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Condition monitoring is an important prognostic tool to determine the current operation status of a system/device and to estimate the
distribution of the remaining useful life. This article proposes a two-phase model to characterize the degradation process of rotational
bearings. A Bayesian framework is used to integrate historical data with up-to-date in situ observations of new working units to
improve the degradation modeling and prediction. A new approach is developed to compute the distribution of the remaining useful
life based on the degradation signals, which is more accurate compared with methods reported in the literature. Finally, extensive
numerical results demonstrate that the proposed framework is effective and efficient.
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1. Introduction

Modern engineering systems are overwhelmingly complex
because of increasing requirements on their functionali-
ties and qualities. These systems often have a high stan-
dard of system reliability because a single failure can lead
to catastrophic consequences with profound impacts, ex-
treme costs, and potential safety hazards. Therefore, effec-
tive methods that can predict and prevent system failures
have long been sought. Unfortunately, traditional ways to
predict system failures often fail in practice (Pecht, 2008)
because knowledge about the failure mechanism is limited
or even unknown in complex systems.

At the same time, the fast development of information
and sensing technologies provides us with tremendous
opportunities to develop a new set of methodologies to
maintain a reliable and healthy system. In situ sensing data
are often collected and analyzed during system operations
to characterize and predict a system’s health condition
(Nelson, 1990), to prepare necessary preventive mainte-
nance (Wang, 2007; Chen et al., 2011; Wang et al., 2012),
or even to plan burn-in for future products (Ye, Shen, and
Xie, 2012; Ye, Xie, Tang, and Shen, 2012). Built on these
real-time sensing data, condition monitoring methods
use statistical models to emulate the physical degradation

∗Corresponding author

processes. They have been shown to be more flexible and
widely applicable compared with physical models that
rely on thorough knowledge of the failure mechanisms.
Methods in condition monitoring can be classified into
two categories depending on whether or not the health
state of the systems are directly observable. In the first
category where the health state is not directly observable,
different models (Kumar and Klefsj, 1994; Baruah and
Chinnam, 2005) are used to link other observable signals or
environmental/operational factors with the unobservable
health state to predict the Remaining Useful Life (RUL).
In the second category where the health state is observ-
able, evolution of the health condition is often directly
characterized using random coefficient models, Brownian
motion, gamma processes, etc. (Doksum and Hyland,
1992; Lu and Meeker, 1993; Park and Padgett, 2005; Si
et al., 2012; Ye, Xie, Tang, and Chen, 2012). Si et al. (2011)
provided an excellent review of both categories of methods
to predict the RUL using condition monitoring data.

In this article, we investigate the condition monitoring
and RUL prediction of rotational bearings. The bearing
degradation is manifested by the magnitude of vibration
during rotation. After the bearing is installed, it will ex-
perience an initial stable stage, in which the vibration is
slight. However, its degradation becomes more and more
severe after an unknown change point, and the vibra-
tion magnitude increases dramatically and has large vari-
ability. The bearing is considered to have failed once its
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Fig. 1. Vibration signals of three bearings. The x-axis is the work-
ing time of operations and the y-axis is the magnitude of the vi-
bration (average of signal magnitudes at seven different harmonic
frequencies as used in Gebraeel et al. (2005)). The horizontal dot-
ted line represents the failure threshold (color figure provided
online).

degradation exceeds a predetermined threshold. However,
different bearings often have different change-point loca-
tions and large variability in the increment rates of vibration
magnitude, despite the similar shapes of their degradation
paths, as illustrated in Fig. 1. Gebraeel et al. (2005), among
other notable works, proposed a Bayesian framework to
model this type of degradation signal. They used an expo-
nential model with random coefficients to characterize the
evolution of the degradation signal after the change point:

Lj ≡ log[S(tj ) − δ] = a + b × tj + ϵ j , (1)

where S(tj ) is the vibration magnitude observed at time
tj , δ is a known constant, a and b are model coefficients
(parameters), and ϵ j is the corresponding error term. In
the Bayesian framework they developed, a and b are ran-
dom variables that follow certain prior distributions, and ϵ j
follows an independent and identically distributed (i.i.d.)
normal distribution. When the vibration signals are ob-
served, the posterior distribution of a, b can be computed.
The model (1) with parameters following the posterior dis-
tribution P(a, b|L1, L2, . . . , Ln) is expected to more ac-
curately characterize the degradation of the device, from
which L1, L2, . . . , Ln are observed. The Bayesian method
they used leads to a simple yet effective way to fuse the
information between historical data and sensing signals
of the current working unit. Other representative works
along the similar line can be found in Gebraeel (2006) and
Chakraborty et al. (2009).

There are several aspects of current approaches that can
be improved. First, existing works often start condition
monitoring after the change point of the degradation as if

the exact location of the change point is known. However,
the change points usually vary between units significantly,
as clearly illustrated in Fig. 1. By considering the distribu-
tion of the change point, we may be able to predict the RUL
right after its installment. Second, the variance of ϵ j is often
assumed to be the same among different units. However, it
is not uncommon in practice that units are heterogeneous,
leading to different variations in the degradation paths,
again demonstrated in Fig. 1. Consequently, appropriate
modeling of the variance heterogeneity is also expected to
improve the prediction accuracy. Third and most impor-
tant, in the Bayesian framework, the predictions of degra-
dation at different future times are correlated even if the
past observations are i.i.d. because they are predicted using
the same posterior distribution of the model parameters. If
the correlation among future predictions is not considered
appropriately, the distribution of RUL might be inaccurate.
In this article, we improve these aspects while modeling the
degradation of bearings. We propose a two-phase thresh-
old model to explicitly account for the different phases of
the degradation. When new observations are available, we
update the posterior distributions of the model parameters
including regression coefficients and the variance of the er-
ror term using Bayesian methods. We also propose a new
approach, which takes the correlations among degradation
predictions into consideration, to compute the RUL distri-
bution with better accuracy. We would like to stress that
our approach can be naturally extended to more general
degradation models. For example, it can be applied when
the degradation path is non-linear, by choosing appropriate
basis functions in the linear model (De Boor, 2001).

