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Abstract

Fault detection is addressed within a statistical framework. The goal of this paper is to propose an optimal statistical tool to detect a
fault in a linear stochastic (dynamical) system with uncertainties (nuisance parameters or nuisance faults). It is supposed that the nuisance
parameters are unknown but non-random; practically, this means that the nuisance can be intentionally chosen to maximize its negative
impact on the monitored system (for instance, to mask a fault). Examples of ground station based and receiver autonomous Global
Positioning System (GPS) integrity monitoring illustrate the proposed method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction analytical redundancy is mainly deterministic; the random
noises are only heuristically treated. Recently, the deter-
A key issue in fault detection/isolation is to state the sig- ministic analytical redundancy approach, namely the fault
nificance of the observed deviation (fault) with respect to detection problem with nuisance parameters or nuisance
random noises, deterministic uncertainties (also called nui- faults, has been extended to the case where the process
sance parameters) or nuisance faults (in case of fault iso-and sensor noises are also considei@defi, Mingori, &
lation). The purpose of this paper is to propose an optimal Speyer, 2008 The stochastic fault detection filter is derived
statistical tool to detect a fault in a linear stochastic (dynami- by maximizing the transmission from the target fault to the
cal) system with nuisance parameters or nuisance faults. It isprojected output while minimizing the transmission from
supposed that the nuisance parameters (faults) are unknowithe nuisance parameters (nuisance faults) and from the pro-
but non-random. In automatic control community, the prob- cess and sensor noises. Let us recall that the performance of
lem of nuisance parameters (or nuisance faults) rejection isany statistical fault detector is defined with the probabilities
traditionally treated in the framework of the analytical re- of false decisions (false alarm and non-detection). However,
dundancy approach. This approach is based on some natthe cost criterion proposed i@hen et al. (2003¥oes not
ural geometric properties of static (dynamic) systems. The include the probabilities of false alarm and non-detection.
interested readers can find the details from the survey pa-Instead of this, the cost criterion includes the covariance
pers Mironovski, 1980; Patton & Chen, 1991; Frank, 1990; matrices representing the transmissions from the target
Staroswiecki, 200jland the booksRatton, Frank, & Clark,  fault, nuisance faults and noises, as in traditional analytical
1989; Gertler, 1998; Chen & Patton, 199%he theory of redundancy papers.
When the impact of random noise is non-negligible the
* Part of this work has been presented at Qualita 2003, Nancy, France, problem of statistical fault detection should be addressed
March 18-20, 2003, at the American Control Conference, Denver, C_ol— (Basseville, 1997; Basseville & Nikiforov, 20p2This
orado, USA, June 4-6, 2003 and at the SAFEPROCESS 2003, Washing- . . . . .. .
ton, D.C.. USA, June 9-11, 2003. problem is especially |r.n_portant in safety—grltlcal applica-
* Corresponding author. Tel.: +33325715678; fax: +33325715699. tions where the probabilities of false decisions are widely
E-mail addressnikiforov@utt.fr (1. Nikiforov). used to describe the minimum operational performance
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requirements. Traditionally, the fault detection problem is (with respect to the nuisance parameter) that is especially
split into two steps Basseville, 199y residual generation interesting for monitoring the systems operating in a hostile
and residual evaluation (design of decision rules based onenvironment. We propose a lower bound for the probability
these residuals). Even if each step is designed by using arof non-detection (optimality theorem). To our knowledge
optimal approach (with a particular optimality criterion), the no proof of optimality in a mathematically precise sense
optimality of the total procedure with respect to the proba- exists. It is shown that the optimal solution coincides with
bilities of false alarm and non-detection is not warranted. the generalized likelihood ratio test applied to the parity

On the other hand, there exist an invariant hypotheses testvector computed by using traditional analytical redundancy
ing approach (if the original problem is invariant) or an adap- approach. By using the proposed optimality theorem, the
tive testing method (such as the generalized likelihood ratio problem of optimal residual generation is solved, the full-
test). Key features of these statistical methods are their abil-set parity vector is compared against a subset one and the
ity to handle noises and uncertainties, to reject nuisance pa-impact of the dynamic nuisance parameters is evaluated.
rameters, to decide between two hypotheggs(no faults) The paper is organized as follows. We start with the prob-
and.?’1 (there exists a fault). But the traditional hypotheses lem statement in Section 2. A simple linear model (without
testing approaches use relatively simple (with respect to au-nuisance) is treated in Section 3. Next, the nuisance param-
tomatic control community demands) statistical models (i.e. eters are introduced and the problem of optimal fault de-
parameterized distributions). Hence, these methods shouldection with nuisance is discussed in Section 4. Section 5
be adapted to more complex models used in fault detection.is devoted to a dynamical model with a deterministic state
Another difficulty of hypotheses testing approach is the op- equation governed by an unknown input. Examples of the
timality criterion definition in the case of vector parameter GPS integrity monitoring illustrating the relevance of the
and/or composite hypotheses, which represents a considerproposed tools are described in Section 6.
able practical interest in fault detection.

Therefore, the following paradoxical situation takes place 2. Problem statement
in the fault detection. The ideas of analytical redundancy are o _
used more then 30 years and almost considered as standard-1- Statistical hypotheses testing problem
Recently, the statistical fault detection methods are inte-
grated into two steps procedure: residual generation by usingtic
analytical redundancy and residual evaluation by using sta-
tistical tests, but the following problems remain unsolved:

There are two problem statements in the theory of statis-
al fault detection: the hypotheses testing problem and the
change detection problenB#ésseville & Nikiforov, 2002
In the present paper, we address the binary hypotheses test-
(1) What is a lower bound for the probability of non- ing problem. The quality of a testis defined with the prob-
detection over the class of detectors with a given prob- ability of false alarmix = Pro(é # #0), where Pr stands
ability of false alarm and what is the fault detection for observations7, ..., Yx being generated by distribution
method that attains this lower bound when dealing with P;, and thepower function f5(0) =Pry(6= #'1). In case of
an unknown vector of fault and nuisance parameters? a vector parametet, the crucial issue is to find an optimal
(2) Itis well-known that the choice of the parity space can be solution over a set of alternatives which is rich enough. Un-
multiple. Hence, what is the optimal with respect to the fortunately, uniformly most powerful (UMP) tests scarcely
false alarm—non-detection criterion nuisance parameter exist, except when the parameteis scalar, the family of
rejector (or residual generator)? distributions has a monotone likelihood ratio, and the test is
(3) Sometimes it is necessary to deal with a parity sub- one-sided Borovkov, 1998; Lehmann, 1986As we have
space. How to compare the performance index (false mentioned in the introduction, another important issue is
alarm against non-detection) of the full-set parity vector dealing with the nuisance parameters. To solve the com-
against a subset one? posite hypotheses testing problem with nuisance parameters
(4) Sometimes the dynamical model of the nuisance pa-we use the theory developed by Wald in his pap#ald,
rameters is available. How to estimate the impact of 1943 and the theory of invariant tests. We also adapt the
this model on the performance (false alarm against non- Wald’s theory to the case where the parameter of interest
detection) of the optimal fault detector? (fault) 0 and the nuisanc& belong to different subspaces
of the observation space. Therefore, the goal of this paper
is twofold. First, we develop an optimal statistical tool to
solve the problem of faulf detection in the following lin-
ear gaussian model (some motivation for this model can be
found in Basseville (199%)

