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An Efficient Algorithm for Finding
Minimal Overconstrained Subsystems

for Model-Based Diagnosis
Mattias Krysander, Jan Åslund, and Mattias Nyberg

Abstract—In model-based diagnosis, diagnostic system con-
struction is based on a model of the technical system to be diag-
nosed. To handle large differential algebraic models and to achieve
fault isolation, a common strategy is to pick out small overcon-
strained parts of the model and to test these separately against
measured signals. In this paper, a new algorithm for computing
all minimal overconstrained subsystems in a model is proposed.
For complexity comparison, previous algorithms are recalled. It is
shown that the time complexity under certain conditions is much
better for the new algorithm. This is illustrated using a truck
engine model.

Index Terms—Fault diagnosis, model-based diagnosis, redun-
dancy, structural analysis, structurally overdetermined.

I. INTRODUCTION

IN MODEL-BASED diagnosis, diagnostic system construc-
tion is based on a model of the technical system to be diag-

nosed. In order to achieve fault isolation, a common strategy is
to pick out small parts of the model and to test these separately
against measured signals.

To cope with large differential algebraic models, systematic
structural approaches to find testable subsystems have been
suggested in, for example, [1]–[6]. What all of these approaches
have in common is that testable subsystems are found among
the overconstrained subsystems. Furthermore, of all overcon-
strained subsystems, it is the minimal ones that are used to
derive analytical redundancy relations. Several algorithms for
computing all minimal overconstrained subsystems have been
proposed in [1], [3]–[5]. However, all of these algorithms run
into complexity problems when considering large industrial
examples.

In this paper, we present a new algorithm for computing all
minimal overconstrained subsystems in a structural model. For
the new algorithm, the computational complexity is dependent
on the order of structural redundancy, i.e., the difference be-
tween the number of equations and unknowns. For a fixed order
of structural redundancy, the computational complexity is poly-
nomial in the number of equations in contrast to previous algo-
rithms where the complexity is at least exponential. In many
applications, sensors are expensive, and thus, the structural
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redundancy is low even if the models are large. The algorithm
is applied to a Scania truck engine model with 126 equations.
There were 1419 minimal overconstrained subsystems, and all
of these were found with the new algorithm in less than half a
second on a PC with a 1-GHz processor.

To see how this paper is related to previous works, three
different types of structural representations, used to describe
differential algebraic systems, are recalled in Section II. We
introduce a structural characterization, i.e., minimal struc-
turally overdetermined (MSO) set of equations, which char-
acterize overconstrained subsystems independent of structural
representation. Several other proposed structural characteriza-
tions of overconstrained subsystems are then recapitulated in
Section III. We show that all these are MSO sets of equations,
and this means that the proposed algorithm can easily be used
in any of these structural characterizations and representations
to find overconstrained subsystems. In Section IV, a basic algo-
rithm for finding all MSO sets will be presented. This algorithm
illustrates the basic ideas, and then, in Section V, further im-
provements are described. Then, the computational complexity
of the proposed algorithm is investigated in Section VI. For
comparison, Section VII recalls previous algorithms for finding
overconstrained subsystems and analyzes their computational
complexity. In Section VIII, it is shown that the computation
time for finding all MSO sets in a Scania truck engine model is
significantly decreased by using the new algorithm as compared
to a previous algorithm. Finally, the complete theory and proofs
have been collected in an Appendix.

II. STRUCTURAL REPRESENTATIONS

The structure of a model is represented by a bipartite graph
with variables and equations as node sets. There is an edge
connecting an equation e and an unknown x if x is included
in e. When considering differential algebraic systems, different
alternatives for handling derivatives exist. In this section, three
different structural representations of a differential algebraic
system are recalled. These three variants will be exemplified
by the following differential algebraic system:

ẋ1 = − x2
1 + u

x2 = x2
1

y = x2 (1)

where u and y are known, and x1 and x2 are unknown signals.
We will later refer back to these and see how the proposed
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algorithm can be used in any of these representations. The
first structural representation of (1) is the following biadjacency
matrix of the bipartite graph:

equation unknown
x1 x2

e1 X
e2 X X
e3 X

(2)

In this representation, all unknowns, i.e., x1 and x2, are con-
sidered as signals. There is an “X” in position (i, j) in the
biadjacency matrix if xj or any of its time derivatives appear
in equation ei. This approach has been used in, for example, [4]
and [7].

The second structural representation of (1) is

equation unknown
x1 ẋ1 x2

e1 X X
e2 X X
e3 X

Unknowns and their time derivatives are, in contrast to previous
representation, considered to be separate independent algebraic
variables. New equations can be obtained by differentiation, for
example

ė2 : ẋ2 = 2x1ẋ1

ė3 : ẏ = ẋ2.

