David Heckerman, John S. Breese, and Koos Rommelse

Decision-Theoretic
Troubleshooting

ou have just finished typing that big report into your
word processor. It is formatted correctly and looks beau-
tiful on the screen. You hit print, go to the printer—and
nothing is there. You try again—still nothing. The report
needs to go out today. What do you do?

Increasingly, computer users in this situation are call-
ing customer support. Help desk services cost corpora-
tions hundreds of millions of dollars per year, and pro-
ductivity losses due to users’ debugging software and
hardware configuration problems are probably of a sim-
ilar magnitude. As software becomes more complex and
interoperable, the difficulty of diagnosis and repair
grows. Other industries are experiencing similar in-
creases in support and service costs for complex devices
such as aircraft, trains, automobiles, and photocopiers.

Whereas the help desk may be able to solve your print-
ing problem, you have had to wait for a response, com-
municate the problem to the technician, and ultimately
track down the problem over a period of hours or some-
times days. Wouldn't it be better to have an automated
local expert at your beck and call? This vision has been
at the core of substantial research and development in

communicaTIONS OF THE AEM March 1995/ Vo35, No. 3 @8

Bayesian Networks

the fields of artificial intelligence (Al) and expert sys-
tems. Since the early 1980s, diagnosis and treatment
have been central problems in theoretical and applied
Al [2]. Given that a device is not working properly or a
patient has some complaint, the automated diagnostic
system is charged with determining the set of faults or
diseases that explain the symptoms {1, 3, 4, 6]. The diag-
nostician is able to ask questions about the behavior of
the device or test individual components to determine
whether they are working properly. As new information
is gained, the procedure updates its current view of the
world. Inference focuses on identifying the set of faults
consistent with the observations and ordering them in
terms of likelihood. Information-gathering proceeds
until a single cause has been identified or the current
diagnosis is sufficiently certain to support action.

Typically, however, our primary objective is to repair
the device or cure the patient, not just determine what is
wrong. At any stage of the process, there are many possi-
ble observations, tests, or repairs that can be applied. In
addition, we may have the option of calling service: pro-
moting the problem to a higher level of expertise that is
guaranteed to be able to repair the device. Because these
operations are expensive in terms of time and/or money,

Figure 1. A decision tree showing all possible trou-
bleshooting plans of a two-component device.

March 1995/ Vol 38, No. § COMMUNICATIONS OF THE AcM

we wish to generate a sequence of actions that minimizes
costs and results in a functioning device (or healthy pa-
tient). In this article, we develop a diagnostic procedure
that seeks not only to identify the most likely cause(s) of a
malfunction but also to generate a plan of action for re-
pair. This plan consists of repairing or replacing individ-
ual components of a composite device or system as well as
making observations or tests. We and others call this pro-
cess troubleshooting [3].

Optimal Troubleshooting and Decision Trees

An optimal troubleshooting plan is a sequence of observa-
tions and repairs that minimizes expected costs. The clas-
sic way to compute the expected cost of a plan is to use a
decision tree." In this section, we show how this computa-
tion is done. In the remainder of the article, we introduce
a more practical approach using Bayesian networks.

A decision tree represents the possible unfolding of
events in temporal order. The representation contains
two types of nodes: decision nodes and chance nodes. A
decision node (drawn as a square node) represents a deci-
sion: an irrevocable allocation of resource. Branches of a
decision node correspond to the mutually exclusive and
collectively exhaustive set of alternatives available to the
decision-maker. A chance node (drawn as a circle) repre-
sents an uncertain variable. Branches of a chance node
correspond to the mutually exclusive and collectively ex-
haustive possible states of the variable. Associated with
each chance-node branch is the decision maker’s probabil-
ity that the variable will be in the corresponding state.
Each path through the tree reflects a possible outcome for
the decision-maker. Associated with each path is the deci-
sion-maker’s preference for that outcome.

