
Summer Course

Numerical Methods for Embedded
Optimization and Optimal Control

— Exercises —

Moritz Diehl, Daniel Axehill and Lars Eriksson

June 2011

Introduction

This collection of exercises is intended to give a quick overview of some important concepts in
numerical optimal control and is a part of the summer course Numerical Methods for Embedded
Optimization and Optimal Control at Linköping University 2011. It is divided into seven parts,
Part A – Part G. The main purpose is to show how optimal control problems can be solved
numerically and illustrate some fundamental ideas that can be employed for that purpose.

Robin Vujanic and Alexander Domahidi at ETH Zürich are acknowledged for help when cre-
ating the exercises when the course was given at ETH Zürich during spring 2011.

A Nonlinear Programming and Single Shooting

The first part has as its aim the formulation and numerical solution of a simple nonlinear pro-
gramming problem followed by the solution of a simple optimal control problem. The solution
algorithm is provided by MATLAB.

1. Log in and start MATLAB and open an editor of your choice. Use help fmincon to learn
what is the syntax of a call of fmincon.

2. Now consider, first just on paper, the following nonlinear programming problem (NLP):

min
x∈R2

x2 subject to

x2

1 + 4x2
2 ≤ 4
x1 ≥ −2
x1 = 1

(a) How many degrees of freedom, how many equality, and how many inequality constraints
does this problem have?

(b) Sketch the feasible set Ω of this problem. What is the optimal solution?

(c) Bring this problem into the NLP standard form

min
x∈Rn

f(x) subject to

{
g(x) = 0
h(x) ≥ 0

by defining the dimension n and the functions f, g, h along with their dimensions ap-
propriately.

3. Now formulate three MATLAB functions f, g, h for the above NLP, choose an initial guess
for x, and solve the problem using fmincon. Check that the output corresponds to what
you expected.

4. Now we want to solve the first optimal control problem in this course. The aim is to bring
a harmonic oscillator to rest with minimal control effort. For this aim we apply Euler
integration to the continuous time model and get the following linear discrete time dynamic
system: [

pk+1

vk+1

]
=

[
pk
vk

]
+ ∆t

([
0 1
−1 0

] [
pk
vk

]
+

[
0
1

]
uk

)
, k = 1, . . . , N − 1 (1)

Choose the fixed values p1 = 10, v1 = 0,∆t = 0.2, N = 51, and denote for simplicity from
now on xk = (pk, vk)

T . Now write a MATLAB routine [xN]=oscisim(U) that computes xN
as a function of the control inputs U = (u1, . . . , uN−1)T . Mathematically, we will denote
this function by foscisim : RN−1 → R2.

1

5. To verify that your routine does what you want, plot the simulated positions p1, . . . , pN
within this routine for the input U = 0.

6. Now we want to solve the optimal control problem

min
U∈RN−1

‖U‖2
2 subject to foscisim(U) = 0

Formulate and solve this problem with fmincon. Plot the solution vector U as well as the
trajectory of the positions in the solution.

7. Now add inequalities to the problem, limiting the inputs uk in amplitude by an upper bound
|uk| ≤ umax, k = 1, . . . , N − 1. This adds 2(N − 1) inequalities to your problem. Which?

8. Formulate the problem with inequalities in fmincon. Experiment with different values of
umax, starting with big ones and making it smaller. If it is very big, the solution will not be
changed at all. At which critical value of umax does the solution start to change? If it is too
small, the problem will become infeasible. At which critical value of umax does this happen?

9. Both of the above problems are convex, i.e., each local minimum is also a global minimum.
Note that the equality constraint of the optimal control problems is just a linear function
at the moment. Now, try to make this constraint nonlinear and thus make the problem
nonconvex. One way is to add a small nonlinearity into the dynamic system (1) by making
the spring nonlinear, i.e., replacing the term −1 in the lower left corner of the system matrix
by −(1 + µp2

k) with a small µ, and solving the problem again. At which value of µ does the
solver fmincon need twice as many iterations as before?

B Runge-Kutta Integrator and Gauss-Newton Algorithm

In this part we compare two methods for numerical integration of ordinary differential equations
(ODE) and program our first own optimization code, a Gauss-Newton algorithm.

1. ODE Simulation: throughout this part, we regard again the controlled harmonic oscillator
from Task A.4 described by

d

dt

[
p(t)
v(t)

]
=

[
0 1
−1 0

] [
p(t)
v(t)

]
+

[
0
1

]
u(t), t ∈ [0, T]. (2)

We abbreviate this ODE as ẋ = f(x, u) with x = (p, v)T . Let us choose again the fixed
initial value x0 = (10, 0)T and T = 10.

