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Chapter 1IntroductionDiagnosis, supervision and safety are found in almost all technologically advancedproducts. This includes automobiles, airplanes, robots, numerically controlledmachines, among others. There is now a trend to extend the functionality ofdiagnosis and supervision systems to handle more cases in more operating situa-tions. There are many reasons including economy, safety, and maintenance.The purpose of this report is to collect some of initiatives taking place inresearch and some of the developments taking place in industry.1.1 Problem formulationIn [1989] Isermann de�nes the diagnostic task as the determination of kind, lo-cation, size and time of a detected fault.A term closely related to diagnosis is FDI (Fault Detection and Isolation) asused by Frank [1991], Patton [1994] and Chow & Willsky [1984] where� Fault detectionDetect when a fault has occured.� Fault isolationIsolate the fault, i.e. determine the faults originFDI is sometimes used as a synonym to diagnosis, e.g. in Gertler [1991].When designing a diagnostic system important parameters are the false alarmrate, i.e. how often the system signals a fault in a fault-free environment, and theprobability for missed fault detection. These measures can be hard to determineforcing other performance measures as will be discussed in Section 3.10.To perform diagnosis we need some sort of redundancy in the system and oneway of achieving this is to introduce hardware redundancy in the process. A criti-cal component, e.g. an actuator or sensor, is then duplicated or triplicated (TripleModular Redundancy) and then using a majority decision rule any faults in the3



duplicated hardware can be detected. Hardware redundancy is straightforwardto implement but has several drawbacks.� Extra hardware can be very expensive.� The extra hardware can be space consuming which can be of great im-portance, e.g. in a space shuttle. The components weight can also be ofimportance.� Some components can't be duplicated, e.g. in a system to detect leaks ona pipeline it is not possible to duplicate the pipeline.Instead of hardware redundancy we can utilize the system property analyticalredundancy which are the subject of this chapter and can be de�ned asDe�nition 1.1 [Analytical redundancy]. A process is analytically redun-dant if there exists functional relationships between measured or known variables,e.g. control signals.In [Chow and Willsky, 1984] analytical redundancy is said to exist in twoforms� Direct or Static redundancyThe relationship among instantaneous outputs of sensors.� Temporal redundancyThe relationship among histories of sensor outputs and actuator inputs.It is based on these relationships that outputs of (dissimilar) sensors (atdi�erent times) can be compared.When the system model is given as analytical functions, analytical redundancyis sometimes referred to as functional redundancy. One area where analyticalredundancy based diagnosis will have problems replacing hardware redundancyis where the demands on fast reliable responses is very high, e.g. in an aircraftwhere human life could depend on extremely fast response to component failure.The faults acting upon a system can be divided into three types of faults.1. Sensor (Instrument) faultsFaults acting on the sensors2. Actuator faultsFaults acting on the actuators3. Component (System) faultsA fault acting upon the system or the process we wish to diagnose.4
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Chapter 2Industrial perspectivesThere are more issues involved in industrial diagnosis, supervision and safety thancan be covered in this text. A sample of industrial perspectives are given in thefollowing sections. These samples are based on contacts within ISIS (InformationSystems for Industrial control and Supervision) both from a joint industrial andacademic symposium in March 96 and from further contacts with the industriesinvolved in ISIS.2.1 Diagnosis, Supervision and Safety in pro-cess industry from an ABB perspectiveABB Industrial Systems AB develop, manufacture and sell control system prod-ucts to the process industry, for example, the pulp and paper industry, chemicalindustry, breweries, food industry and metal industry. One part of ABB In-dustrial Systems is also dealing with motors, both AC and DC. The type ofcontrol system products manufactured by ABB Industrial systems include oper-ator stations, controllers, batch stations, information management stations andengineering stations.The situation todayCurrently diagnoses is used on a component basis, i.e., each motor, pump, valve,transformer and so on is treated individually. The diagnoses consists of eitherlocalization of the fault after failure, or a detection algorithm giving an alarm fora possible fault. There are many problems with the approach used today.The localization of a fault after failure is done completely o�-line, and istotally separated from the control system. Often expensive sensors are used andcomplicated signal processing is necessary. This leads to the fact that the resultscan be understood only by a specialist. 7



One problem with the detection algorithms used today is that too manyalarms are created, and some of these alarms are false alarms. Furthermore,it is di�cult and very expensive to design these detection algorithms, since itis done individually for each process. The customers are not willing to pay thismuch for a fault detection algorithm. Additionally, considerable knowledge abouta process is gained during the �rst to years when running the process, and duringthis time the industry learns what will cause them problems. This implies a greatneed for changes in the algorithms when the system is up and running. Oftenthe industry is not willing to take these risks and costs, which in turn hampersgood alarm systems.The futureThe operators want information on1. what to do to reduce the impact on production when a failure has occured,2. what to do to remove the failure, and3. how to put back production to normal again.To be a control system vendor supplying tools for this is a big challenge. Wemust make the functions easy to con�gure, validate, not CPU-demanding andalways giving the correct information.In the future we expect a development towards integrated diagnoses systemsthat use information from more than one component in order to make conclusionson faults using redundant information. ABB Industrial Systems has investigatedmethods like Diagnostic Model Processor. There are several bene�ts with thismethod. It is possible to point out what is failing with a high degree of certainty,and avoid false alarms. It also gives a possibility to suggest actions to eliminatethe failure. The drawback is that this method is very costly in con�guration andvalidation.2.2 Diagnosis, Supervision and Safety in auto-motive enginesDiagnosis of automotive engines has become increasingly important, mostly be-cause of legislative regulations. Today it is one of the major application areas fordiagnosis, and the number of diagnosis systems in use is larger than for any otherapplication involving mechanics. Compared to many other applications automo-tive diagnosis is constrained by economical reasons. Even the slightest costs getsemphasized because of the large production volumes.8



BackgroundDiagnosis of automotive engines has a long history. Since the �rst automotiveengines in the 18:th century, there has been a need for �nding faults on theengines. For a long time, the diagnosis was performed manually, but diagnostictools started to appear in the middle of the 20:th century. One example is thestroboscope that is used for determining the ignition time. In the 1960s, exhaustmeasurement became a common way of diagnosing the fuel system. Until the1980s, all diagnosis were performed manually and o�-board. It was around thattime, electronics and gradually microprocessors were introduced in cars. Thisopened up the possibility to use on-board diagnosis. The objective was to makeit easier for the mechanics to �nd faults. 1988, the �rst legislative regulationsregarding On-Board Diagnostics, OBD, were introduced by CARB (California AirResource Board). In the beginning these regulations applied only to California,but EPA (Environmental Protection Agency) adopted similar regulations thatapplied for all USA. This enforced the manufacturers to include more and moreon-board diagnosis capability in the cars. 1994, the new and more stringentregulations, OBDII, were introduced in California. Today, software for ful�llingOBDII is a major part of the engine management system. At least 50% has beenreported. Except for California and USA, few regulations have been introduced inother countries. However, for example EU have announced regulations, startingto apply in a few years.Why On-Board Diagnosis?There are several reasons for incorporating on-board diagnosis:� The mechanics can check the stored fault code and immediately replace thefaulty component. This implies more e�cient and faster repair work.� If a fault occurs when driving, the diagnosis system can, after detectingthe fault, change the operating mode of the engine to limp home. Thismeans that the faulty component is excluded from the engine control anda suboptimal control strategy is used until the car can be repaired.� The engine can be repaired due to the condition of the engine and not dueto a repair schedule, thus saving repair costs.� The diagnosis system can make the driver aware of faults that can damagethe engine, so that the car can be taken to a repair shop in time. This is away of increasing the reliability.� A fault can often imply increased emission of harmful emission components,dangerous for the environment. As an example, 1990 EPA estimated that9



60% of the total hydro-carbon emissions originated from the 20% of the ve-hicles with serious malfunctioning emission control systems. It is importantthat such faults are detected so that the car can be repaired as quickly aspossible.The �rst three items can be summarized as to increase the availability of the car.Of all these reasons, the main reason for legislative regulations is the environ-mental issues.OBDIIOBDII is the most extensive on-board diagnosis requirements announced so far.It started to apply 1994, but its requirements are made harder for every year untilyear 2000. The main idea is that a instrument panel lamp called MalfunctionIndicator Light (MIL) must be illuminated in the case of a fault that can makethe emissions exceed the emission limits by more than 50%. The MIL should,when illuminated, display the phrase \Check Engine" or \Service Engine Soon".The OBDII also contains standards for the scantools, connectors, communication,and protocols that are used to exchange data between the diagnosis system andthe mechanics. Further, it says that the software and data must be encoded toprevent unauthorized changes of the engine management system.The requirements on the diagnosis system is formulated so that it must beable to detect a fault during a drive cycle. A drive cycle is de�ned as a drive casewhere all characteristics of a FTP75 test cycle is present. FTP75 is a standardizedtest cycle used in USA and some other countries. When a fault occurs, the MILmust be illuminated. If the fault is still present the next drive cycle, a DiagnosticTrouble Code (DTC) and freeze frame data is stored. Freeze frame data is allinformation available of the current state of the engine and the control system.After three consecutive fault free drive cycles, the MIL should be turned o�. Also,the fault code and freeze frame is erased after 40 fault free drive cycles.Generally, the components that must be diagnosed in OBDII, is all actuatorsand sensors connected to the engine management system. Sensors and actuatorsmust be limit checked to be in range. Also the values must be consistent with eachother. Additionally, actuators must be checked using active tests. These generalspeci�cations apply therefore to for example mass air 
ow sensor, manifold pres-sure sensor, engine speed sensor, and the throttle. In addition to these generalspeci�cations, OBDII contains speci�c requirements and technical solutions formany components of the engine. Examples are:� Mis�reOne of the most important parts of OBDII are the requirements regardingmis�re. This is because a mis�re means that unburned gasoline reach thecatalyst, which can be overheated and severely damaged. The diagnosissystem must be able to detect a single mis�re and also to determine the10



speci�c cylinder, in which the mis�re occurred. During mis�re, the MILmust be blinking.The technology used today is signal processing of the RPM-signal. Some-times an accelerometer is used as a complement. Also, ion current basedmethods are promising.� CatalystAnother central part of OBDII is catalyst monitoring. The catalyst is acritical component for emission regulation. If the e�ciency of the catalystfalls below 60%, the diagnosis system must indicate a fault. The technologyused today is to use two lambda (oxygen) sensors, one upstream and onedownstream the catalyst. For a fully functioning catalyst, the variations,due to the limit cycle enforced by the control system, in the upstreamlambda sensor should not be present in the downstream sensor.� Lambda SensorsA change in the time constant or an o�set of the lambda sensors mustbe detected. This is done by studying the frequency, comparing the twosensors, and applying steps and studying step responses.� Purge SystemThe purpose of the purge system is to take care of fuel vapor from thefuel tank. It contains a coal canister and some valves to direct the fuelvapor from the tank into the canister and from the canister into the intakemanifold. The diagnosis system must be able to detect malfunctioningvalves and also a leak in the fuel tank. The technology used here is heavilybased on active tests.Other components for which OBDII contain detailed speci�cations are for exam-ple EGR-systems, fuel-systems, and secondary air systems.2.3 Diagnosis, Supervision and Safety examplesin AXE exchangesThis section brie
y discusses diagnosis in the Ericsson AXE telephone exchange.A telephone exchange is normally not considered a safety-critical system, al-though it could be considered so in certain cases, eg. it may be very importantthat a call for an ambulance succeeds without delay. Furthermore, the customersare demanding increasingly higher reliability from the products. For instance,telephone companies in Australia and the USA typically require that a telephoneexchange is non-operational for at most 5 mins. per year, specifying economicpenalties for the manufacturer if this requirement is not met.11



Modern telephone exchanges, like the Ericsson AXE system, are complexsystems consisting of interacting hardware and software. An AXE telephone ex-change basically consists of the blocks shown in Figure 2.1. The software in ansubscriber networkTra�cAccess Switching AccessCharging control
operator

O&M
Figure 2.1: Block diagram of an AXE telephone exchangeAXE system contains several millions of lines of code (mostly written in Ericssonsown application-speci�c language PLEX). Only some 10% of this code can be di-rectly related to the main functionality of the system, ie. tra�c management,charging and subscriber services. The remaining code is used for other pur-poses, including operating system, administration (eg. adding new subscribers),restart procedures, system extension, synchronization of systems etc. Most ofthese latter functionalities are located in the block labelled O&M (operation andmanagement) in the �gure. The O&M block consists of four subsystems:MAS: Maintenance Subsystem (supervision of the hardware)NMS: Network Management Subsystem (network load balancing)STS: Statistical Subsystem (Collects statistics for number of calls, number offailed calls etc.)RMS: Remote Measurement SystemThe functions of the NMS block can be divided into four di�erent types, asfollows:Supervision: Raise an appropriate alarm when certain conditions are met (se-rious errors)Observation: Change system state when required (for instance, in the case ofsystem overload) 12



Control: There are two types of control actions:� Protective control (eg. disallow certain types of calls in order to keepthe system running)� Expansive control (eg. �nd new paths for routing calls in the network)Many di�erent types of errors can arise in software-controlled telephone ex-changes, for instance the following:� Bit errors� Sporadic hardware errors, eg. errors caused by static electricity (single orinfrequent such errors need not always be reported)� Synchronization slip, eg. a clicking sound caused by missed information dueto synchronization problems between exchanges� Protocol errors, caused by di�erent communication protocols in exchanges,for instance, when modern digital and old analog exchanges are intercon-nected (single errors need often not be reported).Sporadic errors should only be reported when frequent. This is solved byemploying a so-called \leaking-bucket algorithm", which is based on maintain-ing a counter as follows: Whenever an error occurs, increment the counter byone. Decrease the counter by some �xed amount, larger than one, at certainprede�ned intervals. Raise an alarm whenever the value of the counter exceeds apreset limit. The parameters, ie. the value to subtract and the limit, are deter-mined empirically after installation. However, the designers do not receive muchfeedback on how these parameters are set or how frequent alarms are in practice.Many errors can also be attributed to the interfaces between system modules.The AXE exchange collects a lot of statistics when operational. However, thisstatistics is seldom used and it seems not quite clear what statistics is relevantto use as feedback to the designers. A more intelligent way of collecting andinterpreting statistics is desired.2.4 Diagnosis, Supervision and Safety from aSaab Military Aircraft Point of ViewIntroductionThe work with 
ight safety and supervision are of very high priority at SaabMilitary Aircraft mainly since one single failure can cause the loss of an aircraftand human lives. There is also high priority in keeping the time the aircrafts are13



grounded or not operational as short as possible by detecting and isolating faultyequipment in the aircraft.By showing the general framework for setting the demands on every part ofthe aircrafts systems and giving two examples of how this can be achieved, wehope to give a view of how SMA works with these kinds of problems.Risk of Aircraft LossThe customer has speci�ed a maximum number of aircraft losses per hour of
ight and this number forms the basis for the work.It is speci�ed that 50% of these losses are allowed to be caused by techni-cal problems and among these 50% one estimates that 50% can be caused byunknown technical problems leaving us with 25% of the maximum number offailures causing a loss of aircraft. This number is then divided in di�erent partsforming a requirement for each system.The risk of losing the aircraft is determined for every type of fault in eachsystem and the probability of the fault is determined. These two numbers mul-tiplied with each other and summed over every known fault for a system formsthat systems contribution to the risk for an aircraft loss per 
ight hour.Failure Mode E�ect Analysis (FMEA) and Failure Tree Analysis (FTA) isused to predict the probabilities and the e�ects for all types of failures.General ApproachTo be able to keep the number of failures during 
ight down to an acceptablelevel a sophisticated supervision and diagnosis methodology is used where allsystems have a Built-In-Test (BIT) using continuous monitoring during normaloperation. It also includes Safety Check at each power on, self diagnosis, andtest functions executed when a failure is detected or at predetermined intervals.Many parameters are also stored at a fairly high rate during each 
ight makingit possible to do trend checking and to thoroughly investigate failure behavior.Flight Control SystemWith the development of the �ghter aircraft JAS39 Saab Military Aircraft tooka further step towards high maneuverable aircraft but at the same time raisedthe risk of a crash in case of an undetected failure in the 
ight control system.The development of the 
ight control system has then been aimed at keeping theprobability of an undetected failure down.This has been achieved using an triplex redundant 
ight control system. Theredundancy includes the sensors, the computers, and the actuators includingredundancy in hydraulic and electrical power. A simple voting approach is usedto determine which sensor and which command shall be used. Since there must14



be physical redundancy in case of a failure this approach is very fast in detectingfaults.Since the supervision of the 
ight control system forms an important part ofthe safety of the aircraft a lot of emphasize is put into verifying the functionalityof the system. This in addition to conventional software development testing alsoachieved by using simulators with real hardware but simulated sensors, actuatorsand 
ight dynamics. Di�erent kinds of failures can then be introduced duringsimulated 
ight and the e�ects on the 
ight control can be evaluated.Integrated Navigation SystemThere is a trend towards better and better position determination methods but tobe able to use the achieved accuracy for other things than weapon delivery a fastand reliable fault detection and supervision methodology have to be implemented.An aircraft navigation system typically consist of an inertial navigation systemaided by GPS, Doppler radar, Terrain Referenced Navigation etc.. The systemsare integrated using a kalman �lter forming an analytic redundancy which canbe used for model-based fault detection.2.5 Diagnosis, Supervision and Safety examplesin roboticsHigh productivity and availability are important issues for industrial robots. Theproductivity is determined by factors like the precision of the robot operation andthe speed by which the robot is able to operate, while the availability depends ofthe overall operation of the robot and its components.In order to improve the productivity there is big interest in developing therobot control system towards higher precision. One limitation for what can beachieved is determined by the quality of the mathematical model that is used forthe design of the robot control system. It is therefore of interest to study methodsthat reduce the e�ects of modeling errors as much as possible. One approach tothis problem is to use identi�cation to, for example, determine parameters thatare di�cult to determine using physical modeling. A second approach is to utilizethat robots in many situations carry out the same operation repeatedly, and adda correction to the control signal in order to improve the performance.For high availability it is also important to have methods to detect, or evenpredict, and isolate di�erent types of faults that can occur. Each minute thata production line has to be stopped represents a large economical loss. It istherefore of interest to develop method for e�cient and reliable handling of errormessages. 15



