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Nonlinear Controllability and Observability 
ROBERT HERMANN AND ARTHUR J. KRENER, MEMBER, IEEE 

Abstraet--'Zbe propertie of ~ n ~ ~ f i t y ,  o ~ ~ a b i l i t y ,  and the state space M is  still too large, then one would llke to 

been very useful in analyzing such systems. This paper deals with anale 
Of minimal r r a l i o n  for linear systems are and apply a systematic technique to reduce M and still pre- 
gous questions for nonlinear systems. serve the input-output structure of the  model. 

Using the ideas of controllability and observability, in 
the  early 1960's Kalman and others carried out  this pro- 
gram for linear systems. The similar questions for nonlin- 

REQUENTLY, control systems of the following form ear systems  were not effectively treated until the early 
are used to model the behavior of physical,  biological,  1970's.  Based on the work of Chow [5],  Hermann [9], 

or social  systems,  Haynes-Hermes [8], and Brockett [9] and working inde- 
pendently. Lobry [21],  [22], Sussman-Jurdjevic [25], and 

I. INTRODUCTIOK 

F 
i =f(x, u )  

2: (1) Krener [ 191, [20]  developed the nonlinear analog of linear 
Y =dx)  controllability in terms of the Lie algebra 5 of vector 

where € Q ,  a subset of R I ,  x E M ,  a connected fields on M generated by the vector fields f(-,u) corre- 
manifold of dimension m, y E R" and f and g are C" sponding to constant controls u E Q. 
functions. I t  was  shown that if the dimension of 9 is constant or if 

The control variable 24 represents the externally applied the system Z is analytic, then there exists a unique maxi- 
controls or exogenous inputs to the system and the output mal submanifold M' of M through x' which carries all the 

variable y represents the observable parameters of the trajectories of Z passing  through x' such that any point 

system. The state variable x may or may not be  directly on  this submanifold can be reached from x' going for- 

measurable and is used to represent the  memory of the ward and backward along the trajectories of the system. 

system. The past history of 2 affects its future evolution In particular if the dimension of 9(.x@) is m then M =  M' 
only through information conveyed by this variable. and so the system  is  "controllable" in some  sense, to be 

The state space M may be deficient in one of two  ways. made precise in Section 11. If it is less than rn then Z can 

It may  be  too  small to adequately represent the full be restricted to M' where  it  is  "controllable." This is one 
variety of memory states, i.e., it may  fail  to  distinguish half of reducing the state space M .  
between  real states where  some control exictes different For linear systems 
observable effects. If this is the case, then the mathemati- 
cal  system Z fails to adequately model the real  system and 
hence,  must be revised. 

The system  may not be controllable, i.e., if 2 is known to known criterion that the rank of the matrix 
be  in a given state x'E M at some  time  there  may  be 
other states x E M where the system cannot possibly  get to ( B : A B :  * . *  : A " - ' B )  
or have  come  from  using the given set of inputs. Or there be m. 
may be distinct states which are indistinguishable from an The other half of the p ~ o ~ a m  of reducing the state 
input-output point of view,  i.e., if the same input is space was supplied by Sussmann [28] for analytic or 

results. These problems can be caused by ignoring possi- [3] on  Lie groups. Sussmann noted that indistinguishabil- 
ble  real inputs or real observables. in  which  case  these ity is an equivalence relation on and showed that for 
must be added to the model. If. after all  the significant analytic 66controllable,, or symmetric G6controllable,9 sys- 
input and  output variables have  been incorporated into X, tems, indistinguishability is a closed regular equivalence 

relation so that the quotient is another manifold. He also 
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i = A x + B u  
y =  cx (1)  

On the other hand, the state space may  be too large.  where u ER',  X E Rnl,  JI ER", this reduces to the well- 

in either Of these states then the Same Output symmetric systems. This generalized the work  of  Brockett 
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HERW AND KRENER: NONLINEAR CON'TROLlABlL.ITY AND OBSERVABILITY 729 

to  the controllability results depending on the dimension 
of %(x). The relevant objects in this study are 9, the 
smallest linear space of functions on M which contains 
the observations g l ( x ) ,  - . - ,g,,(x) and which  is  closed  with 
respect to Lie differentiation by 5, and the differentials of 
4 denoted by d 4 .  If the dimension of d 4  is constant over 
M then indistinguishability need not be regular but there 
is a related regular equivalence relation which  we can use 
to factor M. On the quotient there exists a system  with the 
same input-output behavior as Z but which is "observ- 
able'' in the sense that neighboring points are distinguish- 
able. In particular if the dimension of d S ( x )  is  always m 
then Z has this property. For linear systems  this reduces 
to the well-known criterion that the matrix 

r 
C 

CA 
- _ _ _  

- - - _  

- _ _ _  
c C A m - '  

be of rank m. 
In order to bring out the "duality"  between "controlla- 

bility" and "observability"  (which  is, mathematically, just 
the duality between vector fields and differential forms), 
we first  review in Section I1 the known facts concerning 
nonlinear controllability and then in  Section I11  we dis- 
cuss our approach to nonlinear observability. Finally Sec- 
tion IV deals with the question of minimality for nonlin- 
ear systems. 

11. NONLINEAR CONTROLLABILITY 

We consider the system Z described in Section I. Recall 
a C" (analytic) m-dimensional  manifold M is a Hausdorff 
topological space with a C" (analytic) structure, i.e., a 
countable cover of coordinate charts ( Ua,x,)  where 

1) U" is an open set in M ,  
2) x, =c01(x,~; ,xam):  Ua+Rm is a homeomorphism 

onto its range, and 
3) if ( U',xa) and ( UB,xp) are two such coordinate 

charts then the change of coordinates xfi 0 xa- ' : x,( Uu n 
~ f l ) + x ~ ( U ~  n uB) is c " (analytic). 

For further details we refer  the reader to Hermann [IO] or 
Boothby [2]. A non-Hausdorff manifold  is a non-Haus- 
dorff  topological space with such a structure. If M is not 
Hausdorff then solutions of ordinary differential equa- 
tions on M need not be unique. 

Throughout this section we simplify notation by assum- 
ing M admits globally defined  coordinates x = 
col(x,, - . . ,x,). This allows  us  to identify the points of M 
with their coordinate representations and to describe con- 
trol systems  in the familiar fashion (1). However  when 
dealing with nonlinear observability in the next section we 
shall be forced to consider several coordinate charts. 

It  is  with no loss of generality that we assumey E R". If 
y E N ,  a C" manifold, then by the Whitney Imbedding 
Theorem, N can be imbedded in R" for some n which 
then can be taken as the range of g .  

The assumption of infinite differentiability for M ,  j ,  and 
g is not essential but is only invoked to avoid counting 
the degree of differentiability needed  in a particular argu- 
ment. Occasionally we consider analytic Jystems where 
these are assumed to be an analytic manifold and analytic 
mappings. Nonautonomous systems are handled in the 
standard fashion by assuming time  is one of the state 
variables. 

We also assume the system is complete. i.e., for every 
bounded measurable control u( t )  and every x o  E IM there 
exists a solution of the differential equation i = f ( x ( t ) ,  
u(t))  satisfying x(t? = -xo and x ( r )  E M for all t E R. We 
use the notation (u( l ) ,[ t0 ,  t ' ] )  to denote functions defined 
on [to,t']. 

