5. Structural analysis

This chapter uses the structure graph to describe the direct inter-
actions among the signals. This graph is used to analyse the re-
dundancies which can be exploited for fault diagnosis and control
reconfiguration.

5.1 Introduction

This chapter investigates the structural properties of dynamical svstem by
analysing its structural model. Remember that the structural model of a
system is an abstraction of its behavicur model in the sense that only the
structure of the constraings, L.e, the existence of links between variables and
parameters is considered and not the constraints themselves. The links are
represented by a bi-partite graph, which is independent of the nature of the
constraints and variables (quantitative, qualitative, equations, rules, etc.} and
of the value of the parameters. This indeed represents a qualitative, very low
level, easy to obtain, model of the system behaviour.

Structural analysis is concerned with the properties of the system structure
maodel, which resorts to the analysis of its bi-partite graph. As this graph is
independent of the value of the system parameters, siructural properties are
true almost everywhere in the system parameter space.

In spite of their simplicity, structural models can provide many useful infor-
mation for fault diagnosis and fault-tolerant control design, since structural
analysis is able to identifv those components of the system which are -~ or
are not — monitorable, to provide design approaches for analytic redundancy
based residuals, to suggest alarm fltering strategies, and to identify those
compenents whose failure can - or cannot — be tolerated through reconfigu-
ration.

In this chapter, structural properties of interest are

s the identification of the wonitorable part of the system, Le. the subset of
the system components whose faules can be detected and isolated,
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» the possibility to design residuals which meet some specific fault diagnosis
requirements, namely which are robust (i.e. insensitive to disturbances and
nncertainties), and structured (i.e. sensitive to certain faults and nsensitive
to others),

» the existence of reconfiguration possibilities in crder to estimate (respec-
tively to control) some variables of interest in case of sensor, actuator or
system component failures.

Answers o these questions are provided by the analysis of the system struc-
tural graph and its canonical decomposition. In order to introduce the canon-
ical decomposition, matchings on a bi-partite graph are first presented, and
their interpretation is given, introducing the idea of causality which provides
the bi-partite graph with an orientation. Then the canonical decomposition
of the system structural graph is presented, and structural observability and
controllability issues are discussed. The design of fault diagnosis systems is
addressed by the determination of robust and structured residuals, which can
be designed for those subsystemns in which some redundancy is present. Fi-
nally, fault tolerance issues consider the possibility to reconfigure the system
in case of component failures, which rests on the permanence of the observ-
ability and controllabilty properties of the non failed part of the system.

5.2 Structural model

5.2.1 Structure as a bi-partite graph

This section introduces the structural model of a system as a bi-partite graph
which represents the links between a set of variables and a set of constrainis.
It is an abstraction of the behaviour model, because it merely deseribes which
variables are connected by which constraints, but it does not say how these
constraints look like. Hence, the structural model presents the basic features
and properties of a system that are independent of its paramters.

The behaviour model of a system is defined by a pair {C, Z) where Z =
{z1, 72, ..., zx } is a set of variables and parameters, and ( = {1, 2, ooy car}
is a set of constraints. According to the granularity of the variables (quanti-
tative, qualitative, fuzzy) and of time (continuous, discrete), the constraints
may be expressed in several different forms as algebraic and differenatial equa-
tions, difference equations, rules, etc.

Consider, for example, state-space models like

2{t) = glz(t), u(t), 6) (5.1)
yit) = hizt), uit). 8), {5.2)

where z{t) € IR™ is the system state, u(t) € R™ and y{#) € IRF are respectively
the system input and output, and # € IRY is some parameter vector. Since the
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distinction between vectors and sets of components is clear from the context.
n¢ special notation will be introduced to distinguish them. Thus, in (5.1),
(5.2}, the sets of variables and constraints are

Z = xUuly
C = guh,
where g stands for the set of differential constraints
T g @), uit), =0, i=1, .. n
and h stands for the messurement constraints
yi(t) — hy (e(), w(), 8) =0, j§=1,..,p.

Note that parameters can be considered as variables which have constant
{known or unknown) values, when such a representation is needed. The set
of variables is then Z = @ U uw U y U 8, and the set of the constraints
contains the differential equations 6{¢) = 0. In the following this is implicit
(thus vector & does not appear, since it is part of the system state vector x
and therefore, defined by the initial conditions).

A popular structural representation of the behaviour model {5.1), (5.2) uses
a directed graph (digraph).

Definition 5.1 (Digraph)

The digraph associated with system (5.1), (5.2) is a graph whose set af vertices
corresponds to the set of the inpuls w, outputs y; end stote variables z; and
whese edges are defined by the following rules:

¢ An edge exists from vertex xy (respectively from verter w) to vertez ; if
and only if the state varisble x (respectively the input variable wu J really
oceurs in the function g; (ie. gjj—; - respectively ?;2%," ~ 1§ nol identically
zET0 ).

o An edge exists from vertex xy to verter y; if and only if the state variable
wy really occurs in the function h;.

‘The digraph representation is a structural abstraction of the behaviour
model where edges can be interpreted as “mutual infuences” between vari-
ables. Indeed, an edge from z; (respectively from w;) to z; means that the
time evolution of the derivaiive (¢} depends on the time evolution of i (f)
{respectively w/{f}). Similarly, an edge from p to y; means that the time evo-
lution of the output y;(¢) depends on the time evolution of the state variable
Ik(f)

Example 5.1 Digraph of a linear system
Consider the linear system ®{t) = Az(t) + Bu(t} where the matrices 4 and B are
given by:

0 a "0
AM(!) c:)’BA(a?)'
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Their structures are respectively

() e (1)

. . . - z
and the digraph associated with the system is given by Fig. 5.1 where @ = ( ' )

]

)
5

Fig. 5.1. Structure of the linear system

Alternatively, the structure of (5.1}, {5.2) can be represented by a bi-partite
graph. A graph is bi-partite if its vertices can be separated into two digjoint
sets € and Z in such a way that every edge has one endpoint in  and the
other one in Z.

Definition 5.2 (Bi-partite graph)
The bi-partite graph associated with system (5.1), (5.2} is a graph with the
two sets of vertices C and Z, and edges defined by the Jollowing rule:

* An edge ezists between verter ;. € C and vertex z; € Z of and only if the
variable z; really appears in the constraint ¢; ( irrespectively of wheter it is
a differential or a measurerment constraint).

Note that the bi-partite graph is an undirected graph, which can be inter-
preted as follows: All the variables and parameters connected with a given
constraint vertex have to satisfy the equation this vertex represents, namely
differential equations for the g-vertices and measurement equations for the h-
vertices. This graph allows to represent the structure of models more general
than (5.1}, (5.2} since algebraje constraints (different from the measurement
constraints) might also exist in the system model. Let

Z = ryUazuuly
€ = gUhum,

where z,, is the set of variables which appear only algebraically, and x4 are
variables whose derivative obeys some differential constraints g. The system
model ig

s = glxg @, u) (5.3)
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0 = mi{zy T, U (3.4)

y = hizy &, u). {h.5)
Note that it is possible to define an extra set of variables @4 and an extra set
of constraints

, {
i1, an E() — () =0, (5.6)
fdt
so that the system is
Z = mpUxguzaUuly
d
C = guhUumi—,
cdt

where 5“% stands for the differential constraints (5.6) and all the constraints
(5.3), (5.4) and (5.5) are algebraic. Indeed the behaviour model of a dy-
namical system links present and past values of its variables {for discrete
time systems) or variables and their time derivatives up to a certain order
(for continuous-time systems). Giving two variables the names o{t) and &{t}
does not guarantee that the second one is the time derivative of the first one.
This is only true thanks to the analyst’s interpretation, and this fact has to
be represented, for automatic treatment, by separate constraints like {5.6}.

In the sequel, bi-partite graphs will be used for the representation of the
systemn structure.

Definition 5.3 (Structural model}
The structural model {or the structure) of the system (C, Z) is 4 bi-partite
graph {C, Z, £) where £ C C x Z is the set of edges defined by:

(i, ;) € £ if the variable z; appears in the constraint ¢;.

In the following figures, the vertices of Z will be represented by circles
while the vertices of ' will be represented by bars. Note that the edges are
not oriented. The incidence matrix of the bi-partite graph is the matrix whose
rows and columns represent the set of constraints or variables, respectively.
Every edge {¢;, z;) € & is represented by a “1% in the intersection of row ¢;
and column z;.

Example 5.2 Bi-partite graph of a linear system
The behaviour model of the previons linear system is described by four constraints
{e1, c2, €3, ¢4} which apply to five variables {ry, T2, &1, T2, u}

L Ty = ilji
T de
cy 1 iy o= alz
) ‘ _dxs
[ T ""-(g
e Zp =bay ez +du

and the structure graph is given by the incidence matrix




104 5. Structural analysis

2w e [0 [ |
€1 1 H
2 1 1
cy 1 1
€4 1 1 i 1

leading to the bi-partite graph depicted in Fig, 5.2.

¢, o, I €

Fig. 5.2. Bi-partite graph of the linear system

Example 5.3 The tank system

Consider a tank system where the infiow is controlled via a level sensor and an
electric pump and the ontflow is realised through an cutput pipe (Fig.5.3).

parameter v ‘, v gty
* (Control | : |

mﬁﬁ% Tank |

u(t) .
e 2 :

3 P G

| Level sensor ——

1

"ot

i

ca o .
%ﬁgfa 2 Gits

Fig. 5.3. Single tank éjfsterh

The system comsists of the components {tank, input vaive, output pipe, level
sensor, level control algurithin}. A continuocus-variable continuous-time model is
given by the following constraines:
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Tank c: hit) = qi(t) = gu(t)
Input valve cs g:(t) = ault)
Output pipe ¢s : qgolt) = k\/h(t) (5.7
Level sensor ¢y | yit) = hit) R
iyt < ho —
Control algorithm ¢z © ult) = { Lify(t) < ko~ 7
0 else
; u is the control variable, y is the sensor output, ho is the given set-point, and r and

k are given parameters. kb denotes the liquid level, ¢ and go the flow into or out
of the tank. « is a valve constant. Each component introduces one constraint, The
extra constraint
dhit)

ot
expresses the fact that hit) is the derivative of the level A(t). Applying the definition
to the behaviour medel (5.7) of the rank system (without controller) leads to the
following incidence matrix:

Ca h{a‘\ =

Input/Cutput Internal variables
P RGO KOOI RIORETD
Cy 1 i 1
o i i
3 1 1
€4 i 1
<5 1 1
4 : The structure graph corresponding to this incidence matrix is shown in Fig. 5.4,
Every column of the matrix correspond to a circle-vertex and every row to a bar-
vertex,
f/'j\
H Low
; .

If the controlier s introduced, the graph is extended by a new bar-vertex ¢; and
two new circle-vertices for by and 7. Furthermiore, if the parameter b appearing in
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constraint cy is considered now as an impertant variable (rather than a fixed given
parameter} a circle-vertex is introduced for & and linked with r3. The incidence
matrix becomes

Inpat/Output | Parameters Internal variables
slee | e [ he e[k p0) RO a0 | e
(] i i 1
cy 1 1
ey i 1 1
€4 1
Tl H 1 1
g i 1

"
Fig. 5.5. Structure graph of the controlled tank

For simplicity, only the “cnes” appear, empty boxes are “zero”. Figure 5.5 shows
the extended graph. O

5.2.2 Subsystems

Instead of considering the whole set of the constraints which describe the s
behavicur model of a system, it may sometimes be convenient to consider
only subsets of them. A subsystemn is defined by the set of contraints that it
includes and the set of variables that oceur in these contraints. This subsec-
tion introduces the vocabulary connected with subsets of the constraints, Let
2€ (respectively 27) be the collection of all the subsets of ¢ {(respectively of
all the subsets of 2}, and let {C, Z. &) be the structure of the system {c, 2.
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Let ¢} be a mapping between a set of contraings and the set of variables used
in these constraints:

€ 20 5 28 5.8)
, . , ; . {a.
o Qo ={z€ 2 Jeeg s (e, z2)£&)

{J) associates with any subset of constraints ¢, the subset of those variables
which intervene in at least one of them. Correspondingly, R associates a set
of variables with a set of constraints where these variables appear:

R: 27 59
Emr RO ={cel;3zef st {c z)ef}h

Example 5.4 ) and R mappings
Consider again the incidence matrix associated with the simple single tank.