The rest of the paper is organized as follows. Section 2
presents the degradation model, and illustrates the overall
framework of the condition monitoring. Section 3 discusses
how to specify the prior distributions of the model param-
eters. Section 4 presents technical details on how to update
the model parameters and predict the RUL of a new work-
ing unit using the Bayesian method. Section 5 demonstrates
the effectiveness of the proposed method using numerical
simulations and examples from a real dataset. Section 6
concludes the article with discussions on future research.

2. Two-phase degradation model

In this article, we propose a two-phase degradation model
to explicitly account for the change point of the degrada-
tion. Models with change points are commonly used when
there are distinguished phases in the degradation signals
(Bae and Kvam, 2006; Ng, 2008) or hazard rates (Loader,
1991; Lin, 2008; Yuan and Kuo, 2010). In our approach,
we adopt a similar piecewise log-linear model as that used
by Bae and Kvam (2006), but we use the Bayesian approach
to update the model parameters and make predictions.

We denote Li j as the (transformed) degradation signal
of unit i observed at time ti j . We can express the two-phase
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Fig. 2. Flowchart of model updating and RUL prediction in condition monitoring. The dashed line and box indicate other useful
tasks that are not included in this article.

degradation model as

Li j = ln[S(ti j ) − δ]

=
{

ai1 + bi1ti j + σi1ϵi j , ti j ≤ γi

ai2 + bi2 × (ti j − γi ) + σi2ϵi j , ti j > γi
, (2)

where ϵi j follows i.i.d. standard normal distribution;
ai1, ai2, bi1, bi2, σi1, σi2 are the parameters in each of the
two phases in the degradation of unit i ; γi is the random
variable denoting the change point of unit i . By setting
γi = 0, and σi2 the same for all i , our model reduces to
the simpler model considered in Gebraeel et al. (2005)
and Gebraeel (2006). From Fig. 1, we can find that in the
degradation of rotational bearings, usually bi1 is close to
zero, and σi1 << σi2. In the following, we denote βi1 =
[ai1, bi1]T,βi2 = [ai2, bi2]T, θi = [βT

i1, σi1,β
T
i2, σi2]T for no-

tation simplicity.
To improve the modeling accuracy, we use the Bayesian

approach to integrate the historical data with sensing ob-
servations of a working unit. Historical information on the
degradation of failed units provides information on the pos-
sible values of the model parameters θi , γi of the same type
of units. The in situ sensing observations make the model
parameters more and more accurate toward the true value
of the particular working unit. In more detail, we assume
the model parameters θi , γi are random variables follow-
ing a common prior distribution with density π(θi , γi ),
which can be learned from historical data. When sensing
observations from a new working unit i are available up
to current time τ , we can update the posterior distribution
of the parameters θi , γi using the Bayes formula (Gelman
et al., 2004):

P(θi , γi |Li (τ )) ∝ P(Li (τ )|θi , γi ) × π(θi , γi ), (3)

where Li (τ ) ≡ [Li1, Li2, . . . , Li j ], ∀ti j ≤ τ are the obser-
vations of the degradation magnitude, and P(Li (τ )|θi , γi )
is the likelihood function based on model (2). Using the
sensing information Li (τ ) allows the model with updated
parameters to better fit the degradation of unit i . In ad-
dition, to compute the RUL, we can also predict future

degradations Lik, ∀tik > τ of the unit i based on its up-
dated degradation model:

P(Lik|Li (τ ))

=
∫

P(Lik|θi , γi , Li (τ )) × P(θi , γi |Li (τ ))dθi dγi . (4)

The overall work flow of condition monitoring, including
model updating and RUL prediction, is illustrated in Fig. 2.

Despite the simple and straightforward formulation,
direct computation of Equations (3) and (4) is time-
consuming because it involves multi-dimensional integra-
tions, and require long Monte Carlo simulation times to
achieve an acceptable accuracy. Therefore, they are pro-
hibitive in real-time condition monitoring. Clearly, we need
a less computationally demanding way to update the degra-
dation model and predict RUL efficiently. Targeting on this
gap, we propose an empirical Bayes approach to mitigate
the computational load through proper selection of the
prior distributions and an efficient strategy for the updat-
ing of the model.

3. Specification of priors

Prior information is a unique and important component
in the Bayesian framework. It offers the opportunity to
effectively integrate domain knowledge or past experience
with newly observed data. Accurate and informative priors
can improve the accuracy of the degradation model when
observations of the working unit are limited. In practice,
priors can be derived from domain knowledge and expert
experience or can be estimated from historical data. In this
article, we take the objective approach by estimating the
priors from historical degradation data of failed units, in a
similar manner to Gebraeel (2006).