Now, with these extra equations, the structural representation
can be extended as

equation unknown
x1 ẋ1 x2 ẋ2

e1 X X
e2 X X
ė2 X X X
e3 X
ė3 X

(3)

This extended structure is used in [3] and [8].
In the third and final structural representation, unknowns and

their time derivatives are, as in the second representation, con-
sidered to be separate independent algebraic variables. Thus,
the equations are purely algebraic, and differential relations of
the form

ẋi =
d

dt
xi

are added. The structural representation of (1) is

equation unknown
x1 ẋ1 x2

e1 X X
e2 X X
e3 X
d X X

(4)

Fig. 1. Dulmage–Mendelsohn decomposition of a model M .

where d is the added differential equation. This representation
is used for diagnosis in [1].

III. USE OF MSO SETS FOR TEST CONSTRUCTION

From the system of equations represented in (3), the equation

ẏ2 − 4y(u − y)2 = 0

can be derived by algebraic elimination of the unknown vari-
ables. This is called an analytical redundancy relation or a parity
relation and can be used to check if u and y are consistent
with the model (1). This means that (1) is a testable system. In
this section, a structural characterization of testable subsystems
is presented. The main objective in later sections will be to
develop an algorithm that, given a large model, finds all sub-
systems with this structural property.

For a formal structural characterization of testable subsys-
tems, we need first to introduce some important structural
properties.
Definition 1 (SO): A set M of equations is structurally

overdetermined (SO) if M has more equations than unknowns.
The biadjacency matrix in Fig. 1 shows a Dulmage–

Mendelsohn canonical decomposition [9] of a bipartite graph
with M and X as node sets. Here, we assume that M is a
set of equations and X is a set of unknowns. The gray-shaded
areas contain ones and zeros, while the white areas only contain
zeros. The thick line represents a maximal matching in the
graph defined by this biadjacency matrix. The model M is
decomposed into three parts, where the one denoted by M+ is
the structurally overdetermined part with more equations than
unknowns. The structurally overdetermined part M+ of M is
the equations e ∈ M such that, for any maximal matching, there
exists an alternating path between at least one free equation
and e.

The set M0 ∪ M+ is the maximal set of equations such
that there exists a complete matching of the unknown variables
in M0 ∪ M+ into the set M0 ∪ M+. The remaining set of
equations is denoted as M−.

Now, note that, in the generic case and for some given
trajectories of the known signals, the model M+ is consistent
if and only if M0 ∪ M+ is consistent. Therefore, if an equation
in the M0 part is violated, the consistency of M0 ∪ M+ is not
affected. In this sense, it is only the M+ part that can be a
testable subsystem. This motivates us to define the following
structural characterization of testable subsystem.
Definition 2 (PSO): An SO set M is a proper structurally

overdetermined (PSO) set if M = M+.
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A PSO set is generically a testable subsystem, but it may
contain smaller PSO subsets that are also testable subsystems.
The minimal PSO sets are of special interest since these have
the attractive properties of giving good fault isolation. We
therefore define the following structural characterization of
these minimal sets.
Definition 3 (MSO): An SO set is a minimal structurally

overdetermined (MSO) set if no proper subset is an SO set.
Note that an MSO set is also a PSO set. All three structural

representations of (1) shown in (2)–(4) are examples of MSO
models, and each has more equation than the number of un-
knowns. Generically, it holds that a minimal testable system
has a corresponding MSO model for each of the three structural
representations (2)–(4). This is exemplified by (1)–(4).

Since MSO sets represent testable subsystems in all of the
three structural representations, comparisons to other structural
characterizations of testable subsystems using different repre-
sentations are possible. In [3] and [7], MSO sets are used to find
testable subsystems. In [5], minimal evaluable chains are used,
and these are MSO models with the additional requirement that
they contain known variables. Other works that use equivalent
structural characterizations of testable subsystems are [1], [4],
[6], and [10].

IV. NEW ALGORITHM

In this section, we will present a new algorithm for finding all
MSO sets. This algorithm is based on a top-down approach in
the sense that we start with the entire model and then reduce the
size of the model step by step until an MSO model remains. To
illustrate the ideas, a basic version is presented here, and then,
in the next section, improvements are discussed.

Before presenting the algorithm, we need the notion of struc-
tural redundancy. Given a bipartite graph, let varX(M) ⊆ X be
the subset of variables in X connected to at least one equation
in M . Given a set of equations M , the structural redundancy
ϕ̄M is defined by

ϕ̄M = |M+| −
∣∣varX(M+)

∣∣ .

The algorithm will be based on the following three lemmas.
Lemma 1: If M is a PSO set of equations and e ∈ M , then

ϕ̄ (M\{e}) = ϕ̄(M) − 1. (5)

Lemma 2: The set of equations M is an MSO set if and only
if M is a PSO set and ϕ̄M = 1.
Lemma 3: If M is a set of equations, E ⊆ M is a PSO set

and e ∈ M\E, then

E ⊆ (M\{e})+ .

