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Abstract 

We study the problem of observing the state of continuous nonlinear descriptor systems in quasilinear form and present 
a method to construcl a state observer. Our approach is based on rewriting the descriptor system as an equivalent sys- 
tem of (explicit) differential equations on a restricted manifold. Finally, the restrictions are replaced by measurement 
equations. Thus, an observer for the descriptor system can be constructed by common state space techniques for explicit 
systems. (~) 1997 Elsevier Science B.V. 
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1. Introduction 

Mathematical models of  electric circuits, of  inter- 
connected large-scale systems, o f  mechanical systems 
with holonomic or nonholonomic constraints or of  
robotic systems with kinematical constraints often re- 
sult in differential algebraic equations, also known as 
descriptor systems. The problem of  controlling and ob- 
serving linear descriptor systems has been intensively 
studied during the Fast years. See [1] and references 
therein. Controlling and stabilizing a class of  nonlin- 
ear descriptor systems which is suitable to describe 
robotic models are qaite well understood, see [ 10,6,5]. 
Literature concerned with the control aspect of  more 
general nonlinear de.scriptor systems is sparse. 

Here we will address the problem of  observing the 
state of  a nonlinear descriptor system. Commonly state 

* Correspondence address: Oberstr. 16, 45468 Miilheim, Ger- 
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observation is carried out by building a parallel sys- 
tem where the output of  the original system is used 
as an additional control input. The aim is to steer the 
state of  the parallel system asymptotically towards the 
state of  the original system (see e.g. [7]). Since non- 
linear descriptor systems may be algebraically incom- 
plete [9] it is not advisable to transfer this concept 
directly. Algebraic incompleteness causes difficulties 
in solving nonlinear descriptor systems numerically 
and thus entails problems implementing the parallel 
system. 

Our attempt is as follows: Based on [9, 8], we pro- 
pose a method to transform a regular descriptor system 
into a corresponding explicit differential equation on 
a reduced manifold. In a second step, we replace the 
restrictions that determine this manifold by additional 
measurements. The resulting system will be used as 
parallel system for the state observation, where we can 
carry on with well-known techniques to design state 
observers. 
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2. Preliminaries 

Let ~¢/C N~ denote an embedded submanifold, T J /  
the tangent bundle and 77~# the tangent space at ~ '  
in x E J¢'. 

We focus on nonlinear descriptor systems in quasi- 
linear form on .~# 

1. ~(~, S) :=  {x ¢ S I rank(D 7(x)) = q} is an open set 
in R ~. 

2. I f  there exists x ¢ ~ ( 7 , S )  with 7 ( x ) = 0  then 
.d/(7, S) :=  {x ~ ~.(7, S) ] 7(x) = 0} is a nonempty 
embedded C~-submanifold in ~ with dimension 
n - q .  

A(x)2 = f ( x ) ,  ( la )  

y = h(x), ( lb)  

x ¢ JC{, A ¢ C k ( R n, ~n x ,, ), f E C k (JR n, R n ) and h E 
Ck(N",R m) ( k > n ) .  We assume f ( 0 ) = 0  and 
rank(A(x))= q < n for all x E R ". (~o E C 1 (I, J¢/), I ) ,  I 
an open interval (not necessarily bounded), is called 
a solution of  the quasilinear descriptor system ( la )  
on ~# iffA(qo(t))(o(t)=f(~o(t)) for all t E I .  

Following Reich [8] we define 

Definition 1. Eq. ( la )  is called a regular system iff 
there exists an embedded submanifold ~ c d / /and  a 
vector field v E C(~' ,  TN') such that each solution o f  
the differential equation 2 = v(x), x E ~ ,  is a solution 
of  ( la)  and vice versa. 

is the configuration space o f ( l a )  and v is a cor- 
respondin# vector field of  (1 a). 

Two descriptor systems ( la )  and 

A#(w)~+ = f#(w),  

w E J///# C ~ ,  dim@/¢ #) ~<dim(J//) (2) 

are equivalent iff there exists a diffeomorphism 
u " N~-+N" and a mapping S : R ~--+l~rn~ n such 

that for any x E ~/,  X E TxJ¢ with u(x) E J¢/'# and 
X # :=Du(x)X E Tu(x)J/¢ #, 
1. f ( x )  = S(x) f#(u(x))  and A(x )X  =S(x)A#(u(x))  

(Du(x ) ) - lX  # and 
2. (u o ~o,I) is a solution of  (2) iff (~o,I) is a solution 

of  (la).  