A decision tree for troubleshooting a simple two-
component device is shown in Figure 1. The left-most
square node represents the decision of whether or not to
observe the variable o. The left-most circular node o rep-
resents an observation that provides some evidence about
the status of the components. The number to the immedi-
ate left of a chance-node branch is the probability of that
branch. The values at the end of the tree are the cumula-
tive costs of observation and repair along the path from
the root. For example, the second sum from the top of the
figure (5 + 10 + 20) is the cost of the path where first o is
observed (cost = 5); then ¢, is repaired, which does not fix
the device (cost = 10); and then ¢g is repaired (cost = 20).
In constructing this model, we have assumed the device is
faulty inidally, the device will be fixed if one repairs both
components, and we can observe only o and whether or
not the device is functioning. In addition, we have as-
sumed that the cost of observing whether or not the de-
vice is functioning is zero and that all repair and observa-
tion costs are independent of the order in which actions
are taken.

We compute the expected cost of a troubleshooting
plan by rolling back a decision tree from right to left—a
particular form of dynamic programming. At each step in
the rollback procedure, we find an unprocessed right-

1 N . &
By decision tree, we mean the representation described by Raiffa [9] for use
in decision analysis

most node and compute the expected cost of the plan that
would end at that node. When we encounter a rightmost
chance node, we simply compute the expected cost of its
branches by multiplying the number on each branch by its
corresponding probability and then summing the results
for all branches. When we encounter a rightmost decision
node, we find the branch of that node with the lowest
expected cost and set the expected value of the decision
node to this cost. In addition, we record the action corre-
sponding to the lowest-cost branch. The rollback proce-
dure is illustrated in Figure 1. Under each branch is its
expected cost as determined by the procedure. For exam-

ple, the expected cost of the top branch labeled “Repair

1S
0.9(15) + 0.1(35) = 17
The expected cost of the branch labeled "o = rue™ is
min(17, 34.9) = 17

and the best action is “Repair ¢, indicated by the arrow.
The optimal plan determined from a complete rollback
says that we should first observe o; if 0 = true, then we
should repair ¢; first, and if 0 = false, then we should re-
pair ¢y first. This plan has an expected cost of repair of
19.2.

Development of an optimal solution to the general
troubleshooting problem requires an analysis of all possi-
ble mixed observation-repair sequences using dynamic
programming as shown in the example. As we increase
the number of repairable components and possible obser-
vations, the decision tree grows exponentially. For exam-
ple, a troubleshooting problem of this form with five com-
ponents and three observations would generate a decision
tree with nearly 340,000 endpoints. In this paper, we gen-
erate a series of approximations that more efficiently se-
lects either an observation or a repair action at each stage
of the troubleshooting process.

Computing Probabilities of Faulty Components
When troubleshooting under uncertainty, we need to
compute the probabilities that components have failed. In
our example in the previous section, these probabilities
are the numbers just to the right of the right-most chance
nodes. In our approach, we compute these probabilities
using a Bayesian network (see “Real-World Applications
of Bayesian Networks,”). Figure 2 shows an exam-
ple of a Bayesian network for a problem that, unfortu-
nately, almost all of us have experienced: a car that won’t
start. As mentioned in the introductory article, most
Bayesian networks are constructed by drawing arcs from
causc to effect. This network is no exception. For exam-
ple, Battery Age affects Battery Quality, which aftects Bat-
tery Power, which affects Engine Turn Over, which affects
Engine Start.

Given observations of some nodes (e.g., Engine Start 1s
false and Lights are on), we can use a Bayesian network
inference algorithm to compute the probability that any
or all of the system components are faulty. The condi-
tional independencies represented by the Bayesian net-
work make this computation practical in this case, and for
most real-world problems as well.

Alternator Fan Belt

Battery
Age

Engine Start

Turn Over

Figure 2. A Bayesian network for “my car won't
start.” Arcs are drawn from cause to effect.

If we repair a component and possibly make additonal
observations, we can still use this Bavesian network to
compute the probabilities of component faults, but we
must account for the change in the underlying state of the
device and the fact that previous observations may have
been invalidated. An efficient method for doing so is de-
scribed by Heckerman et al. [5].

A Simple Special Case
In this section, we describe a set of assumptions under
which it 1s possible to identfy an optimal sequence of ob-
servations and repair actions in a time proportional to the
number of components in the device,” without explicitly
constructing and rolling back a decision tree. We will relax
several of these assumpuons in the following section.
The approach we take is an extension of the trouble-
shooting approaches described in Kadane and Simon [7]
and Kalagnanam and Henrion [8]. Let us suppose that
our device has n components represented by the uncer-
tain variables ¢, ., ¢, and that each component is in
exactly one of a finite set of states.” In our automobile
example, the components are Battery Quality, Alternator,
Fan Belt, Starter, Gas, Fuel Pump, Fuel Line, Distributor,
and Spark Plugs. Our assumptions are as follows:

1. There i1s only one problem-defining node in the
Bayesian network for the device. This node represents the
functional status of the device. One of the states of this
node must correspond to normal operation. In Figure 2,
the node labeled “Engine Start” is the problem-defining
node.