The proofs of all lemmas and theorems can be found in
the Appendix. Lemma 1 reveals how the structural redundancy
decreases when one equation e is removed from M . It follows
from this lemma that, if we start with any PSO set of equa-
tions, we can alternately remove equations and computing the

structurally overdetermined part until the structural redundancy
becomes one. We have then found an MSO set according to
Lemma 2. Finally, Lemma 3 implies that an arbitrary MSO
set can be obtained recursively in this way. By using this
principle in combination with a complete search, the algorithm
becomes as follows. The input set M is assumed to be a
PSO set.

Algorithm 1: MMSO := FindMSO(M)
if ϕ̄M = 1 then

MMSO := {M};
else

MMSO := ∅;
for each equation e in M do

M ′ := (M\{e})+;
MMSO := MMSO ∪ FindMSO(M ′);

end for
end if
return MMSO

From the discussion earlier, it follows that the sets found in
MMSO are MSO sets and that all MSO sets are found.

To illustrate the steps in the algorithm, consider the following
PSO model consisting of four equations and two unknown
variables:

equation unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X

(6)

The structural redundancy of this set of equations is two.
When entering the algorithm, e1 is removed, and the
Dulmage–Mendelsohn decomposition of the new set M\{e1}=
{e2, e3, e4} is (M\{e1})+={e3, e4}, (M\{e1})0 = {e2}, and
(M\{e1})− = ∅. The set M ′ in the algorithm becomes
(M\{e1})+ = {e3, e4}. In this case, ϕ̄M ′ = 1, and the equa-
tion set is saved as an MSO in MMSO. Then, e2 is removed,
and M ′ = (M\{e2})+ = {e3, e4}. This means that the same
MSO set is found once again. Next, e3 is removed, and the MSO
set {e1, e2, e4} is found. Finally, e4 is removed, and the MSO
set {e1, e2, e3} is found.

Since the same MSO set {e3, e4} is found twice, we can
suspect that the algorithm is not optimal in terms of efficiency.
The next section will therefore present improvements in order
to increase the efficiency.

V. IMPROVEMENTS

A straightforward improvement is of course to prohibit that
any of the MSO sets are found more than once. Another and
more sophisticated improvement is that sets of equations can be
lumped together in order to reduce the size and the complexity
of the structure. The proposed reduction preserves structural
redundancy, and it is therefore possible to use the reduced
structure to find all MSO sets in the original structure.
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Fig. 2. Structural decomposition of a PSO set.

A. Structural Reduction

The reduction is based on a new unique decomposition of the
overdetermined part of a bipartite graph. An illustration of the
decomposition is shown in Fig. 2 as a biadjacency matrix. If M
is the set of all equations and X is the set of all unknowns, the
decomposition can be defined as follows. Let R be a relation on
the set M of equations defined by (e′, e) ∈ R if

e′ /∈ (M\{e})+ . (7)

Now, we show that R is an equivalence relation. It follows
directly from the definition that R is reflexive. If (e′, e) ∈ R,
then it follows from (7) and Lemma 3, with E replaced by
(M\{e})+, that (M\{e})+ ⊆ (M\{e′})+. Lemmas 1 and 3
imply that both sets have the same structural redundancy
and that (M\{e})+ = (M\{e′})+. Hence, (e, e′) ∈ R, and
R is therefore symmetric. Furthermore, if (e1, e2) ∈ R and
(e2, e3) ∈ R, then it holds that (M\{e1})+ = (M\{e2})+ =
(M\{e3})+, which implies that R is transitive. The relation R
is therefore an equivalence relation.

The set M can then be partitioned into m disjoint equivalence
classes Mi. For each equation set Mi, the set Xi is defined as
the unknowns included only in Mi and

X0 = X\


⋃

i�=0

Xi


 .

It follows from Lemma 1 (see Corollary 1 in the Appendix) that

|Mi| = |Xi| + 1

for all 1 ≤ i ≤ m, i.e., there is one more equation than un-
knowns, X0 excluded, in each block. Furthermore, for n + 1 ≤
i ≤ m in the figure, Mi has cardinality 1 and Xi = ∅.