Given a subset U c M ,  x '  is  U-accessible from xo 
(denoted by x'A,xO) if there exists a bounded measurable 
control (u( t ) ,[ to , t ' ] )  satisfying u(r)Ei2 for tE[ to , t ' ]  such 
that the corresponding solution (x( t ) , [ to, t ' ] )  of the dif- 
ferential equation (1) satisfies x(tO)= xo, x ( t ' )  = x' and 
x ( t )  E U for all tE[ to , t ' ] .  M-accessibility and A, are 
simply referred to as accessibility and A .  Given any rela- 
tion R on M we use the notation 

R (xo) = { x '  E M  : x ' R x o } .  

For example A ( x 4  is the set of points accessible from xo. 
The system Z is said to be controllable at xo if A (x? = M 
and controllable if A (x) = M for every x E M .  

If Z is controllable at xo it still  may  be  necessary to 
travel a considerable distance or for a long time to reach 
points near to xo. As a result  this  type of controllability is 
not always of  use and so we introduce a local  version of 
this concept. Z is local&  controllable at x' if for every 
neighborhood U of xo, A , ( x o )  is also a neighborhood of 
xo; Z is locally  controllable if it  is  locally controllable at 
every x E M .  (This is  called  local-local controllability by 
Haynes and Hermes [X].) 

Accessibility is a reflexive and transitive relation but for 
nonlinear systems it need not be symmetric. For this 
reason we need a weaker relation. Given an open set 
U C M there is a unique smallest equivalence relation on 
U which contains all  U-accessible pairs. We call  this 
relation weak U-accessibility and denote it by WA,. It is 
easy to see that x' WA,x" iff there exists x0; . . , x k  such 
that xo=x', x k = x "  and either x'A,x'-' or x'-'A,x' for 
i= 1,. . , k .  Weak  M-accessibility and WA, are simply 
referred to as weak accessibility and WA. 2 is weakly 
controllable ar xo if W A ( x @ )  = M in  which  case W A  ( x )  = 
M for all x and so Z is weakly  controllable. 

Notice that weak controllability is a global concept and 
does not reflect the behavior of Z restricted to a neighbor- 
hood of xo. So again we introduce a local concept. Z is 
local&  weakly  controllable at x' if for every neighborhood 
U of xo, WA,(xO) is a neighborhood of xo. Z is local& 
weakly controllable if it is  locally  weakly controllable at 
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every x E M .  Clearly (local) controllability implies (local) 
weak controllability and it  is not hard to  show  using the 
transitivity of (weak)  accessibility and the connectivity of 
M that local (weak) controllability implies  (weak) control- 
lability, i.e.,  we have the following implications: 

Z locally controllable + Z controllable 

Z locally  weakly controllable =$ Z weakly controllable. 

In general there are no other implications but for autono- 
mous linear systems  it can be shown that all four concepts 
are equivalent. 

The following  result  gives an intuitive interpretation of 
local  weak controllability. Loosely put it shows that Z is 
locally  weakly controllable iff one needs local coordinates 
of dimension m to distinguish the trajectories of Z from 
any initial point. 

Theorem 2.1: 2 is locally  weakly controllable iff for 
every x E M and every neighborhood U of x the interior 

Prooj Suppose Z is  weakly controllable. Given any 
x o E  M and any neighborhood U of xo we can choose 
M' EL? such thatf'(x) = f ( x , u ' )  is not zero at -xo (assuming 
m > 0, if m = 0 then the result  is immediate). Let s+y,'(x) 
denote the flow of j ' ,  i.e., the family of solutions of the 
differential equation 

d 
ds 

.II U 

of A , ( x ) # 0 .  

-Y: (x) =f' (Ys' ( 4 )  

satisfying the initial conditions 

yA(x) = x. 

For some c > O  the set V'={yj(x@):O<s<c} is a sub- 
manifold of U of dimension 1. 

Suppose  inductively Vj-' is a j -  1 dimensional sub- 
manifold of U defined by 

V J - ' = { $ - l ' " - . .  o y ~ l ( x o ) : ( s ~ ~ . . . , ~ ~ I )  

in some open subset of the  positive orthant of HJ-'  } 
where yi(x) is the flow of f ' ( x ) = f ( x , u ' )  for some u i  Ea. 
Clearly Vj-' ~ A , ( x p .  I f j  < m we construct Vi by choos- 
ing a u/ Ea and xJ-' E Vi-' . Th' IS is always possible for if 
not then every trajectory of Z starting on VJ-' would 
remain on Vi-' for a while. This contradicts the local 
weak controllability of 2. 

It follows that we can choose an open subset of the 
positive orthant of RJ such that the map (sI;. . ,?)t-+ 

0 yj,(xo) is an imbedding of the subset into U. Call 
the range Vi. We can continue until j =  m, V"' is a 
nonempty open subset of A,(.KO) and so the interior of 

As for the converse suppose the interior of A, (xq#O,  
we choose a control (u(t ) , [ to,  t ' ] )  such that the corre- 
sponding trajectory ( x ( t ) , [ t o , t ' ] )  satisfies x(tO)=xo, x ( t ' )  
= x 1  E interior of A,(xO) and x(t)  E U for t €[ to ,  t ' ] .  Let 
y,(x,tO) denote the time dependent vector field fr(x)= 
f ( x ,   u ( t ) ) ,  i.e., 

7;" - . .  

A , ( x ? # 0 .  

y,.(x,tO) = x. 

Then y,.(-. t ' )  is a diffeomorphism of a neighborhood V of 
x '  onto  a neighborhood of xo. Moreover we can choose 
V C _ A , ( ~ @ )  sufficiently small so that y,.(V,t')c W A ~ ( X O ) .  

0 
The advantage of local  weak controllability over the 

other forms of controllability discussed above is that  it 
lends itself to  a simple algebraic test. First we introduce 
some additional mathematical concepts. 

The set of all C" vector fields on M is an infinite 
dimensional real  vector space denoted by ?X ( M )  and also 
a Lie algebra under the multiplication defined by the 
Jacobi bracket [h, ,  h,] p e n  by 

where h,, h, and [h, ,h ,]E%(M).  Elements of % ( M )  are 
represented by column m-vector valued functions of x .  
For any fixed h,  E % . ( M )  the real linear transformation 
from % ( M )  into itself  which sends h,++[h,.h,] is called 
Lie differentiation with  respect to h,  and is denoted by 

Each constant control M E L? defines a vector  field f ( x ,  u) 
E %.(M) ,  we denote by 9 the subset of all  these vector 
fields.  Let 5 denote the smallest subalgebra of % ( M )  
which contains 5 '. A typical element of 5 is a finite 
linear combination of elements of the form 

4 , .  

wheref'(x)= f ( x , u ' )  for some constant u'ES2. We denote 
by '?(x) the space of tangent vectors spanned by the 
vector fields of 5 at x .  Z is  said to satisfy the controllabil- 
ity rank condition at x' if the dimension of ?T(x@) is m; Z 
satisfies the controiIabiii@  rank condition if this is true for 
every x E M .  

Theorem 2.2: If Z satisfies the controllability rank con- 
dition at xo then Z is  locally  weakly controllable at xo. 

Pruoj The proof  is  very  similar to Theorem 2.1. We 
start by choosing a neighborhood of U of xo small enough 
so that Z satisfies the controllability rank condition at 
every x E U. We construct a sequence of submanifolds as 
before but this  time there is a different reason why one 
can always choose d E i 2  and xJ- '  E VJ-'  such that ?(x) 
= f ( x ,  u ' )  is not tangent to Vj-'  at x j - ' .  If this is not 
possible then 5 restricted to VJ- '  is a subalgebra of 
5 ( VJ-  I )  which  implies the dimension of 4(x) < j - 1 < m 
on V J -  ' U which  is a contradiction. 

