All ‘ordinary’ formulae must be time stamped—the formula
P(x) A Q(z,y) per se is meaningless.”> A temporal formulae must be allowed
for expressing temporal relationships, however, eg. t; < ts, since it would not
make sense to qualify such expressions temporally. For instance, the formula
[t1,12](t1 < t2) could not be given any reasonable semantics. Furthermore, we
must add axiom schemata to make the logical connectives take the temporal
extent of formulae into account, eg. the axiom schema:

[t1, to]a A [t3, t4]3 — [max(ty,t3), min(ts, t4)](a A ()

(where axioms for the functions min and max must be added, of course).

Some authors prefer not to step outside the syntax and semantics of ordinary
first-order logic, making it necessary to take some other approach. One such
approach is to augment all predicates with two extra arguments, denoting the
starting and ending time points of temporal interval over which the formula holds.
The previous example would then look as follows:

P(x’t17t2) A Q(xay;tlat2)-

This approach is taken by Bacchus et. al. [1991], for example. This has the
drawback that we cannot put time stamps on arbitrary formulae, but only on
atoms, making the formulae less clear and more awkward to reason with.

A common approach to avoid this problem is to shift the atemporal object-
level formulae into terms and introduce a special predicate Holds (also commonly
called True). Examples of this approach appears in McDermott [1982] and Kowal-
ski and Sergot [1986]. The previous example could then look as follows:

Holds(ty,ts, and(p(x), q(x,y))).

This is a so-called reified logic (the object-level formulae are reified, ie. made into
terms). The advantage is that we can qualify non-atomic formulae temporally
while staying within ordinary first-order logic. The drawback is that we must
introduce axioms to force the terms corresponding to object-level formulae to
behave in the expected way. For instance, we have to introduce two constants
true and false and axioms for all predicates expressing that they can only take
on the values true and false, eg. we need the axioms

Va.p(x) = trueV p(x) = false
VaVy.q(z,y) = true V q(z,y) = false.

In fact, unless we use a second-order logic or axiom schemata we have to add such
axioms for all predicates. Similarly, we must add axiom schemata (or whatever)

120f course, it may be given a meaning by the semantics. For instance, it could mean that
P(z) A Q(z,y) is always true, ie. true at all time points.

88

for the functions corresponding to logical connectives, eg.

VaVy.and(z,y) = true V and(z,y) = false
VaVy.and(x,y) = true <> x = true A y = true.

Just as in the first approach we need to axiomatize the temporal behaviour of
the reified logical connectives, adding axioms like

VaVy.Holds(ty,ta, x) A Holds(ts, t4,y) —
Holds(max(t1,t3), min(tq, 1), and(z, y))

(with additional axioms for min and max).

It is easy to introduce quantitative time into these logics. For instance, we
can say that the formula « is true for an interval with a duration of at least 17
time units and including the explicit time point 45:

[tl,tQ]Ol A (tQ - tl) 2 17 A tl S 45 S tQ.

Further, an explicit temporal logic need not take time points as primitive.
Allen [1984] defines a reified temporal logic using intervals as the primitive entity
and includes axioms for the interval algebra. However, there are no time points
in this logic, so intervals cannot be reencoded as pairs of time points. The fact
that the formula P(z) A Q(z,y) holds over the interval I is expressed as

Holds(I,and(p(x),q(x,y))).

Furthermore, when reasoning not only about truth values, but also about ac-
tions or events, it is common to also introduce some predicate Occurs, in analogy
with Holds, to express that a certain even or action takes place over a certain
time interval.

Shoham [1987] discussed so-called hereditary properties of temporally qualified
propositions. For instance, does a proposition that holds over a certain interval
also hold over all subintervals and does a proposition that holds at all time points
in an interval also hold over the whole interval?