I f  Definition 1 holds locally, we will use the terms 
locally as well. 

For a regular system ( la)  the configuration space 
and v restricted to ~ are unique [8]. Thus, a solution 
of  ( 1 a) passing through x ° ¢ ~/a t  time t = 0 is unique, 
too, and will be denoted by (x(. ; O, x °), Ixo ). 

Finally, the following lemma taken from [2] is 
needed: 

Lemmal. L e t  S C Nn be open, l <~ q < n  and 
E cr (s ,  ~q). 

3. Index and corresponding system 

Our first aim is to determine the configuration 
space and a corresponding vector field for a regular 
descriptor system (1 a). For this purpose we consider a 
p-dimensional embedded submanifold / / /  (1 ~ p ~< n) 
as being defined through 7CCk(N~,N" P) by 
._~ :=  {x E ~ ] 7(x) = 0}. We further assume 0 E -~¢/ 
and rank(DT(x))=n - p for all x E Nn. In the fol- 
lowing we will understand every statement as locally 
near x = 0. 

Lemma 2. Let A e Ck(R n, Nn×,,) with rank(A(x)) = 
q < n  for all xENn. Then for all x °EN"  there 
exists U(x °) C R ~, P E Ck(U(x°), Rr~e>~"), and Ai E 
Ck ( U (x°), R qx") such that 

For q = n - 1 the transformation matrix P can be 
chosen globally C k [12]. We focus on U = U(x °) and 
understand J/t as J//' N U whenever necessary. 

Multiplying (1 a) from the left by P( . )  according to 
Lemma 2 yields the system 

AI X) 2 =  \ f z l ( x )  ' x ¢ ~ # ,  (4) 

with 

P ( x ) f ( x ) =  f2,1(x) J ' 

fl,1 E c k ( e ~ q ) ,  f2,1 ¢ c k ( e ~ n - q )  • 

Eq. (4) is locally equivalent to (la).  Let 

/ [ DT(x) ") = rank(DT(x)) + rank(Df2, i(x)) rank 
Df2.1(x) ] k 

= n - -  p ÷ n - q ,  x ¢ ~  n. 



G. Zimmer, J. Meier I Systems & Control Letters 32 (1997) 43-48 45 

Then by Lemma 1 and the assumption f ( 0 )  : 0, the 
set J//l : = { x ~ J l f z , ~ ( x ) = O } = { x E R  ~ I "/(x) ---- 0, 
f2, l ( x ) =  0} locally defines a nonempty p - (n - q)- 
dimensional C"-submanitbld in Nn. 

Any solution ((p, I )  of  ( l a )  has to fulfill (p(t) E ~ l ,  
(t C I) .  If, on the othe, r hand, every x ° E J//l defines a 
solution x(. ; 0, x °) of  ( 1 a), then the algebraic restric- 
tion f2, t(x) = 0 uniquely determines the set of  suitable 
initial conditions for ( la) .  Thus ~ = ~'1. 

System ( l a )  is called algebraically complete iff 

We are mainly interested in systems which are not 
algebraically complete. Our aim is to reduce the mani- 
fold J¢/on which the descriptor system ( l a )  is defined 
and simultaneously enlarge the rank of  the matrix A 
on the left-hand side until the descriptor system can be 
related to an explicit system of  differential equations 
on the configuration ,';pace ~ .  

Consider the transformed system (4) and take the 
derivative off2,1 with respect to time. Then (4) yields 
the system 

AI(X) ~ 9~ : (.fl,;(X)) 
O f  2.1(x)J , x E -~1. (5) 

Eq. (5) is called a reduced system assigned to (1 a). 
Since for x E ~ 1 ,  f2,1(x)= 0 and Df2,1(x) is normal 
to TxJ/[1, (5) is locally equivalent to ( l a )  and thus 
(locally) regular. 

Definition 2. Eq. ( l a )  is called system of index 0 iff 
rank(A(x)) = n for all x E M(. Eq. ( l a )  is called system 
of index i E N iff 
1. rank(A(x)) = q < ~  for all x E ~/~, 
2. 

rank(Df2,1(x)DT(x) ) =  rank(DT(x)) + n - q 

for all x E ~ / ,  

3. the reduced system (5) is of  index i - 1. 

An index reduction automatically terminates after 
at most n steps. Thus;, a system with index i naturally 
reveals 0 ~< i ~< n. 

