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Abstract

Parity space approach and H2 approach are two important fault detection approaches. This paper studies the relationship between these
two approaches, which reveals frequency domain characteristics of the optimal solution of the parity space approach on the one side and
provides a numerical solution of the H2-optimal design of residual generators on the other side.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Parity space approach and H2 approach are two com-
monly used approaches for designing robust fault detec-
tion systems [1,9,14]. The former is initially proposed
by [3,4] and has been extensively studied since then
[2,5–7,10,12,13,15]. The latter is proposed by [8].

In this paper, some insight will be shed on the relation-
ship between these two approaches, which simultaneously
enhances our understanding about the optimal solution of
the parity space approach and provides us a numerical way
to calculate the H2-optimal solution of residual generator
design. It is proven that the optimal parity vector approx-
imates the H2-optimal residual generator and thus it is a
bandpass filter whose bandwidth will become narrower as
the order of the parity relation increases.

The paper is organized as follows. First, the parity space
approach is briefly reviewed in Section 2. Then, Section 3
gives the optimal solution of the H2 approach in the context
of discrete-time systems. The relationship between the parity
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space approach and the H2 approach is studied in Sec-
tion 4. Finally, the results are illustrated by an example in
Section 5.

2. Brief review of the parity space approach

In this contribution, we consider linear discrete time-
invariant systems described by

x(k + 1) = Ax(k) + Bu(k) + Edd(k) + Ef f (k), (1)

y(k) = Cx(k) + Du(k) + Fdd(k) + Ff f (k), (2)

where x ∈ Rn, u ∈ Rku, y ∈ Rm, d ∈ Rkd , f ∈ Rkf denote
the vector of states, control inputs, measurement outputs, un-
known disturbances and faults to be detected, respectively.
A, B, C, D, Ed, Ef , Fd and Ff are known matrices of ap-
propriate dimensions. It is assumed that (C, A) is observ-
able.

A parity relation based residual generator can be con-
structed as [1,10,12,13,15]

rs(k) = vs(ys(k) − Hu,sus(k)), (3)
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where rs ∈ R is the residual signal, row vector vs ∈ Rm(s+1)

is the parity vector which satisfies

vs ∈ Ps, Ps = {vs | vsHo,s = 0}. (4)

Ps is called parity space, s denotes the order of the parity
relation, and

ys(k) =

⎡
⎢⎢⎣

y(k − s)

y(k − s + 1)
...

y(k)

⎤
⎥⎥⎦ , us(k) =

⎡
⎢⎢⎣

u(k − s)

u(k − s + 1)
...

u(k)

⎤
⎥⎥⎦ ,

Hu,s =

⎡
⎢⎢⎣

D O · · · O

CB D
.. .

...
...

. . .
. . . O

CAs−1B · · · CB D

⎤
⎥⎥⎦ , Ho,s =

⎡
⎢⎢⎣

C

CA
...

CAs

⎤
⎥⎥⎦ .

(5)

The dynamics of residual generator (3) is governed by

rs(k) = vs(Hd,sds(k) + Hf,sfs(k)), (6)

where

ds(k) =

⎡
⎢⎢⎣

d(k − s)

d(k − s + 1)
...

d(k)

⎤
⎥⎥⎦ , fs(k) =

⎡
⎢⎢⎣

f (k − s)

f (k − s + 1)
...

f (k)

⎤
⎥⎥⎦ ,

Hd,s =

⎡
⎢⎢⎢⎣

Fd O · · · O

CEd Fd

. . .
...

...
. . .

. . . O

CAs−1Ed · · · CEd Fd

⎤
⎥⎥⎥⎦ ,

Hf,s =

⎡
⎢⎢⎢⎢⎣

Ff O · · · O

CEf Ff

. . .
...

...
. . .

. . . O

CAs−1Ef · · · CEf Ff

⎤
⎥⎥⎥⎥⎦ . (7)

If there exists such a parity vector vs ∈ Ps , which makes

vsHd,s = 0, vsHf,s �= 0 (8)

then the residual is said to be fully decoupled from the un-
known disturbances. However, such a full decoupling is sel-
dom achievable in practice, since there are usually less mea-
surements than unknown disturbances in the system. And
in these cases, a suitable trade-off between the sensitivity
of the residual generator to the faults and its robustness to
the disturbances is necessary. To the aim of evaluating the
performance of the residual generator, Js defined by