6.4 Temporal-reasoning Systems

Various systems for temporal reasoning have been implemented or suggested. One
of the first systems was TMM (Time Map Manager) [Dean and McDermott, 1987].
The TMM maintains a network of time points and information about upper
and lower bounds for the metric duration between these, thus implementing
a metric time-point algebra. It is also possible to state that propositions are
true or false at certain time points, and TMM implements a clipping mech-
anism, that is, if a proposition p is true at a time point ¢; and false at %o,

89

where t; < t9, then the systems realizes that p must become false at some time
point between t; and #,. Various newer and extended versions of TMM exist
[Schrag et al., 1992, Boddy, 1993b, Materne and Hertzberg, 1991] and it is being
implemented in a commercial version by Honeywell.

Many of the approaches already mentioned earlier have been implemented
into temporal-reasoning systems. For instance, systems reasoning about qualita-
tive and metric relations over time points include Tachyon [Stillman et al., 1993],
TimeGraph II [Gerevini et al., 1993, Gerevini and Schubert, 1993],

[xTeT [Ghallab and Alaoui, 1989], and systems by Barber [1993] and Koubarakis [1992].

Systems reasoning about mixed qualitative and metric information include
MATS [Kautz and Ladkin, 1991] and the system used by Dorn [1992, 1994] to
reason about intervals and metric time for scheduling.

The IxTeT system has been used as a basis for various other tasks requiring
temporal reasoning, including a temporal planner [Ghallab and Laruelle, 1994,
Laborie and Ghallab, 1995], a scenario-recognition system [Dousson et al., 1993]
and a diagnosis system [Milne and others, 1994]. There are also other planning
systems using the TMM or similar time-point reasoners to support temporal
planning [Drabble and Kirby, 1991, Rutten and Hertzberg, 1993].

6.5 Further Reading

This section collects a number of references for further reading on various topics
extending or being related to the topics of this chapter.

Surveys, Tutorial ete.: There is a recent survey/tutorial of temporal reasoning
by Vila [1994]. There is also a special issue of the SIGART Bulletin on
temporal-reasoning systems, with introduction by Boddy [1993a].

Fuzzy temporal reasoning: Dubois and Prade [1989] describe a fuzzy version
of the interval algebra.

Reference hierarchies: There is work on clustering temporal information lo-
cally and use reference hierarchies for efficient indexing
[Allen, 1983, Dean, 1989, Davis and Carnes, 1990].

Propagation of metric intervals w. uncertainty: Rit [1986] describes an al-
gorithm for propagation intervals with uncertain metric start and end times
and uncertain duration.

Cognitively indistinguishable relations: Freksa [1992] investigates interval
relations that are hard to distinguish from each other, especially from a
cognitive point of view. For instance, in many cases it is impossible to
distinguish between the relations before and meets.

90

Temporal Diagnosis: There is an emerging literature on reasoning about time
in diagnosis [Dague et al., 1990, Friedrich and Lackinger, 1991] [Console et al., 1992,
Dressler, 1994] [Nejdl and Gamper, 1994].

91

Bibliography

[AAAT-91, 1991] American Association for Artificial Intelligence. Proceedings of
the 9th (US) National Conference on Artificial Intelligence (AAAI-91), Ana-
heim, CA, USA, Jul 1991. AAAT Press/MIT Press.

[AAAT-96, 1996] American Association for Artificial Intelligence. Proceedings of
the 15th (US) National Conference on Artificial Intelligence (AAAI-96), Port-
land, OR, USA, Aug 1996.

[Allen, 1983] James F Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832-843, 1983.

[Allen, 1984] James F Allen. Towards a general theory of action and time. Arti-
ficial Intelligence, 23:123—-154, 1984.

[Bacchus et al., 1991] Fahiem Bacchus, Josh Tenenberg, and Johannes A
Koomen. A non-reified temporal logic. Artificial Intelligence, 52:87-108, 1991.

[Bajcsy, 1993] Ruzena Bajcsy, editor. Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI-93), Chamb’ery, France, Aug—Sep
1993. Morgan Kaufmann.

[Barber, 1993] Federico A. Barber. A metric time-point and duration-based tem-
poral model. SIGART Bulletin, 4(3):30—49, 1993.

[Boddy, 1993a] Mark Boddy. AAAI-92 workshop report: Implementing temporal
reasoning. SIGART Bulletin, 4(3):15-16, 1993.