In the following we assume that ( l a )  is a system of  
index i and that 

Ai(x)2 = fi(x), x .~ JC/i, (6) 

Ai E ck-i(U, ~n×n), fi  E Ck-i(U, ~n), is a system 
obtained from ( l a )  by i index reductions. Then by 

definition of  i, Ai(x ) is nonsingular for all x E U. 
Inverting Ai yields the system 

Sc = A i ( x ) - l  f , ( x ) ,  

x E J//[i = {x E J// I f 2 , 1 ( x ) = O  . . . . .  f 2 , i ( x ) = O }  

=: f ( x ) =  {x E ~"lT(x)=O, fz, l(x) 

= 0 . . . . .  fz, i(x)=O}. (7) 

Eq. (7) is called a differential equation corresponding 
to ( la) .  

Eq. (7) is equivalent to ( la) .  Since ( l a )  is a reg- 
ular descriptor system by assumption, ~ i  is (a sub- 
set of )  the configuration space ~ and f a vector field 
corresponding to ( la) .  Eq. (7) is obtained from ( l a )  
by differentiation and algebraic operations. No state 
transformation is involved! 

Note that our reduction algorithm is a generaliza- 
tion of  the reduction introduced by Rheinbold [9]. In 
contrast to [9] we avoid an algebraically overdeter- 
mined system and our reduction algorithm results in 
a system of  explicit differential equations. 

4. An observation system for a descriptor system 

In linear system theory one distinguishes between 
~-observabil i ty,  impulse-observability and (com- 
plete) observability [1]. Since ( l a )  is a system without 
inputs we will restrict our attention to the dynamics 
in the reachable set. Thus, we are not interested in the 
impulse behaviour of  the system. Following [1, 4] we 
define: 

Definit ion3.  (1) System ( l a )  is observable in 
the reachable set (~-observable) iff for any 
x l , x Z E ~ ,  x l C x  2, there exists T > 0  such that 

Y(' ;  0,xf )qE0.rl ~ Y(" ; 0,X2)IEo rl" 
(2) System ( l a )  is weakly observable in the reach- 

able set (weakly ~-observabIe) iff for any x E ~ ,  
there exists e > 0  such that for any xl ,x  2 E ~ ,  x x C x 2 
and [i x -x i [ ]  < e  (i = 1,2) there exists T > 0  such that 

Y(" ; 0 'xl  )lto rl ~ Y(' ;  0'X2)llo, rl" 

We define a state observer for ( l a )  as: 

Definition 4. Let ~ C ~ be a submanifold o f ~  which 
is invariant with respect to ( 1 a) and let x(t; 0, x °) exist 
for all x ° E ~ and all t > 0. 

2: ~ x ~n x C(~,Rm)---~ ~n is called a state ob- 
server for ( l a )  on ~ iff there exists e > 0  such 
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that for any x ° E ~  and any 2 0 • N~, Ilx ° -  °11 <~: 
l i m t ~  IIx(t; 0,x °) - ~?(t; ~o, y(. ; 0,xO))ll = 0. 

According to Definition 4, )? is not restricted to ~ .  
I f  ( l a )  is a system with index i and (7) is a dif- 

ferential equation corresponding to (1 a), we define an 
observation system corresponding to ( la) as 

= f(z), 
[ h(z) ) 
I 7(~) 

v = [ f 2 , 1 ( z )  

\ f~,~(z) 

=: ~(z), zeU. 
(8) 

.for (8) on JU then ~?: ~ x ~n × C(~,  ~m)__+ Rn de- 
fined by 

is a state observer for ( l a )  on ~. 

Proof.  By Definition 4, z(t; 0, z °) exists for all z ° E A r 
and t >0 .  Le tx  ° C ~ and 2 0 ¢ ~V" with II x°- )?°11 <~, 
according to Definition 3. Then z(t; O,x °) = x ( t ;  0,x °) 
and thus z ( t ;O , x ° )E~  for all t > 0 ,  as well as 
v(t;O,x °) = (y(t;  0,x°), 0) T for all t > 0 .  By assump- 
tion, limt__. ~¢ [Iz(t; 0, x °) - 2(t; 2o, v(. ;0 ,x  °))[I = 0 
which concludes the proof. [] 

z is used to denote the state in (8) in order to distin- 
guish easily between the state of  the original descriptor 
system and the state of  the corresponding observation 
system. 

Theorem 1. Let A E Ck(~ ~, Rn×~), f E Ck(~ ~, ~n), 
and ( l a )  a system of  index i with configuration 
space ~ C  R n. The nonlinear descriptor system 
( l a )  is weakly observable in ~ i f  the correspond- 
ing observation system (8) is weakly observable in 
a neighborhood of  ~ in ~n. 