By using this partition, all PSO sets can be represented as
follows.
Theorem 1: If E ⊆ M is a PSO set, then E is a union of

equivalence classes defined by (7), i.e.,

E =
⋃
i∈I

Mi

where I ⊆ {1, 2, . . . ,m}.
A new bipartite graph can be formed with equivalence classes

{Mi} and the unknowns X0 as node sets. The unknowns

connected to Mi are varX0(Mi). For example, the reduction
of (6) is

equivalence class unknown
Mi x2

{e1, e2} X
{e3} X
{e4} X

and the decomposition is given by M1 = {e1, e2}, M2 = {e3},
M3 = {e4}, X0 = {x2}, X1 = {x1}, and X2 = X3 = ∅.
Note that it is only equivalence classes of cardinality greater
than one that give a reduction. An interpretation of this reduc-
tion is that the two first equations are used to eliminate the
unknown x1. In the lumped structure, each equivalence class
is considered as one equation, and the definitions of the PSO
set, MSO set, and structural redundancy are thereby extended to
lumped structures. In the example earlier, we have ϕ̄{{e1, e2},
{e3}, {e4}} = 2. The structural redundancy for the lumped and
the original structure are always the same.

The reduction is justified by the following theorem, which
shows that there is a one-to-one correspondence between the
PSO sets in the original and in the lumped structure, and that,
the reduced structure can be used to find all PSO sets in the
original structure.
Theorem 2: The set {Mi}i∈I is a PSO set in the lumped

structure if and only if ∪i∈IMi is a PSO set in the original
structure.

B. Improved Algorithm

A drawback with Algorithm 1, presented in Section IV, is
that some of the MSO sets are found more than once. There are
two reasons why this happens, and these can be illustrated using
the following example:

equation unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X
e5 X

(8)

First, the same PSO set {e3, e4, e5} is obtained if either e1 or e2

is removed. Second, the same MSO set is obtained if the order
of equation removal is permuted. For example, the MSO set
{e4, e5} is obtained if, first, e1 or e2 and, then, e3 is removed
but also if the order of removal is reversed.

To illustrate how these two problems are handled in the
improved algorithm, we use the example (8).

To avoid the first problem, the lumping described in the
previous section is used. Initially, we start with the set M =
{e1, e2, e3, e4, e5}, and e1 and e2 are lumped together, and the
resulting set is M′ = {{e1, e2}, {e3}, {e4}, {e5}}. Similar to
the basic algorithm, we remove one equivalence class at a time
from M′ and make a subroutine call which returns all MSO sets
in the input set.
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To avoid the problem with permuted removal order, an
additional input set R′ is used, which contains the equiva-
lence classes that are allowed to be removed in the recursive
calls.

In the example, we start initially with the set R′ = M′,
meaning that all equivalence classes are allowed to be removed.
In the first step, the equivalence class {e1, e2} is removed, and
the subroutine is called with the input sets

M′\ {{e1, e2}} and R′ = {{e3}, {e4}, {e5}} .

To prevent that the order of removal is permuted, we remove
the equivalence class {e1, e2} permanently from R′. In the
following step, the equivalence class {e3} is removed, and the
inputs are

M′\ {{e3}} and R′ = {{e4}, {e5}} .

Following the same principles, the final calls are made with the
input sets

M′\ {{e4}} and R′ = {{e5}}

M′\ {{e5}} and R′ = ∅.

To apply these ideas in all steps in the recursive algorithm,
the lumping strategy has to be extended to subsets of previously
lumped structures. Equivalence classes are then lumped to-
gether into new sets of equations by taking the union of the sets
in the equivalence class. We illustrate this with a new example.
Assume that we start with six equations and that e2 and e3 are
lumped together and the following structure is obtained:

equation unknown
x1 x2

{e1} X
{e2, e3} X
{e4} X X
{e5} X
{e6} X

(9)

In the first recursive call, {e1} is removed, and the graph
corresponding to the remaining part has the same structure as
in (6). Now

[{e2, e3}] = [{e4}] = {{e2, e3}, {e4}}

where [E] denotes the equivalence class containing E. The sets
{e2, e3} and {e4} are therefore lumped together into the set
{e2, e3, e4}.

Given a model M and corresponding set R, the lumped
structure M′ is constructed as described earlier, and the prob-
lem is then on how to form the new set R′ of equivalence classes
that are allowed to be removed in the new structure M′. The
following principle will be used. An equivalence class in M′ is
allowed to be removed, i.e., belongs to R′, if and only if it is a
union of classes that are all allowed to be removed in M, i.e.,

belongs to R. It will be shown that, in this way, all MSO sets
are found once and only once.

It is sufficient to only lump equivalence classes with a non-
empty intersection with R, and this is used in the algorithm. To
do this partial lumping, we will use the notation Lump([E],M′)
in the algorithm to denote that only the equivalence class [E] in
M′ is lumped and that the other equations remain unchanged.
The improved algorithm can now formally be written as
follows.