It follows that for every neighborhood U of xo: the 
interior of A,(xO) is not empty. The second half of the 
proof of Theorem 2.1 implies WA,(xo) is a neighborhood 

From the above we see that if C satisfies the controlla- 
bility rank condition then it is  locally  weakly controllable. 
The converse is almost true as we shall see later on in 
Theorems 2.5 and 2.6. 

of xo. 
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Suppose the trajectories of Z are required to  satisfy the 
initial condition 

x ( 1 0 )  = -xo, 

then Z defines a map from inputs to outputs as follows. 
Each admissible input (u( t ) , [ tO, t ' ] )  gives  rise  to a solution 
( x ( t ) ,  [ to, t 'I) of X = f ( x ,  u( t ) )  satisfying the initial condi- 
tion. This, in turn, defines an  output (y(r), [ro,t ' ] )  by 
y ( t ) = g ( x ( t ) ) .  We denote this map by 

Z.,o:(u(t), [ r0,r1]) l+(y(t),  [ t O , t ' ] )  

P : ( u ( t ) , [  rO,"])I+(y(t), [ f O J ' ] )  

and call it the input-output  map of Z at xo, Given a  map 

from inputs to outputs, the pair (X,x? is said to be a 
realization of p if Z,, = p. 

Now suppose 2 is neither locally  weakly controllable 
nor weakly controllable. Given the input-output  map Zxo 
we would  like  to find another realization (Z',z") of this 
map which  is  weakly controllable in some  sense. The 
obvious  way to proceed  is to find a submanifold M' of M 
which contains xo and all the trajectories of Z passing 
through xo then let 2' be the restriction of Z to M' and 
zo= xo. If M' is chosen  small  enough then hopefully 2' 
will  be  weakly controllable in  some  sense. 

To carry out this program we introduce some mathe- 
matical tools. A connected submanifold M' of M is an 
integral submanifold of '3 if at each x E M '  the tangent 
space to M' at x is contained in F(x). M' is a maximal 
integral submanifold of 9 if it  is not properly contained in 
any other integral submanifold of 9. There are two  im- 
portant cases when 9 has maximal integral submanifolds. 

Frobenius Theorem [IO]: If the dimension of 5 ( x ) =  k 
for every x €  M ,  then there exists a partition of M into 
maximal integral submanifolds of '5 all of dimension k .  

Hermann-Nagano Theorem [ZZ], [Z2], [Z4] ,  [23]: If 
the system  is analytic then there exists a partition of M 
into maximal integral submanifolds of 5 of varying di- 
mensions. The dimension of 5(x) can vary but it will be 
constant on each submanifold of the partition and equal 
to the dimension of that submanifold. 

The relationship of these  two theorems with controlla- 
bility  is  given by the following. 

Chow Theorem [ 5 ] :  If either of the above is satisfied 
and M' is the maximal integral submanifold of 5 contain- 
ing xo then M ' =  WA(x0).  

This leads to the following. 
Theorem 2.3: Suppose @,x") is a realization of an in- 

put-output map such that either 
1) %(x) is of constant dimension, or 
2) 2 is analytic, 

then there is a locally  weakly controllable realization 
(Z',xo) of the same input-output  map on the maximal 
integral submanifold M' of F containing xo. In fact, 2' 
satisfies the controllability rank condition. 

For completeness we mention the case when Z does not 
satisfy either of the hypotheses of Theorem 2.3. It has 

been  shown by Sussmann [29] that for any C" system, 
WA(x0) can be given the structure of a C" manifold, in 
general it  will not be an integral submanifold of 9. 

Theorem 2.4 (Swsmann [29] ) :  Given any realization 
@,x?, there exists a weakly controllable realization 
(Z',x? of the same input-output  map  on M' = WA (x?. 

Notice that unlike Theorem 2.3 the above does not 
guarantee that X' is  locally  weakly controllable or satisfies 
the controllability rank condition. Locally  weakly control- 
lable systems "almost"  satisfy the controllability rank 
condition. 

Theorem 2.5: If 2 is  locally  weakly controllable then 
the controllability rank condition is satisfied generically, 
i.e., on an open dense subset of M .  

Proof: For any system the controllability rank condi- 
tion is satisfied on an open subset of M ,  possibly empty. 
To see that it  is dense for locally  weakly controllable 
systems suppose there exists an open subset U of M where 
the dimension of $(x) < m. Without loss of generality we 
can assume dim%(x) = k < m for  all x E U .  For some 

U, let U' denote the maximal integral submanifold of 
S(x) in U given  by the Frobenius Theorem, then A,(x? 
C U' and so using Theorem 2.1 we see Z is not locally 
weakly controllable at xo. 0 

For analytic systems we can strengthen the above, in 
fact, weak controllability, local  weak controllability, and 
the controllability rank condition are equivalent. 

Theorem 2.6:  If Z is analytic then 2 is  weakly control- 
lable iff it is locally  weakly controllable iff the controlla- 
bility rank condition is satisfied. 

Proof: We have already shown that for C" systems 
the controllability rank condition implies  local  weak con- 
trollability which  implies  weak controllability. The reverse 
implications follow for analytic systems if we show that 
xoWAx' implies that the dimension of T(x") and %(x1) 
are the same. For then, if 2 is  weakly controllable, the 
dimension of T(x) must  be constant and hence equal to m 
by the Frobenius and Chow Theorems. 

To show that xoWAxl implies the dimension of S(x0) 
and %(x1) are the same, it suffices  to consider the case 
x' = y(x7  where y is the  family of solutions of the vector 
field f ( x )  =f(x,u) for some constant u E O  and x > O .  The 
map (d/ax)y -,(x1) is a linear isomorphism from the 
tangent space at x'  to  the tangent space at xo. For any 
h E % ( M ) ,  the Campbell-Baker-Hausdorff formula 
allows us to expand ( a / a x ) y - , ( x ' ) h ( x ' )  in a convergent 
series 

a cr. k 

- y - , ( x ' ) h ( x ' ) =  ax x ( L j ) k h ( - x o ) k .  
k =O 

In particular, if h E 5 then the right side of the above is 
a vector  in $(x") so ( a / d x ) y - , ( x l )  carries S(x') into 
F(x@). Therefore, the dimension of 5(x') < dimension of 
%(x"). Reversing the argument shows that the inverse map 
(d/&~)y,(xO) carries T(x") into %(x1) and the result 
follows. 0 

Example 2.7: Consider the linear system  (2). In this 



case B O =  { A x  + Bu : u En}, so the Lie algebra is gener- 
ated by the vector fields { A x ,  B*,; 1 ,B*!)  where B ,  
denotes the j th  column of B considered as a constant 
vector field. Computing brackets yields 

[ A x ,  B*j] = -AB*, [ B*j, B*k] = 0 

and so on. The Cayley-Hamilton Theorem implies that 9 
is spanned by the linear vector fields A x  and the constant 
vector fields A 'B,, where i = 0, - . . , m - 1 and j = 1, - . , I .  

This system  is analytic so the Hermann-Nagano Theo- 
rem guarantees the existence of maximal integral sub- 
manifolds of 9 through each x E R". In particular if  we 
let M' denote the maximal integral submanifold through 
x = 0 then M' must contain the integral curves of all linear 
combinations of the constant vector  fields {AiB*, )  start- 
ing at 0 and hence must include the linear subspace 
spanned by  these  vectors. In fact M '  is  precisely  this 
subspace because at each x E M '  the tangent space to M' 
contains Ax also. 

Notice that in this context the controllability rank con- 
dition reduces to the  well-known linear controllability 
condition that 

rank(B:AB: - . - : ~ " - l B ) = m .  

The controllability rank condition only  implies local weak 
controllability but for linear systems it also implies con- 
trollability (see [4] for details). 