Proof.  Trivial. [] 

Using Theorem l we propose the following way to 
observe the state of  a nonlinear descriptor system ( 1 a). 

First we determine an observation system corre- 
sponding to ( 1 a) and check whether the corresponding 
system (8) is observable. A state z in the configuration 
space ~ would reveal an output v = (h(z), 0) T. Since 
the state x of  the descriptor system ( l a )  naturally is in 
~ ,  the output y o f ( l a )  and the output v o f ( 8 )  become 
compatible if  y is augmented with "0" to match the di- 
mension ofv.  I f a  state observer 2(. ; . , . )  for (8) exists, 
the observer state £ will asymptotically approach the 
state x of  the descriptor system ( l a )  if the augmented 
output (y(.  ;0,x°),  0) v is used as the third input for 

2(.;  -, .). I f  an observer output in ~ is required, the ob- 
servation of  (8) may be followed by a projection of  2 
onto ~ ,  e.g. )? = ~ ' ( 2 ) : =  arg minx¢ ~ I[x -211 

Theorem 2. Let A E Ck(~ n, ~nxn), f E Ck(~ n, ~n), 
and ( l a )  be a system of  index i with configuration 
space ~ C ~n and let zV be a neighborhood o f  ~ in 
R ~. I f2: R × ~ × C(~,~M)---~ ~ isastateobserver 

5. An example 

The applicability of  the proposed observer design 
will be demonstrated for a system, which describes 
a two-link robot manipulator with its end effector fixed 
to a circular motion. The dynamics of  the manipulator 
are given by 

M(O)O = -C(O, O) - k(O) + z(t) + JT(O)f,  (9) 

with angles 0 E ~2. The restriction to the circular mo- 
tion with center c E ~2 and radius r E ~+ is given by 

? ( ~ ) : - - - - I I q - c l l ~ -  r 2 = / ~ ( / 4 ( 0 ) ) = r ( 0 ) = 0 ,  (10) 

where H(O) denotes the transformation from link co- 
ordinates to Cartesian coordinates. 

Together with the measurement y = 01, (9) and (10) 
yield the system 

M(O) 0 

0 0 

= -C(O, co) - k(oJ) + z(t) + JT(o)DT(O)2 , 
r(o) 

( l l a )  

y = 0 l ,  ( l l b )  

with angle velocities co = 0 E ~2, and normal contact 
pressure 2 E ~ between end effector and circle. 

Since ( l l a )  is a system described by Euler-  
Lagrange equations with a holonomic (geometric) 
constraint, ( l l a )  naturally reveals (global) index 3 
[3, 9]. With x = (0, ~o, 2) z, index reduction according 
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Fig. I. State observation without projection onto ~, Ile[[ =(~,~_0(xi -_~i)2)1/2. 
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to Section 3 yields the additional constraint equations 
0 = F(l)(x) and 0 = F(2)(x). We obtain the configura- 
tion space 

= {x • ~s I r ( x )  = r (~)(x) = V(2}(x) = O} 

and the corresponding observation system 

-1 

0 M(O) 0 
~F(2)(.v) 0V(2)(x) 0F(2)(x) 

90 ~a~ a2 

-C(O, oo) - k(c9) + r( t )  + JT(o)DT(O)2 

Or(t) 
at 

y : ( O 1 ,  V(x),  F(1)(x), V(2)(x)) T. 

For a simulation we choose the initial condi- 
tions 01 =3r t /3  and (J)l = 0 .  Considering the con- 
straints implied by ~ ,  the resulting initial state 
is x°=(1 .1780,0 .7636,0 ,0 ,4 .7895)  T. The implicit 

torque was set to 

( - - p lO l  -- 1.178 
--p202 ) " 

"~ = M(O)  

The state observation was carried out with the nonlin- 
ear state observer described in [ 11 ]. Fig. 1 depicts the 
results obtained by a state observation without projec- 
tion onto N. 

6. Conclusions 

In this paper we proposed a way to observe the state 
of  a nonlinear descriptor system given in quasilinear 
form. It was shown that the problem of  observing 
the state of  the descriptor system can be transformed 
into the problem of  observing the state of  a nonlinear 
system with an explicit differential equation. The 
transformation of  the problem is carried out by dif- 
ferentiations and algebraic manipulations. No nonlin- 
ear state transformation is required. 

Once the problem is rewritten, the actual state ob- 
servation can be carried out by using an arbitrary non- 
linear state observer for an explicit nonlinear system. 
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