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Abstract

An important issue in diagnosis research is design methods for residual gen-
eration. One method is the Chow-Willsky scheme. Here an extension to the
Chow-Willsky scheme, called the ULPE scheme is presented. It is shown that
previous extensions to the Chow-Willsky scheme can not generate all possi-
ble parity equations for some linear systems. This is the case when there
are dynamics controllable from fault but not from the inputs or disturbances.
The ULPE scheme is able to handle also this case since it is, for both dis-
crete and continuous linear systems, shown to be a universal design method for
perfectly decoupling residual generators. Also included are two new straight-
forward conditions on the process for fault detectability and strong fault de-
tectability respectively. A general condition for strong fault detectability has
not been presented elsewhere. It is shown that fault detectability and strong
fault detectability can be seen as system properties rather than properties of
the residual generator.

1 Introduction

In the seventies, research about using analytical redundancy for fault detection
and diagnosis was intensified. One main area of interest was fault detection for
aircrafts and especially their control and navigation systems. In a work within
this field, Potter and Suman (1977) defined parity equation and parity function
(and also parity space and parity vector). This was originally a concept for
utilizing analytical redundancy in the form of linear direct redundancy. In
1984 the concept was generalized by Chow and Willsky (1984) to include also
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dynamic systems, i.e. to utilize temporal redundancy. However only discrete
time parity equations were considered.

Included in their description is a design method to derive such parity equa-
tions. This method will in this work be referred to as the Chow-Willsky scheme.
Based on this method, a number of extensions have been proposed. This class
of design methods will in this paper be denoted Chow-Willsky-like schemes.
One important extension, provided by Frank (1990), includes also decoupling
of disturbances and non-monitored faults into the design. Another important
extension, was made by Höfling (1993) who showed that Chow-Willsky-like
schemes are valid also for continuous linear systems. In this paper the Uni-
versal Linear Parity Equation (ULPE) scheme, which belongs to the class of
Chow-Willsky-like schemes, is presented. In addition to earlier extensions it has
the property that for arbitrary linear system, all possible perfectly decoupling
parity functions can be obtained. Among other extensions is for example the
handling of the case when perfect decoupling is not possible (Lou et al., 1986).
Further Gertler (1991) has defined ARMA parity equations, which are equiva-
lent to linear residual generators. Also non-linear parity equations have been
discussed in literature. However no other uses of the term parity equations,
than in accordance with the definitions made by Potter and Suman (1977) and
later extended by Chow and Willsky (1984), have been widely accepted in the
research community.

The objective of designing parity functions is to use them in residual gen-
erators. Many other design methods for linear residual generations exists; all
resulting in similar or identical residual generators. Surveys of most well known
methods can be found in (Gertler, 1991; Frank, 1993; Patton, 1994). However
parity equations are attractive because they involve only simple mathematics.
Also attractive is that the set of all possible parity functions and also all resid-
ual generators can, as shown in the ULPE scheme, be completely parameterized
by a single vector.

Conditions for fault detectability have, in the literature, been treated in
different contexts. Here new straightforward conditions for fault detectability
and strong fault detectability are derived and presented. These conditions
are formulated in the context of parity equations and answers the question
whether there exists a residual generator in which the fault becomes detectable
or strongly detectable. It is shown that both fault detectability and strong
fault detectability can be seen as properties of the system. A condition for
strong fault detectability, has to the author’s knowledge, not been presented
elsewhere. Both conditions are derived using the ULPE scheme.

In Section 2, the ULPE scheme is presented and it is shown that previous
Chow-Willsky-like schemes are not able to generate all parity equations for
some linear system. This is the case when there exists dynamics controllable
only from the fault. The ULPE scheme is able to handle this case, and as shown,
the ULPE scheme is able to generate all linear parity equations for arbitrary
linear system. In Section 3, it is demonstrated how the ULPE scheme can be
used to obtain any residual generator. Therefore the ULPE scheme is also a
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universal method for residual generator design for linear systems. Based on
the concepts of the ULPE scheme, Section 4 provides the conditions for fault
detectability and strong fault detectability analyses. To make the main text
more readable, the proofs of some lemmas have been placed in an appendix.

2 Parity Equations

This section describes the ULPE (Universal Linear Parity Equation) scheme,
and the relation to previous Chow-Willsky-like schemes. The purpose of parity
equations is for use in residual generators. It is assumed that the principle of
structured residuals is used. This means that the goal is to construct a residual
that is sensitive to some faults, referred to as monitored fault, and not sensitive
to other faults, i.e. non-monitored faults, or disturbances. We say that the
non-monitored faults and disturbances are to be decoupled.

First parity equation (also called parity relation) and parity function are
defined formally. These definitions are in accordance with the definitions of
generalized parity equation and generalized parity function in (Chow and Will-
sky, 1984). To shorten the notation, the word “generalized” is here omitted.

Definition 1 [Parity Equation]. A parity equation is an equation that can,
if all terms are moved to the right-hand side, be written as

0 = A(σ)y(t) + B(σ)u(t)

where A(σ) and B(σ) are row vectors of polynomials in σ, u(t) and y(t) are
the system input and output vectors, and σ denotes the differentiate operator p
or the time-shift operator q. The equation is satisfied if no faults are present.

Definition 2 [Parity Function]. A parity function is a function h(u(t),y(t))
that can be written as

h(u(t),y(t)) = A(σ)y(t) + B(σ)u(t)

where A(σ) and B(σ) are row vectors of polynomials in σ, u(t) and y(t) are
the system input and output vectors, and σ denotes the differentiate operator
p or the time-shift operator q. The value of the function is zero if no faults are
present.

Chow and Willsky (1984) also defined the order of the parity equation (and
function) as the highest degree α of σα, that is present in the parity equation.

Parity equations or parity functions for linear systems can conveniently be
designed with Chow-Willsky-like schemes. When there exists dynamics that is
controllable only from faults, the previous Chow-Willsky-like schemes are not
universal as will be shown in Example 1.
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2.1 The ULPE Scheme

Following is a description of an extension of the Chow-Willsky scheme, called
the ULPE scheme. In addition to previous Chow-Willsky-like schemes, the
ULPE scheme has the important property that it is universal in the sense
that for an arbitrary linear system, continuous or discrete, all parity equations
can be obtained. The description is formulated in a general framework valid
for both the continuous and discrete case. The notation σ is used to denote
the differentiate operator p and time-shift operator q for the continuous and
discrete case respectively.