2. At the onset of troubleshooting, the device is faulty.
That is, the problem-defining node is observed to be in a
state other than “normal.”

3. Single tault: Exactly one component is abnormal and is
responsible for the failure of the device. We use p, to de-

“This time complexity assumes that Bayesian-network inference requires
constant time. In practice, this assumption is often reasonable even though
inference in an arbitrary Bayesian network is NP-hard.

3 X - ,
Our approac h can be generalized to continuous variables, but we do not do
s0 here

COMMUNICATIONS OF THE ACM Murch [995 Vol 35, No 3 5'

note the probability that component ¢, is abnormal given
our current state of information. These probabilities are
computed using a Bayesian network, as described in the
previous section. Under the single-fault assumption, we
have =, p, = 1.

4. Immediately following any component repair, the
problem-defining node is observed with cost C’.

5. Each component is observable or unobservable. An
observable component can be unambiguously tested or
inspected to determine whether or not it is functioning
properly. Furthermore, an observable component that is
observed to be abnormal must be repaired immediately.
An unobservable component can never be directly ob-
served, but can be repaired or replaced. In our automo-
bile example, the observable components are Alternator,
Fan Belt, Distributor, and Spark Plugs. All other compo-
nents are unobservable. For convenience, we use the
phrase “observation-repair action” to refer both to the
observation and possible repair of an observable compo-
nent and to the repair of an unobservable component.
6. The costs of observation and repair of any component
do not depend on previous repair or observation actions.
7. Limited observations: no other observations are avail-
able. In our automobile example, we do not permit the
observation of Battery Age, Radio, Lights, Engine Turn
Opver, or Gas Gauge.

For the moment, let us consider only observable com-
ponents. For each component C;, we denote the cost of
observation and of repair by C} and C;, respectively. If we
observe and possibly repair components in the order ¢,

.., ¢y, then for the expected cost of repair, denoted
ECR(cy,

., €n), we have
ECR(cy, L, Cn) s
= (Ci+pCi+)+ (1 "Pl)(% + #(sz* C"))
1
— — 0 bs T P
tu-p-p (GG o)+

33

That is, we first observe component ¢, incurring cost €.
With probability p,, we find that the component is faulty
and repair it (and the device), incurring cost C + C*. With
probability 1 — p;, we find that the component is func-
tioning properly, and observe component c¢y. With prob-
ability po/(1 — py), we find that ¢ is faulty and repair it;
and so on.

Now consider a troubleshooting sequence in which we
reverse the observation and possible repair of compo-
nents ¢ and ¢;+;. All terms in the expected cost of repair
of this sequence will be the same as those for the original
sequence, except terms i = k and i = k + 1. Therefore, we
obtain

ECR(cy, . . .,)
— ECR(y, . . .

:;:,} C! + p(Cl + c/’)]

> Ck=1> Cht 1y Chs s Cn)

= pk+1Ci — pxCiar.
Consequently, the sequence ¢, . . ., ¢, has a lower (pre-
ferred) ECR than that with ¢, and ¢, 4| reversed if and only
if p/Ck > pr+1/Ci+ 1. It follows that the optimal observa-

B2 March 1995/V01.35, No. 3 communicaTions o Tis ack

ton-repair sequence is given by the following plan:

1. Compute the probabilities of component faults given
that the device is not functioning.

2. Observe the (as yet unobserved) component with the
highest ratio p/C;. Ties may be broken arbitrarily.

3. If the component is faulty, then repair it.

4. If a component was repaired, then terminate. Other-
wise, go to step 2.

In this plan, if a component is found to be faulty and re-
paired, we know from Assumption 3 that the device must
be repaired. Consequently, we can terminate the trouble-
shooting process as specified in step 4. Also, note that fault
probabilities need be computed only once.

Including unobservable components in our approach is
straightforward. An unobservable component ¢; is simply
repaired with some cost R;. Therefore, an unobservable
component acts just like an observable component that is
observed with cost R; and always found to be faulty and
repaired with cost zero. Consequently, we can include
unobservable components in our procedure, provided we
set C{ to R; and C] to zero.