Assuming the prior distribution can be expressed as a
parametric model π(θ, γ |ζ) with hyper-parameters ζ, the
empirical Bayes method can be adopted to estimate these

D
ow

nl
oa

de
d 

by
 [L

in
kö

pi
ng

 U
ni

ve
rs

ity
 L

ib
ra

ry
] a

t 0
7:

53
 2

6 
Fe

br
ua

ry
 2

01
5 



942 Chen and Tsui

hyper-parameters by maximizing the marginal likelihood:

ζ̂ = arg max
ζ

I∏

i=1

∫
P(Li |θi , γi ) × π(θi , γi |ζ)dθi dγi ,

where Li = [Li1, Li2, . . . , Lini ]
T is the historical degrada-

tion of unit i , ni is the number of observations of degra-
dation, and θi , γi are the parameters of the degradation
model of unit i . Unfortunately, if the model is complex or
if the parametric form of the prior distribution is incor-
rect, this method may not perform well. In this article, we
propose an alternative approach to estimate the prior distri-
bution. Instead of maximizing the marginal distribution of
the historical data, we consider the Maximum Likelihood
Estimates (MLEs) of their model parameters θ̂i , γ̂i of each
unit for i = 1, 2, . . . , I, as samples from the prior distribu-
tions. Subsequently, we can estimate the prior distributions
using distribution selection and fitting techniques such as
histograms or χ2 goodness-of-fit tests.

Compared with the model in Gebraeel et al. (2005), the
MLE in our model is more complicated due to the discon-
tinuity introduced by the change-point parameter γi . By
definition, the log-likelihood function given observations
Li of unit i can be written as

l(θi , γi |Li )

=
ni∑

j=1

[
−1

2
ln

(
2πσ 2

i1

)
− (Li j − ai1 − bi1ti j )2

2σ 2
i1

]

× I(ti j ≤ γi )

+
ni∑

j=1

[
−1

2
ln

(
2πσ 2

i2

)
− (Li j − ai2 − bi2ti j + bi2γi )2

2σ 2
i2

]

× I(ti j > γi ), (5)

where I(·) is the indicator function, which equals one when
the condition is true and zero otherwise. It is difficult to
directly maximize Equation (5) due to the discontinuities.
Instead, we can consider the likelihood conditioned on γi ;
i.e., l(θi |Li , γi ). With fixed γi , the parameters ai1, bi1, σi1,
and ai2, bi2, σi2 are well separated in the likelihood function
and can be estimated using standard linear regression re-
sults (Seber and Lee, 2003). We can obtain the closed-form
solution of βim and σim for m = 1, 2 that maximizes the
l(θi |Li , γi ) as

β̂im =
(
XT

imXim
)−1 XT

imYim,

σ̂ 2
im = 1

nim
(Yim−Ximβ̂im)T(Yim − Ximβ̂im), m = 1, 2, (6)

where ni1 =
∑ni

j=1 I(ti j ≤ γi ), and ni2 = ni − ni1 are the
number of observations in each degradation phase

respectively; and the matrices are defined as

Yi1 = [Li1, Li2, . . . , Li⌊γi ⌋]
T, Yi2 = [Li⌈γi ⌉, . . . , Lini ]

T

Xi1 =
[

1, 1, . . . , 1
ti1, ti2, . . . , ti⌊γi ⌋

]T

,

Xi2 =
[

1, . . . , 1, 1
ti⌈γi ⌉ − γi , . . . , ti (ni −1) − γi , tini − γi

]T

(7)

where ⌊γi⌋ (⌈γi⌉) are the largest (smallest) integer such that
ti⌊γi ⌋ ≤ γi (ti⌈γi ⌉ > γi ). It is worth mentioning here that the
quantities β̂im, σ̂im, nim are functions of γi . Here we do not
explicitly express this dependence to avoid tedious notation.
The conditional maximum log-likelihood, which is defined
as M(γi ) = maxθi l(θi |Li , γi ), can therefore be expressed as

M(γi ) = −
2∑

m=1

[nim

2
+ nim

2

× ln
2π

∥∥Yim − Xim
(
XT

imXim
)−1 XT

imYim
∥∥2

nim

]

, (8)

where ∥ · ∥2 denotes the L2-norm of a vector. It can
be proved that γ̂i = arg max M(γi ) together with θ̂i =
arg max l(θi |Li , γ̂i ) jointly maximize the likelihood func-
tion in Equation (5). From the derivation, we can find that
Xim, Yim only change when γi crosses some observation
point ti j . Therefore, M(γi ) is a stepwise constant function
with at most ni + 1 different values. Hence, γ̂i exists and
is finite. We would like to point out that there also exist
other methods to determine the location proposed by γi ,
such as those of Lai (1995) and Siegmund and Venkatra-
man (1995). However, to limit this scope of this article, we
do not further discuss alternative methods.

We can use the maximum likelihood estimates (θ̂i , γ̂i )
for all the units i = 1, 2, . . . , I that failed in the past to
estimate the prior distribution. In our model, the prior
distribution is multi-dimensional and requires a very large
number of samples to estimate without any constraints.
Given the limited number of historical samples, we need to
simplify the prior distribution by assuming the conditional
independence of the model parameters between two phases:

π(θi , γi ) = π(γi )π(βi1, σi1|γi )π(βi2, σi2|γi ). (9)

Additionally, for certain prior distributions, or so-called
conjugate priors, the posterior distributions can be read-
ily obtained without numerical integration. This feature is
extremely important in condition monitoring since timely
update of the degradation model is highly desired. There-
fore, in this article, we also prefer using conjugate priors
for efficient model updating. Based on our model, we can
specify the priors as

π(βim, σim|γi )=π
(
βim

∣∣σ 2
im, γi

)
π

(
σ 2

im

∣∣γi
)

= N
(
µm, σ 2

m!m
)
×SIχ2 (

vm, s2
m
)
, m = 1, 2,
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where N(µm, σ 2
m!m) is a normal distribution with density

function:

f
(
β; µm, σ 2

m!m
)

= 1

(2π)κ/2σ
κ/2
m (det !m)1/2

× exp

[

− (β − µm)T!−1
m (β − µm)

2σ 2
m

]

,

where κ is the dimension of β. SIχ2(vm, s2
m) is the scaled

inverse χ2 distribution with density:

f
(
σ 2; vm, s2

m
)

=
(
vms2

m
/

2
)vm/2

)(vm/2)
(σ 2)−(vm/2+1) exp

[
−vms2

m

2σ 2

]
.