Chapter 3Continuous model baseddiagnosis
3.1 Why model based diagnosis?Why is there a need for a mathematical model to achieve diagnosis? It is easy toimagine a scheme where important entities of the dynamic process is measuredand tested against prede�ned limits. The model based approach instead performsconsistency checks of the process against a model of the process. There are severalimportant advantages with the model based approach1. Outputs are compared to their expected value on the basis of process state,therefore the thresholds can be set much tighter and the probability toidentify faults in an early stage is increased dramatically.2. A single fault in the process often propagate to several outputs and thereforecauses more than one limit check to �re. This makes it hard to isolate faultswithout a mathematical model.3. With a mathematical model of the process the FDI scheme can be madeinsensitive to unmeasured disturbances, e.g. in an SI-engine the load torque,making the FDI-scheme feasible in a much wider operating range.4. It might be possible to perform the diagnostic task without installing extrasensors, i.e. the sensors available for e.g. control might su�ceThere is of course a price to pay for these advantages in increased complexity inthe diagnosis scheme and a need for a mathematical model.3.2 Quantitative approaches to diagnosisIn quantitative approaches the diagnosis procedure is explicitly parted into twostages, the residual generation stage and the residual evaluation stage, as illus-16



trated in Figure 3.1. The residual is a signal containing fault information, the
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Figure 3.1: Two stage diagnosis system.residual evaluation can in its simplest form be a thresholding test on the resid-ual, i.e. a test if jr(t)j > Threshold. More generally the residual evaluation stageconsists of a change detection test and a logic inference system to decide whatcaused the change. A change here represents a change in normal behavior of theresidual.The residual generation approaches can be divided into three subgroups, limit& trend checking, signal analysis and process model based.� Limit & trend checkingThis approach is the simplest imaginable, testing sensor outputs againstprede�ned limits and/or trends. This approach needs no mathematicalmodel and are therefore simple to use but it is hard to achieve high perfor-mance diagnosis as was noted in section 3.1.� Signal analysisThese approaches analyses signals, i.e. sensor outputs, to achieve diagnosis.The analysis can be made in the frequency domain, [Neumann, 1991], orby using a signal model in the time domain. If fault in
uence are knownto be greater than the input in
uence in well known frequency bands, atime-frequency distribution method as in [Olin and Rizzoni, 1991] can beused.� Process model based residual generationThese methods are based on a process model and will be further investigatedin this chapter. The process model based approaches are further partedinto two groups, parameter estimation, and geometric approaches. Thesemethods will be investigated further, later in this chapter.17



Before we can discuss the methods in this section we need to make some de�-nitions. The approaches to be discussed here generates residuals which can bede�ned asDe�nition 3.1 [Residual]. A residual (or parity vector) r(t) is a scalar orvector that is 0 or small in the fault free case and 6= 0 when a fault occurs.The residual is a vector in the parity space. This de�nition implies that aresidual r(t) has to be independent of, or at least insensitive to, system statesand unmeasured disturbances.We will now concentrate on linear systems because they can be systematicallyanalyzed, non-linear systems will be brie
y discussed later in this chapter.A general structure of a linear residual generator, can be described as in Figure3.2. The transfer function from the fault f(t) to the residual r(t) then becomesr(s) = Hy(s)Gf(s)f(s) = Grf(s)f(s)What conditions has to be ful�lled to be able to detect a fault in the residual?
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Figure 3.2: General structure of a linear residual generatorIn [Chen and Patton, 1994] detectability has a natural de�nition. To be able todetect the i:th fault the i:th column of the response matrix [Grf(s)]i has to benonzero, i.e.De�nition 3.2 [Detectability]. The i:th fault is detectable in the residual if[Grf(s)]i 6= 0This condition is however not enough in some practical situations. Assumethat we have two residual generators with structure as in Figure 3.2. When18
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Figure 3.3: Example residualsexcited to a fault the residuals behave as in Figure 3.3. Here we see that we havea fundamentally di�erent behavior between r1(t) and r2(t) as r1(t) only re
ectschanges on the fault signal and r2(t) has approximately the same shape as thefault signal. Thus r1(t) can not be used in a reliable FDI application even thoughit is clear that Gr1f (s) 6= 0.The di�erence between the two residuals in the example are the value ofGrf(0). It is clear that residual 1 has Gr1f(0) = 0 while residual 2 have Gr2f (0) 6=0. This leads to another de�nition in [Chen and Patton, 1994]De�nition 3.3 [Strong detectability]. The i:th fault is said to be stronglydetectable if and only if [Grf (0)]i 6= 0The example show that it can be of great importance to perform a frequencyanalysis of the residual generator.Note that in De�nition 3, the frequency ! = 0 is made particularly important.Which frequencies that is particularly important depends on which type of faultsthat are interesting. There are three di�erent types of temporal fault behaviouras shown in Figure 3.4.� Abrupt, step-faults a� Incipient(developing) faults b 19
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Figure 3.4: Di�erent fault types� Intermittant fault c3.3 Isolation strategiesIf we now have strongly detectable residuals, how can isolation be achieved? In[Patton, 1994] two general methods are described� Structured residuals� Fixed direction residualsStructured residualsThe idea behind structured residuals is that a vector valued of residuals is de-signed making each element in the residual insensitive to di�erent faults or subsetof faults whilst remaining sensitive to the remaining faults, i.e. if we want to iso-late three faults we can design a three dimensional residual with componentsr1(t), r2(t), and r3(t) to be insensitive to one fault each. Then if component r1(t)and r3(t) �re we can assume that fault 2 has occured.Structured residuals can, e.g. be generated with a bank of observers. Here wewill present the structure for instrument fault diagnosis (IFD), the correspond-ing structure for actuator fault diagnosis (AFD) and component fault diagnosis20



(CFD) is trivial. There are two general structures for the observer bank, the dedi-cated observer scheme (DOS) or the generalized observer scheme (GOS). In DOSonly one measurement is fed into each observer. The i:th observer are thereforeonly sensitive to sensor faults in the i:th sensor. DOS is illustrated in Figure3.5. Each observer in a GOS scheme on the other hand are fed by all but one
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I f1 f2 f3r1 1 1 0r2 1 1 1r3 1 1 1 II f1 f2 f3r1 1 1 0r2 1 0 1r3 1 1 1 III f1 f2 f3r1 0 1 1r2 1 0 1r3 1 1 0Table 3.1: Example coding setsa GOS-scheme more than half of the residuals have to mis�re (if a majority deci-sion rule is used) to make a bad fault decision. If a residual pattern, i.e. a binaryvector describing which residuals that have �red, does not correspond to any faultpatterns a natural approach is to assume the faultpattern that has the smallestHamming distance to the residual pattern. The Hamming distance is de�ned asthe number of positions two binary vectors di�er, e.g. d((1; 1; 0); (0; 1; 1)) = 2.As always there is a price to pay for this increased reliability, or robustness, aGOS-scheme can only detect one fault at a time while a DOS-scheme can detectfaults in all sensors at the same time. It is possible to extend a GOS scheme withextra sensors and residuals to achieve possibilities to detect and isolate multiplefaults as in [Hsu et al., 1995].To illustrate how a bank of residuals are structured so called coding setsare used. In Table 3.1 three examples are presented and each row represents aresidual, a 1 in position j on row i implies that fault fj a�ects residual ri. Thedi�erent columns in the coding sets in the table is called the fault code. A codingset are a table that describes how di�erent faults a�ect the residuals.If for example in coding set III residuals r1 and r3 �re while r2 does not, i.e.fault code (101)T , it is probable that fault f2 has occurred. To detect a fault,no column can contain only zeros and to achieve isolation all columns must beunique. If these two requirements are ful�lled, the coding set is called weaklyisolating.A small fault might �re some but not all elements in the residual vector thatis sensitive to the speci�c fault. To prevent misisolation in these cases the codingset should be constructed so that no two columns can get identical when onesin a column are replaced by zeros. A coding set that ful�lls this requirement iscalled a strongly isolating set.In Figure 3.1 coding set I is non-isolating, II is weakly isolating and III isstrongly isolating.Fixed direction residualsThe idea with �xed direction residuals is the basis of the fault detection �lter(FDF) where the residual vector get a speci�c direction depending on the faultthat is acting upon the system.Figure 3.7 gives an geometrical illustration of this type of residuals when a22



fault of type 1 has occurred. The most probable fault can then be determined by
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Figure 3.7: Fixed direction residuals�nding the fault vector that has the smallest angle to the residual vector.It can be noted that a DOS scheme can be viewed as a �xed direction residualgenerator with the basis vectors as directions. A GOS scheme can however notbe viewed as a �xed directions residual generator as a residual there is con�nedto a subspace of order n� 1 (if the residuals has dimension n) instead of only a1-dimensional subspace (the direction).3.4 RobustnessAs mentioned earlier, it is unrealistic to assume a perfect model and no distur-bances acting upon the process. This makes the diagnostic task even harder, thisproblem is called the robustness problem and a diagnostic algorithm that contin-ues to work satisfactory even when subjected to modeling errors and disturbancesis called robust.Since the ideal situation never occur in a real application, the robustnessaspect is one of the most important issues when designing a diagnosis system.The methods to tackle the robustness problem can be divided into two categories[Frank and Ding, 1994]� Robust residual generation, active robustness� Robust residual evaluation, passive robustnessRobust residual generationThese methods strive to make the residuals insensitive or even invariant to modeluncertainty and disturbances, and still retain the sensitivity towards faults. There23



are two di�erent types of disturbances, structured and unstructured disturbances.If it is \known" exactly how a disturbance signal in
uences the process it iscalled structured uncertainty and this high degree of disturbance knowledge isenough to actively reduce or even eliminate the disturbance in
uence on theresidual. However if no knowledge of the disturbance is known, no active robust-ness can be achieved. Examples of robust generation methods are Unknown In-put Observers (UIO)[Frank and W�unnenberg, 1989], Eigenstructure assignmentof observers [Patton and Kangethe, 1989, Patton, 1994], robust parity relations[Chow and Willsky, 1984, Gertler, 1991].Robust residual evaluationThe goal with robust evaluation methods is to enable reliable decision-making andstill keeping the false-alarm rate satisfactorily small. Examples of robust eval-uation methods are adaptive thresholds [Ding and Frank, 1991], decision mak-ing based on fuzzy logic [Frank, 1993], and statistical change detection methods(sometimes referred to as statistical decoupling).3.5 Model structureTo proceed in the analysis of residual generation approaches we need an analyticalmodel. In this report a state-representation of the model are used as_x(t) = f(x(t); u(t))y(t) = h(x(t); u(t)) (3.1)The linear (time-continuous) state representation is_x(t) = Ax(t) +Bu(t)y(t) = Cx(t) +Du(t) (3.2)As we have noted earlier we have three general types of faults:1. Sensor (Instrument) faultsModeled as an additive fault to the output signal.2. Actuator faultsModeled as an additive fault to the input signal in the system dynamics3. Component (System) faultsModeled as entering the system dynamics with any distribution matrix.Here it is seen that actuator faults only are a special case of componentfaults. 24



There are also uncertainties about the model or unmeasured inputs to the process,e.g. the load torque in an automotive engine. If these uncertainties are structured,i.e. it is known how they enter the system dynamics, this information can beincorporated into the model.In the linear case and if model uncertainties are supposed structured, thecomplete model becomes_x(t) = Ax(t) +B(u(t) + fa(t)) +Hfc(t) + Ed(t)y(t) = Cx(t) +Du(t) + fs(t) (3.3)where fa(t) denotes actuator faults, fc(t) component faults, fs(t) sensor faultsand d(t) disturbances acting upon the system. H and E is called the distributionmatrices for fc(t) and d(t).3.6 Parameter estimationAs we noted in 3.2, process model based residual generators could be parted intotwo approaches parameter estimation and geometric approaches. A parameterestimation method, [Isermann, 1989, Isermann, 1991] is based on estimating im-portant parameters in a process, e.g. frictional coe�cients, volumes or masses,and compare them with nominal values.We �rst need to de�ne the model structure to use. The process to be modeledtypically consist of both static relations and dynamics relations, both linear andnon-linear.Theoretically there is no limit on the appearance of these relations, the param-eter estimation could be done by e.g. a straightforward gradient-search algorithm.But to enable e�cient estimation of model parameters here it is assumed thatthe model is linear in its parameters. A least squares solution are then easy toextract. Note that this in no way implies a linear model. The equationy(t) = a1 x2(t)is linear in its parameter a1 but is clearly non-linear.With this assumption the model can be written as a linear regression modely(t) = 'T (t)� (3.4)where '(t) consists of inputs and old measured variables in a discrete model andoutput derivatives in a continuous model. � are the model parameters to beestimated.Note that � is the model parameters, not the physical parameters. � can bewritten as a function of the physical parameters p as� = f(p) (3.5)25



Note that it can be of great importance how in- and out-signals are chosen as wewill see in the example below.Example 3.1. Consider a simple linear system, a �rst order low pass RC-link.Here there are two physical parameters, the resistance R and capacitance C.If the input and output voltages, u1 and u2 are chosen as in and out signals,the system getsu2(t) = �RC _u2(t) + u1(t) = 'T (t)� = (� _u2(t) u1(t)) RC1 ! (3.6)In equation (3.6) we see that only one parameter appear in � as RC. We canthen conclude that the two parameters cannot be estimated with this choice ofinput-output signals. If we instead considers the output current i2 as outputsignal the system gets:i2(t) = �RC _i2(t) + C _u(t) = 'T (t)� = (�_i2(t) _u(t)) RCC ! (3.7)Here in (3.7) two parameters appear and both R and C are identi�able. In apractical problem there might not be a choice in in-out signals but the exampleshows that in a parameter estimation method, the in-out signal choice can be ofgreat importance and should be analyzed.Now when the model structure is de�ned we can outline the typical parameterestimation diagnosis method.� Data processngWith the help of the model and measured output data, model parameterscan be estimated, e.g. by minimizing the quadratic estimation errorVN(�) = NXi=0 �y(i)� 'T (i)��2The LS-solution can easily be replaced by a RLS-estimator to achieve adapt-ability to a time varying process.� Fault detectionWhen an estimation of model parameters �̂ is produced, an estimation ofprocess parameters p̂ can be extracted by inverting equation (3.5), this isalso called feature extraction. p̂ = f�1(�̂)Also �p = pnominal � p̂ and standard deviation �p can be extracted to beused in a statistical test whether a fault is acting upon the system or not.�p and �p can be seen as residuals as they are small in the fault-free case.They are also in parameter estimation articles called syndromes.26



� Fault classi�cationIf the statistical test mentioned above decides that a fault is present, isola-tion of the fault source is the �nal stage in a parameter estimation method.The algorithm outlined above is an example of a typical algorithm, anotherapproach is taken in [Isermann, 1989] where the detection and classi�cation stepsare combined into one using a Bayes classi�cation rule.3.7 Geometric approach to residual generationThe approaches described in this section are called parity space approaches be-cause they generate residuals who are vectors in the parity space. The methodscan be divided into open- and closed-loop approaches. In an open-loop approachthere are, as the name suggests, no feedback from previously calculated residuals.The idea behind closed-loop approaches, i.e. observer based approaches, areto use a state-estimator as a residual generator. Both structured residuals and�xed direction isolation methods are achievable with both open- and closed-loopdesign methods. There are a number of approaches suggested in literature, herewe will address� State observers� Fault detection �lter� Unknown Input Observers{ By parity equations{ By Kronecker canonical form{ By eigenstructure assignment of observerNote that these are methods to design the residual generator. Several of these de-signs may result in the same residual generator in the end as shown in [Gertler, 1991].State observersIf there are no uncertainties acting upon the system, a straightforward approachis to use a state estimator observer and compare the estimated outputs with themeasured.Consider the special case of IFD. Assume a linear system with additive sensorfaults fs as _x = Ax +Buy = Cx +Du+ fs (3.8)27