Js = vsHd,sH
T
d,sv

T
s

vsHf,sH
T
f,sv

T
s

(9)

is one of the most often used indexes [5,7,15]. So the opti-
mal design of the residual generator consists in finding the

optimal parity vector vs ∈ Ps which solves the optimization
problem

min
vs∈Ps

Js = min
vs∈Ps

vsHd,sH
T
d,sv

T
s

vsHf,sH
T
f,sv

T
s

. (10)

Ding et al. [5] have proven that with the increase of the
order s of the parity relation, the performance of the residual
generator in the sense of (9) will also be improved, i.e.

min
vs+1∈Ps+1

Js+1 < min
vs∈Ps

Js . (11)

Because minvs∈Ps Js is lower bounded by 0 and decreases
with respect to s, the limit lims→∞minvs∈Ps Js exists and

lim
s→∞ min

vs∈Ps

Js = min
s

min
vs∈Ps

Js . (12)

3. Optimal solution of the H2 approach

The H2 approach is originally proposed in [8] in the con-
text of linear continuous-time systems. In this section, a
discrete-time version of this approach will be presented.

Given system (1)–(2), use

Gu(z) = C(zI − A)−1B + D,

Gd(z) = C(zI − A)−1Ed + Fd ,

Gf (z) = C(zI − A)−1Ef + Ff

to denote the transfer function matrices from u, d and f to y,
respectively. It is well-known that all linear time-invariant
residual generators can be expressed by [9]

r(z) = R(z)(M̂u(z)y(z) − N̂u(z)u(z)), (13)

where R(z) ∈ RH∞ is called post-filter and arbitrarily se-
lectable, (M̂u(z), N̂u(z)) is a left coprime factorization of
Gu(z), i.e. Gu(z)= M̂−1

u (z)N̂u(z). M̂u(z) and N̂u(z) can be
calculated as follows:

M̂u(z) = I − C(zI − A + LC)−1L,

N̂u(z) = D + C(zI − A + LC)−1(B − LD), (14)

where L is a matrix of compatible dimensions that stabilizes
A − LC.

The dynamics of residual generator (13) is governed by

r(z) = R(z)M̂u(z)(Gd(z)d(z) + Gf (z)f (z)). (15)

In case that a full decoupling is not achievable, the H2
performance index for the optimal design of a robust residual
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generator is defined as

min
R(z)∈RH1×m∞

J = min
R(z)∈RH1×m∞

∫ 2�
0 R(ej�)M̂u(e

j�)Gd(ej�)G∗
d(ej�)M̂∗

u(ej�)R∗(ej�) d�∫ 2�
0 R(ej�)M̂u(ej�)Gf (ej�)G∗

f (ej�)M̂∗
u(ej�)R∗(ej�) d�

, (16)

where the superscript ∗ denotes the conjugate transpose of
the matrix and the post-filter R(z) is assumed to be a vector
of transfer functions.

Theorem 1. Given system (1)–(2), the optimal solution to
optimization problem (16) is

Ropt(z) = f�0(z)p(z), Jopt = inf
�

�min(�) (17)

where f�0(z) is an ideal frequency-selective filter with the
selective frequency at �0, which satisfies

f�0(e
j�)q(ej�) = 0, � �= �0, (18)

∫ 2�

0
f�0(e

j�)q(ej�)q∗(ej�)f ∗
�0

(ej�) d�

= q(ej�0)q∗(ej�0), ∀qT(z) ∈ RH2,

�min(�) and p(ej�) are, respectively, the minimal gen-
eralized eigenvalue and corresponding eigenvector of the
following generalized eigenvalue–eigenvector problem

p(ej�)(M̂u(e
j�)Gd(ej�)G∗

d(ej�)M̂∗
u(ej�)

− �min(�)M̂u(e
j�)Gf (ej�)G∗

f (ej�)M̂∗
u(ej�))

= 0 (19)

and �0 is the frequency at which �min(�) achieves its min-
imum, i.e.

�min(�0) = inf
�

�min(�).

Proof. Substituting Ropt(z) = f�0(z)p(z) into the perfor-
mance index J and taking (18) into consideration, there is

J=
p(ej�0)M̂u(e

j�0)Gd(ej�0)G∗
d(ej�0)M̂∗

u(ej�0)p∗(ej�0)

p(ej�0)M̂u(ej�0)Gf (ej�0)G∗
f (ej�0)M̂∗

u(ej�0)p∗(ej�0)
.

From (19), it is clear that

J = �min(�0).