If the controllability rank condition fails and the rank 
of the above matrix is m' < m, then by restricting the 
system to M ' =  R"', the maximal integral submanifold of 
9 through 0, we obtain a controllable linear system. 
Notice that in this case the dimensions of the maximal 
integral manifolds of 5 can vary, for if A x  @ span { A  'B,,} 
then the maximal integral manifold of 5 through x will be 
of dimension > m'. It  cannot be a linear subspace of R" 
because it does not contain 0 which  must  lie  in a maximal 
integral manifold of dimension m'. 

Example 2.8: Consider the linear system (2) but where 
A ( t ) ,  B ( r ) ,  and C ( t )  are C" matrix valued functions of 
time. We adjoin another state variable xo= 1' and rewrite 
the system equations 

io= 1 

i = A ( x o ) x + B ( x o ) u  

y =  C(X0)X. (3) 
Yo = X0 

The structure of 9 is similar to  that for autonomous 
systems, for example, 

From this it can be shown that the controllability rank 
condition is equivalent to the familiar requirement that 

rank(B(r):AcB(t):AfB(t):--.)=m 

for every c E R where 

A ; B ( t ) = (  2 d -A( t ) )&- 'B(r ) .  

See [4], [6], or [ 151. 
Example 2.9: Consider the bilinear  system 

1 

i = A x +  2 uiBi2x, 

where u En= R' and M is either R" or an m-dimensional 
subgroup of Gl(h, R ) ,  the group of invertible h X h 
matrices. 

The Jacobi brackets of linear vector fields DX, Ex is 
seen to be 

i =  1 

[DX,  E x ]  = [ D,E].x 

where 

[ D , E ] = E D -  DE 

is the commutator of the matrices D and E. 9 is isomor- 
phic to a Lie subalgebra of gl (m R )  if M = R" and 
gl(h,R) if M is a subgroup of G l ( h , R ) .  (gl(m,R) is the 
Lie algebra of all m X m matrices with commutation as the 
bracket). Let F denote the group 

F={expX:XE5}. 

The maximal integral manifold M' of 5 through x. is just 
the orbit of xo under F 

M' = F ~ O  

and '3 satisfies the controllability rank condition iff Facts 
transitively on M .  

111. NONLINEAR OBSERVABILITY 

We consider the system Z as described in Section I and 
the input-output map of the pair ( Z , X ~  as described in 
Section 11. A pair of points xo and x '  are indistinguishable 
(denoted x o l x ' )  if  (Z,X@) and (C,xl) realize the same 
input-output map, i.e., for every admissible input 
(W9[ t0 , r13 )  

~ , o ( ~ ( t ) , [ t o , r l ] ) = ~ , l ( u ( t ) , [ r o , t ' ] ) .  

Indistinguishability I is an equivalence relation on M .  2 is 
said to be obseruuble ar X' if Z(x0) = {xo} and Z is 
obseruable if I (x)= {x)  for every x E M .  

Notice that the observability of Z does not imply that 
every input distinguishes points of M .  If,  however, the 
output is the sum of a function of the initial state and a 
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function of the input, as it  is for linear systems, then it is 
easy  to  see that if any input distinguishes between two 
initial states then every input does. 

Notice also that observability is a global concept; it 
might be necessary  to  travel a considerable distance or for 
a long time to distinguish  between points of M .  Therefore 
we introduce a local concept which  is stronger than ob- 
servability. Let U be a subset of M and xo, x ' E U. We say 
xo  is U-indistinguishable from x '  (xoZLrx') if for every 
control ( u (  t). [to, [I]), whose trajectories (xo( t), [ I O ,  t 'I) and 
( ~ ' ( t ) ,  [to,  t ' ] )  from x' and x' both lie  in U, fails to 
distinguish  between x o  and XI. i.e.,  if x 0 ( r )  E U and x ' ( t )  E 
U for t E [ to, t '1. then 

U-indistinguishability is not, in general, an equivalence 
relation on U for it fails to be transitive. This is related to 
the fact  that Z restricted to U is not necessarily complete. 
(See Sussmann [27] for a fuller  discussion of this point.) 
However, we can  still define C to be locally  obsercable  at 
xo  if for every open neighborhood U of x o ,  I,(xD)= {xo}, 
and C is local&  obsercable if it is so at every x E M .  

On the other hand one can weaken  the concept of 
observability; in practice it may  suffice to be able to 
distinguish x o  from its neighbors. Therefore we define C 
to be weak&  obsercable  at xo if there exists a neighbor- 
hood U of xo such that Z(xo>n U= {xo} and C is weak& 
obsercable if it is so at every x E M .  

Notice once again that it  may  be  necessary to travel 
considerably far from U to distinguish points of U, so we 
make a last definition, Z is locally  weakly obserwble at x o  
if there exists an open neighborhood U of xo such that for 
every open neighborhood V of xo contained in U ,  Z,(xo) 
= {xo} and is local&  weakly  obsercable if it is so at every 
x E M .  Intuitively, Z is  locally  weakly observable if one 
can instantaneously distinguish each point from its 
neighbors. 

It can easily  be  seen that the relationships between the 
various forms of observability parallel that of controllabil- 
ity, i.e., 

C locally observable * Z observable 

Z locally  weakly observable * Z weakly observable. 
4 U 

In general there are no other implications but for auton- 
omous linear systems it can be  shown that all four are 
equivalent. The advantage of local  weak observability 
over the other concepts is that it lends itself to a simple 
algebraic test. To describe it  we need  some additional 
tools. 

Let C m ( M )  denote the infinite dimensional real vector 
space of all C" real  valued functions on M .  Elements of 
X ( M )  act as linear operators on C "( M )  by  Lie dif- 
ferentiation. If h E !X ( M )  and rp E C m ( M )  then L h ( ( p )  E 
C * ( M )  is  given by 

arp 
Lh(CF.)(X) = ax ( x ) h ( x ) .  

The gradient drp= aq/ax=(arp/ax,,. . ,aq/ax,) is a row 
vector  valued function. 

We denote by Go the subset of C " ( M )  consisting of 
g,; . . ,g,, and by 9 the smallest linear subspace of 
C " ( M )  containing Go which  is  closed  with  respect to Lie 
differentiation by elements of 5 '. An element of 9 is a 
finite linear combination of functions of the form 

II(...(I,(gi>)..*) 
where f ( x )  = f ( x ,  uj) for some constant uJ EL?. 

If h l , h 2 E % ( M )  and q E C X ( M )  then 

Lh, (Lh2(T))  - Lhz(Lh, (TI) = L[hi,h21(QI). 

From this  it  follows that 9 is  closed under Lie differentia- 
tion  by elements of 5 also. 

Let 3 * ( M )  denote  the real linear space of one forms 
on M ,  i.e.,  all finite C X ( M )  linear combinations of 
gradients of elements of C m ( M ) .  These are represented 
by  row m-vector valued functions of x. The pairing be- 
tween one forms and vector fields denoted by (w,h)  E 
C " ( M )  is just multiplication of 1 X m and m X 1 matrix 
valued functions of x .  

We define a subset of % * ( M )  by dSo = {drp: rp E So} 
and  a subspace dG = { dq: QI E G }. Just  as vector fields act 
on functions and other vector fields by Lie differentiation, 
they act on one forms according to the definition 

where w E  X * ( M ) ,  h E % ( M )  and * denotes transpose. 
The three kinds of Lie differentiation are related by the 
following Liebnitz-type formula 

L h , ( ~ , h 2 ) = ( L h I ~ . h 2 ) + ( ~ ~  [ hI,h,]). 

If w = dq, then L h  and d commute 

Lh(dp)=d(Lh(V)).  