In the next questions we are interested in comparing the simulation results for u(t) = 0
that are obtained by two different integration schemes, namely the Euler integrator from
Task A.4, and a Runge-Kutta integrator. We regard in particular the value p(10), and as
the ODE is explicitly solvable, we know it exactly, which is useful for comparisons. What is
the analytical expression for p(10)?

2. First run again your explicit Euler method from Task A.4, e.g., again with N = 50 integrator
steps, i.e. with a stepsize of ∆t = 10/50 = 0.2. The central line in the Euler code reads

xk+1 = xk + ∆t · f(xk, uk) (3)

Plot your trajectories {(tk, xk)}N+1
1 for uk = 0.

2

3. Now exchange in your Euler simulation code the line that generates the step (3) by the
following five lines:

k1 = f(xk, uk) (4)

k2 = f(xk +
1

2
∆t · k1, uk) (5)

k3 = f(xk +
1

2
∆t · k2, uk) (6)

k4 = f(xk + ∆t · k3, uk) (7)

xk+1 = xk + ∆t
1

6
(k1 + 2k2 + 2k3 + k4) (8)

This is the classical Runge Kutta method of order four (RK4). Note that each integrator
step is four times as expensive as an Euler step. What is the advantage of this extra effort?
To get an idea, plot your trajectories {(tk, xk)}N+1

1 for the same number N of integrator
steps.

4. To make the comparison of Euler and RK4 quantitative, regard the different approximations
of p(10) that you obtain for different stepsizes, e.g., ∆t = 10−k with k = 0, . . . , 5. We call
these approximations p̃(10; ∆t). Compute the errors |p(10)−p̃(10; ∆t)| and plot them doubly
logarithmic, i.e., plot log10(|p(10)− p̃(10; ∆t)|) on the y-axis and log10 ∆t on the x-axis, for
each of the integrators. You should see a line for each integrator. Can you explain the
different slopes?

5. We consider again the optimal control problem from Task A.4. We had previously used the
Euler integrator, but here we use our new RK4 integrator because it is more accurate. We
do again N = 50 integrator steps to obtain the terminal state as a function of the controls
u0, . . . , uN−1, and denote the function here by gsim : RN → R2. The nonlinear program we
want to solve is again

min
U∈RN

‖U‖2
2 subject to gsim(U) = 0 (9)

In this task, we do not solve this problem with fmincon, but we write our first Newton-type
optimization method. To prepare for the next step, make sure you have the routine gsim as
a function of the 50 controls with the two terminal states as outputs.

6. Motivating background information (you might skip to the next question): The necessary
optimality conditions (KKT conditions) for the above problem are

2U∗ +
∂gsim

∂U
(U∗)Tλ∗ = 0 (10)

gsim(U∗) = 0. (11)

Let us introduce a shorthand for the Jacobian matrix

Jsim(U) :=
∂gsim

∂U
(U)

By linearization of the constraint at some given iterate (Uk, λk) and neglecting its second
order derivatives, we get the following (Gauss-Newton) approximation of the KKT condi-
tions: [

2Uk
gsim(Uk)

]
+

[
2I Jsim(UK)T

Jsim(Uk) 0

] [
Uk+1 − Uk
λk+1

]
= 0

This system can easily be solved by a linear solve in order to obtain a new iterate Uk+1. But
in order to do this, we first need to compute the Jacobian Jsim(U).

3

7. Implement a routine that uses finite differences, i.e., calls the function gsim (N + 1) times,
once at the nominal value and then with each component slightly perturbed by, e.g., δ = 10−4

in the direction of each unit vector ek, so that we get the approximations

∂gsim

∂uk
(U) ≈ gsim(U + δek)− gsim(U)

δ
.

We denote the resulting function that gives the full Jacobian matrix of gsim by Jsim : RN →
R2×N .

8. Now, we implement the Gauss-Newton scheme from above, but as we are not interested in
the multipliers we just implement it as follows:

Uk+1 = Uk −
[
I 0

] [2I Jsim(Uk)
T

Jsim(Uk) 0

]−1 [
2Uk

gsim(Uk)

]
Choose an initial guess for the controls, e.g., U = 0, and start your iteration and stop when
‖Uk+1 − Uk‖ is very small. How many iterations do you need to converge? Do you have an
idea why?

C Gauss-Newton vs. BFGS, and Reverse Differentiation

In this part we use again our Runge-Kutta simulator within a sequential approach. We make our
model a bit nonlinear. Second, we compare the Gauss-Newton algorithm with a BFGS algorithm.
Third we write a new routine for the Jacobian calculation based on the reverse mode of algorithmic
differentiation.