A state observer for system (3.8) can be stated as_̂x = Ax̂ +Bu+K(y � ŷ)ŷ = Cx̂+DuIf r = y � ŷ is used as the residual it can be writtenr = y � ŷ = Cx +Du+ fs � Cx̂�Du = Ce+ fswhere e is the state estimation fault e = x � x̂. The estimation error dynamicscan be stated _e = (A�KC)e�KfsAssume fs is a step from 0 to F 6= 0. Since Ac = A �KC is a stable matrix, ewill go towards a stationary valuee! A�1c KF as t!1As r = Ce + fs and e goes towards a non zero value the residual will be 6= 0if F 6= 0 and A�1c K + I 6= 0. It can be seen that in a single-output systemA�1c K + I 6= 0 is equivalent with det(A) 6= 0.Fault detection �lterThe idea with the fault detection �lter [Gertler, 1991, Patton, 1994] is, as wasnoted in earlier, to produce �xed direction residuals. The method is based on anobserver of the form _̂x = Ax̂ +Bu+K(y � Cx̂�Du)Considering a fault in the i : th actuator we get estimation error e = x � x̂dynamics as _e = (A�KC)e+ bifaey = y � ŷ = Cx +Du� Cx̂�Du = C(x� x̂) = Cewhere bi is th i : th column in B. By a special choice of K it is possible tomake ey, i.e. the residual, grow in a speci�ed direction when the i : th fault hasoccured.An e�cient design procedure including eigenstructure assignment of observerhas been found but in [Patton, 1994]. It is noted that the �xed direction approachuses up more of the design freedom compared to other observer based approachesdescribed next who therefore supersedes the fault detection �lter.28



Unknown Input ObserversIf disturbances are acting upon the system or model uncertainties are promi-nant, robust methods has to be used. Robust observers is called Unknown InputObservers, and can be designed in a number of ways.Parity equations from a state-space modelParity equations is at �rst sight no observer based residual generator, but it canbe shown [Patton and Chen, 1991] that discrete parity equations can be seen asa dead-beat observer. This approach will be described in detail later on in thischapter.By Kronecker Canonical FormBy putting the system on a special form, an observer can be designed so thatdisturbance in
uence on the state-estimate can be eliminated[Frank and W�unnenberg, 1989] and robust residuals can be generated. It is how-ever not necessary to decouple disturbance in
uence in the state-estimate, onlydisturbance decoupling in the output-estimate is needed.Eigenstructure assignment of observerThe eigenstructure assignment [Patton and Kangethe, 1989] is a method of de-signing identity observers, achieving disturbance decoupling in the residual.3.8 Residual evaluationDue to model uncertainties,measurement noise, and only approximate decouplingfrom unmeasured disturbances is achievable, residuals will not be 0 in the fault-free case. Therefore a non-zero threshold has to be selected. This is even moreimportant in the case of unstructured uncertainties where exact disturbance de-coupling in the residuals is impossible.In [Frank, 1991] it is noted that when deterministic decoupling, i.e. decou-pling of structured disturbances in the residuals, is not possible there is a possi-bility, if we know the statistical distribution of the residual, to use this knowledgeand achieve robust FDI. This is called statistical decoupling.One method who achieves statistical decoupling is the GLR (Generalized Like-lihood Ratio)[A.S.|Willsky and Jones, 1974] test where the k : th residual ismodeled as rk(t) = r0;k(t) +Gk(p)f(t)where r0;k(t) is white noise with zero mean and Gk is the distribution matrix ofthe k : th fault. p is the derivation operator, i.e. _y(t) = p y(t).29



A hypothesis test is then performed with the hypothesisH0 : rk = r0;kHi : rk = r0;k +Gi;k fi the i:th fault has occuredThe hypothesis decision can be made through a test of the likelihood ratioLi = Pr(r1; : : : ; rnjHi; fk = f̂i)Pr(r1; : : : ; rnjH0)Where Pr(�) denotes the density function of the underlying stochastic process.Since neither f̂i nor the probability density function under assumption Hi is knowthese has to be estimated. This motivates the name Generalized Likelihood ratio.The decision is then based on the ruleLi > Ti : Hi is assumed, i.e. the i:th fault is assumed presentLi < Ti : H0 is assumed, i.e. no faultThe desired false alarm rate can be adjusted by choosing suitable thresholds Ti.This approach can be easily illustrated on a one dimensional residual by Fig-ure 3.8. Assume the observed value of the residual is r. Assume H0 is the density
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Another more intuitive approach to robust residual evaluation is that of adap-tive thresholds. Since the model used does not model the system perfectly, theresiduals will 
uctuate with changing inputs even in a fault-free situation. Theremight be situations where these 
uctuations are so great so that no thresholdlevel ful�lls both satisfactory false alarm rate demands and missed detectionprobabilities.The adaptive thresholds approach is as noted above based on the fact thatthe residuals tend to 
uctuate with the input signals (unmeasured or measured).Examples of adaptive thresholds can be that the threshold level is scaled withthe size of the input vector, i.e. Ti(t) / jju(t)jj, or time-derivative of the inputvector, i.e. Ti(t) / jj _u(t)jj. Also fuzzy systems has been proposed [Frank, 1994]for residual evaluation.In the end, we have to set the threshold levels. One simple approach is toobserve the residuals in the fault free case and set the level to get the desiredfalse-alarm rate. The residual evaluation rules used often get adapted to theapplication, e.g. by using time-limits on how long the residual can be above thethreshold before a fault is assumed etc. It is easy to imagine a number of adhoc solutions to improve robustness, but a systematic approach based on Markovtheory choosing the thresholds has been suggested in [Walker, 1989].3.9 Non-linear residual generatorsAs noted, all previously described residual generators are linear. When apply-ing a linear residual generator, based on a linearization of a non-linear system,modelling errors can become dominant very quickly as the system deviates fromthe linearization point. One way to master this problem is to use a non-linearresidual generator taking full advantage of the knowledge in the non-linear model.Non-linear residuals can be both closed-loop generators, [Frank, 1991], or open-loop generators [Krishnaswami and Rizzoni, 1994]. Non-linear parity equationsis described in [Krishnaswami and Rizzoni, 1994].In most applications it is not realistic to assume a linear model. In [Frank, 1993]a class of nonlinear systems are presented where decoupling is possible if the dif-ferential equations describing the system can be stated on the form_x = Ax +B(y; u) + E1d1 +R1fy = Cx + E2d2 +R2f +Duwhere d1, d2 are disturbance vectors and f are the fault vector. As the veryspecial nonlinearity B(y; u) only depends on measured variables, it can be com-pensated for by non-linear decoupling. This class of systems is very limited bute.g. industrial robots �ts into this category.As the above class is very limited, a larger class of non-linear systems whererobust observer design has been successful is when the di�erential equations can31



be written on the form_x = A(x) +B(x)u + E1(x)d1 +R1(x)fy = C(x) + E2d2 +R2f +Du3.10 Performance issuesWhat performance measures do we have to compare/evaluate di�erent resid-ual generators? Two natural measures are the false alarm rate and the prob-ability for missed detection. It can however be di�cult to design a diagnosticsystem based on these measures, especially the latter one who is hard to esti-mate. Instead a performance index can be de�ned that is used as an indicatorof residual generator performance. Examples of performance indexes is givenin [Gertler and Costin, 1994, Chow and Willsky, 1984, Patton, 1994]. The per-fomance index � is often in the shape of� = fault-in
uence on the residualresidual insecuritywhere the denominator can e.g. be the variance of the residual in fault freeoperation and the numerator can be e.g. jr(t)j when the residual is subjected toa fault. This performance index can be used for both optimization purposes andto compare di�erent methods.3.11 Parity equationsIn this section parity equations [Gertler, 1991, Chow and Willsky, 1984] are de-scribed in detail and a design example is presented. Parity equations can bede�ned as consistency relations between inputs and outputs.Consider the system: y(t+ 1) = ay(t) + bu(t) + f(t)In the fault-free case (f(t) = 0) the relationy(t)� ay(t� 1)� bu(t� 1) = 0should hold. By using the lefthandside of the relation we get a residual generatorr(t) = y(t)� ay(t� 1)� bu(t� 1)It is easy to see that r(t) = 0 in the fault-free case and r(t) 6= 0 when f(t) 6= 0.This is an example of a parity equation. A systematic method of �nding parityequations with desired properties is described below.32



Method descriptionRestating the model given in equation (3.3), here a time-discrete form is used asit is more suited for this approach. First we consider the fault free, no disturbancecase, i.e. fa = fc = fs = d � 0.x(t + 1) = Ax(t) +Bu(t)y(t) = Cx(t) +Du(t) (3.9)It is not necessary to have the model on state-space form to develop the residualgenerator, it can just as well be developed using an input-output formulation ofthe model. The state-space form is chosen as it produces a clean notation.Since we are going to utilize temporal redundancy we need an expression forthe output based on previous states.The output at time t+ 1; t+ 2; : : : ; t + s; s > 0 then becomesy(t+ 1) = CAx(t) + CBu(t) +Du(t+ 1)y(t+ 2) = CA2x(t) + CABu(t) + CBu(t+ 1) +Du(t+ 2)...y(t+ s) = CAsx(t) + CAs�1Bu(t) + : : :+ CBu(t+ s� 1) +Du(t+ s)Collecting y(t� s); : : : ; y(t) in a vector yieldsY(t) = Rx(t� s) +QU(t) (3.10)where Q = 0BBBBBBB@ D 0 : : : 0CB D 0 : : : 0CAB CB D 0 0... ... . . .CAs�1B CAs�2B : : : CB D
1CCCCCCCA

Y(t) = 0BBBBBBB@ y(t� s)y(t� s+ 1)y(t� s+ 2)...y(t)
1CCCCCCCA U(t) = 0BBBBBBB@ u(t� s)u(t� s+ 1)u(t� s+ 2)...u(t)

1CCCCCCCA R = 0BBBBBBB@ CCACA2...CAs
1CCCCCCCAAssuming k inputs and m measurements vector Y is [(s + 1)m] long and U is[(s+1)k] long. Matrix R has dimensions [(s+1)m� n] and Q has [[(s+1)m]�[s+ 1]k]. Note that y(t) and u(t) are vectors and not scalar values.33



In equation (3.10), Y, U and Q are known. Premultiplying with a vector wTof length [(s+ 1)m] and moving all known variables to the left side yieldsr(t) = wT (Y(t)�QU(t)) = wTRx(t� s) (3.11)As was described in section 3.2, equation (3.11) will qualify as a residual if theresidual is invariant to state variables, i.e.wTRx(t� s) = 0 (3.12)Given a vector w that satis�es (3.12) we have a residual generator where theleft hand side of (3.11) is the computational form and the right hand side is theinternal form.Residual invarianceEarlier we have assumed it possible to achieve invariance to unmeasured signals,here a method for achieving invariance is presented. If we drop the fault-free nodisturbance assumption made in (3.9) the residual generator (3.11) transformsinto r(t) = wT (Y(t)�QU(t)) == wT (Rx(t� s) +QFa(t) +VFc(t) +TN(t) + S(t)) (3.13)whereFa is a vector of (unknown) actuator faultsFc is a vector of (unknown) component faultsN is a vector of (unknown) disturbancesS is a vector of (unknown) sensor faultsT relates to N(t) as Q relates to U(t). V relates to Fc(t) as Q relates toU(t). It can be seen that T has the same structure as Q with B changed to Eand D = 0.If we also want the residual (3.13) to be insensitive to the unknown distur-bances or actuator faults we add the additional constraint:wT hT ~Q~Vi = [0 0 0] (3.14)where ~Q are the Q matrix where only the columns in the B and D matricescorresponding to inputs to decouple are left and ~V are the V matrix where onlythe columns in the H matrix corresponding to component faults to decouple areleft.If we want the residual to be insensitive to sensor faults we make sure that allwi that appears in front of the sensor whose fault we wish to make the residualinsensitive to are set to 0. This implies (s+1) zeros per sensor fault.34



Diagnostic limitsOf course it is not possible to make the residual insensitive to an arbitrary numberof disturbances and faults. We will now derive some of those limits.What conditions must be ful�lled to make it possible to �nd a w that satis�es(3.12), (3.14) and then how many actuator/sensor faults are possible to decouplefrom the residual.We �rst note that if we see disturbance as an (unknown) input we only needto consider actuator and sensor fault decoupling. Further we assume that thenumber of inputs, nu � n where n is the system order and nu includes thenumber of disturbances acting upon the system.Denote the number of actuator faults and disturbances we want to decoupleby su and the number of sensor faults by sy. We note that� To decouple the state in
uence on the residual, i.e. ful�ll (3.12), we haveto impose n constraints on w.� When decoupling sy outputs we set sy(s + 1) elements in w = 0.� To decouple su actuator faults we impose su(s + 1) if D 6= 0 and sus ifD = 0 constraints on w. The special case when D = 0 is easy to see whenthe last column in ~Q then becomes all zero.In [Gertler, 1991] s is chosen as s = n if D 6= 0 and s � n � su if D = 0.Summarizing and assuming s = n if D 6= 0 and s = n� su if D = 0, we can seethat the number of constraints on w are:nc = ( n+ (su + sy)(n+ 1) , if D 6= 0n+ su(n� su) + sy(n� su + 1) , if D = 0The w vector have as we earlier noted [(s+1)m] elements and to ensure a solutionother than the trivial w = 0 we need (s + 1)m > nc, i.e. an under determinedequation system.That is if D 6= 0 (n+ 1)m > n+ (su + sy)(n + 1)) su + sy < m� nn+ 1 = m� 1 + 1n+ 1We also know that n > 0) 1n+1 > 0, which yields the upper limit on how manyfaults/disturbances we can decouple.su + sy = m� 1If D = 0 we get (n� su + 1)m > n+ su(n� su) + sy(n� su + 1) == (su + sy)(n� su + 1) + n� su) su + sy < m� n� sun� su + 1 = m� 1 + 1n + 1� su35



We also know from the discussion above concerning an upper limit on number ofinputs nu that n � nu � su ) 1n+1�su > 0 which yields the upper limit on howmany faults/disturbances we can decouple even here getssu + sy = m� 1Design exampleThe example system is a linearized mean-value model of an SI-engine. The modelhas two states, n the crankshaft rotational speed and pman, the pressure in theintake manifold. One structured disturbance is acting upon the system, the road-load, i.e. up/down-hill etc. There are 3 sensors measuring� Crankshaft revolution speed (rpm)� Intake manifold pressure pman (kPa)� Air 
ow past the throttel _mat (kg/h)The process also consists of two actuators� Throttle actuator� Fuel injectorWe are here considering sensor faults on all sensors, actuator faults on bothactuators, and a component fault as leakage in the intake manifold. The linearizedmodel are:�x(t + 1) = A�x(t) +B�u(t) + Ed(t) +H10B@ fa1(t)fa2(t)fc1(t) 1CA�y(t) = C�x(t) +D�u(t) +H20BBB@ fa1(t)fs1(t)fs2(t)fs3(t) 1CCCAA =  �1:6688 4:1250�0:2926 �15:8177 ! B =  0 410:307755:6064 0 !E =  �23:38220 ! H1 =  0 410:3077 055:6064 0 5:3471 !C = 0B@ 1:0000 00 1:00000 �0:6655 1CA D = 0B@ 0 00 010:3995 0 1CAH2 = 0B@ 0 1:0000 0 00 0 1:0000 010:3995 0 0 1:0000 1CA36



a1 a2 s1 s2 s3 Mload c1r1 0 0 1 1 1 0 1r2 1 0 1 1 1 0 1r3 1 0 0 1 1 0 0r4 1 0 1 0 1 0 1r5 1 0 1 1 0 0 1r6 1 0 0 1 1 0 0Table 3.2: Coding seta1 s2 s3 c1r1 0 1 1 1r4 1 0 1 1r5 1 1 0 1r6 1 1 1 0Table 3.3: Reduced coding setwhere �x =  �n�pman !, �u =  ��� _mfi !, d =Mload, fa1fa2 ! =  Throttle actuator faultFuel injector fault !, fc1 = Manifold leak and0B@ fs1fs2fs3 1CA = 0B@ rpm-sensor faultpman-sensor fault_mat-sensor fault 1CATo isolate all 6 di�erent type of faults we can design a residual vector ofdimension 6, each component independent of one fault each. All componentsshould also be independent of the disturbance d. This is however not possiblefor this model, this can easily be seen as the disturbance d enters the systemdynamics in the same way as faults in the _mfi-sensor, fa2. This means thatany component decoupling disturbance, automatically decouples any faults inthe _mfi-sensor. This is seen in the resulting coding set in table 3.2, the secondcolumn corresponding to a2 is all zero. We also note that the c1 and the s1columns are equal indicating that this scheme is not able to distinguish betweenthe two faults. Usually the rpm-sensor s1 is very reliable, therefore can the faultcode for these two columns be assumed indicating a manifold leakage.As we now only have 4 faults left to diagnose, we can reduce the dimensionto 4. Removing the columns for a2, s1 and Mload and residuals r2 and r3 resultsin the reduced coding set in table 3.3 that is a strongly isolating coding set.The time window, s, is chosen as described earlier (D 6= 0) to s = n =2. Matlab code to generate the �rst residual component r1, insensitive to load37