From this it follows that d 3  is the smallest linear space 
of one forms containing dQO which  is  closed  with respect 
to Lie differentiation by elements of 3 (or 5). Elements 
of dS3 are finite linear combinations of one forms of the 
form 

d ( L , I ( . . . ( L ~ ~ ( g , ) ) . . . ) ) = L / , ( . . . ( L / l ( d g , ) ) . . . )  

where f'(x)=f(x,u')  for some constant U J  Ea. As before 
we denote by dG(x) the space of vectors obtained by 
evaluating the elements of d S  at x. The space ds'(xo) 
determines the local weak observability of Z at x'. Z is 
said to satisfy the obsercability  rank  condition  at x' if the 
dimension of dG(x0)  is m, Z satisfies the obsercability 
rank  condition if this  is true for every x E M .  

Theorem 3.1: If Z satisfies the observability rank con- 
dition at x' then C is locally  weakly observable at xo. 

The proof depends on the following. 
Lemma 3.2: Let V be any open subset of M .  If xo,x E 

V and xoZ,x' then rp(xo) = rp(x') for every rp E 4 .  



Proof: If xoZ,x' then for any k > O ,  any constant 
controls u ' ; .  - , u k  E D ,  small sl,--. ,s, 2 0  and g,, i= 
I; ,n, we have 

g ; ( Y l o * . *  ~Uf,~U, ' , (xo))=g~(Y~o. . .  O Y : ~ O Y : , ( X ~ ) ) -  

Here y i ( x )  denotes the flow of f ' ( x ) =  f ( x , u i ) .  Differenti- 
ating with  respect to s,; . . ,sl, at 0 yields 

L f l ( " ' ( L f * ( g , ) ) . . . ) ( x o ) = L f l ( . " ( L f ~ ( g , ) ) . . . ) ( x ' )  . 

9 is spanned by functions of t h s  form so the lemma 

Proof of Theorem 3.1: If the dimension of d4 (x? = m 
then there exists m functions v,, - * ,vm E 4 such that 
dcp(x@); ,dcpm(x") are linearly independent. Define a 
map 

follows. 0 

~ : x ~ , c o l ( c p , ( x )  , . . . , c p m ( x ) ) .  

The  Jacobian of CP at x o  is nonsingular so CP restricted to 
some open neighborhood U of x o  is one to one. If Y c U 
is an open neighborhood of xo then Lemma 3.2 implies 
Z,(x") = {xo} so Z is  locally  weakly observable at xo. 

From this we see that if Z satisfies the observability 
rank condition then Z is  locally  weakly observable. The 
converse  is almost true as we shall see later on in Theo- 
rems 3.1 1 and 3.12. 

Suppose (z,x? is a realization of an input-output  map 
which  is not observable in any of the above senses. We 
turn  our  attention to finding such a realization (Z',zy of 
the same input-output map. To understand the difficulties 
involved consider the following. 

Example 3.3: Let u E Q = R ,   x E M = R , y E R 2 ,   x ( O ) =  
xo=O, and 

f = u  y1=c0sx y 2 = s m x .  

Clearly the system  satisfies both controllability and ob- 
servability rank conditions. Therefore, it  is  locally  weakly 
controllable and locally  weakly observable. It is not ob- 
servable because x o  and x k  = x 0 + 2 k r  are indistinguish- 
able  for any xo  and any integer k .  

To obtain an observable system  with the same in- 
put-output behavior as the original we must identify xo 
and x k ,  that is, define a system Z' on M' = S ', the unit 
circle by 8 (0) = Bo = 0 and 

e = u  y,=cose y2=sine. 

Note  that &x? and (Z',f?o) realize the same input-out- 
put map. 

l k s  example seems to imply that  one can obtain an 
observable realization from one that it is not by "factor- 
ing"  by the relation I of indistinguishability, the new 
system  lives on the state space M ' =  M / Z .  However,  given 
an equivalence relation R on M it is not always true  that 
M / R  with the quotient topology  is Hausdorff and  admits 
a C" structure in such a way that  the canonical projec- 
tion r : M + M / R  is a submersion, i.e., a C map of 

Fig. 1. Dynamics and observers of Example 3.4. 

maximal rank. A necessary and sufficient condition for 
the quotient topology on M / R  to be Hausdorff is that R 
be a closed equitwlence relation, that is, the graph of R be a 
closed subset of M X M .  An equivalence relation R which 
admits a C" structure on M /  R compatible with the 
projection is called regular. A necessary and sufficient 
condition for regularity is that  the graph of R be a 
regularly imbedded submanifold of M X M and  that the 
map (xo,x')t+xo from the graph of R onto M be a 
submersion [23]. 

It is not  hard to  see  using the continuity of solutions of 
differential equations with  respect to initial conditions 
that for any C" system the relation I is  closed. How- 
ever, the following  example due to Sussmann shows that it 
need not be regular  even  when the controllability and 
observability rank conditions are satisfied. 

Example 3.4: Let u € D = { ( u , , u , ) : u , > O }   x E M = R ,  y 
E R 2  and 

1 = u1 fi ( 4  + u2f2 (x) 

Y l =  g1 ( x ) ,  Y2 = g2 ( x ) .  

We choose f i , g , :  R+R to be C" functions with the 
following graphs. See  Fig. 1. 

Since fl and f2 have no common zeros the system 
satisfies the controllability rank condition and is  locally 
weakly controllable. Since dg, and dg2 have no common 
zeros the system  satisfies the observability rank condition 
and is  locally  weakly observable. 

From the graphs of g ,  and g2 we  see the only  possible 
pairs of indistinguishable points are x and - x  where 
Ix1>1. SinceJ(x)=I i f x > l   a n d J . ( x ) = - l   i f x c - 1  it 
can be  seen that these pairs are indistinguishable. 

If  we quotient the state space M =  R by the equivalence 
relation of indistinguishability, the result is clearly not a 
manifold for it looks like a circle  with a ray attached. At 
this point  one can ask what additional assumptions on Z 
are needed in order to insure that I be a closed and 
regular equivalence relation. Sussmann has proved the 
following. 

Theorem 3.5 [ 27 ] :  If (&x? is a weakly controllable 
realization and either 

a) Z is analytic or 
b) Z is symmetric (i.e.,Vu E D  31; E D  such that f (x, u)  

= - f ( x ,  c) Vx E M ) ,  then I is a closed and regular equiv- 
alence relation. Moreover, there exists a system Z' on 
M ' = M / Z  such that (Z',Z(x@)) is an observable and 
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weakly controllable realization of the same input-output 
map. If Z is analytic, then C' is also locally observable. 

In some  sense Theorem 2.3b  is the dual of Theorem 
3.5a and Theorem 2.4 is the dual of Theorem 3.5b. What 
we would like to  discuss  now is the dual of Theorem 2.3a. 
Proceeding analogously we might  expect that I is a regular 
equivalence relation if the dimension of dS (x) is constant 
over M but Example 3.4 shows  this not to  be the case. 
Just  as we have  used the relation WA in addition to A 
when studying nonlinear controllability so must we in- 
troduce another relation for nonlinear observability. 

We call  this  new relation strong indistinguishability, x o  
and x' are strongly  indistinguishable (denoted by xoSZx') if 
there exists a continuous curve a:  [ O , I ] + M  such that 
a(0)=xo, a ( l )=x '  and .uoZa(s) for all sE[O, 11. Clearly SI 
is an equivalence relation, xoSIx' implies xoZx', and C 
weakly observable at x' implies SI (x@) = { x'}. 