G

-

-

-

-

u(t)

v(t) y(t)

f(t)

Figure 1: The system with inputs u (known or measurable), v (disturbances),
f (the fault), and output y.

Consider the linear system illustrated in Figure 1. The system has an m-
dimensional output y(t) and three kinds of inputs: known or measurable inputs
collected in the k-dimensional vector u(t), disturbances in the kd-dimensional
vector v(t), and the monitored fault f(t). For simplicity reasons, we assume
that only one fault affects the system, i.e. f is scalar. The extension to more
than one fault is straightforward. To achieve isolation, it is desirable that non-
monitored faults do not affect the residual, i.e. decoupling. Such faults are
included in v.

This system can be described by the following realization:

[
σx
σz

]
=

[
Ax A12

0 Az

] [
x
z

]
+

[
B
0

]
u+

[
E
0

]
v +

[
Kx

Kz

]
f (1a)

y = [CxCz ]
[
x
z

]
+Du+ Jv + Lf (1b)

where [x z]T is the n = nx + nz -dimensional state. It is assumed that the
realization has the property that the state x is controllable from [u v]T and the
state z is controllable from the fault f . It is assured from Kalman’s decompo-
sition theorem that such a realization always exists. Finally it is assumed that
the state z is asymptotically stable, which is the same as saying that the whole
system is stabilizable.

Before going into more details, we define the following matrices, that will
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be used to simplify the notation of the system description (1):

A =
[
Ax A12

0 Az

]
E =

[
Ex

0

]
C = [Cx Cz ] K =

[
Kx

Kz

]
(2)

Now by substituting (1a) into (1b), we can obtain σy as

σy = Cxσx+ Czσz +Dσu+ Jσv + Lσf =
= CxAxx+ CxA12z + CzAzz + CxBu+Dσu + CxEv +

+CxKxf + CzKzf

By continuing in this fashion for σ2y . . . σρy, the following equation can be
obtained:

Y (t) = Rxx(t) +Rzz(t) +QU(t) +HV (t) + PF (t) (3)

where

Y (t) =




y(t)
σy(t)

...
σρy(t)


 Rx =




Cx

CxAx

...
CxA

ρ
x




Rz =




Cz 0 0 . . .
CxA12 Cz 0 . . .

...
. . .

CxA
ρ−1
x A12 . . . CxA12 Cz







I
Az

...
Aρ

z




Q =




D 0 0 . . .
CxB D 0 . . .

...
. . .

CxA
ρ−1
x B . . . CxB D


 U(t) =




u(t)
σu(t)

...
σρu(t)




H =




J 0 0 . . .
CxEx J 0 . . .

...
. . .

CxA
ρ−1
x Ex . . . CxEx J


 V (t) =




v(t)
σv(t)

...
σρv(t)




P =




L 0 0 . . .
CK L 0 . . .

...
. . .

CAρ−1K . . . CK L


 F (t) =




f(t)
σf(t)

...
σρf(t)




The size of Y is (ρ+ 1)m× 1, Rx is (ρ+ 1)m× nx, Rz is (ρ+ 1)m× nz , Q is
(ρ+1)m× (ρ+1)k, U is (ρ+1)k×1, H is (ρ+1)m× (ρ+1)kd, F is (ρ+1)×1,
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P is (ρ + 1)m × (ρ + 1), and V is (ρ + 1)kd × 1. The constant ρ determines
the maximum order of the parity equation. This can be seen by studying the
definitions of the vectors Y and U . The choice of ρ is discussed in Section 4.

Now, with a column vector w of length (ρ+ 1)m, a parity function h(y, u)
can be formed as

h(y, u) = wT (Y −QU) (4)

From Equation (3) it follows that the value hv of the parity function also can
be written

hv = wT (Rxx+Rzz +HV + PF ) (5)

Since the parity function must be zero in the fault free case and the disturbances
must be decoupled, Equation (5) implies that w must satisfy

wT [RxH ] = 0 (6)

For use in fault detection, it is also required that the parity function is non-zero
in the case of faults. This is assured by letting

wT [Rz P ] 6= 0 (7)

In conclusion, the ULPE scheme is a method for designing parity functions
useful for fault detection. A parity function is constructed by first setting up
all the matrices in (3) and then finding a w such that (6) and (7) are fulfilled.

An algorithm in accordance with previous Chow-Willsky-like schemes, is
obtained by replacing Equation (6) and (7) with wT [RH ] = 0 and wTP 6= 0
respectively, where the matrix R is defined as R = [RxRz ].

2.2 The ULPE Scheme is Universal

The presented scheme has the property that all parity functions for a linear
system can be designed by different choices of ρ and w. This is addressed in
the following lemma:

Theorem 1. Any parity equation satisfying a model can be obtained from the
ULPE scheme.

Proof. Any parity equation that satisfies a model can be written

M

[
Y
U

]
= 0 (8)

where M is a row vector of length (ρ + 1)(m + k), m the number of outputs,
and k the number of inputs. Let M be partitioned as [M1M2] and assume that
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there are no faults, which implies that z is zero. Then by using (3), (8) can be
rewritten as

[M1M2]
[
Y
U

]
= [M1M2]

[
Rxx+QU +HV

U

]
=

= M1(Rxx+QU +HV ) +M2U =
= M1Rxx+M1HV + (M1Q+M2)U = 0

Here all matrices Y , Q, U , H , V , and Rx are defined using ρ = α. For a parity
equation that satisfies the model, this equation must hold for all x, all U , and
all V , which implies M1Rx = 0, M1H = 0, and M1Q + M2 = 0. Remember
that x is controllable from inputs and disturbances. A parity equation obtained
from the ULPE scheme has the form

wT (Y −QU) = wT [I −Q]
[
Y
U

]
= 0 (9)

where w is constrained by wT [Rx H ] = 0.
We are to show that for any choice of M in (8), there exists a w such that

Equation (9) becomes identical with Equation (8). It is obvious that this is the
case if and only if

wT [I −Q] = M (10)

Now choose w as wT = M1, which is clearly a possible choice since we know
that M1 [Rx H ] = 0. This together with the fact M2 = −M1Q = −wTQ,
implies that (10) is fulfilled. All M -vectors, and therefore all parity equations
satisfying (8) can therefore be obtained from the ULPE scheme. 2

Remarks

The ULPE scheme implies that all possible parity equations are parameterized
as follows. Let NRxH denote a matrix of dimension (ρ+1)×η, and its columns
are a basis for the η-dimensional left null-space of the matrix [Rx H ]. Then
all parity functions up to order ρ can be obtained by in (4) selecting w as
w = NRxHγ, where γ is a column vector of dimension η. Thus γ is a complete
parameterization of all perfectly decoupling parity functions up to order ρ.