disturbances and faults in the rpm-sensor, can be written asQ = [[D;C*B;C*A*B], [zeros(size(D));D;C*B], [zeros(size([D;C*B]));D]];T = [[zeros(3,1);C*E;C*A*E], [zeros(3,1);zeros(3,1);C*E],[zeros(size([zeros(3,1);C*E]));zeros(3,1)]];R = [C;C*A;C*A*A];%%%%% Decoupling, d1 + actuator1 faultsQtilde = [[D(:,1);C*B(:,1);C*A*B(:,1)], [zeros(size(D(:,1)));D(:,1);C*B(:,1)],[zeros(size([D(:,1);C*B(:,1)]));D(:,1)]];Z = zeros(7,9);Z(1:2,:) = R';Z(3:4,:) = T(:,1:2)';Z(5:7,:) = Qtilde(:,1:3)';w_temp = Z(:,[1:4,6:7,9])\(-Z(:,5)-5*Z(:,8));w1 = [w_temp(1:4);1;w_temp(5:6);5;w_temp(7)];Components r4; r5 and r6 are generated with similar code. This residual generatoris now simulated in Figure 3.9. Note how the step in load (� uphill) a�ects thespeed at t = 2. The lowest plot, the �-plot, illustrates how the assumed throttleangle is 28� but at t = 5 a 3� fault happens as indicated by the dotted line, alsonote how this (unwanted) increase in throttle angle a�ects the crank-shaft speed.Figure 3.10 shows the corresponding residuals. As expected (column 1 in table
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Chapter 4Statistical change detectionIn this section we will review statistical change detection methods. We will discussresidual generation, a key theme in fault detection, overview some algorithmsand relevant performance measures. An application example is given as well, forwhich two algorithms are explained in detail. The subject of diagnosis will notbe treated explicitely. However, a common property of this approach is that itprovides an estimate of the change in the system, which may facilitate in thediagnosis step.There are a number of survey papers in this �eld, but state of the art isthe book [Basseville and Nikiforov, 1993]. As a research �eld, statistical changeperiod was at its top in the late seventies and early eighties, but during the lastfew years the interest has increased again.4.1 Residual generationThere are basically two di�erent ways to generate residuals, that are both basedon a model:� Completely known model. In this case, we essentially run the model inparallel with the system and compute the residual as the di�erence. In astatistical setting, this is achieved via state estimation by a Kalman �lter.� Parametrized model. The parameters in the model, assumed to be of alinear regression structure, are estimated recursively. The output from theestimated model is then compared to the system. The �lter that does thisoperation is the Recursive Least Squares (RLS) �lter.To get a good understanding of the Kalman and RLS �lter a complete course inmodel-based signal processing would be necessary. However, for understandingstatistical change detection, we only need to know the following property: TheKalman and RLS �lter take the measured signals and transform them to a se-quence of residuals, as illustrated in Figure 4.1. From a change detection point43



of view, it does not matter which case we have and the modeling phase can beseen as a standard task.System-- -utyt "tFigure 4.1: A whitening �lter takes the observed input ut and output yt andtransforms them to a sequence of residuals "t.In a perfect world, the residuals would be zero before a change and non-zeroafterwards. Since measurement noise and process disturbances are fundamentalproblems in the statistical approach to change detection, the actual value ofthe residuals cannot be predicted. Instead we have to rely on their behavior inaverage.If there is no change in the system, and the model is correct, then the residualsare so called white noise, that is a sequence of independent stochastic variableswith zero mean and known variance.After the change either the mean or variance or both changes, that is, theresiduals become "large" in some sense. The main problem in statistical changedetection is to decide what "large" is.4.2 Performance measuresA general on-line statistical change detector can be seen as a device that takesa sequence of observed variables and at each time makes a binary decision if thesystem has undergone a change. The following measures are critical:� Mean time between false alarms (MTFA). How often do we get alarms whenthe system has not changed?� Mean time to detection (MTD). How long do we have to wait after a changeuntil we get the alarm?� Average run length function, ARL(�). A function that generalizes MTFAand MTD. How long does it take before we get an alarm after a change ofsize �.In practical situations, either MTFA or MTD is �xed, and we optimize the choiceof method and design parameters to minimize the other one. For instance, in anairborn navigation system the MTFA might be speci�ed to one false alarm per105 
ight hours, and we want to get the alarms as fast as possible under thesepremises. 44



In o�-line applications, we have a batch of data and want to �nd the timeinstants for system changes as accurately as possible. This is usually calledsegmentation. Logical performance measures are:� Estimation accuracy. How accurate can we locate the change times?� The Minimum Description Length (MDL). How much information is neededto store a given signal?The latter measure is relevant in data compression and communication areas,where disk space and bandwidth are limited. MDL measures the number ofbinary digits that are needed to represent the signal and segmentation is onetool for making this small. Many telephone systems are modelling the signalas autoregressive models over a certain segmentation of the signal, and thentransmits only the model parameters, change times (in practice �xed to every50 ms) and the residuals. The receiver can then recover the signal from thisinformation.4.3 Change detection methodsAlgorithmically, all proposed change detectors can be put in one of the followingthree cathegories.� Methods using one model.� Methods using two models.� Methods using many model.In the next subsections, these will be brie
y described. Let us already here notethat the computational complexity of the algorithm is proportional to how manymodels that are used. Before reviewing these methods, we need a tool for decidingwhether a result is signi�cant or not.Stopping rulesMany change detection problems, among these algorithms in the classes of one-model and two-model approaches below, can be recast into the problem of decid-ing on the following two hypotheses:H0 : E(st) = 0H1 : E(st) > 0This is essentially achieved by low-pass �ltering st and comparing this value to athreshold. Below are two such low-pass �lters listed:45



� The Cumulative sum (CUSUM) test of [Page, 1954]:g(t) = max(g(t� 1) + s(t)� �; 0); alarm if g(t) > hThe drift parameter � in
uences the low-pass e�ect, and the threshold h(and also �) in
uences MTFA and MTD.� The geometric moving average (GMA) test in [Roberts, 1959]g(t) = �g(t� 1) + (1� �)s(t); alarm if g(t) > hHere the forgetting factor � is used to tune the low-pass e�ect and thethreshold h to tune MTFA and MTD.One-model approachStatistical whiteness tests can be used to test if the residuals are white noise asthey should be if there is no change. Among these tests, we mention� Change in the mean. The residual itself is used and st = "t.� Change in variance. The squared residual subtracted by known residualvariance � is used and st = "2t � �.� Change in correlation. The correlation between the residual and past inputsand/or inputs are used and st = "tyt�k or st = "tut�k for some k.The �rst approach is the original CUSUM test of [Page, 1954]. The second oneis usually labelled just the �2 test, since the test statistic is �2 distributed, while avariant of the last one is called the local asymptotic approach in [Benveniste et al., 1987].4.4 Two-model approachA model based on only recent data is compared to a model based on data froman in�nite time horizon, see �gure 4.2. By recent data is often meant data froma sliding window, whose size is denoted L below.If the former model gives smaller residuals,k"1tk > k"2tk;then a change is detected. The problem here is to choose a norm that correspondto a relevant statistical measure. Two norms that have been proposed are:� The generalized likelihood ratio (GLR), see [Appel and Brandt, 1983].� The divergence test, see [Basseville and Benveniste, 1983].46



Data : ModelM1z }| {y1; y2; :::; yt�L; yt�L+1; ::; yt| {z }ModelM2Figure 4.2: The two-model approach. A model (M2) based on data from a slidingwindow of size L is compared to a model (M1) based on all data or a substantiallylarger sliding window.Both these criteria provide an st to be put in a stopping rule in Section 4.3, forinstance the CUSUM test.The choice of window size L is critical here. On one hand, a large value isneeded to get an accurate model in the sliding window and on the other hand asmall value is needed to get a short time to detection.4.5 Multi-model approachAn important property of the Kalman �lter and RLS �lter is the following obser-vation: If the change time, or set of change times, is known, then the �lter canbe tailored to this knowledge and give white residuals even after the change(s).Such �lters are usually calledmatched �lters, because they are matched to speci�cassumptions on the true system.The idea in the multi-model approach is to enumerate all conceivable hypothe-ses about change times and compare the residuals from their matched �lters. The�lter with the \smallest" residuals wins, and we have an estimate of the changetimes that usually is quite accurate. The formulation is in a sense o�-line, butmany proposed algorithms are on-line.Again, we must decide what is meant by \small" residuals. By just takingthe norm of the residuals, we can make it smaller and smaller by increasingthe number of hypothesized change times. That is, a penalty on the number ofchanges must be built-in. The following ones have been proposed:� The generalized likelihood ratio (GLR) test, see [Willsky and Jones, 1976],and the marginalized likelihood ratio (MLR) test, see [Gustafsson, 1996a].� The maximum likelihood (ML) approach, see [Gustafsson, 1996b].� The MDL approach, proposed in [Rissanen, 1978] in a di�erent context.It is clearly infeasible to apply all possible matched �lters to the data. Sincethere can be a change or no change at each time instant, there are 2t possiblematched �lters at time t. Much e�ort has been spent in developing intelligentsearch schemes that only keep a constant number of �lters at each time.47
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Figure 4.3: A bank of matched �lters, each one based on a particular assumptionon the set of change times 
 = fkigni=1.4.6 Example: fuel monitoringThe following application illustrates the use of change detection for improvingsignal quality. The data consist of measurements of instantaneous fuel consump-tion available from the electronic injection system in a Volvo 850 GLT used asa test car. The raw data are quite noisy and need some kind of �ltering beforebeing displayed to the driver at the dashboard. There are two requirements onthe �lter:� Good attenuation of noise is necessary in order to being able to tune theaccelerator during cruising.� Good tracking ability. Tests show that fuel consumption very often changesabruptly, especially in city tra�c.These requirements are contradictory for standard linear �lters. Figure 4.4 showsthe raw data together with a �lter implemented by Volvo1. Volvo uses a quitefast low-pass �lter to get good tracking ability and then quantize the result toa multiple of 0.3 to attenuate some of the noise. However, the quantizationintroduces a di�culty when trying to minimize fuel consumption manually andthe response to changes could be faster.1This is not exactly the same �lter as Volvo uses, but the functionality is the same.48



Below two of the algorithms are detailed.Algorithm 1 (The two-sided CUSUM test)�̂t = 1t� t0 tXk=t0+1 yk"t = yt � �̂t�1s1t = "ts2t = �"tg1t = max(g1t�1 + s1t � �; 0)g2t = max(g2t�1 + s2t � �; 0)Alarm if g1t > h or g2t > hAfter an alarm, reset g1t = 0, g2t = 0 and t0 = t.Design parameters: �; h.Output: �̂tAlgorithm 2 (Brandt's GLR)�̂1t = 1t� t0 tXk=t0+1 yk�̂2t = 1t� L tXk=L+1 yk�̂1t = 1t� t0 tXk=t0+1(yk � �̂1t )2�̂2t = 1t� L tXk=L+1(yk � �̂2t )2"1t = yt � �̂1t�1"2t = yt � �̂2t�1st = log �̂1t�̂2t !+ ("1t )2�̂1t � ("2t )2�̂2tgt = max(gt�1 + st � �; 0)Alarm if gt > hAfter an alarm, reset gt = 0 and t0 = t.Design parameters: �; h; L.Output: �̂1t 49



These algorithms are only capable to follow abrupt changes. For incipientchanges, the algorithm will give an alarm only after the total change is large orafter a long time. In both algorithms, it is advisable to include data forgettingin the parameter estimation to allow for a slow drift in the mean of the signal.Table 4.1 shows how some change detection algorithms perform on this signal.Method Design parameters n̂ MDL kFlopsRLS � = 0:9, quant = 0.3 { { 19CUSUM h = 3; � = 2 14 8.39 20Brandt's GLR h = 20; � = 3; L = 3 13 8.40 60Divergence h = 20; � = 3; L = 3 14 8.66 63ML �2 = 3 14 8.02 256Table 4.1: Simulation result for fuel consumptionFigure 4.5 shows the result using the recursive ML detector as a non-linear�lter. A changing mean model was used with 5 parallel �lters. Compared to theexisting �lter, the tracking ability has improved slightly and, more importantly,the accuracy gets better and better in segments with constant fuel consumption.
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Chapter 5Discrete model-based diagnosisThis chapter starts out with an introduction to diagnostic reasoning before fo-cusing on model based diagnosis.5.1 Introduction to diagnostic reasoningReasoning in this context means reasoning about a physical system. If we letthe physical system be our device then diagnostic reasoning can be viewed asreasoning about what is wrong with that device.There are several approaches to diagnostic reasoning. The simplest and moststraightforward is fault-based or rule-based reasoning. Fault-based reasoning imi-tates a repair-manual to maintain heuristic knowledge about the device. This isused to guide the diagnosis. The problem is that this approach can only deal withproblems known in the \manual".Another approach taken by Poole [1988] and Reiter [1987] is default reasoning.Default reasoning provides the ability to reason with incomplete information byallowing assumptions to be made based on default rules when actual informationis missing. While the ability to make assumptions is the strength of this approachit is also it's weakness. All it takes is one wrong assumption for this approach tofail.The case-based reasoning approach attempts to use knowledge about previouscases to guide the diagnosis. This may work well in cases where the same orvery simlilar cases have been encountered before but when the current case isnew there are problems. Usually a diagnosis is based on the most similar previ-ously encountered case. To evaluate how close two cases are usually involves someheuristic measurement. Unless this measurement is very good the wrong previouscase may be choosen. Also, even if the closest previous case is choosen the actualdiagnosis may be completely di�erent.The last approach accounted for here is model-based diagnosis. This is the ap-proach taken by Colsole and Torasso [1991], de Kleer and Williams [1987, 1989]53



and Derssler and Struss[1996]. All of these are based on the same idea. A modelof the correct device is used to compare the observed behaviour of the deviceto that predicted by the model. Di�erences between predicted and observed be-haviour are symptoms of one or more faults. Diagnosis is done by �nding thechanges in the model that explains the observed behaviour of the device. Thosechanges are the diagnosis. The problem with model-based diagnosis is combina-toric explosion, if there are n things that can go wrong with the device there are2n possible diagnoses. Finding a diagnosis is a search problem among these 2npossible solutions. Needless to say some e�cient way to �nd the correct diagnosisis needed.5.2 Model-based diagnosisThe basic idea of model-based diagnosis is to compare certain measured val-ues from the device to be diagnosed with the values predicted by a model ofthat device. Any di�erences between measured and predicted values are calleddiscrepancies1. The diagnosis task is to identify the fault(s) causing the discrep-ancy.The remainder of this section is a more detailed description of model-based di-agnosis based on Console and Torrasso's framework [1991].Some basic de�nitionsTo use Console and Torasso's framework some basic de�nitions are needed, �rstof all a device to be diagnosed.De�nition 1 D is the device to be diagnosed.A device is built out of components.De�nition 2 Let COMP = fc1; :::; cng be the set of components of D.Console and Torasso's framework uses behaviour-modes2 to describe and iden-tify faulty components. Each component ci is characterised by a set of behaviour-modes.De�nition 3 For each component ci in COMP there is a set of behaviour-modesBMi = fcorrecti; faulti1; :::; faultimg.1Discrepancies are also called symptoms by some authors. In this text both discrepanciesand symptoms will be used.2A behaviour-mode corresponds to what is called fault-mode by some authors.54



For each component there is one correct behaviour and a number of faultybehaviours. The behaviour of the device D can be represented as the consequenceof the behaviour-modes of its components.As suggested by de Kleer and Williams [1989] a behavior-mode for unknown faultscould (and should?) be added to cover possible unforseen behaviour-modes. Arevised de�nition would look something like this.De�nition 4 For each component ci in COMP there is a set of behaviour-modesBMi = fcorrecti; unknowni; faulti1; :::; faultimg.To assist in the de�nition of the model later on two sets are de�ned, abducibleand non-abducible symbols.The union of all sets of behaviour-modes is called the set of abducible symbols.De�nition 5 The set of abducible symbols ABDSYM = BM1 [ ::: [BMn.Every abducible symbol corresponds to a behaviour-mode for one of the com-ponents in the device D. The following de�nition helps to express the fact that acertain component is in a certain behaviour-mode.De�nition 6 Let � be an abducible symbol (behaviour-mode) for component ci.Component ci is in behaviour-mode � is written �(ci).For each behaviour-mode (abducible symbol) there is one or more conse-quences.De�nition 7 For each behaviour-mode � there is a setCONS� = fconsequence1; :::; consequencemg.The union of all sets of consequences de�nes a set of non-abducible symbols.De�nition 8 The set of non-abducible symbolsNONABDSYM = CONS�1 [ ::: [ CONS�n.The model and system descriptionA model of the device D is built from the abducible and non-abducible symbolsexpressed as Horn clauses3.De�nition 9 Let 
 be a Horn clause built from symbols � 2 ABDSYM [NONABSYM . Then the model for the device D is the set of Horn clausesMODEL = f
1; :::; 
kg describeing the behaviour of the device.3A Horn clause is a disjunction of negated litterals and at most one positive litteral :l1 _::: _ :ln _ l. 55