[Boddy, 1993b] Mark Boddy. Temporal reasoning for planning and scheduling.
SIGART Bulletin, 4(3):17-20, 1993.

[Bruce, 1972] Bertram C. Bruce. A model for temporal references and its appli-
cation in a question answering program. Artificial Intelligence, 3:1-25, 1972.

[Chellas, 1980] Brian F Chellas. Modal Logic. Cambridge University Press, Cam-
bridge, 1980.

92

[Console et al., 1992] L. Console, L. Portinale, D. Theseider Dupré, and
P. Torasso. Diagnostic reasoning across different time points. In Bernd Neu-

mann, editor, Proceedings of the 10th Furopean Conference on Artificial Intel-
ligence (ECAI-92), pages 369-373, Vienna, Austria, Aug 1992. Wiley.

[Dague et al., 1990] Philippe Dague, Olivier Jehl, and Patrick Taillebert. An
interval propagation and conflict recognition engine for diagnosing continuous
dynamic systems. In G Gottlob and W Nejdl, editors, Ezrpert Systems in
Engineering: Principles and Applications. International Workshop, volume 462
of Lecture notes in Artificial Intelligence, pages 16-31, Vienna, Austria, Sep
1990. springer.

[Davis and Carnes, 1990] William S. Davis and James R. Carnes. Clustering
temporal intervals to generate reference hierarchies. In Proceedings of the Sth
(US) National Conference on Artificial Intelligence (AAAI-90), pages 111-117,
Boston, MA, USA, Aug 1990. American Association for Artificial Intelligence,
MIT Press.

[Dean and McDermott, 1987] Thomas L Dean and Drew V McDermott. Tem-
poral data base management. Artificial Intelligence, 32:1-55, 1987.

[Dean, 1989] Thomas Dean. Using temporal hierarchies to efficiently maintain
large temporal databases. Journal of the ACM, 36(4):687-718, 1989.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal con-
straint networks. Artificial Intelligence, 49:61-95, 1991.

[Dorn, 1992] Jiirgen Dorn. Temporal reasoning in sequence graphs. In Proceed-
ings of the 10th (US) National Conference on Artificial Intelligence (AAAI-
92), pages 735-740, San Jos’e, CA, USA, Jul 1992. American Association for
Artificial Intelligence.

[Dorn, 1994] Jiirgen Dorn. Hybrid temporal reasoning. In Anthony G. Cohn,
editor, Proceedings of the 11th FEuropean Conference on Artificial Intelligence
(ECAI-94), pages 623-629, Amsterdam, Netherlands, Aug 1994. Wiley.

[Dousson et al., 1993] Christophe Dousson, Paul Gaborit, and Malik Ghallab.
Situation recognition: Representation and algorithms. In Bajcsy [1993], pages
166—172.

rabble and Kirby, rian Drabble and Richard Kirby. Associating A.I

Drabbl d Kirby, 1991| Brian Drabbl d Richard Kirby. A iating A.I
planner entities with an underlying time point network. In Hertzberg [1991],
pages 27-35.

[Drakengren and Jonsson, 1996a] Thomas Drakengren and Peter Jonsson. Max-
imal tractable subclasses of Allen’s interval algebra: Preliminary report. In
AAAT-96 [1996], pages 389-394.

93

[Drakengren and Jonsson, 1996b] Thomas Drakengren and Peter Jonsson. Quan-
titative temporal information for maximal tractable subclasses of Allen’s in-
terval algebra. Unpublished manuscript, 1996.

[Dressler, 1994] Oskar Dressler. Model-based diagnosis on board: Magellan-MT
inside. In Working Notes of the Fifth International Workshop on Principles of
Diagnosis, New Paltz, NY, USA, 1994.

[Dubois and Prade, 1989] Didier Dubois and Henri Prade. Processing fuzzy tem-
poral knowledge. IEEFE Transactions on Systems, Man, and Cybernetics,
19(4):729-744, Aug 1989.