As we shall demonstrate in a moment, if the dimension 
of d4(x) is constant over M then SI is a regular equiva- 
lence relation and the quotient M ' ,  possibly non-Haus- 
dorff, inherits a locally  weakly observable system 2' 
which  realizes the same input-output  map  as Z. Before 
proving this we must introduce some  more machinery. Let 
%(x) denote the space of all tangent vectors at x which 
annihilate every element of dS (x) 

%(x)= { T E  7'": (dg;(x),T)=O, V q E S } .  

If the dimension of dB (x) is constant, say k, over M then 
the dimension of X ( x )  is constant, m - k. The importance 
of %(x) is explained by the corollaries to the following 
lemma. 

Lemma 3.6: Suppose the dimension of dB(x) is k for 
every x E M .  Let f , ( x )  be a time-dependent vector field on 
M such that f;( .) E 9 for every t [for example, if u ( t )  is an 
admissible control and f , ( x ) = f ( x , u ( r ) ) ] .  Let yl(xo,ro) be 
the flow off,, i.e.. 

y,o(xo, t o )  = xo. 

Then 

dG(y,(xo,to))&yr(xo,tO)=dL?(xo).  

proof: Since Y~+~(XO, r") = yJ(y,(xo, t"), t ) ,  it suffices to 
consider only  small 1 I - 1'1. Choose dq,, - . . .dqk E dB 
which are linearly independent on a neighborhood U of 
xo. A straightforward calculation yields 

a Y r  

a x  ; = I  

m 

d~i(y,(xo,tO))-(xO,tO)= Xij(t)dxj 

for i = l ; . - , k .  Moreover if f E S  and dvEdS then 
L,(drp)Edg so there exists functions pir(r) such that 

k 

~~(dqi)(yr'/r(x0,~Oj)= E pir(t>dqr(y/(xo,to)) 
r =  I 

for i =  1;. . ,k. 
Combining these three equations we obtain 

for i = 1,. , k .  This is a linear homogeneous differential 
equation so there exist invertible linear transformations 
A( t )  : R k+R such that 

(4j(t))='l(t)(',j(ro)). 

The lemma  follows  since dB (x") is spanned by 
m 

dqi (xo) = Ai;( t O) d.u, 
;= 1 

for i =  l; . .   ,k and  for small J t - to l ,  d4(y,(xo,t"))i3 
/ dxy, (xo, t") is spanned by 

fo r i= l ; - . , k .  0 
Remark: The above depends heavily on the fact that 

the dimension of dG(x) is constant so that dS is  "locally 
finitely generated." For similar results see Hermann [IO]. 

A curve a : [0, l]+M is  piecewise C if it is C" at all 
but finitely many points of [0,1] and left (right) limits of a 
and all its derivatives exist at every point  of  (0,1] ([O, I)). 

We define another equivalence relation on M,xoHx' if 
there exists a continuous and piecewise C x curve a : [0,1] 
+ M  such that a(0)=xo, a(I)=x'  and 

-a(s)E'SLr(a(s)). 
d 
dr 

Corollary 3.7: Assuming the dimension of dG(x) is 
constant, if xoHx' then x'SIx'. 

Proof: Let ( ~ ( t ) ,  [ ro, t '1) be any admissible control 
with  flow y,(x,t"). The ith component of the output  at 
time I when the system  is started at a(s )  at time to is 

yi(t>=gi(Yr(a(S),to)). 

The derivative with  respect to s is  given by 
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try vector fields (in the sense of Sussmann [26]) for the 
relation H .  

Corollary 3.8: Assume that the dimension of ds3 (x) is 
constant. Let fE'3 with flow y,(x). If xoHxl  then 
y,(x?Hy,(x')  for all f E R.  

Proof: Let a : [O,l]+M be a continuous and piece- 
wise C" curve such that a(0) = xo, a( 1) = x' and 
d/&a(s)  E X(a(s)) .  Define a curve, p : [O, 11-M by p ( s )  
= y,(a(s)) .  Clearly p is continuous, piecewise C", and 
p (0) = y,(x? p (1) = y , (x ' ) .  Moreover for 'p E B 

= 0. 

so d / d P  0 )  E X( P (s)). n 
Theorem 3.9: Suppose the dimension of d Q ( x )  is k ,  

then SI is a regular equivalence relation and there exists a 
locally  weakly observable system 2' on the k-dimensional 
non-Hausdorff manifold M ' =  M / S Z  whch has the same 
input-output properties as Z. More precisely if m : M+M' 
is the canonical projection then @,x@) and (C',.rr(x?) 
realize the same input-output  map for every x o  E M. If Z 
is (locally)(weakly) controllable then so is Z'. If C satisfies 
the controllability rank condition then so does Z' and 
moreover M' is Hausdorff. 

Proof: An outline goes  like  this. 
From Corollary 3.7 we see that H equivalence implies 

SI equivalence. We first show that H is a regular equiva- 
lence relation and  that we can define a system Z' on 
M' = M / H  with the same  input-output properties as 2. 
We then note  that 2' satisfies the observability rank 
condition, hence Z' is  locally  weakly observable from 

Remark: By Corollary 3.7 xoHx' implies xoSIx' whch 
by definition implies xoZxl which by Lemma 3.2 implies 
q(x?= q(x ' )  for every 'p E 4 .  

Given any x' E M there exists d'p,, - . . , d'p, E d g which 
are linearly independent at xo. After reordering the x 
coordinates we can  suppose  that d'p,, . , d'p,, 
dxk+ - , d x m  are linearly independent at xo. Define 
Z~(X)=Q(X)- '~~(X@),  i = l ; * * , k ,  zi(x)=xi-x,?,  i = k +  
1; - - , m  and 

& which it follows that H =  SI. 

If E is chosen sufficiently small, then ( U , x )  is a coordinate 
chart  around xo. 

Claim If x 1 , x 2 E H ( U )  then x'Hx2 iff 'pi(x')=(pi(x2) 
for i = 1,. - , k .  The only if part follows immediately from 
the above remark. As for the converse suppose first that 
x 1 , x 2 E  U and ~ ; ( x 1 ) = ' p j ( x 2 )  for i =  l , . . . , k .  Then zi(x') 

%(x) for every x E U and these vector fields can be  used 
to get from x' to x' within the z-cube U so x1Hx2 .  More 
generally if x ' , x 2 ~ H ( U )  and q i ( x ' ) = ' p j ( x 2 )  for i =  
1,. . - , k then there exists p' E U such that xJHp'' and 

=zi(x2) for i = l , . . . , k  . Clearly a/az,+,,--.,a/az,E 

'pi(p')='pj(x') for i =  1;. . , k  and j =  1,2. From before we 
know p'Hp2 which  by transitivity implies x'Hx2. 

We  next put  a C structure on M ' =  M / H .  Notice that 
H ( U )  is open and Y ' ( r ( H ( U ) ) ) = H ( U )  so V =  
m ( H (  U ) )  is open in the quotient topology on M ' .  The 
functions of 9 are constant on H-equivalence classes so 
every ~ ; E Q  can be pulled  down to M ' ,  i.e., there exists a 
continuous cp' : M'+R such that rp' 0 T = 'p. 

In particular we define zl! = cp,!- 'p,(x? for i =  1; . . , k 
and z' = (z i ,  - . * ,zL). The claim  implies that the map z' : V 
+ R  is one to one. Moreover it is open because if W is 
an open subset of V then 

z ' ( W ) = r k o z o ( . r r - l ( w ) n  U )  

where m, : Rm+Rk is the projection on the first k factors. 
Therefore z' : V + R k  is a homeomorphism into  and ( V,z ' )  
a coordinate chart. In the coordinates ( U, z) and ( V, z') on 
M and M',  the projection 7~ is just rk and clearly a 
submersion. 