Al ke e luly |
cy 1 1 1

(5] 1 1

faiy 1 1

4 1 1
(43 i 1
oy 1 1

Examples for the @ and R mappings are:

Q{er, e3}) = {h, i, g, go}
Ql{es}) {u. y}
R{{q:, 9.} {e1, 2, c3}. &

il

Definition 5.4 {Subsystem)
A subsystem is a pair (¢, Q(0)), where ¢ € 2°. The sub-graph that is related
with subsystem (@, (@) is its structure.

In this definition, a subsystem is any subset of the system constraints ¢
along with the related variables Q(¢) € Z. For example, in the system above,

{{e1, eal, {h,, h, g, qo}) is a subsystem, and ifs structure is the subgraph

EDDrnars

cy 11 1
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There are no specific requirements on the choice of the elements in ¢, and 2€
contains all possibie subsystems. Of course, only some of them are of interest
in applications:

» First, subsystems can be associated with some physical interpretation.
Complex systems are often decomposed into subsystems which have a
physical or a functional meaning, e.g. the boiler in a steam generator, the
instrumentation scheme in a closed-loop control system, ete. These sub-
systerns are associated with subsets of constraints in the system model, so
that the fault of one or several subsystem component(s) results in some of
these constraiuts being changed.

¢ Second, subsystems can be associated with special properties. For example,
fault diagnosis is possible only for subsystems which exhibit redundancy
properties,

5.2.3 Structural properties

The structural model of a system is an abstraction of its behaviour model.
Two systems which have the same structure are said to be structurally equiv-
alent. Since structural properties are properties of the structural graph, they
are shared by all the systems which have the same strueture. In particular,
systems which only differ by the value of their parameters are structurally
equivalent, thus making structural properties independent of the values of
the system parameters.

From structural equivalence considerations, it can be seen that the structure
of a system is indeed independent of the form under which the constraints
are expressed. For example, suppose that the level sensor in the single tank
system does not provide an analog output but a quantised one, its operation
being described by the following table, where a, 3, ¥ are given constants
associated with the sensor.

hilelof [ ele 8] €84 v

y §i empty low medium | high

It can easily be understood that the structure of the system is exactly the
same using the analog or the symbolic sensor.

Of course, actual system properties may differ from structural ones, as can
be seen from the following simple example. Let

no ) _ [al@) 8 @

¥2 ey di6) Ea
be the model of a system where y; and ya are known, @ € IR? is some param-
eter vector, and the observability of the unknowns 71, ©; is investigated. The
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ohservability condition is that the matrix is invertible. The structural conedi-
tion is that no row (no columa} of this matrix contalns only zevos. This is ne-
cessary, but not sufficient, since the determinant A {8} = o{8) 4(8) - b{0) ¢(H)
might be zero, so that the property would not hold for the actual system al-
though the structural property holds. Two cases can be distinguished:

1. In the first case, parameters 8 elways satisfy the relation A(6) = 0 and
thus the structural property is never translated into an actual property.
This is excluded in structural analysis. First, an algebraic relation like
{8 = 0 is always supposed to define a manifold of dimension at most-
g — 1, which means that it carnot be satisfied by any 8 € iIR? or, in other
words, that it does not boil down to ) = (. Second, the parameters are
always supposed to be independent, which means that they live in the
whole space IRY. Indeed, if this were not the case, equation A{@) = 0
should have been included in the system model.

2. In the second case, the parameters @ of the system under investigation
satisfy the relation A{#) = 0, and thus the structural property is not
translated into an actual property for that particular system. Structural
analysis however provides interesting conclusions, since under mild as-
sumptions about functions a, b, ¢, d there always exists a parameter vee-
tor 8 in the neighbourhood of @ for which the actual property coincides
with the structural one.

In conclusion, actual properties are only potential when structural proper-
ties are satisfied. They can certainly not be true when structural properties
are not satisfied. In other words, structural properties are preperties which
hold for actual systems abmost everywhere in the space of their independent
parameters. It is extremly unlikely that the system under consideration has
a parameter vector for which the structural properties do not hold,

5.2.4 Known and unknown variables

The system variables and parameters can be decomposed into known and
unknown ones. System input and output are examples of known variables.
Similarly, parameters which enter the model and have been previously iden-
tified are known. Known variables are available in real time and they can
direcily be used in [ault diagnosis or fauli-tolerant control algorithms. Un-
known variables are not directly measured, though there might exist some
way to compute their value from the values of known ones. In the tank exam-
ple, the last four columns of the incidence matrix {hﬂ i, Gis qo} correspond
to unknown variables, while the first five ones correspond to known variables
ane parameters {u, y, ha, v, £}

Following that decomposition, the set of the variables is partitioned into
Z = K U X, where K is the subset of the known variables and parameters
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and X is the subset of the unknown ones. Similarly, the set of constraints is
partitioned into ¢ = Cx U Cx, where Cr is the subset of those constraints
which link only known variables and C ¢ includes those constraints in which at
least one unknown variables appears. Cx is the largest subset of constraints
such that Q(Cx) € K. It can be noticed that the relations which define
control algorithms belong to Cx since they introduce constraints between the
sensor output, the control objectives (set-points, tracking references, final
states} and the control output, which are all known variables.

By following the decomposition of Z and C, the graph (C, Z, £) can
be decomposed into two sub-graphs which correspond to the two subsys-
tems (Cx, @(Cx)) and (Cx, Z). The behaviour model of the subsystem
{Ck, Q(Cx)) involves only known variables. In some further developments,
it will be of interest to focus on the subsystem (Cy, Z) which is also called
the reduced structure graph. This graph includes only those constraints that
refer to at least one unknown variable z; € X. Indeed, a fundamental ques-
tion of fault diagnosis concerns the determination of unknown variables from
known variables by means of constraints. The question whether this is pos-
sible or not does only depend on the structure of the subgraph (Cy, X, £x)
that results from the reduced graph by deleting all known variables z; € X
together with the corresponding edges.

Example 5.5 Reduction of the structural graph of the tank system

Consider the tank, whose structure graph is given in Fig. 5.5. Assume that only
the input » and the output y are known signals and, furthermore, hq,r and k are
known parameters. Then the decomposition of the variable set

Z={h, h, g, qo, u, y, ho, 1, k}

into known and unknown variables yields the sets
K= {u, y, ho, 7, k}

and
A = {h, o ge, go}.

By selecting all constraints whose variables are all in the set K, the set (x = {es}
is obtained. All other constraints comprise the set

Crp = {C}, €2, €5, €4, Cﬁ} e
Obviously, Q{Cx) = K and
QUCx) = {t, y, g5, @on By B} 03

holds, The bi-partite graph can be re-crganised as follows:
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i known unknown
A u[yghair%klhihiqilqo
Ces T [xT 070 T 177
1 1 1
(5} 1 i
3 1 1
g I
[} 1

The known variables are in the left columns and the constraint that refers merely
to known variables in the firsé row. The reduced stracture graph which corresponds
to the subsvstem Cy, Z is given by the lower part of the incidence matrix. As the
variables hg and r do not appear in this part of the matrix, their columns are

deteted:

known unknown
Aluly kR ha | %
€1 1 i 1
o 1 i
5 i 1 1
[&F) 1 1
ca i

This reduced graph is
incidence matrix

shown in Fig. 3.6

After deleting the known variables the

e I h I do
1 1 H H
<2 1

C3 1 1
C4 H

6 H 1

and the graph depicted in Fig. 5.7 resuit. O

5.3 Matching on a bi-partite graph

The basic tool for structural analysis is the concept of matching on a bi-partite
graph, which is introduced in this section. In loose terms, a matching is &
causal assignment which associates some system variables with the system
constraints from which they can be caleulated. Variables which cannot be



112 5. Structural analysis

{/ﬁ\\
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& i
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Fig. 5.6. Reduced structure graph of the tank system
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Fig. 5.7. Subgraph concerning the unkﬁown variables of the
tank system

matched cannot be calculated. Variables which can be matched in several
ways can be calculated by different (redundant) means, thus providing a
means for fault detection and a possibility for reconfiguration.

5.3.1 Definitions

Let (C, Z, &) be a bi-partite graph, let e € £, e = (o, ) be an edge which
Hnks the constraint ¢ and the variable 3, and let po and pz be the two
projections

Pe 1 £ (

e polel =
pz £ 2

e pale) =4

In other words, the proiection of the edge on the constraint set is pele) = a
(the constraint node of the edge e) and the projection of the edge on the
variable set is pz(e} = 3 (the variable node of the edge ).
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Definition 5.5 (Matching)
A matching M is a subset of £ such that the restrictions of po and pz to M
are tnjective, i.e.

Vep,ep € M ey # €2 = peler) # pelex) Apzler) # pales).
This means that a matching is a subset of edges such that any two edges

have no common node (neither in € nor in Z). In general, different matchings
can be defined on a given bi-partite graph, as ilfustrated by Fig. 5.8.

(a )l n g L4 ) Ly )

\‘\_/ S \J ¢ S \_J

Fig. 5.8. Two possible matchings for the tank system: The
edges e € M are drawn by thick lines.

The set M of all matchings is a subset of 2¢, which is partially ordered by
the set-inchusion order relation. Thas, maximal elements can be defined.

Definition 5.6 (Maximal matching)
A mazimal matehing is o matehing M such that YA € 2° with M C N, N
is not a matching.

Thus, a maximal matching is a matching such that no edge can be added
without violating the no common node property. Since the set of matchings
M is only partially ordered, it follows that there is in general more than
one maximal matching. Let M C M be the set of maximal matchings.
Extending the definition of the projections pe and pz to sets of edges (instead
of one single edge),

7e o M 2f
Moy me(M) = {c € U Je € M such that ¢ = pole)}
7z . M 2%

M az(M) = {2z € Z; Je € M such that 2z = pzle)},

£y
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each matching M is assoclated with the subset we (M) of its matched con-
straints, and with the subset 7z { A1) of its matched variables. Since no more
than one constraint (respectively no more than one variable) can be associ-
ated with each edge of a matching, is follows that any matching (and therefore
also maximal matchings) satisfles the following property

(M) CC

rz(M) C X,

from which it follows that the relation
M| < min{lc], (21}

kolds, where the bars [ denote the cardinality of the sets (which means the
number of elements). Matchings for which the equality sign holds are called
complete matchings.

YAM e M

Definition 5.7 (Complete matching)
A matching is called complete with respect to C if .M = IC] holds. A matching
is colled complete with respect to Z if |Mi = | Z] holds.

Definition 5.7 means that for a complete matching M on C (respectively on
Z), each constraint (respectively each. variable) belongs to exactly one edge
of the matching: :

Vee 3z ¢ Z such that (c,2) € M
Yee 2 Ze € € such that {e,2) € M.

A matching can be represented by selecting at most one “1” in each row
and in each column in the incidence matrix of the bi-partite graph, and
representing them by the “(D" in the examples. Each selected “1” represents
an edge of the matching. No other edge should contain the same variable
(thus it is the only one in the row) or the same constraint {this it is the only
one in the column}.

It is obviously possible to define matchings, maximal matchings, and com-
plete matchings by considering either the whole structure of the system or
only subgraphs of its structural graph, i.e. subsets of the constraints and
variables instead of the whole sets.

Example 5.6 Matchings on the reduced structure graph of a tank

In order to illustrate the notion of maximal and complete matchings, consider the
reduced structure graph of the single tank example. The edges of a matching are
identified by a thick line in the graph representation and by “@" in the feilowing
incidence matrices.
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[f“hlhiq; qaél/‘gghlhif][ﬁ’ﬂg
1 i @ 1 53 1 1 1
ca 1 o3 O
&3 @ i €3 1 @
4 1 e i @&
cs i O cE 1 oy

Matching a} Matching b)
K Rrre
€1 @ i H
[ ®
<3 1 @
£ 1
e @ i

Matching )

As in a matching, unknown variables are associated with a constraint by means
of which they can be determined, an intuitive graphical representation is given in
Fig. 5.9 where the constraints are drawn on the left-hand side and the variables on
the right-hand side. The thick edges connect the variables with the constraints by
which the variable can be calculated. The graphs are the same as in Fig. 3.7.

4 g & ] & 4.
(oS o ;

: A : 3 “ %
O3 &y i o,
G ’ s €, h
{o h (E) h Cﬁ h
(l) 2_’)} C}

Fig. 5.9. An incomplete {a) and two complete (b, c)
matchings

Figure 5.9a shows an incomplete matching. It is not complete with respect to
the constraints since constraints cg and ¢4 are not matched, nor is it complete with
respect to the variables since ¢, is not matched. However, no edge can be added to
the matching without viclating Definition 5.5.