Let us now examine some of our assumptions. Assump-
tion 1 is often reasonable. When there is more than one
problem, we often can decompose our troubleshooting
problems into two independent troubleshooting prob-
lems. For example, if our car does not start and our car
side door is broken, then (for most cars) we can trouble-
shoot the problems independently. If there are interac-
tions between faults, then the information that a second
problem exists can be used in the probability calculations
for troubleshooting the primary problem.

Assumption 2 is usually appropriate for troubleshoot-
ing, as there is no reason to use a troubleshooting system
unless there is a problem with a device. In contrast, As-
sumption 2 may often be unreasonable in the context of
automated systems for preventive maintenance.

Assumption 3 is discussed in detail in the next section.

Assumption 4 is often reasonable, except in those situa-
tions where the cost of testing a device is expensive. For
example, when repairing a jet engine, it is often best to
repair many components before retesting the engine.

Assumption 5 is almost always appropriate. Dividing
components into those that are and are not practical to
observe before repair comes with no loss of generalization.
Furthermore, in the single-fault case, it is optimal to re-
pair any component immediately after it has been ob-
served to be faulty. In the multiple-fault case, this policy is
not necessarily optimal, although it typically makes sense
to repair a component immediately.

The validity of Assumption 6 depends on the problem
domain. When trying to troubleshoot a printing problem,
the costs of checking the driver software, network cable,
power connection, and so on are reasonably independent
of previous actions. When repairing an automobile en-
gine, however, many components can be replaced with
low cost once the engine header has been removed. We do
not address methods for relaxing this assumption in this
article.

Assumption 7 is relaxed in the following section.

Approximations for More General
Troubleshooting

In this section, we relax the single-fault assumption and
allow for more general observations in the troubleshoot-
ing plan. In addition, we consider the service-call action.
To our knowledge, the generation of optimal trouble-
shooting plans allowing these extensions cannot be done
in a time polynomial in the number of components. To
handle these extensions, we introduce approximations
based on our procedure described in the previous section.
In the “Empirical Results” section, we describe experi-
ments with real-world troubleshooting systems demon-
strating that these approximations can lead to high-qual-
ity troubleshooting plar

Service Call

Let us assume that at any time in the troubleshooting pro-
cess, we may call service. This action will have a fixed cost
C* and will lead to a functioning device with certainty. For
example, a service call may be simply a replacement of the
entire device. The assumption that the service cost is fixed
is often reasonable in practice, although attempted re-
pairs may decrease or increase service costs somewhat. Let
us also assume that all components have repair costs less
than the service cost. If this assumption is not true for a
given component, then we simply replace a recommenda-
tion to repair the component with a recommendation to
call service.

We can include the service-call action in our approach
as follows: Because a service call is guaranteed to repair
the device, it will always be the last action in a repair se-
quence. Furthermore, regardless of where in the se-
quence a service call occurs, the optimal observation-
repair order for the remaining components is still deter-
mined by nonascending probability-to-cost ratios, as
described in the previous section. Let us label the compo-
nents so that the optimal sequence without a service call is
c1,. . ., ¢y, If we introduce a service call after the observa-
tion-repair of component k, we obtain

ECR(cy, ...,)
i-1

=i‘ [(1 —El p,) C + pi(C + (:P)] + (ﬁ: p,)(:‘ (1)

j=h+1

To identify the position of the service call in the optimal
sequence, we evaluate (1) for each value of k, finding the
value of k = 0, ., n for which the expected cost of
repair is a minimum:

n, = min [ECR(c,,

k

where a service call is omitted from the plan if n, = n. We
can compute 7, in time linear in the number of compo-
nents n.

We emphasize that plans generated by this approach
are not necessarily optimal. In particular, we may be able
to exchange the observation-repair of one or more com-
ponentsin {cy, . . ., ¢,} with that of components in {en+1

., ¢,} and obtain a plan with a lower expected cost of
repair.

<] (2)

Bayesian Networks

Multipie Faults

The single-fault assumption is often a good approxima-
tion, because it is unlikely that two components will fail at
roughly the same time. We see this behavior in our auto-
mobile example. Although the model permits multiple
faults, when we observe that the car won't start, the failure
of one component tends to explain away the failure of
others. That is, the components are almost mutually ex-
clusive when the device is faulty.