1. Throughout this part, we make our controlled oscillator slightly nonlinear by making it a
pendulum and setting

d

dt

[
p(t)
v(t)

]
=

[
v(t)

−C sin(p(t)/C)

]
+

[
0
1

]
u(t), t ∈ [0, T]. (12)

with C := 180/π/4. We again abbreviate the ODE as ẋ = f(x, u) with x = (p, v)T , and
choose again the fixed initial value x0 = (10, 0)T and T = 10. Note that p now measures the
deviation from the equilibrium state in multiples of 4 degrees (i.e., we start with 40 degrees).

We consider again the optimal control problem from the previous parts

min
U∈RN

‖U‖2
2 subject to gsim(U) = 0 (13)

and we use again RK4 and do again N = 50 integrator steps to obtain the terminal state
xN as a function of the controls u0, . . . , uN−1.

Run again your Gauss-Newton scheme from the previous part, i.e., use in each iteration
finite differences to compute the Jacobian matrix

Jsim(U) :=
∂gsim

∂U
(U)

and iterate

Uk+1 = Uk −
[
I 0

] [2I Jsim(Uk)
T

Jsim(Uk) 0

]−1 [
2Uk

gsim(Uk)

]
How many iterations do you need now, with the nonlinear oscillator? Plot the vector Uk
and the resulting trajectory of p in each Gauss-Newton iteration so that you can observe
the Gauss-Newton algorithm at work.

4

2. Modify your Gauss-Newton scheme so that you also obtain the multiplier vectors, i.e., iterate
with Bk = 2I as follows:[

Uk+1

λk+1

]
=

[
Uk
0

]
−
[

Bk Jsim(Uk)
T

Jsim(Uk) 0

]−1 [
2Uk

gsim(Uk)

]
Choose as your stopping criterion now that the norm of the residual

KKTRESk :=

∥∥∥∥[∇UL(Uk, λk)
gsim(Uk)

]∥∥∥∥ =

∥∥∥∥[2Uk + Jsim(Uk)
Tλk

gsim(Uk)

]∥∥∥∥
shall be smaller than a given tolerance, TOL = 10−4. Store the values KKTRESk and plot
their logarithms against the iteration number k. What do you see?

3. BFGS method: now use a different Hessian approximation, namely the BFGS update, i.e.,
start with a unit Hessian, B0 = I and then update the Hessian according to

Bk+1 := Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
.

with sk := Uk+1 − Uk and yk := ∇UL(Uk+1, λk+1) − ∇UL(Uk, λk+1). Devise your BFGS
algorithm so that you need to evaluate the expensive Jacobian Jsim(Uk) only once per BFGS
iteration. Tipp: remember the old Jacobian Jsim(Uk), then evaluate the new one Jsim(Uk+1),
and only then compute Bk+1.

4. Observe the BFGS iterations and consider the logarithmic plot of KKTRESk. How many
iterations do you need now? Can you explain the form of the plot? What happens if you
make your initial Hessian guess B0 equal to the Gauss-Newton Hessian, i.e., B0 = 2I?

5. For a start, save your old routine for Jsim(U) in a separate folder to be able to compare the
results of your new routine with it later.

6. Then, note that the RK4 integrator step can be summarized in a function Φ so that the last
state xN , i.e., the output of the function gsim(U), is obtained by the recursion

xk+1 = Φ(xk, uk), k = 0, . . . , N − 1.

Along the simulated trajectory {(xk, uk)}N−1
k=0 , this system can be linearized as

δxk+1 = Akδxk +Bkδuk, k = 0, . . . , N − 1.

where the matrices

Ak :=
∂Φ

∂x
(xk, uk) and Bk :=

∂Φ

∂u
(xk, uk).

can be computed by finite differences. Note that we use the symbol Bk here for coherence
with the notation of linear system theory, but that this symbol Bk here has nothing to do
with the Hessian matrix Bk used in the other questions.

More specifically, modify your integrator such that

• Your RK4 step is encapsulated in a single function [xnew]=RK4step(x,u).

• You also write a function [xnew,A,B]=RK4stepJac(x,u) using finite differences with
a step size of δ = 10−4.

5

• Your integrator stores and outputs both the trajectory of states {xk}N−1
k=0 and the tra-

jectory of matrices {(Ak, Bk)}N−1
k=0 . Use three dimensional tensors like Atraj(i,j,k).

The interface of the whole routine could be [x,Atraj,Btraj]=forwardsweep(U).