Here )(·) is the gamma function, and µm, !m, vm, s2
m, m =

1, 2, are the hyper-parameters that need to be estimated
to specify the prior distribution π(βim, σim|γi ). We can es-
timate these hyper-parameters using MLE based on the
samples (θ̂i , γ̂i ), i = 1, 2, . . . , I from historical data.

Compared with the distribution π(βim, σim|γi ), π(γi ) can
be more flexible. Possible candidates include uniform distri-
bution, normal distribution, exponential distribution, etc.,
and can be determined from the historical data by certain
goodness-of-fit tests.

4. Bayesian approach for updating and prediction

In this section, we discuss how to update the model param-
eters and predict the RUL of a new working unit at any
time point based on its sensing observations. If we assume
that different units work independently, their updating and
prediction procedures are the same and can be done inde-
pendently. Therefore, we omit the unit index i hereafter in
this section. In addition, we consider the updating and pre-
diction at a single time τ . However, this procedure can be
repeated at multiple different times when new observations
are available.

4.1. Parameter updating

When the unit is in operation, and its degradation signals
have been observed periodically until current time τ , we
can update the degradation model of the unit by computing
the posterior distribution of its parameter θ, γ . This model
updating can be performed at any time and should be done
regularly as more sensing observations become available.

We denote the degradation magnitudes of the work-
ing unit at time 0 ≤ t1 < t2 < · · · < tn < τ as L =
[L1, L2, . . . , Ln]T. Using the Bayes formula we have

P(θ, γ |L) ∝ P(L|θ, γ ) × π(θ, γ ).

However, computing this posterior distribution is time-
consuming, which is not suitable for real-time condition
monitoring. To reduce the computational load, we employ
a two-step empirical Bayesian method (Carlin and Louis,

2000). Specifically, in the first step, we identify the most
probable location of the change point or the most probable
region it locates using the posterior mode γ̃ of P(γ |L). In
the second step, we consider γ̃ as the real change point and
perform the updating of θ using P(θ|L, γ̃ ). In practice, as
the number of observations increases, P(γ |L) concentrates
more and more around γ̃ . Therefore, this approximation
becomes more accurate in subsequent updates. Figure 3 il-
lustrates the posterior distribution P(γ |L) at two different
updating times. In the left-hand part, the model is updated
when the degradation is still in the first phase. The poste-
rior mode is equal to the last observation time tn, which
indicates that no change point is suspected in the previous
observations. In the right-hand part, the model is updated
when the degradation has already entered the second phase.
The posterior mode is able to find the real change point.

After γ̃ has been identified, we can further compute the
posterior distribution of θ. Instead of integrating out γ
given the unit’s degradation observations L, we use a point
mass distribution at γ̃ to approximate the conditional dis-
tribution P(γ |L); that is,

P(θ|L) =
∫

P(θ, γ |L)dγ

=
∫

P(L|θ, γ ) × π(θ|γ ) × π(γ )
P(L)

dγ

=
∫

P(L|θ, γ ) × π(θ|γ )
P(L|γ )

× P(γ |L)dγ

≃ P(L|θ, γ̃ ) × π(θ|γ̃ )
P(L|γ̃ )

. (10)

The last approximation in Equation (10) is valid because
P(γ |L) concentrates around γ̃ with a reasonable sample
size, as shown in Fig. 3. Using this empirical Bayes approx-
imation, the posterior distribution of θ can be computed
using Theorem 1 (the proof is included in Appendix A1).

Theorem 1. Given γ̃ , the posterior distributions
P(β1, σ1|L, γ̃ ) and P(β2, σ2|L, γ̃ ) are independent.
And for m = 1, 2, P(σ 2

m|L, γ̃ ) follows scaled inverse χ2

distribution with parameter ṽm = vm + nm and

s̃2
m =

[
vms2

m + YT
mYm + µT

m!−1
m µm

− µ̃T
m(XT

mXm + !−1
m )µ̃m

]
/ (vm + nm).

And P(βm|σ 2
m, L) follows normal distribution with

mean µ̃m = (XT
mXm + !−1

m )−1(XT
mYm + !−1

m µm) and vari-
ance σ 2

m(XT
mXm + !−1

m )−1. The matrices Xm, Ym are deter-
mined through Equation (7) with γi substituted by γ̃ .

From the procedure, we can find that the overall up-
dating rules only need some matrix operations, which are
efficient and suitable for real-time updating. In practice, we
can update the model upon arrival of every new observa-
tion or a group of observations depending on the sampling
frequency of the data as well as the variability of the data.
We would like to point out that when γ̃ is equal to the
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Fig. 3. Posterior probability of the location of the change point at different times. The upper panels are the degradation observations
up to two time points, and the bottom panels are the corresponding posterior probability P(γ |L) (color figure provided online).

last observation time, i.e., γ̃ = tn, we have Y1 = L, Y2 = 0.
Therefore, it is not necessary to update the parameters in
the second phase since no observations from there are avail-
able. However, this does not imply that the real change point
is likely to be around tn. In fact, it can only indicate that
the real change point is likely to be larger than tn. In other
words, P(γ |L) cannot be approximated by a degenerated
point mass distribution at γ̃ . It might be approximated by
the conditional distribution π(γ |γ > γ̃ ) instead. Although
this difference will not influence the updating rule of θ,
it will change the prediction of RUL, as discussed in Sec-
tion 4.2.