M is covered by a countable number of charts ( U , z )  
and so M' is  covered  by the corresponding ( V,x' ) .  Verify- 
ing that changes of coordinates on M' are C" reduces to 
checking that every 'p' : M'+R is C on (V , z ' ) .  But if 
' p ~ 4  then on ( U , z )  

dq = C 4  (z) dzi 
so 'p(z)= 'p(z,; . . ,zk). Clearly (F'(z')= 'p(z;; - . ,zL)  is C". 
This shows H is a regular equivalence relation on M. 

Next we define Z' on M '  locally. In the coordinate 
system (V,z)  on M ,  the dynamics of Z are given  by 

In particular for i = 1 ~. . . , k 

The right side is an element of 9 and hence pulls down to 
a functionJ(z',u) on V' .  We define the dynamics of Z' on 
(VJ?  by 

i'=f'(z',u). 

Clearly if z ( t )  is a curve in U generated by the dy- 
namics of Z under the control u ( t )  satisfying z ( t@)  = zo 
and if z'(r) is the curve in Y generated by the dynamics of 
X' under the control u ( t )  satisfying z'(to)= .rr(z? then for 
small 1 t - toJ 

z'(t)=a(z(t)). 

From this it follows that if 2 is (locally) (weakly) control- 
lable so is Z'. 

Moreover each gi E 9 and hence pulls down to a func- 
tion gl! on M' which we use to define the output of Z' on 
( V , Z ' )  as 

y =g'(z'). 
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The outputs of C from zo under u(t)  and 2' from r (z@j On the other hand  suppose cp(xo>=cp(x') for every 
under u( t )  are the same because g = g' 0 r and so rp E 9 . Using the controllability rank condition we choose 

f l , .  - - , f, E '3 which are linearly independent at xo. We 
also choose drp,, ' . . , drpk E d !i? which are linearly indepen- 
dent  at xo. Then the k X m matrix with  i-jth  element 

g(z(t))=g'o.rr(t(t))=g'(z '( t)) .  

Notice M' is of dimension k. 
We turn now to the relationship between 9 and 4 of C 

and 9' and 4 ' of X .  Note  that 
is  of rank k at xo. Without loss of generality we can 
assume the first k columns of this matrix are linearly 
independent at xo. The elements of this matrix are all  in 9 

It follows from this and the definition of '3 and %' that so the first k  columns  are also linearly independent at x' 
f' E '3' iff there exists an f E 9 such  that and therefore drpl, - . . , drpk are linearly independent at X I .  

As before we can construct a coordinate cube ( Uo,z)  

ion  using  the same E and rpl ,  - * . , q k  but  perhaps different 
In particular xk+ 1,- . ,x, we construct a  cube ( U ' , z )  around x ' .  Given 

f ' ( r ( x ) ,  4 = ( x ) f ( x ,  .). ar 

f ' ( r . ( x ) )  = $ ( x ) f ( x ) .  around xo using rpI; - * ,f&,xk+l,' - * ,x,. In  a similar fash- 

n 6 > 0 define m - k slices S: and Si  in U o  and U' by 
% ' ( r ( x ) ) =   Z ( X ) % ( X ) .  

S i = { x E U J : q ( x ) = O ,  i = l ; - . , k  and 

and since r is a submersion this  shows that if 2 satisfies Izi (x)I<6, i = k + ~ ; - . , m } .  
the controllability rank condition so does E'. 

Furthermore Let y:(x) denote the flow of f(x) for i= 1;. - , k  and C,k 
denote the cube of side 26 around 0 in Rk. Define  maps 

/3, : C," X Sj+M 
g ' o r = g  

and so 

' ,gi ix)='f(gi ' ) (n(x)) .  bY 

Repeated applications of this formula show that rp' E 9 ' iff 
there exists on qo E '3 such that where x E Si and \si\ < 6 for i = 1, * + . , k .  Of course Si is a 

P j ( S ' , " ' , S , , X ) = y k O . . .  s, Y:l ( x )  

rp ' (W)  = d x ) .  
m - k dimensional cube so we can view  these maps  as 

In particular the coordinate functions z,! = rp,! are in 4 ' so 
2' satisfies the observability rank condition and therefore 
is locally  weakly observable. 

This also implies that H and SI are the same relation. 
We  have already seen that xoHx' implies xoSIx'. Suppose 
the converse  does not hold; there exists xo,x' E M such 
that xoSIx' but xoHx' .  Let a(s) be the arc of Z-indis- 
tinguishable points joining xo ,x ' ,  since C and X have  the 
same input-output properties, n(a(s)) is an  arc of 2'-indis- 
tinguishable points joining r ( x " )  and r ( x ' ) .  Moreover  this 
arc is not constant because r (x")#n(x ' ) .  This contradicts 
the local  weak observability of 2'. 

If C satisfies  the controllability rank condition then M' 
can be  seen to be Hausdorff. Given xo ,x l  E M  first 
suppose there exists a rp E G such that rp(xo)# rp(x'). De- 
fine disjoint open sets 

~o={x~M:~rp(x)-rp(xo)l<Irp(x')-rp(~0)1/2} 

pj : CT+M 

where Cp is an m-cube of side 26. More precisely if 
(s,; * ,s,)E Cp then 

p J ( s l , " . , s , ) = p J ( s I , - ' . , s k , x )  

where X E S {  with zi(x)=O for i = l ; - . , k  and zi(x)=si 
for i= k + 1, * . ,m.  For sufficiently small 6 these maps  are 
diffeomorphisms  onto  open  neighborhoods WJ of X J  con- 
tained in Uj. In fact ( WJ,sI ,  - . + , s,) are coordinate charts 
at x j .  If 6 is  chosen  sufficiently  small then we can  assume 
that for every x E W '  and for every (sI, * . . ,sn) E C,k we 
have 

ysl 0 . . . 
I 0y[(x)E u'. 

Now suppose there exists p o E  Wo, p ' E W' such that - _  
poHp'. In particular suppose p o  = y l o  . . - . -  

O Ys1,(4? where 
Q0 E s:. Let 

Since rp is constant on H equivalence  classes then by assumption q' E U '  and by Corollary 3.8, qoHq'. 

=rpi(q') for i =  1; - ,k  and so by assumption rpj(41)= 
and so w (  U") and 7~( U ' )  are disjoint open  neighborhoods rpj(x') for i= 1,. . . ,k. By our previous  claim, q'Hx' and 
of r(xo) and n(x').  so xoHx'.  

r - ' ( r ( U ' ) ) =  u' Because qOE S:, xoHqo so xoHq'. This implies that rpj(xo) 
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We have just shown that if n( Wyn T( W')#(21 then 
T(x")= ~ ( x ' ) .  It follows that if n(xO)# .(x1) then these 
are disjoint open neighborhoods of T(X? and ~ ( x ' ) .  0 

The following  simple  example  shows that if C fails to 
satisfy the controllability rank condition then M '  need not 
be Hausdorff. 
Example 3.10: Let M=R*\{(x, ,O):x,  ,<O}yER'  and 

i = o  y=x , .  

The dimension of dS(x) is one for all x so we can form 
the quotient M' = M / S I .  However this is a non-Haus- 
dorff manifold because ~ ( 0 , l )  and ~ ( 0 ,  - 1) are distinct 
points without a pair of disjoint neighborhoods. Notice 
that factoring M by the closure of the relation SI is not a 
way around ths  problem for the closure of SI is not a 
regular relation. 