7. Now, using the matrices Ak, Bk, we want to compute Jsim(U), i.e., write a routine with the
interface [Jsim]=backwardsweep(Atraj,Btraj). For this aim we observe that

∂gsim

∂uk
(U) = (AN−1AN−2 · · ·Ak+1)︸ ︷︷ ︸

=:Gk+1

Bk

In order to compute all derivatives ∂gsim
∂uk

(U) in an efficient way, we compute the matrices

Gk+1 = (AN−1AN−2 · · ·Ak+1) in reverse order, i.e., we start with k = N − 1 and then go
down to k = 0. We start by GN := I and then compute

Gk := Gk+1Ak, k = N − 1, . . . , 0

8. Combining the forward and the backward sweep from the previous two questions, and write
a new function for Jsim(U). It is efficient to combine it with the computation of gsim(U), i.e.,
to use an interface like [gsim,Jsim]=gsimJac(U). Compare the result with the numerical
Jacobian calculation from before by taking norm(Jsimold-Jsimnew).

9. How do the computation times of the old and the new Jacobian routine scale with N? This
question can be answered without any numerical experiments, just by thinking.

10. Now run your Gauss-Newton algorithm again and verify that it gives the same solution and
same number of iterations as before.

D Simultaneous Optimal Control with Gauss-Newton

In this part we use the simultaneous approach with SQP and a Gauss-Newton Hessian to solve
the optimal control problem.

1. Throughout this part, we consider again the discrete time system

xk+1 = Φ(xk, uk)

that is generated by one RK4 step applied to the controlled nonlinear pendulum. Its state
is x = (p, v)T and the ODE ẋ = f(x, u) is with C := 180/π/10 given as

f(x, u) =

[
v(t)

−C sin(p(t)/C)

]
+

[
0
1

]
u(t). (14)

We use again a time step ∆t = 0.2 and recall that one RK4 step is given by

k1 = f(xk, uk) (15)

k2 = f(xk +
1

2
∆t · k1, uk) (16)

k3 = f(xk +
1

2
∆t · k2, uk) (17)

k4 = f(xk + ∆t · k3, uk) (18)

xk+1 = xk + ∆t
1

6
(k1 + 2k2 + 2k3 + k4) (19)

Write the function Φ(xk, uk) as a MATLAB code encapsulated in a single function
[xnew]=RK4step(x,u).

6

2. Now we choose again the initial value x̄0 = (10, 0)T and N = 50 time steps. We also define
bounds on the sizes of p, v, and u, namely pmax = 10, vmax = 10, i.e., xmax = (pmax, vmax)T ,
and umax = 3. The optimization problem we want to solve is given by

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

‖uk‖2
2 (20a)

subject to x̄0 − x0 = 0, (20b)

Φ(xk, uk)− xk+1 = 0, for k = 0, . . . , N − 1, (20c)

xN = 0, (20d)

−xmax ≤ xk ≤ xmax, for k = 0, . . . , N − 1, (20e)

−umax ≤ uk ≤ umax, for k = 0, . . . , N − 1. (20f)

Summarizing the variables of this problem in a vector w = (x0, u0, . . . , uN−1, xN) ∈ Rn of
dimension n = 152, formulate the nonlinear function G(w), Hessian matrix H, and bounds
wmax such that the above problem is an NLP of the following form:

minimize
w ∈ R152

wTHw (21a)

subject to G(w) = 0, (21b)

−wmax ≤ w ≤ wmax. (21c)

Define what Hx and Hu need to be in the Hessian

H =

Hx

Hu

. . .

Hx

 .
For G, use the same ordering as in the OCP above:

G(w) =

 ...

wmax =

Construct the matrix H and vector wmax in MATLAB, and write a MATLAB function
[G]=Gfunc(w).

3. Check if your function G(w) does what you want by writing a forward simulation function
[w]=simulate(x0,U) that simulates, for a given initial value x0 and control profile U =
(u0, . . . , uN−1), the whole trajectory x1, . . . , xN and constructs from this the full vector w =
(x0, u0, x1, . . . , xN). If you generate for any x0 and U a vector w and then you call your
function G(w) with this input, nearly all your residuals should be zero. Which components
will not be zero?

As a test, simulate, e.g., with x0 = (5, 0) and uk = 1, k = 0, . . . , N − 1 in order to generate
w, and then call G(w), to test that your function G is correct.

7

4. The SQP with Gauss-Newton Hessian (also called constrained Gauss-Newton method) solves
a linearized version of this problem in each iteration. More specific, if the current iterate is
w̄, the next iterate is the solution of the following QP:

minimize
w ∈ R152

wTHw (22a)

subject to G(w̄) + JG(w̄)(w − w̄) = 0, (22b)

−wmax ≤ w ≤ wmax. (22c)

Important for implementing the Gauss-Newton method is the computation of the Jacobian
JG(w) = ∂G

∂w
(w), which is block sparse with as blocks either (negative) unit matrices or the

partial derivatives Ak = ∂Φ
∂x

(xk, uk) and Bk = ∂Φ
∂u

(xk, uk). Fill in the corresponding blocks in
the following matrix

JG(w) =

5. In this part we compute the Jacobian JG(w) just by finite differences, perturbing all 152

directions one after the other. This needs in total 153 calls of G. Give your routine, e.g.,
the name [G,J]=GfuncJacSlow(w). Compute JG for a given w (e.g., the one from above)
and look at the structure this matrix, e.g., using the command spy(J).