Note that for any post-filter R(z) ∈ RH1×m∞ and for all �

R(ej�)M̂u(e
j�)Gd(ej�)G∗

d(ej�)M̂∗
u(ej�)R∗(ej�)

− �min(�0)R(ej�)M̂u(e
j�)Gf (ej�)G∗

f (ej�)

× M̂∗
u(ej�)R∗(ej�)�0

holds, which leads to
∫ 2�

0
R(ej�)M̂u(e

j�)Gd(ej�)G∗
d(ej�)M̂∗

u(ej�)

× R∗(ej�) d� − �min(�0)

∫ 2�

0
R(ej�)M̂u(e

j�)

× Gf (ej�)G∗
f (ej�)

× M̂∗
u(ej�)R∗(ej�) d��0.

As a result, we have for any post-filter R(z) ∈ RH1×m∞
J ��min(�0).

This demonstrates that �min(�0) is indeed the optimal value
and correspondingly Ropt(z) = f�0(z)p(z) is the optimal
solution. �

Remark 1. At any frequency �, the matrices M̂u(e
j�)

Gd(ej�)G∗
d(ej�)M̂∗

u(ej�) and M̂u(e
j�) Gf (ej�)G∗

f (ej�)

M̂∗
u(ej�) are positive semi-definite Hermitian matrices.

Therefore, the generalized eigenvalues �(�) in (19) are
always real [11].

Remark 2. The optimal solution to optimization problem
(16) is independent of matrix L in the sense that, as long as L
is stabilizing, Ropt(z)M̂u(z) and Jopt do not change with L.

4. Relationship between two approaches

In this section, we present the main result of this paper, the
discussion on the relationship between the optimal solutions
of the parity space approach and the H2 approach.

Suppose that {gd(0), gd(1), . . .} is the impulse response
of system(1)–(2) to the unknown disturbances. Apparently,

gd(0) = Fd, gd(1) = CEd, . . . ,

gd(s) = CAs−1Ed, . . . (20)

The matrix Hd,s can then be expressed in terms of the
impulse response as follows

Hd,s =

⎡
⎢⎢⎢⎣

gd(0) O · · · O

gd(1) gd(0)
. . .

...
...

. . .
. . . O

gd(s) · · · gd(1) gd(0)

⎤
⎥⎥⎥⎦ .

Partition the parity vector vs as

vs = [vs,0 vs,1 · · · vs,s ] ,

where the row vector vs,i ∈ Rm, i = 0, 1, . . . s.
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Then, we have

vsHd,s = [�(s) �(s − 1) · · · �(0) ] ,

where

�(i) =
i∑

l=0

�i−lgd(l), �i = vs,s−i , i = 0, 1, . . . s.

Let s go to infinity. It leads to

lim
s→∞ vsHd,s = [�(∞) · · · �(0) ] (21)

and in this case

�(i) =
i∑

l=0

�i−lgd(l) = �(i) ⊗ gd(i)

=Z−1(P (z)Gd(z)), (22)

P(z) = Z[�(i)], �(i) = {�0, �1, . . .}, (23)

where ⊗ denotes the convolution. Eq. (23) means that P(z)

is the z-transform of the sequence {�0, �1, . . .}.
According to the Parseval Theorem, we have

lim
s→∞ vsHd,sH

T
d,sv

T
s =

∞∑
i=0

�(i)�T(i)

= 1

2�

∫ 2�

0
P(ej�)Gd(ej�)

× G∗
d(ej�)P ∗(ej�) d�. (24)

Similarly, it can be proven that

lim
s→∞ vsHf,sH

T
f,sv

T
s = 1

2�

∫ 2�

0
P(ej�)Gf (ej�)

× G∗
f (ej�)P ∗(ej�) d�. (25)

On the other side, if given a residual generator (13), we
can always construct a parity vector, as stated in Lemma 1.

Lemma 1. Given system (1)–(2) and a residual generator
(13) with R(z) ∈ RH1×m∞ . Then the row vector defined by

v = [ · · · C̄ĀB̄ C̄B̄ D̄ ] , (26)

where (Ā, B̄, C̄, D̄) is the state space realization of
R(z)M̂u(z), belongs to the parity space Ps (s → ∞).

Proof. Assume that (Ar, Br, Cr, Dr) is a state space real-
ization of R(z). Recalling (14), we know that

Ā =
[
A − LC O

−BrC Ar

]
, B̄ =

[
L

Br

]
,

C̄ = [−DrC Cr ] , D̄ = Dr .

It can be easily obtained that

lim
s→∞ vHo,s = lim

s→∞ [ · · · C̄ĀB̄ C̄B̄ D̄ ]

⎡
⎢⎢⎣

C

CA

CA2

...