4.2. RUL prediction

After the degradation model of the working unit is updated
using the available sensing information, we can predict the
degradation magnitude at any specified time in the future.
Since the updated model integrates both prior information
and its own specific degradation feature, it is expected to
provide more accurate and “customized” predictions. Un-
like the degradation model where the variance of ϵ is treated
as a constant, the distribution of the predicted degradation

is no longer normal. Additionally, the two-phase model
adds another dimension of complexity in RUL prediction.

In the model updating, there are two scenarios depend-
ing on the estimated location of the change point γ̃ . These
two scenarios have different prediction procedures. First,
we consider the case when γ̃ < tn, which means the degra-
dation has entered in the second phase at time tn. If the
empirical Bayes approximation is valid—in other words,
γ̃ is close to the real change point—the prediction only
depends on γ ,β2, σ2 according to our degradation model
(2). Consequently, the predicted degradation magnitudes
at a set of future observation times can be computed, based
on which the distribution of the RUL can be obtained.
Specifically, if we assume that the unit can only fail over an
arbitrary countable set of time points (e.g., the inspection
times, or the periodical sensing times), we can compute the
RUL distribution analytically, as stated in Theorem 2 (the
proof is included in Appendix A2). It is worth noting that
this assumption is not restrictive in practice and is imposed
only to avoid mathematical difficulties. In fact, when the
interval between neighboring time points is small, it would
be accurate enough from a practical point of view even if
the failure time is continuously distributed.
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Theorem 2. Given the collection of possible failure times af-
ter current time τ , Tτ = {Tk|k = 1, 2, . . . , Tk > τ ≥ γ̃ }, the
RUL distribution P(Rτ ≤ Tk − τ |L) = 1 − MTk(K) where
Rτ denotes the RUL at time τ ; K is k-dimensional vector
with each entry K denoting the failure threshold; MTk(·) is
the cumulative distribution function of a k-dimensional mul-
tivariate t distribution with degree of freedom ṽ2, mean X̄µ̃2
and squared scale matrix s̃2

2 [I + X̄(XT
2 X2 + !−1

2 )−1X̄T]. X̄ is
the matrix defined as

X̄T =
[

1, 1, . . . , 1
T1 − γ̃ , T2 − γ̃ , . . . , Tk − γ̃

]

2×k
.

Theorem 2 provides a way to compute the distribution
of RUL at any given time point τ . One distinct feature here
is that the correlations among predicted values at different
time points are considered even though the the observations
are assumed independent. This feature improves the predic-
tion accuracy of RUL compared with traditional methods,
as demonstrated in Section 5.

In the second scenario, i.e., γ̃ = tn, the prediction is more
complicated since we need to consider the possible locations
of the unknown change point. As discussed in Section 4.1,
we can use π(γ |γ > γ̂ ) to approximate the posterior dis-
tribution P(γ |L). First, we consider the prediction of the
degradation magnitude LTk at a single future time point
Tk > τ . Depending on whether Tk is before or after the (un-
known) change point, we need to predict using different
phases of degradation model:

P(LTk|L) =
∫ ∞

Tk

P(LTk|β1, σ1) × P(β1, σ1|L, γ )

× π(γ |γ > γ̃ )dγ

+
∫ Tk

γ̃

P(LTk|β2, σ2) × P(β2, σ2|L, γ )

× π(γ |γ > γ̃ )dγ . (11)

Since the observations L are only available up to tn = γ̃ ,
the posterior distributions of the model parameters θ will
be the same given L regardless the true change point γ .
Consequently, according to the similar derivation in the
proof of Theorem 2, Equation (11) becomes a mixture of a
t-distribution with weight ω1 =

∫ ∞
Tk

π(γ |γ > γ̃ )dγ for the
prediction based on the first phase and ω2 = 1 − ω1 for the
second phase, respectively. However, it becomes intractable
to find the joint distribution of the degradation magnitudes
at multiple future time points, though a similar reasoning
still applies.

In practice, as demonstrated in Fig. 1, the degradation
can hardly cross the failure threshold when the unit is still
in the first phase. Equivalently, we can say that the failure
time is almost certainly larger than γ . Therefore, the RUL
over the set of possible failure times after τ , Tτ = {Tk|k =

1, 2, . . . , Tk > τ }, can be computed as

P(Rτ > Tk − τ |L)
= P(LT1 ≤ K, LT2 ≤ K, . . . , LTk ≤ K|L)

≃
k∑

s=1

∫ Ts

Ts−1

P(LTs ≤ K, LTs+1 ≤ K, . . . , LTk ≤ K|L, γ )

× π(γ |γ > γ̃ )dγ +
∫ ∞

Tk

π(γ |γ > γ̃ )dγ , (12)

where we define T0 = γ̃ for notational simplicity and use
LTs to denote the degradation at time Ts . We can compute
P(LTs ≤ K, LTs+1 ≤ K, . . . , LTk ≤ K|L, γ ) using Theorem
2, which is a multivariate t distribution with corresponding
parameters. Consequently, Equation (12) becomes a mix-
ture of k + 1 multivariate t distributions, with the last one
degenerating to a point mass distribution. Clearly, it re-
quires more computational effort compared with that in
the first scenario, which is the price paid for the unknown
change point.