Two complete matchings with respect to the unknown variables are shown in
Fig. 5.9b and Fig. 5.9c. There is no matching that is complete with respect to Cy,
because the number of constraints is larger than the number of variables, Note that
it is not guaranteed that a complete matching exists, either with respect to Ly or
o X 0

P T A T T T
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5.3.2 Oriented graph associated with a matching

Defining a matching on a structure graph introduces some orientations of
the edges which, until now, were undirected. Constraints which appear in
the system description have no direction, because all variables have the same
status. For example, the tank constraint

1 gi{t) = qgolt) — R(E) =0 (5.9)
can be used to compute any of the three variables whenever the two other
variables are known. It is written in the non-oriented form to stress that the
constraint itself has no preference for any of the three variables.

Once a matching is chosen, this symmetry is broken, since each matched
constraint is now associated with one matched variable and some non-
matched ones. For a given constraint, matched and non-matched variables
are identified in the graph incidence matrix by ) or 1, respectively. For ex-
ample, according to the matching in Fig. 5.9a, the above constraint is used
to compute ¢;(¢).

in the graphical representation, the unsymmetries associated with a match-
ing are represented by transforming the originally non-oriented edges into
oriented ones. Since some constraints might not be matched, the following
rules are applied:

s Matched constraints: The edges adjacent to a matched constraint are
provided with an orientation
- from the non-matched {input) variables, to the constraint,
- from the constraint to the matched {output) variables.

« Non-matched constraints: All the variables are considered as input and,
hence, all edges are oriented from the variables to the constraint.

af b)

Fig. 5.19. a)} A matched and b} & non-matched constraint

(5.9)

&

"lo understand the reason for these rules, consider a matching A and choose
an edge (¢, r) € M. Then the variable z can be considered as the output
of the constraint ¢ while the other variables Q{e)\{z} are the input!. The

P In Eq.(5.8), Q has been defined as & mapping from a set of constraints towards

the sets of variables. It is used here also for a single constraint ¢ where for
notational convenience Q{{c}} is written as Q(c}.
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mmterpretation is that the matching represents some causality assignment by
which the constraint ¢ is used o compute the variable 2 assuming the other
variables to be known. An explicit representation of the constraint, ¢ that can
be used to determine @ is denoted by

z = 7(Q e\ {z}).

For non-matched constraints all variables are considered as input and no
variable of Q{c) can be considered as an output. Hence, the constraint can
be written in the form

c(Qle)) =10

like Eq. (5.9). If the zero on the right-hand side is considered as cutput, the
constraint can be assoclated with a ZERO vertex like in Fig. 5.10b. Using no
label at all is considered as an implicit ZERO lubel,

Example 5.7 Computation of unknown variables of the tank

For the single tank, the reduced graph shown in Fig. 5.7 and the three matchings
shown in Fig. 5.9 vield the oriented graphs shown in Fig. 5.11. Remember that the
reduced structure graph includes only the unknown variable. The meastired input
u and output 'y 'aré introduced into the graph to illustrate how the constraints can
be used to determine the internal variabies i, qo, k and A for known values of v and

As Matching 1 is incomplete, the unknown variable 4o cannot be computed as
shown in the graph. Matchings 2 and 3 are complete in A" but incomplete in Cu.
'The non-matcked constraint ¢; or cy, respectively, leads to 2 ZERO output, that is,
they have to hold for the variables ¢; and h or k and ¥, which have been determined
by other constraints or have been measured, respectively. [

Matching 1 Matching 2 Matching 3
u, '_.u ; Cu
‘\/g?“\ & -, o
oo
H

o /2\ f‘i“\ )

n OO
1.

@ @ @ O,
4 - R “ . ""r' i & -
B

Ly Ty Ty

Fig. 5.11. Graphs corresponding to the three matchings
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Note that subgraphs whose input and output nodes are all known or ZERO
variables provide the system input-output relations. By using Maiching 2 in
Fig. 5.11 the two following input-output relations are found. The first one is
provided by constraing ¢z which links only known variables and are, therefore,
deleted when drawing the reduced graph, and the second one is provided by
the non-matched constraint g

5 (ua y) =0
ca (w, vy (ya (ks valwd) s ve (e () = 0,

where v;(z) denotes the output of constraint ¢; whose input is z.

5.3.3 Alternated chains and reachability

The oriented graph associated with a matching obviously enjoys the following
property: Any existing path between two nodes (variables or constraints) al-
ternates successively variables and constraints nodes. Such a path is called an
alternated chain. Its length is the number of constraints that are crossed along
the path. (Note that if a non-matched constraint belongs to an alternated
chain, the chain ends on the ZERO variable associated with the non-masched
constraint).
Associated with alternated chaing is the notion of reachability.

Definition 5.8 (Reachability)

A wvariable zy is reachable from a variable z, if there exists an wlternated chain
from z, to zy. A variable z» is reachable from a subset y C Z\ {2} if there
exists z; € Y such that zo is reachable from z:. A subset of variables Z5 135
reacheble from a subset of variables Zy if any variable of Zy is reachable from
ZZ.‘

Example 5.8 Alternated chains in the tank example
Sorme alternated chaing associated with the oriented graph of the tank example are
as follows:

y—cs—h—ca—qgo—e1~q

h““*{:ﬁ“‘““il“‘“()l 113
and it can te checked that any variable of the set {qi, da, A, fz} is reachable from
y.
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5.3.4 Causal interpretation

The aim of this subsection is to discuss the causal interpretation of the ori-
ented hi-partite graph associated with a matching,

Indeed, selecting a pair (¢, z) to belong to a matching implies a causality
assigniment, by which the constraint ¢ is used to compute the variable z,
assuming the other variables to be kanown. The oriented bi-partite graph
which results from a causality assignment is named a causal graph. Causal
sraphs are used in qualitative reasoning, alarm filtering or in providing the
computation chain needed for the numerical or formal determination of some
variables of interest, as shown by the above interpretation. Although this
interpretation is straightforward for simple algebraic constraints, it has to be
considered more carefully when loops and differential constraints are present.

Algebraic constraints. Let ¢ € € be an algebraic constraint, t{c) ihe set
of the varizbles constrained by ¢ and let n, = [{Q(e)]. In structural analysis,
the following assumption is made:

Assumption 5.1 Any algebraic constraint ¢ € C defines a manifold of di-
mension 1. — 1 in the space of the variables G{e).

Indeed, since the constraint has to be satisfied at any time ¢, the variables
(J(c) cannot behave independently of each other. Assumption 5.1 means that
only n, ~ 1 unknowns can be chosen arbitrarily (or imposed) in constraint
¢ or, in other words, that there is at least one variable z € e} such that
Z;T # U (almost everywhere in the space of the variables Q1{e)). Therefore,
from the inverse function theorem, its trajectory can be deduced (at least
locally) from the constraint ¢ and the trajectories of the n. — 1 others. This
is exactly the causal interpretation of matching this variable with constraint
¢, and it can be interpreted as: constraint ¢ decreases by one the degrees of
freedom associated with the variables Q{c).

Example 5.9 Non-invertible algebraic constraints
Consider the constraint

cyrarr +hixs -y =0, (5.1

where 71 and 22 are two unknowns {2 degrees of freedom), ¢y and b; are parameters,
and y: is known, This constraint obviously defines a one dimensional space o
which any vector (z1, 2} should belong when it is satisfied. Thus only one degree
of freedom is left since only one of the unknowns can he chosen arbitrarily, the
possible value{s} of the other one being deduced from (5.10).

Note that the structural peint of view considers the most general case of any pair
of parameters a1 and b; . Particular cases would be a; or b, equal to zero ({5.10)
would still define a cne dimensional manifold} and a; and b both equal to zero (in
this case ¢; would not define a one dimensional manifeld when y1 = 0, since any
point (x1, z2} in the two dimensional space would satisty the coustraing, and there
would be no selution when y, # 0 e, the systern model would not be seund since
constraint (5.14) would aliow for no selution). ©
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The fact that at least one variable can be matched in a given constraint
under the causal interpretation does not mean that any variable enjoys this
property. An obvious situation in which {r, 2} cannot be matched is when ¢
is not invertible with respect to z. The constraint shown in Fig. 5.12 defines
a manifold of dimension 1 iniR?, and it is always possible to compute x3 once
x; is given. Matching z, with this constraint can obviously be interpreted as
explained above. However, the interpretation does not apply to the match-
ing of 1, since é":l is not different from zero almost everywhere, thus the

constraint ¢ cannot be used to compute r; whatever the value of z;.

Ty
4 _
I /—__-. I’ﬂ = “{.‘Ei}
i -
/‘\ /““\ Y
\‘/< , 5\ J:, 1
¢ ¢

a} b} ¢j
Fig. 5.12. a) Structure graph, b) possible and c}impossible
matching

Differential constraints. The case of differential constraints has to be con-
sidered more carefully. Remember that differential constraints can always be
represented under the form (see (5.6))

d: .’L‘g(t) - %I} {t) ={ {51}.)

and indeed functions zy (#) and x2 (¢} cannot be chosen independently of each
other. Obviously, when the trajectory z; (¢) i3 known, its derivative can always
be computed (from an analytical peint of view, derivatives are here supposed
to exist, and from a numerical point of view, there might be problems rised
by the presence of noise, which are not considered here). It follows that the
constraint can always be matched for xy which is then uniquely defined. This
is called derivative eausality. When r4(t) is known, matching this constraing
for @y, {which is called miegral causality), leads to the computation

z1(t) = z:(0) +/ oo do, (5.12}
a
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which does not determine x, (¢) uniquely, unless the initial condition 21 (0 is
known. Indeed, let (z;(#), za(t))’ be two functions which satisfy constraint
d. Then, () (t) + o, £2(t)), where a is any constant function, also satisfies
constraint . Thus, computing =, from constraint d may be possible or im-
possible, depending on the context. Initial values are known in a simulation
context, since they are ander the control of the user, but this is generally
not true in a fault diagnosis context, thus forbidding integral causality in
differential constraints.

Remark 5.1 Consequences for residual generation

Parity space or identification-based residnal generation approaches alm at elimi-
nating the unknown initial values by using the system input-output relations which
are obtained through derivative causality. It can be neticed that observer-based ap-
proaches use integral causality by implementing an auxiliary system — the observer
- which provides results that are (asymptotically) independent of the estimate of
the initial state. O

In summary, different cases have to be considered as far as the satisfaction of
Assumption 5.1 is concerned with respect to the differential constraint (5.11):

o If 21 (?) is known, #»(¢) can be matched in constraint d which brings about
using differential causality. This provides a unique result for o, Assump-
tion 5.1 is satisfied since constraint d leaves only one degree of freedom in
the determination of (z;(t}, x2(#)}.

o If 22(f) and the initial value zy(0) are known, x;(t) can be matched in
constraint d using integral causality. This provides a unique result obtained
from Eq. (5.12). Assumption 5.1 is satisfied since constraint d leaves only
one degree of freedom in the determination of (z 1{8), 22 (8)).

¢ If only x3(t) is known, Assumption 5.1 is not satisfed, because whatever
the matching, two degrees of freedom (the constant fanction «, and the
input function z;(¢)) still exist in the determination of {1 (t), o (D).

Example 5.10 Differential system
A mode! whase solution exists but is not unique, as the result of Assumption 5.1
being not satisfied, is given by the following simple example

¢t ) ¥y ear —hbu=0
d
€2 1 Ty —xy =0,
2 il )

which is a single put first order system. Constraint ¢, is an algebraic ene which
expresses that the vector {ry, x2) lives in a linear manifold of dimension one fsince »
is known). Constraint ¢y does not allow to decrease the dimension of the unknown
vector: indeed, if 1 were known {which is not the case}, one coukl compute its
derivative 23, but the knowledge of 24 {which could be obtained as 3 function of
21 and win constraint ;3 is of no help to compute 7, since one should proceed by
mtegration and the initial value r1(0) is unknown. [J
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Example 5.11 Derivative causality in the taunk system

Az a second example, consider the following matching in the tank structural model.
Although it is complete with respect to the variables {h b, Gi, qo}, it cannot be
used for their computation since it introduces an integral causality {(h should be
computed from E by constraint cs, while its initial value is not known because
constraint ¢ is not matched}.