Nonetheless, there will be times when multiple compo-
nents in a device have failed. In these cases, we can use the
optimal single-fault plan with the following minor modifi-
cation:

1. Compute the probabilities of component fault given
the current state of information.

2. Observe the (as yet unobserved) component with the
highest ratio p;/C7.

3. If the component is faulty, then repair it.

4. If a component was repaired, terminate if the device is
working. Otherwise, go to step 1.

The only differences from the single-fault case are in steps
1 and 4. In step 4, we do not automatically terminate if a
component was repaired. Rather, because there may be
multiple faults, we terminate only if we observe that the
device is working properly. Also, whether we observe the
component to be working or repair the component with-
out repairing the device, we go back to step 1 (rather than
step 2), where we recompute the fault probabilities under
our new state of information.

This plan is not necessarily optimal, because we incor-
rectly assume that there is only one fault in step 2, when
we identify the next component to observe. Also, note that
we can extend this plan to include service calls, using the
procedure described in the previous section.

Nonbase Observations

So far, we have considered two special classes of observa-
tions: 1) the observation of the problem-defining variable
after a repair is made, and 2) the observation of a compo-
nent before a repair is made (as part of an observation-
repair action). We refer to these observations as base ob-
servations. In many situations, we want to be able to make
more general observations. For example, when our car
fails to start, we may want to check the radio or the head-
lights in order to check the status of the electrical system.
In this section, we describe a method for making such
general observations.

Our approach is based on a second approximation. In
particular, we pretend that we can make at most one non-
base observation before executing a plan consisting of
only observation-repair actions and a service call. Then we
determine which nonbase observation, if any, should be
made, and make the observation if appropriate. Finally,
we iterate this procedure, possibly making additional ob-
servations. The procedure is sometimes said to be myopic,
because we may make additional nonbase observations in
the troubleshooting sequence but do not look ahead to
these possible actions when selecting the next nonbase
observation.

Suppose we have m nonbase observations 0y, 0g, . . . 0,

communicaTIONS OF THE ACM March 1995/Vol. 35, No. 3 BB

Bayesian Networks

available to us. Assume that observation o, can take on ex-
actly one of r; possible states. We write o, = k to indicate
that observation o; takes on state k. In our myopic approxi-
mation, we first use the procedures described in the “Ser-
vice Call” and “Multiple Faults” sections to generate a
troubleshooting sequence consisting of only base observa-

tions, repairs, and service call under the current state of

information. Changing notation for simplicity, let ECR(I)
denote the expected cost of repair of this sequence, where
I is the current state of information. Imagine that we
make some observation o, first and then determine the
sequence of base observations, repairs, and service call.
The expected cost of observing o, with information I, de-
noted ECO(, 0,), is thus given by

ECO(, o) = €' + 2, Pr(o, = kHECRA U {o, = k}) (3)
k=1

Note that the troubleshooting sequence following the ob-
servation may be different for every possible outcome of
the observation. Finally, we repeat the computation of
ECO for every possible nonbase observation.

If ECR(I) < ECO(I, 0;) for every nonbase observation o,,
then we choose not to make a nonbase observation at this
point in the troubleshooting process. Rather, we choose to
perform an observation-repair action on some component
or call service, as described in the previous sections.
Otherwise, we choose to observe that variable o, with the
lowest ECO. After a repair or nonbase observation has

Evaluate expected costs

ECR(l)

ECO(1,04)
ECO(l,0y) ...

Choose
minimum
ECO(l,0;)

ECO(l,0)
< ECR(l)

<

Repair
c

Device is
normal ?

Figure 3. Asummary of our approximate decision-theoretic method for generating a troubleshooting
plan. First, we evaluate ECR(I)—the expected cost of repair under our current state of information 1—and
for every observation o, the expected cost of its observation ECO(I, 0)). Next, if there is an observation o,
for which ECO(I, 0)) < ECR(I), then we observe the o, for which ECO(I, 0)) isa minimum. Otherwise, we
check to see whether or not we should call service. We do so if and only if n,, given by (2), is equal to zero. If
so, then we call service and then quit. Otherwise, we perform an observation-repair action on the compo-
nent ¢;such that p,/C7 is a maximum. If we repair ¢, then we check whether the device is functioning
properly. If itis, then we quit; otherwise we repeat the process, identifying the next best action.