The vector w lies in the left null-space of [RxH ]. Let the columns of a
matrix NRxH be a basis for this null space. If the null-space has dimension
η, then there exists η linearly independent vectors w1, . . . wη, which fulfills (6).
Then η different parity functions h1, . . . hη, can be formed in accordance with
(4). The vector [h1(t) . . . hη(t)] is called generalized parity vector, which is zero
in the fault free case. The generalized parity vector will lie in the η dimensional
generalized parity space, spanned by the rows of NRxH . In other words, the
column-space of NRxH is the left null-space of [RxH ], and the row-space is the
generalized parity space. This is in accordance with the definitions made by
Chow and Willsky (1984), which is a generalization of the parity vector and
parity space originally defined by Potter and Suman (1977).

7



2.3 Previous Chow-Willsky-like Schemes are not Universal

Following is an example showing that if the system has dynamics controllable
only from the fault, none of the previous Chow-Willsky-like schemes can gen-
erate all possible parity equations.

Example 1
Consider a system described by the transfer functions

y1 =
1

s− 1
u+

1
s+ 1

f

y2 =
1

s− 1
u+

s+ 3
s+ 1

f

and the realization

φ̇ =
[

1 0
0 −1

]
φ+

[
1
0

]
u+

[
0
1

]
f

y =
[

1 1
1 2

]
φ+

[
0
1

]
f

Also consider the function

h = (1− s+ s2)y1 − s2y2 + u (11)

If y1 and y2 in (11) are substituted with their transfer functions we get

h =
1

s− 1
(
(1− s+ s2)− s2 + (s− 1)

)
u+

+
1

s+ 1
(
(1 − s+ s2)− s2(s+ 3)

)
f =

=
−s3 − 2s2 − s+ 1

s+ 1
f

We see that h is zero in the fault free case and becomes non-zero when the
fault occurs. Therefore the function (11) is, according to Definition 2, a parity
function. With the matrices used in Equation (3), the parity function (11) can
be written as

h =
[

1 0 −1 0 1 −1
]
(Y −QU) = wT (Y −QU)

in which w is uniquely defined. With the realization above, the matrix R is

R = [Rx Rz] =




1 1
1 2
1 −1
1 −2
1 1
1 2
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The first column of R, i.e. Rx, is orthogonal to w but not the second. This
means that the parity function (11) can not be obtained from any of the pre-
vious Chow-Willsky-like schemes. Therefore they are not universal. However
in the ULPE scheme, the parity function (11) can be obtained because the
requirement that w must be orthogonal to the second column of R, is relaxed.

3 Forming the Residual Generator

In this section, the relation between a parity function and a general linear
residual generator is discussed. First a residual generator is defined:

Definition 3 [Residual Generator]. A residual generator is a system
that takes process inputs and outputs as inputs and generates a signal called
residual, which is equal to zero when no monitored faults occur and becomes
non zero when a monitored fault occurs.

Many design methods for linear residual generators exists. All result in a
filter for which the computational form, i.e. the residual expressed in yi:s and
ui:s, can be expressed as

r =
A1(σ)y1 + . . .+Am(σ)ym +B1(σ)u1 + . . .+Bk(σ)uk

C(σ)
(12)

where Ai(σ), Bi(σ), and C(σ) are polynomials in σ. This includes for example
the case when the residual generator is based on observers formulated in state
space. According to Definition 3, the objective of residual generation is to create
a signal that is affected by monitored faults but not by any other signals. This
is equivalent to finding a filter which fulfills the following two requirements:
the transfer functions from the monitored faults to the residual must be non-
zero, and the transfer functions from all other signals to the residual must
be zero, i.e. decoupling. These two requirements introduces a constraint on
the numerator polynomial of (12) only. The constraint equals the definition
of parity function and therefore the numerator polynomial must always be a
parity function. There are no constraints on the denominator polynomial C(σ)
which therefore can be chosen freely.

We will now illustrate how a residual generator can be formed from the
parity function (4). For the discrete case, the resulting parity function designed
with a Chow-Willsky-like scheme is

h = A1(q)y1 + . . .+Am(q)ym +B1(q)u1 + . . .+Bk(q)yk

This expression can not be implemented as it is because it is a non-causal
transfer function. A common method to obtain a casual transfer function is to
introduce ρ − 1 units delay. Then the transfer function from system outputs
and inputs becomes

Gr(q) =
[A′1(q)
qρ−1

. . .
A′m(q)
qρ−1

B′
1(q)
qρ−1

. . .
B′

k(q)
qρ−1

]
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This is a FIR-filter (or dead-beat observer) with its poles in the origin. However,
there is no reason to constrain the poles to the origin only because a Chow-
Willsky-like scheme is used when designing the residual generator. Instead, the
poles can be placed arbitrarily within the unit circle to obtain stability. Often
there is a need for LP-filtering so these poles can be made to function like such
a filter. In contrast to observers used in control theory, there is no reason to
follow the rule of thumb that says that observer poles should be faster than
process poles. If C(q) is the resulting denominator polynomial, the transfer
function becomes

Gr(q) =
[A′1(q)
C(q)

. . .
A′m(q)
C(q)

B′
1(q)
C(q)

. . .
B′

k(q)
C(q)

]

To get a causal filter, the degree of C(q) must be greater or equal to the
maximum degree of the polynomials Ai(q) and Bi(q).