Sl h ke e uly ]
£3 @ 1 1
T2 @ 1
[ 1 O
4 1 i
C5 1 1
s D11

Pyerivative causality can be forced, when necessary. To represent this situation,
a special notation can be used, namely x, which forbids integral matchings. The
previous matching will not be obtained if the tank structural model is written as

(o 0nli]olalely]
1 1 1 1

an 1 1

cs H ¥

cs 1 1
5 1 1
s X |1

where x tneans that although there is an edge between ce and h, h cannot be
matched with cg. O

Subsets of constraints. When a set C of constraints {or a subset) are
simultaneously considered, two further assumptions are made in structural
analysis. They express that the model defined by that set of constraints is
well formed, which means that it indeed has solutions {Assumption 5.2}, and
that the same set of soiutions could not have been represented using a model
with less constraints (Assumption 5.3).
Assumption 5.2 All the consiraints in C are compatible.

This is a very obvious assumption, which means that the set of the con-
straints ig associated with a scund model, namely a model whose solutions

exist. In other words, the constraints do not carry any contradiction. Let
O € € be the subset of all the constraints which satisfy Assumption 5.1. Let
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V(c) be the n. ~ 1 dimensional manifold associated with constraint ¢ & ¢ 15
and let

VI(C) = Meee, Vie),
Assumption 5.2 means that
V€ # 8.
which can be interpreted as follows: The system behaviour model has at least

one sohution, Le. the set of the values of the variables which satisfy all the
system constraints is not empty.

Assumption 5.3 All the constraints in C are independent.

Assumption 5.3 states that the model is minimal in the sense that no
constraint defines (at least locally) the same manifold as another one, or more
generally that there does not exist in € two different subsets of constraints
£ and C" such that

V{C Ve,

When Assumption 5.3 is satisfied by the constraints of a given set , the
consequence is that the dimension of the manifold V() is

AV = 1QIC) ~ [C], (5.13)

where (; is the subset of the constraints of ¢ which satisfies Assumption 5.1,

Example 5.12 Dependent constraints
Consider the fwo constraints

ci: z—t =0
L0 (21‘_}.)(32—1):0.

They are obviously not independent, since one has V(e ) 1 Vies) = Viey) In fact,
constraint ¢; is encugh to describe the sec of the system solutions. ©

Loops. In the oriented graph associated with a matching, loops are special
subsets of constraints, which have to be solved simultaneously, because the
output signals of some constrainis in the loop are the inputs of some others
in the same loop. Since only one variable is matched with one constraint, the
number of matched variables in a loop s equal to the length of the loop, ie.
the number of the constraints which appear in it.

The causal interpretation of a loop is that of a subset of constraints whose
solution is the set of the matched variables, when all the other variables {not
matched in the loop) are known.

Suppose n, variables are constrained by a subsvstem of n, constraints, and
there is a matching such that they form a loop. Then, ny variables are internal
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(matched in the loop), and n, —n; variables are external {not matched in the
loop).

In structural analysis, an algebraic loop is always supposed to have a unique
solution {more precigely: a finite number of solutions), which is the intersec-
tion of ny manifolds of dimension n; — 1, if the external variables are known
{by Assumptions 5.2 and 5.3). Indeed, the loop is associated with a subset of
ry constraints

h’f{xia J:C’} = Oa
where #; (respectively z.) are the internal (respectively the external] vari-
ables, and each component of z; i3 matched with one counstraint in fy. It
is worth noticing that the interpretation associated with causality in single
constraints is not directly extendable to loops.

Example 5.13 A system of two non-invertible constraints

Consider the non-invertible constraint from Example 5.9 and suppose now there
are two constraints {ci, ¢a} of the same form, but with different parameters. The

structural graph of this system is

o3 1 1
oy 1 1
A complete matching is given by
‘ |
A IR {
o3 @ 1
o 1 @

which shows the existence of a loop, and indeed the system of two constraints
with two unknowns has a {finite number of } selution(s), as illustrated by Fig. 5.13,
although the matching of xy with ¢; has certainly not the nice interpretation of
computing the variable from the constraint.

0y by, 4,)=0

oy

e (o, 2,30

/
j
L

] ]
[ .'},'1
i

fd

i

Fig. 5.13. Two algebraic constraints with two unkaowns
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The correct interpretation, in this case, comes from the fact that each constraint
defines a {different) manifold of dimensicn one in IR?, and that, in general, such
two manifolds will intersect in a finite number of points. Indeed, no solution at all
would be a particular cagse {which would not satisfy Assumption 5.2), and an infinite
number of solutions would be the result of the two manifolds being the same one,
at least on some sub-region of the space - another particular case {which would not
satisfy Assumption 5.3}. O

The unigueness of the solution asscciated with a loop which contains differ-
ential constraints will depend on the context of the problem. Indeed, consider
a set of n; + n. variables which are constrained by ny differential equations,
and consider matchings such that this system forms a loop

“} gi(‘r I, mz‘:‘: u’) (5}%)
Z = e
.
i it [

where x; is the vector of the variables in the loop, g, are the constraints in the
loop, and z, are the external variables, supposed to be known. The system
{5.14) has a unique solution only if the initial value 2;(0) is known. When
this is not the case, the solution will depend or the n; unknowns (0}, and
thus it will belong to a manifold of dimension n;. Such a differential loop is
called non-causel.

A

‘1 H
o
o=

Fig. 5.14. A maiching with a differential loop

i

Example 5.14 Differential loop in the tank example

Consider again the tank example, with the following matching, which is complete
with respect to { h, k, & qa}, and in which differential causality is now used in
constraint cg. This is obviously not enough for being able to compute A, since there
is a differential loop: b —cs — b —¢f — gs —~ ¢z ~ h, which is shown of Fig. 5.14. O
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Lolelhlalalaly]
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Cg 1 @

Following a classical graph theory approach, a loop can be condensed into
one single node {which thus represents a subsystem of constraints which are to
be solved simultaneously). Another approach is to avoid loops (when possible)
by some transformation of the constraints, leading to diagonal or triangular
system structures.

Example 5.15 Treatment of loops
Let a subsystem be defined by Z = {u), w2, y1, y2}. £ = {c1, 2}. The variables
are real numbers, the constraints are linear, y;, y» are supposed to be known, and
we are interested in the computation of &y, z2.

c1 ¢ ay tbhriteze =0

ez 1 ay+Ary+ ey =0, (5.15}
The incidence matrix of the structure graph, aad a complete matching w.r.t,
{zy, x2} are

§
H

Lole e lule |
IR
Ecg i @ 1

and Fig. 5.13 shows she resulting loop in the associated oriented graph. Note that
this matching is valid almost for every value of the coefficients since it obviously
supposes that b and - are non-zero, note alsc that the solvability condition by —c 5 #
& cannot be seen from structural considerations.

Fig. 5.15. An algebraic loop

Figure 5.18 illustrates the condensation in which the loop is “condensed” into
one single node, which means that the svstem of two equations with two anknowns
is sobved, but no detail is given about how this is dene.
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Fig. 5.18. Condensed representation of the loop

Transforming the constraints may also lead to a loop-free orienied graph, since it
ay give the system a diagonal or a triangular structure (note that this results from
anipulations which are not purely structural, but which are done on the system
*haviour model). Indeed, for example, the two following systems are equivalent to
.15} (other equivalent systems can also be constructed):

¢t 1 oavyp -acys+lby—Fc)e; =0 (5.16)
cr ¢ afy -abys+(cB-bylEr =0
¢ avyp —acyy+lby- S8 =10 (517}

e toayp by ez =00

Fig. 5.17. Two equivalent loop-free oriented graphs

3.5 Matching algorithm

om the definition, a matching can be represented in the incidence matrix
the bi-partite graph by selecting one “17 at most in each row and in each
lumn. Each selected “17 represents an edge of the matching, and no other
ge of the matching should contain the same variable {(thus it is the only one
the row) or the same constraint {thus it is the only one in the column).
inding maximal matchings thus calls for “affectation algorithms” which
> well known in operations research.

he following consiraint propagation (or ranking) algorithin can be used to
d a matching. It does only generate oriented graphs without loops, so it
v ot find any complete matching, even if it exists. The idea is to start with
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some variable {in applications the starting nodes are the known variables),
and to “propagate” the knowledge, step by step, by matching, at each step,
the variables which intervene in constraints where all other involved variables
are matched or known.

Algorithm 5.1 Ranking of the constraints
Given: Incidence matrix or structure graph
1. Mark all known variables.
i=0

2. Find all constraints with exactly one unmarked variable. Asso-
clate rank ¢ with these constraints and mark these constraints
as well as the corresponding variable.

3. If there are unmarked constraints whose variables are all
marked, associate them with rank 7, mark them and comnect
them with the pseudo-variable ZERO.

4, Set = {41,

5. If there are unmarked variables or consiraints, continne with
step 2.

Result: Ranking of the constraints.

In the first step, all known variables K are marked and all unknown vari-
ables remain unmarked. Then every constraint that contains at most one
unmarked variable is assigned rank 0. The constraint is matched for the un-
marked variables (or zero, if there is none), and the variable is marked. This
step is repeated with an increasing rank number, until no new variables can
be matched.

As every matched variable is also given a number, this approach is called
ranking algorithm. The rank can be interpreted as the number of steps needed
to caleulate an unknown variable from the known ones.

Example 5.16 Constraint propagation in the single tank
'The constraint propagation algorithm applied to the tank example works as follows
{remmember that u, y being known, only {q;, Goy B, h} have to be matched):
Starting set {rank 0): {u, ¥}
First step {rank 1}: match ¢ with c2, match A with ¢4
Second step (rank 2): match ¢o with 3, match & with cq
End {every variable is matched)
The obtained matching is:
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In more complex situations, maximum matchings can be constructed by
selecting any initial matching and trying to increase the length of the associ-
ated alternated chains by exchanging the role of matched and non-matched
variables. In order to give an ides of the procedure, let us first introduce some
terminology.

Fet M be a matching on a graph §. An edge is defined to be weak with
respect to M if it does not belong to the matching. A vertex is defined to be
weak with respect to M if it is only incident to weak edges. An M-alternating
path is a path whose edges are alternately in M and not in M (or conversely).
An M-augmenting path 13 an alternating path whose end vertices are both
weak with respect to M. Then, BERGE (1957} has the following theorem.

Theorem 5.1 A maiching M in a graph is a mazimum matching if and
only if there exists no M-augmenting path in g.

The preof is not given here but roughly, the idea is that if such an aug-
menting path exists, a new matching of size {M + 1] will be obtained by
exchanging the roles of matched and non-matched constraints,

Example 5.17 Augmenting path in the tank example ™
Let us start with the maximal incomplete matching, whose cardinal is three:

olr ]kl ey
1 1 @ I

(5] i 1

3 @ 1

4 1 i
Ay 1 1
Cg 1 @

It is possible to increase the size of the matching by exchanging the roles of g; and
go in constraint o1, since ¢ can also be matched in c2, or by exchanging the roles of
h and go in o3, since k can also be matched in ¢s. The result is a maximal matching
whose cardinal is farger. In that case the matching is not only maximum but it is
also complete with respect to {qi. Gos B, h}. o
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Other matching algorithms are connected with the search of a maximal
flow or a maximal cover {see the bibliographical notes).

5.4 System canonical decomposition

This section recalls a classical result from bi-partite praph theery, which states
that any finite-dimensional graph can be decomposed into three subgraphs
with specific properties, respectively associated with an over-constrained, a
just-constrained and an under-constrained subsystem. This decomposition is
canonical, L.e. for a given system, it is unique. The three subsystems play a

. major role in the analysis of the system structural properties: ohservability,

controllability, monitorability, reconfigurability.

5.4.1 Definitions

Definition 5.9 (Over-constrained graph)
A graph (C, Z, £) is called over-constrained if there is a complete matching
on the variables Z but not on the constraints C.

There remains a complete matching on 2 after any single contraint has
been removed from the set C.

Definition 5.10 (Just-constrained graph)
A graph {C, 2, £) is called just-constrained if there is a ecomplete matching
on the variables Z and on the constraints C.

Definition 5.11 {Under-constrained graph)
A graph (C, Z, &) is called under-constrained if there is a complete matching
on the constraints C but not en the variables Z.

Example 5.18 Property of the reduced graph of the tank system.

Matching 2 of the tank graph is complete with respect to the variables, but there
is stiil one non-matched constraint: the reduced graph of the tank system is over-
constrained.