58 ek 1995 V0L No S commumNICATIONS OF THE ACM

Automobile

Figured. Cost histograms for the domains of automobile and print troubleshooting with four planners.
Shown from front to back are histograms for the random, static, decision-theoretic and omniscient

planners.

Single fault

) N>
—y .-,”)3;— ?:.'.\-::
- ZZ 7 A
D vy

Multiple faults

Figures. Cost histograms in the automobile domain for single- and multiple-fault cases with four plan-
ners. From front to back are histograms for the random, static, decision-theoretic, and omniscient planners.

been carried out, we update the information state I and
repeat the cycle. A summary of this approach is given in
Figure 3.

Empirical Results
We have applied our approach to troubleshooting print-
ing problems, automobile startup problems, copier feeder
systems, and gas turbines. The results have been satisfying
along a number of dimensions. The models have been
easy to build and assess. The generated plans in many
cases conform with intuition. In the remainder of this sec-
tion, we discuss experiments that measure the perfor-
mance of our decision-theoretic approach more precisely.
We have developed a “Monte Carlo” technique for esti-
mating troubleshooting costs for a given planner and
domain. The basic idea is to use a Bayesian network for a
given device to generate a relatively large set of problem
instances where one or more faults are known to have
occurred. We then apply the planning method to each
case, recording the sum of costs of each action. A histo-

gram of these total costs then provides a good estimate of
the distribution of troubleshooting costs associated with a
particular planner.

The method relies on an oracle Bayesian network to
generate sample problems and to reveal the outcomes of
observations given that specific components have been
repaired. In our experiments, the joint probability distri-
bution for the domain variables specified by the oracle
Bayesian network is identical to that of the decision-theo-
retic planner, ensuring that the planner has the “correct”
model. This assumption could be relaxed in future exper-
iments. Our approach for generating cases guarantees
that the problem-defining variable will assume an abnor-
mal state in every case.

In the results that follow, we compare our decision-
theoretic planner, a random planner, a static planner, and
an omniscient planner in two domains: troubleshooting a
car that won’t start and troubleshooting the failure to
print a document. Our decision-theoretic planner posts a
mixture of repairs and nonbase queries to the oracle

commuNICATIONS OR THE AcM March 1995/Vol. 38, No. 3 DS

Bayesian network until the oracle reports that the device
is repaired. The random planner posts repairs at random
(without repetition) until the oracle reports that the de-
vice is repaired. The static planner posts repairs in a static
order: components with lower observation costs are re-
paired first, with ties broken by repair cost. Again, the
static planner continues until the oracle reports that the
device is repaired. The omniscient planner knows exactly
what faults are causing the device failure and repairs
them. When posting repairs, each planner (except the
omniscient planner) queries the oracle to observe whether
the device is faulty, and then repairs the component only
if it is defective. All planners can request a service call.

We generated 1,000 troubleshooting cases for both
domains. For the automobile problem, we used the
Bayesian network shown in Figure 2, containing nine
components and five nonbase observations. For the print-
ing problem, we used the Bayesian network shown in the
article, “Bayesian Networks,” containing 15 com-
ponents and no nonbase observations. Figure 4 shows a
histogram of the costs for both domains and for each of
the planners for the 1,000 cases.

In the automobile domain, the average costs of the
omniscient, decision-theoretic, static, and random plan-
ners were $127, $154, $298, and $457, respectively. Thus,
except for the omniscient planner, the decision-theoretic
planner performed best, with the static planner coming in
a distant third. The decision-theoretic planner saves an
average of $144 per case over a static repair sequence.
The total average cost for the omniscient planner sets a
lower bound on the expected cost of an optimal planner.
The decision-theoretic planner is close to this lower
bound.

We obtained similar results in the printing domain. In
this domain, cost was measured in minutes of delay. The
average costs of the omniscient, decision-theoretic, static,
and random planners were 32, 45, 56, and 84 minutes,
respectively. Again, except for the omniscient planner, the
decision-theoretic planner performed best, with the static
planner coming in third. Also, the decision-theoretic plan-
ner is relatively close to the lower bound set by the omni-
scient planner. For the decision-theoretic, static, and ran-
dom planners, the secondary peaks in the histograms for
the printer domain indicate plans where service was
called. The omniscient planner rarely had to call service,
as expected.