Algorithm 2: MMSO = MSO(M)
M := {{e}|e ∈ M+};
MMSO := FindMSO(M,M);
return MMSO;
Subroutine: MMSO := FindMSO(M,R)
if ϕ̄M = 1 then

MMSO := {∪E∈ME}
else

R′ := ∅;M′ := M;
% Lump the structureM′ and createR′

while R �= ∅ do
Select an E ∈ R;
M′ := Lump([E],M′);
if [E] ⊆ R then
R′ := R′ ∪ {∪E′∈[E]E

′};
end if
R := R\[E];

end while
MMSO := ∅;
% Make the recursive calls

while R′ �= ∅ do
Select an E ∈ R′;
R′ := R′\{E};
MMSO := MMSO ∪ FindMSO(M′\{E},R′);

end while
end if
return MMSO

The algorithm is justified by the following result.
Theorem 3: If Algorithm 2 is applied to a set M , then each

MSO set contained in M is found once and only once.

VI. COMPUTATIONAL COMPLEXITY

The objective of this section is to investigate the computa-
tional complexity of Algorithm 2. In general, the number of
MSO sets may grow exponentially in the number of equations.
This gives a lower bound for the computational complexity in
the general case. However, in many applications, the order of
structural redundancy is low, and it will be shown that, in this
case, better computational complexity can be achieved. The
redundancy is often low due to the fact that the structural redun-
dancy depends on the number of available sensors, which are
often expensive. One example of this is given in Section VIII. In
this section, the computational complexity of the algorithm will
be analyzed in the case where the structural redundancy is low.

The worst case is when all unknown variables are included in
each equation. Algorithm 2 traverses the PSO sets exactly once
in the subset lattice. The following lemma gives an upper bound
for the number of PSO sets.
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Lemma 4: Given a model with n equations and with struc-
tural redundancy ϕ̄, there are at most

n∑
k=n−ϕ̄+1

(
n

k

)
(10)

PSO subsets.
Proof: In the worst case, the PSO sets are all subsets of

equations with cardinality strictly greater than the number of
unknowns in the original model, i.e., greater than n − ϕ̄. The
number of subsets with k equations is, in this case(

n

k

)

which gives the result in the lemma. �
The next theorem gives the computational complexity in the

case of low structural redundancy.
Theorem 4: For a fixed order of structural redundancy ϕ̄,

Algorithm 2 has order of nϕ̄+1.5 time complexity, where n is
the number of equations.

Proof: An upper bound for the number of PSO sets is
given by Lemma 4. For k ≥ n − ϕ̄ + 1, the terms in (10) can
be estimated as(

n

k

)
=

n!
k!(n − k)!

≤ n!
k!

≤ nϕ̄−1 (11)

and the number of terms is fixed. Hence, the sum is less than
ϕ̄ nϕ̄−1. In the worst case, the number of times the structurally
overdetermined part has to be calculated is given by the sum
of (10). To compute, the overdetermined part has order of n2.5

time complexity [11]. Hence, Algorithm 2 has order of nϕ̄+1.5

time complexity. �

VII. PREVIOUS ALGORITHMS

Different algorithms for finding all MSO sets have been
presented in previous literature. These will now be recalled,
and the complexity of the previous algorithms will be analyzed
under the same condition as in the theorem earlier, i.e., for a
fixed order of redundancy. The worst case, for all algorithms
discussed in this paper, is when all unknown variables are
included in each equation.

One approach for finding all MSO sets was presented in [12]
and further developed in [5]. Independently, the same algorithm
was presented in [3]. The basic principle is to choose one
equation as the redundant equation and then find all possible
ways to compute structurally all unknowns in the redundant
equations. The redundant equation is first chosen to be the first
equation and then the second and so on until the last equation
is the redundant equation. When all possible ways to compute
all unknowns in the first equation are found, all MSO sets,
including the first equation, have been found. This means that
the first equation will not be used further in the search for more
MSO models.

In [4], a method based on elimination rules is presented. The
unknowns are eliminated in a specified order. Each unknown
is eliminated in all possible ways. For each way, the equations
used form an MSO set.

In all the algorithms discussed earlier, a bottom–up approach
is used, and all subsets of MSO sets are traversed at least
once in the worst case. For this case, the proper subsets of
MSO sets are exactly those sets that are not PSO sets. The
number of PSO sets grows polynomially in n according to
the discussion earlier [see Lemma 4 and the estimate in (11)].
Furthermore, the number of all subsets is 2n. Hence, for a fixed
order of structural redundancy, the number of subsets of MSO
sets grows exponentially, and the computational complexity of
these algorithms is exponential.

Another approach for finding all MSO sets is presented in
[1]. All maximal matchings are first enumerated. Then, for
each maximal matching and for each free equation for this
matching, an MSO set is given by the equations reached by
an alternating path from the free equation (for further details,
see [13]). It follows from the discussion earlier that all maximal
matchings have to be found. In the worst case, the number of
maximal matchings is equal to the number of ordered subsets
of equations with size n − ϕ̄, i.e., there are n!/ϕ̄! number
of maximal matchings. Hence, for a fixed order of structural
redundancy, the computational complexity of this algorithm is
factorial in the number of equations.