Aln kel
cr 1 D 1
2 1
<3 i (Y]
[a%} @

[#7 1 @
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(it can be furthermore noticed that any of the b constraints can be removed, and
there «till s & complete matching on the resulting graph). O

5.4.2 Canonical subsystems

The graph of a given system § = (€, Z} may of course fal to conform to any
of the three above properties. In this case, it can be proved that there exists
a unique decomposition of & into three subsysteins

R (-
§° = (€%, 2TuzY)
§7 = (¢T.EZtuz'uz)

such that

{a) (€™, C% C") form a partition of C,
(by (27, 2% Z7) form a partition of 2|
(¢} (CF. Z7) is over-constrained,

{d} (€% Z% is just-constrained,

{e) (€7, Z7) is under-constrained.

o S* is called the over-constrained subsystem because it follows from the
definition that |C7| > {Z %], which means that the variables Zt (let n* be
their numaber) have to satisfy more than n™ constraints.

o 59 ig called the just-constrained subsystem, because i introduces as many
new variables as constraints {|C°] = [Z°]).

e Similarly. & is called the under-constrained subsystem. It is characterised
by [£71 > [C] (it introduces more new variables than constraints).

Figure 5.18 illustrates the canonical decomposition of the structure graph,
showing the partition of € into {C*, % €~} and the partition of Z into
{z+, 2% 2~} which define the three canonical components on its incidence
matriz. White areag are zeros, grey areas contain zeros and ones, and the thick
line represents a matching (after the rows and columas have been rearranged
so that the matched variables and constraints appear on the diagonal).

1t can be nosiced that the over-constrained subsystem may contain several
smaller over-constrained or just-constrained ones (a¢ least one smaller over-
constrained subsvstem has to exist, otherwise the overall graph would be
just-constrained, and of course no under-constrained subsystem can be found
in an over-constrained onel. Similarly, the just-constrained subsystem can
contain several smaller just-constrained ones {no over-constrained, no under-
constrained subsvstem can exist otherwise it would not be just-constrained},
and in an under-constrained subsystem, several under-constrained ones (no
over-constrained, no just-constrained} may exist.
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Fig. 5.18. Canonical decomposition of the structure graph

Subsystems which cannot be decomposed into smaller ones are minimal
siibsystems.

Example 5.19 Minimal subsystems
The following over-constrained system

33
-
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o
i
a

A x;zlzs

o 1

(553 1

Ca i 1 1

poui ] gt |

contains six minimal subsystems, five being just-constrained

({er}, {ze}).

({er}s {1, z6})
{{e2}, {22, 26}),
({es}, {xa, s},
{{ea}. {‘Bil Tl

and the last one
{(’5, (3} {:l‘g, Lz, Ty, Fs, :Lr,}

being over-cosstrained. This can be seen from the filowing rearrangement of the
rows and columns of the incidence matrix.
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Clelelalalals

C1

(8]

ook b i | | g
s

4 i 1
o5 1 i
o3 1 1 1 1

Example 5.20 The reduced graph of the tank
Re-arzanging the rows and columns of the reduced graph of the tank, the incidence
matrix becomes:

] ya h ‘ h | o ii gi
£4 1
Ce i 1
Ca i 1
o) i
1 1 i i

Three minimal just-constrained subsystems, namely ({ci}, {h}}. ({C@} {h, h})

{{cs}, {h,qo}) and one over-constrained subsystem, namely ({c1, c2}, {h, do. 0i})
can be distingnished. O

5.4.3 Interpretation of the canonical decomposition

In this section, the canonical subsystems are analysed from the point of view
of the above assumptions, ie. from the point of view of the existence of
solutions, thus providing a key for the analysis of the system observability
and controllability.

First, it is clear that &nsumptson 5.2 must be satisfied by each of the
anhsets of constraints C7, C% and ¢ . Indeed, if this was not true, the system
model would have no solution, which contradicts the fact that it describes
the behaviour of a physical system (which indeed has a solution).

Second, in the structural point of view, any algebraic constraint is assumed
to satisfy Assumption 5.1, thus a subset of n variables completely matched
within a subset of n constraint, is uniguely defined, while the result depends
on the causality and on the existence of differential loops when constraints
of the form

d: Zg(ﬁ)——%z’}(i}ﬁ
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are considered.
Finally, it will be seen that there are cases in which Assumption 5.3 cannot
hold true.

Static systems. For clarity, let us start the analysis with static sysiems,
whose behaviour model contains only algebraic constrainss.

In the over-constrained subsystem, (C*, Q(CH)), the variables Z7 {let
nt be their number} have to satisfy more than n* constraints, which satisfy
Assumption 5.1 and 5.2. Therefore, they belong to the intersection of the
manifolds associated with the constraints {*. Since there are more manifolds
than variables, by {5.13), no solution can exist if they also satisfy Assump-
tion 5.3. Because the model should exhibit at least one solution (indeed,
the system is a physical one}, one concludes that the constraints in Ct are
not independent, i.e. the system description is redundant. In other words,
for the system to have a solution, some compatibility conditions must hold.
Structural analysis always assumes the most general case, i.e. the minimum
number of relations between the system parameters. This means that the
number of independent constraints is maximal, thus leading to the following
equivalent conclusions:

s The over-constrained subsystem has a unique solution {more generally it
has a finite number of solutions}.

s The number of independent constraints in (7 is n™,

» The number of compatibility conditions is I —nt.

In the just-constrained subsystem, (%, Q{C?)), the variables 29 {let n°
be their number) have to satisfy exactly n® constraints, which satisfy Assump-
tion 3.1 and 5.2. By (5.13), a unique solution exists, which is the intersection
of the manifolds associated with the constraints C% which are assumed to
satisfy Assumption 5.3. This being the most general case, structural analysis
proposes the following conclusions:

s The just-constrained subsystem has a unique solution.
¢ The number of independent constraints in C° is nY,

¢ There is no compatibility condition.

In the under-constrained subsystem, ({7, Q{C"}), the variables Z~
{(let n~ Dbe their number) have to satisfy less than n~ constraints, which
satisfy Assumption 5.1 and 5.2. By (5.13), ali the model can teli is that
the unigue solution of the physical system belongs to the intersection of
tess than n™ manifolds, and thus it is not uniguely defined by the model
{indeed, it belongs to a manifold of dimension n™— IC™] if the constraints
also satisfy Assumption 5.3). This being the most general case, structural
analysis proposes the following conclusions:

» The under-constraiped subsvstemn has no unigue solution.
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s The constraints in ~ are independent.
» There is no compatibility condition.

Example 5.21 Compatibility conditions in an over-constrained subsystem
Consider the set of linear constrainis

s a;.’L‘;-E—b;:czwy}:O
co asxy +baxe — iz = 0 (518)
ez asze; +haxe —ya=0,

where a = (a1, as, aa)’, b= (b1, ba, b3)’ are known parameters and y = (y1, ¥2, us)’
are known variables. This system is clearly over-constrained with respect to the
anknown variables (x1, 2). Let us consider the following cases.

1. rankla, b, y] = 3, i.e. the parameters a, b and the known variables y are in-
dependent vectors, i.e. their nine components can be chosen arbitrarily. The
system has in general no solution, since the three constraints are incompatible
{Assumptions 5.1, 5.2 and 5.3 cannot hold simultaneousiy).

2. If rankfa, b, y] = 2, one solution exists. Note that the parameters and the
known variables are no longer independent (namely [a, b, y] has one null eigen-
vatue, thus 3 A, p € E\{0} such that y = Aa + pb, which is the compatibility
condition). The unique solution is z; = A and z; = p. Assumptions 5.1 and
5.2 hold, and Assumption 5.3 does not.

3. Hranklu, b, y] = 1, [a, b, y] has two null eigenvalues, thus 3 A, p € R\{0} such
that y = Ag == b, and more than one solution exists. Indeed, any pair (x:, z2)
such that oy + 22 — A\ = 0 satisfies the system of equations. Note that in that
case, two compatibifity conditions exist, and Assumption 5.3 does not hold.

4. The last case is rankfa, b, y] = 0, t.e. a = b = y = 0. In this case, all param-
eters are specified and any pair (7, y) € R® satisfies the system of equations.
Assumption 5.1 does not hold.

Sisce (5.18) is the behaviour model of a physical system, it should exhibit at
least one solution. Then obviously the most general situation is case number 2 in

which enly one relation holds between the parameters. This is what is assumed by
the structural point of view.

Dynamic systems. Remember that, when diffevential constraints are con-
sidered, matching all the variables in a subsystem guarantees thaf there is a
unique solution under integral causality, i.e. when the initial conditions are
known. Under derivative causality, the solution is unique if and only if there
is a matching which avoids differential loops.

Let nj (respectively n%, n; ) be the maximal number of variables which
can be matched in the over-constrained subsystem (respectively in the just-
constrained, she under-constrained subsystems) without introducing any dif-
ferential loop. One ohviously has nj” < n'*, nf <n ny <a".

The over-constrained (respectively the just-constrained) subsystem is called
causal if there exists a complete matching with respect to the variables Z7
{respectively Z°) which does not contain any differential loop, Le. if one has
n} = nT{respectively n{ = n"). Note that the under-constrained subsystem
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can obviously not be causal, since there does not even exist any complete
matching with respect to Z7.

When the over-constrained {respectively the just-constrained) subsystem is
causal, the same conclusions as above obviously apply for the interpretation
of the three canonical subsystems. A non-causal subsystemn does not exhibit
all unique solution, since there are n'* — n]" variables in the over-constrained
subsystem {respectively n” — n{ variables in the just-constrained one) which
are matched in differential loops, Le. which are defined up to an unknown
constant.

Example 5.22 Causal over-constrained system
As an example, consider the following system

ci: xz—aL; —bu=10
Cy: Tp ey Ju=
- ey e e

c3 T2 dza,l-—ﬁ,

which is over-constrained with respect to the variables (#i, @2} and where u is
supposed to be known. The system is causal since (z1, r3) can be matched with
{c1, c2) and this introduces no differential loop. Thus, there is a unique solution,
which is obtained from the intersection of the two manifolds associated with (¢, ez},
and which can be checked to be

3 b
T3 = [
a—
(a,@—ab)
Ty = B k.
a—

{a ~ « is assumed not to be zero}. Moreover, constrains ¢z is redundant, and acts as
a compatibility condition which has to be satisfied for the system solution to exist,
namely
(a_ﬁ——ah) g-b,
@ - i = 0.

& — 0 a — ¥

Suppose now that constraint ¢y does not exist, then the system is just-constrained
but it is not causal, and its solution is defined up to the constant 2;{0), which is
unknown under differential causality. O

5.5 Observability

5.5.1 Observability and computability

Known and unknown variables. The system variables Z are decomposed
into known {the set K) and unknown ones {the set A}, Known variables are
available in real time, while unknown variables are not directly measured.
However, there might exist some way to compute their value from the values
of known ones {past and present values are considered in discrete time mod-
els, while variables and their derivatives are considered in continuous time
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models). Analysing the svstem observability coincides with identifying those
nnknown variables for which such possibility exists.

Considering the general system described hy the Eqs. {5.3), (5.4} {5.5) and
{5.6)

dq = glog, T, u) (5.19)
0 = mi®s ®,. U {5.20)
y = hir; x. u) {521
d
B, = S 5.22
! i (5.22)
the set of known variables is X = w U , the set of unknown variables

X =ux, U xg U &g and the set of constralnis L =giumiUhu ;f; Foliowing
the decomposition of Z into K U X, € is decomposed into {x U Cy, where
Cx = {cel; Qo)nX =i}
Cw {eel; QleinX £},

H

() is obviously the largest subset of constraints such that Q{Cx) C K. It
can be noticed that the relations which define control algorichms belong to
Ce since they introduce constraints between the sensor output, the control
objectives (set-points, tracked trajectories, final states) and the control out-
put, which are all known variables. The aim being to analyse the possibility
of computing the unknowns .V, only the subgraph (Cx, X, £x) needs to be
decomposed.

Remark 5.2 Ohservability and computability

" Consider the set X = =, U ms U 2y of the unknown variables. For the static
variables z., the term “observable” has obviously the same meaning as the term
“computable”. Namely, it means that their trajectories can be determined from
the knowledge of the trajectories of the known variables. Consider a dynamical
variable o}, € ;. It appears along with its derivative in the system behaviour
model. Therefore, several cases have o be considered:

Case 1. zy and &} can be computed.

Case 2: r; ¢an be computed, but not zh.
Case 3: x4 can be computed, but not ;.
Case 4: nor r; neither r; can be computed.