The contribution of this paper consists in the development
of an optimal statistical approach of fault detection in a

linear stochastic (dynamical) system with nuisance pa-
rameters. It is supposed that the nuisance parameters ar
unknown but non-random; practically, this means that the
nuisance can be intentionally chosen (for example, by ay — gx + pm0 + ¢, (1)

hostile environment) to maximize its negative impact on

the monitored system (for instance, to mask a fault). It is whereY € R" is the measured outpuf, € R" is the pa-
worth noting that this is a so-called “worst-case” approach rameter (fault) of model (1)X € R™ is an unknown and
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non-random state vector (nuisance parametdrjs a full tection problem with respect to a certain group of transfor-
column rank matrix of sizén x r) with r <n andH is a mation. The magnitude of the nuisance parameter (fault)
matrix of size(n x m) with rankH = ¢. It is assumed that is unlimited. Its impact, modeled by the tetX in Eq. (1)
n>=q + r and that the noisé follows a zero-mean gaussian or by a state-space model in Section 5, defines a subspace
distribution, i.e.é ~ .47(0, 621,), with the known variance in the observation spac¥=R". The ability of the invariant

o2 >0 and the(n x n) identity matrix /,. The assumption  hypotheses testing approach to provide us with algorithms
that the noise covariance matrix is scalar is not restrictive. It which detect the target faultwhile being insensitive to the

is used to obtain a simple and lucid presentation. As it will nuisance parameters (or faulisinakes this theory a serious
be shown in Section 3, the general covariance matrix casecandidate for the design of the monitoring systems operat-
immediately follows from the scalar matrix one. Second, the ing in hostile environment. In such a context the determin-
developed tool is used to compare the full-set parity vec- istic nuisanceX with unlimited magnitude can be used by a
tor against a subset one, to solve the problem of “optimal hostile environment to mask a target fault impact modeled
residual generation” and to examine the impact of nuisanceby M0. Let us also stress the drawbacks of the Bayesian
parameter modeled by a state-space model. To conclude thigpproach in such a situation: this approach exploits some a
section, let us discuss the practical relevance of the “false priori information on the distribution oX but this informa-
alarm-non-detection” criterion and the invariant hypotheses tion may not be reliable (hostile environment!). Hence, the
testing approach and also let us provide the reader with someBayesian approach is irrelevant to the case of nuisance pa-
ideas how to use in practice a lower bound for the probabil- rameters governed by a hostile environment. In contrast with

ity of non-detection. the Bayesian approach, the invariant hypotheses testing the-
ory is based on the nuisan¥aejection and, therefore, does
2.2. Practical motivation of the criterion of optimality not use any a priori information on the distributionXf

For many safety-critical applications (such as aircraft nav-
igation systems), a major problem of the existing systems 2.4. Discussion: how to use in practice a lower bound for
consists in its lack of integrity. In the case of navigation the probability of non-detection
system, the integrity monitoring concept defined by the In-
ternational Civil Aviation Organization (ICAO) requires that There exists an opinion among some specialists that the
a navigation system detects faults and removes them fromproblem of lower bound for the probability of non-detection
the navigation solution before they sufficiently contami- in a certain class of tests has a purely theoretical character.
nate the output. The recent researches show that the detedBut this problem is also of practical interest. Let us discuss
tion/exclusion of the navigation message contamination is now how to use in practice a lower bound for the probability
crucially important for the radio-navigation. It is proposed of non-detection.
“to encourage all the transportation modes to give atten-  First, if the integrity requirements are defined in terms
tion to autonomous integrity monitoring of GPS signals” of “false alarm-non-detection” criterion, then it is important
(John Volpe National Transportation System Center, 2001 to know the best theoretically achievable level of integrity.
It is intuitively obvious that the criterion which must be It can happen that the integrity level required by minimum
used should favor reliable detection with few false alarms. performance requirements cannot be achieved even theoret-
A small probability of non-detection is necessary because ically. Such a conclusion is very important for the system
the abnormal measurements are taken in the navigation sysdesigners: either they reduce the required integrity level or
tems, which leads to the unacceptably large position error they improve the sensor performances (augment, for instant,
and, hence, is clearly very undesirable. On the other hand,the signal-to-noise ratio).
false alarms result in lower accuracy of the position estimate  Second, a lower bound for the probability of non-detection
because some correct information is not used. The optimalis useful as @enchmarkfor suboptimal algorithms with a
solution involves a tradeoff between these two contradic- reduced dimension of parity space or with a nonlinear model.
tory requirements. It is worth to note that the probabilis-  Third, often, the problem of integrity monitoring is
tic criterion “false alarm-non-detection” is traditionally used twofold. Namely, the fault tolerance is achieved by imple-
by ICAO as an engineering language to specify and anal- menting an efficient fault detection algorithm and optimal
yse the minimum operational performance requirements (seesensor configurations. Hence, to solve the problem of opti-
John Volpe National Transportation System Center (2001) mal sensor configurations we should use a relation between

RTCA/DO-229A (1998). the statistical performances of the fault detection algorithm
and some indexes of sensor configurations. For example,

2.3. Practical motivation of the invariant hypotheses we would like to verify that the requirements of integrity

testing approach monitoring can be achieved (at least theoretically) by us-

ing a given number and orientation of sensors. In such a
The idea of the invariant hypotheses testing approach issituation, it is not reasonable to use the performance index
based on the existence of the natural invariance of the de-of a particular algorithm to prove this fact, on the contrary,
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we have to use a lower bound that characterizes a certainover the following family of ellipsoids:

class of detection algorithms. The number of sensors and 1

their orientati_ons (together with the model of faults)_ de- &, = {Sc : gTyﬁg == IMO|5=c?, c> 0} , (4)
fine the matricedH and M and the lower bounds provide o

us with the relation between the sensor configuration and because the results W¥ald (1943)does not cover the re-

the _achlevab_le integrity level in a certain class of fault_de- gression model given (2). The main result of this section is
tection algorithms. Another task of sensor configurations ,qiapiished in the following.

arise when we have to estimate the potential capability of

fault detection scheme for a given sensor configuration, Theorem 1. Let us consider the regression mod2). The

for example, for the ‘_‘worst case” GPS navigation sgt_ellite testd* (Y) € A ,, given by Eq (3), is UBCP for deciding
geometries. And again a lower bound for the probability of p.\een the hypothesefo : {0 = 0} and #1 : {0 # 0)
non-detection plays a key role in this investigation. over the family of eIIipsoid(s;l). '

Proof. See Appendix A. [J
3. Simple linear model ppendix

The goal of this section is to apply thald’s (1943)the- 3.2. Discussion of the UBCP test
ory of binary hypotheses testing to a linear gaussian model,
to adapt the optimality criterion to this case and to design
the optimal algorithm that realizes this optimality criterion.