5. Numerical analysis and experimental results

In this section, we first use a real dataset containing degra-
dation data on rotational bearings as an example to illus-
trate the overall procedures of the condition monitoring
using the proposed framework. Then a simulation study
is conducted to quantitatively evaluate the performance of
the proposed method.

5.1. Degradation monitoring of rotational bearings

We consider the condition monitoring of rotational bear-
ings, as discussed in the Introduction. The dataset was first
studied by Gebraeel et al. (2005) and subsequently used in
Gebraeel (2006) and Gebraeel and Lawley (2008). Twenty-
five bearings with complete records of their vibration sig-
nals are available. Examples of the collected signals are
shown in Fig. 1. When the bearing vibrates with a mag-
nitude that exceeds 0.03, it fails as suggested in Gebraeel
et al. (2005).

5.1.1. Prior estimation
The prior distributions of model parameters are estimated
from existing datasets. Figure 4 illustrates a fitted degra-
dation model of one bearing. It shows that the estimated
model can fit the degradation data adequately, which illus-
trates the suitability of our model in this context. Using
the MLE of the model parameters (θ̂i , γ̂i ) and the form
of the prior distributions specified in Section 3, we can es-
timate the hyper-parameters of the prior distributions, as
summarized in Table 1. Table 1 lists the hyperparameters
of π(βm|σ 2

m) and π(σ 2
m) in both phases, respectively. Not

surprisingly, the model of the second phase has a larger
intercept and slope, which indicates faster degradation.
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Fig. 4. Modeling of vibration signals. The x-axis is the working
time of operations, and the y-axis is the log magnitude of the
vibration. The solid line is the fitted model proposed in this article,
and the dashed line is the real degradation signals (color figure
provided online).

Moreover, the variability of the vibration magnitude is also
noticeably larger in the second phase, which is consistent
with our observations shown in Fig. 1.

5.1.2. RUL prediction
With the estimated prior distributions and updating rules
in Section 4, we can predict the vibration magnitude at any
future time. As pointed out in Theorem 2, the joint distri-
bution of degradation predictions at a set of future times
follows a multivariate t distribution. In this example, we
choose T = {4, 8, 12, . . . , 4k, . . .} as possible failure times.
Two scenarios of predictions are considered here as intro-
duced in Section 4.2: predictions made before the change
point and predictions made after the change point. First,
we consider the performance when we predict before the
change point; i.e., only using observations from the first
phase. Figure 5 summarizes the prediction intervals of the
RUL of all 25 bearings when predicted at two time points,
corresponding to 75% and 90% of the real change point

time of each bearing, respectively. Although some of the
predictions miss the real failure times, many of them still
have an acceptable performance considering the informa-
tion we have from the limited degradation observations and
the large variability of the change points.

In contrast, predictions made after change points are
expected to be more accurate. Since similar work has been
done on the prediction of RUL using the second phase
degradation (e.g., Gebraeel et al. (2005)), we also compare
the performance of our method with theirs (named GLLR
for short). The essential difference is that GLLR assumed
the predicted vibration magnitude at different time points
are monotone. Hence,

P(Rτ ≤ Tk − τ |L) = 1 − P(LTk ≤ K|L).

Figure 6 illustrates an example of computed RUL distri-
butions predicted at two different times, corresponding to
75% and 90% of the actual failure time. Although the RUL
is discretely distributed, we use the density-like plot instead
of the probability mass distribution for easier comparison.
The real RULs at these two time points are 169 and 67, re-
spectively. Figure 6 reveals that our predicted distribution
of the RUL is tighter and more accurate compared with
that by GLLR. Also, the prediction variance is smaller
when the updating time is closer to the actual failure time,
when more observations are available. For a comprehensive
evaluation of our methods, we constructed confidence in-
tervals of the failure time of all the bearings. Similar to the
methods in the literature, we report 5, 50, and 95% quan-
tiles of the RUL distribution. Figure 7 shows the prediction
intervals as well as actual failure times of all bearings. From
the figure, we can find that in general when the prediction
is made at a time closer to the actual failure time, the pre-
diction interval is smaller and tends to be more accurate.
Compared with the results provided in the literature, our
prediction intervals are tighter and have a better coverage
probability. Noticeably, in contrast with Fig. 5, the predic-
tion intervals in Fig. 7 are much more accurate and tighter.
This reflects the benefits provided by additional degra-
dation observations and more accurate estimation of the
change point.

Table 1. Estimated hyper-parameters of the prior distributions

Hyper-parameters Phase 1 model Phase 2 model

π(βm|σ 2
m) µm [−7.11, 1.48 × 10−5] [−5.19, 3.85 × 10−3]

!m

[
1.40 × 10−1 −1.43 × 10−4

−1.43 × 10−4 9.13 × 10−6

] [
2.06 × 10−3 −5.47 × 10−4

−5.47 × 10−4 3.79 × 10−6

]

π(σ 2
m) v 3.66 6.48

s2 7.27 × 10−3 5.46 × 10−2
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Fig. 5. Prediction interval of RUL obtained before change points (a) at 75% of the change-point time and (b) at 90% of the change-
point time. The ◦ denotes the 5, 50, and 95% quantile of the RUL distributions; ∗ is the actual failure time (color figure provided
online).