⎤
⎥⎥⎦ ,

= lim
s→∞ [ · · · CrArBr CrBr Dr ]

×

⎡
⎢⎢⎣

C

C(A − LC)

C(A − LC)2

...

⎤
⎥⎥⎦ . (27)

For a linear discrete-time system

�(k + 1) = (A − LC)�(k)

�(k) = C�(k) (28)

with any initial state vector �(0) = �0 ∈ Rn, apparently,

�(0) = C�0,

�(1) = C(A − LC)�0,

�(2) = C(A − LC)2�0, . . . .

Since R(z) ∈ RH1×m∞ and L is selected to ensure the stability
of A−LC, the cascade connection of system (28) and R(z)

is stable. So

lim
k→∞Z−1{R(z)�(z)} = 0.

Note that

lim
k→∞Z−1{R(z)�(z)}

= lim
s→∞ [ · · · CrArBr CrBr Dr ]

×

⎡
⎢⎢⎣

C�0
C(A − LC)�0
C(A − LC)2�0

...

⎤
⎥⎥⎦ ,

we get

lim
s→∞ [ · · · CrArBr CrBr Dr ]

×

⎡
⎢⎢⎣

C

C(A − LC)

C(A − LC)2

...

⎤
⎥⎥⎦ �0 = 0,

for any initial state vector �0 ∈ Rn. Thus it can be concluded
that

lim
s→∞ [ · · · CrArBr CrBr Dr ]

×

⎡
⎢⎢⎣

C

C(A − LC)

C(A − LC)2

...

⎤
⎥⎥⎦ = 0.

At last, from (27) we obtain

lim
s→∞ vHo,s = 0,
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i.e. the vector v defined by (26) belongs to the parity space
Ps (s → ∞). Lemma 1 is thus proven. �

It is of interest to note that the vector v is indeed com-
posed of the impulse response of the residual generator
R(z)M̂u(z) = D̄ + C̄(zI − Ā)−1B̄, which is given by{
D̄, C̄B̄, C̄ĀB̄, C̄Ā2B̄, . . .

}
.

Based on the above analysis, the following theorem can
be obtained.

Theorem 2. Given system (1)–(2) and assume that vs,opt,

Js,opt and Ropt(z), Jopt are the optimal solutions of opti-
mization problems

Js,opt = min
vs∈Ps

Js = min
vs∈Ps

vsHd,sH
T
d,sv

T
s

vsHf,sH
T
f,sv

T
s

= vs,optHd,sH
T
d,sv

T
s,opt

vs,optHf,sH
T
f,sv

T
s,opt

, (29)

Jopt = min
R(z)∈RH1×m∞

J = min
R(z)∈RH1×m∞

∫ 2�
0 R(ej�)M̂u(e

j�)Gd(ej�)G∗
d(ej�)M̂∗

u(ej�)R∗(ej�) d�∫ 2�
0 R(ej�)M̂u(ej�)Gf (ej�)G∗

f (ej�)M̂∗
u(ej�)R∗(ej�) d�

,

=
∫ 2�

0 Ropt(e
j�)M̂u(e

j�)Gd(ej�)G∗
d(ej�)M̂∗

u(ej�)R∗
opt(e

j�) d�∫ 2�
0 Ropt(ej�)M̂u(ej�)Gf (ej�)G∗

f (ej�)M̂∗
u(ej�)R∗

opt(e
j�) d�

, (30)

respectively. Then

lim
s→∞ Js,opt = Jopt, (31)

P(z) = Ropt(z)M̂u(z), (32)

where

P(z) = Z[�(i)],
�(i) = {vs→∞,opt,s , vs→∞,opt,s−1, . . . ,

vs→∞,opt,0}. (33)

Proof. Let vs→∞,opt denote the optimal solution of opti-
mization problem (29) as s → ∞, then it follows from
(12), (23)–(25) that for any left coprime factorization of
Gu(z) = M̂−1

u (z)N̂u(z), the post-filter Ro(z) given by

Ro(z) = P(z)M̂−1
u (z),

where P(z) is defined by (33), leads to

J |R(z)=Ro(z)
= lim

s→∞ Js,opt = lim
s→∞ min

vs∈Ps

Js

= min
s

min
vs∈Ps

Js � min
R(z)∈RH1×m∞

J . (34)

We now demonstrate that

J |R(z)=Ro(z)
= Jopt = min

R(z)∈RH1×m∞
J . (35)

