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Abstract

Fault detection is addressed within a statistical framework. The goal of this paper is to propose an optimal statistical tool to detect a
fault in a linear stochastic (dynamical) system with uncertainties (nuisance parameters or nuisance faults). It is supposed that the nuisance
parameters are unknown but non-random; practically, this means that the nuisance can be intentionally chosen to maximize its negative
impact on the monitored system (for instance, to mask a fault). Examples of ground station based and receiver autonomous Global
Positioning System (GPS) integrity monitoring illustrate the proposed method.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A key issue in fault detection/isolation is to state the sig-
nificance of the observed deviation (fault) with respect to
random noises, deterministic uncertainties (also called nui-
sance parameters) or nuisance faults (in case of fault iso-
lation). The purpose of this paper is to propose an optimal
statistical tool to detect a fault in a linear stochastic (dynami-
cal) system with nuisance parameters or nuisance faults. It is
supposed that the nuisance parameters (faults) are unknown
but non-random. In automatic control community, the prob-
lem of nuisance parameters (or nuisance faults) rejection is
traditionally treated in the framework of the analytical re-
dundancy approach. This approach is based on some nat-
ural geometric properties of static (dynamic) systems. The
interested readers can find the details from the survey pa-
pers (Mironovski, 1980; Patton & Chen, 1991; Frank, 1990;
Staroswiecki, 2001) and the books (Patton, Frank, & Clark,
1989; Gertler, 1998; Chen & Patton, 1999). The theory of
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analytical redundancy is mainly deterministic; the random
noises are only heuristically treated. Recently, the deter-
ministic analytical redundancy approach, namely the fault
detection problem with nuisance parameters or nuisance
faults, has been extended to the case where the process
and sensor noises are also considered (Chen, Mingori, &
Speyer, 2003). The stochastic fault detection filter is derived
by maximizing the transmission from the target fault to the
projected output while minimizing the transmission from
the nuisance parameters (nuisance faults) and from the pro-
cess and sensor noises. Let us recall that the performance of
any statistical fault detector is defined with the probabilities
of false decisions (false alarm and non-detection). However,
the cost criterion proposed inChen et al. (2003)does not
include the probabilities of false alarm and non-detection.
Instead of this, the cost criterion includes the covariance
matrices representing the transmissions from the target
fault, nuisance faults and noises, as in traditional analytical
redundancy papers.

When the impact of random noise is non-negligible the
problem of statistical fault detection should be addressed
(Basseville, 1997; Basseville & Nikiforov, 2002). This
problem is especially important in safety-critical applica-
tions where the probabilities of false decisions are widely
used to describe the minimum operational performance
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requirements. Traditionally, the fault detection problem is
split into two steps (Basseville, 1997): residual generation
and residual evaluation (design of decision rules based on
these residuals). Even if each step is designed by using an
optimal approach (with a particular optimality criterion), the
optimality of the total procedure with respect to the proba-
bilities of false alarm and non-detection is not warranted.

On the other hand, there exist an invariant hypotheses test-
ing approach (if the original problem is invariant) or an adap-
tive testing method (such as the generalized likelihood ratio
test). Key features of these statistical methods are their abil-
ity to handle noises and uncertainties, to reject nuisance pa-
rameters, to decide between two hypothesesH0 (no faults)
andH1 (there exists a fault). But the traditional hypotheses
testing approaches use relatively simple (with respect to au-
tomatic control community demands) statistical models (i.e.
parameterized distributions). Hence, these methods should
be adapted to more complex models used in fault detection.
Another difficulty of hypotheses testing approach is the op-
timality criterion definition in the case of vector parameter
and/or composite hypotheses, which represents a consider-
able practical interest in fault detection.

Therefore, the following paradoxical situation takes place
in the fault detection. The ideas of analytical redundancy are
used more then 30 years and almost considered as standard.
Recently, the statistical fault detection methods are inte-
grated into two steps procedure: residual generation by using
analytical redundancy and residual evaluation by using sta-
tistical tests, but the following problems remain unsolved:

(1) What is a lower bound for the probability of non-
detection over the class of detectors with a given prob-
ability of false alarm and what is the fault detection
method that attains this lower bound when dealing with
an unknown vector of fault and nuisance parameters?

(2) It is well-known that the choice of the parity space can be
multiple. Hence, what is the optimal with respect to the
false alarm—non-detection criterion nuisance parameter
rejector (or residual generator)?

(3) Sometimes it is necessary to deal with a parity sub-
space. How to compare the performance index (false
alarm against non-detection) of the full-set parity vector
against a subset one?

(4) Sometimes the dynamical model of the nuisance pa-
rameters is available. How to estimate the impact of
this model on the performance (false alarm against non-
detection) of the optimal fault detector?

The contribution of this paper consists in the development
of an optimal statistical approach of fault detection in a
linear stochastic (dynamical) system with nuisance pa-
rameters. It is supposed that the nuisance parameters are
unknown but non-random; practically, this means that the
nuisance can be intentionally chosen (for example, by a
hostile environment) to maximize its negative impact on
the monitored system (for instance, to mask a fault). It is
worth noting that this is a so-called “worst-case” approach

(with respect to the nuisance parameter) that is especially
interesting for monitoring the systems operating in a hostile
environment. We propose a lower bound for the probability
of non-detection (optimality theorem). To our knowledge
no proof of optimality in a mathematically precise sense
exists. It is shown that the optimal solution coincides with
the generalized likelihood ratio test applied to the parity
vector computed by using traditional analytical redundancy
approach. By using the proposed optimality theorem, the
problem of optimal residual generation is solved, the full-
set parity vector is compared against a subset one and the
impact of the dynamic nuisance parameters is evaluated.

The paper is organized as follows. We start with the prob-
lem statement in Section 2. A simple linear model (without
nuisance) is treated in Section 3. Next, the nuisance param-
eters are introduced and the problem of optimal fault de-
tection with nuisance is discussed in Section 4. Section 5
is devoted to a dynamical model with a deterministic state
equation governed by an unknown input. Examples of the
GPS integrity monitoring illustrating the relevance of the
proposed tools are described in Section 6.

2. Problem statement

2.1. Statistical hypotheses testing problem

There are two problem statements in the theory of statis-
tical fault detection: the hypotheses testing problem and the
change detection problem (Basseville & Nikiforov, 2002).
In the present paper, we address the binary hypotheses test-
ing problem. The quality of a test� is defined with the prob-
ability of false alarm:� = Pr0(� �= H0), where Pri stands
for observationsY1, . . . , Yk being generated by distribution
Pi , and thepower function: ��(�)=Pr�(�=H1). In case of
a vector parameter�, the crucial issue is to find an optimal
solution over a set of alternatives which is rich enough. Un-
fortunately, uniformly most powerful (UMP) tests scarcely
exist, except when the parameter� is scalar, the family of
distributions has a monotone likelihood ratio, and the test is
one-sided (Borovkov, 1998; Lehmann, 1986). As we have
mentioned in the introduction, another important issue is
dealing with the nuisance parameters. To solve the com-
posite hypotheses testing problem with nuisance parameters
we use the theory developed by Wald in his paper (Wald,
1943) and the theory of invariant tests. We also adapt the
Wald’s theory to the case where the parameter of interest
(fault) � and the nuisanceX belong to different subspaces
of the observation space. Therefore, the goal of this paper
is twofold. First, we develop an optimal statistical tool to
solve the problem of fault� detection in the following lin-
ear gaussian model (some motivation for this model can be
found inBasseville (1997)):

Y = HX + M� + �, (1)

whereY ∈ Rn is the measured output,� ∈ Rr is the pa-
rameter (fault) of model (1),X ∈ Rm is an unknown and
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non-random state vector (nuisance parameter),M is a full
column rank matrix of size(n × r) with r <n andH is a
matrix of size(n × m) with rankH = q. It is assumed that
n�q + r and that the noise� follows a zero-mean gaussian
distribution, i.e.� ∼ N(0,�2In), with the known variance
�2 >0 and the(n × n) identity matrixIn. The assumption
that the noise covariance matrix is scalar is not restrictive. It
is used to obtain a simple and lucid presentation. As it will
be shown in Section 3, the general covariance matrix case
immediately follows from the scalar matrix one. Second, the
developed tool is used to compare the full-set parity vec-
tor against a subset one, to solve the problem of “optimal
residual generation” and to examine the impact of nuisance
parameter modeled by a state-space model. To conclude this
section, let us discuss the practical relevance of the “false
alarm-non-detection” criterion and the invariant hypotheses
testing approach and also let us provide the reader with some
ideas how to use in practice a lower bound for the probabil-
ity of non-detection.

2.2. Practical motivation of the criterion of optimality

For many safety-critical applications (such as aircraft nav-
igation systems), a major problem of the existing systems
consists in its lack of integrity. In the case of navigation
system, the integrity monitoring concept defined by the In-
ternational Civil Aviation Organization (ICAO) requires that
a navigation system detects faults and removes them from
the navigation solution before they sufficiently contami-
nate the output. The recent researches show that the detec-
tion/exclusion of the navigation message contamination is
crucially important for the radio-navigation. It is proposed
“to encourage all the transportation modes to give atten-
tion to autonomous integrity monitoring of GPS signals”
(John Volpe National Transportation System Center, 2001).
It is intuitively obvious that the criterion which must be
used should favor reliable detection with few false alarms.
A small probability of non-detection is necessary because
the abnormal measurements are taken in the navigation sys-
tems, which leads to the unacceptably large position error
and, hence, is clearly very undesirable. On the other hand,
false alarms result in lower accuracy of the position estimate
because some correct information is not used. The optimal
solution involves a tradeoff between these two contradic-
tory requirements. It is worth to note that the probabilis-
tic criterion “false alarm-non-detection” is traditionally used
by ICAO as an engineering language to specify and anal-
yse the minimum operational performance requirements (see
John Volpe National Transportation System Center (2001),
RTCA/DO-229A (1998)).

2.3. Practical motivation of the invariant hypotheses
testing approach

The idea of the invariant hypotheses testing approach is
based on the existence of the natural invariance of the de-

tection problem with respect to a certain group of transfor-
mation. The magnitude of the nuisance parameter (fault)X
is unlimited. Its impact, modeled by the termHX in Eq. (1)
or by a state-space model in Section 5, defines a subspace
in the observation spaceY=Rn. The ability of the invariant
hypotheses testing approach to provide us with algorithms
which detect the target fault� while being insensitive to the
nuisance parameters (or faults)X makes this theory a serious
candidate for the design of the monitoring systems operat-
ing in hostile environment. In such a context the determin-
istic nuisanceX with unlimited magnitude can be used by a
hostile environment to mask a target fault impact modeled
by M�. Let us also stress the drawbacks of the Bayesian
approach in such a situation: this approach exploits some a
priori information on the distribution ofX but this informa-
tion may not be reliable (hostile environment!). Hence, the
Bayesian approach is irrelevant to the case of nuisance pa-
rameters governed by a hostile environment. In contrast with
the Bayesian approach, the invariant hypotheses testing the-
ory is based on the nuisanceX rejection and, therefore, does
not use any a priori information on the distribution ofX.

2.4. Discussion: how to use in practice a lower bound for
the probability of non-detection

There exists an opinion among some specialists that the
problem of lower bound for the probability of non-detection
in a certain class of tests has a purely theoretical character.
But this problem is also of practical interest. Let us discuss
now how to use in practice a lower bound for the probability
of non-detection.

First, if the integrity requirements are defined in terms
of “false alarm-non-detection” criterion, then it is important
to know the best theoretically achievable level of integrity.
It can happen that the integrity level required by minimum
performance requirements cannot be achieved even theoret-
ically. Such a conclusion is very important for the system
designers: either they reduce the required integrity level or
they improve the sensor performances (augment, for instant,
the signal-to-noise ratio).

Second, a lower bound for the probability of non-detection
is useful as abenchmarkfor suboptimal algorithms with a
reduced dimension of parity space or with a nonlinear model.

Third, often, the problem of integrity monitoring is
twofold. Namely, the fault tolerance is achieved by imple-
menting an efficient fault detection algorithm and optimal
sensor configurations. Hence, to solve the problem of opti-
mal sensor configurations we should use a relation between
the statistical performances of the fault detection algorithm
and some indexes of sensor configurations. For example,
we would like to verify that the requirements of integrity
monitoring can be achieved (at least theoretically) by us-
ing a given number and orientation of sensors. In such a
situation, it is not reasonable to use the performance index
of a particular algorithm to prove this fact, on the contrary,
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we have to use a lower bound that characterizes a certain
class of detection algorithms. The number of sensors and
their orientations (together with the model of faults) de-
fine the matricesH and M and the lower bounds provide
us with the relation between the sensor configuration and
the achievable integrity level in a certain class of fault de-
tection algorithms. Another task of sensor configurations
arise when we have to estimate the potential capability of
fault detection scheme for a given sensor configuration,
for example, for the “worst case” GPS navigation satellite
geometries. And again a lower bound for the probability of
non-detection plays a key role in this investigation.

3. Simple linear model

The goal of this section is to apply theWald’s (1943)the-
ory of binary hypotheses testing to a linear gaussian model,
to adapt the optimality criterion to this case and to design
the optimal algorithm that realizes this optimality criterion.

3.1. Design of the test and its optimality

Originally, Wald has solved the following problem: the
observationY ∈ Rn is generated by one of two gaussian dis-
tributions:N(0,�) andN(� �= 0,�), where� is the mean
vector and� is a positive definite covariance matrix. The hy-
potheses testing problem consists in deciding betweenH0 :
{� = 0} andH1 : {� �= 0}. The peculiarity of the above
problem is that a uniformly most powerful (UMP) test does
not exist in case of a vector parameter�. To overcome this
difficulty, Wald proposes to impose an additional constraint
on the class of considered tests, namely, aconstant power
functionover a family of surfacesS defined on the param-
eter space�, in order to avoid the existence of UMP tests
over a subspace� of � which are very inefficient over�\�.
Let us assume now the following gaussian linear model:

Y = M� + �, (2)

whereY ∈ Rn is the observation vector,� ∈ Rr is the
parameter of model (2), i.e. the vector of faults,M is a full
column rank matrix of size(n × r) with r <n and� is a
zero-mean gaussian noise� ∼ N(0,�2Ir ), �2>0. As in
the previous case, the hypotheses testing problem consists
in deciding betweenH0 : {� = 0} andH1 : {� �= 0}. Let
us apply the general Wald’s idea to design a test that can
potentially be UBCP:

�∗(Y ) =


H0 if 	(Y ) = �̂

T
F�̂̂�<h(�),

H1 if 	(Y ) = 1

�2 Y TM(MTM)−1MTY

�h(�),

(3)

wherê�=(MTM)−1MTY is the least-square (LS) estimator
of � andF�̂ = 1/�2MTM, is the Fisher matrix. Now, it is
necessary to prove that the test�∗ given by Eq. (3) is UBCP

over the following family of ellipsoids:

SM =
{
Sc : �TF�̂� = 1

�2‖M�‖2
2 = c2, c >0

}
, (4)

because the results ofWald (1943)does not cover the re-
gression model given (2). The main result of this section is
established in the following.1

Theorem 1. Let us consider the regression model(2). The
test�∗(Y ) ∈ K�, given by Eq. (3), is UBCP for deciding
between the hypothesesH0 : {� = 0} and H1 : {� �= 0}
over the family of ellipsoids(4).

Proof. See Appendix A. �

3.2. Discussion of the UBCP test

Let us discuss now some issues in detecting the fault vec-
tor � in the modelY = M� + � (or statistically speaking,
deciding betweenH0 : {� = 0} andH1 : {� �= 0}). First of
all, the test�∗(Y ) coincides with the generalized likelihood
ratio (GLR) test. The GLR test is widely used in practice,
but the problem of its non-asymptotic optimality remains un-
solved. The interested reader can find the details inNikiforov
(2002, Chapter 2). As it follows from Koch (1999, Chapter
2.7), the statistics	(Y ) is distributed according to the
2

law with r degrees of freedom. This law
2 is central under
H0 and non-central underH1 with the non-centrality pa-
rameter�=1/�2‖M�‖2

2. Hence, the power function��∗(� :
(1/�2)�TMTM� = c2) = Prc2(	(Y )�h(�)) is constant on
the same surfaceSc : 1/�2‖M�‖2

2 = c2 (see (4)). Because
the power is constant on the same surfaceSc, it is reasonable
to present the power as a function ofc2: c2 �→ ��∗(c2). A
typical family of concentric ellipses and the power function
��∗ are depicted inFig. 1.

Finally, let us consider that the noise� of model (2) fol-
lows the gaussian distributionN(0,�), where� is a known
(positive definite) covariance matrix. By using the change
of variablesg(X) = R−1X, where the symmetric matrixR
is define by� = RR, and the invariance properties of the
gaussian familyN(�,�) (seeBorovkov (1998)), the new
hypotheses testing problem can be reduced to the problem
presented in Theorem 1.

4. Linear model with nuisance parameters

The goal of this section is to apply the results obtained
in Section 3 to a linear gaussian model with a nuisance
parameter.

1 It is worth emphasizing that in contrast with the asymptotic hy-
potheses testing theory of Wald (whenN → ∞) (Wald, 1943), the non-
asymptotic theory is discussed in the paper. Hence, the known results on
asymptotic optimality is not applicable here and the extension of Wald’s
results is given by Theorem 1.
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Fig. 1. Family of concentric ellipses and the power function�(c2).

4.1. Nuisance parameters rejection

Let us recall the regression model (1) with the nuisance
parameterX. The new hypotheses testing problem consists
in deciding betweenH0 : � = 0 andH1 : � �= 0, while
consideringX as anunknownvector. Because the nuisance
parameterX is non-random and its current values are not
bounded(X ∈ Rm), the only solution is to eliminate the
impact ofX on the decision function	. First of all, let us
note that the above mentioned hypotheses testing problem
remains invariant under the group of translationsG = {g :
g(Y )=Y +HC}, C ∈ Rm. To apply the principle of invari-
ance, let us define the column spaceR(H) of the matrixH.
The standard solution is the projection ofY on the orthog-
onal complementR(H)⊥ of the column spaceR(H). The
spaceR(H)⊥ is well-known under the name “parity space”
in the analytical redundancy literature (Frank, 1990). The
parity vectorZ=WY is the transformation of the measured
outputY into a set ofn − q linearly independent variables
by projection onto the left null space of the matrixH. The
matrix WT = (w1, . . . , wn−q) of sizen × (n − q) is com-
posed of the eigenvectorsw1, . . . , wn−q of the projection
matrixPH =In−H(HTH)−HT, whereA− is a generalized
inverse ofA (Koch, 1999, Chapter 1.5.3), corresponding to
eigenvalue 1. If the matrixH is full column rank, i.e.q=m,
thenPH = In −H(HTH)−1HT. The matrixW satisfies the
following conditions:

WH = 0, WTW = PH , WWT = In−q . (5)

Example 1 (A simple case). The rejection of the nuisance
parameters in a simple case whereY ∈ R3 and x ∈ R is
depicted inFig. 2. Let us assume thatH = (1,1,1)T. There-
fore, the column space ofH is R(H)={Y |Y =Hx, x ∈ R}.
Its orthogonal complement (parity space)R(H)⊥ = {Y |Y =
w1a1+w2a2, (a1, a2) ∈ R2} is spanned by the vectorsw1=
(
√

6/3,−√
6/6,−√

6/6)T and w2 = (0,
√

2/2,−√
2/2)T

(seeFig. 2). The “cloud” of random observationsYi around
the mean valueE(Y ) = Hx + M� is shown inFig. 2. The
projectionPHM� of the deterministic partE(Y ) onto the

parity space (plane) spanned by the vectorsw1 andw2 and
the “cloud” of random residualsei = PHYi are also shown
in Fig. 2. As it follows from the first of the above condi-
tions (5), the transformation byW completely removes the
interference of the nuisance parameterx. It is illustrated by
Fig. 2, where the residual’sei = PHYi position is indepen-
dent of the nuisancex, as desired.

Moreover, as it can be shown, the statisticsZ = WY is
maximal invariant to the groupG. For this reason all invari-
ant tests should depend onY only via the vectorZ = WY .
Therefore, the measurement model (1) can be rewritten by
the following manner:

Z = WY = WM� + W� = WM� + �, (6)

where� ∼ N(0,�2In−q), �2>0. It is assumed thatr�n−
q (see below Eq. (1)), let us additionally assume that the
matrixWM is full column rank of size((n−q)×r). Hence,
the results of Section 3 can be directly applied to the model
given by Eq. (6) for deciding betweenH0 : {� = 0} and
H1 : {� �= 0}.

Example 2. To explain the above-mentioned assumptions
on the matrixWM, let us briefly discuss here two practical
examples when this is not so. First, sometimes the observa-
tion model allows the existence of fault vector� of sizen, for
instance, within the framework of GPS integrity monitoring
(the detailed discussion can be found in Section 6), all satel-
lite channels potentially can be simultaneously contaminated
by additional pseudorange biases, hence the linearized GPS
observation model is given byY =HX+ � + �. Such a sit-
uation (M = In and the inequalityr�n− q is not satisfied)
is especially important in the case of so-called “intentional”
contamination (John Volpe National Transportation System
Center, 2001). This leads to the problem of fault detectabil-
ity (see Section 6.1.2): i.e. some combinations of pseudor-
ange biases are undetectable. In respect to the problem of
GPS integrity monitoring, it is worth to note that tradition-
ally only one individual satellite channel fault is assumed
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Fig. 2. Column space and its orthogonal complement (parity space).

at a time (RTCA/DO-229A, 1998) but now recently arising
integrity monitoring scenarios (“intentional” contamination)
stress the importance of fault detectability. To solve (at least
partially) this problem, it is proposed in Section 6.1.2 to
split the total fault space into two subspaces: a subspace of
“detectable” faults and a subspace of “undetectable” ones.
More generally, let us assume that the matrixH is full column
rank (i.e.q =m) and the number of nuisance (state) param-
etersm plus the number of possible faultsr is greater than
the number of observationsn (again the inequalityr�n−q

is not satisfied). In this case (exactly as in the previous one)
some fault combinations will be undetectable. For exam-
ple, in the case of autonomous GPS integrity monitoring
the number of nuisance parametersm is equal to 4 (3 space
coordinates and the user’s clock error). Let us assume that
n= 7 satellites are visible. If four GPS channels (r = 4) can
be contaminated simultaneously, then some individual fault
combinations will be undetectable because the dimension of
parity spacen − m = 3 is insufficient.

Second, let us assume that the inequalityr�n − q is
satisfied but some columns ofM belong to the column space
R(H) of the matrixH. The following numerical example
illustrates this situation:

Y =
(2

1
5

)
x +

( 4 2
2 1
10 4

)(
�1
�2

)
+ �,

where� ∼ N(0, I3).

It is easy to see that the first column ofM belongs toR(H).
Now, n= 3, m= 1, r = 2, q = rankH = 1, rankM = 2 and
r = 2 = n − q but the matrix in question

WM =
(

0 0.1221
0 −0.3896

)
is not full column rank, rank(WM)=1. The consequence of
this fact is that the first fault component�1 is undetectable.
In summary, it can be concluded that the practical goal of

the above-mentioned assumptions on the matrixWM is to
warrant the detectability of any fault vectors� �= 0.

4.2. Design of the UBCP invariant test

Let us apply Theorem 1 to design the UBCP invariant
test. In the case of model (6), the LS estimator of� is given
by: �̂ = ((WM)T(WM))−1(WM)TZ and the Fisher matrix
is F�̂ = 1/�2(WM)TWM. It directly follows from Eq. (3)
that the UBCP test is given by

�∗(Y ) =
{
H0 if 	(Y )<h(�),
H1 if 	(Y )�h(�),

(7)

where	(Y )=1/�2Y TPHM(MTPHM)−1MTPHY . The test
given by Eq. (7) is UBCP over the following family of sur-
faces (seeFig. 2)

SWM =
{
Sc : 1

�2‖WM�‖2
2 = c2, c >0

}
. (8)

4.3. Discussion of the UBCP invariant test

As in the previous case, the invariant test�∗(Y ) coincides
with the GLR test. The statistical properties of the GLR test
have been examined inScharf and Friedlander (1994)in the
context of invariance. It has been mentioned inScharf and
Friedlander (1994)that the GLR test is (UMP) optimal be-
cause the
2 distribution is monotone in the non-centrality
parameter� (in other words the family of distributions
possesses a monotone likelihood ratio (Borovkov, 1998;
Lehmann, 1986)). A min-max approach with respect to the
unknown input has been developed inRougée, Basseville,
Benveniste, and Moustakides (1987)where the hypotheses
have also been formulated in terms of non-centrality param-
eter. Therefore,Scharf and Friedlander (1994)andRougée
et al. (1987)have reduced a vector parameter detection
problem to a scalar one without any guarantee that this
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reduction does not change the sense of optimality. We would
like to stress that in contrast withScharf and Friedlander
(1994), Rougée et al. (1987)we prove the optimality of the
testdirectly in the parameter space.

The statistics	(Y ) of the UBCP invariant test given by
Eq. (7) is distributed according to the
2 law with r degrees
of freedom (see Section 3.2).

Example 3(A simple case—continued). Let us recall a sim-
ple model discussed in Example 1. It is assumed here that
� ∈ R2 (seeFig. 2). Sometimes it is interesting to draw an
equal power surface of the UBCP invariant in the observation
space (Y ∈ R3). This surface is an elliptic cylinderCc given
by the following parametric representation:Y = Y (x, �) :
Cc ={Y =Hx +WT�}, where� : (1/�2)�TMTPHM�= c2

andx ∈ R. The intersection of the plane spanned by the vec-
torsw1 andw2 (parity space) with the elliptic cylinderCc

is an ellipse given by equationc2 = (1/�2)�TMTPHM� in
the plane (parity space). This situation is depicted inFig. 2.

4.3.1. Full-set parity vector against a subset one
This question arises in connection with the above men-

tioned problem of “optimal residual generation” (see, for
instance, the survey (Staroswiecki, 2001)). The recommen-
dation of the theory of invariant tests is to use the maxi-
mal invariant statisticsZ = WY to design an optimal test.
Let us consider now a subspace of the parity space (de-
fined byW) and estimate the power function of such a test
based on such a “subset” parity vector. To obtain this sub-
space, let us define another nuisance rejection matrixW1 of
size(k × n), wherek is chosen so thatr < k <n − q, from
the matrixW by deletingn − q − k rows of W. It is easy
to see thatW1H = 0 andW1W

T
1 = Ik. Finally, we obtain

Z1 = W1Y = W1M� + W1� = W1M� + �1, where�1 ∼
N(0,�2Ik),�2 >0. For this model the LS estimator of�
is given by:̂�1 = ((W1M)T(W1M))−1(W1M)TW1Y and the
Fisher matrix isF�̂1

= 1/�2MTWT
1 W1M. It follows from

(3) that the new test is given by

�∗
1(Z1) =

{
H0 if 	(Z1)<h1(�),
H1 if 	(Z1)�h1(�),

(9)

where	(Z1) = 1/�2ZT
1W1M((W1M)TW1M)−1MTWT

1 Z1
has a constant power over the family of ellipsoids

SW1M =
{
Sc : 1

�2‖W1M�‖2
2 = c2

1, c1>0

}
. (10)

Lemma 1. Let us assume thatPr0(�
∗
1 �= H0) = Pr0(�

∗ �=
H0) = �, (0< �<1). Then the following inequality is sat-
isfied for any� �= 0: ��∗

1
(�)���∗(�).

Proof. See Appendix B. �

4.3.2. Discussion
The above-mentioned inequality becomes strict under

some additional conditions. Let us assume, without loss

of generality, that the matrixW of size ((n − q) × n) is
composed of two blocksW1 and D of size (k × n) and
((n − q − k) × n), respectively:W = (WT

1 D
T)T. As it is

shown in Appendix B, to compare the power functions
of the tests�∗ and �∗

1 it is sufficient to compare the non-
centrality parametersc2(�) and c2

1(�) for the same fault
vector� �= 0. Let us consider two particular cases:

(1) It is assumed thatk = n − q − 1 andr�2. Therefore,
the matrixD is of size(1 × n). It is possible to find a
direction in the parameter space defined by the vector
�∗ �= 0 for which both tests�∗(Z) and�∗

1(Z) will have
the same power,c2(�∗)−c2

1(�
∗)=0 ⇐⇒ ‖DM�∗‖2

2=
‖wT

n−qM�∗‖2
2 = 0 ⇐⇒ MTwn−q ⊥ �∗, wherewn−q

is then − qth eigenvector of the projection matrixPH

corresponding to the eigenvalue 1 (see Section 4.1).
(2) Let us assume now that rank(DM) = dim(�). In this

casec2
1(�) − c2(�) = −1/�2‖DM�‖2

2<0 and, hence,
��∗

1
(c2

1(�))<��∗(c2(�)) for any� �= 0.

Example 4. Let us consider the following model:

Y =


10
1
10
1
1

 x +


1 2
1 1
3 −4
4 −1
6 1


(

�1
�2

)
+ �,

where� ∼ N(0, I5). The nuisance rejection matrix is given
by

W =


−0.0702 0.9971 −0.0289 −0.0029 −0.0029
−0.7019 −0.0289 0.7105 −0.0289 −0.0289
−0.0702 −0.0029 −0.0289 0.9971 −0.0029
−0.0702 −0.0029 −0.0289 −0.0029 0.9971

 .

Let us define two other rejection matricesW1 andW2. The
matrixW1 is obtained by deleting the last row of the matrix
W and the matrixW2 by deleting two last rows ofW. We
consider the full-set parity test�∗(Z) and two subset par-
ity tests�∗

1(Z1) and�∗
2(Z2) designed by using the statistics

Z1 = W1Y andZ2 = W2Y , respectively. All these statistics
follow 
2 central distribution with 2 degrees of freedom un-
derH0. The comparison of these three tests are shown in
Figs. 3 and 4. First of all, to show the advantage of the
full-set parity vector, let us depict the equal power�(c2)

ellipses of the tests�∗ (solid line), �∗
1 (dash-dotted line)

and�∗
2 (dashed line) for the same constant, sayc = 1 (see

Fig. 3). Fig. 3 shows that the full-set parity test�∗(Z) per-
forms better than other tests. It is easy to see fromFig. 3that
the relative efficiency of the tests depends on the orientation
(angle
) of the vector�=(�1�2)

T: the advantage of the full-
set parity test over a subset one can be somewhat limited
for some directions in the parameter space (see the discus-
sion given in Section 4.3.2 for some additional comments).
For this reason it is reasonable to compare the probability
of non-detection Pr�(�

∗) = 1 − �(�) as a function of two
variables: the signal-to-noise ratio‖�‖2/� and the angle
.
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The functions(‖�‖2

�
, 

)

�→ 1 − �
(‖�‖2

�
, 

)

are shown inFig. 4. Here, the probability of false alarm
is chosen to be� = 10−5, the signal-to-noise ratio‖�‖2/�
varies between 0 and 2 and the angle
 varies between 0
and�. It is easy to see fromFig. 4 that the probability of
non-detection 1−��∗(‖�‖2/�, 
) (solid lines) of the full-set
test �∗ is typically much smaller than the probabilities of
non-detection 1−��∗

1
(‖�‖2/�, 
) (dash-dotted line) and 1−

��∗
2
(‖�‖2/�, 
) (dashed lines) of the subset tests�∗

1 and�∗
2.

However, if the angle
 is close to�/2, all the probabilities
are comparable.

4.3.3. “Optimal” residual generation
As it is mentioned in the survey (Staroswiecki, 2001),

the choice of the full-set rejection matrixW of size ((n −
q) × n) is not unique: the productAW, whereA is a matrix
of size ((n − q) × (n − q)) such that detA �= 0, leads to
another rejection matrix̃W=AW . It is asked inStaroswiecki
(2001)whether such an operation can improve the residual
generation step or not. It is clear thatW̃H=0. The following
lemma shows that the rejection matrix̃W = AW does not
change the power function of the test.

Lemma 2. Let us assume that the UBCP invariant test(7)
is designed by using a rejection matrix̃W = AW , where
detA �= 0. Then the power function of the test(7) remains
independent of A.

Proof. See Appendix C. �

5. Dynamical model with unknown inputs

The goal of this section is to apply the statistical tools
developed in Sections 3 and 4 to the following linear state-
space model where the nuisance is modeled by a determin-
istic state equation:

Xk = FXk−1 + BUk, (11)

Yk = HXk + M�k + �k, (12)

whereYk ∈ Rn is the measured output,Xk ∈ Rm is the
state vector,Uk ∈ Rp is the unknown input vector (nuisance
parameter),�k ∈ Rr is the vector of faults at timek, and�k is
a zero-mean gaussian white noise,�k ∼ N(0,�2In),�2>0.
It is assumed that all the matrices of (11)–(12) are known.
The characteristic feature of the state-space model (11)–(12)
is that the nuisanceXk is modeled by a deterministic state
equation (11) which is governed by the input vectorUk. Let
us assume that a fixedN-size sample of measured outputs
Y1, . . . , YN is available and supposed to be generated by one
of the two alternative hypotheses. There are two methods to
deal with the nuisance parametersX1, . . . , XN : (i) to ignore
the presence of the state equation (11) and to uniquely use
the measurement equation (12); (ii) to use both Eqs. (11)
and (12). It can happen that the parity space obtained by
using both state and measurement equations is reachable
than the parity space obtained by ignoring the state equation.
It will be formally proven now that this fact can improve the
performance of the UBCP invariant test based uniquely on
the measurement equation (12).

5.1. Ignoring the state equation

Here, the UBCP invariant test is designed uniquely by
putting togetherN measurement Eqs. (12). Eq. (11) is ig-
nored.

Y = HX + M� + �, (13)
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where the definitions of the vectorsY = (Y T
1 , . . . , Y

T
N)

T,
X=(XT

1 , . . . , X
T
N)

T, �=(�T
1 , . . . , �

T
N)

T, �=(�1, . . . , �N)
T,

H andM are(Nn×Nm) and(Nn×Nr) block matrices,
respectively, in which the blocks off the “diagonal” are the
zero matrices and the “diagonal matrices” areH and M,
respectively. The UBCP invariant test (7) is applicable now
by replacing the vectorY, matricesH, M andPH by Y, H,
M andPH = INn − H(HTH)−HT, respectively. This
test �∗

H is UBCP over the following family of ellipsoids
SWHM = {Sc : 1/�2‖WHM�‖2

2 = c2
H, cH>0}, where

the matrixWH satisfies the following conditionsWHH=
0, WT

HWH = PH andWHWT
H = INn−Nq .

5.2. Using both state-space and measurement equations

The nuisanceXk is replaced byXk = Fk−1X1 +∑k−2
j=0F

jBUk−j for k�2. This implies thatY1 = HX1 +
M�1 + �1 and Yk = HFk−1X1 + H

∑k−2
j=0F

jBUk−j +
M�k + �k for k�2. By putting togetherN measurement
equations, we get:

Y = HFX1 + HF,BU + M� + �
= H̃X̃ + M� + �, (14)

where the definitions of the vectorU and the matrices
HF ,HF,B,M are trivial,H̃ = (HFHF,B) and the nui-
sance is defined by the following vector̃X = (XT

1 ,U
T)T.

Let us apply the UBCP invariant test given by Eq. (7)
to the state-space model (14). To do this, the vectorY,
matricesH, M and PH are replaced byY, H̃, M and

PH̃ = INn − H̃(H̃
T
H̃)−H̃T

, respectively. This test
�∗̃
H

is UBCP over the following family of ellipsoids

SWH̃M = {Sc : 1/�2‖WH̃M�‖2
2 = c2

H̃
, cH̃>0}, where

matrixWH̃ satisfies the following conditionsWH̃H̃= 0,
WH̃WT

H̃
= I

Nn−rankH̃, andWT
H̃
WH̃ = PH̃.

5.3. Comparison of the tests�∗
H and�∗̃

H

Let us consider the above mentioned tests�∗
H and�∗̃

H
.

The result of their comparison is summarized in the follow-
ing lemma.

Lemma 3. Let us assume thatPr0(�
∗
H �= H0)=Pr0(�

∗̃
H

�=
H0) = � (0< �<1). Then the following inequality is sat-
isfied for any� �= 0: ��∗

H
(�)���∗̃

H
(�).

Proof. See Appendix D. As it is shown in Appendix D,
the above-mentioned inequality becomes strict under some
additional conditions. �

The proof of Lemma 3 is based on the fact that the column
space of̃H (see Eq. (14)) is contained in the column space
of H (see Eq. (13)). This leads to the orthogonal comple-
ment which can be richer in the case of using both state and
measurement equations. The importance of state equation to

model the nuisance has been heuristically discussed in the
analytical redundancy literature. Lemma 3 formally proves
this result. The UBCP invariant test based on the state-space
model (11)–(12) performs at least not worse than the test
based uniquely on the measurement Eq. (12). Nevertheless,
as it follows from Appendix D, the column spaces ofH and
H̃ may coincide. It happens if rank̃H= rankH. In such a
case, the state equation does not improve the quality of the
UBCP invariant test:��∗

H
(�)=��∗̃

H
(�). A practical exam-

ple of the above situation will be discussed in Section 6.3
to show the actual relevance of the approach which ignores
the state equation.

6. Application: ground station based and receiver
autonomous GPS integrity monitoring

Integrity monitoring, a major issue for the GPS in many
safety-critical applications, requires that a navigation system
detects, isolatesfaulty measurement sources (channels), and
removesthem from the navigation solution before they sig-
nificantly contaminate the output. For some safety-critical
navigation modes, landing, for instance, the GPS channels
integrity monitoring is realized by using the measurements
of ground based monitoring station at a known positionXs=
(xs, ys, zs)

T close to the airport. When a fault is detected,
the corresponding information is transmitted via the integrity
channel. The contribution of this example is twofold: first,
it will be mathematically rigorously shown that the widely
used LS residual statistics is in fact an optimal (UBCP in-
variant) solution without a receiver clock aiding; second, it
will also be shown that the quality of fault detection can
be improved by using clock aiding. The contribution of the
second example (receiver autonomous integrity monitoring
(RAIM) algorithm) is to show the actual relevance of Sec-
tion 5. Here, the UBCP test is designed with and without
taking into account the model of vehicle dynamics.

6.1. Ground station-based GPS integrity monitoring:
algorithm obtained by ignoring the clock model

Let us assume that an inexpensive crystal oscillator is used
as a frequency source in the station receiver. This means that
the station receiver clock bias� relative to the GPS time is
an unknown (non-random) value,� ∈ R. Some additional
motivation can be found inBasseville and Nikiforov (2002).

6.1.1. Measurement model
The scheme of ground station-based GPS integrity moni-

toring is depicted inFig. 5. The GPS solution is based upon
accurate measuring the distance (range) from n satellites
with known locationsXi = (xi, yi, zi)

T, i = 1, . . . , n to a
user. The ground station model is:yi = ri − di = c� + �i ,
i = 1,2, . . . , n, whereri is the pseudorangefrom the ith
satellite to the user anddi = ‖Xi − Xs‖2 is the known
distance from theith satellite to the user,c � 2.9979×
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Navigation satellites

Ground station

(xi,yi,zi)

(xs,ys,zs)

Fig. 5. Ground station-based GPS integrity monitoring.

108 m/s is the speed of light and�i is an additive pseu-
dorange error,� = (�1, . . . , �n)

T is the vector of additive
pseudorange errors at the ground station position. A fault is
modeled by the vector� of additional pseudorange biases:
Ys=1n�+� (+�), �=(�1, . . . , �n)

T ∼ N(0,�2In), where
Ys=(y1, y2, . . . , yn)

T is the vector of station measurements,
1n = (1, . . . ,1)T and� = c�, � ∈ R, is the impact of the
station clock bias measured in meter and considered as a
nuisance parameter.

6.1.2. Fault detectability
Several GPS channels can be contaminated simultane-

ously. This leads to the situation when some combinations
of individual channel faults are undetectable. To better un-
derstand the situation, let us represent the additional biases
vector� in the following manner2 �=1n��+WT�W, �� ∈
R, �W ∈ Rn−1, where the nuisance rejection((n− 1)× n)

matrix W : W1n = 0 is composed ofn − 1 basis vec-
tors which span the orthogonal complement ofR(1n) and
it satisfies the conditions defined by Eq. (5):WWT = In−1
andWTW = P1n = (In − (1/n)1n1T

n). It follows from the
above definition of� that the sub-vector�� is undetectable
(the subspace of�� coincides with the subspace of the nui-
sance parameter� and, hence,�� is masked by�). There-
fore, the only “detectable part” of�is represented byWT�W
and we getYs = 1n� + � (+WT�W), � = (�1, . . . , �n)

T ∼
N(0,�2In). Let us analyze the impact of this undetectable

2 Instead of the total vector� used inBasseville and Nikiforov (2002)
andNikiforov (2002, Chapter 2), only the “detectable” sub-vector�W is
considered here. It is necessary because: (1) the matrixM of size(n× r)

from Eq. (1) should be full column rank (r <n); (2) the interpretation of
the fault detection test performance is simpler.

part1n�� of the vector fault� on the user’s positioning. We
consider a user (aircraft) at the positionsXu = (xu, yu, zu)

T.
By linearizing the pseudorange equation with respect to the
state vectorX = (xu, yu, zu,�u)

T = (XT
u ,�u)

T around the
working pointX0 = (XT

u0
,0)T, we get the linearized mea-

surement equation of user with a fault

Yu = R − D0 � H0(X − X0) + � (+�), (15)

whereR= (r1, . . . , rn)
T, D0 = (d10, . . . , dn0)

T, di0 =‖Xi −
Xu0‖2, �=(�1, . . . , �n)

T,H0=�R/�X|X=X0 is the Jacobian
matrix of sizen × 4. As it follows from Eq. (15), a fault
� affecting the GPS channels implies an additional error
b=E(X̂−X)=(HT

0 H0)
−1HT

0 � in the vector̂X. Fortunately,
the impactb = ��(H

TH)−1HT1n of such an undetectable
bias1n�� on the first three componentŝxu, ŷu, ẑu is equal
to zero, i.e.bx = by = bz = 0. Therefore, undetectable (by
a ground monitoring station) pseudorange biases are not
dangerous for the navigation.

6.1.3. Fault detection algorithm
The problem consists in deciding between the null hy-

pothesisH0 : {Ys ∼ N(1n�,�2In), � ∈ R} (no contam-
inated pseudoranges) and the alternative hypothesisH1 :
{Ys ∼ N(1n� + WT�W,�2In), �W �= 0,� ∈ R}. The fam-
ily P = {N(1n� + WT�W,�2In), � ∈ Rr} is invariant to
the groupG = {Ys �→ g(Ys) = Ys + 1n�} and the induced
groupG is given byg(�) = � + 1nx (x ∈ R). Let us as-
sume that only one measurement vectorYs is available to
decide between two hypotheses. As it follows from Section
4, the test�∗(Ys) based on the following well-known LS
residual statistics, widely used in fault detection:	(Ys) =
1/�2∑n

i=1 (yi − y)2,wherey = 1/n
∑n

i=1 yi , is UBCP in-
variant over the family of surfaces3

Sc : 1

�2 �T
WWWTWWT�W = 1

�2‖�W‖2
2 = c2.

6.2. Clock-aided ground station-based GPS integrity
monitoring

The idea to use the clock model in order to improve
the fault detection algorithm in the GPS integrity monitor-
ing has been originally proposed and motivated inMisra,
Muchnik, and Manganis (1995). It has been shown that
by using a receiver clock short-term stability the perfor-
mance of GPS integrity monitoring (a vital safety concern
in civil aviation) can be seriously improved. Let us consider
a clock-aided ground station based GPS monitoring to illus-
trate Lemma 3 and to show how the state equation improves
the performance of the test. Here, the following very sim-
plified clock model is used (Brown & Hwang, 1992): the
long-term biases are modeled by an unknown low-frequency

3 Unlike Basseville and Nikiforov (2002)and Nikiforov (2002,
Chapter 2), where the total fault vector� is used, the new family of
surfacesSc : 1/�2‖�W ‖2

2 = c2 is defined on the “detectable” subspace.
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Fig. 6. Two equal power ellipses obtained by ignoring (dashed line) and
by using the state equation (solid line).
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Fig. 7. Probability of non-detection by ignoring the state equation (dashed
lines) and by using both state and measurement equations (solid lines).

function (due to the temperature changes, for example) but
the short-term biases (1–10 s) are assumed to be practically
constant. The choice of this simple model is especially moti-
vated by the fact that the fault detection delay (time-to-alert)
is bounded by 2–5 s for safety critical applications. Hence,
the state-space model is given by:�k =�k−1, Ys,k =1n�k +
M�k +�k, �k = (�k,1, . . . , �k,n)

T ∼ N(0,�2In), wherek=
1, . . . , N . Let us consider the following particular case:n=2,
N=2,M=(10)T, to illustrate Lemma 3. The comparison be-
tween two fault detection tests (obtained by ignoring and by
using the state equation) is presented inFigs. 6and7. Fig. 6
shows two equal power ellipses obtained by ignoring and by
using the state equation: the ellipse (circle)‖WHM�‖2

2 =

�2c2, where�c = 1, corresponding to the UBCP invariant
test�∗

H obtained by ignoring the clock model, is given by
�2

1+�2
2=2. It is shown by a dashed line inFig. 6. The ellipse

‖WH̃M�‖2
2 = �2c2, where�c = 1, corresponding to the

UBCP invariant test�∗̃
H

obtained by using the clock model,

is given by3
2 �2

1−�1�2+ 3
2 �2

2=2. It is shown by a solid line
in Fig. 6. It is easy to see fromFig. 6 that the efficiency of
clock-aided monitoring depends on the orientation (angle
)
of the vector�=(�1 �2)

T. If �1=�2 (
=0 or�) then both tests
�∗
H and�∗̃

H
are equivalent. If�1 = −�2 (
 = �/2 or 3�/2)

then the clock-aided test�∗̃
H

is more efficient than the test
�∗
H obtained by ignoring the clock model. For this reason

it is reasonable to compare the probability of non-detection
Pr�(�

∗ �= H1)=1−�(�) as a function of two variables: the
signal-to-noise ratio‖�‖2/� and the angle
. The functions
(‖�‖2/�, 
) �→ 1− �(‖�‖2/�, 
) are shown inFig. 7. Here,
the probability of false alarm is chosen to be� = 10−3, the
signal-to-noise ratio‖�‖2/� varies between 0 and 10 and the
angle
 varies between 0 and�/2. It is easy to see fromFig.
7 that the probability of non-detection 1− ��∗̃

H
(‖�‖2/�, 
)

(solid lines) of the clock-aided test�∗̃
H

is much smaller than
the probability of non-detection 1−��∗

H
(‖�‖2/�, 
) (dashed

lines) of the test�∗
H obtained by ignoring the clock model

when the angle
 is close to�/2. If the angle
 is close to
0, the both probabilities are comparable.

6.3. RAIM: the UBCP test with and without taking into
account the model of vehicle dynamics

The goal of this subsection is to continue the illustration
of the theoretical results of Section 5, especially to discuss
again Lemma 3, and also to provide the readers with some
additional explanation on the relevance of the UBCP invari-
ant test given in Section 5.1 which is obtained by ignoring
the state equation. To explain the subtlety of the usage of
the dynamical models with unknown inputs, two different
models of the vehicle dynamics will be used to design the
GPS RAIM algorithms. Particularly, it will be shown that
the state equation does not improve the quality of fault de-
tector for one of these models.

Let us put together the linearized GPS measurement equa-
tion of the user (15) and the deterministic state equation that
models the vehicle dynamics (the known termH0X0 in (15)
is omitted to simplify the notations):

Xk =
(
aI3 0
0 0

)
Xk−1 + BUk,

Xk = (xk, yk, zk,�k)
T, (16)

Yk = H0Xk + M�k + �k,
M = (1 0 · · · 0)T, �k ∈ R, (17)

wherea = 0.9 is a coefficient and the vectorUk models the
unknown input (nuisance parameter). Let us consider two



1168 M. Fouladirad, I. Nikiforov / Automatica 41 (2005) 1157–1171

0
5

10
15 0 0.5 1 1.5 2 2.5 3

10-15

10-10

10-5

100

�1−  
H,2

||�||2
 ,





�

~

�1−  ||�||2
 

�
||�||2
 

,
~

�1−  ||�||2
 ,


*

   1

��*

*��

��

P
r �

 (�
∗  

≠ 
  

 1
)

Fig. 8. Probability of non-detection by ignoring the vehicle dynamics
(test �∗

H, solid line), by using the model of dynamics with an unknown
“motor thrust force” (test�∗̃

H,1, “+” signs) and by using the model of
dynamics with an unknown magnitude of the “motor thrust force” but
known direction (test�∗̃

H,2, dashed line).

particular case of the matrixB:

B1 = I4 with Uk ∈ R4 and B2 =
(

10 1 1 0
0 0 0 1

)T

,

with Uk ∈ R2. In the case ofB = B1, the first three com-
ponents of the vectorUk represent the “motor thrust force”
that is responsible for the vehicle propulsion and the forth
component “drives” the receiver clock error. In the case of
B =B2, the propulsion of the vehicle is realized by the first
component ofUk (the first column of the matrixB2 defines
the direction of the “thrust vector”) and the second compo-
nent “drives” the receiver clock error. The above models of
the vehicle dynamics differ by the level of a priori infor-
mation: in contrast with the first model, the second model
(with B2) assumes that the direction of the “thrust vector”
is known and only the magnitude of the thrust is unknown.
Let us compare three following fault detectors:

• �∗
H, obtained by ignoring the vehicle dynamics (state

equation (16) is ignored);
• �∗̃

H,1
, obtained by using the vehicle dynamics with a min-

imal level of a priori information: the “motor thrust force”
is unknown (state equation (16) is used with the matrix
B1);

• �∗̃
H,2

, obtained by using the vehicle dynamics with a
known direction of the “thrust vector” and unknown thrust
magnitude (state equation (16) is used with the matrixB2).

The comparison between the above three fault detection al-
gorithms is presented inFig. 8. Eight satellites are visi-
ble at this moment (n = 8). Two consequent GPS observa-
tions (epochs)Y1 andY2 (N = 2) are used to detect a fault
� = (�1, �2)

T ∈ R2 affected the first satellite channel (see
the matrixM in (17)). The probability of false alarm is cho-

sen to be�=10−5. As in the previous case (see Section 6.2)
it is reasonable to compare the probability of non-detection
Pr�(�

∗ �= H1)=1−�(�) as a function of two variables: the
signal-to-noise ratio‖�‖2/� and the angle
= arctan�2/�1.
The functions(‖�‖2

�
, 

)

�→ 1 − �
(‖�‖2

�
, 

)

are shown inFig. 8. The probabilities of non-detection for
the tests�∗

H (ignoring the vehicle dynamics) and�∗̃
H,1

(unknown “motor thrust force”) are shown by a solid line
and by “+” signs, respectively. It can be concluded from
Fig. 8 that the probabilities of non-detection for both tests
�∗
H and �∗̃

H,1
are the same, in other words, the model of

vehicle dynamics with the matrixB1 does not improve the
quality of the UBCP invariant test. Why it happens? As it
follows from the proof of Lemma 3 (see Appendix D), the
both column subspaces ofH (Eq. (13)) and̃H (Eq. (14))
may coincide:R(H̃) = R(H). This is what happens in
the case of vehicle dynamics with the matrixB1. In fact,
rankH̃(B1)= rankH= 8. In such a case, the power func-
tions of both tests (with and without state equation) are equal.
Intuitively, this result is easily understandable in the light of
the vehicle dynamics model (see Eq. (16)). In fact, the ma-
trix B1 = I4 does not reduce the dimension of the unknown
input subspace and for this reason it is difficult to expect
an improvement in the quality of test. On the contrary, the
matrixB2 reduces the dimension of the unknown input sub-
space and this leads immediately to a serious improvement
in the quality of the test�∗̃

H,2
obtained by using the vehicle

dynamics with a known direction of the “thrust vector” and
unknown thrust magnitude. It is confirmed by the probabil-
ities of non-detection for the tests�∗̃

H,2
, which is shown in

Fig. 8 (see a dashed line). To conclude this example let us
stress the relevance of the approach obtained by ignoring
the state equation in the case where the column spaces of
H andH̃ coincide. The UBCP test, which uniquely uses
the measurement equation is simpler and potentially more
robust (because does not use the state equation coefficients)
then the test based on the full-size state-space model.

7. Conclusion

The problem of fault detection in a linear gaussian model
with nuisance parameters (or nuisance faults) has been ad-
dressed from the statistical point of view. First, the uniformly
best constant power (UBCP) test is derived from solving an
optimal hypotheses testing problem for the gaussian linear
model by using the Wald’s theory. The optimality of the pro-
posed test is established in Theorem 1. Second, the invariant
UBCP test is obtained for the linear gaussian model with
nuisance parameters (or nuisance faults) by using Theorem 1
and the theory of invariant tests. Several critical issues con-
cerning the design and the properties of fault detection algo-
rithms (full-set parity vector against a subset one, “optimal”
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residual generation, etc.) have been addressed. The main re-
sults are given by Lemmas 1 and 2. Third, by using the
proposed statistical tools, the linear state-space model with
nuisance parameters defined by a deterministic state equa-
tion has been considered. It has been shown in Lemma 3
that the UBCP test designed by using both state and mea-
surement equations performs at least not worse than the test
based uniquely on the measurement equation.

Appendix A. Proof of Theorem 1

The idea of this proof is inspired byWald (1943). It
is necessary to show that the proposed test coincides with
a specially designed Neyman–Person (N–P) test which re-
alizes a constant power function over the family of sur-
facesS. To apply this idea to model (2), let us assume
the following hypotheses testing problemH0 : {� = 0} and
H1,c : {� : 1/�2‖M�‖2

2=c2, c >0}. The alternative hypoth-
esisH1,c corresponds to the ellipsoidSc given by equation
�TMTM�=c2�2 from the familySM (4). Let us define the
following a priori densityp(�)=b=1/A(Sc) of the param-
eter� over the ellipsoidSc, whereA(Sc) is the air of surface
Sc. Hence, the density of the observation vectorY is given
by the following surface integral

∫ · · · ∫
Sc
f�(Y )p(�)dS(�)

when the hypothesisH1,c is true. The N–P decision rule
for testing the hypothesisH0 = {f0(Y )} againstH1,c =
{∫ · · · ∫

Sc
f�(Y )p(�)dS(�)} is given by

�N–P(Y ) =
{
H0 if 	N–P(Y )�d(c),

H1, c if 	N–P(Y )�d(c),
(A.1)

where

	N–P(Y ) =
∫

· · ·
∫
Sc

f�(Y )

f0(Y )
p(�)dS(�)

is the likelihood ratio (LR) betweenH0 andH1,c,

f�(Y ) = 1

(2�)n/2�n
exp

{
− 1

2�2‖Y − M�‖2
2

}
is the density of observations andd(c) is the threshold so
chosen that the probability of false alarm is equal to a pre-
scribed level: Pr0(�N–P(Y ) �= H0) = �. By developingf�,
the integral	N–P(Y ) can be written as follows:	N–P(Y )=
b
∫ · · · ∫

Sc
exp{1/2�2[2�TMTY − �T(MTM)�]} dS(�). To

prove the Theorem, it is necessary to show that the LR
	N–P(Y ) of the N–P test is a non-decreasing function of
the decision function	(Y ) = (1/�2)Y TM(MTM)−1MTY

of the test�∗(Y ) (3) for any value ofc >0. The matrix
� = MTM is positive definite, hence it can be rewritten
as follow: � = RRT and �−1 = R−TR−1. Let us define
the vectorZ = R−1MTY . The decision function	(Y )

of the test (3) can be represented as a function ofZ, i.e.
	(Z) = 1/�2‖Z‖2

2 and the family of surfacesSH can be
also rewritten asS′ = {S′

c : ‖�′‖2
2 = c2�2, c >0}, where

�′ =RT� and� =R−T�′ since the matrixR is non-singular.

By using the change of variables�′ = R� (detR �= 0) and
puttingMTY = RZ, we get:

	N–P(Z) = b′
∫

· · ·
∫
S′
c

exp

{
1

�2�′TZ
}

× exp

{
− 1

2�2‖�′‖2
2

}
dS′(�′),

where b′ is a constant and the second term under the
sign of integral exp{−1/2�2‖�′‖2

2} is constant over the
surface S′

c. As it follows from Wald (1943), the func-
tion ‖Z‖2 �→ 	N–P(‖Z‖2) is non-decreasing for any
c >0. Therefore, it has been shown that the LR of
the N–P test	N–P(Y ) is a non-decreasing function of
	(Y ) = (1/�2)Y TM(MTM)−1MTY . It proves that the test
�∗(Y ) given by Eq. (3) has uniformly best constant power
with respect toSc and, hence, the test�∗(Y ) is UBCP over
the family of ellipsoidsSM given by Eq. (4). �

Appendix B. Proof of Lemma 1

First of all, let us note that the statistics	(Z) and	(Z1)
given by Eqs. (7) and (9), respectively, follow
2 distribu-
tions with r degrees of freedom. These
2 distributions are
central underH0. Thereforeh(�)= h1(�). The tests�∗(Z)
and�∗

1(Z) given by Eqs. (7) and (9) have constant power
functions over the family of surfacesSWM and SW1M

given by Eqs. (8) and (10), respectively. The power func-
tions��∗

(Z)(c
2) and��∗

1(Z)
(c2

1) of the tests�∗(Z) and�∗
1(Z)

are non-decreasing functions of their non-centrality param-
eters c2 and c2

1, respectively, given the equal thresholds
h(�)=h1(�). Hence, to compare the power functions of the
above tests it is sufficient to compare the non-centrality pa-
rametersc2(�) andc2

1(�) for the same fault vector� �= 0. It
follows immediately from paragraph 4.3.2 and an elemen-
tary matrix algebra thatc2

1(�)−c2(�)=−1/�2‖DM�‖2
2�0.

Finally, we obtain��∗
1
(c2

1(�))���∗(c2(�)) for any � �= 0
and thus Lemma 1 is proved.�

Appendix C. Proof of Lemma 2

The goal of Lemma 2 is to prove that the utilization of
the matrixW̃ =AW : AWH =0, whereA is a matrix of size
(n− q)× (n− q) such that detA �= 0, instead of matrixW,
does not change the power function of the test. Let�∗(Z)
be the test based on the statisticsZ = WY and given by
Eq. (7) and�∗(Z̃) be the same test based on the statistics
Z̃ = W̃Y . The proof is elementary: it is worth to note that
the matrixA establishes a one-to-one linear transformation
Z̃ = AZ in L(Z, Z̃), whereZ ∈ Z and Z̃ ∈ Z̃. Hence,
the statistical properties of the tests based on the statisticsZ
andZ̃ are exactly the same:��∗

(Z)(c
2)=��∗

(Z̃)(c
2) for any

c2�0. Moreover, by applying̃W to Y =HX+M�+ �, we
get the new model̃Z = W̃Y = W̃M� + W̃�, whereW̃� ∼
N(0,�2V ), with V = AAT. The direct calculation shows
that the linear transformatioñZ = AZ does not change the
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Fisher matrixF�̂, the statistics of the test:	(Z) = 	(Z̃)

and the family of ellipsoids (8).

Appendix D. Proof of Lemma 3

The goal of Lemma 3 is to prove that the power function
��∗̃

H
of the test�∗̃

H
obtained by using both (state (11) and

measurement (12)) equations, is uniformly greater than or
equal to the power function��∗

H
of the test�∗

H obtained
by ignoring the state equation. The proof is organized
as follows: first, a relation between the matricesH (see
Eq. (13)) andH̃ = (HFHF,B) (14) will be established.
Next, a relation between the parity spaces ofH and H̃
will be shown. And finally, by using the same method as
in Lemma 1, the power functions��∗̃

H
and ��∗

H
will be

compared. Let us recall the regression model (13) obtained
by ignoring the state equation, i.e.Y = HX + M� + �,
whereY ∈ RNn, X ∈ RNm, � ∈ RNr and the model (14)
obtained by using both equations:Y = H̃X̃ + M� + �,
where X̃ ∈ Rm+(N−1)p. It follows from Eqs. (13) and
(14) and an elementary matrix algebra (Strang, 1986) that
H̃ = HH′, where the(Nm × (m + (N − 1)p)) matrix
H′ is a function of blocksF and B. It also follows from
Strang (1986)that rank̃H = rank(HH′)�rankH be-
cause the column space (range)R(H̃) of H̃ is contained
in the rangeR(H) of H (each column of̃H is a com-
bination of the columns ofH). There are two possible
cases: (i) if rank̃H = rankH then both ranges coincide:
R(H̃) = R(H) and, hence,R(H̃)⊥ = R(H)⊥; (ii) if
rankH̃< rankH then the orthogonal complementR(H)⊥
of the rangeR(H) is a subspace of the orthogonal com-
plementR(H̃)⊥ of the rangeR(H̃) : R(H)⊥ ⊂ R(H̃)⊥.
The first case is trivial: the power functions of both tests
�∗
H and �∗̃

H
are equal:��∗

H
= ��∗̃

H
. To discuss the sec-

ond case, let us assume thats = rankH − rankH̃>0.
Hence, dimR(H)⊥ = Nn − rankH = Nn − Nq and
dimR(H̃)⊥ =Nn−Nq + s. It follows from Strang (1986)
that, sinceR(H)⊥ is a subspace ofR(H)⊥1 , the vectors
which spanR(H)⊥ can be extended to a basis ofR(H̃)⊥
by adding s linearly independent vectors. Therefore, for
any matrixWH (WHH = 0) there exists a matrixD
composed of the lines which span the orthogonal com-
plement ofR(H)⊥ in R(H̃)⊥ : WH̃ = (WT

HDT)T. It
follows immediately from paragraph 4.3.2 and Lemma 1
applied with WH̃ and WH instead ofW and W1, re-
spectively, that:c2

H(�) − c2
H̃
(�) = −1/�2‖DM�‖2

2�0
and, hence,��∗

H
(�)���∗̃

H
(�) for any � �= 0. Let us ad-

ditionally assume that rank(DM) = dim(�). In this case
−1/�2‖DM�‖2

2 <0 and, hence,��∗
H
(�)<��∗̃

H
(�) for

any� �= 0.
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