5.2. Performance evaluation using simulation

In this part, we use simulation to further evaluate the per-
formance of our condition monitoring method. We use the
length and coverage probability of the prediction interval
of RUL as evaluation criteria, which are important and
commonly used in the literature. Given the same confi-
dence level, a shorter prediction interval indicates a more
accurate prediction. At the same time, the real coverage
probability of the prediction interval should match the
designed confidence level. In the simulation, we assumed
that the degradation path exactly follows the two-phase
model in Equation (2). The location of the change point γ

follows a shifted exponential distribution:

f (γ ) =
{

exp[−(t − 200)/150]/150, t ≥ 200
0, otherwise

.

The hyper-parameters of the prior distributions of the
model parameters are listed in Table 1. Initially, 50 random
sample paths were generated from the model to estimate
the prior distributions as in Section 3. Subsequently, we
used the estimated prior distributions and the updating/
predicting procedures in Section 4 to estimate the distri-
bution of the RUL based on newly generated degradation
data.

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

residual life

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

(a)

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

residual life

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

(b)

Fig. 6. Examples of predicted distribution of the RUL (a) at 75% of the failure time and (b) at 90% of the failure time. The x-axis is
the RUL, and the y-axis is the corresponding probability. The solid line corresponds to the proposed method, and the dashed line is
the GLLR method. The vertical dotted line indicates the actual RUL at the time of the prediction (color figure provided online).
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Fig. 7. Prediction intervals of failure times made after change points (a) at 75% of failure time and (b) at 90% of failure time. The ◦
denotes the 5, 50, and 95% quantile of the RUL distributions; ∗ is the actual failure time (color figure provided online).

5.2.1. Accuracy of predictions after the change point
In this part, we evaluate the performance when we predict
the RUL after the change point. In this scenario, the GLLR
method is also applicable. As we mentioned before, their
method does not consider the correlations among predicted
values. We can assess how much improvement we can make
by taking this effect into consideration.

In each simulation replication, degradation data were
generated according to model (2). The parameters of the
model were randomly sampled from the specified (unre-
vealed) distribution. We considered three prediction times,
which correspond to 50, 75, and 90% of the time between
degradation change point and failure time. Figure 8 com-
pares the prediction intervals (at a confidence level of 0.9) in
seven simulation replications between the proposed method
and the GLLR method. It shows that our prediction inter-
vals can cover the actual RUL time more accurately with a
much smaller interval. Additionally, the intervals become
narrower when the predictions are made at a later stage
(with more observations).

We also used 1000 replications to compute the coverage
probability as well as the length of the prediction intervals.
If the prediction intervals are valid, their coverage proba-
bility should be consistent with the confidence level, which
equals 0.9 in our simulation. Additionally, if the length of
prediction interval is shorter, the RUL prediction is less un-
certain. Table 2 compares the coverage probability of the
prediction interval obtained at three prediction points. The
proposed method performs much better than the GLLR
method in terms of coverage probability. It slightly misses
the designed confidence level, which might be caused by the
approximation using the empirical Bayes method and the
countable set of failure times. The lengths of their predic-
tion intervals are compared in Fig. 9. The densities of the
interval length are estimated from 1000 simulation replica-
tions. Clearly, our method generally has shorter prediction

intervals than that of GLLR. The prediction interval also
becomes shorter and more informative as more observa-
tions are available. We would like to emphasize that Fig. 9
is not the density of the RUL, which will decrease much
faster as observation time increases, as illustrated in Fig.
6. All of the evidence from simulation results support that
the prediction accuracy of the RUL can be improved sig-
nificantly by considering the variability of error terms and
the correlations among predicted values.

5.2.2. Accuracy of predictions before change point
In this part, we evaluate the performance of predictions
that are made before the change points. This is one of the
advantageous features not offered by existing methods. We
used the same simulation settings as in Section 5.2.1 and set
the prediction time at 75% and 90% of their corresponding
change-point times. It is interesting to see how accurately
the prediction performs without accurate information
regarding the change point of the degradation. Figure 10
illustrates the prediction interval in different simulation
replications. The prediction intervals are much wider in
this case compared with that in Fig. 8. Not surprisingly,
different replications provide similar prediction intervals.
This is intuitive because the degradation observations in
the first phase have very small variabilities. Also, the RUL
mainly depends on the degradations in the second phase,
whose model parameters follows the same prior distri-
bution in this circumstance. Nevertheless, the prediction

Table 2. Coverage probability of prediction intervals at three time
points

Method 50% 75% 90%

Proposed 0.821 0.851 0.827
GLLR 0.312 0.277 0.197
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Fig. 8. Examples of prediction intervals at different time points: (a) at 50% failure time; (b) at 75% failure time; and (c) at 90% failure
time. The numbers on the x-axis represent the replication number. The solid lines indicate the prediction interval using the proposed
method, and the dashed lines correspond to the prediction interval from the literature. The * markers are the actual RUL (color figure
provided online).
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Fig. 9. Distribution of the length of prediction intervals. The solid line is the density of the length of the prediction interval using the
proposed method, and the dashed line is the corresponding density using the GLLR method.
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Fig. 10. Examples of prediction intervals at different time points before change points (a) at 75% of change-point time and (b) at 90%
of change-point time. The number on the x-axis represents the replication number. The solid lines indicate the prediction interval,
and the * markers are the actual RUL (color figure provided online).

interval still provides a rough range of the failure times
and has a consistent confidence level as designed.

6. Conclusions

In this article, we propose a two-phase degradation model
for condition monitoring of rotational bearings. We use the
Bayesian framework to efficiently integrate the degradation
information from historical data with in situ observations of
each new unit in operation to provide accurate prediction of
degradation magnitudes at future time points. In addition,
we explicitly considered the correlation among the multiple
predictions to improve the accuracy of RUL distribution.
The advantages of our method have been demonstrated
using extensive numerical studies from both real dataset
and simulation experiments.