Case 3 obviously cannot exist, since the knowledge of 24(2) implies the knowledge
of #5{t). Tn case 1, x5 and 2} are both computable and &} is observable. In case 2,
), is not observable, althongh & is computable, and in case 4 no one is computable,
and rY is non observable. Therefore, the set of computable variables includes {but
is ot restricted £o) the set of observable variables, if “variable” means “component
of the state vector” as usual in the control literature. In the framework of this
chapter, since “variable” means any component in @, U 2, U g, observability and
computability do indeed coincide. For example in case 1, we sav that vartable i}
is observable and so is also variable 2}, 1n case 2, £} is uhservable while «; 15 not,
and in case 4, no one of them is observable. O

R ey —
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5.5.2 Structural observability conditions

Let
ST o= (0, X
S = (Y, aTuaY)
ST o= (. ATUXUXT)

be the canonical decomposition of the subgraph (Cy, X, Ex) associated with
system {5.19) - {5.22).

Theorem 5.2 (Structural observability)
A necessary and sufficient condition for system (5.19) - (5.22) to be struc-
turally observable is that, under derivative cousality

1. all the unknown variables are reachable from the known ones,
2. the over-constrained and the just-construint subsystems are causal,
3. the under-constrained subsystem is empty.

Condition 1 expresses that there does not exist any subsystem whose be-
haviour is not refiected in the behavicur of the known variables, while con-
ditions 2 and 3 express that all the variables can be matched using causal
matchings, i.e. they belong to the intersection of at least as many manifolds
as unknowns, and thus they are uniquely defined once the known variables
are given.

Note that since derivative causality is invoked, condition 1 could as well
have been stated as: all the variables ¢, U x4 are reachable from the known
ones {since under derivative causality, &4 can always be reached from z4).

Example 5.23 Non-reachability
Consider the following incidence matrix, in which the variable z3 is not reachable
from the output.

|2 lon o o | o[ uly |
(53] i 1 1 1
Liz X i
ca 1 1 1
da x 1
c3 1 1
oty x
m i 1

The system equations associated with such a structure are obviously of the form
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ty = gul(en, vl
Subsystem 1 2 = ge a1, 22) -
- - 5.23
y = hir:) (5.23)
Subsystem 2 T3 = galxs)

and it is seen that subsystem 2 can by no means be observable. O

Example 5.24 Observability of a nonlinear system
Consider the following non-linear dynamical systemn with two states, two input
signals, one parameter and one seasor:

1t #y o= (-~ 1w uy
c3 Lﬁgﬁu‘z
1l ¥ =X

This system is over-constrained, and it satisties the three conditions of the above
theorem. The foliowing matching allows to compute the state.

e e o o jww ]y ]
ct 3 [

o 1 1

d; @ x

61:2 @ x

m O 1

It can be noticed that z» can be reached from the known variables if and only if
the matching (c1, 22} can be used, which means that the two conditions

uy #0 and d#1

simutitaneously hold. If not, the system is not observable, since there is no matching
by means of which z2 could be computed under derivative causality. This example
emphasises the fact that structural properties provide results which are valid for
almost every value of the systemn parameters and wvaericbles. It can be noticed that
the svstem being over-constrained, constraint ¢; is not matched and provides an
input-output relation whose expression is

4 g
dt wy ()

ua{ty. o

5.5.3 Observability of linear systems

{et us consider the linear time-invariant deterministic system
& = Az {(5.24)
y = (5.25)
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where x and y are respectively of dimensions n and p. The state is observable
if and only if the following condition holds

C
. CcA .
ds € N such that rank =n, {5.26)
cA®
for which a necessary condition is
A ,
=1, (5.27}

C

Nete that (5.27) means, in structural terms, that the unknown variables
x belong to a causal just-constrained or over-constrained subsystem, when
derivative causality is imposed. Indeed, the structural graph is

d | I X
e I Sc
c I S,;

where d are the mathematical constraints (which express that dots mean
derivatives), m are the constraints from the measurement Fq. (5.25), and ¢
are the system constraints {5.24). S¢ and S 4 are the structures associated
with matrices C and A. Since no variable in x can be matched from any
constraint in d, the system (¢ U m, @ U 2 U y) must indeed be over-
constrained with respect to x. It can be noted that this does not constitute
& sufficient condition, because the system paramseters might have values such
that (5.26) - or (5.27) - is not satisfied.

Example 5.25 Observahility of linear systems
Consider the non observable linear time-invariant system

.'f:1 3 {] £ 1
xj\ = 8 0 4 ( iy (5.28)
L‘g/ a b e \J‘?a
zy
yo= 0 8 fif x|, £5.29)
T3

where the parameters a, b, ¢, d, ¢, f can take any real value. Tts structure is given
by the incidence matrix
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BRI
<1 1 1

g 1 i

ey i 1 1 1

dy 1 x

s 1 x

s 1 ®

I 1 1

where the constraints ci, ¢z, ¢z are the system {5.28), the constraints di, da, ds
express the derivative link between the #1, 22, x5 and the &, Ts,85 (remernber
that only derivative causality is allowed) and m is the measurement Eq. {5.28).
This system can be decomposed into a just-constrained part €% = {1, o2, ds, m},
x4 = {&1, &2, &3, 23} from which &1, &2, %3 and =3 can be computed as fane-
vions of y, {for almost all values of the parameters), and an under-constrained
one Oy = {ea, di, do}, X7 = {#,, 2} in which z; and xs should both he com-
puted from constraint ¢z (since they can be matched neither with d: nor with
da}. Tt can be checked that adding ¢ and the associated constraints, the subsystem
({ca, d1. do}, {21, 22}) remains inder-constrained and that this will always be the
case when more signals ') will be considered. This means that the information
available from the sensor is enough to place (z1. z2) in a subspace of dimension one
{since they ave linked by one constraint which is knewn to be linear), but is not
enough to compute the actual value of this vector. Indeed, the observability matrix

(8 g & f
CA j=| af bf ef
CA” aef bef (ac+bd+e®)f

is not full rank, whatever the coefficients a, b, ¢, d, e, f, and it can be checked that
no more than the linear form ae: + bre can be determined from the observation
(4.9, —y™) for any s > 1.

Consider the same linear time-invariant system, in which the second state is now
measured (the system is now observable)

il & H] [ T
Ty = G 0 d rz : {5.30)
ig £ b £ I3
Ty
y o= (0 f 0Oy} a2 |- (5.31)
X3

The structural graph is

e
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[ in [ o0 [ o [ (2o ] |
C1 1 1

Ca 1 1

£3 i 1 1 1

dy 1 X

ds i x

dy 1 X

m 1 1

and the following causal matching shows that all the components of the state can
be computed from y and its derivatives

e [as|dn o e ooy

£y i 1

3 1 D

Ca 1 [4)] 1 1 0]
di || © x

da @ x

ds D x

m )} 1

5.5.4 Graph-based interpretation and formal computation

Since an oriented graph can be associated with each matching, the observ-
ability property can be analysed from a graph-theoretical point of view. Let
z be an observable variable. Then z can be matched with a constrainé the
input of which is either known or a set of observable variables. Repeating
this argument, it follows that for = to be observable, it is necessary that
there exists at least one subgraph {a set of alternated chains) which links
this variable (call it the target) and the set of the known ones u U y, and
that no non-observable variable acts as an input in any constraint of this
subgraph. This means that the subgraph with the observable target = may
contain algebraic loops, but it does not contain any differential loop.

The constraints along the alternated chains show the computations which
are to be performed in order to compute z {they could be automatically
analysed in order to provide the formal expression of 7). Indeed, the crossing
of a simple algebraic constraint means that the matched variable is computed
a8 a function of the non-matched ones. An algebraic loop shows that a system
of simultaneous constraints has to be solved, providing as a solution all the
variables matched within the loop. The crossing of a derivative constraint
means that the non-matched variable has to be derivated in order to obtain
the matched variable {remember that only derivative causality is allowed).
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The number of derivative constraints which are crossed between a given input
and the target shows the maximum order of derivation needed on this input
for computing this target.

Note that this interpretation expresses that z belongs to a just or an
over-constrained causal subsystem. Indeed, if = were to belong to an under-
constrained subsystem, the corresponding subgraph wouid have less con-
straints than variables, i.e. some unknown variables would be input signals to
constraints while being output of no other constraint (i.e. being not matched,
thus non-observable). Figure 5.19 shows the two graphs associated with the
linear systems (5.28), (5.29) and (5.30), (5.31) which are respectively non-
observable and observable. It can be seen that in the first case, either zy or
7y stands as an unknown input of constraint e; while in the second case,
both can be matched thus providing all the states with known predecessors
at some level.

Fig. 5.19. Graph-based interpretation of the observability
property

When different estimation subgraphs with the same target exist, they pro-
vide different computation schemes for the same variable. This feature is of
interest when monitorability and reconfigurability are considered.
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5.6 Monitorability

A system is said te be monitoreble if it can be determined, using only (tra-
jectories of) known variables, whether the system constraints are satisfied
ar not. This section is concerned with the analysis of system monitorabil-
ity, and with the design of fault detection and isolation algorithms based
on Analytical Redundancy Relations {ARRs). Analytical redundancy-based
fault diagnosis tries to identify fanits by comparing the actual behaviour of
the system, which is observed through the time evolution of the known vari-
ables, with the theoretical behaviour described by the system constraints.
This comparison can be performed only if some redundancy exists in the
system. ARRs are the constraints that express this redundancy. In this sec-
tion, the analytical redundancy relation-based approach to fault diagnosis is
first briefly recailed and stated in the frame of structural analysis, leading to
characterise the structurally monitorable part of the system. The problem of
designing robuss and structured residuals is then addressed.

5.6.1 Analytical redundancy-based fault detection and isolation

Analytical redundancy relations are static or dynamical constraints which
link the time evolution of the known variables when the system operates ac-
cording to its normal operation model. Once ARRs are designed, the fault
detection procedure checks at each time whether they are satisfied or not, and
when not, the fault isclation procedure identifies the system component(s)
which is (are) to be suspected. The existence of ARR is thus a prerequi-
site to the design of fault diagnosis procedures. Moreover, in order for the
fault diagnosis procedure to work properly, ARR should have the following
properties:

e Robust, ie. insensitive to unknown input and unknown parameters. This
insures that they are satisfied when no fault is present, so that false alarms
are not issued by the faule diagnosis algorithm.

s Sensitive to fauits: This insures that they are not satisfled when faults are
present, so that there is no missed detection.

e Structured: This insures that in the presence of a given fault, only a subset
of the ARRs are not satisfied, thus allowing to recognise {from the subset
of satisfied and the subset of not satisfied ARR), the fault which oceurred.

Faults. Analysing the fault diagnosis possibilities of a system needs faults
to be precisely defined. In structural analysis, a fault is delfined as o change
in some constraint. Indeed, a system is the interconnection of a number of
components, each of them being described by its behaviour model in normal
operation. Let {COM P, i € X} be the set of the system components. Each of
them is a subsystem {g;, Q{¢:)) which imposes the set of constraints ¢, to the
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systemn variables Q(g;), where Q{#;) N X are unknown (non measured state
variables, unknown input, unknown parameters) while Q{¢;} N X are known
{input, output, known parameters). A fault in component COM P, is defined
as a change in at least one of the constraints ¢ € @; (the notation ¢ is used ~ as
a mnemonic for “fanlt” - instead of ¢ which was a mnemonic for “constraint™}.
Note that this allows to consider different fault modes associated with the
same component {(each subset of @; can in fact be considered as a fault mode
of C'OMPF;}. Note also that since only the structure is of interest, there is no
need to define, nor to model the nature of the change {e.g. using additive or
mudtiplicative fauit models),

Example 5.28 An insulated pipe
Consider an insulated pipe, and suppose one is interested in modelling the mass
and the heat transfers. A simple model of the pipe is given by the two constraints

v gl —glt) =0

w2 ) Bt~ qu(t) Bo(t) = 0,
where ¢, (respectively g,) is the input {respectively the output) massic fow of
the {incompressible) fluid, and 6; (respectively 6,} i3 the input (respectively the
output) fluid temperature. A defect in the insulation would obviously result in v
being violated, while a leak in the pipe would be modeled by ¢ and ¢z being
violated. £

Considering the whole set of components, the overall system is (€, Z), where
C = Uzt
Z = Uer Qo).