For the continuous case, the resulting parity function designed with a Chow-
Willsky-like scheme is

h = A1(s)y1 + . . .+Am(s)ym +B1(s)u1 + . . .+Bk(s)yk

In general this expression can not be used as a residual generator because the
difficulty to measure the derivative of signals. Therefore, poles must be added,
but as for the discrete case, these poles can naturally work as for example an
LP-filter. The resulting transfer function of the residual generator is

Gr(s) =
[A1(s)
C(s)

. . .
Am(s)
C(s)

B1(s)
C(s)

. . .
Bk(s)
C(s)

]

As seen, there is no need for an explicit state variable filter, which is used in
(Höfling, 1993) to construct a residual generator from the continuous parity
function.

Note the relation to diagnostic observer design, e.g. eigenstructure or the
unknown input observer, in which poles also are placed arbitrarily.

Now we know from Theorem 1 that all parity functions can be obtained with
the ULPE. Also we know that for any linear residual generator, the numerator
polynomial is a parity function and the denominator polynomial can be chosen
freely. Therefore the following result is obtained:

Corollary 1. When discrete or continuous linear systems are considered, the
ULPE is a universal residual generator design method for achieving perfect
decoupling.

4 Detectability Analysis

In this section it is investigated whether it is possible to construct a residual
generator with given decoupling properties, for the system (1). If this is the

10



case, we say that the fault that is to be monitored, is detectable. The analysis
of detectability is here approached in the context of parity equations and the
ULPE scheme. Criterions for fault detectability has been studied also in other
contexts: unknown input observer (Wünnenberg, 1990), detection filter (White
and Speyer, 1987), frequency domain (Frank and Ding, 1994), and statistical
approach (Basseville and Nikiforov, 1993). However fault detectability has, to
the author’s knowledge, not been studied in the context of parity equations.

In (Chen and Patton, 1994), fault detectability and strong fault detectability
for a given residual generator, are defined as follows:

Definition 4 [Fault Detectability]. A fault f is detectable in residual r if
the transfer function from the fault to the residual Grf (σ) is nonzero:

Grf (σ) 6= 0

Definition 5 [Strong Fault Detectability]. A fault f is strongly detectable
in residual r if

Grf (0) 6= 0 (continuous case)

Grf (1) 6= 0 (discrete case)

If a fault is detectable but not strongly detectable, the term weak detectabil-
ity will be used.

4.1 Detectability as a System Property

As will be shown in Theorem 2 and 3, detectability is a system property in the
sense that it is the system that limits the possibilities of constructing a residual
that is fault detectable and strongly fault detectable respectively. This leads to
the following redefinitions of fault detectability and strong fault detectability:

Definition 6 [Fault Detectability]. A fault is detectable in a system if
and only if there exists a residual in which the fault is detectable according to
Definition 4.

Definition 7 [Strong Fault Detectability]. A fault is strongly detectable
in a system if and only if there exists a residual in which the fault is strongly
detectable according to Definition 5.

Next are two theorems to be used for the analysis of fault detectability
and strong fault detectability. In the following, the notation (. . . )ρ=n is used
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to denote that the condition within the parenthesis considers matrices and
vectors Y , Rx, Rz, Q, U , H , V , P , and F with ρ = n according to Equation 3.
The notation NX is used to denote a basis for the left null-space of the matrix
X .

Theorem 2. A fault is detectable if and only if
(
NT

RxHP 6= 0
)
ρ=n

where NRxH is a basis for the left null-space of [Rx H ].

For the proof of this theorem we need the following two lemmas:

Lemma 1. Consider the system (1) with given properties and the correspond-
ing matrices. For all ρ ≥ n, it holds that NT

RxHP = 0 implies NT
RxHRz = 0.

Lemma 2. If
(
NT

RHP = 0
)
ρ=n

, then ∀ρ ≥ n {NT
RHP = 0}.

The proofs of Lemma 2 and Lemma 1 are given in the appendix. Following
is the proof of Theorem 2:
Proof. A parity function, and also a residual, derived with the ULPE scheme
is according to Equation 5 sensitive to a fault, that is the fault is detectable, if
and only if

∃f(t) {wT (PF +Rzz) 6= 0} (13)

where f(t) is a fault signal. This condition is equivalent to Definition 4. Since
z is controllable from f(t), it holds that at any time point t1, z(t1) and F (t1)
can take arbitrary values independently from each other. This means that (13)
is equivalent to

∃f(t) {wTPF 6= 0 ∨ wTRzz 6= 0} (14)

Such a parity function exists if and only if

∃ρ, w {wT [RxH ] = 0 ∧ wT [P Rz] 6= 0}

which is equivalent to

∃ρ {NT
RxH [P Rz] 6= 0} (15)

This condition holds if and only if

∃ρ ≥ n {NT
RxH [P Rz] 6= 0} (16)

because if the ρ in (15) is ≥ n, then (16) follows directly and if the ρ in (15)
is < n, then it is always possible to find a larger ρ because the extra terms that
appear in (4) and (5) can be canceled by zeros in w.
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From Lemma 1, we know that if NT
RxHP = 0 then also NT

RxHRz = 0. This
means that the Rz in condition (16) can be neglected, which results in

∃ρ ≥ n {NT
RxHP 6= 0}

According to Lemma 2 it is sufficient to investigate the case ρ = n, that is
(
NT

RxHP 6= 0
)
ρ=n

(17)

Now since we know from Corollary 1 that the ULPE scheme is universal, (17)
is a necessary and sufficient condition for fault detectability. 2

The next theorem deals with strong detectability. To the author’s knowl-
edge, a general criterion for strong detectability has not been presented else-
where. The criterion presented here answers the question if there exists a
residual generator in which the fault becomes strongly detectable. In (Chen
and Patton, 1994), this is reported to be an unsolved research problem.

Strong detectability deals with the stationary residual response when a
constant fault is present. A constant fault can be written f(t) ≡ c where c is
the constant level of the fault. By studying the definitions of F (t), in Equation
(3), for the discrete and continuous case respectively, it is seen that F (t) ≡ vc

where v = [1 . . . 1]T in the case of a discrete system and v = [1 0 . . .0]T in the
case of a continuous system.

Theorem 3. A fault is strongly detectable if and only if

(
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

)
ρ=n

(continuous case)

(
NT

RxH(Pv +Rz(I −Az)−1Kz) 6= 0
)
ρ=n

(discrete case)

where NRxH is a basis for the left null space of [RxH ] and v = [1 0 . . .0]T in

the continuous case and v = [1 . . . 1]T in the discrete.