Thus, in both domains, the decision-theoretic planner
had lower costs than either the static or the random plan-
ner, and its repair costs were relatively close to the mini-
mum possible repair costs. We note that in both domains,
the variance of repair costs associated with the decision-
theoretic planner were less than the variances associated
with the heuristic planners.

In the automobile domain, the numbers of cases in
which there were single, double, and triple faults were
930, 69, and I, respectively. In the printing domain, the
numbers of cases in which there were single, double, tri-
ple, and quadruple faults were 636, 285, 72, and 7, re-
spectively. Therefore, in both domains, our single-fault
assumption was quite good. Nonetheless, to investigate
the effect of single versus multiple faults on our trouble-

March 1995/Vol. 38, No. 3 COMMUNICATIONS OF THE ACM

shooting approach, we generated separate histograms for
single- and multiple-fault cases in the automobile domain,
as shown in Figure 5. We see that the relative ordering of
planners did not change. For the automobile domain, the
savings for the decision-theoretic planner over the static
ordering was $144 over all cases. Among the single-fault
scenarios, the average savings was $138, whereas over the
multiple-fault scenarios, the savings was $208. Therefore,
even though the single-fault assumption was violated, the
decision-theoretic planner did well and, in fact, had a
higher net savings, because the average repair cost in mul-
tiple-fault scenarios is higher. For the printer domain, we
observed nearly the same average savings for both single-
fault and multiple-fault scenarios.

summary

We have described a decision-theoretic approach tor gen-
erating troubleshooting plans under uncertainty that in-
terleaves both observations and repair actions. Our ap-
proach is based on a set of approximations to an exact
method for a simple special case. Despite our approxima-
tions, we have seen that our planner produces expected
troubleshooting costs that are close to optimal and signifi-
cantly lower than those of simple planners. @

References

1. Breese, J., Horvitz, E., Peot, M., et al. Automated decision-
analytic diagnosis of thermal performance in gas turbines. In
Proceedings of the International Gas Turbine and Aeroengine Con-
gress and Exposition (Cologne, Germany). American Society of
Mechanical Engineers, 1992.

Buchanan, B.G., and Shortliffe, E.H., eds. Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Pro-
gramming Project. Addison-Wesley, Reading, Mass., 1984.

de Kleer, J., and Williams, B. Diagnosing multiple faults. Artif.
Intell. 32 (1987), 97-130.

Genesereth, M. The use of design descriptions in automated
diagnosis. Artif. Intell. 24 (1984), 411-436.

Heckerman, D., Breese, J., and Rommelse, K. Sequential
troubleshooting under unc nty. In Proceedings of the 5th
International Workshop on Principles of Diagnosis (New Paltz,
N.Y., Oct. 17-19, 1994), pp. 121-130.

Heckerman, D., Horvitz, E., and Nathwani, B. Toward nor-
mative expert systems: Part I. The Pathfinder Project. Methods
Inf. Med. 31 (1992), 90-105.

Kadane, J., and Simon, H. Optimal strategies for a class ot
constrained sequential problems. Ann. Stat. 5 (1977), 237-255.
Kalagnanam, J., and Henrion, M. A comparison of decision
analysis and expert rules for sequential diagns In Proceed-
ings of the 4th Workshop on Uncertainty in Artificial Intelligence
(Minneapolis, Minn., Aug. 19-21, 1988) Association for Un-
certainty in Artificial Intelligence, Mountain View, Calif.,
1988, pp. 205-212. Also in Uncertainty in Artificial Intelligence 4,
Shachter, R., Levitt, T., Kanal, L., and Lemmer, J. eds.
North-Holland, New York, 1990, pp. 271-281.

Raiffa, H. Decision Analysis: Introductory Lectures on Choice Under
Uncertainty. Addison-Wesley, Reading, Mass., 1968.

»

bt

»

b

&

~

®

®©

About the Authors

DAVID HECKERMAN is a senior researcher in the Decision
Theory Group at Microsoft Research. Current research interests
include the design of practical methods for constructing Bayesian
networks from expert knowledge and learning Bayesian net-
works from data.

JOHN S. BREESE is a senior rescarcher in the Decision Theory
Group at Microsoft Research. Current research interests focus on
developing tools and methods for decision-theoretic reasoning,
in particular the integration of normative methods with symbolic
processing techniques.