6. Now learn how to use the MATLAB QP solver quadprog by calling help quadprog.

7. Write a function [wplus]=GNStep(w) that performs one SQP-Gauss-Newton step by first
calling [G,J]=GfuncJac(w) and then solving the resulting QP (22) using quadprog. Note
that the QP is a very sparse QP but that this sparsity is not exploited by quadprog. This
is a limitation of quadprog rather than the method in itself.

8. Write a loop around your function GNStep, initialize the GN procedure at at w = 0, and
stop the iterations when ‖wk+1 − wk‖ gets smaller than 10−4. Plot the iterates as well as
the vector G during the iterations. How many iterations do you need?

E Pontryagin and the Indirect Approach

In this part we use the indirect approach to solve the continuous time optimal control problem. We
first employ Pontryagin’s Maximum Principle to derive the Euler-Lagrange differential equation
in states and adjoints, using only pen and paper. Second, we numerically solve the resulting
boundary value problem (BVP) using single shooting and a Newton method. The task is to find
only one vector, λ0. Once it is found, we can generate the complete optimal solution just by a
forward ODE simulation.

8

1. In this part, we regard again the continuous time optimal control problem

minimize
x(·), u(·)

∫ T

0

u(t)2 dt (23a)

subject to x(0) = x̄0, (23b)

ẋ(t) = f(x(t), u(t)), for t ∈ [0, T] (23c)

x(T) = 0, (23d)

−umax ≤ u(t) ≤ umax, for t ∈ [0, T] (23e)

The state is x = (x1, x2)T and the ODE ẋ = f(x, u) is with C := 180/π given as

f(x, u) =

[
x2(t)

−C sin(x1(t)/C) + u(t)

]
. (24)

We choose again the initial value x̄0 = (10, 0)T and T = 10. We will first leave away the
control bound (23e), but at the end we will add it again.

We remember that the Hamiltonian function for a general OCP with integral cost L(x, u) is
defined to be H(x, λ, u) = L(x, u) + λTf(x, u). In our case, we have L(x, u) = u2.

Write down explicitly the the Hamiltonian function of the above optimal control problem as
a function of the five variables (x1, x2, λ1, λ2, u).

2. Next, let us recall that the indirect approach eliminates the controls to obtain an ex-
plicit function u∗(x, λ) that minimizes the Hamiltonian for given (x, λ), i.e., u∗(x, λ) =
arg minuH(x, λ, u). This optimal u∗ can be computed by setting the gradient of the Hamilto-
nian w.r.t. u to zero, i.e. it must hold ∂H

∂u
(x, λ, u∗) = 0. First derive ∂H

∂u
(x, λ, u). Thereafter,

invert this relation so that you obtain the explicit expression for the controls u∗(x, λ).

3. We will also need the derivatives w.r.t. x. Hence, also calculate ∂H
∂x1

(x, λ, u) and ∂H
∂x2

(x, λ, u).

4. Now we recall that the indirect approach formulates the Euler-Lagrange differential equations
for the states and adjoints together. They are given by ẋ = f(x, u∗(x, λ)) and by λ̇ =
−∇xH(x, λ, u∗(x, λ)). For notational convenience, we define the vector y = (x, λ) so that
the Euler-Lagrange equation can be briefly written as the ODE ẏ = f̃(y).

Collect all data from above to explicitly define the ODE right hand side f̃(y) as a function
of the four components of the vector y = (x1, x2, λ1, λ2).

5. The boundary value problem (BVP) that we now have to solve is given by

x(0) = x̄0, (25)

x(T) = 0, (26)

ẏ(t) = f̃(y(t)), t ∈ [0, T]. (27)

We will solve it by single shooting and a Newton procedure. The first step is to write an
ODE simulator that for a given initial value y0 = (x0, λ0) simulates the ODE on the whole
time horizon, i.e., that solves the initial value problem

y(0) = y0, (28)

ẏ(t) = f̃(y(t)), t ∈ [0, T]. (29)

9

Let us call the resulting trajectory y(t; y0), t ∈ [0, T], and denote its terminal value by
y(T ; y0). We can numerically generate this terminal value adapting our RK4 integrator with
step size ∆t = 0.2 and N = 50 time steps. Write a simulation routine that computes for
given y0 the value yN = y(T ; y0). Recall that one RK4 step is given by

k1 = f̃(yk) (30)

k2 = f̃(yk +
1

2
∆t · k1) (31)

k3 = f̃(yk +
1

2
∆t · k2) (32)

k4 = f̃(yk + ∆t · k3) (33)

yk+1 = yk + ∆t
1

6
(k1 + 2k2 + 2k3 + k4) (34)