In conclusion, in the case of low structural redundancy,
Algorithm 2 has better computational complexity than the
others. However, it should be pointed out that, in the case of
few unknowns, the roles are reversed. For a fixed number of
unknowns, the new algorithm has exponential time complexity,
and all previous algorithms has polynomial time complexity.
However, this situation is, as pointed out before, not common
in industrial applications.

VIII. APPLICATION TO A LARGE INDUSTRIAL EXAMPLE

To demonstrate the efficiency of Algorithm 2, we will apply
it here to a real industrial process. The process is a Scania truck
diesel engine, and a sketch is shown in Fig. 3. This engine has
two actuators, namely, the fuel injection δ and the exhaust gas
recirculation (EGR) valve. It has eight sensors, namely, ambient
pressure pamb, ambient temperature Tamb, air flow Wcmp, inlet
pressure pim, inlet temperature Tim, exhaust pressure pem,
engine speed neng , and turbine speed ntrb (further details of
the application are presented in [14]).

A simulation model of the engine was provided in Simulink.
This model has four states and four outputs. These four outputs
are Wcmp, pim, pem, and ntrb. The rest of the sensors are in the
Simulink model implemented as inputs. To analyze the model,
it was transferred to a flat list of equations. The number of
equations is 126, and the structural redundancy is four. The fact
that the structural redundancy is four is a consequence of that
the number of outputs is four.

For comparison, three algorithms were tested on the set of
126 equations. The first is the old MSO algorithm presented in
[3], where an alternative partial reduction is used. Without any
reduction, the old MSO algorithm is practically intractable for
this example. The second is the new basic algorithm presented
in Section IV with the structural reduction in Section V-A
applied initially, reducing the number of equations to 28. The
third is the new improved algorithm presented in Section V.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 03,2010 at 02:26:16 EST from IEEE Xplore.  Restrictions apply. 



KRYSANDER et al.: EFFICIENT ALGORITHM FOR FINDING MINIMAL OVERCONSTRAINED SUBSYSTEMS 203

Fig. 3. Example of a Scania truck engine.

TABLE I
COMPARISON OF THREE MSO ALGORITHMS

All algorithms were implemented in MATLAB and executed
on a PC with a 1-GHz processor. The execution times were
measured in seconds and are presented in Table I.

There were 1419 MSO sets, and in the table, we can see that
the new MSO algorithm is more than 14 000 times faster than
the old algorithm.

IX. CONCLUSION

A new algorithm for finding all MSO sets of equations was
developed. The proposed algorithm can be used for all struc-
tural representations presented in Section II. There are three
main ideas that are used in the new algorithm. First, it is based
on a top-down approach, as described in Section IV. Second,
a structural reduction is used where subsets of equations are
lumped together in order to reduce the size of the structural
model. Third and last, it is prohibited that any MSO set is found
more than once. For a fixed order of structural redundancy, the
computational complexity of the new algorithm is polynomial
in the number of equations, in contrast to previous algorithms
where the complexity is at least exponential. The efficiency
of the algorithm was demonstrated by applying the new and
a previous algorithm to a model of a Scania truck engine.

APPENDIX

THEORY

The following concepts and their theoretical foundation are
given in [15]. Let ϕ : 2M → Z be defined by

ϕM = |M | − |varX (M)| . (12)

This number ϕM will be called the surplus of M . Note that
ϕ∅ = 0. The surplus function ϕ is a supermodular function on
the family of equation subsets in M since

ϕ(M1 ∪ M2) + ϕ(M1 ∩ M2) ≥ ϕM1 + ϕM2 (13)

for all M1 ⊆ M and M2 ⊆ M. A set M is said to be a minimal
set of surplus ϕM if

ϕE < ϕM (14)

for all E ⊂ M .
Let M be an arbitrary subset of M. Each subset E of M

defines a surplus ϕE, and we define ϕ̄ by

ϕ̄M = max
E⊆M

ϕE. (15)

This number will be called the structural redundancy of M and
is equivalent with the definition introduced in Section IV. It
holds that ϕM ≥ 0, and the surplus of M is clearly less or equal
to the structural redundancy of M , i.e.,

ϕ̄M ≥ ϕM. (16)

Furthermore, the structural redundancy ϕ̄ is a supermodular
function [15], i.e., ϕ̄ satisfies inequality (13). A set M is said to
be a minimal set of structural redundancy ϕ̄M if

ϕ̄E < ϕ̄M (17)

for all E ⊆ M .
Let M be any subset in M. Among all subsets E of M with

maximal surplus, i.e.,

ϕE = ϕ̄M (18)

there exists a unique minimal subset [15]. This set will be de-
noted as M+ and will be called the structurally overdetermined
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part of M . In [15], it is shown that the set M can be partitioned
into M+ ∪ (M\M+) such that

ϕ̄M = ϕ̄M+ (19)

ϕ̄(M\M+) = 0. (20)

This means that M+ contains all structural redundancy
of M , and this is also discussed in Section III. The
Dulmage–Mendelsohn decomposition can be used to compute
the structurally overdetermined part in an efficient way [9],
[11]. Note that given any set M of equations such that

M+ �= ∅ (21)

it follows from (18) and Definition 2 that M+ is a PSO set. This
means that properties of M+ sets carry over to PSO sets.
Lemma 5: The following three statements about a set M are

equivalent.