Nevertheless, there are also some open issues worthy of
further investigation. First, in the current model, we as-
sume that the location of the change point does not have
a significant effect on other degradation parameters. How-
ever, as revealed from the real data, when the change point
occurs at a later stage, the degradation of the second phase
tends to be faster. Therefore, we may get a better estimate of
the RUL by considering this correlated effect between the
change point and the degradation speed. Second, we may
consider a flexible number of degradation phases in the
model to be applicable to other types of degradation data.
This feature might be extremely important in applications
where physical knowledge of the degradation processes is
limited. Third, extending the approach to other general
non-linear degradation models is also worthy of further
research to enrich its applications.
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Appendix

A1. Proof of Theorem 1

Proof. From models (2) and (7), we can find that Y1, Y2
are completely determined by γ̃ , and thus P(L|θ, γ̃ ) can
be written as P(Y1|β1, σ1, γ̃ ) × P(Y2|β2, σ2, γ̃ ). Therefore,

from Equation (10), we have

P(θ|L, γ̃ ) ∝ P(Y1|β1, σ1, γ̃ ) × P(Y2|β2, σ2, γ̃ )
× π(β1, σ1) × π(β2, σ2)

∝ P(β1, σ1|Y1, γ̃ ) × P(β2, σ2|Y2, γ̃ )
∝ P(β1, σ1|L, γ̃ ) × P(β2, σ2|L, γ̃ ), (A1)

which indicates the independence between the two poste-
rior distributions given a constant γ̃ . Additionally, their
symmetric structure indicates the posterior distributions
of the parameters in each phase have the same form. In
particular, for each m = 1, 2:

P(βm, σm|Ym)

∝ σ−nm
m exp

[
−∥Ym − Xmβm∥2

2σ 2
m

]

× σ−vm−2
m exp

(
−vms2

m

2σ 2
m

)

× σ−2
m exp

[
− 1

2σ 2
m

(βm − µm)T!−1
m (βm − µm)

]
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m exp
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−
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m
(
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mXm + µT
m!−1

m
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[

−
(βm − µ̃m)T

(
XT

mXm + !−1
m

)
(βm − µ̃m)

2σ 2
m

]

× σ−(nm+vm+2)
m × exp

[
− (vm + nm)s̃2

m

2σ 2
m

]

= N
(
µ̃m, σ 2

m
(
XT

mXm + !−1
m

)−1 )
× SIχ2 (

vm + nm, s̃2
m
)
,

(A2)

where the last ∝ follows from the matrix operation by con-
structing the quadratic form of βm. !

A2. Proof of Theorem 2

Proof. Based on the degradation model and the definition
of RUL, we have

P(Rτ ≤ Tk − τ |L) = 1 − P(Rτ > Tk − τ |L)
= 1 − P(LT1 ≤ K, LT2 ≤ K, . . . ,

LTk ≤ K|L),

where LTj is the degradation level at time Tj . What remains
is to find the joint distribution of L̄ = [LT1, LT2, . . . , LTk]T.
Since the degradation has entered the second phase, we
have L̄ = X̄β2 + σ2ϵ according to Equation (2). Therefore,
for fixed σ2, L̄ follows multivariate normal distribution with
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mean µ̄ and covariance σ 2
2 !̄, where:

µ̄ ≡ E(L̄|σ2) = X̄Eβ2 + σ2Eϵ = X̄µ̃2,

σ 2
2 !̄m ≡ var(L̄|σ2) = X̄varβ2X̄T + σ 2

2 varϵ

= σ 2
2

[
X̄

(
XT

2 X2 + !−1
2

)−1X̄T + I
]
.

By integrating out the parameter σ2, we can obtain the
conditional distribution of L̄ given L; that is,

P(L̄|L) =
∫ ∞

0

∫
P

(
L̄

∣∣β2, σ
2
2

)
× P

(
β2

∣∣σ 2
2 , L

)

× P
(
σ 2

2

∣∣L
)

dβ2dσ 2
2

=
∫ ∞

0
P

(
L̄

∣∣σ 2
2

)
× P

(
σ 2

2

∣∣L
)

dσ 2
2

=
∫ ∞

0

exp[−((L̄ − µ̄)T!̄
−1(L̄ − µ̄))/2σ 2]

(2π)k/2σ k/2(det !̄)1/2

×
(
ṽ2s̃2

2

/
2
)ṽ2/2

)(ṽ2/2)
exp

[
−

(
ṽ2s̃2

2

)/
2σ 2

]

(σ 2)−(ṽ2/2+1) dσ 2

=
(
ṽ2s̃2

2

/
2
)ṽ2/2

(2π)k/2(det !̄)1/2)(ṽ2/2)

∫ ∞

0
(σ 2)−(ṽ2+k+1)

× exp

[

−
(L̄ − µ̄)T!̄

−1(L̄ − µ̄) + ṽ2s̃2
2

2σ 2

]

dσ 2

=
(
ṽ2s̃2

2

/
2
)ṽ2/2

(2π)k/2(det !̄)1/2)(ṽ2/2)

× )((ṽ2 + k)/2) × 2(ṽ2+k)/2

[
ṽ2s̃2

2 + (L̄ − µ̄)T!̄
−1(L̄ − µ̄)

](ṽ2+k)/2

= MT
(
µ̄, s̃2

2!̄, ṽ2
)
. (A3)

Consequently, the RUL distribution is P(Rτ ≤ Tk − τ |L) =
1 − P(L̄ ≤ K|L), which completes the proof. !
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