6. Regard the initial value y0 = (x0, λ0). As the initial value for the states, x0, is fixed to x̄0, we
only need to find the right initial value for the adjoints, λ0, i.e. we will fix x0 = x̄0 and only
keep λ0 ∈ R2 as an unknown input to our simulator. Also, we have only to meet a terminal
condition on x(T), namely x(T) = 0, while λ(T) is free. Thus, we are only interested in
the map from λ0 to x(T), which we denote by F (λ0). Note that F : R2 → R2. Using your
simulator, write a MATLAB function [x_end]=F(lambda_start).

7. Add to your function functionality for plotting the trajectories of x1, x2, λ1, λ2, e.g., by
extending the output to [x_end,ytraj]=F(lambda_start).

For λ0 = 0, call F (λ0) and plot the states and adjoints of your system. In this scenario,
what is the numerical value of the final state x(T) = F (0)?

8. The solution of the BVP is found if we have found λ∗0 such that F (λ∗0) = 0. This system can

be solved by Newton’s method, that iterates, starting with some guess λ
[0]
0 (e.g. zero).

λ
[k+1]
0 = λ

[k]
0 −

(
∂F

∂λ0

(λ
[k]
0)

)−1

F (λ
[k]
0)

First write a routine that computes the Jacobian JF (λ0) = ∂F
∂λ0

(λ0) by finite differences using

a perturbation δ = 10−4. Then implement a (full-step) Newton method that stops when

‖F (λ
[k]
0)‖ ≤ TOL with TOL = 10−3.

9. For your obtained solution, plot the resulting state trajectories and verify by inspection that
x(T) = 0.

10. Using your function u∗(x, λ) from Task E.2, also plot the corresponding control trajectories
u(t).

11. You can now add the control bounds (23e) with umax = 3. The only part in your whole
algorithm that you need to change is the expression for u∗(x, λ). The new constrained
function

u∗con(x, λ) = arg min
u
H(x, λ, u) s.t. − umax ≤ u ≤ umax,

is simply given by the “clipped” or “saturated” version of your old unconstrained function
u∗unc(x, λ), namely by

u∗con(x, λ) = max {−umax,min{umax, u
∗
unc(x, λ)}}

10

Modify your differential equation f̃ by using this new expression for u∗ and run your al-
gorithm again. We remark that strictly speaking, the ODE right hand side is no longer
differentiable so that the use of a RK4 is questionable as well as the computation of the
Jacobian of F , but we cross our fingers and are happy that it works. For initialization of
the Newton procedure, choose the multiplier λ∗0 from the unconstrained solution.

In the solution, plot again the resulting trajectories for states, adjoints, and for u(t), using
of course your new function. Compare with the solution you obtained previously with the
Gauss-Newton approach in Part D.

F Real-Time Iterations and Model Predictive Control

This part builds exactly on the simultaneous Gauss-Newton algorithm developed in Part D. We
modify this algorithm so that it allows us to perform real-time iterations for different values of
x̄0. We finally use this algorithm to perform closed-loop NMPC simulations for stabilization of
the nonlinear pendulum.

1. We use the same setup as in Task D.2 with C = 180/π/10 and recall that the parametric
optimization problem we want to solve is given by the equation in (20). Note, however,
that the dependence on the initial state x̄0 will be more explicitly considered in this task.
Summarizing the variables of this problem in a vector w = (x0, u0, . . . , uN−1, xN) ∈ Rn of
dimension n = 152, we note that the problem can be summarized as a parametric NLP of
the form:

pNLP(x̄0) : minimize
w ∈ R152

wTHw (35a)

subject to

G(x̄0, w) = 0, (35b)

−wmax ≤ w ≤ wmax. (35c)

Modify your function G such that it accepts as argument also the parameter x̄0.

2. The Gauss-Newton real-time iteration solves a linearized version of this problem in each
iteration, for varying values of x̄0. More specific, if the last iterate was w̄, and we want to
solve a problem with the parameter x̄′0, the next iterate w′ is determined as the solution of
the following QP:

pQP(x̄′0, w̄) : minimize
w ∈ R152

wTHw (36a)

subject to

G(x̄′0, w̄) + JG(w̄)(w − w̄) = 0, (36b)

−wmax ≤ w ≤ wmax. (36c)

Modify your previous function GNStep so that it accepts the parameter x̄0 as a second input,
i.e., write a function [wplus]=GNRTIStep(xprime,w) that performs one SQP-Gauss-Newton
real-time iteration by solving pQP(x̄′0, w).