The main reason for restricting the model to Horn clauses is e�ciency. It is possi-ble to test satis�ability of a set of Horn clauses in linear time [Dowling and Gallier, 1984].Given a model and it's components a system description is de�ned like this.De�nition 10 Given a model (MODEL) and components (COMP ) for a de-vice D a system description for the device D is a pairSD = hMODEL;COMP i.The diagnostics problemTo de�ne a diagnostics problem contextual data and observations have to beadded. Contextual data and observations are expressed as atoms.De�nition 11 The atom f(a) expresses that a is the value of parameter f .Now contextual data can be de�ned as a set of atoms representing the inputsto the device D. Console and Torrasso [1991] de�nes contextual data as a set ofparameters providing information about the speci�c case under examination.De�nition 12 Let f1; :::; fn be inputs to the device D and a1; :::; an their values.The contextual data CTX is the set of atomsCTX = ff1(a1); :::; fn(an)g.Contextual data need not be accounted for by a diagnosis but is used to predictthe behaviour of the device.Observations can be de�ned as a set of atoms representing the outputs of thedevice D. The de�nition is very much like the one for contextual data.De�nition 13 Let f1; :::; fn be outputs of the device D and a1; :::; an their values.The observations OBS is the set of atoms OBS = ff1(a1); :::; fn(an)g.The important di�erence from contextual data is that the observations have tobe accounted for by a diagnosis.The following constraint makes sure a parameter can't have more than one valueand that it can't be both an input and an output.Constraint 1 Each parameter can only appear once in CTX [OBS.Now a diagnostics problem can be de�ned as a triple consisting of a systemdescription, contextual data and observations.De�nition 14 Let SD be the system description for device D, CTX be the con-textual data and OBS be the observations. Then the diagnostics problem DP isde�ned as a triple DP = hSD;CTX;OBSi.56



The solution to the diagnostics problemSolving the diagnostics problem for a device is equivalent to identifying thebehaviour-modes of it's components that \explain" the observations. To do thistwo notions of explanation are de�ned. First a weak notion of explanation.De�nition 15 Explanation as consistency: A diagnosis explains an observationm if does not contradict m.Then there is the strong notion of explanation.De�nition 16 Explanation as covering: A diagnosis explains an observation mif it directly supports m.These two de�ntions are the basis for two classical approaches to solving thediagnosis problem. The consistensy based approach relies on a weak notion ofexplanation. In this approach it is su�cient that the assigned behaviour-modesare consistent with the observations. The abduction based approach relies on astrong notion of explanation and requires that the observations are covered bythe assigned behaviour modes.Console and Torrasso [1991] uses an abduction with consistensy constraints ap-proach. This is a combination of the two classical approaches that relies both onstrong and weak notion of explanation.Two sets 	+ and 	� are de�ned.De�nition 17 The set 	+ � OBS is the set of observation atoms (fi(ai)) thathave to be covered by a diagnosis.De�nition 18 The set 	� = f:f(x) j f(y) 2 OBS; x 6= yg is the set of negatedatoms that con
ict with the observations in 	+.The set 	� can be interpreted as the set of consistency constraints that thesolution must satisfy4.Now an abduction problem can be de�ned as follows.De�nition 19 Given a diagnostic problem DP = hSD;CTX;OBSi the corre-sponding abduction problem AP is a tripleAP = hSD;CTX; h	�;	+ii.Solving diagnostic problem DP for a device D is equivalent to identifying thebehaviour modes of the components in D. Thus the solution is an assignmentthat assigns exactly one behaviour mode to each component.4This means that ruling out a value a for a parameter f is the same as putting :f(a) in 	�.Then the parameter f can't assume the value a without breaking the consistency constraints.57



De�nition 20 Given a system description SD = hMODEL;COMP i and theset of abducible symbols ABDSYM in MODEL. An assigment W for COMPis a set of abducible atoms (�) such that for each component c 2 COMP Wcontains exactly one element of the form �(c).A solution (explanation) to an abduction problem is an assignment that cover	+ and is consistent with 	�.De�nition 21 Given an abduction problemAP = hhMODEL;COMP i; CTX; h	+;	�ii.An assignment W is an explanation for AP i�1. W covers 	+, that is, for each m 2 	+, we have that MODEL [CTX [W ` m.2. W is consistent with 	�, that is, MODEL [ CTX [ W [ 	� isconsistent.5.3 Finding a solutionThe previous section clearly de�nes the solution to the abduction problem butdoes not say anything about how to �nd that solution. Finding a solution means�nding an assignment W that satis�es the conditions in De�nition 21. Thereminder of this section presents algorithms for �nding an assignment.Simple algorithmFirst lets take a closer look at a very simple algorithm. The algorithm is basedon pure intuition and simply goes through all possible assignments, testing themand �ltering out those that are valid assignments.Algorithm 1For each possible assignment W .If W covers 	+ and W is consistent with 	� ThenW is a solution.End for.This algorithm will �nd every possible assignment W that satis�es De�nition21 but does this at the cost of testing all possible assignments. In the simplestpossible case with n components that each have two possible behaviour-modes5this algorithm has to test 2n assignments. For very small problems this approachmay be possible but as n grows a more e�ective algorithm is needed.5Correct or faulty. 58



Fault probabilitesIn the simple algorithm no knowledge about the components is assumed. For allwe know every assignment is equally likely to be a valid diagnosis and we have noway of choosing one before the other. To improve on the simple algorithm moreinformation about the components is needed. This enables us to make intelligentchoices when selecting assignments for testing.Let us assume that we have some knowledge about the components in the shapeof fault-frequencies and that we are only interested in �nding the most likelyassignment. This next algorithm will do exactly that. For simplicity all possibleassignments are assumed to be on a list sorted by fault-frequency with the as-signment with the highest fault-frequency �rst. The algorithm goes through thelist untill an assignment is found that full�lls the conditions in De�nition 21.Algorithm 2Let LW be a list of all possible assignments W sorted by fault-frequency.Let Found be a boolean variable initiated to FALSE.Let W be a variable initiated to the �rst element on LW .While not FoundIf W covers 	+ and W is consistent with 	� ThenW is a solution set Found = TRUEElseW is not a solution set W to be the next element in LWEnd WhileThis algorithm may appear to be better then the simple algorithm but this is notalways true, if the only valid assignment is the last one on the list they are justas bad. This is the worst case however, in the average case this algorithm will bebetter.Still there are some apperent 
aws to this algorithm. It starts testing assignmentsin the same order every time without considering any information about thespeci�c case.DependenciesIn the two previous algorithms we haven't considered any information given bythe observations. Let us assume that all observations are atoms. Then a symptomcan be de�ned [de Kleer and Williams, 1987] but �rst the de�nition of an atom(De�nition 11) need to be expanded.De�nition 22 If f is a parameter and a is a value then:� f(a): f has the value a. 59



� fm(a): f has been measured to value a.� fp(a): f has been predicted to value a.Now a symptom is a measured parameter value that signi�cantly deviates fromthe predicted parameter value.De�nition 23 A symptom sf is a pair sf = hfm(a); fp(b)i where a 6= b.Symptoms can be used to narrow down the search for a valid assignment. If aparameter f is measured from a component c then the correct value of parameterf depends on the correct operation of component c. Normally the component cdepends on other components (c1; :::; cn) which depends on other components andso on. Now when a symptom for parameter f is found we know that somethinghas to be wrong with the components it depends on. Using symptoms and de-pendencies a more e�cient algorithm6 can be built.This algorithm assumes that a symptom for a parameter f has been observed.Since f depends on the correct operation of all the components in DEPf thusthe faulty component(s) we are looking for must be in this set. All possible com-binations of components in DEPf are in DEPSETf . Assume that we want to�nd the valid assignment with the fewest number of faulty components. To dothis DEPSETf is sorted in the order of the smallest subset of DEPf �rst. Now�nding the assinment we want is only a matter of walking through DEPSETfand for each element DEP build the corresponding assignment W then test ifW full�lls De�nition 21.Algorithm 3Assume that a symptom for the parameter f have been found.Let DEPf be a list of all components parameter f is depending on.Let DEPSETf be a set of all possible subsets of DEPf sorted from thesmallest subset to the largest.Let DEP be a variable initialized to the �rst element in DEPSETf .Let Found be a boolean variable initiated to TRUE.While not FoundLet W be an assignment that assigns all components in DEP to be faultyand all other components to be correct.If W covers 	+ and W is consistent with 	� ThenW is a solution set Found = TRUEElseW is not a solution set DEP to be the next element in DEPSETfEnd While6This algoritm is simpli�ed for illustrative purposes, a complete algorithm using dependen-cies would be GDE [de Kleer and Williams, 1987].60



This algorithm only has to test 2n possible assignments where n is the number ofcomponents the parameter f depends on. Since n should be less than the totalnumber of components this algorithm should have a signi�cant advantage overthe two previous algorithms. However if the parameter f depends on all the com-ponents then this information is useless and this algorithm is just as bad as thetwo previous.There is still plenty of room for improvements in this algorithm. One possible im-provement is to make use of fault-frequencys like the second algorithm. It shouldalso be able to make use of multiple symptoms like GDE [de Kleer and Williams, 1987].5.4 Selecting a solutionIn many cases there will be more than one explanation to a given abductionproblem. Some way of selecting the correct diagnosis is needed.Minimal diagnosisThis is the approach taken by Console and Torrasso [1991] and Reiter [1987]. Thediagnosis with the least faulty components is selected. To be able to compare ex-planations each explanation is partitioned into two parts. One partition containsthe correct modes.De�nition 24 correct(W ) = fcorrect(c) j correct(c) 2 Wg where c is a compo-nent in D and correct corresponds to the correct mode of c.Another partition contains the faulty components.De�nition 25 faulty(W ) = W � correct(W ).Now it is possible to compare explanations and de�ne minimal explanation asthe explanation with the least faulty components.Fault ProbabilitiesThis is the approach used in Sherlock [de Kleer and Williams, 1989]. When usingfault probabilities each faultmode is assigned a fault probability7. To select thecorrect diagnosis simply select the explanation with the highest probability mass.This can also be used together with Console and Torasso's framework, the onlything that is needed is to calculate the probability mass of the candidates. DeKleer and Williams is a bit more advanced however since they also use the faultprobabilites to guide the diagnosis process.7The fault probability can also be thought of as a fault frequency.61



5.5 Speeding up model-based diagnosisSince e�ciency is an important issue for any on-board diagnosis system thissection is devoted to methods speeding up model-based diagnosis. The number ofpossible diagnoses grows fast as the model-becomes more advanced. For exampleif you have a system with n components that can be either correct or faulty8 thenumber of possible diagnoses is 2n. This is a very large number even for quitesmall n and if we want to add more behavoiur modes for each component thesituation is even worse. Since diagnosis can be seen as search thru these possiblediagnoses an e�cient searchmethod is needed that (hopfully) does not need tosearch all possibilites to �nd a diagnosis.Case based reasoningAnother approach [Portinale et al., 1996] is to use case based reasoning (CBR)to guide the diagnosis process. The basic idea is to use knowledge about previousdiagnosis cases to �nd a solution to the current one. When the current casematches some previously known case this method is very fast, the diagnosis isfound immediately. The problems with this approach occurs when there is noexact match for the current case with previous cases. The brave way to approachthis problem is to attempt to �nd the previously known solution that is closest bysome measure9 and, if needed, adapt this to the current case. The problem is thateven though the two cases may be close their solutions may be very far from eachother. The adaption process may be very extensive to the point where the usedcase is missguiding the diagnosis process. The safe way to deal with the problemis to fall back on model-based diagnosis and dissguard previously known andmaybe misleading cases but then not much is gained from the knowledge aboutprevious cases. One solution would be to attempt to adapt the previous case andabandon the adaption process when it becomes too extensive. The problem isthen to �nd some good way of telling when to abandon the adaption process.Multiple modelsDressler and Struss [1996] take a di�erent approach to accomplish higher e�-ciency. Instead of trying to speed up or guide the search for the correct diagnosisthey suggest reducing the size of the model. They use a simpli�ed model to guidethe search. By observing that some faults can't occur10 together some faults ruleout others the simpli�ed model can be replaced by more accurate ones as thediagnosis becomes more accurate. These models can be arranged in a tree with8That is each component has two faultmodes, correct and faulty.9This is one weakness of this brave approach, there is no \perfect" way to measure how closetwo cases are.10Also some faults make it impossible to diagnose some other components.62



the top node being the most general and most simpli�ed model. Each branch inthe tree represents more accuratee models where the leaf models are the mostaccuratee.This method has the potential11 to reduce the number of possible diagnoses andthus make the diagnosis more e�cient. This is done at the cost of multiple models.5.6 Diagnosis in DEDSDiscrete event dynamic systems (DEDS) are systems where all variables can takeonly discrete values. We restrict ourselves to such systems where each variablebelongs to a �nite set. Inspired by the mathematical description for continuoussystems _x = f(x; u) we write a DEDS with n states, p inputs and m outputs asx+ = f(x; u) (5.1)where x+ (next state), x; u belong to �nite sets Xn; Xn; Up and the transitionfunction is a mapping f : Xn�Up ! Xn. The expression (5.1) models an explicitbehavior whereas f(x+; x; u) = 0 models an implicit behavior. For outputs wewrite y = g(x; u), y 2 Y m.The variables x; u; x+ and y are regarded as signals and the models f; g aresignal models. This di�ers, in respect to representation, from a pure event basedapproach where a value (or symbol) represents a change in the environment.Instead we say that the environment can always be measured and we do not needto remember values on the inputs. Signal based models has a closer connection tophysical systems controlled by some sampling device. Pure event based modelscan be translated to signal based models, see Gunnarsson [1995].The relations f and g can be described in several di�erent ways, for exampleas a table. We will use binary decision diagrams (BDD)[Bryant, 1986] to storethese relations e�ciently.Diagnosis or fault detection is in this environment the same as an observer.We have to model the system (including possible faults) and then �nd the setof states which corresponds to the available observations. Unmodelled faults canbe discovered if they lead to an abnormal behaviour. The set of possible statesdelivered by the observer will in this case be an empty set.
11This is not a general result, it is possible to create \dumb" cases where it is not true. Onesimple example is using the same model on every level.63



Bibliography[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for boolean functionmanipulation. IEEE Transactions on Computers, C-35(8):677{691, August1986.[Console and Torasso, 1991] L. Console and P. Torasso. A spectrum of logicalde�nitions of model-based diagnosis. Comput. Intell., 7:133{141, 1991.[de Kleer and Williams, 1987] J. de Kleer and B.C. Williams. Diagnosing multi-ple faults. Arti�cial Intelligence, 32:97{130, 1987.[de Kleer and Williams, 1989] J. de Kleer and B.C. Williams. Diagnosis withbehavioural modes. In Procedings of the 11th international joint conference onarti�cial intelligence, 1989.[Dowling and Gallier, 1984] W.F Dowling and J.H Gallier. Linear-time algo-rithms for testing the satis�ability of propositional horn formulae. J. logicprogramming, 3:267{284, 1984.[Dressler and Struss, 1996] O. Dressler and P. Struss. The consistency based ap-proach to automated diagnosis of devices. In Gerhard Brewka, editor, Princi-ples of knowledge representation, chapter 8, pages 269{313. CSLI Publications,1996.[Gunnarsson, 1995] Johan Gunnarsson. On modeling of discrete event dynamicsystems, using symbolic algebraic methods. Technical Report LiU-TEK-LIC-1995:34, Dept. of Electrical Engineering, Link�oping University, S-581 83Link�oping, Sweden, June 1995.[Poole, 1988] D. Poole. A logical framework for default reasoning. Arti�cialIntelligence, 36:27{47, 1988.[Portinale et al., 1996] L. Portinale, P. Torraso, C. Ortalda, and A. Girardino.Using case-based reasoning to focus model-based diagnostic problem solving.Torino, Italy, 1996.[Reiter, 1987] R. Reiter. A theory of diagnosis from �rst principles. Arti�cialIntelligence, 32:57{95, 1987. 64



Chapter 6Temporal ReasoningThis chapter surveys some of the work on temporal reasoning within arti�cialintelligence. Section 6.1 introduces reasoning about temporal constraints, thatis, various algebras and methods for drawing conclusions from sets of temporalrelationships. Important issues here are the ontological choices and the resultingcomputational consequences. Since the area is still immature and evolving, thereis no common theory to present. Hence, in order to give the interested readersome feeling of the technical details, some in-depth examples are provided in thesubsequent section. Section 6.3 then brie
y discusses formalisms and methodsfor reasoning about time together with other information which is temporallyquali�ed (reasoning about knowledge and time). Finally, the last two sectionsbrie
y discusses some examples of implemented systems and gives some referencesto further reading.6.1 Temporal-Constraint ReasoningTemporal constraint reasoning is an important task both in AI and elsewhere,having relevance to such diverse areas as planning; natural language processing;model-based diagnosis; time serialization in archeology, history and paleontol-ogy, etc. Isomorphic problems also arise in areas such as spatial reasoning andmolecular biology.In most applications, information about temporal constraints is expressed ascollections of relations between time intervals or time points. Typical reasoningtasks include determining the satis�ability of such collections and deducing newrelations from those that are known. There are several ontological choices tomake, eg. should time points or time intervals be used as basic primitives, shouldtime be quantitative or qualitative etc.? These choices a�ect both the modellingpower and the computational complexity, as will be discussed later. However, be-fore going into technical details, we consider an example of a temporal-constraintreasoning problem. 65



