
Decision-Theoretic 
Troubleshooting 

ou have just finished typing that big report into your 
word orocessor. It is formatted correcdv and looks beau- 
t&l d, the screen. You hit print, go to ‘tie printer-and 
nothmg 1s there. You try agam-sull nothmg. The report 
needs to go out today. What do you do, 

Increasqly, computer users m this Stratton are call- 
mg cuxomer support Help desk ser~lces cost corpora- 
uons hundreds of milhons of dollars per year, and prw 
ductwq losses due to users’ debuggmg software and 
hardware configwatlon problems are probably of a SLIP 
ilar magmtude. As software becomes more complex and 
interoperable, the difficulty of dlagnosls and repair 
grows. Other mdustnes are expenenang similar m- 
creases m support and sermce costs for complex devices 
such as zurcraft, trams, automoblles, and photocoplers. 

Whereas the help desk may be able to solve your pnnt- 
mg problem, you have had to wait for a response, com- 
municate the problem to the techmaan, and ultimately 
track down the problem over a penod of hours or some- 
times days. Wouldn’t Lt be better to have an automated 
local expert at your beck and call? This viaon has been 
at the core of substantial research and development m 



the fields of artificial intelligence (Al) and expert sys 
terns. Since the early 198Os, diagnosis and treatment 
have been central problems in theoretical and applied 
AI [Z] Given that a device is not working properly or a 
patient has some complaint, the automated diagnostic 
system is charged with determining the set of faults or 
diseases that explain the symptoms [l, 3,4,6]. The diag- 
nostician is able to ask questions about the behavior of 
the daice or test individual components to determine 
whether they are working properly. As new information 
is gained, the procedure updates its current view of the 
world. Inference focuses on identifying the set of faults 
consistent with the observations and ordering them in 
terms of likelihood. Informationgathering proceeds 
until a single cause has been identified or the current 
diagnosis is sufficiently certain to support action. 

Typically, however, our primary objective is to repair 
the device or cure the patient, not just determine what is 
wrong. At any stage of the process, there are many possi- 
ble observations, tests, or repairs that can be applied. In 
addition, we may have the option of calling service: pro- 
moting the problem to a higher level of expertise that is 
guaranteed to be able to repair the device. Because these 
operations are expensive in terrm of time and/or money, 

rlaure 1. A declslon tree showing all possible trou- 
bleshooting plans of a two-component device 

we wsb to generate a sequence of actions that mimmucr 
costs and results in a functioning device (or healthy pa- 
tient). In this article, we develop a diagnostic procedure 
that seeks not only to identify the most likely cause(s) of a 
malfunction but also to generate a plan of action for re- 
pair. This plan consists of repairing or replacing individ- 
ual components of a composite device or system as well as 
making observations or tests. We and others call this pro- 
cess troubleshooting [3]. 

Optimal Troubleshooting and Decision Trees 
An optimal troubleshooting plan is a sequence ofobaerva- 
tions and repairs that minimizes expected costs. The clas- 
sic way to compute the expected cost of a plan is to use a 
decision tree.’ In this section, we show how this computa- 
tion is done. In the remainder of the article, we introduce 
a more practical approach using Bayesian networks. 

A decision tree represents the possible unfolding of 
events in temporal order. The representation contains 
two types of nodes: decision nodes and chance nodes. A 
decision node (drawn as a square node) represents a deci- 
sion: an irrevocable allocation of resource. Branches of a 
decision node correspond to the mutually exclusive and 
collectively exhaustive set of alternatives available to the 
decision-maker. A chance node (drawn as a circle) repre- 
sents an uncertain variable. Branches of a chance node 
correspond to the mutually exclusive and collectively ex- 
haustive possible states of the variable. Associated with 
each chance-node branch is the decision maker’s probabil- 
ity that the variable will be in the corresponding state. 
Each path through the tree reflects a possible outcome for 
the decision-maker. Associated with each path is the deci- 
sion-maker’s preference for that outcome. 

A decision tree for troubleshooting a simple two- 
component device is shown in Figure 1. The left-most 
square node represents the decision of whether or not to 
observe the variable o. The left-most circular node o rep- 
resents an observation that provides some evidence about 
the status of the components. The number to the immedi- 
ate left of a chance-node branch is the probability of that 
branch. The values at the end of the tree are the cum&- 
tive costs of observation and repair along the path from 
the root. For example, the second sum from the top of the 
figure (5 + 10 + 20) is the cost of the path where first D is 
observed (cost = 5); then C, is repaired, which does not fix 
the device (cost = IO); and then cp is repaired (cost = 20). 
In constructing this model, we have assumed the device is 
faulty initially, the device will be tixed if one repairs both 
components, and we can observe only D and whether or 
not the device is functioning. In addition, we have as- 
sumed that the cost of observing whether or not the de- 
vice is functioning is zero and that all repair and observa- 
tion costs are independent of the order in which actions 
are taken. 

We compute the expected cost of a troubleshooting 
plan by rolling back a decision tree from right to left-a 
particular form of dynamic programming. At each step in 
the rollback procedure, we find an unprocessed right- 
















	block: 