3. In order to visualize the generalized tangential predictor, fix the variable vector w at zero
and call your function GNRTIStep with different values for x̄0. Use linear interpolation of
100 points between zero and the value (10, 0)T , i.e., set x̄0 = λ(10, 0)T for λ ∈ [0, 1]. Plot
the first control u0 as a function of λ and keep your plot.

11

4. In order to compute the exact solution manifold with relatively high accuracy, perform now
the same procedure for the same 100 increasing values of λ, but this time perform in each
iteration the Gauss-Newton step, i.e., set w to the output of the last real-time iteration.
Plot the obtained values for u0 and compare with the tangential predictor by plotting them
in the same plot.

5. In order to see how the real-time iterations work in a more realistic setting, let the values
of λ jump faster from 0 to 1, e.g., by doing only 10 steps, and plot the result again into the
same plot.

6. Modify the previous algorithm as follows: after each change of λ by 0.1 keep it for 9 iterations
constant, before you do the next jump. This will result in about 100 consecutive real-time
iterations. Interpret what you see.

7. Now we do the first closed-loop simulation: set the value of x̄′0 to (10, 0)T and initialize
w at zero, and perform the first real-time iteration by solving pQP(x̄′0, w). This iteration
yields the new solution guess w′ and corresponding control u′0. Use this control at the
“real plant”, i.e., generate the next value of x̄0, say x̄′′0, by calling the one step simulation
function, x̄′′0 := Φ(x̄′0, u

′
0). Close the loop by solving now pQP(x̄′′0, w

′), etc., and perform 100
iterations. For better observation, plot after each real-time iteration the control and state
variables on the whole prediction horizon. (It is interesting to note that the state trajectory
is not necessarily feasible).

Also observe what happens with the states x̄0 during the scenario, and plot them in another
plot the sequence against the time index. Do they converge, and if yes, to what value?

G Optimal Control using ACADO

In this part, we will consider two problems: energy optimal control of a cart and time optimal
control of a crane.

Some prerequisites before we start is to make sure that the package is ACADO package is
setup and that you have tested the installation. Some instructions are given below.

• Follow the instructions on the course page to download your copy of acadoTemplate.zip.

• Extract the archive.

• Edit the Makefile so that LOCAL PATH PREFIX points to the place where ACADO is installed
on your system.

• Test the installation by, at the prompt, executing make rocket and then ./rocket to make
sure that the installation and Makefile are correctly configured.

• In addition, it might help to briefly browse through the ACADO online tutorials at
www.acadotoolkit.org to look up the notation. The rocket example is included in the
ACADO toolkit as a standard example.

G.1 Energy Optimal Control of a Cart using ACADO

In this part we will consider the Bryson-Denham problem (see, e.g., Bryson and Ho (1975), Chapter
11.3). It is a minimum energy problem of a friction free cart with unit mass. A sketch of the
problem is shown in Figure 1. The problem is stated as follows: At t = 0 the cart is at x(0) = 0

12

with v(0) = 1 and travels towards a wall (positioned at s = l). At t = 1 the cart should be back at
x(1) = 0 with velocity v(1) = −1 without hitting the wall, i.e., s ≤ l, and the goal is minimize the

control energy (i.e., 1
2

∫ 1

0
(u(t))2dt). Since the cart is friction free and has unit mass the differential

equation for the position is a double integrator ẍ(t) = u(t).

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Initial Cond.: x(0) = 0v(0) = 1

Terminal Cond.: v(1) = −1 x(1) = 0

m = 1

u(t) = F (t)

x(t)
l

Figure 1: Sketch of the problem, showing the cart with initial conditions, final conditions, and
constraint.

1. Now we’ll start looking at the optimal control problem. What is the mathematical definition
of the objective function?

2. Write the dynamic equations on standard ODE form ẋ = f(x, u).

3. What are the constraints for the problem?

4. Summarize once again the objective and the constraints and write them down in the standard
formulation of optimal control problems. What type of problem is it: Mayer, Lagrange, or
Bolza?

5. In order to discretize the control input, we choose a piecewise constant control discretization
with 40 pieces. How many degrees of freedom does the above optimal control problem have?
How many constraints do you have?

6. Next implement and solve the optimal control problem using ACADO with l = 1. It might
help to briefly browse through the ACADO online tutorials at www.acadotoolkit.org to
look up the notation. A starting point is available in the file BrysonDenham.cpp (included
in acadoTemplate.zip).

When the problem is implemented you can run it by executing make BrysonDenham and
./BrysonDenham at the command prompt.