For the proof of this theorem we need the following two lemmas:

Lemma 3. If
(
NT

RH(Pv −RzA
−1
z Kz) = 0

)
ρ=n

, then ∀ρ ≥ n {NT
RH(Pv −

RzA
−1
z Kz) = 0} , where v = [1 0 . . .0]T .

Lemma 4. If
(
NT

RH(Pv +Rz(I −Az)−1Kz) = 0
)
ρ=n

, then ∀ρ ≥ n {NT
RH(Pv+

Rz(I −Az)−1Kz) = 0} , where v = [1 1 . . .1]T .

The proofs of Lemma 3 and Lemma 4 are given in the appendix. Following
is the proof of Theorem 3:
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Proof. The proof is presented only for the continuous case. The discrete case
is treated similarly.

Consider the case when a constant fault is present. We know that the state
z will reach steady state because, according to the preconditions described in
Section 2.1, the state z is asymptotically stable. This also guarantees that the
inverse of Az exists. If the constant fault is of size c, the stationary value of
the parity function becomes

wT (Rzzstat + Pvc) = wT (−RzA
−1
z Kz + Pv)c (18)

For a residual, also the poles affects the stationary value. However if the
residual is derived according to the description in Section 3, the stationary
value differs only by a non-zero factor compared to (18).

Now since we know from Corollary 1 that the ULPE scheme is universal, a
necessary and sufficient condition for fault detectability is

∃ρ, w
{
wT (Pv −RzA

−1
z Kz) 6= 0

}
This is equivalent to

∃ρ
{
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

}
(19)

This condition holds if and only if

∃ρ ≥ n
{
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

}
(20)

because if the ρ in (19) is ≥ n, then (20) follows directly and if the ρ in (19)
is < n, then it is always possible to find a larger ρ because the extra terms that
appear in (4) and (5) can be canceled by zeros in w.

Now Lemma 3 shows that it is sufficient to consider the case ρ = n, that is
(
NT

RxH(Pv −RzA
−1
z Kz) 6= 0

)
ρ=n

2

Remarks

If one thinks of the P matrix as a description of how the fault propagates
through the system, the conditions for fault detectability and strong fault de-
tectability are intuitive. For example the condition for fault detectability says
that the fault must not affect the system in the same way as the state or the
disturbances.

As seen in Lemma 2, 3, and 4, it is sufficient to chose ρ as ρ = n, if fault
detectability or strong fault detectability is considered. This means that a
residual generator that is able to (strongly) detect a fault, never needs to be
designed using a parity function of order larger than n. There may however be
other reasons to chose a ρ larger than n.
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4.2 Examples

In an inverted pendulum example in (Chen and Patton, 1994), an observer
based residual generator was used. It was shown that no residual generator
with this specific structure could strongly detect a fault in sensor 1. It was
posed as an open question if any residual generator, in which this fault is
strongly detectable, exists and in that case how to find it. In the following
example, this problem is re-investigated by means of Theorem 3. Also included
is a demonstration of Theorem 2.

Example 2
The system description represents a continuous model of an inverted pendulum.
It has one input and three outputs:

A =




0 0 1 0
0 0 0 1
0 −1.93 −1.99 0.009
0 36.9 6.26 −0.174




B =
[

0 0 −0.3205 −1.009
]T

C =


 1 0 0 0

0 1 0 0
0 0 1 0


 D = 03×1

The faults considered are sensor faults. There are no disturbances and also,
there are no states controllable only from faults. This means that there is no
Rz matrix or H matrix. For the detectability analysis, we calculate the NR

matrix and form NT
RP1 6= 0, NT

RP2 6= 0, and NT
RP3 6= 0 for the three faults

respectively. Then from Theorem 2 it can be concluded that all sensor faults
are detectable, i.e. for each sensor fault, it is possible to construct residual
generators for which the fault is detectable. To check strong detectability we
form the vectors

NT
RP1v = [0 0 0 0 0 0 0 0 0 0 0]T

NT
RP2v = [−1 0 0 0 0 0 0 0 0 0 0]T

NT
RP3v = [∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗]T

where ∗ represents nonzero elements. By using Theorem 3 it can be concluded
that the second and third sensor faults are strongly detectable, i.e. for each of
these faults a residual generator can be found for which the fault is strongly de-
tectable. Also concluded is that the first sensor fault is only weakly detectable,
i.e. it is not possible to construct a residual generator in which the fault in
sensor 1 is strongly detectable.
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As is seen in Equation (5), the fault affects the parity function through both
Rz and P . One may note that in the condition of Theorem 2 it is sufficient to
consider the matrix P while in Theorem 3 both Rz and P must be considered.
The following example shows that this is really the case.

Example 3
The system is continuous and has one structured disturbance and two outputs:

A =
[
−2 −3
0 −1

]
B =

[
1
0

]
E =

[
−2
0

]
K =

[
−6
−6

]

C =
[

1 4
2 4

]
D =

[
0
0

]
J =

[
6
5

]
L =

[
−2
0

]

For this system, NT
RxH(Pv −RzA

−1
z Kz) = 0. This means that the fault is not

strongly detectable. However it also holds that NT
RxHPv 6= 0 which shows that

the influence of the fault via Rz must be considered in the condition of strong
fault detectability.

5 Conclusions

The Universal Linear Parity Equation (ULPE) scheme has been presented.
This is an extension to the well known Chow-Willsky scheme. It is shown
that none of the previous extensions to the Chow-Willsky scheme are able to
generate all parity equations in the case where there are dynamics controllable
only from faults. The ULPE scheme is able to handle also this case since it
is universal in the sense that for any linear, continuous or discrete system, all
parity equations can be generated.

It is demonstrated how any perfectly decoupling linear residual generator
can be constructed by the help of the ULPE scheme. Therefore the ULPE
scheme is also a universal design method for linear residual generation.

Two new conditions for fault detectability and strong fault detectability,
formulated in the context of the ULPE scheme, are provided. A general con-
dition for strong fault detectability has not been presented elsewhere.

