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Preface

The statistical analysis of the duration of life has a long history. The
recent surge of interest in the topic, with its emphasis on the
examination of the effect of explanatory variables, stems mainly from
medical statistics but also to some extent from industrial life-testing.
In fact the applications range much more widely, certainly from
physics to econometrics. The essential element is the presence of a
nonnegative response with appreciable dispersion and often with
right censoring.

The object of the present book is to give a concise account of the
analysis of survival data. We have written both for the applied
statistician encountering problems of this type and also for a wider
statistical audience wanting an introduction to the field.

To keep the book reasonably short we have omitted both some of
the very special methods associated with the fitting of particular
distributions and also the mathematically interesting topic of the
application of martingale theory and weak convergence to the
rigorous development of asymptotic theory. We have also firmly
resisted the temptation to extend the discussion to the statistical
analysis of point processes, i.e. systems in which several point events
may be experienced by each individual.

We thank warmly Ms P. J. Solomon for comments on a
preliminary version.

D. R. Cox

London, March 1983 D. Oakes
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CHAPTER 1

The scope of survival analysis

1.1 Introduction

In survival analysis, interest centres on a group Or groups of
individuals for each of whom (or which) there is defined a point event,
often called failure, occyrring after a length of time called the failure
time. Failure can occur at most once on any individual.

Examples of failure times include the lifetimes of machine com-
ponents in industrial reliability, the durations of strikes or periods of
unemployment in economics, the times taken by subjects to complete
specified tasks in psychological experimentation, the lengths of tracks
on a photographic plate in particle physics and the survival times of
patients in a clinical trial.

("To determine failure time precisely, there are three requirements: a
time origin must be unambiguously defined, a scale for measuring the
passage of time must be agreed and finally the meaning of failure must
be entirely clear! We discuss these requirements in a little more detail
in Section 1.2.7

Sometimes we are concerned solely with the distribution of failure
times in a single group. More often, we may wish to compare the
failure times in two or more groups to see, for example, whether the
failure times of individuals are systematically longer in the second
group than in the first. Alternatively, values may be available for each
individual of explanatory variables, thought to be related to survival.
The lifetime of a machine component may be influenced by the stress
exerted on it, or by the working temperature. White blood count is
known to influence prognosis in leukaemia. In clinical practice, it is
quite common for information on 100 or more variables to be
routinely collected on each patient, giving the statistician the
unenviable task of summarizing the joint effect of these variables on
survival.

Survival analysis is properly thought of as a univariate rather than
a multivariate technique because there is only a single response

1




2 THE SCOPE OF SURVIVAL ANALYSIS

variable, failure time, even though there may be many explanatory
variables. Some special problems involving a multivariate response
are, however, discussed in Chapter 10.

1.2 The definition of failure times

We now comment briefly on the requirements for measuring failure
time.

! The time origin should be precisely defined for each individual. It is
also desirable that, subject to any known differences on explanatory
variables, all individuals should be as comparable as possible at their
time origin. In a randomized clinical trial, the date of randomization
satisfies both criteria, and would be the normal choice. While it might
be more biologically meaningful to measure time from the first
instant at which the patient’s symptoms met certain criteria of
severity, the difficulty of determining and the possibility of bias in
such values would normally exclude their use as time origin. Such
information might, however, be useful as an explanatory variable.

The time origin need not be and usually is not at the same calendar
time for each individual. Most clinical trials have staggered entry, so
that patients enter over a substantial time period. Each patient’s
failure time is usually measured from his own date of entry. Fig. 1.1
illustrates the calculation.

The evaluation of screening programmes for the detection of breast
cancer provides an instructive example of the difficulties in the choice
of origin. The aim of screening, of course, is to detect the disease at an
earlier stage in its development than would otherwise be possible.
Even in the absence of effective treatment, patients with disease
detected at screening would be expected to survive longer after
diagnosis than patients whose disease is detected without the aid of
screening. This bias seriously complicates any comparison of the
failure times of the two groups. Perhaps the only satisfactory way to
evaluate the effect of screening in reducing mortality is to comparethe
total mortality rate in a population offered screening with that in a
population where no screening programme is available.