KOOS ROMMELSE is a researcher in the Decision Theory
Group at Microsoft Research. Current interests are in the devel-
opment of tools for probabilistic inference, troubleshooting, and
learning Bayesian networks from data. Authors’ Present Ad-
dress: Microsoft Research, One Microsoft Way 95, Redmond, WA
98052-6399; email: heckerma, breese, koosr@microsoft.com.

Permission to copy without fee all or part of this material is granted pro
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish.
requires a fee and/or spedific permission.

© ACM 0002-0782,

Continued from page 41

About the Authors:

LISA BURNELL is a doctoral candidate in computer science and
a faculty associate at The University of Texas at Arlington. Cur-
rent interests include uncertain reasoning, intelligent decision-
theoretic systems, and automated program understanding. Au-
thor’s Present Address: Department of Computer Science and
Engineering, The University of Texas at Arlington, 416 Yates
Street, Nedderman Hall, Room 300, Arlington, TX 76019-0015;
: burnell@csr.uta.edu.

emai

ERIC HORVITZ is a senior
Group at Microsoft Research
theoretic methods for time-c

researcher in the Decision Theory
Current interests include decision-
cal decision-making and diagno-
sis, and applying probability and utility to solving problems in
operating systems, user interfaces, information retrieval, and
medicine. Author’s Present Address: Microsoft Research, One
Microsoft Way, Redmond, WA 98052-6399; email:
horvitz@ microsoft.com.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

©ACM 0002-0782/95/0300 $3.50

Continued from page 48

ference (TREC-2) (Gaithersburg, Md.). The National Institute
of Standards and Technology, 1994, pp. 1-20.
Heckerman, D.E. A tractable algorithm for diagnosing multi-
ple diseases. In Proceedings of the 5th Workshop on Uncertainty in
Antificial Intelligence (Detroit, Mich.). 1989, pp. 162-173.
Howard, R.A., and Matheson, J.E. Influence diagrams. In
Readings on the Principles and Applications of Decision Ana
R.A. Howard and].E. Matheson, Eds. Strategic Decisions
Group, Menlo Park, Calif., 1981, pp. 721-762.

Maron, M.E., and Kuhns, J.L. On relevance, probabilistic
indexing, and information retrieval. /. ACM 7 (1960), 216-
244,

8. Pearl, J. Probabilistic Reasoning in Intelligent Systems. Morgan

g

k4

sis,

N

Bayesian Networks

Kaufmann, San Mateo, Calif., 1988

9. Robertson, S.E., and Sparck Jones, K. Relevance weighting
of search terms. /. Am. Soc. Inf. Sci. 27 (May—June 1976),
129-146.

10. Salton, G. The SMART Retrieval System—Experiments in Auto-
matic Document Processing. Prentice-Hall, Fort Lee, N.J., 1971

11. Turtle, H.R., and Croft, W.B. Inference networks for docu-
ment retrieval. In Proceedings of the 13th International Confer-
ence on Research and Development on Information Retrieval (Brus-
sels, Belgium), 1990, pp. 1-24

12. Turte, H.R., and Croft, W.B. Evaluation of an inference net-
work-based retrieval model. ACM Trans. Info. Sys., 9(3)
(1991), pp. 187-222.

13. van Rijsbergen, C.J. Information Retrieval. Butterworth, Lon-

don, 1979.

ROBERT FUNG is a principal at Prevision Inc., a company that
provides software tools and consulting services in B
works and influence diagrams. Curr

sian net-

ent research interests include
inference in Bayesian networks, probabilistic and decision-theo-
retic diagnosis and planning, and learning probabilistic represen-
tations [rom data. He received his doctorate from the Engi-
neering-Economic Systems Department of Stanford University.
Author’s Present Address: Prevision Inc., 2817 Almeria St.,
Davis, CA 95616; email: fung@prevision.com

BRENDAN DEL FAVERO is a graduate student in Engineering-
Economic Systems at Stanford University. Current research in-
terest is in applying Bayesian methods to information retrieval
Author’s Present Address: email: bdf@leland stanford.edu

Permission (o copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish
requires a fee and/or specific permission.

5 ACM 0002-0782/95/0300 $3.50

THE Acwm M

	block:

