
J Electron Test (2009) 25:259–268
DOI 10.1007/s10836-009-5109-3

Adaptive Debug and Diagnosis Without Fault Dictionaries

Stefan Holst · Hans-Joachim Wunderlich

Received: 23 May 2008 / Accepted: 15 July 2009 / Published online: 29 July 2009
© Springer Science + Business Media, LLC 2009

Abstract Diagnosis is essential in modern chip produc-
tion to increase yield, and debug constitutes a major
part in the pre-silicon development process. For recent
process technologies, defect mechanisms are increas-
ingly complex, and continuous efforts are made to
model these defects by using sophisticated fault models.
Traditional static approaches for debug and diagnosis
with a simplified fault model are more and more lim-
ited. In this paper, a method is presented, which iden-
tifies possible faulty regions in a combinational circuit,
based on its input/output behavior and independent of
a fault model. The new adaptive, statistical approach
is named POINTER for ‘Partially Overlapping Impact
couNTER’ and combines a flexible and powerful effect-
cause pattern analysis algorithm with high-resolution
ATPG. We show the effectiveness of the approach
through experiments with benchmark and industrial
circuits. In addition, even without additional patterns
this analysis method provides good resolution for vol-
ume diagnosis, too.

Keywords Diagnosis · Debug · Test · VLSI

Responsible Editor: C. Landrault

S. Holst (B) · H.-J. Wunderlich
Institut für Technische Informatik, Universität Stuttgart,
Pfaffenwaldring 47, 70569 Stuttgart, Germany
e-mail: holst@informatik.uni-stuttgart.de

H.-J. Wunderlich
e-mail: wu@informatik.uni-stuttgart.de

1 Introduction

1.1 Debug and Diagnosis

Traditionally, design, verification and diagnosis of mi-
croelectronic circuits have been viewed as separate
tasks with individual challenges and techniques. How-
ever, in recent years more and more attention has been
paid to the interaction of individual design steps in
verification, diagnosis of prototypes, and field return
analysis. These are tasks for quality control and im-
provement during the complete lifecycle of the system
by tackling faults occurring during design, manufactur-
ing and operation.

Debug is the time-consuming task of identifying
faulty modules and structures within the design. While
some methods of formal verification are constructive
and able to find the cause of malfunctions, simulation
and emulation usually require additional efforts for
fault location.

As Systems on Chip (SoC) design complexity in-
creases, verification is turning into a critical bottleneck
in the design process. Estimates today are that more
than 70% of the total design time is on verification
[9, 20]. Despite the efforts spent by the academia and
the industry on developing functional verification tools,
logical and functional flaws remain the main cause of
today’s design respins. Between the years 2002 and
2004, the percentage of designs with functional errors
has actually increased [14].

Diagnosis is the process of locating faults in a phys-
ical chip at the various levels down to real defects.
Numerous parasitic and timing effects may show up in
the first silicon [28], identifying them is part of silicon
debug. With growing circuit complexity and shrinking

260 J Electron Test (2009) 25:259–268

geometries, the actual behavior of the silicon is hard to
model [16, 21, 22] and cannot always be predicted and
simulated [23].

In volume diagnosis, test data of a large number of
failing chips are recorded and analyzed to find yield-
limiting systematic defects and design issues. Diag-
nostic data from a single chip is not sufficient since
systematic problems need to be differentiated from
sporadic random defects. The extracted knowledge is
used to support yield ramping and yield learning in
advanced process technologies by improving design for
manufacturability [18].

Precision diagnosis is performed on a small selected
set of chips like first silicon or representatives for sys-
tematic defects determined by volume diagnosis to find
the exact defect mechanisms in the individual chips.
The constraints on computing time are reduced but
high diagnostic resolution has to be provided to guide
the physical inspection accurately.

Diagnosis is more related to defects and debug is
closer to design errors, i. e. errors of the designer.
However, there is a large overlap in dealing with yield
ramping and design for manufacturability [3, 27, 32].
Diagnosis and debug have the common objective of
achieving high diagnostic resolution and especially fault
model independent approaches like the one discussed
in this article are suitable for both of these tasks.

1.2 Effect-cause vs. Cause-effect Analysis

The classic diagnosis algorithms follow two different
paradigms: Effect-cause analysis looks at the failing
outputs and starts reasoning using the logic structure
of the circuits [1, 31]. Cause-effect analysis is based
on a fault model. For each fault of the model, fault
simulation is performed, and the behavior is matched
with the outcome of the device under diagnosis (DUD).

Standard debug and diagnosis algorithms usually
work in two passes: First, a fast effect-cause analysis
is performed to constrain the circuits region where
possible culprits may be located. Second, for each of
the possible fault sites, a cause-effect simulation is per-
formed for identifying those faults, which match the
real observed behavior [2, 12]. The resolution of a test
set corresponds to the number of faults which cannot
be distinguished any further [4, 6, 30].

The main drawback of the cause-effect paradigms
is the dependency on a fault model. A general model
of design errors is not available, the proposed models
so far reflect only a small subset of possible design
faults to be found during debug. During diagnosis,
we are faced with a plethora of defect mechanisms in
nanoscaled CMOS. Many diagnosis approaches focus

on special fault models like stuck-at faults or bridges
[11, 24], however the main goal of fault diagnosis is
rather finding an appropriate fault model than taking
a given fault model as an initial assumption [7, 12].
The POINTER approach discussed here will therefore
follow the effect-cause paradigm to achieve fault model
independence.

1.3 Fault Dictionaries vs. Adaptive Diagnosis

Cause-effect diagnosis can be speeded up, if for each
fault and each failing pattern the erroneous output is
determined by simulation and then stored in a dictio-
nary [25]. Even after an effect-cause pass, the size of
such a dictionary may explode, and significant research
effort has been spent on reducing the size of fault
dictionaries [8, 10].

During debug and during diagnosis of first silicon,
there exists an efficient alternative to precomputed
fault dictionaries in so-called adaptive diagnosis [15].
Here, we use faulty and fault free responses of the
device under diagnosis (DUD) in order to guide the
automatic generation of new patterns for increasing
the resolution. A pattern analysis step extracts infor-
mation from responses of the DUD and accumulates
them in a knowledge base. This knowledge in turn
guides an automatic test pattern generator (ATPG)
to generate relevant patterns for achieving high diag-
nostic resolution. Such a diagnostic ATPG does not
rely on a precomputed fault dictionary, and significant
memory savings are obtained. The loop ends, when an
acceptable diagnostic resolution is reached (Fig. 1). The
definition of the exact abort criterion depends on the
number and confidence levels of fault candidates.

Fig. 1 Adaptive diagnosis flow

J Electron Test (2009) 25:259–268 261

In the subsequent sections we present the POINTER
approach [17]. Based on the input/output behavior of
the DUD, a small region of the design is identified
which behaves in a faulty way. Only very few ap-
proaches are known with the same goals, e.g. [5–7, 19,
29]. POINTER can be applied to adaptive precision
diagnosis as well as to volume diagnosis.

The next section of this paper introduces a calculus
to model the faulty behavior of a circuit without pre-
assuming a fault model. An analysis algorithm which
identifies possible faulty or defect regions based on
a given test set is presented in Section 3. Section 4
adds a pattern generation algorithm for increasing the
resolution, and Section 5 validates the approach ex-
perimentally by locating faults of different surrogate
models, for both adaptive and volume diagnosis.

2 Fault Model Independence

POINTER is an extension of the ‘Single Location At
a Time’ (SLAT) technique introduced by [5, 19]. A
diagnostic test pattern has the SLAT property, if there
is at least one stuck-at fault which produces a response
on that pattern which is identical with the response of
the DUD. In general, not all patterns will have the
SLAT property, and not all the SLAT patterns will
point to the same stuck-at faults. Hence, SLAT is not
based on the stuck-at fault model, but uses a set of
identified stuck-at lines for describing the suspicious
region of the DUD.

Traditionally, fault models have been introduced
to reduce the complexity of pattern generation and
pattern analysis algorithms. This reduction has mainly
been achieved due to both the limited amount of faults
which have to be considered and their simple behavior
like stuck-at or transition faults. Over the years, numer-
ous specialized fault models were introduced to account
for more and more complex defect mechanisms [21, 22].
During diagnosis however, defect mechanisms are not
known in advance but target of the investigation, and
specialized models are of limited use. State-of-the-art
diagnosis is mainly concerned with the extraction of
topological information about errors and defects based
on functional failure information in order to direct the
more detailed and complex physical failure analysis
(PFA). The quality of a diagnostic result corresponds
to the number of PFA attempts until the physical defect
is finally discovered.

There is a clear distinction between the topological
and the functional part of a defect description. The
topological information can be expressed directly in
terms of signals, gates and pins within a circuit, inde-

pendently of any functional behavior of the defect. The
functional part is the faulty behavior of the suspected
internal signals.

A one-to-one correspondence between a defect
mechanism and a representative is not obtainable, and
a calculus must therefore allow for a metric of plausibil-
ity. This metric provides a ranking of defect candidates
from the most reasonable ones down to uncommon yet
possible ones. One metric proven very effective is based
on the locality of a defect. The fewer faulty signals have
to be assumed at the logic level, the more reasonable is
the explanation of the real defect behavior.

Such a metric can be established by the conditional
stuck-at line calculus already used for many years and
in many variants. A conditional stuck-at line consists
of a signal line (the topological part) and an activation
condition (the functional part). Figure 2 shows a design
error where an AND gate is exchanged by an OR gate
expressed by using the conditional stuck-at calculus. An
arrow represents a conditional stuck-at, its orientation
indicates the polarity, and its annotation describes the
activation condition.

Some more general cases are shown in Fig. 3. For the
crosstalk bridge, the activation condition also depends
on previous signal values as the victim line B will show a
logic 1, if there was a rising transition on aggressor line
A. Multiple conditional stuck-at lines are necessary for
modeling more complex defect behavior.

Conditional stuck-at lines are behaving like tradi-
tional stuck-at faults but they are active only for a
subset of the test patterns. This subset is defined by
the activation condition which may be expressed as a
boolean function, may depend on timing or involve
environmental conditions. In many approaches the con-
ditions are assumed to be deterministic [6] or express-
able as a boolean function [29]. In recent technologies,
however, such assumptions become more and more
restrictive since defect behavior is often indeterministic
or timing related. If indeterminism is taken into account

Fig. 2 Example of a conditional stuck-at line

262 J Electron Test (2009) 25:259–268

Fig. 3 Traditional fault models and conditional stuck-at lines

for the conditions, all technology related faults and de-
sign related errors can be expressed at least by multiple
conditional stuck-at lines.

At the first glance, the explanations with the mini-
mum number of conditional stuck-at lines are the most
reasonable ones, but there is the risk of aliasing as
demonstrated in Fig. 4.

There are two stuck-at-0 faults at the inputs of an
OR-gate. Given an exhaustive test set, an explanation
with a minimal number of conditional stuck-at lines
would diagnose the output of the OR-gate as the only
candidate. However, the correct diagnosis consists of
two faults at the inputs of this gate. Note, that the
conditional stuck-at line at the output is only active if
C = 0. The conditional stuck-at lines in the correct, but
more complex, explanation however are always active.
The correct diagnostic result can only be achieved by
considering passing patterns and by using the frequency
of activation as an additional criterion. An efficient way
to do so is described below.

3 Pattern Analysis

In this section, we define a measure to quantify how
well a stuck-at fault reflects the behavior of the DUD

Fig. 4 Aliasing between possible explanations at the inputs and
the output of an OR-gate

for a given test set. The SLAT paradigm will be just
the special case of a perfect match for one pattern. Let
FM(f) be a fault machine, i.e. the circuit with stuck-at
fault f injected. For each test pattern t ∈ T, we define
the evidence

e(f, t) = (�σt, �ιt, �τt, �γt)

as tuple of natural numbers �σt, �ιt, �τt, �γt ∈ N (see
Fig. 5) where:

• �σt is the number of failing outputs where both the
DUD and the fault machine FM match.

• �ιt is the number of outputs which fail in FM but
are correct in DUD.

• �τt is the number of outputs which fail in DUD but
are correct in FM.

• �γt is the minimum of �σt and �ιt: �γt =
min{�σt, �ιt}.

For a SLAT test pattern t, the evidence will provide
maximum �σt and �ιt = �τt = �γt = 0.

The evidence of a fault f and a test set T is

e(f, T) = (σT , ιT , τT , γT), with

σT =
∑

t∈T

�σt, ιT =
∑

t∈T

�ιt,

τT =
∑

t∈T

�τt and γT =
∑

t∈T

�γt.

Again, if the real culprit is the stuck-at fault f indeed,
we get ιT = τT = γT = 0 and σT will be maximum.

While processing pattern after pattern t1, ..., ti, the
knowledge base is constructed by the evidences e(f, Ti),
Ti = {t1, ..., ti} of all the stuck-at faults f . If a fault is
not observable under a certain pattern, no value change
takes place and this fault is handled neutrally within this
iteration. If the DUD gives the correct output under a
pattern t, only ιt is increased for faults which are ob-
servable under this pattern. In this way, candidates can
be excluded using passing patterns, too. The maximum

Fig. 5 Definition of evidence e(f, t) = (�σt, �ιt, �τt, �γt)

J Electron Test (2009) 25:259–268 263

achievable diagnostic resolution is bound by the size of
the equivalence classes of the faults in the knowledge
base.

If the fault in the DUD is not always active due to
indeterministic behavior or some unknown activation
mechanism, the measure still provides consistent evi-
dences. For instance, let f ′ be a slow to rise transition
fault. For some patterns t, f ′ will appear as a stuck-at 0
fault f , for others it is not observable. Then

e(f, t) = (�σt, �ιt, �τt, �γt)

provides �σt ≥ �σ̃t for all other evidences

e(f̃ , t) = (�σ̃t, �ι̃t, �τ̃t, �γ̃t).

As a consequence, we have σT ≥ σ̃T for all evidences
e(f̃ , T) and the evidence e(f, T) is still useful for locat-
ing the fault. However, the value ιT will not be zero any
more and can be used for ranking fault candidates. This
assumption is confirmed in the experimental results.

Let f be a conditional stuck-at fault which models at
least a part of the DUD behavior for some patterns.
Under each test pattern t ∈ T, the failing outputs of
FM(f) and DUD are either disjoint (�σt = 0) because
the condition of f is not satisfied in the DUD or the
set of failing outputs of FM(f) is a subset of the fails
of DUD (�ιt = 0). Hence, all �γt and also γT are zero
for fault f . If there is a pattern t with �γt > 0 like in
Fig. 5, the corresponding conditional stuck-at is not a
candidate.

This fault model independent pattern analysis ap-
proach is able to identify circuit parts containing arbi-
trary faulty behavior. However, if the behavior of the
DUD can be explained using some classic fault models,
certain evidence forms are observed. Table 1 shows
suspect evidences for some classic models.

If ιT , τT and γT are all zero, a single stuck-at fault ex-
plains the DUD behavior completely. With ιT = γT =
0, such a stuck-at fault explains a subset of all fails, but
some other faulty behavior is present in the DUD. If
τT and γT are zero, a faulty value on a single signal
line under some patterns T ′ ⊂ T provides complete
explanation. With only γT = 0, a faulty value on the
corresponding single signal line explains only a part of

Table 1 Fault models and evidence forms for e(f, T) with σT > 0

Classic model ιT τT γT

Single stuck-at 0 0 0
Stuck-at, multiple fault sites 0 > 0 0
Single conditional stuck-at > 0 0 0
Cond. stuck-at, multiple fault sites > 0 > 0 0
Delay fault, i.e. long paths fail > 0 0 > 0

DUD behavior. If only τT is zero, the suspect fails are a
superset of DUD fails.

If all suspects show positive values in all components
ιT , τT , γT , all simplistic fault models would fail to ex-
plain the DUD behavior.

For further analysis, the evidences in the knowledge
base are ordered as follows to create a ranking with
the most suspicious fault sites at the beginning (lowest
rank). Firstly, evidences are sorted by increasing γT , i.e.

γ a
T > γ b

T ⇒ rank(e(f a, T)) > rank(e(f b , T))

moving single conditional stuck-at faults in front. Evi-
dences with equal γT are then sorted by decreasing σT

moving candidates in front, which explain most failures:

σ a
T > σ b

T ⇒ rank(e(f a, T)) < rank(e(f b , T)).

Finally evidences with equal γT and σT are ordered by
increasing ιT :

ιaT > ιbT ⇒ rank(e(f a, T)) > rank(e(f b , T)).

4 Volume Diagnosis and Pattern Generation

In volume diagnosis, the pattern set is fixed, and we
have to extract as much diagnostic information as pos-
sible from rather limited information. Usually, only the
first i failing patterns are recorded, and in addition, all
the passing patterns up to this point can be used for
diagnosis.

The number of suspected nodes reported by logic
diagnosis must be limited in order to be used for low
level failure analysis. If the number of suspects exceeds
a parameter k, further manual or physical analysis is
too expensive and logic diagnosis fails. If diagnosis
successfully identified the culprit, the rank describes
the position of the corresponding evidence within the
ordered list. The average rank reported in the section
below is just the average number of trials until the real
culprit is identified.

During adaptive diagnosis and during design debug,
we have more options if the resolution provided by the
evidences of a test pattern set T is not sufficient, since
the evidences may be used to guide further diagnostic
ATPG.

For each fault f with e(f, T) = (σT , ιT , τT , γT) we
have σT + ιT > 0, if T detects f . Otherwise, f may be
undetected due to redundancy, or T must be improved
to detect f .

Even if there are no suspects with σT > 0, the possi-
ble fault sites are ranked by ιT . This way, multiple faults
on redundant lines can be pointed out. For the special

264 J Electron Test (2009) 25:259–268

case of ιT = 0, at least a subset of DUD failures can be
explained with an unconditional stuck-at fault.

The faults with e(f, T) = (σT , ιT , τT , γT) and σT > 0
are the suspects, and by simple iteration over the rank-
ing, pairs of suspects f a, f b are identified with equal
evidences e(f a, T) = e(f b , T). To improve the ranking,
fault distinguishing patterns are generated [4, 30] and
applied to the DUD.

To reduce the number of suspects and the region
under consideration further, diagnostic pattern gener-
ation algorithms have to be employed which exploit
layout data [12].

5 Experimental Results

We discuss the diagnostic resolution of POINTER for
known benchmark circuits and large industrial designs
and apply the algorithm to surrogate fault models. The
circuits used are the combinational parts of the largest
ISCAS89 and ITC99 benchmarks and industrial circuits
provided by NXP. The characteristics of the circuits are
given in Table 2. Column 2 denotes the number of two-

Table 2 Circuit
characteristics

Circuit Gates Faults

s38417 24079 32527
s38584 22092 38945
s35932 16353 39094
b20 22557 47964
b21 23100 48812
b22_1 24385 52931
p35k 46435 70382
b22 33569 71365
p45k 43190 72164
b17 37446 84737
b17_1 44544 96092
p77k 72370 124572
p89k 88726 155900
p78k 74243 163310
p100k 96685 168102
p81k 108991 224424
b18 130949 285210
p141k 172686 291546
p267k 271538 375958
p269k 272630 378142
p239k 259241 456982
p330k 312666 558163
b19 263547 575193
p286k 332726 672496
p418k 382633 715945
p388k 433331 865000
p951k 816072 1618672

input gates in the circuit. The number of evidences in
the knowledge base equals the number of stucturally
collapsed stuck-at faults shown in column 3.

Two classes of experiments were performed. For
volume diagnosis, success rates for a fixed pattern set
are compared with the success rate of the SLAT algo-
rithm. For adaptive debug and diagnosis, pattern analy-
sis and generation are performed until the culprits are
identified.

5.1 Volume Diagnosis

In this section, we discuss the diagnostic success rates
and resolution of POINTER for known benchmark cir-
cuits and large industrial designs provided by NXP. We
diagnose defects of three different types and compare
the results to the outcome of the SLAT algorithm.

In the experiments reported below, first we apply
5000 random patterns and add deterministic patterns
for maximum stuck-at fault coverage. The maximum
number of suspects is k = 10, and if the real culprit
not within the first 10, we classify that logic diagnosis
failed. The second parameter which is important for
any diagnosis approach is the average number of low
level investigations we have to invoke. If diagnosis is
successful, this number is the rank. If diagnosis fails,
this number is 11. The third important parameter for
multi-site testing, embedded diagnosis or even BIST is
the number of failing patterns which have to be stored
and evaluated. Results reported below are obtained for
evaluating i failing patterns, i = 1, 4, and 8.

The outcome of the SLAT approach however is
not a ranked list of suspects but an unordered set of
multiplets. Each multiplet is a minimal set of evidences
which can explain all the SLAT patterns. For the SLAT
algorithm, the rank is defined as the expected number
of drawings from these multiplets until the real culprit
is found, however the maximum is set to 11 as for
POINTER.

We are reporting the average success rate in per-
cent and the average ranks after encountering i failing
patterns during analysis. These averages are calculated
from at least 1000 test cases per design. The best values
in these tables are set in bold.

5.1.1 Single Stuck-at Fault Diagnosis

Success rates and average ranks for diagnosis of ran-
domly injected single stuck-at faults are shown in
Table 3. SLAT is always able to produce a set of
multiplets with the victim line included, but the result-
ing rank often exceeds the threshold k and leads to a

J Electron Test (2009) 25:259–268 265

Table 3 Stuck-at fault
diagnosis with limited failure
information

Design 1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

%s r %s r %s r %s r %s r %s r

s35932 50 6.2 86 3.9 100 2.7 100 1.5 100 2.3 100 1.4
s38584 97 3.6 99 2.2 100 2.3 100 1.2 100 2.1 100 1.2
b20 66 7.0 93 3.2 95 3.2 100 1.4 97 2.6 100 1.2
b21 64 7.1 93 3.2 94 3.2 99 1.4 96 2.7 100 1.2
s38417 86 4.3 95 2.7 99 2.3 100 1.4 100 2.0 100 1.2
b22 69 6.9 94 3.1 97 3.0 99 1.3 98 2.5 100 1.2
b17 87 4.9 96 2.6 98 2.9 100 1.5 99 2.6 100 1.4
p45k 71 5.4 90 3.2 99 2.8 100 1.3 99 2.2 100 1.2
p35k 41 6.9 75 4.5 86 3.9 99 1.7 96 2.9 100 1.4
p77k 75 5.0 88 3.1 92 3.2 95 1.9 95 2.7 96 1.7
p78k 80 5.8 92 3.7 100 2.1 100 1.2 100 1.8 100 1.1
p89k 73 5.5 93 2.7 97 3.1 100 1.4 99 2.6 100 1.2
p100k 65 5.6 87 3.4 97 2.9 100 1.4 100 2.2 100 1.2
p81k 54 7.2 89 3.5 100 2.6 100 1.4 100 2.3 100 1.3
b18 73 5.8 89 3.3 90 3.6 98 1.7 96 3.0 99 1.5
p141k 81 4.8 95 2.7 100 2.4 100 1.3 100 2.1 100 1.2
p239k 72 5.1 89 3.3 99 2.5 100 1.3 100 2.0 100 1.2
b19 77 5.5 89 3.2 89 3.6 97 1.8 93 3.1 99 1.5
p267k 90 4.2 96 2.6 99 2.3 100 1.4 100 2.0 100 1.3
p269k 89 4.1 96 2.5 100 2.2 100 1.3 100 2.0 100 1.3

fail even if the number i of analyzed failing patterns
is increased. The average ranks and success rates of
POINTER mark the maximum achievable diagnostic
resolution because all remaining candidates are equiva-
lent under the pattern set applied. The diagnostic result
of SLAT can be refined towards this resolution by
performing a passing pattern validation [6].

5.1.2 Crosstalk Fault Diagnosis

During the experiments a crosstalk fault is described by
the change of a victim line, if there is a transition on
the aggressor line. Since this is also a single line fault,
similar results are obtained as in single stuck-at fault
diagnosis (see Table 4). Again, POINTER provides

Table 4 Diagnosis of
crosstalk faults with limited
failure information

Design 1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

%s r %s r %s r %s r %s r %s r

s35932 52 6.1 84 4.2 100 2.7 100 1.6 100 2.3 100 1.4
s38584 97 3.5 98 3.0 100 2.0 100 1.4 100 1.8 100 1.3
b20 74 6.5 91 3.7 99 2.5 99 1.5 100 2.0 100 1.3
b21 70 6.7 91 3.8 99 2.5 100 1.4 100 2.0 100 1.2
s38417 90 3.9 93 3.2 99 2.1 100 1.5 100 1.8 100 1.3
b22 75 6.4 93 3.7 99 2.4 100 1.4 100 2.0 100 1.3
b17 89 4.4 94 3.0 98 2.4 100 1.6 99 2.1 100 1.4
p45k 72 5.1 82 4.0 98 2.5 99 1.6 100 1.9 100 1.3
p35k 63 5.1 74 4.4 97 2.3 99 1.8 100 1.8 100 1.5
p77k 82 4.2 87 3.6 98 2.3 98 1.7 99 2.0 99 1.5
p78k 77 6.0 81 5.0 100 1.9 100 1.3 100 1.6 100 1.1
p89k 75 5.0 90 3.6 100 2.3 100 1.6 100 1.9 100 1.4
p100k 67 5.4 79 4.4 98 2.6 99 1.6 100 2.0 100 1.3
p81k 55 6.9 77 5.1 100 2.3 100 1.6 100 2.0 100 1.4
b18 73 5.6 82 4.1 91 3.2 95 2.1 96 2.6 98 1.7
p141k 85 4.4 94 3.2 100 2.1 100 1.5 100 1.8 100 1.3
p239k 70 5.2 83 4.0 99 2.2 100 1.4 100 1.8 100 1.2
b19 69 5.8 81 4.2 87 3.5 94 2.1 94 2.8 96 1.7
p267k 91 3.9 93 3.1 100 2.0 100 1.6 100 1.7 100 1.4
p269k 92 3.7 94 3.0 100 2.0 100 1.5 100 1.8 100 1.4

266 J Electron Test (2009) 25:259–268

Table 5 Diagnosis of
byzantine bridges with
limited failure information

Design 1st fail 4th fail 8th fail

Slat Pointer Slat Pointer Slat Pointer

%s r %s r %s r %s r %s r %s r

s35932 17 8.7 53 6.7 37 7.7 83 4.2 42 7.4 90 3.4
s38584 67 5.3 97 3.1 85 3.7 100 1.7 88 3.3 100 1.4
b20 70 6.6 87 4.8 78 5.0 98 2.3 89 4.0 98 1.7
b21 69 6.6 88 4.6 77 5.0 99 2.2 89 4.0 99 1.7
s38417 58 5.8 96 3.4 72 4.5 99 2.0 76 4.0 100 1.6
b22 72 6.6 86 4.9 79 4.9 98 2.2 90 4.0 99 1.7
b17 78 5.2 93 3.8 88 4.0 99 2.1 91 3.6 99 1.8
p45k 56 6.0 87 4.2 74 4.5 97 2.1 80 4.0 99 1.7
p35k 45 6.5 75 4.5 61 5.5 85 3.2 68 5.0 89 2.7
p77k 56 6.1 80 4.4 69 4.9 89 2.8 74 4.4 92 2.4
p78k 25 8.6 77 5.7 54 6.5 98 2.3 66 5.7 100 1.4
p89k 69 5.3 92 3.5 84 4.0 99 1.9 88 3.7 99 1.6
p100k 55 6.0 80 4.4 75 4.5 96 2.4 84 3.8 98 1.8
p81k 43 7.7 73 5.6 76 4.8 98 2.4 87 3.8 99 1.9
b18 72 5.8 80 4.6 80 4.7 91 2.8 87 4.1 95 2.3
p141k 65 5.7 91 4.0 86 4.0 99 2.0 90 3.5 100 1.6
p239k 47 6.6 77 4.8 72 4.6 97 2.3 80 3.9 99 1.6
b19 70 5.9 81 4.6 81 4.8 92 2.7 87 4.2 96 2.2
p267k 70 5.2 95 3.3 85 3.8 99 1.9 88 3.4 100 1.5
p269k 70 5.1 94 3.3 85 3.8 99 2.0 90 3.2 100 1.6

maximum diagnostic resolution and needs a smaller
number of failed responses to be analyzed.

5.1.3 Byzantine Bridging Fault Diagnosis

Resistive bridges are often modelled by byzantine
faults [26]. They are very hard to diagnose without a
specialized fault model and therefore provide a good
benchmark for fault model independent diagnosis ap-
proaches. The two signal lines of those bridges may
interchange their values and one or both may be faulty.
Therefore there may be two independent faulty signals
present in the circuit.

As can be seen in Table 5, the success rate of SLAT
drops dramatically because failing patterns either don’t
have the SLAT-property or their single explaining evi-
dences are not pointing to the bridge.

After analysis of at least 8 fails, POINTER provides
a near-perfect success rate in almost every test case.
The average ranks show, that only one or two physical
inspections are required in average to find the real
defect.

5.2 Adaptive Debug and Diagnosis

In this section, we improve the test set based on the
response of the device under diagnosis.

For comparison reasons, we present results for stuck-
at faults, and as a representative for general defects

we analyze stuck-open faults. Design errors are repre-
sented by exchanging gate functions.

5.2.1 Single Stuck-at Fault Diagnosis

In this experiment, 100 test cases with randomly in-
jected detectable single stuck-at faults are diagnosed in
each circuit. A diagnosis run starts by applying first ran-
dom and then deterministic test patterns to the DUD
until a faulty behavior is encountered. If the algorithm
finds fault candidates f with e(f, T) = (σT , 0, 0, 0) and
σT maximum, distinguishing patterns are generated un-
til no further distinguishing is possible. Table 6 shows

Table 6 Pattern count and resolution of SSA-fault diagnosis

Circuit Evidences Patterns Suspects Rank

s38417 32527 1207.6 1.4 1.2
s38584 38945 1153.6 1.1 1.1
b20 47964 2234.0 1.1 1.1
b21 48812 2385.9 1.2 1.1
b22_1 52931 2164.7 1.2 1.1
b22 71365 2678.2 1.1 1.1
b17 84737 2696.5 1.4 1.2
b17_1 96092 3989.3 1.2 1.1
b18 285210 11037.8 1.4 1.2
p330k 558163 11526.9 1.2 1.1
b19 575193 12967.1 1.8 1.3
p286k 672496 9673.3 1.2 1.1
p418k 715945 7936.5 1.3 1.1
p388k 865000 8976.8 1.5 1.3
p951k 1618672 9825.6 1.1 1.1

J Electron Test (2009) 25:259–268 267

the results. Columns 1 and 2 denote the circuit and
its number of evidences, column 3 shows the average
number of patterns used for diagnosis. The achieved
diagnostic resolution, which is the average number of
candidate fault classes, is shown in column 4. For com-
pleteness, column 5 shows the average rank of the fault
in the DUD which is in this case rank(s) = (s + 1)/2
with s being the number of suspects.

The diagnosis for single stuck-at faults is complete,
i.e. POINTER provides an optimal resolution. Here,
the average number of fault candidate classes is larger
than one, because these classes were determined by
simple structural fault collapsing and ATPG has proven
the functional equivalence for more fault pairs during
diagnosis.

5.2.2 Diagnosis of Stuck-Open Faults

Intra-gate stuck-open faults may result in a transition
fault at the output signal of the faulty gate [13]. In
this case, pattern analysis leads to evidences e(f, T) =
(σT , ιT , 0, 0) with σT maximum and ι > 0 and ATPG is
switched to generate pattern pairs to provoke possible
transition faults. Additionally, during fault distinguish-
ing, neighboring signals can be driven to different val-
ues to improve resolution for possible bridging faults.

Table 7 shows the average number of suspect fault
classes in column 4. The rank, which is shown in column
5, is considerably lower than average because of the
sorting by ιT .

5.2.3 Debug of Design Faults

We now consider faulty designs in which one gate is
of a wrong type. Such faults behave like either one

Table 7 Pattern count and resolution for stuck-open faults

Circuit Evidences Patterns Suspects Rank

s38417 32527 1092.0 2.3 1.3
s38584 38945 1118.8 2.4 1.1
b20 47964 2172.9 4.7 1.1
b21 48812 2349.4 3.9 1.1
b22_1 52931 2142.2 4.2 1.1
b22 71365 2837.2 3.5 1.1
b17 84737 2766.7 3.1 1.0
b17_1 96092 3977.5 3.3 1.1
b18 285210 10871.2 4.2 1.2
p330k 558163 11617.3 2.6 1.2
b19 575193 13252.0 4.2 1.3
p286k 672496 7249.9 4.0 1.1
p418k 715945 8136.7 2.0 1.0
p388k 865000 7235.5 3.2 1.1
p951k 1618672 9643.0 3.8 1.1

Table 8 Pattern count and resolution of gate debug

Circuit Evidences Patterns Suspects Rank

s38417 32527 1874.3 47.3 1.6
s38584 38945 1503.5 67.6 1.1
b20 47964 2963.7 417.6 1.4
b21 48812 3191.2 619.8 1.3
b22_1 52931 2482.3 211.7 1.2
b22 71365 3523.7 555.2 1.8
b17 84737 3123.8 342.8 1.1
b17_1 96092 4292.2 326.2 1.3
b18 285210 11531.0 301.1 1.7
p330k 558163 16614.1 195.3 1.3
b19 575193 18165.1 345.2 1.6
p286k 672496 10740.0 167.6 1.2
p418k 715945 11682.0 128.4 1.3
p388k 865000 9264.6 265.9 1.5
p951k 1618672 10347.7 256.6 1.8

or two conditional stuck-at faults. In the former case,
the algorithm encounters only evidences of the form
e(f, T) = (σT , ιT , 0, 0) and the strategy of the last sec-
tion is used. Two conditional stuck-at faults (AND
replaced by XOR for instance) result in an evidence
of the form e(f, T) = (σT , ιT , τT , 0) with σT maximum,
ιT > 0, τT > 0. In this case, all other evidences with
σT > 0, ιT > 0 and τT > 0 are included in the suspect
list, which is then sorted first by decreasing σT then by
increasing ιT .

Table 8 shows the resulting average number of sus-
pect conditional faults in column 4. s is much higher
in this case, because every evidence with σT > 0 is
included as soon as the algorithm detects a multi-site
fault by observing positive τT among the top-ranked
suspects. The average rank of the evidences leading to
the faulty gates (column 5) is only marginally affected
by this high suspect count.

6 Conclusion

A novel approach to adaptive diagnosis has been
presented which combines a new effect-cause pattern
analysis algorithm with high-resolution ATPG. The
pattern analysis does not rely on SLAT-patterns, tol-
erates unmodeled behavior and therefore enables fault
model independent diagnosis. By applying this ap-
proach to some diagnosis and debug problems, it has
been shown, that the resolution is excellent for the used
surrogate faults and an effective ranking is provided for
unmodeled behavior.

Acknowledgment This work has been funded by the DFG
under contract WU 245/4-1.

268 J Electron Test (2009) 25:259–268

References

1. Abramovici M, Breuer MA (1980) Fault diagnosis based on
effect-cause analysis: an introduction. In: 17th conference on
design automation, pp 69–76

2. Amyeen ME, Nayak D, Venkataraman S (2006) Improving
precision using mixed-level fault diagnosis. In: Proceedings
IEEE international test conference 2006, Santa Clara, 24–26
October 2006, p 22.3

3. Arnaout T, Bartsch G, Wunderlich H-J (2006) Some common
aspects of design validation, debug and diagnosis. In: Third
IEEE international workshop on electronic design, test and
applications (DELTA 2006), Kuala Lumpur, 17–19 January
2006, pp 3–10

4. Bartenstein T (2000) Fault distinguishing pattern generation.
In: Proceedings IEEE international test conference 2000,
Atlantic City, pp 820–828

5. Bartenstein T, Heaberlin D, Huisman LM, Sliwinski D (2001)
Diagnosing combinational logic designs using the single lo-
cation at-a-time (SLAT) paradigm. In: Proceedings IEEE
international test conference 2001, Baltimore, 30 October–1
November 2001, pp 287–296

6. Bhatti NK, Blanton RS (2006) Diagnostic test generation
for arbitrary faults. In: Proceedings IEEE international test
conference 2006, Santa Clara, 24–26 October, 2006, p 19.2

7. Boppana V, Fujita M (1998) Modeling the unknown! towards
model-independent fault and error diagnosis. In: Proceedings
IEEE international test conference 1998, Washington, DC,
18–22 October 1998, pp 1094–1100

8. Boppana V, Hartanto I, Fuchs WK (1996) Full fault dictio-
nary storage based on labeled tree encoding. In: 14th IEEE
VLSI test symposium (VTS’96), Princeton, 28 April–1 May
1996, pp 174–179

9. Chen KC (2003) Assertion-based verification for SoC de-
signs. In: Proceedings 5th international conference on ASIC,
vol 1, pp 12–15

10. Chess B, Larrabee T (1999) Creating small fault dictio-
naries. IEEE Trans Comput-aided Des Integr Circuits Syst
18(3):346–356

11. Chess B, Lavo DB, Ferguson FJ, Larrabee T (1995) Diag-
nosis of realistic bridging faults with single stuck-at informa-
tion. In: Proceedings of the 1995 IEEE/ACM international
conference on computer-aided design, 1995, San Jose, 5–9
November 1995, pp 185–192

12. Desineni R, Poku O, Blanton RDS (2006) A logic diag-
nosis methodology for improved localization and extraction
of accurate defect behavior. In: Proceedings IEEE interna-
tional test conference 2006, Santa Clara, 24–26 October 2006,
p 12.3

13. Fan X, Moore W, Hora C, Gronthoud G (2005) Stuck-
open fault diagnosis with stuck-at model. In: Proceedings
European test symposium, Tallin, pp 182–187

14. Fitzpatrick T (2005) Realizing advanced functional verifi-
cation with questa. Mentor Graphics Corporation (white
paper)

15. Gong Y, Chakravarty S (1995) On adaptive diagnostic test
generation. In: Proceedings IEEE international conference
on computer-aided design, p 181

16. Henderson CL, Soden JM (1997) Signature analysis for ic
diagnosis and failure analysis. In: Proceedings IEEE interna-
tional test conference 1997, Washington, DC, 3–5 November
1997, pp 310–318

17. Holst S, Wunderlich H-J (2007) Adaptive debug and diagno-
sis without fault dictionaries. In: 12th European test sympo-
sium (ETS 2007), 20 May 2007, Freiburg, pp 7–12

18. Hora C, Segers R, Eichenberger S, Lousberg M (2002) An
effective diagnosis method to support yield improvement.
In: Proceedings IEEE international test conference 2002,
Baltimore, 7–10 October 2002, pp 260–269

19. Huisman LM (2004) Diagnosing arbitrary defects in logic
designs using single location at a time (SLAT). IEEE Trans
Comput-aided Des Integr Circuits Syst 23(1):91–101

20. Klein R, Piekarz T (2005) Accelerating functional simulation
for processor based designs. Mentor Graphics Corporation
(white paper)

21. Krstic A, Wang L-C, Cheng K-T, Liou J-J, Abadir MS (2003)
Delay defect diagnosis based upon statistical timing models—
the first step. In: 2003 design, automation and test in Europe
conference and exposition (DATE 2003), Munich, 3–7 March
2003, pp 10328–10335

22. Lavo DB, Chess B, Larrabee T, Hartanto I (1998) Proba-
bilistic mixed-model fault diagnosis. In: Proceedings IEEE
international test conference 1998, Washington, DC, 18–22
October 1998, pp 1084–1093

23. McPherson JW (2006) Reliability challenges for 45nm and
beyond. In: Proceedings of the 43rd design automation con-
ference, DAC 2006, San Francisco, 24–28 July 2006, pp 176–
181

24. Millman SD, McCluskey EJ, Acken JM (1990) Diagnosing
CMOS bridging faults with stuck-at fault dictionaries. In: Pro-
ceedings IEEE international test conference, pp 860–870

25. Pomeranz I, Reddy SM (1992) On the generation of small dic-
tionaries for fault location. In: IEEE/ACM international con-
ference on computer-aided design, ICCAD92, Santa Clara,
8–12 November 1992, pp 272–279

26. Renovell M, Huc P, Bertrand Y (1994) CMOS bridging fault
modeling. In: 12th IEEE VLSI test symposium (VTS), 25–28
Apr 1994, pp 392–297

27. Riley M, Chelstrom N, Genden M, Sawamura S (2006) De-
bug of the CELL processor: moving the lab into silicon. In:
Proceedings IEEE international test conference 2006, Santa
Clara, 24–26 October 2006, p 26.1

28. Roy K, Mak TM, Cheng K-TT (2006) Test consideration
for nanometer-scale cmos circuits. IEEE Des Test Comput
23(2):128–136

29. Ubar R (2003) Design error diagnosis with resynthesis in com-
binational circuits. J Electron Test Theory Appl 19:73–82

30. Veneris AG, Chang R, Abadir MS, Amiri M (2004) Fault
equivalence and diagnostic test generation using atpg. In:
Proceedings IEEE international symposium on circuits and
systems, 2004, pp 221–224

31. Waicukauski JA, Lindbloom E (1989) Failure diagnosis of
structured VLSI. IEEE Des Test Comput 6(4):49–60

32. Wunderlich H-J (2005) From embedded test to embedded
diagnosis. In: Proceedings European test symposium, Tallin,
pp 216–221

Stefan Holst received his Diploma in Computer Science from
the University of Stuttgart in 2005. He joined the Institute for
Computer Architecture and Computer Engineering in 2006.

Hans-Joachim Wunderlich received a Diploma in Mathematics
from the University of Freiburg in 1981 and the Dr. rer. nat.
(Ph.D.) with distinction from the University of Karlsruhe in
1986. Since 1991 he has been a full Professor and since 2002 he
has been the director of the Institute of Computer Architecture
and Computer Engineering at the University of Stuttgart. He is
editor of various international journals and program committee
member a variety of IEEE conferences on design and test of
electronic systems. In 2009 he became an IEEE Fellow.

	Adaptive Debug and Diagnosis Without Fault Dictionaries
	Abstract
	Introduction
	Debug and Diagnosis
	Effect-cause vs. Cause-effect Analysis
	Fault Dictionaries vs. Adaptive Diagnosis

	Fault Model Independence
	Pattern Analysis
	Volume Diagnosis and Pattern Generation
	Experimental Results
	Volume Diagnosis
	Single Stuck-at Fault Diagnosis
	Crosstalk Fault Diagnosis
	Byzantine Bridging Fault Diagnosis

	Adaptive Debug and Diagnosis
	Single Stuck-at Fault Diagnosis
	Diagnosis of Stuck-Open Faults
	Debug of Design Faults

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