It is shown that if fault detectability or strong fault detectability are con-
sidered, it is sufficient to have ρ = n when designing the parity functions. This
means that a parity function, to be used in the design of a residual generator,
do not need to have an order larger than n.
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7 Appendix

The appendix contains Lemma 5, Lemma 6, Lemma 3, Lemma 4, Lemma 2,
and Lemma 1, all with proofs included. If the system (1) does not contain
any disturbances, then most proofs in the appendix are simplified and espe-
cially Lemma 5 follows easily from Cayley-Hamilton’s Theorem. To clarify the
relations between all theorems and lemmas, contained in this paper, Figure 2
has been included. The arrows represent implications. Theorems and lemmas
given in the main text are represented by boxes with thick lines, and lemmas
given in the appendix are represented by boxes with thin lines.

Lemma 5

Lemma 3
Strong Det.
cont., ρ=n

Lemma 2
Detectability
ρ=n

Lemma 1
Rz is not 
needed

Theorem 2
Detectability

Theorem 3
Strong
Detectability

Corollary 1
ULPE univ.
Res. Gen.

Theorem 1
ULPE is
universal

Lemma 6

Lemma 4
Strong Det.
discr., ρ=n

Figure 2: Roadmap of theorems and lemmas.
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7.1 Lemma 5

This first lemma is the basis for all other lemmas in the appendix. The matrices
C, A, E, J , and K are defined in (1) and (2).

Lemma 5. If there exists two vectors ψ and t = [t1 . . . tn+1]
T

such that

CAj−1ψ + CAj−1Et1 + . . .+ CEtj + Jtj+1 = CAj−1K

for j = 1 . . . n, then for all ρ ≥ n, there exists a t′ =
[
t1 t

′
2 . . . t

′
ρ+1

]T
such that

this equation is satisfied for j = 1 . . . ρ.

Proof. Given are the equations

Cψ + CEt1 + Jt2 = CK

... (21)
CAn−1ψ + CAn−1Et1 + . . . + CEtn + Jtn+1 = CAn−1K

and the goal is to show that there exists t′i:s, i ≥ 2, such that

CAj−1ψ + CAj−1Et1 + CAj−2Et′2 + . . . + CEt′j + Jt′j+1 = CAj−1K (22)

for all j = 1 . . . ρ. The equations (21) and (22) specify a condition on the
variables t′i, which are to be found. To be able to carry out the proof we
first need to derive a new, more tractable, set of equations which specify an
equivalent condition on these variables.

Define the matrices J1 and JΛ such that

J = [C Λ]
[
J1

JΛ

]

where Λ has all its columns orthogonal to C. From the equations (21), it is
clear that

Jti = CJ1ti + ΛJΛti =
= C(Ai−2K −Ai−2ψ −Ai−2Et1 − . . . − Eti−1)

for i = 2 . . . n+ 1. Because of the second equality, it must hold that ΛJΛti = 0
and therefore Jti = CJ1ti. In the equations (21), Jti can now be replaced by
CJ1ti, which results in

Cψ + CEt1 + CJ1t2 = CK

...
CAn−1ψ + CAn−1Et1 + · · ·+ CEtn + CJ1tn+1 = CAn−1K
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What these equations says is that

Aj−1ψ +Aj−1Et1 +Aj−2Et2 + . . . + Etj + J1tj+1 −Aj−1K

for j = 1 . . . n, lies in the right null-space of C. An alternative way of saying
this is that there exists gi:s such that

Ng2 + ψ + Et1 + J1t2 = K

...
Ngn+1 +An−1ψ + An−1Et1 + . . . + Etn + J1tn+1 = An−1K

where the columns of N are a basis for the right null-space of C. Multiplying
the i:th equation from the top with A from the left and then subtracting the
i+ 1:th equation results in

ANgi +AJ1ti = Ngi+1 + Eti + J1ti+1 (23)

for i = 2 . . . n. Recall that the goal of the proof is to, for all ρ ≥ n, find a new
set of variables t′2 . . . t

′
ρ+1 that fulfills Equation (22). We will do this by finding

t′i:s such that Equation (23) is satisfied for all i ≥ 2, and then showing that
these t′i:s also satisfies (22).

If [N J1] has rank n it is always possible to find t′i+1 and g′i+1 such that
Equation (23) is satisfied also for i > n. Otherwise, introduce matrices J2 and
y such that [N J1] = [N J2] y, where [N J2] has full column rank ≤ n − 1.
Now study

[
y

(
g2
t2

)
. . . y

(
gn+1

tn+1

)]
(24)

If the first column in this matrix is 0, then

[N J2] y
(
g2
t2

)
= Ng2 + J1t2 = 0

Now select a new g′2 = 0 and a new t′2 = 0, and Equation (23) for i = 2 becomes

0 = Ng3 + J1t3

By continuing selecting new g′l = 0 and t′l = 0 for all l ≥ 2, then Equation (23)
will be satisfied for all i ≥ 2.

If y
[
gT
2 tT2

]T 6= 0, then from the fact that the matrix (24) has n columns
and less than n rows, we know that there exists an l > 2 and a vector x such
that

y

(
gl

tl

)
=

[
y

(
g2
t2

)
. . . y

(
gl−1

tl−1

)]
x
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Select a new g′l = [g2 . . . gl−1]x and a new t′l = [t2 . . . tl−1]x. This choice
ensures that Equation (23) for i = 1 . . . l, will be satisfied because the condition

y

(
g′l
t′l

)
= y

(
gl

tl

)

is fulfilled.
Next, select a new g′l+1 = [g3 . . . gl−1 g

′
l]x and t′l+1 = [t3 . . . tl−1 t

′
l]x. This

implies that Equation (23) for i = l+ 1 is satisfied because

ANg′l +AJ1t
′
l = AN [g2 . . . gl−1]x+AJ1 [t2 . . . tl−1]x =

= N [g3 . . . gl−1 g
′
l]x+ E [t2 . . . tl−1]x+ J1 [t3 . . . tl−1 t

′
l]x =

= Ng′l+1 + Et′l + J1t
′
l+1

The second equality is a consequence of Equation (23). By continuing selecting
new g′l+2 and t′l+2 in the same way and so on, it can be shown that Equation
(23) will be satisfied for all i ≥ 2.