[Freksa, 1992] Christian Freksa. Temporal reasoning based on semi-intervals.
Artificial Intelligence, 54:199-227, 1992.

[Friedrich and Lackinger, 1991] Gerhard Friedrich and Franz Lackinger. Diag-
nosing temporal misbehavior. In Ray Reiter and John Mylopoulos, editors,
Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence (IJCAI-91), pages 11161122, Sydney, Australia, Aug 1991. Morgan
Kaufmann.

[Gerevini and Schubert, 1993] Alfonso Gerevini and Lenhart Schubert. Efficient
temporal reasoning through timegraphs. In Bajcsy [1993], pages 648-654.

[Gerevini et al., 1993] Alfonso Gerevini, Lenhart Schubert, and Stephanie Scha-
effer. Temporal reasoning in Timegraph I-II. SIGART Bulletin, 4(3):21-25,
1993.

[Ghallab and Alaoui, 1989] Malik Ghallab and Amine Mounir Alaoui. Manag-
ing efficiently temporal relations through indexed spanning trees. In N. S.
Sridharan, editor, Proceedings of the 11th International Joint Conference on
Artificial Intelligence (IJCAI-89), pages 1297-1303, Detroit, MI, USA, Aug
1989. Morgan Kaufmann.

[Ghallab and Laruelle, 1994] Malik Ghallab and Hervé Laruelle. Representation
and control in IxTeT, a temporal planner. In Kristian Hammond, editor,
Proceedings of the Second International Conference on Artificial Intelligence
Planning Systems (AIPS’94), pages 61-67, Chicago, IL, USA, jun 1994. AAAI
Press.

[Golumbic and Shamir, 1993] Martin Charles Golumbic and Ron Shamir. Com-
plexity and algorithms for reasoning about time: A graph-theoretic approach.
Journal of the ACM, 40(5):1108-1133, 1993.

[Hertzberg, 1991] Joachim Hertzberg, editor. Furopean Workshop on Planning,
volume 522 of Lecture notes in Artificial Intelligence, Sankt Augustin, Ger-
many, Mar 1991. springer.

94

[Hughes and Cresswell, 1984] G E Hughes and M J Cresswell. A Companion to
Modal Logic. Methuen, London, 1984.

[Jonsson and Béckstrom, 1996a] Peter Jonsson and Christer Béckstrom. A
linear-programming approach to temporal reasoning. In AAAI-96 [1996], pages
1235-1240.

[Jonsson and Béckstrom, 1996b] Peter Jonsson and Christer Béckstrom. Rea-
soning about disjunctive linear relations. 1996. Unpublished manuscript.

[Jonsson et al., 1996] Peter Jonsson, Thomas Drakengren, and Christer
Béckstrom. Tractable subclasses of the point-interval algebra: A complete
classification. In J. Doyle and L. Aiello, editors, Proceedings of the 5th Interna-
tional Conference on Principles on Knowledge Representation and Reasoning
(KR-96), Cambridge, MA, USA, Oct 1996. Morgan Kaufmann.

[Karmarkar, 1984] N Karmarkar. A new polynomial time algorithm for linear
programming. Combinatorica, 4:373-395, 1984.

[Kautz and Ladkin, 1991] Henry Kautz and Peter Ladkin. Integrating metric and
temporal qualitatvie temporal reasoning. In AAAI-91 [1991], pages 241-246.

[Khachiyan, 1979] L. G Khachiyan. A polynomial algorithm in linear program-
ming. Soviet Mathematics Doklady, 20:191-194, 1979.

[Koubarakis, 1992] Manolis Koubarakis. Dense time and temporal constraints
with #. In Swartout and Nebel [1992], pages 24-35.

[Kowalski and Sergot, 1986] Robert Kowalski and Marek Sergot. A logic-based
calculus of events. New Generation Computing, 4:67-95, 1986.

[Laborie and Ghallab, 1995] Philippe Laborie and Malik Ghallab. Planning with
sharable resource constraints. In Chris Mellish, editor, Proceedings of the 14th
International Joint Conference on Artificial Intelligence (IJCAI-95), pages
1643-1649, Montr’eal, PQ, Canada, Aug 1995. Morgan Kaufmann.