Let us discuss now some issues in detecting the fault vec-
tor 0 in the modelY = M0 + ¢ (or statistically speaking,
deciding between#g : {0 =0} and#1 : {0 # 0}). First of
all, the testo™(Y) coincides with the generalized likelihood
ratio (GLR) test. The GLR test is widely used in practice,
but the problem of its non-asymptotic optimality remains un-
solved. The interested reader can find the detaNkiforov
(2002, Chapter 2)As it follows from Koch (1999, Chapter
2.7), the statisticsA(Y) is distributed according to thg?
law with r degrees of freedom. This layf is central under
# o and non-central unde¥’1 with the non-centrality pa-
rameteri = 1/02||M9||§. Hence, the power functiofi;«(0 :
(1/62)0"MTMO = c?) = Pr2(A(Y) >h(x)) is constant on
the same surfac§, : 1/02|M0|3 = c? (see (4)). Because
the power is constant on the same surf§get is reasonable
to present the power as a function Gt ¢? > By (c?). A
typical family of concentric ellipses and the power function
fs+ are depicted irFig. L

Finally, let us consider that the noigeof model (2) fol-
lows the gaussian distribution” (0, X)), whereX is a known

3.1. Design of the test and its optimality

Originally, Wald has solved the following problem: the
observatiort € R" is generated by one of two gaussian dis-
tributions:.4"(0, 2) and.A"(0 # 0, X), wheref is the mean
vector and is a positive definite covariance matrix. The hy-
potheses testing problem consists in deciding betwé&gn
{0 =0} and #1 : {0 # 0}. The peculiarity of the above
problem is that a uniformly most powerful (UMP) test does
not exist in case of a vector parameterTo overcome this
difficulty, Wald proposes to impose an additional constraint
on the class of considered tests, namelgpastant power
functionover a family of surfaces” defined on the param-
eter space?, in order to avoid the existence of UMP tests
over a subspac@ of Q which are very inefficient ove®\ Q.

Let us assume now the following gaussian linear model:

Y =M0 + ¢, 2) (positive definite) covariance matrix. By using the change

of variablesg(X) = R~1X, where the symmetric matriR
whereY € R" is the observation vectof] € R" is the is define by = RR, and the invariance properties of the
parameter of model (2), i.e. the vector of faulté,is a full gaussian family/"(0, ) (seeBorovkov (1998), the new
column rank matrix of sizén x r) with r <n and ¢ is a hypotheses testing problem can be reduced to the problem
zero-mean gaussian noige~ ./'(0, 621,), 6> 0. As in presented in Theorem 1.

the previous case, the hypotheses testing problem consists
in deciding between#’o : {0 =0} and.#1 : {0 # 0}. Let
us apply the general Wald’s idea to design a test that can4. Linear model with nuisance parameters
potentially be UBCP:
The goal of this section is to apply the results obtained

Ho it AY)=0 F50 <h(o), in Section 3 to a linear gaussian model with a nuisance
5*(Y) = %1 if A(Y) — iz YTM(MTM)—].MTY (3) parameter.
o
Zh(a),

11t is worth emphasizing that in contrast with the asymptotic hy-

S o Tam—1asTy . potheses testing theory of Wald (wh&h— oo) (Wald, 1943, the non-
where=(M" M)~ M Y is the leaSt_Square (LS) estimator asymptotic theory is discussed in the paper. Hence, the known results on

of 0 and 75 = 1/a?M M, is the Fisher matrix. Now, it is asymptotic optimality is not applicable here and the extension of Wald's
necessary to prove that the téétgiven by Eq. (3) is UBCP results is given by Theorem 1.
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Fig. 1. Family of concentric ellipses and the power functlﬁz).

4.1. Nuisance parameters rejection

parity space (plane) spanned by the vectorsandw, and
the “cloud” of random residuals = Py Y; are also shown

Let us recall the regression model (1) with the nuisance in Fig. 2 As it follows from the first of the above condi-
parametetX. The new hypotheses testing problem consists tions (5), the transformation by completely removes the

in deciding between#o : 0 =0 and.#1 : 0 # 0, while
consideringX as anunknownvector. Because the nuisance

interference of the nuisance parametett is illustrated by
Fig. 2, where the residual’s; = Py Y; position is indepen-

parameterX is non-random and its current values are not dent of the nuisance, as desired.

bounded(X € R™), the only solution is to eliminate the
impact of X on the decision functiont. First of all, let us

Moreover, as it can be shown, the statisti€s= WY is

note that the above mentioned hypotheses testing problenmaximal invariant to the grou@. For this reason all invari-

remains invariant under the group of translati@ns= {g :
g(Y)=Y+HC}, C e R"™. Toapply the principle of invari-
ance, let us define the column spa®eH ) of the matrixH.
The standard solution is the projectionYobn the orthog-
onal complemenR(H)L of the column spac®(H). The
spaceR (H)* is well-known under the name “parity space”
in the analytical redundancy literaturErank, 1999. The
parity vectorZ = WY is the transformation of the measured
outputY into a set ofn — ¢ linearly independent variables
by projection onto the left null space of the matkix The
matrix WT = (w1, ..., w,—,) Of sizen x (n — g) is com-
posed of the eigenvectorsy, ..., w,—, of the projection
matrix Py =1,— H(H"H)” H', whereA~ is a generalized
inverse ofA (Koch, 1999, Chapter 1.53corresponding to
eigenvalue 1. If the matrid is full column rank, i.eq =m,
thenPy =1, — H(H"H)"YHT. The matrixW satisfies the
following conditions:

WH=0, W'W=Py, WW' =1I,,. (5)
Example 1 (A simple casg The rejection of the nuisance
parameters in a simple case whates R® andx € R is
depicted inFig. 2 Let us assume thaf = (1, 1, 1)". There-
fore, the column space ¢fis R(H) ={Y|Y =Hx,x € R}.
Its orthogonal complement (parity spade)H ) = {Y|Y =
wiai1+woaz, (a1, az) € R?}is spanned by the vectons =
(v/6/3, —+/6/6,—/6/6)T and wa = (0,v/2/2, —v/2/2)"
(seeFig. 2). The “cloud” of random observatiort§ around
the mean valué(Y) = Hx + M0 is shown inFig. 2 The

projection Py M of the deterministic parE(Y) onto the

ant tests should depend &monly via the vectorZ = WY.
Therefore, the measurement model (1) can be rewritten by
the following manner:

Z=WY=WMO+WE=WMO+, (6)

wherel ~ A(0, 6°I,_,), 6% > 0. It is assumed that<n —

q (see below Eg. (1)), let us additionally assume that the
matrix W M is full column rank of siz&(n —q) x r). Hence,

the results of Section 3 can be directly applied to the model
given by Eq. (6) for deciding betweew’o : {0 = 0} and
A1 {0 # 0}.