Example: A Murder ScenarioProfessor Jones has been found shot on the beach near her house. Rumours tellthat she was almost sure of having a proof that P6=NP, but had not yet shown itto any of her colleagues. The graduate student Hill is soon to defend his thesison his newly invented complexity class NRQP�(?)1, which would unfortunatelybe of no value were it to be known for certain that P6=NP. Needless to say, Hillis thus one of the prime suspects and inspector Smith is faced with the followingfacts and observations:� Professor Jones died between 6 pm and 11 pm, according to the post-mortem.� Mr Green, who lives close to the beach, is certain that he heard a gunshotat some time in the evening, certainly after the TV news.� The TV news is from 7.30 pm to 8.00 pm.� A reliable neighbour of Hill claims Hill arrived at home sometime between9.15 pm and 9.30 pm.Furthermore, the following pieces of general information are known:� It takes between 10 and 20 mins. to walk or run from the place of the crimeto the closest parking lot.� It takes between 45 and 60 mins. to drive from this parking lot to Hill'shome.As a help in solving this crime, Inspector Smith could use temporal-constraintreasoning as a help to rule out suspects. For instance, in order to see if Hillcan be ruled out as a suspect based on the temporal information, Smith couldproceed as follows. First he has to check that the set of temporal facts andobservations above is consistent|if not, then some observation or fact must bewrong. As a next step, further information may be deduced from what is known.For instance, as is shown in Figure 6.1, the fact that Jones died between 6 pmand 11 pm together with the fact that the shot was heard after the TV newsmakes it possible to narrow down the time of death to the interval between 8pm and 11 pm. Now, in order to see if Hill could have been at the beach at thetime of the crime, Smith adds the hypothesis that Hill did go (or run from thebeach) and then drive home. It is known that Smith did arrive home at sometime during the interval from 9.15 pm to 9.30 pm so it is possible to calculatebackwards to see when he must have left the beach (if he ever was there). Thistime can only be determined within some upper an lower bound, but interestingquestion is whether it is possible for this time point to have occurred during theinterval of the death, that is, between 8 pm and 11 pm. If not, then inspector66



6 6during?
6.00 11.007.30 8.008.00 11.00Jones died (deduced)

Jones dies (medical judgement)Green hears shot
during[10,20] [45,60]Hill arrives home9.15 9.30Go to car Drive homeFigure 6.1: Temporal constraints in the murder scenarioSmith can rule out Hill as a suspect. This can be done by testing if the set ofknown facts and observations together with the hypothesis is inconsistent. If so,then Hill could not have been at the beach at the time of the crime and so is nolonger a suspect, while in the other case Smith does not gain any new knowledgeso Hill is still a suspect.1It is obvious from this example that there are several di�erent types of tempo-ral entities and di�erent types of relations between these. For instance, the timeof death can be viewed as a time point which is known to occur at some timeduring an interval which starts at 6.00 pm and ends at 11.00 pm, ie. we havea time point with unknown occurrence time related to an interval with knownmetric starting and ending times.Ontological ChoicesAs was mentioned in the introduction, we can choose either time points or timeintervals as our primitive temporal entities. Although the question which ofthese concepts should be regarded as primitive has spurred much philosophicaldebate, we need not usually be concerned with that question; time points andtime intervals can co-exist since a time interval can be viewed as a pair of timepoints|denoting the starting and ending time respectively of the interval. Wewill use the symbol t for time points and the symbol I for time intervals (usingsubscripts whenever necessary). Furthermore, for each interval I, we will denoteits starting and ending time points by I� and I+ respectively, that is, we havefor all intervals I that I = [I�; I+].1The alert reader will probably already have observed that Hill will be in need of juridicalassistance. 67



Another distinction to make is between qualitative (or relative) time andquantitative (or metric) time. If using only qualitative time we may, for instance,say that a time point t1 is strictly before another time point t2, denoted t1 < t2 orthat they are the same time point2, denoted t1 = t2. However, it is not possiblein the �rst case to express how long before t2 the time point t1 occurs. Neithercan we say when t1 and t2 occur in the second case, although we know they bothoccur at the same time. Similarly, for two time intervals I1 and I2 we may, forinstance, know that I1 occurs strictly before I2, denoted I1f<gI2 or we may knowthat I1 either ends exactly when I2 starts (ie. I1 meets I2) or that I1 starts beforeI2 starts and ends after I2 starts but before I2 ends (ie. I1 overlaps I2), which isdenoted I1fm ogI2. However, there is no information about the metric durationsof the two intervals, or about how long before I2 starts does I1 start.If using quantitative time, on the other hand, we express actual occurrencetimes of time points, eg. t1 = 17, and distances between time points, eg. t1 �t2 = 5. By treating intervals as pairs of time points we may similarly representdurations of intervals, eg. d(I) = I+ � I� = 5, distances between the startingtimes of intervals, eg. I2� � I1� = 7, etc. All these examples represent exactmetric information. However, we may also consider allowing uncertain metricinformation, saying, for instance, that time point t1 occurs somewhere betweenthe exact times 5 and 7, ie. 5 � t1 � 7, or that the duration of interval I1 isat most 8 time units, ie. I1+ � I1� � 8. It is worth noting that if we allow fullmetric time with uncertainty, then we can express also qualitative relations.Temporal AlgebrasGiven some ontological choice of temporal entities and relations, we can also de-�ne certain operations in order to get an algebra. The usual operations consideredfor temporal algebras are converse, intersection and composition. The converse ofa relation corresponds to interchanging its arguments, eg. the converse of t1 < t2is t1 > t2 (note, not the inverse t1 � t2). As will be discussed below, relationsare viewed as sets of basic relations, so the relation �, for instance, is really anabbreviation for the set f= >g. The intersection between two relations is simplythe intersection between the two sets of basic relations, eg. the intersection oft1 � t2 and t1 � t2, which really denotes the intersection between t1f< =gt2 andt1f= >gt2, is t1f=gt2, ie. t1 = t2 in `sloppy' notation. Finally, composition isessentially a transitivity operation, but is slightly more complex since it has tohandle di�erent relations. For instance, the composition of t1 � t2 and t2 � t3 is2Strictly speaking, we should call t1 and t2 not time points, but rather time tokens or time-point symbols, since they are only variables denoting time points. The tokens t1 and t2 aretwo distinct symbols which may or may not denote distinct points on the time line. However,trusting the benevolent reader not to be confused by this abuse of language, we will somewhatsloppily refer to time tokens as time points in order to simplify the presentation. An analogousnote applies also to time intervals. 68



t1 � t3, while the composition of t1 � t2 and t2 < t3 is t1 < t3.Qualitative AlgebrasThe point algebra (more precisely the qualitative time point algebra) [Vilain, 1982]uses only time points and only qualitative relations between these. There arethree basic relation between time points: before (<), equals (=) and after (>).We further allow composite relations, formed as sets of basic relations and denot-ing the disjunction of its constituent basic relations. For instance, the expressiont1f< =gt2 denotes that either t1 < t2 or t1 = t2 and is usually abbreviated ast1 � t2. Similarly we can also form the two relations f= >g and f< >g, whichare abbreviated as � and 6= respectively. The two remaining composite relationsare the non-relation f< = >g denoting the empty constraint, which is equivalentto having no constraint at all, and the inconsistent relation fg, which can neverbe satis�ed. All in all, this totals eight di�erent relations, three basic and �vecomposite, corresponding to the eight subsets of f< = >g. It is worth notingthat the two relations � and 6= are su�cient to express all the other point-algebrarelations and that this fact is exploited in many temporal-reasoning systems inorder to simplify the data structures and algorithms. It is also common to viewa set of relations as a directed graph with arcs labelled by � or 6=.The interval algebra [Allen, 1983] (often called the Allen algebra after itsinventor3) uses time intervals as primitive entities and does not include timepoints explicitly. While two time points can only be related in three basic ways,two intervals can be related in more complex ways. More precisely the possiblerelations are: before (<), meets (m), overlaps (o), starts (s), during (d), �nishes(f) and equals (=). In addition, there are also the converses of these sevenrelations, denoted by adding an \i" after the relation symbol, with two exceptions:the inverse of before is called after and is denoted >, and equals is the inverse ofitself. This totals 13 di�erent basic relations, which are illustrated in Figure 6.2.Just as in the case of the point algebra, we also allow composite relations formedby disjunctions of basic relations, eg. I1fm ogI2 denotes that either I1 meets I2or I1 overlaps I2. This gives rise to a total number of 213 = 8192 basic andcomposite relations.A somewhat less common algebra is the point-interval algebra (and its con-verse, the interval-point algebra) [Vilain, 1982], which allows only relations be-tween a time point and an interval. The point-interval algebra has �ve basicrelations, before, starts, during, ends and after, as shown in Figure 6.3. Thepoint-interval algebra thus has a total of 25 = 32 relations, basic and composite.Note that it is not possible to directly relate two time points or two intervals toeach other, which makes its usage somewhat limited. However, it is useful in at3In fact, Allen was not �rst to consider interval relations. Bruce [1972] de�nes many, thoughnot all, of Allen's interval relations. In fact, Bruce also allows intervals which are points, thusnot being a proper subclass of the interval algebra.69
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least two contexts. It is used in Meiri's QA algebra [Meiri, 1991] as a `glue' forintegrating reasoning about time points and intervals. Furthermore, it is su�-cient to express information about partially ordered plans.4 A consequence ofthis asymmetry is further that not all of the normal algebraic operations can bede�ned in the usual way. In fact, Vilain [1982] does not discuss this problem, butan alternative to transitivity, 3-composition, has recently been introduced in theliterature [Jonsson et al., 1996].Quantitative AlgebrasA number of quantitative temporal algebras have been proposed in the literature,most or all of them based on time points. The ancestor of most of these algebras isthe time map manager (TMM) [Dean and McDermott, 1987], which maintains anetwork of time points and metric relations between these. A relation consists ofupper and lower bounds on the temporal distance between two time points. Thisis what Dechter et. al. [1991] refers to as a binary constraint, which can be writtenas c � t1 � t2 � d, where t1 and t2 are time points and c and d are constants.One may also wish to locate a single time point within an interval on the timeline, which can be done via a unary constraint of the form c � t � d. Note,however, that by introducing a reference time point tref de�ned to occur at time0 a unary constraint c � t � d can always be replaced by the binary constraintc � t � tref � d. Further note that the expressions t = c and t1 � t2 = c canbe expressed as the unary and binary constraints c � t � c and c � t1 � t2 � crespectively. Most quantitative algebras are based on sets of unary and/or binaryconstraints, sometimes augmented also with inequality formulae of the forms t 6= cand t1� t2 6= c. Some algebras use only one-sided constraints, that is, constraintsof the forms t � d and t1 � t2 � d. This is no restriction, however, since a two-sided constraint corresponds to two one-sided constraints. Furthermore, most ofthe quantitative algebras are really mixed qualitative and quantitative algebrasin sense that they can express some, or all, qualitative relations over time points,ie. they subsume the point algebra. Some of those not subsuming the whole pointalgebra are augmented with the full set of qualitative relations in order to do so.There are also more expressive algebras, allowing more complex relationsand/or more complex relationships between relational expressions. For instance,the temporal constraint satisfaction problem (TCSP) [Dechter et al., 1991] allowsa set of formulae which are either disjunctions of unary constraints or disjunc-tions of binary constraints, restricted to one time point/pair of time points perconstraint. That is, each formula is either of the form(c1 � ti � d1) _ : : : _ (cn � ti � dn)4If treating the actions as time points and the temporal intervals between them as intervals,both the partial order between the action and exclusion of actions from protection intervals canbe modelled. 71



or (c1 � ti � tj � d1) _ : : : _ (cn � ti � tj � dn):A set of TCSPs obviously correspond to a formula in conjunctive normal formwith binary temporal constraints as atoms.A more general approach which subsumes TCSP and extends it in severalways, for instance by allowing inequalities and more-than-binary constraints, is isthe language of disjunctive linear relations (DLRs) [Jonsson and B�ackstr�om, 1996b].A DLR is a disjunction of linear relations, the latter being expressions on the form� r �, where � and � are linear expressions (ie. polynomials of degree one) withrational coe�cients over the set of time points and r 2 f<;�;=;�; >; 6=g. Forinstance, the formula(3t1 + 5:42t4 � 0:7t5 < 12) _ (t2 + 3t3 + 0:55t4 � t7) _ (t1 + 2t3 6= t4)is a DLR. That is, a set of DLRs is a formula in conjunctive normal form overlinear relations, so it constitutes a full propositional logic over the set of linearrelations and is powerful enough to subsume all other algebras, qualitative aswell as quantitative, discussed so far. Note, for instance, that DLRs are su�cientfor encoding all relations in the interval algebra, which is not possible using onlyconjunctions of linear relations or unary/binary constraints. Hence, the DLRformalism is strictly more expressive than TCSP formalism.5Kautz and Ladkin [1991] de�ne a language for mixed qualitative and metrictemporal reasoning which contains both intervals and time points. All intervalrelations are allowed between intervals, while time points and di�erences betweentwo time points can be related to constants using either < or �. Furthermore,all interval end-points are by de�nition in the set of time points, thus forminga connection between interval formulae and time-point formulae. The actualreasoning system uses separate reasoners for time-point relations and intervalrelations, and uses translation algorithms to cross-post constraints between thesetwo reasoners. A similar approach is taken by Meiri [1991] who extends hisqualitative algebra QA with metric reasoning capabilities.Computational IssuesWhile the choice of ontology and a particular algebra certainly a�ects how easyit is to model a particular problem, and even whether it is possible at all, thesechoices also have computational implications. Di�erent temporal algebras mayhave strikingly di�erent computational properties, so it is interesting to studyvarious restricted algebras.5Actually, from a computational point of view this is not quite true, as will be seen below,but there seems to be no straightforward, obvious way of transforming a set of DLRs into a setof TCSPs. 72



Reasoning ProblemsBefore discussing the complexity of reasoning in an algebra, we have to de�neexactly what reasoning problem we are analysing. Several interesting reasoningproblems can be de�ned, but the most common and basic one is the satis�abilityproblem. Given a set of relational expressions, interpreted as the conjunctionof these expressions, over some temporal algebra the satis�ability problem askswhether this set of expressions is satis�able|that is, whether there exists an in-terpretation (an assignment of exact times to all time points/interval end points)such that all expressions are simultaneously true. Such an interpretation is re-ferred to as a model.Another common reasoning problem is the minimal labelling problem: givena set of temporal entities and relations between these, decide for two particularentities what is the least constrained relation that may hold between these s.t.all other constraints are still satis�ed.Reasoning with Qualitative AlgebrasIt has been known for a number of years that the satis�ability problem for thepoint algebra can be solved in polynomial time (ie. it is computationally tractable)[van Beek and Cohen, 1990].6The satis�ability problem for the interval algebra, on the other hand, is knownto be NP-complete [Kautz and Ladkin, 1991]. Intuitively, this is hardly surpris-ing since we cannot rewrite an arbitrary set of interval relations as a pure conjunc-tion of point relations. For instance, the relation I1f< >gI2 must be encoded asthe disjunction (I1+ > I2�) _ (I2+ < I1�).7 Despite its apparently lower expres-sivity, also the point-interval algebra is known to be NP-complete with respectto satis�ability [Meiri, 1991].The NP-completeness result for the interval algebra has provoked researchinto identifying subalgebras where the satis�ability problem is tractable. Themost well-known such subalgebras in the literature are the pointisable algebra[van Beek and Cohen, 1990], the fragment of the interval algebra that can bereencoded in the point algebra, and theORD-Horn algebra [Nebel and B�urckert, 1995],the fragment of the interval algebra which can be reencoded as Horn clauses of the6Indeed, this problem can be solved in linear time in the number of constraints)[Gerevini et al., 1993].7Actually, the relation f< >g alone is not a su�cient cause for NP-completeness. Moreinterestingly, the seemingly harmless relation meets alone is su�cient to express all 13 basicrelations, and together with either < or > it causes NP-completeness|the relation f< mggenerates the whole interval algebra. It is further interesting to note that the relation f< >g inthe point algebra does not cause any computational problem since it excludes only a point, notan interval, on the time line. This can be understood as follows. First note that the relations� and 6= are su�cient to replace all other relations of the point algebra. Now, any cycle of �relations is unsatis�able if any two time points in the cycle are related by a 6= constraint andotherwise is satis�able and can be collapsed to a single time point.73



relations �, = and 6= over time points.8 The ORD-Horn algebra is further inter-esting since it is proven to be the unique maximal tractable subalgebra allowingall 13 basic relations (but obviously not all disjunctions of these). The ORD-Hornalgebra was claimed better than the pointisable algebra, since it contains 868 el-ements (ie. more than 10% of the full algebra) in contrast to the 188 relationscovered by the pointisable algebra. However, recent research by Drakengren andJonsson [1996a, 1996b] has identi�ed 17 new maximal tractable subalgebras, allof them containing considerably more relations than the ORD-Horn algebra. Asis obvious from the maximality result for the ORD-Horn algebra, none of thesenew algebras properly includes the ORD-Horn algebra or contains all the basicrelations. Furthermore, these new results also question the value of using the sizeof a subalgebra as a measure for its goodness; the largest of the new algebras con-tains half of the full interval algebra, but cannot express anything of interest. Itis not known how many tractable subalgebras that exist, and this is a non-trivialquestion to answer|the interval algebra has 28192 � 10244 subclasses.On the other hand, a complete classi�cation of all subalgebras of the point-interval algebra into tractable and NP-complete respectively has recently beenreported [Jonsson et al., 1996]|nine out of the 232 subclasses being maximaltractable subalgebras.Furthermore, Golumbic and Shamir [1993] have studied algebras formed bycollapsing sets of basic relations into macro relations. For instance, one suchalgebra has the relations f<;\; >gwhere \ denotes the set of all the other 11 basicinterval relations. They report a number of tractability and intractability results,but it is worth noting they do not always allow two intervals to be unrelated,making comparisons with other work somewhat di�cult.Quantitative AlgebrasSatis�ability for a set of DLRs is NP-complete [Jonsson and B�ackstr�om, 1996b],which is obvious since the interval algebra can be encoded as a set of DLRs. Onthe other hand, there is no straightforward encoding of interval-algebra satis�abil-ity into TCSP|yet, TCSP is also NP-complete. Hence, it is obviously interestingto study tractable subalgebras also in the case of quantitative temporal reasoning.Various tractable algebras based on unary/binary constraints, often aug-mented with inequalities and/or qualitative relations have been reported in theliterature, including the following:� Dechter et. al. [1991] consider sets of simple temporal constraints (STP), arestricted version of TCSP allowing only formulae of the form c � (x�y) �d, where x and y are time points and c and d constants. Simple temporal8The term Horn clause is here generalized to mean a disjunction of relations where at mostone relation is � or =. 74