1) The set M is a PSO set.
2) The set M is a minimal set of surplus ϕM > 0.
3) The set M is a minimal set of structural redundancy

ϕ̄M > 0.

Proof: 1) ⇒ 2). Since M = M+ and M �= ∅, it follows
from (18) that M is a minimal set of surplus ϕM > 0.

2) ⇒ 3). Since M is a minimal set of surplus ϕM > 0, i.e.,
it satisfies (14) for all E ⊂ M . Let M1 be an arbitrary proper
subset of M . It follows that

ϕ̄M1 = max
E⊆M1

ϕE < max
Ē⊆M

ϕĒ = ϕ̄M

according to (14). Since M1 is an arbitrary proper subset of
M , it follows that M is a minimal set of structural redundancy
ϕ̄M = ϕM > 0.

3) ⇒ 1). Since M is a minimal set of structural redundancy
ϕM > 0, it follows from (19) that M = M+ and M �= ∅, i.e.,
M is a PSO set. �

Proof of Lemma 1: From the definition of the surplus
function ϕ in (12), it follows that

ϕ (M\{e}) ≥ ϕ(M) − 1. (22)

This, (16), and ϕM = ϕ̄M give that

ϕ̄ (M\{e}) ≥ ϕ̄(M) − 1. (23)

Since M is a PSO set, Lemma 5 states that M is a minimal set
of structural redundancy ϕ̄M , i.e.,

ϕ̄(M) > ϕ̄ (M\{e}) ≥ ϕ̄(M) − 1 (24)

which implies (5). This completes the proof. �
From this theorem, (18) and (21), it follows that, for any PSO

set with structural redundancy ϕ̄1 > 1, there exists a proper
subset which is a PSO set with structural redundancy ϕ̄1 − 1.

Corollary 1: If M is a PSO set, then for all its equivalence
classes Mi defined by (7), it holds that

|Mi| = |Xi| + 1. (25)

Proof: Let Mi be an arbitrary equivalence class which,
according to the decomposition, implies that for any e ∈ Mi,
(M\{e})+ = M\Mi. Then, we form

ϕ(M)−ϕ (M\{e})+ =(|M |−|X|)−(|M\Mi|−|X\Xi|)

which can be simplified to

ϕ(M) − ϕ (M\{e})+ = |Mi| − |Xi|.

Since M and (M\{e})+ are PSO sets, it follows that

ϕ̄(M) − ϕ̄ (M\{e})+ = |Mi| − |Xi|.

Then Lemma 1 and (19) imply (25), and this proves this
corollary. �

Proof of Lemma 2: Assume that M is an MSO set. The set
M is therefore an SO set, and it follows that 0 < ϕM ≤ ϕ̄M .
This and (19) imply that M+ �= ∅, i.e., M+ is a PSO set and,
therefore, also an SO set. Since M is an MSO set, it follows
that M = M+, i.e., M is a PSO set.

Assume that M has structural redundancy ϕ̄M > 1. Then, it
follows from Lemma 1 that

ϕ̄ (M\{e}) = ϕ̄(M) − 1 ≥ 1. (26)

This implies that (M\{e})+ �= ∅ and that (M\{e})+ ⊂ M is
a PSO set which contradicts that M is an MSO set. Hence,
ϕ̄M = 1.

Assume that M is a PSO set and that ϕ̄M = 1. This and
(18) imply that ϕM = 1. By using Lemma 5, it follows that all
proper subsets E ⊂ M have ϕE = 0, i.e., E is not an SO set.
Hence, M is an MSO set. �
Lemma 6: Given two PSO sets M1 and M2, it follows that

M1 ∪ M2 is a PSO set and that

ϕ̄(M1 ∪ M2) ≥ max(ϕ̄M1, ϕ̄M2). (27)

Equality is obtained if and only if ϕ̄M1 ≤ ϕ̄M2 and M1 ⊆ M2

or ϕ̄M2 ≤ ϕ̄M1 and M2 ⊆ M1.
Proof: See [15, Theorem 1.2.1]. �

Lemma 7: If E and M are two equation sets such that E ⊆
M , then E+ ⊆ M+.