Example 2. To explain the above-mentioned assumptions
on the matrixW M, let us briefly discuss here two practical
examples when this is not so. First, sometimes the observa-
tion model allows the existence of fault vectbof sizen, for
instance, within the framework of GPS integrity monitoring
(the detailed discussion can be found in Section 6), all satel-
lite channels potentially can be simultaneously contaminated
by additional pseudorange biases, hence the linearized GPS
observation model is given by = H X + 0 + £. Such a sit-
uation (M = I, and the inequality <n — ¢ is not satisfied)

is especially important in the case of so-called “intentional”
contamination John Volpe National Transportation System
Center, 200} This leads to the problem of fault detectabil-
ity (see Section 6.1.2): i.e. some combinations of pseudor-
ange biases are undetectable. In respect to the problem of
GPS integrity monitoring, it is worth to note that tradition-
ally only one individual satellite channel fault is assumed
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Fig. 2. Column space and its orthogonal complement (parity space).

at a time RTCA/DO-229A, 1998 but now recently arising  the above-mentioned assumptions on the matfM is to
integrity monitoring scenarios (“intentional” contamination) warrant the detectability of any fault vectais# 0.

stress the importance of fault detectability. To solve (at least

partially) this problem, it is proposed in Section 6.1.2 to 4.2. Design of the UBCP invariant test

split the total fault space into two subspaces: a subspace of

“detectable” faults and a subspace of “undetectable” ones. | et us apply Theorem 1 to design the UBCP invariant
More generally, let us assume that the maittiis full column test. In the case of model (6), the LS estimatof/ & given
rank (i.e.q =m) and the number of nuisance (state) param- by: 0 = (WM)T(WM))"L(WM)T Z and the Fisher matrix
etersm plus the number of possible faultss greater than is 7= 1/a2(WM)TW M. It directly follows from Eq. (3)
the number of observatioms(again the inequality <n —g¢g that the UBCP test is given by

is not satisfied). In this case (exactly as in the previous one)

some fault combinations will be undetectable. For exam- 5*(y) — {%0
ple, in the case of autonomous GPS integrity monitoring H1

the number of nuisance parametarss equal to 4 (3 space a4, 20T T 14,7
coordinates and the user’s clock error). Let us assume that/NereA)=1/c"¥ ' Py M(M " PyM) "M PpyY.The test

n =7 satellites are visible. If four GPS channels{(4) can ?;\ézg ?syeicllg (72; is UBCP over the following family of sur-
be contaminated simultaneously, then some individual fault '

combinations will be undetectable because the dimension of
parity space: — m = 3 is insufficient.

Second, let us assume that the inequalitgn — ¢ is
satisfied but some columns Bfbelong to the column space  4.3. Discussion of the UBCP invariant test
R(H) of the matrixH. The following numerical example
illustrates this situation:

2 42\
Y:(l)x—i—(Z 1><Ol>+é,
5 10 4/ \7?

whereé ~ A7(0, I3).

it A(Y) <h(a),
it A(Y)>h(x), %

1
Fwm = {sc : ;HWMHH%:CZ, c>0}. (8)

As in the previous case, the invariant t65¢Y) coincides
with the GLR test. The statistical properties of the GLR test
have been examined Bcharf and Friedlander (1994) the
context of invariance. It has been mentionedsicharf and
Friedlander (1994)hat the GLR test is (UMP) optimal be-
cause the/? distribution is monotone in the non-centrality
parameter/ (in other words the family of distributions
possesses a monotone likelihood rati®orovkov, 1998;
Lehmann, 198f. A min-max approach with respect to the
unknown input has been developedRougée, Basseville,
Benveniste, and Moustakides (198¥here the hypotheses
have also been formulated in terms of non-centrality param-

It is easy to see that the first columnifbelongs toR (H).
Now,n=3,m=1,r=2,qg =rankH =1, rankM =2 and
r =2=n — g but the matrix in question

0 01221
WM z(o —0.3896>

is not full column rank, rankv M)=1. The consequence of
this fact is that the first fault componefi is undetectable.

eter. ThereforeScharf and Friedlander (1994hd Rougée
et al. (1987)have reduced a vector parameter detection

In summary, it can be concluded that the practical goal of problem to a scalar one without any guarantee that this
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reduction does not change the sense of optimality. We would of generality, that the matrixV of size ((n — ¢) x n) is
like to stress that in contrast witBcharf and Friedlander composed of two block$V; and D of size (k x n) and
(1994) Rougée et al. (198%ye prove the optimality of the  ((n — ¢ — k) x n), respectively:W = (WlTDT)T. As it is
testdirectly in the parameter space. shown in Appendix B, to compare the power functions

The statistics1(Y) of the UBCP invariant test given by  of the testsé* and 47 it is sufficient to compare the non-
Eq. (7) is distributed according to thé law with r degrees  centrality parameters?(0) and c%((?) for the same fault
of freedom (see Section 3.2). vectorf # 0. Let us consider two particular cases:

Example 3(A simple case—continupdLet us recallasim- (1) It is assumed that =n — g — 1 andr > 2. Therefore,
ple model discussed in Example 1. It is assumed here that  the matrixD is of size(1 x n). It is possible to find a

0 € R? (seeFig. 2). Sometimes it is interesting to draw an direction in the parameter space defined by the vector
equal power surface of the UBCP invariant in the observation 0* # 0 for which both test$*(Z) and o] (Z) will have
space ¥ € R%). This surface is an elliptic cylindef. given the same powetz(e*) cl(G*) =0 < |DMO*|3=
by the following parametric representatioti:= Y (x, 0) : llw,_ M(—)"‘||2 =0 < M'w,_, L 0%, wherew,_,
Ce={Y=Hx+ W70}, wherel : (1/62)0" MT Py M0 = c? is then — gth eigenvector of the projection matriy

andx € R. The intersection of the plane spanned by the vec- corresponding to the eigenvalue 1 (see Section 4.1).
tors w1 and wy (parity space) with the elliptic cylindet, (2) Let us assume now that rafkM) = dim(0). In this

is an ellipse given by equatiarf = (1/62)0' MT Py M0 in casecl(e) — ¢?(0) = —1/¢?|DM0||3 <0 and, hence,
the plane (parity space). This situation is depicte&im 2 ﬁ(s* (cl(é))) < s (c?(0)) for any 0 + 0.
4.3.1. Full-set parity vector against a subset one Example 4. Let us consider the following model:

This question arises in connection with the above men-
tioned problem of “optimal residual generation” (see, for 1 11
instance, the surveySfaroswiecki, 200). The recommen- 10lxs13 Za (01> L
dation of the theory of invariant tests is to use the maxi- =~ >

. . o - . 1 4 -1
mal invariant statistic’Z = WY to design an optimal test.
. . 1 6 1
Let us consider now a subspace of the parity space (de-
fined byW) and estimate the power function of such a test where¢ ~ ./7(0, Is). The nuisance rejection matrix is given
based on such a “subset” parity vector. To obtain this sub- by
space, let us define another nuisance rejection métrinof
size (k x n), wherek is chosen so that<k <n — ¢, from
Ehe matrixW by cieletlngn — qT—_k rows of W. It is easy W= 00702 —0.0029 —0.0289 09971 —0.0029
o see thatW1H =0 and W1 W, = ;. Finally, we obtain 0.0702 —0.0029 —0.0289 —0.0029 09971
= WiY = W1M9 + Wié = WiM0 + {4, where{; ~ ’ ’ ) )
/V(O azlk) a2 > 0. For this model the LS estimator 6f Let us define two other rejection matriceg and W». The
is given by:01 = ((WlM)T(WlM)) LwiM)Tw1y andthe  matrix W1 is obtained by deleting the last row of the matrix
Fisher matrix |5975 =1/o MTWl WiM. It follows from W and the matrixW, by deleting two last rows ofV. We
(3) that the new test is given by consider the full-set parity test"(Z) and two subset par-
) ) ity testsd](Z1) andd5(Z2) designed by using the statistics
H(Z1) = {%0 !f A(Z1) <hy (@), 9) Z1 = W1Y and Z, = WY, respectively. All these statistics
H1 i A(Zy) 2 (@), follow #? central distribution with 2 degrees of freedom un-
_ 25T T 1T T der #o. The comparison of these three tests are shown in
where A(Zy) = 1/0°Z3 WAM((W1M) WiM) M Wi Zy Figs. 3and 4. First of all, to show the advantage of the
full-set parity vector, let us depict the equal pow#e?)
ellipses of the test$™ (solid line), 67 (dash-dotted line)
and o5 (dashed line) for the same constant, say 1 (see
Fig. 3). Fig. 3 shows that the full-set parity teét (Z) per-
Lemma 1. Let us assume th&ro(d; # #0) = Pro(6* # forms better than other tests. It is easy to see frign 3that
A0) = o, (0<a < 1). Then the following inequality is sat-  the relative efficiency of the tests depends on the orientation