[Materne and Hertzberg, 1991] Stefan Materne and Joachim Hertzberg.
MTMM—extending and correcting time map management. In Hertzberg
[1991], pages 88-99.

[McDermott, 1982] Drew McDermott. A temporal logic for reasoning about pro-
cesses and plans. Cognitive Science, 6:101-155, 1982.

[Meiri, 1991] Itay Meiri. Combining qualitative and quantitative constraints in
temporal reasoning. In AAAT-91 [1991], pages 260-267.

95

[Milne and others, 1994] R. Milne et al. TIGER: real-time situation assessment
of dynamic systems. Intelligent Systems Engineering, pages 103-124, Autumn
1994.

[Nebel and Biirckert, 1995] Bernhard Nebel and Hans-Jiirgen Biirckert. Reason-
ing about temporal relations: A maximal tractable subclass of allen’s interval
algebra. Journal of the ACM, 42(1):43-66, 1995.

[Nejdl and Gamper, 1994] Wolfgang Nejdl and Johann Gamper. Model-based
diagnosis with qualitative temporal uncertainty. In Proc. of the Conference on
Uncertainty in Artificial Intelligence (UAI’94), 1994.

[Rescher and Urquhart, 1971] Nicholas Rescher and Alasdair Urquhart. Tempo-
ral Logic. Springer, Vienna, 1971.

[Rit, 1986] Jean-Francois Rit. Propagating temporal constraints for scheduling.
In Proceedings of the 5th (US) National Conference on Artificial Intelligence

(AAAI-86), pages 383-388, Philadelphia, PA, USA, Aug 1986. American As-
sociation for Artificial Intelligence, Morgan Kaufmann.

[Rutten and Hertzberg, 1993] Eric Rutten and Joachim Hertzberg. Temporal
planner = nonlinear planner + time map manager. Al Communications,
6(1):18-26, Mar 1993.

[Sandewall, 1994] Erik Sandewall. Features and Fluents. Oxford University Press,
1994.

[Schrag et al., 1992] Robert Schrag, Mark Boddy, and Jim Carciofini. Managing
disjunciton for practical temporal reasoning. In Swartout and Nebel [1992],
pages 36—46.

[Schwalb et al., 1994] Eddie Schwalb, Kalev Kask, and Rina Dechter. Temporal
reasoning with constraints on fluents and events. In Proceedings of the 12th
(US) National Conference on Artificial Intelligence (AAAI-94), pages 1067—
1072, Seattle, WA, USA, Jul-Aug 1994. American Association for Artificial
Intelligence.

[Shoham, 1987] Yoav Shoham. Temporal logics in Al: Semantical and ontological
considerations. Artificial Intelligence, 33:89-104, 1987.

[Stillman et al., 1993] Jonathan Stillman, Richard Arthur, and Andrew Deitsch.
Tachyon: A constraint-based temporal reasoning model and its implementa-

tion. SIGART Bulletin, 4(3):T1-T4, 1993.

96

[Swartout and Nebel, 1992] Bill Swartout and Bernhard Nebel, editors. Proceed-
ings of the 3rd International Conference on Principles on Knowledge Repre-
sentation and Reasoning (KR-92), Cambridge, MA, USA, Oct 1992. Morgan
Kaufmann.

[van Beek and Cohen, 1990] Peter van Beek and Robin Cohen. Exact and ap-
proximate reasoning about temporal relations. Computational Intelligence,
6(3):132-144, 1990.

[Vila, 1994] Lluis Vila. A survey on temporal reasoning in artificial intelligence.
Al Communications, 7(1):4-28, 1994.

[Vilain, 1982] Marc B Vilain. A system for reasoning about time. In Proceed-
ings of the 2nd (US) National Conference on Artificial Intelligence (AAAI-82),
pages 197-201, Pittsburgh, PA, USA, Aug 1982. American Association for Ar-
tificial Intelligence.

97