Suppose that (35) does not hold. Then, the optimal solution
of optimization problem (30), denoted by Rc(z) ∈ RH1×m∞

and different from Ro(z), should lead to

J |R(z)=Rc(z)
= min

R(z)∈RH1×m∞
J < J |R(z)=Ro(z)

. (36)

According to Lemma 1, we can find a parity vector v ∈ Ps

whose components are just a re-arrangement of the impulse
response of Rc(z)M̂u(z). Moreover, because of (23)–(25),
we have

Js |vs=v = J |R(z)=Rc(z)
. (37)

As a result, it follows from (34), (36) and (37) that

Js |vs=v < min
s

min
vs∈Ps

Js

which is an obvious contradiction. Thus we can conclude
that

Jopt = min
R(z)∈RH1×m∞

J = J |R(z)=Ro(z)
= lim

s→∞ Js,opt

and

Ro(z) = P(z)M̂−1
u (z) := Ropt(z)

solve optimization problem (30). Theorem 2 is thus
proven. �

Theorem 2 gives a deeper insight into the relationship
between the parity space approach and the H2 approach and
reveals some very interesting facts when the order of the
parity relation s increases:

• The optimal performance index Js,opt of the parity space
approach converges to a limit which is just the optimal
performance index Jopt of the H2 approach.

• There is a one-to-one relationship between the opti-
mal solutions of optimization problems (29) and (30)
when the order of the parity relation s → ∞. Since
Ropt(z) is a band-limited filter, the frequency response
of vs→∞,opt is also band-limited.

The above result can be applied in several ways, for in-
stance:

• For multi-dimensional systems, the optimal solution of
the H2 approach can be approximately computed by at
first calculating the optimal solution of the parity space
approach with a high order s and then doing the z-
transform of the optimal parity vector. It is worth notic-
ing that numerical problem may be met for some sys-
tems, especially when A is unstable.
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Fig. 1. The change of the optimal performance index Js,opt with respect
to s.

• In the parity space approach, a high order s will improve
the performance index Js,opt but, on the other side, in-
crease the online computational effort. To determine a
suitable trade-off between performance and implemen-
tation effort, the optimal performance index Jopt of the
H2 approach can be used as a reference value.

• Based on the property that the frequency response of
vs→∞,opt is band-limited, advanced parity space ap-
proaches can be developed to achieve both a good per-
formance and a low order parity vector. For instance, in
Refs. [17,16] infinite impulse response (IIR) filter and
wavelet transform have been introduced, respectively,
to design optimized parity vector of low order and good
performance.

5. Numerical example

Given a discrete-time system modelled by (1)–(2), where

A =
[

1 −1.30
0.25 −0.25

]
, B =

[
2
1

]
, C = [0 1 ] ,

Ed =
[

0.4
0.5

]
, Ef =

[
0.6
0.1

]
, D = Fd = Ff = 0. (38)

As system (38) is stable, matrix L in (14) can be selected
to be zero matrix and thus M̂u(z) is an identity matrix. To
solve the generalized eigenvalue–eigenvector problem (19)
to get �0 that achieves �min(�0) = inf� �min(�), note that

�min(�) = 0.41 − 0.4 cos �

0.0125 + 0.01 cos �
.

Therefore, the optimal performance index of the H2 ap-
proach is Jopt =0.4444 and the selective frequency is �0=0.

Fig. 1 demonstrates the change of the optimal perfor-
mance index Js,opt with respect to the order of the parity re-
lation s. From the figure it can be seen that Js,opt decreases

-3 -2 -1 0 1 2 3
0

5

10

15

20

25

30

35

40

45

50

s=20
s=50
s=100
s=200

ω

⏐ν
s,

op
t (

ejω
)⏐

-π π

Fig. 2. The frequency response of the optimal parity vector vs,opt with
respect to s.

with the increase of s and, moreover, Js,opt converges to Jopt
when s → ∞. Fig. 2 shows the frequency responses of the
optimal parity vector vs,opt when s is chosen as 20, 50, 100
and 200, respectively. We see that the bandwidth of the fre-
quency response of vs,opt becomes narrower and narrower
with the increase of s.

6. Conclusion

The relationship between the parity space approach and
the H2 approach to fault detection of linear discrete time-
invariant systems has been discussed in this paper. It is
shown that with the increase of the order of the parity re-
lation s, the optimal performance index of the parity space
approach converges to that of the H2 approach, and the fre-
quency response of the optimal parity vector also converges
to the optimal post-filter Ropt(z) in the H2 approach. This
result not only leads to a numerical solution of the H2 opti-
mal design but also provides theoretical basis for developing
advanced parity space approaches.
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