10 1 2

—0.0702 09971 —-0.0289 —0.0029 —0.002
—0.7019 -0.0289 (07105 —0.0289 —0.0289

has a constant power over the family of ellipsoids

1
S = {SC : ;||W1MH||§=CE, c1>0}. (10)

isfied for anyd) # 0: f5: (0) < B5+(0). (angley) of the vector) = (010,)": the advantage of the full-
set parity test over a subset one can be somewhat limited
Proof. See Appendix B. [J for some directions in the parameter space (see the discus-
sion given in Section 4.3.2 for some additional comments).
4.3.2. Discussion For this reason it is reasonable to compare the probability

The above-mentioned inequality becomes strict under of non-detection Ri(6*) = 1 — () as a function of two
some additional conditions. Let us assume, without loss variables: the signal-to-noise ratjd|2/c and the angle.
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Fig. 3. The equal power ellipses of the tedts(solid line), 5] (dash-dotted
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Fig. 4. Probability of non-detection for the full-set parity té5t{Z) (solid
lines) and the subset parity test§(Z1) (dash-dotted lines) and(Z>)

(dashed lines).

The functions

(42 s(122)

are shown inFig. 4. Here, the probability of false alarm
is chosen to be: = 107°, the signal-to-noise rati@0||»/c
varies between 0 and 2 and the anglgaries between 0
andr. It is easy to see fronkig. 4 that the probability of
non-detection ¥ f5+(|012/0, 7) (solid lines) of the full-set
test 6" is typically much smaller than the probabilities of
non-detection & fs:([|0]12/0, ) (dash-dotted line) and-2
Bs5(10112/, y) (dashed lines) of the subset teg{sando5.
However, if the angle is close torr/2, all the probabilities

are comparable.
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4.3.3. “Optimal” residual generation

As it is mentioned in the surveySfaroswiecki, 2001
the choice of the full-set rejection matrii/ of size ((n —
g) x n) is not unique: the produd@W, whereA is a matrix
of size ((n — q) x (n — g)) such that det # 0, leads to
another rejection matri’ =AW. It is asked irStaroswiecki
(2001)whether such an operation can improve the residual
generation step or not. Itis clear tH&tH =0. The following
lemma shows that the rejection matiX = AW does not
change the power function of the test.

Lemma 2. Let us assume that the UBCP invariant t€g}
is designed by using a rejection matrik = AW, where
detA # 0. Then the power function of the tg3%) remains
independent of A

Proof. See Appendix C. [J

5. Dynamical model with unknown inputs

The goal of this section is to apply the statistical tools
developed in Sections 3 and 4 to the following linear state-
space model where the nuisance is modeled by a determin-
istic state equation:

Xy =FXy_1+ BUy, (11)
Yi=HXr+ MO+ &, (12)

whereY; € R" is the measured outpuk; € R” is the
state vectorl/; € R? is the unknown input vector (nuisance
parameter)d; € R" is the vector of faults at timke and¢, is

a zero-mean gaussian white noiser~ .4"(0, 621,), 62 > 0.

It is assumed that all the matrices of (11)—(12) are known.
The characteristic feature of the state-space model (11)—(12)
is that the nuisancé&; is modeled by a deterministic state
equation (11) which is governed by the input vedir Let

us assume that a fixed-size sample of measured outputs
Y1, ..., Yy is available and supposed to be generated by one
of the two alternative hypotheses. There are two methods to
deal with the nuisance parametefs, ..., X y: (i) to ignore

the presence of the state equation (11) and to uniquely use
the measurement equation (12); (ii) to use both Egs. (11)
and (12). It can happen that the parity space obtained by
using both state and measurement equations is reachable
than the parity space obtained by ignoring the state equation.
It will be formally proven now that this fact can improve the
performance of the UBCP invariant test based uniquely on
the measurement equation (12).

5.1. Ignoring the state equation

Here, the UBCP invariant test is designed uniquely by
putting togetheN measurement Egs. (12). Eq. (11) is ig-
nored.

Y= AT+ MO +E, (13)
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where the definitions of the vector® = (v{,...,Y])T,
Z=(X],.... X, 0=0],....00)T, E=(fq, ..., &),

A and.Z are(Nn x Nm) and(Nn x Nr) block matrices,
respectively, in which the blocks off the “diagonal” are the
zero matrices and the “diagonal matrices” &teand M,
respectively. The UBCP invariant test (7) is applicable now
by replacing the vectoy, matricesH, M and Py by %, 7,

M and Py = Iy, — H (AT H)"H#T, respectively. This
test 0%, is UBCP over the following family of ellipsoids
Syt ={Se : 12 W 5 MO|5=c?,, cy >0}, where
the matrle// satisfies the followmg conditiond” , A =

0, W}/W_# Py and“f/////,/ = INn-Ng-

5.2. Using both state-space and measurement equations

The nuisanceX is replaced byX; = Fk=1x, +
Z’;;ﬁ F/BU_; for k>2. This implies thatr'y = HX1 +
MOy + & and Yy = HFF'Xy + HY 8 FIBU; +
MO, + &, for k>2. By putting togetheN measurement
equations, we get:

Y=HrX1+ A Fr U+ MO +E
_FT + M0 + 5, (14)

where the definitions of the vectow and the matrices
Hp, Hrp, A are trivial, H = (A p A pp) and the nui-
sance is defined by the following vectat = (X1, %")".

Let us apply the UBCP invariant test given by Eq. (7)
to the state-space model (14). To do this, the vedtor
matricesH, M and PH are replaced byy, #, 4 and
Py = Inn — JK(% 9’/’) %‘ respectively. This test
5* is UBCP over the followmg family of ellipsoids

%ﬂ o =1{Sc: 1/a?|W 54O |5 = c27/ 7> O}L\J/vhere
matrix ¥, satisfies the following conditiong” 7, # =0,

~ T ~ T ~ — P~
WG W 5 =y _ranie» AW W 7 =P 5.
. N
5.3. Comparison of the tes#, and o,

Let us consider the above mentioned tegjs and 6™ .
The result of their comparison is summarized in the foIIow—
ing lemma.

Lemma 3. Let us assume th&rg(6%, # #0)= Pro(é* #
Ho) =o (0<a<1). Then the followmg |nequal|ty IS sat-
isfied for any® # 0: ﬁb}(@) <[>’();7,(@)

Proof. See Appendix D. As it is shown in Appendix D,

model the nuisance has been heuristically discussed in the
analytical redundancy literature. Lemma 3 formally proves
this result. The UBCP invariant test based on the state-space
model (11)—(12) performs at least not worse than the test
based uniquely on the measurement Eq. (12). Nevertheless,
as it follows from Appendix D, the column spaces#fand

A may coincide. It happens if rank’ =rank.». In such a
case, the state equation does not improve the quality of the
UBCP invariant testﬁb* (@)_[3()* (©). A practical exam-

ple of the above situation will be discussed in Section 6.3
to show the actual relevance of the approach which ignores
the state equation.