Direct redundancy. Consider any constraint ¢ € Cx {remember that Cx
is the subset of constraints such that Q(Cx) < X, and let COMP be the
component to which ¢ belongs. This constraint is an ARR since it links only
known variables, and it can be checked in real time if it is satisfied or not,
by taking the numerical values of the known variables, putting them into
constraint ¢, and testing whether the result is ZERO or not. Note that when
the constraint is not satisfied, it can be concluded that the system is not in
rormal operation, while when the constraint is satisfied it can only be said
that the normal operation hypothesis is not contradicted (or falsified) by the
values of the observations.

In practical situations, varisbles are not very precisely known, measure-
ments are corrupted by noise, and models only approximate the system ac-
tual behaviour, thus the obtained value will never be exactly zero, even in
normal operation. Let r{K) be the obtained value. r,(X) is called the resid-
uel associated with ARR yp, and fault detection boils down to decide whether
it is small enough so that the ZERO hypothesis can be accepted. Fault isola-
tion obviously follows fault detection since only a fault in component COM P
could cause constraint ¢ not to be safisfied.
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I all systems, the control algorithms are direct ARR, since the subset Cx
inchudes the constraints which describe them. Hence, they can be used to
check whether the controller is working properly. Although this might be of
practical interest, such direct redundancy relations are of little interest as far
as structural analysis is concerned, because the result is obvious. Therefore,
the aim of the following is to find ARRs in the subsystem {Cx, 2% which
includes unknown variables.

Deduced redundancy. Consider some constraint ¢ € Cy and again let
COMP be the component to which ¢ belongs. Let X, = Q(p) 1 X be the
subset of unknowns which appear in constraint , and suppose

fl}a; G Xobs. (5-32)

where X3, 18 the subset of the observable variables. Then, any variable
T € A, can be expressed as a function of the known ones (including eventu-
ally their derivatives}, using the normal operation system model (this results
from the existence of one or several alternated chains between the known
variables and the target ). Suppose that there exists at least one alternated
chain with target # which does not cross constraint ¢ {this means that even
when constraint ¢ is removed, r can still be matched and computed as a
function of the known variables, which indicates that constraint  belongs to
an over-constrained subsystem, as it will be seen later}. When this is true,
this alternated chain can be used to compute = as a function of the known
variables, and one can put the obtained expression into ¢, which obviously
produces an ARR. The associated residual r,(K) should be ZERO when the
system operates propetly, which is used, as previously, for fault detection.
However, fault isolation will be slightly different since the residual associated
with ¢ will be non ZERO not only when COMP is not performing well,
but also when the actual values of the X, variables are different from those
computed from the observations via the normal operation model. This may
happen when the fault changes some constraint which belongs to an alter-
nated chain whose target is in A,. The conclusion is that when r,(K) is non
ZERQ, there is an associated set of components to be suspected instead of a
single one?. It can be easily determined frorm the graph-based interpretation.

+

Example 5.27 Single tank

Consider the single tank whose structure graph is shown in Fig. 3.4. Obviously,
there are two redundancy relations. The first one is given by constraint ¢ and Is of
1o interest since it is a direct redundancy relation which only duplicates the control
algorithm. The second one is given by ¢y which should be satisfied when the system
operates normally, and which will be false if one of the constzaints {cy, 2, &1, 4} is
not satisfied {¢s is a mathematical constraint which is not inked with any hardware
or software component and thus it cannot be faulty). O

7 This set is called the structure of the residual in the control community and it is
calied a conflict in the Artificial Intelligence communisy
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5.8.2 Structurally monitorable subsystems

Unfortunately, not every fault can be detected. Indeed, it is easily seen that
when {5.32) does not hold, it is impossible to obtain any ARRs using con-
straint . Thus, any fault which would change constraint ¢ could not be
detected.

Definition 5.12 (Structurally monitorable subsystem)
The structurally monitorable part of the system is the subset of the constraints
such that there exists ARRs which are structurally semsitive to their change.

Then, from above, it can be characterised by the following theorem:

Theorem 5.3 {Monitorability)
Two equivalent necessary conditions for a fault  to be monitorable are:

(i) X, is structurally observable - according to (5.32) - in the system
(C\ e}, 2),

(ii) @ belongs to the structurally observable over-constrained part of the
system (C, Z).

Indeed, let (Cx, A') be a structurally observable over-constrained subsys-
tem, then there exists a subset Sy C Cy of n = || constraints which {from a
structural point of view) can be solved uniquely for the variables X' (notation
S is used as a mnemonic for Solve). These variables can thus be computed
as functions of the known variables K. Putting the obtained values into the
remaining constraint set Ry = Cx\Sy (notation R is used as & mnemonic
for Remaining, or Redundant), one obtains [Cx| ~ | X relations which link
only known variables and which are, therefore, redundancy relations. For a
more convenient notation the function

X = Ie(K) (5.33)

is introduced for the computation of the unknown variables, leading to ex-
pressing the set of constraints Cy under the eguivalent form

Sy X =iy =0
Rz {(}X\SX} o Ip{K) =0, {3.34)

where o means the substitution of X by Iy (K).

[t can be noted that in general, several different complete matchings can
be performed in a given causal over-constrained subsystem, thus providing
different means of computing the unknown variables X from the known ones.
This fact will be used when fault-tolerant observation schemes will be con-
sidered, but it can also provide another interpretation of redundancy, since
obviously the unknown variables .V have to be the same for all matchings.
For example suppose two matchings exist such that X is associated with
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Sy ¢ Cy in the first one, providing X = I'x (). and with Py C Cy in the
second one, providing X = Ay (K}, The redundancy relations

I'v(K)— Ax (K} =0
directly follows from the fact that the two results should obviously be the

SHRIe,

Example 5.28 Sensor redundancy
The simplest illustration of this idea is provided by sensor hardware redundancy.
Suppose that Two Sensors measure the swme unknown variable r. ‘The measurement
equations are given by

Sensar 1 o1 - o —s =1

Sensor 2 02 Yo — X = £y = 0,
where 1 and 73 denote measurement noise with known distribution. The structure
graph has the incidence [HATrix

T known unknown
/7‘ H L He 5 £y E £2 feod
¢1 1 i 1

Lo I 1 H |

£, and g2 are here considered as known variables because their probability distr-
bution is known. This system is over-constrained with Cx = {e1, e2} and X = {x}.
The unknown z can be maiched with cach of the two constraints and, hence, be
calculated by each of the sensor equations. "Phis is rot only true from the structuzal
poine of view because x can also be calcnlated numerically if 3,%} and 52 are both
non-zero, Otherwise at least one of the sensors would be completely useless,

For the matehing

known unknown
T T
LA [y | o T
oy 1 il @
ey i 1 | 1 1

the oriented graph is given by Fig. 5.20, in which the unknown x is computed by

& =iy, e

and ¢a is used as a redundancy refation which can be written as
calvilyr, 1), y2, €2) = 0.

Choosing the second possible matching

L
i known unknown
; ;
| i i
P LN « |
H ;
S i 1 ! 1 i
L 1 —
Loy 1 H O !
: ;
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Fig. 5.20. Oriented structure graph for the sensor redundancy
investigations

provides
= valyz, £2)

and the redundancy relation
e1{yr, £, v2 (Y2, €2)) = 0.

Since two matchings exist, the remark that the (same) value of z can be computed
either from the first or from the second one leads to the redundancy relation, which
takes the form

Yy, g1) — 2 (g2, 62) = 0.0

5.6.3 Design of analytic redundancy relations

Redundancy relations are subgraphs of the structure graph. which are asso-
ciated with complete causal matchings of the unknown variables associated
with the over-constrained subsystem of the reduced hi-partite graph. Redun-
dancy relations are composed of alternated chains, which start with known
variables and which end with non-matched constraints whose output is la-
beiled ZERO. Designing a set of residuals calls for building maximal match-
ings on the given structural graph, under derivative causality, and identifying
the redundancy relations as the non-matched constraints in which all the un-
knowns have been matched. Algorithms which find maximal matchings have
been previously presented (cf. Section 5.3.5), and some hints have been given,
using the tank and the sensor hardware redundancy examples, on the resid-
uals design procedure. Let us now give a complete illustration, first using the
simple single tank system, and then giving a larger practical example with
the two-tank system.

Example 5.29 Ranking the constraints of the single tank
Consider once more the single tank example, and recall the incidence matrix of its
reduced structure graph from Example 5.6:
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HBnrars
cy i i 1
[a 1

3 1 1
4 1

e x| 1

The result of the ranking algorithm is shown in the following table and in Fig. 5.21.

The matching is identical with the second matecking on Example 5.6. Note that a
new column has been introduced to mark consiraints which have the output ZERO.

Since ZERO is not a variable, it may be matched several times.

unknowi Hanking
20 h | h || g || ZERO | Rank
c 111 O 2
(a5 @ 6
€ 1 @ i
cs f O 0
Cg X @ i3

Serted according to she rank, the following constraint set is obtained:

. PN
i’ \ (‘)
;o .
- | = ?Fﬂ?\

—ar fji/ \‘

B

Fig. 5.21. Ranking for the single tank system

; Rank ii Censtraint ] Qutput J

ca qilt)
o ¢4 ki)
i c3 qo:(t)
Cs h
2 C1 ZERO

if the reduced structure graph is redrawn according to the ranking of the con-
straints, Fig. 5.21 is obtained. The figure shows how the internal variables ¢, b, g0
and h can be successively determined. The constraints are ordered according to



5.21.
hat a
RO.

COT~
H h: g0
ng tao

their associated rank. Finally, the contraint c; is used to test wether the variables
are consistent with the model.

As all constraints are ranked, the system is fully observable and monitorable.
By solving the constraints for the matched variables, the following equations are
obtained:

Cz G 8 = a - u(f)
ct h{E} = y{)
eai qolt) = ky/h{E)
;. d .,
e hit) = ah(t),
e G = A{E) + qo(t) — (1)

These equations can be simplified to obtain the redundancy relations:

i .
cr: 0 = é;y(t} + ky/ulty — auff).
Note that all variables on the right-hand side of the two equations are known,

Hence, these equations can be tested for given measurements u and ¥ which are
marked in Fig. 5.21 to iHlustrate this fact. O

Example 5.30 The swo-tank system

As a larger practical example the two-tank systema introduced in Section 2.1 will
be considered. » Is the known control input and qm the measured outflow. The
following equations lead to the structure graph of the system {Fig. 5.22}

Tank 1

Pine

Fank 2

Fig. 5.22. Structure graph of the two-tank system
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¢ gr = 0

R gp =w- flhi}
: 1

€3¢ hy = “:i“{qp - gL~ qz2)
: 1

i by w =

g P

(541 q:':ki\.v‘fbl ﬁhg
: d

(15 h,_), == ;"lzhg

. 1
or s hy = 3 (12 — g2}

Cx - gz = kg\/n;;;

Con o G = Ko gz,

A, ki, k2 and k., are known parameters. In the structure graph the constraints
¢i, €2, ¢ and dy representing the Tank 1 are separated from counstraints ¢, ds, ¢
and e, describing the Tank 2.

Fig. 5.23. Oriented graph of the two-tank system

The following matching is found using the ranking algorlthm where the last col-
nmn shows the rank of the constraints obtained:
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Alar Lap D hy Lk bqis i ha | he g | R

gr =0 cr 1D 1 5
qe =u- ]} oo ) 1 5
0= —gs +gp—quz — Ahs ey i 1 i 1 6
hyo= 2y dy Dl 5
by = he + () o ORIE 1 4
g1z = Ahy + q> 4 Dt | 3
; dr il 2
a5 Dl 1

0

Cyr i @

The equations shown on the left are already solved for the matched variable. The
corresponding oriented graph is shown in Fig. 5.23. Simplifving these equations
results in the following redundancy relation:

0= ul(t) f k() = Ahe + f’igﬁ — Ahy (5.35)
with
. 2
| :lhz {{m(t) .
L _— — | = o ALLA
hilt) ha () ( ™ (5.36)
2

. Hre (t} -

h-g(i) = (ka kz) . {837)

Equations (5.35) ~ (5.37) can be used to monitor the two-tank system. By using
Eq. {5.37), ha(t} and, hence, h; can be determined for given measurement g, (t).
Then Eq. (5.36) yields /. (¢) and hy. Finally, Eq. (5.35) is checked for known wu(?),
g () and for hi{t}, ki and ks just obtained.