constraints are equivalent to simple metric constraints [Kautz and Ladkin, 1991]and the constraints use in Barber's [1993] system.� Koubarakis [1992] considers sets of formulae on either of the three forms (1)(x� y) r c, (2) x r c or (3) a disjunction of formulae of the form (x� y) 6= cor x 6= c, where r 2 f�;�; 6=g.� Meiri [1991] considers sets of CPA/single interval formulae, that is, for-mulae on either of the two forms (1) c r1 (x � y) r2 d; or (2) x r y wherer 2 f<;�;=; 6=;�; >g and r1; r2 2 f<;�g.� The TimeGraph II system [Gerevini et al., 1993] allows formulae on eitherof the three forms (1) c � x � d, (2) c � x � y � d or (3) x r y wherer 2 f<;�;=; 6=;�; >g.A recent exception is the Horn-DLR formalism by Jonsson and B�ackstr�om[1996a, 1996b], which is the DLR formalism restricted to Horn DLRs, that is,DLRs where at most one relational expression contains the � relation. As anexample, the two formulae(t1 6= t2) _ (t2 6= 7) _ (t1 = t3 � 4)(3t1 6= t2 � 4) _ (t1 + 2t2 � 1 6= 1:4t3) _ (t1 + 4t3 � t2 + 7)are both Horn-DLR formulae, while the formula(t1 6= t2) _ (t1 � 4) _ (t2 � t4)is a DLR, but not a Horn-DLR.Satis�ability for a set of Horn DLRs can be solved in polynomial time usingan algorithm based on linear-programming. The Horn-DLR formalism subsumesall of the tractable quantitative algebras listed above, thus serving as a unifyingformalism for these. Furthermore, the Horn DLR formalism also subsumes someof the tractable interval subalgebras, including the ORD-Horn algebra. Hence,the qualitative fragment of Horn DLR inherits the maximality result for theORD-Horn algebra, while at the same time adding a capability of reasoningabout metric time, thus constituting a mixed qualitative/quantitative tractablealgebra. (The proof of tractability for the Horn DLR formalism will be providedas an example in the following section.) There is also recent work on integratingother tractable interval subalgebras with quantitative temporal reasoning usingthe Horn DLR formalism [Drakengren and Jonsson, 1996b]. The algorithm forthe Horn DLR algebra is, although polynomial, less e�cient than the specializedalgorithms for many of the less expressive tractable algebras listed above. Incontrast to these specialized algorithms, however, the Horn-DLR algorithm worksfor all these algebras. 75



6.2 Some Examples in DetailThe previous section mostly discusses ontological and computational aspects oftemporal algebras in a somewhat coarse and survey-like style. Hence, this chapterprovides two examples of proofs of claims from the previous section in order toallow the interested reader to get a 
avour of the character of such proofs and thecomputational issues involved. Since the major computational question to askabout satis�ability in a temporal algebra (as about any other problem) is whetherit can be proven computationally tractable or intractable9 one proof of each typeis provided here. The �rst of these proves that satis�ability is tractable for theHorn-DLR formalism, which is done by means of providing an algorithm andproving that it is correct and polynomial time. The other proof, which is of theopposite type, shows that the subalgebra ffs fg; fb d agg of the point-intervalalgebra is NP-complete.Tractability for the Horn-DLR AlgebraThe following material oringally appears in Jonsson and B�ackstr�om [1996a].Disjunctive Linear RelationsWe begin by de�ning som di�erent types of linear relations.De�nition 6.2.1 Let X = fx1; : : : ; xng be a set of real-valued variables. Let�; � be linear polynomials (ie. polynomials of degree one) over X. A lineardisequation over X is an expression of the form � 6= �. A linear equality overX is an expression of the form � = �. A linear relation over X is an expressionof the form �r� where r 2 f<;�;=; 6=;�; >g. A convex linear relation over Xis an expression of the form �rc� where rc 2 f<;�;=;�; >g. A disequationallinear relation over X is an expression of the form � 6= �. A disjunctive linearrelation (DLR) is a disjunction of one or more linear relations.Example 6.2.1 A typical DLR over fx1; x2; x3g is (1:2x1+x2 � x3+5)_(12x3 6=7:5x2) _ (x2 = 5).In the following, we assume all sets of DLRs to be �nite. The de�nition ofsatis�ability for DLRs is straightforward.De�nition 6.2.2 Let X = fx1; : : : ; xng be a set of real-valued variables and letR = fR1; : : : ; Rkg be a set of DLRs over X. We say that R is satis�able i�there exists an assignment of real values to the variables in X that makes at leastone member of each Ri, 1 � i � k, true.9It may, of course, be quite di�cult to provide such proofs, and some problems have sofar de�ed attempts to prove either case. Further, the term intractable must usually be takenliberally, meaning intractable under the assumption that P 6= NP .76



It is important to note that we only consider assignments of real values, thusassuming that time is linear, dense and unbounded. (We will see that it issu�cient to consider assignments of rational values further on.) We continue byclassifying di�erent types of DLRs.De�nition 6.2.3 Let 
 be a DLR. C(
) denotes the convex relations in 
 andNC(
) the disequational relations in 
. We say that 
 is convex i� jNC(
)j = 0and that 
 is disequational i� jC(
)j = 0. If 
 is convex or disequational we saythat 
 is homogeneous and otherwise heterogeneous. Furthermore, if jC(
)j � 1then 
 is Horn. We extend these de�nitions to sets of relations in the obviousway. For example, if � is a set of DLRs and all 
 2 � are Horn, then � is Horn.This classi�cation provides the basis for the forthcoming proofs. One detail tonote is that if a Horn DLR is convex then it is a unit clause, ie. a disjunctionwith only one member.For Horn DLRs, we restrict ourselves only to use � and 6= in the relations.This is no loss of generality since we can express all the other relations in termsof these two. For example, a DLR of the form x < y _D can be replaced by thedisjunctions fx � y_D; x 6= y_Dg. Observe that the resulting set of disjunctionscan contain at most twice as many disjunctions as the original one. Hence, thisis a polynomial time transformation. (Note, however, that this does not hold forgeneral DLRs.)De�nition 6.2.4 Let A be a satis�able set of DLRs and let 
 be a DLR. We saythat 
 blocks A i� for every d 2 NC(
), A [ fdg is not satis�able.Observe that if A [ f
g is satis�able and 
 blocks A then there must exist arelation � 2 C(
) such that A [ f�g is satis�able. This observation will be ofgreat importance in forthcoming sections.Linear ProgrammingThe method for deciding satis�ability of Horn DLRs is based on linear-program-ming techniques so some of the basic facts about linear programming are repeatedhere for the readers convenience.De�nition 6.2.5 Let A be an arbitrary m� n matrix of rationals in �nite pre-cision and let x = (x1; : : : ; xn) be an n-vector of variables over the real num-bers. Then an instance of the linear programming (LP) problem is de�ned by:fmin cTx subject to Ax � bg where b is an m-vector of rationals and c an n-vectorof rationals. The computational problem is as follows:1. Find an assignment to the variables x1; : : : ; xn such that the condition Ax �b holds and cTx is minimial subject to these conditions, or77



1 algorithm SAT(�)2 A SfC(
)j
 2 � is convexg3 if A not satis�able then reject4 if 9
 2 � that blocks A and is disequational then reject5 if 9
 2 � that blocks A and is heterogeneous then SAT((�� f
g) [ C(
))6 acceptFigure 6.4: Algorithm for deciding satis�ability of Horn DLRs.2. Report that there is no such assignment, or3. Report that there is no lower bound for cTx under the conditions.Analogously, we can de�ne an LP problem where the objective is to maximizecTx under the condition Ax � b. We have the following important theorem.Theorem 6.2.6 [Khachiyan, 1979] The linear programming problem is solvablein polynomial time.Although polynomial, Khachiyans algorithm was not very e�cient, and inpractice it was often outperformed by the non-polynomial Simplex method. Morerecent work, starting with the algorithm by Karmarkar [1984], has changed thishowever and the polynomial methods are now generally considered the best also inpractice. In the following, we assume all coe�ecients to be rationals representedin �nite precision, which is no restriction in practice since computers (almostwithout exception) use �nite precision arithmetics.Satis�ability of Horn DLRsThe problem of deciding satis�ability for a set of Horn DLRs is denotedHornDLRSat and we will show below that this problem can be solved in poly-nomial time using the algorithm SAT (Figure 6.4).We begin by exhibiting a simple method for deciding whether a set of convexlinear relations augmented with one disequation is satis�able or not.Note that for this methods, as well as for the �nal algorithm, the purposehas only been to prove tractability, and not to attempt �nding the best possibleupper bound. That is, simplicity is stressed rather than tuning of e�ciency.Lemma 6.2.7 Let A be an arbitrary m � n matrix, b be an m-vector and x =(x1; : : : ; xn) be an n-vector of variables over the real numbers. Let �; � be linearpolynomial over x1; : : : ; xn. Deciding whether the system S = fAx � b; � 6= �gis satis�able or not is polynomial.Proof: Let �0 = �� c and � 0 = � � d where c and d are the constant terms in� and �, respectively. Consider the following instances of LP:78



LP1= fmin �0 � � 0 subject to Ax � bgLP2= fmax �0 � � 0 subject to Ax � bgIf LP1 and LP2 have no solutions then S is not satis�able. If both LP1 and LP2yield the same optimal value d � c then S is not satis�able since every solutionto LP1 and LP2 forces � to equal �. Otherwise S is obviously satis�able. Sincewe can solve the LP problem in polynomial time by Theorem 6.2.6, the lemmafollows. 2Before proceeding, we recapitulate some standard mathematical concepts.De�nition 6.2.8 Given two points x; y 2 Rn, a convex combination of themis any point of the form z = �x + (1 � �)y where 0 � � � 1. A set S � Rn isconvex i� it contains all convex combinations of all pairs of points x; y 2 S.De�nition 6.2.9 A hyperplane H in Rn is a non-empty set de�ned asfx 2 Rn j a1x1 + : : :+ anxn = bg for some a1; : : : ; an; b 2 R.De�nition 6.2.10 Let A be an arbitrary m � n matrix and b be an m-vector.The polyhedron de�ned by A and b is the set fx 2 RnjAx � bg.The connection between polyhedrons and convex sets is expressed in the followingwell-known fact.Fact 6.2.11 Every non-empty polyhedron is convex.Consequently, the convex relations in a set of Horn DLRs de�nes a convex setin Rn. Furthermore, we can identify the disequations with hyperplanes in Rn.These observations motivate the next lemma.Lemma 6.2.12 Let S � Rn be a convex set and let H1; : : : ; Hk � Rn be distincthyperplanes. If S � Ski=1Hi then there exists a j, 1 � j � k such that S � Hj.Proof: If it is possible to drop one or more hyperplanes from H and still have aunion containing S then do so. Let H 0 = fH 01; : : : ; H 0mg, m � k, be the resultingminimal set of hyperplanes. Every H 0i 2 H 0 contains some point xi of S not inany other H 0j 2 H 0. We want to prove that there is only one hyperplane in H 0.If this is not the case, consider the line segment L adjoining x1 and x2. (Thechoice of x1 and x2 is not important. Every choice of xi and xj, 1 � i; j � mand i 6= j, would do equally well.) By convexity, L � S. Each H 0i 2 H 0 eithercontains L or meets it in at most one point. But no H 0i 2 H 0 can contain L,since then it would contain both x1 and x2. Thus each H 0i has at most one pointin common with L, and the rest of L would not be a subset of Smi=1H 0i whichcontradicts that L � S � Smi=1H 0i. 2We can now tie together the results and end up with a su�cient condition forsatis�ability of Horn DLRs. 79



Lemma 6.2.13 Let � be a set of arbitrary Horn DLRs. Let C � � be the set ofconvex DLRs in � and let D = fD1; : : : ; Dkg � � be the set of DLRs that are notconvex. Under the condition that C is satis�able, � is satis�able if Di does notblock C for any 1 � i � k.Proof: Pick one disequation di out of every Di such that fC; dig is satis�able.This is possible since no Di blocks C. We show that �0 = fC; d1; : : : ; dkg issatis�able and, hence, � is satis�able. Assume that di = (�i 6= �i). De�nethe hyperplanes H1; : : : ; Hk such that Hi = fx 2 Rn j �i(x) = �i(x)g. Sinceevery fC; dig is satis�able, the polyhedron P de�ned by C (which is non-emptyand hence convex by Fact 6.2.11) is not a subset of any Hi. Suppose �0 is notsatis�able. Then P � Ski=1Hi = ? which is equivalent with P � Ski=1Hi. ByLemma 6.2.12, there exists a Hj, 1 � j � k such that S � Hj. Clearly, thiscontradicts our initial assumptions. 2It is important to note that the previous lemma does not give a necessary con-dition for satis�ability of Horn DLRs, so it remains to prove that the algorithmin Figure 6.4 correctly solves HornDLRSat in polynomial time. To show this,we need an auxiliary lemma which is a formal version of an earlier observation.Lemma 6.2.14 Let � be a set of Horn DLRs and let C � � be the set of convexDLRs in �. If there exists a heterogeneous DLR 
 2 � such that 
 blocks C, then� is satis�able i� (�� f
g) [ C(
) is satis�able.Proof: if: Trivial.only-if: If � is satis�able, then 
 has to be satis�able. Since 
 blocks C, C(
)must be satis�ed in any solution of �. 2We can now prove the soundness and completeness of SAT.Lemma 6.2.15 Let � be a set of Horn DLRs. If SAT(�) accepts then � issatis�able.Proof: Induction over n, the number of heterogeneous DLRs in �.Basis step: If n = 0 and SAT(�) accepts then the formulae in A are satis�ableand there does not exist any 
 2 � that blocks A. Consequently, � is satis�ableby Lemma 6.2.13.Induction hypothesis: Assume the claim holds for n = k, k � 0.Induction step: � contains k + 1 heterogeneous DLRs. If SAT accepts in line5 then (� � f
g) [ C(
), which contains k heterogeneous DLRs, is satis�ableby the induction hypothesis. By Lemma 6.2.14, this is equivalent with � beingsatis�able. If SAT accepts in line 6 then there does not exist any disequationalor heterogeneous 
 2 � which blocks A. By Lemma 6.2.13, this means that � issatis�able. 280



Before proving the completeness of SAT we need the following lemma.Lemma 6.2.16 Let � be a set of Horn DLRs. Let C � � be the set of convexDLRs in �. If there exists a disequational DLR 
 2 � that blocks C then � is notsatis�able.Proof: In any solution to �, the relations in C [ f
g must be satis�ed. Since
 is disequational and blocks C this is not possible and the lemma follows. 2Lemma 6.2.17 Let � be a set of Horn DLRs. If SAT(�) rejects then � is notsatis�able.Proof: Induction over n, the number of heterogeneous DLRs in �.Basis step: If n = 0 then SAT can reject in lines 3 and 4. If SAT rejects in line3 then, trivially, � is not satis�able. If SAT rejects in line 4 then there exists adisequational 
 2 � that blocks A. Hence, � is not satis�able by Lemma 6.2.16.Induction hypothesis: Assume the claim holds for n = k, k � 0.Induction step: � contains k + 1 heterogeneous DLRs. If SAT rejects in line 3then � is not satis�able. If SAT rejects in line 4 then � is not satis�able byLemma 6.2.16. If SAT rejects in line 5 then (�� f
g) [ C(
), which contains kheterogeneous DLRs, is not satis�able by the induction hypothesis. By Lemma6.2.14, this is equivalent with � not being satis�able. 2Finally, we can show that SAT is a polynomial-time algorithm and, thus, showthat HornDLRSat is polynomial.Theorem 6.2.18 HornDLRSat is polynomial.Proof: By Lemmata 6.2.15 and 6.2.17, it is su�cient to show that SAT is poly-nomial. The number of recursive calls is bounded by the number of heterogeneousDLRs in the given input. By Lemma 6.2.7, we can in polynomial time decidewhether a linear inequality system with one disequation is satis�able. Since weneed only check a polynomial number of such systems in each recursion, thetheorem follows. 2ComparisonBelow we show that Horn DLRs subsumes several other tractable methods fortemporal constraint reasoning. Let x; y be real-valued variables, c; d constantsand A Allen's algebra [Allen, 1983] in the de�nitions below.De�nition 6.2.19 [Nebel and B�urckert, 1995] An ORD clause is a disjunctionof relations of the form xry where r 2 f�;=; 6=g. The ORD-Horn subclass H isthe relations in A that can be written as ORD clauses containing only disjunctionswith at most one relation of the form x = y or x � y and an arbitrary number ofrelations of the form x 6= y. 81