6. Application: ground station based and receiver
autonomous GPS integrity monitoring

Integrity monitoring, a major issue for the GPS in many
safety-critical applications, requires that a navigation system
detectsisolatesfaulty measurement sources (channels), and
removeghem from the navigation solution before they sig-
nificantly contaminate the output. For some safety-critical
navigation modes, landing, for instance, the GPS channels
integrity monitoring is realized by using the measurements
of ground based monitoring station at a known posifiqe=
(x5, Vs, z:)" close to the airport. When a fault is detected,
the corresponding information is transmitted via the integrity
channel. The contribution of this example is twofold: first,
it will be mathematically rigorously shown that the widely
used LS residual statistics is in fact an optimal (UBCP in-
variant) solution without a receiver clock aiding; second, it
will also be shown that the quality of fault detection can
be improved by using clock aiding. The contribution of the
second example (receiver autonomous integrity monitoring
(RAIM) algorithm) is to show the actual relevance of Sec-
tion 5. Here, the UBCP test is designed with and without
taking into account the model of vehicle dynamics.

6.1. Ground station-based GPS integrity monitoring:
algorithm obtained by ignoring the clock model

Let us assume that an inexpensive crystal oscillator is used
as a frequency source in the station receiver. This means that
the station receiver clock biasrelative to the GPS time is
an unknown (non-random) valug,e R. Some additional
motivation can be found iBasseville and Nikiforov (2002)

6.1.1. Measurement model

the above-mentioned inequality becomes strict under some The scheme of ground station-based GPS integrity moni-

additional conditions. O

toring is depicted irFig. 5. The GPS solution is based upon
accurate measuring the distancren(ge) from n satellites

The proof of Lemma 3 is based on the fact that the column with known locationsX; = (x;, y;, z),i=1...,ntoa

space ot# (see Eq. (14)) is contained in the column space
of # (see EQ. (13)). This leads to the orthogonal comple-

user. The ground station model ig:=r;, —d; = co + &;,
i=12,...,n, wherer; is the pseudorangdrom theith

ment which can be richer in the case of using both state andsatellite to the user and; = || X; — X|l2 is the known
measurement equations. The importance of state equation talistance from thdth satellite to the usek;, >~ 2.9979 x
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Fig. 5. Ground station-based GPS integrity monitoring.

Ground station

108 m/s is the speed of light and; is an additive pseu-
dorange error = (&4, ...,in)T is the vector of additive

pseudorange errors at the ground station position. A fault is

modeled by the vectaf of additional pseudorange biases:
Yo=L,pu+& (+0), E=(Eq, ..., E)T ~ A(0, 621,), where
Yo=01,y2, ..., yn)T is the vector of station measurements,
1,=@1,....,0)" andu=rco, pn € R, is the impact of the
station clock bias measured in meter and considered as
nuisance parameter.

6.1.2. Fault detectability

Several GPS channels can be contaminated simultane-_ 1
ously. This leads to the situation when some combinations Se: o2
of individual channel faults are undetectable. To better un-

whereR = (r1, .
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part1,0, of the vector fault) on the user’s positioning. We
consider a user (aircraft) at the positiaXis= (x,, y,, z)".

By linearizing the pseudorange equation with respect to the
state vectorX = (xy, yu, zu» )" = (XJ, 1,)" around the
working pointXo = (X!, 0)T, we get the linearized mea-

ug’

surement equation of user with a fault

Y, =R — Do >~ Ho(X — Xo) + & (+0), (15)

) Do=(d1g. ... dng) T, dig =1 Xi —
Xuoll2, E=(E1, ..., EDT, Ho=0R/0X |x—x, is the Jacobian
matrix of sizen x 4. As it follows from Eg. (15), a fault

0 affecting the GPS channels implies an additional error
b=E(X — X)=(H] Ho)"*H{ 0in the vectorX . Fortunately,

the impacth = 0,(H"H)"*HT1, of such an undetectable
bias 1,0, on the first three components, y,,z, is equal

to zero, i.e.b, = b, = b, = 0. Therefore, undetectable (by

a ground monitoring station) pseudorange biases are not
dangerous for the navigation.

6.1.3. Fault detection algorithm

The problem consists in deciding between the null hy-
pothesis#q : {Yy ~ N (1,1, 6°1,), u € R} (no contam-
inated pseudoranges) and the alternative hypoth#sis:
(Ys ~ N A+ WT0w, 6°1,), 0w # 0, u € R}. The fam-
ily 2 ={ANQ,u+ WT0w, 6%1,), 0 € R} is invariant to
the groupG = {Y; — g(Y;) = Yy + 1,u} and the induced
group G is given byg(0) = 0 + 1,x (x € R). Let us as-
sume that only one measurement vectpris available to
decide between two hypotheses. As it follows from Section

& the testd*(Yy) based on the following well-known LS

residual statistics, widely used in fault detectiof(Y;) =
1/6% 3" (vi — ¥)?wherey = 1/n Y, y;, is UBCP in-
variant over the family of surfacés

1
O WWTWWT 0y = ?né)wng =2

derstand the situation, let us represent the additional biases.2. Clock-aided ground station-based GPS integrity

vector( in the following manner 0=1,0,+W 0w, 0, €

R, 0w € R"1, where the nuisance rejectiotm — 1) x n)
matrix W : W1, = 0 is composed ofi — 1 basis vec-
tors which span the orthogonal complementrifl,,) and

it satisfies the conditions defined by Eq. (W T =1, 1
andW'W = Py, = (I, — (1/n)1,17). It follows from the
above definition of) that the sub-vectof, is undetectable
(the subspace df, coincides with the subspace of the nui-
sance parametgr and, hence, is masked byu). There-
fore, the only “detectable part” dfis represented by T 0y,
and we getry =1, + & (+WT0w), &= (& .... )" ~
(0, 61,). Let us analyze the impact of this undetectable

2 nstead of the total vectdt used inBasseville and Nikiforov (2002)
and Nikiforov (2002, Chapter 2)only the “detectable” sub-vectdly, is
considered here. It is necessary because: (1) the mdtok size (n x r)
from Eg. (1) should be full column rank & n); (2) the interpretation of
the fault detection test performance is simpler.

monitoring

The idea to use the clock model in order to improve
the fault detection algorithm in the GPS integrity monitor-
ing has been originally proposed and motivatedMisra,
Muchnik, and Manganis (1995)t has been shown that
by using a receiver clock short-term stability the perfor-
mance of GPS integrity monitoring (a vital safety concern
in civil aviation) can be seriously improved. Let us consider
a clock-aided ground station based GPS monitoring to illus-
trate Lemma 3 and to show how the state equation improves
the performance of the test. Here, the following very sim-
plified clock model is usedBrown & Hwang, 1992 the
long-term biases are modeled by an unknown low-frequency