Coy “
I} o
> gy f

Fig. 5.24. Graph showing the order in which the unknown
variables can be determined for given g,

After redrawing the structure graph, Fig, 5.24 is obtained. This graph shows
in which order the constraints can be used to determine all internal variables for
given meusurement ¢, Finally, constraint ¢z is used to test the consistency of the
variables with the model

A simulation result is shown in Fig. 525 which shows from top to bottom the
%iwmua n(t), x:{t} and wa{t), the measurement g, (¢} and the right-hand side of
Eq. (5,35}, Note that the states are reconstructed very nicelv. The residual {which
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is in fact the loss of water through the leak) shows the oceurrence of the fauit very
precisely and without any delay. The little spike at time 155 s is due to the reversal
of the flow direction in the connection pipe, which represents a singular point in
the linearised system.

Two tank system exampia: residuum genaration
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Fig. 5.25. Simulation resuits of the two-tank system. From

top ta bottonn: input u; tank levels by, Ay measured Gu;
reconséructed levels hy, ho; right-hand side of Eq. {5.35).

Of course, the parity relation is very sensitive to measurerwent noise due to the
two differentiations. Even a very small noise can disturb the fault detection scheme
heavily as shown in Fig. 5.26. Although the noise is not visible in the measured
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signal g, its differentiation is large and calls for the use of statistical dec
making algorithms in order to make fauit detection possible.

Two fank sysiem example: residuum gensratio
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ts
Fig. 5.26. Simulation result similar to Fig. 5.25 but with a
small noise of the measured signal g,

Alternatively, if a filter is included when determining h, and h, from h; or
respectively, the residuals increase slightly delayed after the faulé has occurr
Due to the phase lag introduced by the filter, the residual given by Eq. (5.35
no longer zero for the faultless case. Using digital filters without phase lag m
precise results are possible, but these filters delav the calculation of the resid
further. O
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Two tank systermn example. resduum generation
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Fig. 5. 27. Smmiamon result similar to Fig. 5.26 but with
filtered measuremens; gas is the filtered system output.

5.6.4 Parity space and observer-based approaches

Fault diagnosis based on redundancy relations is connected with the parity
space approach. Indeed, redundancy relations are the result of the elimination
of the unknown variables from the original system of constraints. In the tank
example this is performed by computing the unknown variables {k, k. do, Gi
as functions of the known ones {#, g}. Note that this elimination is erformed
through a first order derivation of the known signal y as it can be seen from the
presence of constraint ¢4 in the subgraph. This is indeed a characteristic {and
a drawback; of analytic redundancy, since in practice signal derivation is very
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sensitive to measurement noise and thus calls for sophisticated algorithms.
The reason why derivative expressions are found is that derivative causality
is imposed by the fact that the initial state is not known.

In observer based approaches, there is no need for eliminating the unknown
initial state through derivation, at the price of approximating the system out-
put by integration. The following example iHustrates the different mechanisms
of analytic redundaney-hased and observer based-approaches.

Example 5.81 Parity-space and observer-hased fault detection of a first-order sys-
tem

Consider the first-order dynamical system

o t—ar—bu={§
d

oy :ﬁw—%{%m@

ea : yg—or=0

Its structure graph and a possible parity space redundancy relation are Hustrated
Fig. 5.28. The constraints cp and ca are used to determine r and then 7 from the
measurement y. ¢ is used to test the consistency of the obtained results with the
system dynamics for given u.

(e
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T
—_—
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: ) e ©
;/-\ "/ \\ t ., \
L l NV e ﬂ@?f
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N o e
h e . .
.  parity relation

Fig. 5.28. Parity relation of a first-order system

Suppose now that the output y is estimated by a Luenberger observer in order to
test the observed result y.ss with the measurement y. The following five constraints
are added to {e1, o2, e3h:

€y 1 Tops — GXobs — b — key = 0
s : ey“‘”y“‘}'yobgmo
€6 1 Dobs — Elﬁﬂ = {j
dt
<y . Yobys — CLphs — 1]
ez ¢ Hm e, =0,
t—3oc

where T,u, and yess are the observer state and cutput, and constraint cs results
from the cholce of the observer gain k such that the output estimation error teads
t0 ZEro.

The structure graph of the system and the redundancy relations are given by
Fig. 5.29. Note that z.ss belongs to the known variables and that integral causality
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can be used because the initial value of #.4, 18 known, which is symbolised on the
figure by the INIT arrow. Note also that the subgraph which is enclosed in the
dashed line is used in an implicit way. The reason why cs holds is that the cutput
of the two dynamical systems {c1, ca, 23} and {cq, ¢, cs. o7} converge to each other
provided that the observer gain k has been chosen appropriately.

/’k\
{ZER&

Fig. 5.29. Structure graph of a first-order system together
with the Luenberger observer

The comparison of bath approaches shows that the parity-space method is simpler
but necessitates to determine the time derivative of . The observer-based method
does not use differential causality. O

5.6.5 Design of robust and structured residuals

It is worth to aotice that the residual design algorithms can be performed
on any subgraph of the system structure graph. The reason why one should
consider only & subgraph is that this allows to find redundancy relations with
specific properties, namely robustness and structuring,.

Robust residuals. Robust residuals are insensitive to unknown input and
unknown or uncertain parameters. Therefore, they are satisfied when no fault
is present, whatever the value of the unknown input or uncertain parameters.
Note that the robustness problem is automatically solved in structural ana-
bysis, using the decoupling approach presented in Chapter 6, since it exhibits
ARRs which are, by definition, enly dependent on known variables. Unknown
variables which affect the structurally monitorable subsystem are eliminated
so that no residual can depend on them; when unknown variables cannot
be eliminated, the part of the system they affect is not monitorable. When
uncertain parameters are present, it should not be used in ARRs, because
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such ARRs might generate false alarms or missed detections. The solution
is simply to design the fault diagnosis system considering them as unknown
variables (this boils down to use the subset of residuals in which no uncertain
parameter intervenes}. Of course, the number of ARRs will in that case be
smaller.

Structured residuals. As defined above, the structure of a residual is the
set of the constraints which can be suspected when this residual is not ZERG.
Let R be a set of residuals, and let &{r) € 2° be the structure of residual
r € R. This means that r is expected to be non-ZERQ when at least one
of the constraints in ¢{r) is faulty (in fact v will be non-ZERO only for
detectable faults). Similarly, when some constraint ¢ € C is fauity, then all
the residuals whose structure contains ¢ are expected to be non-ZERO. The
pattern of ZERO and non-ZERO residuals associated with a given fault is
called its signature. Faults which have different signatures are isclable from
each other, while faults which share the same signature are non-isolable.
Indeed, let R = Rolt) U Ry {t) be the decompuosition of the set of residuals
provided at some given time ¢ by the decision procedure, where Ry(2) is the
subset of the ZERQO residuals and R;{#) is the subset of non-ZERO ones. The
subset of suspected constraints {the constraints which might be non satisfied)

at time # s given by
Csusp(t) = (e Ry{t] @(,r)

Note that it is possible to define the subset of exonerated constraints (the
constraints which are certainly satisfied) at time ¢ by

Ce;zo(t) = Upg Ralt) @(T)}

but one must be aware that this supposes all faults to be detectable. Indeed,
exoneration is based on the assamption that if a constraint is not satisfied
then it will necessarily show through the residuals whose structure it belongs
to. The diagnosis at time ¢ is

Citiag(t) = Conup (£} \Coroll).

In order to obtain good isolability properties, it may be of interest to design
residuals with given structure. Suppose one wishes to design residuals which
are insensitive to the faults of 4 subset of constraints ¢ and are sensitive to
the faults of the subset of constraints £ \(’. A direct approach to do this is to
consider only the system (C\(', Z} in the design process. However, from the
structural monitorability condition, it is seen that the residuals can be made
sensitive only to the faults in the monitorable subsystem of (C\C', Z), which
may be smaller than that of (C, Z), since the former contains less constraints.

b et s
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Example 5.82 Structured redundancy relations for the two-tank system
Consider the two-tank system and assume that the flow g12 between the two tanks
can be measured in addition to the input » and the outflow g, which leads to the
additional measurement constraint

il 1z = fdizm-

The following matching shows that the system is over-constrained. Therefore, the
two remaining conditions can be used as parity conditions, as marked here:

Fig. 5.30. Oriented graph, in which the arrows indicate the
order of matching

g lap [ B | hs {qua | he | he | g | R
qr. = 0 e D 3
gp = Flhy) o @ 1 3
0= —qr+gp—quz—Ahs | ez | 1 ] 1 | 1 1 4
o= Lhy tly i1 3
hy = ko + (92} cs D) 1 2
0= gz — Ah2 — 2 cq 1 1 1} 4
he = & ha dz ! 2
hy = (82 cs ©i1]1
Giz = dizom my T T 1o
gy = Em Mo
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"This matching results in the oriented graph shown in Fig. 5.30. Following the ori-

entation of the edges, it is easy to see that the first parity relation depends on the

vactables {u, gr. gp, Ru. Ba, qu2, Qi20m, Bz, g2, gm ) only, while the second depends

on {qis. g2, hz, ha, @uam, @m }- S0 these two conditions can be used to selectively

monitor different parts of the systemn (Tank 1 and Tank 2, to be precise). Ounly a

fanlt in the connection flow g2 or its measurement would affect both constraints.
By signification the following two residuals are obtained:

0=wu- f(hi} - izm _‘i}‘?fl

HES qiz,mm 4‘1}’1 - %T:‘
with
he = By — (q}:?!m)z
= 2 T
m 2
h = [
: (kﬂgz)

5.6.6 Fault propagation and alarm filtering

Using the matching procedure, the redundancy relations appear on the struc-
tural graph as subgraphs whose output is a ZERO variable and in which the
whole input is known.

The analytical redundancy-based fault detection procedure consists of in-
serting the actual values of the known variables into those redundancy rela-
tions and checking in real time the truth value of the output node. The fauit
isolation procedure consists of identifying the subset of the fired {non ZERQ)
output nodes.

However, in many existing systems, fault diagnosis procedures have not
heen designed in such a consistent way, and most industrial applications use
supervision systems which create alarms through limit checking procedures
applied to measured variables. The problem is that those alarms are corre-
lated, since a single fault in one component may Cause maiy measured vari-
ables to trespass their respective threshalds. The consequence is that when
some fault occurs, hundreds of alarms may fire almost simultanecusly (this is
called the “Christnas tree” syndrome), or alarms may be fired a long time af-
ter the [ault occurrence, making it difficult for operators ta isolate the origin
of the problem.

Considering the structural graph may allow to analyse the consequences
of certain fanlts, in terms of alarm fring. Indeed, when a fault occurs in a
component, some among the constraints associated with it {according to the
kind of the fault) will no longer be satisfied. The measured variables which
are connected through an alternated chain with those constraints may get
abnormal values and thus may trespass their associated thresholds. So, each
fault can be associated, through the analysis of the structural graph, with a

f AR O A e o
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subset of alarms which could be fired when this fault occurs, thus providing
a means to assign a limited number of possible root causes to situations i
which numercus alarms are fired.

5.7 Controllability

Controllabiiity is & property which only concerns that part of the model which
describes the links between the unknown variables and the input variables,
independently of the fact that some unknown variables might be measured
or not. Thus, it can be analysed from the system bi-partite graph in which
the measurement constraints have been removed. Roughly speaking, control-
lability is concerned with the possibility of finding controls (this explains why
the input variables will be considered as unknowns to be computed) so as to
achieve objectives, which are defined in terms of the values one wishes the
systern variables to be given.

The reachable set of a system (the meaning of reachability is here of course
different from the meaning it has in graph theory} is the set of states such
that there exists a control which drives the system state, from some given
initial value, to one of them. Global controllability is a strong property, which
states that the reachable set is the whole state space. Local controllability
is a weaker property, which states that any point in the open ball around
a reachable point is also reachable {which means that the states which are
reachable from a given state are not restricted to a r-dimensional manifold,
where r is less than n, the dimension of the state space). For linear systems,
local and global properties obvicusly coincide.

Let us first consider static systems (C, Z) like

0= h(z,, u), (5.38)

where C = h, £ = x, Uu. For such systems, global controllability means that
Eq. (5.38) can be solved for the unknown variables u {to be determined) for
any value of the known (wished) variables z,, thus justifying the decompo-
sitton of Z into Z =KUY, where K =2, ¥ = u.

Theorem 5.4 (Controllability of static systems)
A necessary and sufficient condition for system (5.38) to be structurally con-
tratloble is:

(i} K is reachable from the input,
(it} the canonical decomposition of (Cx, X, £x) contains no over-constrained
subsysiem.

Indeed, if K were not reachable from the input, there would be a decom-
position of x, into &) {the reachable part), and =/ (the non reachable part),
such that