Theorem 3.5a and b and Theorem 3.9 exhibit three 
situations where realizations can be made observable in 
some  sense. If Z is analytic then E' is locally observable, if 
Z is symmetric then Z' is observable and if d G ( x )  of Z is 
of constant dimension then Z' satisfies the observability 
rank condition and hence is locally  weakly observable. 
The converse of this last remark is  "almost" true. 
Theorem 3.11: If Z is  locally  weakly observable then 

the observability rank condition is satisfied generically. 
Proof: For  any system the observability rank condi- 

tion is satisfied on an open subset of M ,  possibly empty. 
Suppose there exists an open subset U of M where the 
dimension of dS(x)< m. Without loss of generality we 
can assume dimdS(x)= k <  m for x €  U. Choose x o E  U, 
an open set V such that xoE Vc U and a C" function 
q :  M+R such that q(x)= 1 for all x €  V,  q(x)#O for all 
x E U and q(x) =O for all x E M \ U. Consider the system 
Z' defined by 

f = cp(x)f(& .) 
Y = d x )  

x (0) = xo. 

The state space of Z' is U and 2' is complete. It is  easy to 
see %'(x)= %(x) for all x E U. From this it follows that 
dS'(x)=dS(x) for all sE U, and so dimdg(x)=k  for all 
x E U. We can apply Theorem 3.9 to Z' on U so Z' is not 
locally  weakly observable. Since Z and Z' agree on V, Z is 
not locally  weakly observable either. 

Recall that for analytic systems,  weak controllability, 
local weak controllability, and the controllability rank 
condition are equivalent. With regard to observabihty an 
analogous result holds for analytic systems  which are 
weakly controllable. 
Theorem 3.12: If Z is a weakly controllable analytic 

system then Z is  weakly observable iff it  is  locally  weakly 
observable iff the observability rank condition is satisfied. 

Proof: It suffices to show that weak observability 
implies the observability rank condition. By Theorem 2.6 
Z satisfies the controllability rank condition, we proceed 

in a similar fashion to the proof  of that theorem to show 
the dimension of dS (x)  is constant. 

Let XI= y,(x? where y denotes the flow of f E  9. The 
adjoint of (a/ax)y,(xo) carries one forms at x'  to  one 
forms at xo according to the rule 

for o E 3. * ( M ) .  

sion 
This map also has a Campbell-Baker-Hausdorff expan- 

In particular, if w E H then the adjoint of (a/ax)y,(xO) 
carries d 9 ( X I )  into d 9 (x? so the dimension of d s3 (x1) is 
less than or equal to the dimension dg(x") .  A similar 
argument using the adjoint of (a/ax)y-,(x') shows the 
reverse inequality. 

Therefore, if xoWAx' then the dimensions of dG(x0)  
and dG (x1) are the same.  Since Z is  weakly controllable, 
this  implies that the dimension of ds?(x) is constant. 

Suppose dimd9 (x) = k then we apply Theorem 3.9 and 
identify strongly indistinguishable points. But Z weakly 
observable implies there are no strongly indistinguishable 
points so k must equal m. 0 

To relate the results of this section to the well-known 
linear theory, we consider the following. 

Example 3.11: Consider the linear system 

i = A x + B u  
y = c x .  

In Example 2.5 we saw that 3 was spanned by 
{ A x , A ' B , : r = O ; . . , m - l ,  j = l ; . - , , }  where B ,  de- 
notes thejth column of B .  Let C,, denote the ith row of C 
then for r 2 0, p 2 0 

L,,C,,yA'x= C , , A r f l x  

LArB*.Ci*APx=  Ci,Ar+PB *j 
I 

LAxC,,APB,= LArB C,,APB,=O. 
*J 

Therefore by the Cayley-Hamilton Theorem 9 is spanned 
bY 

and d s" ( x )  is spanned by 

Clearly dS(x) is of constant dimension. The observability 
rank condition reduces to the well-known linear observa- 
bility condition that 



rank = m. 

J 
If the observability rank condition fails then we define 

%(x) to be the constant linear space of column vectors 
orthogonal to dG(x). Two points xo and x' are H equiv- 
alent (or SI equivalent) if x' - xoE %(x) because 

a ( S ) = X O + S ( X I - X O )  

is a curve tangent to %(x) from xo to XI. Factoring M by 
' X ( x )  results in a locally  weakly observable system  which 
because of linearity is also locally observable ( S I =  I for 
linear systems). 

Example 3.12: Suppose the linear system is nonautono- 
mous as in Example 2.6. As in formula 2.1 we add time as 
a state variable which we can observe directly. Then 
direct calculation shows that the observability rank condi- 
tion  is equivalent to 

rank 

for every t E R where 

= m  

See [3] or [5]. 

ple 2.8 
Example 3.13: Consider the bilinear system of Exam- 

I 
i = A x +  x uiBix. 

i= I 

If M = R m  (or a subgroup of GZ(h,R)), let C be a n x m  
( n  X h) matrix and 

y = cx ,  

then 

G ={C,Dx: i= l ; . . , n ;  D x E ~ }  
dG = { C , D : i = l ; . - , n ;  D X € $ } .  
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IV. MINMALITY 

A linear system  is said to be minimal if it  is controllable 
and observable. As is  well known, two minimal linear 
systems initialized at 0 which  realize the same input-out- 
put  map differ only  by a linear diffeomorphism of the 
state spaces, [ I ] ,  [4]. A nonlinear system  which  is observ- 
able, weakly controllable and either analytic or symmetric 
is called minimal by Sussmann [29]. He has shown that 
two minimal nonlinear systems  which  realize the same 
input-output  map from their respective initial states differ 
only  by a diffeomorphism of the state spaces. 

A nonlinear system 2 is locally weakly minimal if it is 
locally  weakly controllable and locally  weakly observable. 
Two locally  weakly minimal realizations of a given in- 
put-output  map need not be diffeomorphic as is seen by 
Example 3.3, but the following theorem shows  they must 
be of the same state dimension which  is minimal over all 
possible realizations. 

Let 2, X' be two nonlinear systems  with control set 
52 = 52' c R' states spaces M and M' of dimension m and 
m' and  output with  values  in R" given by 

z : f = f ( x ,  u )  

Y = d x )  

2' : i =f ' ( z ,  u)  

Y =g'(z).  

Theorem 4.1: Suppose (2,xO) and (Z',zO) realize the 
same input-output map. If Z' is  locally  weakly minimal 
then m > m'. 

Proof: Without loss of generality we can assume that 
2' satisfies the controllability and observability rank con- 
dition at zo. (If not, by Theorems 2.5 and 3.11 we can find 
a control (u( t ) ,  [ to, t '1) and a corresponding Z' trajectory 
(z(t) ,[ro,t '])  with z(tO)=zo,  z(t ' )=z'  such that these con- 
ditions are satisfied at z l .  Moreover if x '  is the endpoint 
of the corresponding 2 trajectory then ( 2 , ~ ' )  and (Z ' ,z l )  
realize the same input-output map.) 

Since Z' satisfies the observability rank condition at zo 
we can find a neighborhood V of zo and functions 
Q&. . . ,g&. E G ' such that the map 

@'=col(gl;,. a .  ,&): V+R"' 

is a diffeomorphism into. 
Because X' satisfies the controllability rank condition, 

as in Theorems 2.1 and 2.2 we can find controls u l , .  . ,urn 
and corresponding vector fields f " ( z )   = f l ( z ,  ui) with  flows 
y't(z) such that the map 

*'(SI,. . + Jm) = y'Z O * . y':,(zo) 

is a diffeomorphism from some open subset S of the 
positive orthant of Rm' into M'. 

Let 'pi, @, f, yi,  be the corresponding objects of Z. 
Since @,x") and (2, z") realize the same input-output 

See [3] for further details. map C P o + = @ ' o ~ '  and so 
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