3Unlike Basseville and Nikiforov (2002)and Nikiforov (2002,
Chapter 2) where the total fault vectof is used, the new family of
surfacesS, : 1/62||0y |3 = ¢? is defined on the “detectable” subspace.
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15 . . . . . a2c?, whereoe = 1, corresponding to the UBCP invariant
testd’,, obtained by ignoring the clock model, is given by
0%+05=2. Itis shown by a dashed line Fig. 6. The ellipse
|4 5.40)5 = 62c?, wheregc = 1, corresponding to the
UBCP invariant tesﬁ}f obtained by using the clock model,
is given by3 05 — 010, + 3 05=2. Itis shown by a solid line
in Fig. 6. It is easy to see frorfrig. 6 that the efficiency of
. clock-aided monitoring depends on the orientation (anpple
;] of the vecto=(01 02)". If §1=0, (y=0 or ) then both tests
Oy andé}f are equivalent. 1y = -0 (y = /2 or 3t/2)
then the clock-aided teﬁf‘% is more efficient than the test
% obtained by ignoring the clock model. For this reason
it is reasonable to compare the probability of non-detection
Pry(6* # A#'1)=1— B(0) as a function of two variables: the
signal-to-noise ratid/0|2/c and the angle. The functions
(10112/0, y) = 1— B(||Oll2/0, y) are shown irFig. 7. Here,
) ) - ) ) the probability of false alarm is chosen to be= 10-3, the
15 -1 -0.5 0 0.5 1 15 signal-to-noise rati¢{d||2/o varies between 0 and 10 and the
01 angley varies between 0 and/2. It is easy to see frorig.
7 that the probability of non-detection-4 ﬁ(;% 10012/, )
(solid lines) of the clock-aided te8t is much smaller than
the probability of non-detection-1 '5} (I10ll2/0, y) (dashed
lines) of the test”, obtained by ignoring the clock model
when the angle is close tor/2. If the angley is close to

05

b2
o

Fig. 6. Two equal power ellipses obtained by ignoring (dashed line) and
by using the state equation (solid line).

0 <
10 0, the both probabilities are comparable.
1072
- 6.3. RAIM: the UBCP test with and without taking into
= 10 account the model of vehicle dynamics
] J
< 104 The goal of this subsection is to continue the illustration
. 1 of the theoretical results of Section 5, especially to discuss
108 again Lemma 3, and also to provide the readers with some
o] additional explanation on the relevance of the UBCP invari-
107, ant test given in Section 5.1 which is obtained by ignoring

the state equation. To explain the subtlety of the usage of

0008 1 121440 the dynamical models with unknown inputs, two different
y models of the vehicle dynamics will be used to design the

GPS RAIM algorithms. Particularly, it will be shown that

Fig. 7. Probability of non-detection by ignoring the state equation (dashed the state equation does not improve the quality of fault de-
lines) and by using both state and measurement equations (solid lines). tector for one of these models

1070 0.2 0.

Let us put together the linearized GPS measurement equa-
tion of the user (15) and the deterministic state equation that

function (due to .the temperature changes, for example) bmmodels the vehicle dynamics (the known teHpXo in (15)
the short-term biases (1-10s) are assumed to be practically . L . ]
Is omitted to simplify the notations):

constant. The choice of this simple model is especially moti-
vated by the fact that the fault detection delay (time-to-alert)

is bounded by 2-5s for safety critical applications. Hence, x;, = <a13 O) Xi_1+ BUy,

the state-space model is given by:= w1, Yo = L1y + 0 0

M9k+6k, ékz(ék,lv ...,fk’n)T ~ ./1/(0, 021,1),Wherek= X = (xx, Yk Zks /'tk)Tv (16)
1,..., N.Letus consider the following particular cage:2,

N=2,M=(10)", toillustrate Lemma 3. The comparison be- Yx = HoXy + M0y + &,

tween two fault detection tests (obtained by ignoringandby M =1 0 --- 0)7, 0, € R, a7)

using the state equation) is presenteétigs. 6and7. Fig. 6
shows two equal power ellipses obtained by ignoring and by wherea = 0.9 is a coefficient and the vectdl, models the
using the state equation: the ellipse (cirqle%”yfﬂeng = unknown input (nuisance parameter). Let us consider two
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Fig. 8. Probability of non-detection by ignoring the vehicle dynamics
(test&,, solid line), by using the model of dynamics with an unknown

“motor thrust force” (testS*// o signs) and by using the model of

dynamics with an unknown magnitude of the “motor thrust force” but
known direction (testSf, dashed line).

particular case of the matri:
4 10 1 1 0\"
By =14 with U, e R* and Bz=<0 00 1) ,

with Uy € R?. In the case of3 = By, the first three com-
ponents of the vectal/; represent the “motor thrust force”
that is responsible for the vehicle propulsion and the forth
component “drives” the receiver clock error. In the case of
B = By, the propulsion of the vehicle is realized by the first
component oy, (the first column of the matriB2 defines
the direction of the “thrust vector”) and the second compo-
nent “drives” the receiver clock error. The above models of
the vehicle dynamics differ by the level of a priori infor-
mation: in contrast with the first model, the second model
(with B») assumes that the direction of the “thrust vector”
is known and only the magnitude of the thrust is unknown.
Let us compare three following fault detectors:

e 07, obtained by ignoring the vehicle dynamics (state
equatlon (16) is ignored);

° 5’;/ ,» obtained by using the vehicle dynamics with a min-
imal level of a priori information: the “motor thrust force”
is unknown (state equation (16) is used with the matrix
B1);

. (3_*}7’2, obtained by using the vehicle dynamics with a
known direction of the “thrust vector” and unknown thrust

magnitude (state equation (16) is used with the mapix
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sen to bex=10"°. As in the previous case (see Section 6.2)
it is reasonable to compare the probability of non-detection
Pry(6* # A#'1)=1— B(0) as a function of two variables: the
signal-to-noise ratid0|2/¢ and the angle = arctanf,/0;.

The functions

() 1-s (45

are shown inFig. 8 The probabilities of non-detection for
the testsd?, (ignoring the vehicle dynamics) andifk
(unknown “motor thrust force”) are shown by a SO|Id Ime
and by “+” signs, respectively. It can be concluded from
Fig. 8 that the probabilities of non-detection for both tests
0% and (3% , are the same, in other words, the model of
vehicle dynamics with the matri®; does not improve the
quality of the UBCP invariant test. Why it happens? As it
follows from the proof of Lemma 3 (see Appendix D), the
both column subspaces of (Eqg. (13)) and#” (Eq. (14))
may coincide:R(#) = R(). This is what happens in
the case of vehicle dynamics with the mat#y. In fact,
rank# (B1) =rank# = 8. In such a case, the power func-
tions of both tests (with and without state equation) are equal.
Intuitively, this result is easily understandable in the light of
the vehicle dynamics model (see Eq. (16)). In fact, the ma-
trix B1 = I4 does not reduce the dimension of the unknown
input subspace and for this reason it is difficult to expect
an improvement in the quality of test. On the contrary, the
matrix B> reduces the dimension of the unknown input sub-
space and this leads immediately to a serious improvement
in the quality of the tes&* , Obtained by using the vehicle
dynamics with a known dlrectlon of the “thrust vector” and
unknown thrust magnitude. It is confirmed by the probabil-
ities of non-detection for the tese§§v , which is shown in

Fig. 8 (see a dashed line). To conclude this example let us
stress the relevance of the approach obtained by ignoring
the state equation in the case where the column spaces of
# and # coincide. The UBCP test, which uniquely uses
the measurement equation is simpler and potentially more
robust (because does not use the state equation coefficients)
then the test based on the full-size state-space model.