Proof: The fact that E ⊆ M implies that E+ ∪ M+ ⊆ M
and from (19) also that

ϕ̄(M+ ∪ E+) ≤ ϕ̄M = ϕ̄M+. (28)

Lemma 6 implies that

ϕ̄M+ ≤ max(ϕ̄M+, ϕ̄E+) ≤ ϕ̄(M+ ∪ E+). (29)

The inequalities (28) and (29) give that

ϕ̄(M+ ∪ E+) = ϕ̄M+ (30)
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and ϕ̄E+ ≤ ϕ̄M+. This and the equality in (30) imply that
E+ ⊆ M+ according to Lemma 6. �

Proof of Lemma 3: This theorem follows immediately
from Lemma 7 by noting that E is a PSO set, i.e., E = E+

and E ⊆ (M\{e}). �
Lemma 8: Let M be a PSO set and Mi an arbitrary equiva-

lence class defined by (7). If E is a PSO set such that E ⊆ M
and E ∩ Mi �= ∅, then Mi ⊆ E.

Proof: Assume that there exists an e ∈ Mi\E ⊆ M\E.
From Lemma 3, it follows that E ⊆ (M\{e})+. This and the
definition of Mi imply that E ⊆ M\Mi, which contradicts the
assumption and the lemma follows. �

Proof of Theorem 1: Follows immediately from
Lemma 8. �
Lemma 9: If M is a PSO set and {Mi}i∈I are its equivalence

classes, then

ϕ(∪i∈I′Mi) = ϕ ({Mi}i∈I′) (31)

for all I ′ ⊆ I .
Proof: By using the notation of the structural decomposi-

tion described in Section V-A, the surplus of ∪i∈I′Mi can be
expressed as

ϕ(∪i∈I′Mi)= | ∪i∈I′ Mi|−| ∪i∈I′ Xi| − |varX0(∪i∈I′Mi)|
(32)

which can be rewritten as

ϕ(∪i∈I′Mi)=
∑
i∈I′

(|Mi|−|Xi|)−|varX0(∪i∈I′Mi)| . (33)

Corollary 1 states that |Mi| = |Xi| + 1 for all i ∈ I and, con-
sequently, that

ϕ(∪i∈I′Mi) = |I ′| − |varX0(∪i∈I′Mi)| (34)

which is equal to ϕ({Mi}i∈I′). �
Proof of Theorem 2: Assume that ∪i∈JMi is a PSO set.

From Lemma 5, it follows that

ϕ(∪i∈J′Mi) < ϕ(∪i∈JMi) (35)

for all J ′ ⊂ J . From Lemma 9, it then follows that

ϕ ({Mi}i∈J′) < ϕ ({Mi}i∈J) (36)

for all J ′ ⊂ J . Hence, {Mi}i∈J is a minimal set of sur-
plus ϕ({Mi}i∈J), i.e., {Mi}i∈J is a PSO set according to
Lemma 5.

Now, we will show the reverse implication. Assume that
{Mi}i∈J is a PSO set. If M ′ ⊂ ∪i∈JMi, then

M ′ ⊇ (M ′)+ = ∪i∈J′Mi (37)

for some J ′ ⊂ J according to Theorem 1. Since {Mi}i∈J is a
PSO set, it follows from Lemma 5 and Lemma 9 that

ϕ(∪i∈JMi) =ϕ ({Mi}i∈J) > ϕ ({Mi}i∈J′)

=ϕ(∪i∈J′Mi). (38)

From (18) and (37), it follows that

ϕ(∪i∈J′Mi) = ϕ(M ′)+ ≥ ϕM ′. (39)

The inequalities (38) and (39) imply that ∪i∈JMi is a minimal
set of surplus ϕ(∪i∈JMi), i.e., ∪i∈JMi is a PSO set according
to Lemma 5. �

Proof of Theorem 3: First, it is shown that each MSO set
is found at least once. Let E ⊆ M be an arbitrary MSO set.
A branch, of the recursive tree, that results in this MSO set
can be obtained in the following way. In each recursive step,
chose the first branch where an equivalence class not included
in E is removed. It follows from Lemma 3 and Theorem 2 that,
by following this branch, a sequence of decreasing PSO sets
all containing E is obtained. Hence, the MSO set E is found
this way.

Finally, it is shown that the same MSO set E cannot be
found if we deviate from the branch described earlier, i.e., that
the MSO set E is found only once. In each recursive step, in
all branches that precede this branch, only equivalence classes
contained in E have been removed. Therefore, these branches
do not result in the set E. On the other hand all succeeding
branches contain the first equivalence class Ê not contained in
E, i.e., the class removed in the branch that gives the set E.
This follows from the fact that Ê has been removed from R
and is not allowed to be removed. Furthermore, in all lumped
structures in these branches, R′ is constructed such that Ê is
an equivalence class not contained in R′. Hence, the branch
described earlier is the only branch that results in the MSO set
E. This completes the proof. �
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