Note that the ORD-Horn class subsumes the pointisable endpoint algebra [van Beek and Cohen, 1990].De�nition 6.2.20 [Koubarakis, 1992] Let r 2 f�;�; 6=g. A Koubarakis for-mula is a formula on one of the following forms (1) (x � y)rc, (2) xrc or (3) adisjunction of formulae of the form (x� y) 6= c or x 6= c.De�nition 6.2.21 [Dechter et al., 1991] A simple temporal constraint is a for-mula on the form c � (x� y) � d.Simple temporal constraints are equivalent with the simple metric constraints[Kautz and Ladkin, 1991].De�nition 6.2.22 [Meiri, 1991] A CPA/single interval formula is a formulaon one of the following forms: (1) c r1 (x� y) r2 d; or (2) x r y where r 2 f<;�;=; 6=;�; >g and r1; r2 2 f<;�g.De�nition 6.2.23 [Gerevini et al., 1993] A TG-II formula is a formula on oneof the following forms: (1) c � x � d, (2) c � x � y � d or (3) x r y wherer 2 f<;�;=; 6=;�; >g.We can now state the main theorem of this section.Theorem 6.2.24 The formalisms de�ned in De�nitions 6.2.19 to 6.2.23 cantrivially be expressed as Horn DLRs.Note that Meiri [1991] considers two further tractable classes that cannot (in anyobvious way) be transformed into Horn DLRs. The �nding that the ORD-Hornalgebra can be expressed as Horn DLRs is especially important in the light of thefollowing theorem.Theorem 6.2.25 [Nebel and B�urckert, 1995] Let S be any subclass of A thatcontains all basic relations. Then either1. S � H and the satis�ability problem for S is polynomial, or2. Satis�ability for S is NP-complete.By the previous theorem, we cannot expect to �nd tractable classes that areable to handle all basic relations in A and, at the same time, are able to handleany single relation that cannot be expressed as a Horn DLR. In other words, thequalitative fragment ofHornDLRSat inherits the maximality of the ORD-Hornalgebra.As a concluding discussion to this comparison it seems in place to mention thatseveral researchers in the �eld of temporal constraint reasoning have expresseda feeling that their proposed methods should be extended so they can express82



relations between more than two time points. As a �rst example, Dehter et.al. [1991] write \The natural extension of this work is to explore TCSPs withhigher-order expressions (e.g. \John drives to work at least 30 minutes morethan Fred does"; X2 �X1 + 30 � X4 �X3)..." Even though they do not de�nethe exact meaning of \higher-order expressions" we can notice that their exampleis a simple Horn DLR. Something similar can be found in Koubarakis [1992] whowants to express \the duration of interval I exceeds the duration of interval J".Once again, this can easily be expressed as a Horn DLR. These claims seemto indicate that the use of Horn DLRs is a signi�cant contribution to temporalreasoning.NP-completeness of the ffs fg; fb d agg AlgebraWhile the previous subsection presented an example where we could prove tractabil-ity for an algebra, this subsection provides an example of an algebra that is ratherproven computationally di�cult. More precisely, we reproduce a proof from Jon-sson et.al. [1996] that the subalgebra of the point-interval algebra that allowsonly the two relations fb d ag and fs fg is NP-complete.10Theorem 6.2.26 Satis�ability is NP-complete for the point-interval subalgebraffb d ag; fs fgg.Proof: Proof by reduction from Graph 3-Colourability, which is NP-complete. Let G = hV;Ei be an undirected graph. Construct a correspondingset of temporal constraints as follows.In the proof We will make repeated use of the concept of a separator, aconstruction which forces two points to have distinct values in all models. Giventwo points p; q we construct a separator by introducing a new interval I andadding the relations pfs fgI and qfb d agI. Clearly, all modelsM must satisfyM(p) 6=M(q).We now construct set of temporal constraints stepwise. First, we construct apaint-box by introducing two points p1 and p2, two intervals I1 and I2 plus therelations p1fs fgI1; p1fs fgI2; p2fs fgI1; p2fb d agI2over these. Note that the interval I2 acts as a separator for p1 and p2, which arethus forced to take on di�erent values. Further, the intervals I1 and I2 must havesome common end-point, coinciding with p1. We use the constant r to denotethis value. Hence, the remaining end-point of I1 must coincide with p2 and the10The proof that satis�ability for a set of DLRs is NP-complete would, of course, haveprovided a natural continuation of the previous example. However, this proof is one of the rareexamples where it is trivial to prove NP-completeness for a temporal algebra, and so is better leftas an exercise for the reader (or see Jonsson and B�ackstr�om [Jonsson and B�ackstr�om, 1996b])in order to leave space for the more intricate and interesting proof presented here.83



remaining end-point of I2 must be distinct from both p1 and p2. We denote thevalues of these two remaining end-points g and b respectively. We can think ofthe values r, g and b as colours, constituting our palette. Of course, the actualdenotations of these three values di�er between models, but the important thingis only that they denote three distinct values in each and every model.Now, for each vertex vi 2 V , we construct a selector consisting of three pointsq0i , q1i and q2i plus two intervals J0i and J1;2i , connected as follows. First introducea separator for q1i and q2i , using interval J1;2i , ie. introduce the relationsq1i fs fgJ1;2i ; q2i fb d agJ1;2i :Then connect the points to the remaining interval by adding the relationsq0i fs fgJ0i ; q1i fs fgJ0i ; q2i fs fgJ0i :Finally, connect this whole gadget to the paint-box by adding the relationsq1i fs fgI1; q2i fs fgI2:The selector works as follows. The endpoints of I1 correspond to the colours rand g, so q1i is forced to have either of these values. Similarly, q2i must haveeither of the values r and b. Now, q1i and q2i are separated, so together theyselect a subpalette of two colours, assigning one colour each to the end-pointsof J0i . Finally, q0i selects one of these two colours. So far, there are no furtherconstraints, so q0i may be freely assigned any of the three colours from our palette.Finally, for each edge fvi; vjg 2 E we introduce a separator, consisting of thenew interval Ki;j and the two relationsq0i fs fgKi;j; q0jfb d agKi;j;preventing q0i and q0j to have the same value whenever there is an edge betweenthe vertices vi and vj.It is obvious that G is 3-colourable i� the temporal network just constructedis satis�able, so NP-hardness of the algebra follows. The algebra is further in NP,since it is a subalgebra of an NP-complete algebra. 2As an example, Figure 6.5 shows the construction in the proof above for theconnected two-vertex graph G2 = hf1; 2g; ff1; 2ggi.6.3 Reasoning about Knowledge and TimeReasoning about time points or time intervals is usually only interesting in thecontext where something we want to reason about is attached to these temporalentities. For instance, we may want to say that something is known to be true at84
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Figure 6.5: An example of the construction in the proof of Theorem 6.2.26 for aconnected two-vertex graph.a certain time point or over a certain time interval, or that an action is executedover a certain time interval. A choice to make here is whether to keep timeand other types of knowledge separate or integrated. This choice arises also onseveral di�erent layers; we may, for instance, use an integrated representation forcommunicating with the user but separate time from other knowledge internallyin the reasoner. Both approaches will be brie
y discussed below.Separating Time From Other KnowledgeOne way to build a reasoner for temporally quali�ed knowledge is to use sepa-rate knowledge bases and reasoners for time and other knowledge (propositions,actions or whatever) and let these cooperate. This principle is illustrated in Fig-ure 6.6. In this system, we have a knowledge base (KB) and a time manager(TM), which are interconnected. The KB can represent and reason about logicalformulae which are quali�ed by temporal intervals, indicating when they are true.For instance, the formula p@I means that the proposition p is true over the inter-val I. However, the KB cannot reason about time, the intervals are just symbolswithout meaning in the KB. The TM, on the other hand, can only represent andreason about time intervals, it has no `knowledge' whatsoever of logical formulae.The �gure also illustrates how the two reasoners may cooperate. Suppose theKB knows that p holds over the interval I1 and that q holds over the intervalI2. This does not allow it to draw any conclusions, since it has no knowledge of85
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Figure 6.6: Separating reasoning about propositions and timetime or the meaning of I1 and I2. If the reasoner now need to know when theconjunction of the formulae p and q is true, it can progress as follows.1. The KB asks the TM for the maximal interval which is common to theintervals I1 and I2.2. The TM introduces a new interval I3 and constrains this interval to beexactly the requested interval (or it may �nd that such an interval alreadyexists) and returns it to the KB. In the case the two intervals do not overlap,the TM may instead say that no such interval exists.3. The KB now adds to its knowledge the fact that the formula p ^ q holdsover the interval I3.For pedagogical reasons, the TM's data base has been illustrated graphically inthe �gure. In reality it would rather contain interval-algebra formula. That is,initially it would perhaps contain the formula I1fogI2, and after computing therequest from the KB it would also contain the formulae I3ffgI1 and I3fsgI2, orsome other equivalent formulae. An example of a separated approach appears inSchwalb et. al. [1994].Integrating Time With Other KnowledgeAnother approach is to integrate both facts and time within the same formal-ism, which is usually done by de�ning a temporal logic, that is a logic which is86



augmented to qualify formulae temporally. One generally distinguishes betweentense logics and explicit temporal logics,11 which will both be brie
y describedbelow.Tense logicA tense logic is a form of modal logic [Chellas, 1980, Hughes and Cresswell, 1984],with relative time, but no metric time. The usual modalities are F, P, G, H andformulae are interpreted relative to the reference time now in the following way:� means that � is true nowF� means that � will be true at some future time pointP� means that � was true at some past time pointG� means that � will be true at all future time pointsH� means that � was true at all past time pointAs an example, let the proposition p denote the claim that there exists a countrynamed Sweden. Then the formulaP (H:p ^ Fp)denotes the claim that until some time point in the past there never was a countrycalled Sweden and since that time point there has always been and will alwaysbe a country called Sweden. An extensive treatment of tense logic can be foundin Rescher and Urquhart [1971].Although basic tense logic has no concept of metric time, there are approachesto adding such capabilities. For instance, one might consider a modi�cation tothe P operator s.t. the formula Pk� says that � was true k time steps ago.Explicit Temporal LogicAn explicit temporal logic can refer to explicit time points and may or maynot de�ne a metric over these, so the previous choice between qualitative andquantitative time prevails also here. There are several common ways to de�nesyntaxes for explicit temporal logics.An elegant approach to introduce time in a logic is to augment the syntaxso that arbitrary formulae can be quali�ed by time stamps in the following way.For instance, the fact that the formula P (x)^Q(x; y) holds between time pointst1 and t2 could be expressed as[t1; t2](P (x) ^Q(x; y)):11Many authors use the term temporal logic for tense logic, while other authors use temporallogic as a subsuming term for both tense logic and explicit temporal logic.87



This is a syntactically elegant approach favoured by some authors [Shoham, 1987,Sandewall, 1994]. All `ordinary' formulae must be time stamped|the formulaP (x) ^ Q(x; y) per se is meaningless.12 A temporal formulae must be allowedfor expressing temporal relationships, however, eg. t1 < t2, since it would notmake sense to qualify such expressions temporally. For instance, the formula[t1; t2](t1 < t2) could not be given any reasonable semantics. Furthermore, wemust add axiom schemata to make the logical connectives take the temporalextent of formulae into account, eg. the axiom schema:[t1; t2]� ^ [t3; t4]� ! [max(t1; t3);min(t2; t4)](� ^ �)(where axioms for the functions min and max must be added, of course).Some authors prefer not to step outside the syntax and semantics of ordinary�rst-order logic, making it necessary to take some other approach. One suchapproach is to augment all predicates with two extra arguments, denoting thestarting and ending time points of temporal interval over which the formula holds.The previous example would then look as follows:P (x; t1; t2) ^Q(x; y; t1; t2):This approach is taken by Bacchus et. al. [1991], for example. This has thedrawback that we cannot put time stamps on arbitrary formulae, but only onatoms, making the formulae less clear and more awkward to reason with.A common approach to avoid this problem is to shift the atemporal object-level formulae into terms and introduce a special predicate Holds (also commonlycalledTrue). Examples of this approach appears in McDermott [1982] and Kowal-ski and Sergot [1986]. The previous example could then look as follows:Holds(t1; t2; and(p(x); q(x; y))):This is a so-called rei�ed logic (the object-level formulae are rei�ed, ie. made intoterms). The advantage is that we can qualify non-atomic formulae temporallywhile staying within ordinary �rst-order logic. The drawback is that we mustintroduce axioms to force the terms corresponding to object-level formulae tobehave in the expected way. For instance, we have to introduce two constantstrue and false and axioms for all predicates expressing that they can only takeon the values true and false, eg. we need the axioms8x:p(x) = true _ p(x) = false8x8y:q(x; y) = true _ q(x; y) = false:In fact, unless we use a second-order logic or axiom schemata we have to add suchaxioms for all predicates. Similarly, we must add axiom schemata (or whatever)12Of course, it may be given a meaning by the semantics. For instance, it could mean thatP (x) ^Q(x; y) is always true, ie. true at all time points.88



for the functions corresponding to logical connectives, eg.8x8y:and(x; y) = true _ and(x; y) = false8x8y:and(x; y) = true$ x = true ^ y = true:Just as in the �rst approach we need to axiomatize the temporal behaviour ofthe rei�ed logical connectives, adding axioms like8x8y:Holds(t1; t2; x) ^ Holds(t3; t4; y) !Holds(max(t1; t3);min(t2; t4); and(x; y))(with additional axioms for min and max).It is easy to introduce quantitative time into these logics. For instance, wecan say that the formula � is true for an interval with a duration of at least 17time units and including the explicit time point 45:[t1; t2]� ^ (t2 � t1) � 17 ^ t1 � 45 � t2:Further, an explicit temporal logic need not take time points as primitive.Allen [1984] de�nes a rei�ed temporal logic using intervals as the primitive entityand includes axioms for the interval algebra. However, there are no time pointsin this logic, so intervals cannot be reencoded as pairs of time points. The factthat the formula P (x) ^Q(x; y) holds over the interval I is expressed asHolds(I; and(p(x); q(x; y))):Furthermore, when reasoning not only about truth values, but also about ac-tions or events, it is common to also introduce some predicate Occurs, in analogywith Holds, to express that a certain even or action takes place over a certaintime interval.Shoham [1987] discussed so-called hereditary properties of temporally quali�edpropositions. For instance, does a proposition that holds over a certain intervalalso hold over all subintervals and does a proposition that holds at all time pointsin an interval also hold over the whole interval?6.4 Temporal-reasoning SystemsVarious systems for temporal reasoning have been implemented or suggested. Oneof the �rst systems was TMM (Time Map Manager) [Dean and McDermott, 1987].The TMM maintains a network of time points and information about upperand lower bounds for the metric duration between these, thus implementinga metric time-point algebra. It is also possible to state that propositions aretrue or false at certain time points, and TMM implements a clipping mech-anism, that is, if a proposition p is true at a time point t1 and false at t2,89



where t1 < t2, then the systems realizes that p must become false at some timepoint between t1 and t2. Various newer and extended versions of TMM exist[Schrag et al., 1992, Boddy, 1993b, Materne and Hertzberg, 1991] and it is beingimplemented in a commercial version by Honeywell.Many of the approaches already mentioned earlier have been implementedinto temporal-reasoning systems. For instance, systems reasoning about qualita-tive and metric relations over time points include Tachyon [Stillman et al., 1993],TimeGraph II [Gerevini et al., 1993, Gerevini and Schubert, 1993],IxTeT [Ghallab and Alaoui, 1989], and systems by Barber [1993] and Koubarakis [1992].Systems reasoning about mixed qualitative and metric information includeMATS [Kautz and Ladkin, 1991] and the system used by Dorn [1992, 1994] toreason about intervals and metric time for scheduling.The IxTeT system has been used as a basis for various other tasks requiringtemporal reasoning, including a temporal planner [Ghallab and Laruelle, 1994,Laborie and Ghallab, 1995], a scenario-recognition system [Dousson et al., 1993]and a diagnosis system [Milne and others, 1994]. There are also other planningsystems using the TMM or similar time-point reasoners to support temporalplanning [Drabble and Kirby, 1991, Rutten and Hertzberg, 1993].6.5 Further ReadingThis section collects a number of references for further reading on various topicsextending or being related to the topics of this chapter.Surveys, Tutorial etc.: There is a recent survey/tutorial of temporal reasoningby Vila [1994]. There is also a special issue of the SIGART Bulletin ontemporal-reasoning systems, with introduction by Boddy [1993a].Fuzzy temporal reasoning: Dubois and Prade [1989] describe a fuzzy versionof the interval algebra.Reference hierarchies: There is work on clustering temporal information lo-cally and use reference hierarchies for e�cient indexing[Allen, 1983, Dean, 1989, Davis and Carnes, 1990].Propagation of metric intervals w. uncertainty: Rit [1986] describes an al-gorithm for propagation intervals with uncertain metric start and end timesand uncertain duration.Cognitively indistinguishable relations: Freksa [1992] investigates intervalrelations that are hard to distinguish from each other, especially from acognitive point of view. For instance, in many cases it is impossible todistinguish between the relations before and meets.90



Temporal Diagnosis: There is an emerging literature on reasoning about timein diagnosis [Dague et al., 1990, Friedrich and Lackinger, 1991] [Console et al., 1992,Dressler, 1994] [Nejdl and Gamper, 1994].
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