7. Conclusion

The problem of fault detection in a linear gaussian model
with nuisance parameters (or nuisance faults) has been ad-
dressed from the statistical point of view. First, the uniformly
best constant power (UBCP) test is derived from solving an
optimal hypotheses testing problem for the gaussian linear
model by using the Wald’s theory. The optimality of the pro-

The comparison between the above three fault detection al-posed test is established in Theorem 1. Second, the invariant

gorithms is presented ifrig. 8 Eight satellites are visi-
ble at this momentn(= 8). Two consequent GPS observa-
tions (epochsy; andY> (N = 2) are used to detect a fault
= (01, 02)7 € R? affected the first satellite channel (see
the matrixM in (17)). The probability of false alarm is cho-

UBCP test is obtained for the linear gaussian model with
nuisance parameters (or nuisance faults) by using Theorem 1
and the theory of invariant tests. Several critical issues con-
cerning the design and the properties of fault detection algo-
rithms (full-set parity vector against a subset one, “optimal”
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residual generation, etc.) have been addressed. The main reBy using the change of variabléé= R0 (detR # 0) and
sults are given by Lemmas 1 and 2. Third, by using the puttingM"Y = RZ, we get:

proposed statistical tools, the linear state-space model with

nuisance parameters defined by a deterministic state equa-{y_p(z) = b’/ . f exp{ize/TZ}

tion has been considered. It has been shown in Lemma 3 s. a

that the UBCP test designed by using both state and mea-
surement equations performs at least not worse than the test

based uniquely on the measurement equation.

Appendix A. Proof of Theorem 1

~ The idea of this proof is inspired bywald (1943) It
is necessary to show that the propose

test coincides wi

1 /112 !0
X eXp{—T‘ZIIQ ||2} ds’(0),
where b’ is a constant and the second term under the
sign of integral exp—1/202||9’||§} is constant over the
surface S... As it follows from Wald (1943) the func-
tion |Z|2 — An—p(Z]2) is non-decreasing for any

thc > 0. Therefore, it has been shown that the LR of

a specially designed Neyman—Person (N-P) test which re-the N-P tegt/1¥—P(Y)T is a noTn-decreasing function of
alizes a constant power function over the family of sur- A(Y) = (1/c")Y MM M)="M Y. It proves that the test
faces.7. To apply this idea to model (2), let us assume ¢ (¥) given by Eq. (3) has uniformly best constant power

the following hypotheses testing proble#iy : {0 = 0} and
H1e:{0:1/0%|MO|5=c?, c > 0}. The alternative hypoth-
esis 1. corresponds to the ellipsoi} given by equation
0" MT MO =262 from the family.%  (4). Let us define the
following a priori densityp(0) =b=1/A(S,) of the param-
eterd over the ellipsoidS,., whereA(S,) is the air of surface
S.. Hence, the density of the observation vectas given
by the following surface integraf - - - fs[. Fo(¥)p(6)dS(6)
when the hypothesis?’1 . is true. The N-P decision rule
for testing the hypothesist’o = { fo(Y)} against#’1,. =
(- [s fo¥)p(0)dS(0)} is given by

[ A#o i An—p(Y)<d(c),
ON—P(Y) = {jfl ¢ if An—p(Y)>d(c), D
where
Y
Aoty = [ S ;ZEYi p(0)dS(0)

is the likelihood ratio (LR) between?q and 71 .,

1
fo(Y) = exp{—@nY —~ M@H%}

(2n)"/2gn

is the density of observations a@dc) is the threshold so

chosen that the probability of false alarm is equal to a pre-

scribed level: Ry(on—p(Y) # o) = o.. By developingfy,
the integralAn—p(Y) can be written as followsdn—p(Y) =
b exp{1/262[20" MY — 0T (M M)01}dS(0). To

with respect taS,. and, hence, the test'(Y) is UBCP over
the family of ellipsoids¥’y; given by Eq. (4). O

Appendix B. Proof of Lemma 1

_ First of all, let us note that the statistidsZ) andA(Z1)
given by Egs. (7) and (9), respectively, folloy distribu-

tions withr degrees of freedom. Theg# distributions are
central under#’g. Thereforeh (o) = h1 (o). The testsy*(2)

and d7(Z) given by Egs. (7) and (9) have constant power
functions over the family of surface’wy and Sw,u
given by Egs. (8) and (10), respectively. The power func-
tions B+, (c?) andﬂ(yi(z)(c%) of the tests*(Z) andd}(2)

are non-decreasing functions of their non-centrality param-
etersc? and c%, respectively, given the equal thresholds
h(x) =h1(x). Hence, to compare the power functions of the
above tests it is sufficient to compare the non-centrality pa-
rameters2(0) andc?(0) for the same fault vectat # 0. It
follows immediately from paragraph 4.3.2 and an elemen-
tary matrix algebra that?(0) — c?(0)=—1/¢2|| DM0||5<0.
Finally, we obtainfs: (c£(0)) < s+ (c%(0)) for any 0 # 0
and thus Lemma 1 is proved[]

Appendix C. Proof of Lemma 2

The goal of Lemma 2 is to prove that the utilization of
the matrixW =AW : AW H =0, whereA is a matrix of size

(n —q) x (n — q) such that de# # 0, instead of matrixV,
does not change the power function of the test. &)

prove the Theorem, it is necessary to show that the LR b€ the test based on the statistics= WY and given by
An—p(Y) of the N—P test is a non-decreasing function of EQ. (7) andd™(Z) be the same test based on the statistics

the decision functiomM(Y) = (1/6®)Y MM ™M) *MTy

of the testé™(Y) (3) for any value ofc > 0. The matrix
Y = M"M is positive definite, hence it can be rewritten
as follow: ¥ = RRT and X' = R-TRL Let us define
the vectorZ = R~IMTY. The decision functionA(Y)

of the test (3) can be represented as a functioiz,ofe.
A(Z) = 1/0?|| Z||3 and the family of surfaces’y; can be
also rewritten as?’ = (S, : [|0/||3 = c?¢?, ¢ > 0}, where
0'=R"0 and0 = R~T0' since the matriR is non-singular.

Z = WY. The proof is elementary: it is worth to note that
the matrixA establishes a one-to-one linear transformation
Z=AZn X%,%), whereZ ¢ Z andZ € Z. Hence,
the statistical properties of the tests based on the statistics
andZ are exactly the samg;s- , (c?) = B+ z,(c?) for any
¢2>0. Moreover, by apglyingT/Nto Y=HX+MO0+¢, we

get the new mode¥ = WY = WMO + W¢E, whereWé ~
A7(0,62V), with V = AAT. The direct calculation shows
that the linear transformatiod = AZ does not change the
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Fisher matrix#, the statistics of the testi(Z) = A(f)
and the family of ellipsoids (8).

Appendix D. Proof of Lemma 3

The goal of Lemma 3 is to prove that the power function
Bs= of the testéf';?; obtained by using both (state (11) and

H J

measurement (12)) equations, is uniformly greater than or

equal to the power functioﬁ(;»;/ of the testd”, obtained

by ignoring the state equation. The proof is organized
as follows: first, a relation between the matric#s (see
Eq. (13)) andA#” = (# ¢ A F ) (14) will be established.
Next, a relation between the parity spacesfand #

will be shown. And finally, by using the same method as
in Lemma 1, the power functionﬁ(;x:? and ﬂ(;_x;/ will be
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