Going back to the original problem, we have now shown that for each ρ

there exists a t′ =
[
t1 t

′
2 . . . t

′
ρ+1

]T such that the equation

CAj−1ψ + CAj−1Et1 + CAj−2Et′2 + · · ·+ CEtj + CJ1t
′
j+1 = CAj−1K (25)

is satisfied for j = 1 . . . ρ. This equation equals Equation (22) except for the last
term of the left side. For all j ≥ 2, there exists a φ such that t′j = [t2 . . . tn+1]φ.
Therefore it must hold that CJ1t

′
j = Jt′j for all j ≥ 2. This implies that

Equation (25) is equivalent to Equation (22) which ends the proof. 2

7.2 Lemma 6

The matrices Rx, Rz, H , and P are defined in Equation (3) and the matrices
C, A, E, J , and K are defined in (1) and (2).

Lemma 6. If
(
NT

RHPv = 0
)
ρ=n

, then ∀ρ ≥ n {NT
RHPv = 0}, where v =

[1 0 . . .0]T .

Proof. If
(
NT

RHPv = 0
)
ρ=n

then Pv can be written as a linear combination
of the columns in R and H . This means that there exists two vectors s and
t = [t1 . . . tn+1] such that

Pv = Rs+Ht

This equation can be written as

Cs+ Jt1 = L

CAs+ CEt1 + Jt2 = CK

...
CAns+ CAn−1Et1 + . . . + CEtn + Jtn+1 = CAn−1K
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By defining ψ = As and then applying Lemma 5 to all equations except the
first one, it can be concluded that ∀ρ ≥ n {NT

RHPv = 0}. 2

7.3 Proof of Lemma 2

The following lemma was given without proof in Section 4.1. It is generally
applicable to all Chow-Willsky-like schemes. It says that if no parity function,
derived with a Chow-Willsky-like scheme with ρ = n, can detect the fault, then
also no parity functions derived with ρ > n can detect the fault. For use with
the ULPE scheme, R is to be changed to Rx. The matrices Rx, Rz , H , and P
are defined in Equation (3) and the matrices C, A, E, J , and K are defined in
(1) and (2).

Lemma 2. If
(
NT

RHP = 0
)
ρ=n

, then ∀ρ ≥ n {NT
RHP = 0}.

Proof. If NT
RHP = 0 and ρ = n, then all columns of P can be written as linear

combinations of the columns in R and H . This means that for each column Pi

there exists vectors si and ti such that

Pi = Rsi +Hti i = 1 . . . n+ 1

With ti = [ti,1 . . . ti,ρ+1]
T , these systems of equations can be rewritten as

Csi + Jti,1 = bi,1

CAsi + CEti,1 + Jti,2 = bi,2
...

CAnsi + CAn−1Eti,1 + · · ·+ CEti,n + Jti,n+1 = bi,n+1

where

bi,j =




0 if j < i
L if j = i
CAj−i−1K if j > i

and i = 1 . . . n + 1. If Pi for i > n + 1 is defined to be the zero vector, i.e.
Pi = 0, then the system of equations for all i ≥ 1 are satisfied. Let Ψi,j(si, ti)
denote the j:th equation in the i:th equation system, i.e.

Ψi,j(si, ti) , CAj−1si + CAj−2Eti,1 + · · ·+ CEti,j−1 + Jti,j = bi,j

The goal is to show that when si and ti satisfies equations Ψi,j(si, ti),
∀i ≥ 1, ρ = n, j = 1 . . . ρ + 1, then for all ρ ≥ n there exists t′i such that also
Ψi,j(si, t′i), are satisfied. This is done by induction on i.
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Base Step

From Lemma 6, this is already assured for i = 1.

Induction Step

The induction hypothesis is that for an arbitrary ρ ≥ n, the equations
Ψif ,j(sif

, t′if
), j = 1 . . . ρ + 1, are satisfied for a certain if . Then we want to

show that these equations are also satisfied for if + 1.
To do this we need a new set of equations Θi,j(s̄i, t̄i) obtained by subtracting

Ψi−1,j(si−1, ti−1) from Ψi,j+1(si, ti). This is denoted as

Θi,j(s̄i, t̄i) ' Ψi,j+1(si, ti)−Ψi−1,j(si−1, ti−1) (26)

for all i > 1, ρ = n, j = 1, . . . , ρ+ 1, where s̄i = Asi − si−1 and

t̄i = [ti,1 (ti,2 − ti−1,1) . . . (ti,ρ+1 − ti−1,ρ)]
T

The right side of all these equations is 0, because bi,j+1 = bi−1,j. By applying
Lemma 5 with ψ = s̄i and K = 0, to all equation systems




Θi,1(s̄i, t̄i)
...

Θi,n(s̄i, t̄i)




where i > 1, it can be concluded that for each ρ ≥ n, there exists a t̄′i such
that

Θi,j(s̄i, t̄′i) (27)

where i > 1, are satisfied for j = 1 . . . ρ.
From (26) it follows that

Ψif+1,j+1(sif +1, t′if +1) ' Θif+1,j(s̄if +1, t̄′if +1) + Ψif ,j(sif
, t′if

)

For all ρ ≥ n it follows from Equations (27) and the induction hypothesis,
that the equation Ψif+1,j+1(sif +1, t′if +1) is satisfied for j = 1 . . . ρ. The first
element of ti equals the first element of t′i which means that the equation
Ψif+1,1(sif +1, t′if+1) equals the equation Ψif +1,1(sif +1, tif +1), which is satis-
fied as a consequence of the preconditions of the theorem. Therefore for all
ρ ≥ n, the equation Ψif+1,j(sif +1, t′if +1) is satisfied for j = 1 . . . ρ + 1. This
ends the induction and the proof. 2
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7.4 Proofs of Lemma 3 and 4

The following two lemmas were given without proof in Section 4.1. The first
lemma is for the continuous case and the second lemma for the discrete case.
Both are generally applicable to all Chow-Willsky-like schemes. They say that
if no parity function, derived with a Chow-Willsky-like scheme with ρ = n, can
strongly detect the fault, then also no parity functions derived with ρ > n can
strongly detect the fault. For use with the ULPE scheme, R is to be changed
to Rx. The matrices Rx, Rz, H , and P are defined in Equation (3) and the
matrices C, A, E, J , and K are defined in (1) and (2).