7. Depending on l the solutions will show three different types of characteristics, for l ≥ a the
solution is the same as the unconstrained one. Play with l and see how the solution changes
character. For what values of l does the solution switch character? (You can for example
look at the solution for l = 1 and get an estimate of what a is. Then there is another value
where the character switches again.)

13

G.2 Time Optimal Control of a Crane using ACADO

In this part, we will consider a crane model:

ẋ(t) = v(t) (37)

v̇(t) = ax(t) (38)

φ̈(t) = −ax(t)
L

cos(φ(t))− g

L
sin(φ(t))− b

mL2
φ̇(t) . (39)

Use the parameters m = 1 kg, L = 1 m, b = 0.2 J s as well as g = 9.81 m
s2

.
Our aim is to move the crane from one to another point as fast as possible. However, there

are restrictions: first the control input ax(t) should during the maneuver be between −5 m
s2

and
5 m

s2
. Moreover, the crane should be started at φ(0) = 0 and x(0) = 0 m being at rest. The target

position is x(T) = 10 m and φ(T) = 0 stopping again at rest. Here, T is the end time.

1. As specified we would like to move the crane as fast as possible between the specified points.
What is the mathematical definition of the objective function?

2. How can the restrictions from the introduction be formulated in form of constraints?

3. Summarize once again the objective and the constraints and write them down in the standard
formulation of optimal control problems.

4. In order to discretize the control input, we choose a piecewise constant control discretization
with 40 pieces. How many degrees of freedom does the above optimal control problem have?
How many constraints do you have?

5. Solve the above problem optimal control problem in ACADO. You can use the code template
below to learn the syntax (also included in timeOptimalControl.cpp in acadoTemplate.zip).

6. What is the result for the minimum time? Can you interpret the result for the optimal
control input?

7. By default ACADO uses an SQP algorithm with BFGS updates. Use the ACADO command
acadoGetTime() to measure how long time the optimization takes? In the next step we
would like to use an exact Hessian. For this aim we set the option

algorithm.set(HESSIAN_APPROXIMATION, EXACT_HESSIAN);

How does the behavior of the algorithm change and how long does it take?

8. Look up the option settings on the ACADO webpage and try how fast you can make the
algorithm by adjusting, e.g., the KKT tolerance, integrator tolerances or by providing a
better initial guess for the optimal solution.

14

#include <acado opt ima l con t ro l . hpp>
#include <gnuplot / acado2gnuplot . hpp>

int main (){

USING NAMESPACE ACADO;

// VARIABLES:
// −−−−−−−−−−−−−−−−−−−−−−−−
D i f f e r e n t i a l S t a t e x ; // Pos i t ion o f the t r o l l e y
. . . .

Parameter T; // the end time
Control ax ; // t r o l l e y a c c e l a ra t i on

// DIFFERENTIAL EQUATION:
// −−−−−−−−−−−−−−−−−−−−−−−−
D i f f e r e n t i a l E q u a t i o n f (t s t a r t , T) ;

f << . . . // The model equa t ions

// DEFINE AN OPTIMAL CONTROL PROBLEM:
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

const int numberOfIntervals = 40 ;

OCP ocp ;
ocp . minimizeMayerTerm (T) ;
ocp . subjectTo (f , numberOfIntervals) ;

ocp . subjectTo (AT START, x == 0.0) ;
ocp . subjectTo (AT END , x == 10 .0) ;

ocp . subjectTo (0 .0 <= T <= 10.0) ;

. . . // implement the other con s t r a i n t s .

// DEFINE A PLOT WINDOW:
// −−−−−−−−−−−−−−−−−−−−−
GnuplotWindow window ;

window . addSubplot (x , ”POSITION OF THE TROLLEY: x”) ;
window . addSubplot (v , ”VELOCITY OF THE TROLLEY: v”) ;
window . addSubplot (phi , ”EXCITATION ANGLE : phi ”) ;
window . addSubplot (dphi , ”ANGLUAR VELOCITY : dphi ”) ;
window . addSubplot (ax , ”THE CONTROL INPUT : aw”) ;

// DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
// −−−
Optimizat ionAlgorithm algor i thm (ocp) ;
a lgor i thm << window ;
a lgor i thm . s o l v e () ;

return 0 ;
}

15

	Nonlinear Programming and Single Shooting
	Runge-Kutta Integrator and Gauss-Newton Algorithm
	Gauss-Newton vs. BFGS, and Reverse Differentiation
	Simultaneous Optimal Control with Gauss-Newton
	Pontryagin and the Indirect Approach
	Real-Time Iterations and Model Predictive Control
	Optimal Control using ACADO
	Energy Optimal Control of a Cart using ACADO
	Time Optimal Control of a Crane using ACADO