7.4.1 Continuous Case: Lemma 3

Lemma 3. If
(
NT

RH(Pv −RzA
−1
z Kz) = 0

)
ρ=n

, then ∀ρ ≥ n {NT
RH(Pv −

RzA
−1
z Kz) = 0}, where v = [1 0 . . .0]T .

Proof. The proof is based on using Lemma 6. To be able to do so, we define
L′ as

L′ = L− CzA
−1
z Kz

and define K ′ as

K ′ = K −A

[
0nx×nz

Inz

]
A−1

z Kz

Then Pv −RzA
−1
z Kz can be written as

Pv −RzA
−1
z Kz =




L′

CK ′

CAK ′
...

CAn−1K ′




(28)

It is seen that the right part of (28) has the same structure as Pv in Lemma 6.
Therefore we can use Lemma 6 and conclude that

∀ρ ≥ n {NT
RH(Pv −RzA

−1
z Kz) = 0}

2

7.4.2 Discrete Case: Lemma 4

Lemma 4. If
(
NT

RH(Pv +Rz(I −Az)−1Kz) = 0
)
ρ=n

, then ∀ρ ≥ n {NT
RH(Pv+

Rz(I −Az)−1Kz) = 0} , where v = [1 1 . . .1]T .

Proof. The proof is carried out by induction on ρ.
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Base Step

For ρ = n, we know from the preconditions of the theorem that NT
RH(Pv +

Rz(I −Az)−1Kz) = 0 is already satisfied.

Induction Step

The induction hypothesis is that NT
RH(Pv + Rz(I − Az)−1Kz) = 0 for ρ = α.

This is equivalent to that Pv + Rz(I − Az)−1Kz is a linear combination of
the columns in R and H . That is there exists vectors s and t such that the
equation

Pv − Rz(I −Az)−1Kz = Rs+Ht (29)

is satisfied for ρ = α. Then the goal is to show that (29) is also satisfied for
ρ = α+ 1.

By defining

β =
[

0nx×nz

Inz

]
(I −Az)−1Kz

the equation (29) can be rewritten as

Cs+ Jt1 = L+ Cβ

CAs+ CEt1 + Jt2 = CK + L+ CAβ

...
CAαs+ CAα−1Et1 + . . .+ CEtα + Jtα+1 = CAα−1K + . . .+ CK + L+

+CAα+1β

For these equations introduce the notation Φi(s, t), denoting the i+1:th equa-
tion from the top, i.e. i = 0 . . . α. Now calculate a new set of equations Θi(s̄, t̄)
by subtracting equation Φi−1(s, t) from equation Φi(s, t). This is denoted

Θi(s̄, t̄) ' Φi(s, t)− Φi−1(s, t)

for i = 1 . . . α, where s̄ = As− s and t̄ = [t1 (t2 − t1) . . . (tα+1 − tα)]T . This
means that the equations Θ1(s̄, t̄) to Θα(s̄, t̄) are

Cs̄+ CEt1 + Jt̄2 = C
(
K + C(A− I)β

)
...

CAα−1s̄+ CAα−1Et1 + CAα−2Et̄2 + . . .

. . .+ CEt̄α + Jt̄α+1 = CAα−1
(
K + C(A − I)β

)
By using Lemma 5, with ψ = s̄ and K ′ = (K +C(A− I)β), it follows that for
ρ = α+1, there exists a t̄′ =

[
t1 t̄′2 . . . t̄

′
α+2

]T such that the equations Θi(s̄, t̄′),
i = 1 . . . α+ 1 are fulfilled.
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The original form of equations can now be obtained by calculating

Φi(s, t̄′) ' Θi(s̄, t̄′) + Φi−1(s, t)

for i = 1 . . . α+ 1. Together with Φ0(s, t) we have then shown that Φi(s, t′) is
fulfilled for i = 0 . . . α + 1. This is the same as saying that equations (29) are
also satisfied for ρ = α+ 1. This ends the induction and the proof. 2

7.5 Proof of Lemma 1

The following lemma was given without proof in Section 4.1. The lemma can be
interpreted, by means of Equation (3), as follows. If the fault vector F , acting
through the matrix P , cannot make the parity function become non-zero, then
neither can the state z, acting through Rz. The matrices Rx, Rz , H , and P
are defined in Equation (3) and the matrices C, A, E, J , and K are defined in
(1) and (2).

Lemma 1. Consider the system (1) with given properties and the correspond-
ing matrices. For all ρ ≥ n, it holds that NT

RxHP = 0 implies NT
RxHRz = 0.

Proof. If NT
RxHP = 0 then also NT

RxHPv = 0 where v = [1 0 . . . 0]T . If it
holds that NT

RxHPv = 0 for a ρ = α ≥ n, then Pv can be written as a linear
combination of the columns in Rx and H . This means that there exists two
vectors sx and t = [t1 . . . tn+1] such that

Pv = Rxsx +Ht

where ρ = α. This equation also holds for ρ = n so by defining s = [sT
x 01×nz ]T

and using Lemma 6, the equation can be extended with (α−n+nz)m number
of rows. The equation obtained is denoted as

P ′v′ = R′xsx +H ′t′ (30)

where P ′, v′, R′x, and H ′ are the matrices we get if a ρ = α+nz is used instead
of ρ = n. By studying the definitions of P ′v′, R′x, and H ′, and rearranging
Equation (30), we can obtain the equation

RzC = RxT1 +HT2 (31)

where C =
[
Kz AzKz . . . A

nz−1
z Kz

]
, i.e. the controllability matrix of the

state z,

T1 = [τ1 . . . τnz ]

τi = Ai
xsx +

[
Ai−1

x Ex . . . Ex

]


t′1
...
t′i


− [Inx 0]Ai−1K
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and

T2 =




t′2 . . . t′nz+1
...

...
t′α+2 . . . t′α+1+nz




Since we know z is controllable from the single fault, C is invertible. Therefore,
for any w in the left null space of [RxH ] it holds that

wTRz = wTRxT1C−1 + wTHT2C−1 = 0

This is equivalent to
(
NT

RxHRz = 0
)
ρ=α

which ends the proof.
2
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