The time origin need not always be at the point at which an
individual enters the study, but if it is not, special methods are needed.
For example, in epidemiological studies of the effects on mortality of
occupational exposure to agents such as asbestos, the natural
measure of time is age, since this is such a strong determinant of
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Fig. 1.1. Experience of ten individuals with staggered
entry and follow-up until 1980: x, death; O, censor-
ing. (a) Real time; (b) time, ¢, from entry into study.

mortality. However, observation on each individual commences only
when he starts work in a job which involves exposure to asbestos.
Likewise, in industrial reliability studies, some components may
already have been in use for some period before observation begins.
We refer to such data as ‘left-truncated’ and the appropriate methods
are discussed in Chapter 11.

Often the ‘scale’ for measuring time is clock time (real time),
although other possibilities certainly arise, such as the use of
operating time of a system, mileage of a car, or some measure of
cumulative load encountered. Indeed, in many industrial reliability
applications, time is most appropriately measured by cumulative
usage, in some sense. Or failures may consist of flaws in textile yarn,
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when failure ‘time’ would be the length measured up to the first flaw.
There are interesting applications in geometrical probability, where
the failure time denotes the length of a line segment contained in a
convex body. About the only universal requirement for failure times is
that they are nonnegative.

One reason for the choice of a timescale is direct meaningfulness for
the individual concerned, justifying the use of real time in investigat-
ing survival in a medical context. Another consideration is that two
individuals treated identically should, other things being equal, be in
a similar state after the lapse of equal ‘times’; this is the basis for the
use of cumulative load encountered in an engineering context. If two
or more different ways of measuring time are available, it may be
possible, having selected the most appropriate timescale, to use the
other ‘times’ as explanatory variables.

Finally, the meaning of the point event of failure must be defined
precisely. In medical work, failure could mean death, death from a
specific cause (e.g. lung cancer), the first recurrence of a disease after
treatment, or the incidence of a new disease. In some applications
there is little or no arbitrariness in the definition of failure. In others,
for example in some industrial contexts, failure is defined as the first
instance at which performance, measured in some quantitative way,
falls below an acceptable level, defined perhaps by a specification.
Then there will be some arbitrariness in the definition of failure and it
will be for consideration whether to concentrate on failure time or
whether to analyse the whole performance measure as a function of
time.

1.3 Censoring

A special source of difficulty in the analysis of survival data is the
possibility that some individuals may not be observed for the full time
to failure. At the close of a life-testing experiment in industrial
reliability, not all components may have failed. Some patients (many,
it is to be hoped) will survive to the end of a clinical trial. A patient
who has died from heart disease cannot go on to die from lung cancer.
An individual who is observed, failure-free, for 10 days and then
withdrawn from study has a failure time which must exceed 10 days.
Such incomplete observation of the failure time is called censoring.
Note that, like failure, censoring is a point event and that the period of
observation for censored individuals must be recorded.

14 OTHER METHODS OF ANALYSIS 5

We suppose that, in the absence of censoring, the ith individual in a
sample of n has failure time T}, a random variable. We suppose also
that there is a period of observation ¢, such that observation on that
individual ceases at ¢; if failure has not occurred by then. Then the
observations consist of X; = min(7},c,), together with the indicator
variable V; =1 if T, < ¢; (uncensored), V; =0 if T, > ¢, (censored). We
refer to the ¢; of individuals who in fact are observed to fail as
unrealized censoring times, as contrasted with the realized censoring
times of the censored individuals. The term potential censoring time is
usual when c; is considered without regard to whether censoring or
failure occurs.

In some applications, all the ¢; will be known, as for example if the
only cause of censoring is the planned ending of follow-up at a
predetermined time. Another example is so-called Type I censoring,
in which all the ¢, are equal, ¢; = ¢, a constant under the control of the
investigator. In Type II censoring, observation ceases after a prede-
termined number d of failures, so that ¢ becomes a random variable.
Type II censoring is a useful technique for economical use of effort in
industrial life-testing. Other forms of so-called random censorship are
possible. A crucial condition is that, conditionally on the values of any
explanatory variables, the prognosis for any individual who has
survived to c; should not be affected if the individual is censored at c;.
That is, an individual who is censored at ¢ should be representative of
all those subjects with the same values of the explanatory variables
who survive to c.

The simplest way to ensure this is to take the c; to be in principle
predetermined constants, and this viewpoint will be adopted through-
out most of this book. Note, however, that often the ¢; will not be
known to the investigator in advance, and that the unrealized ¢,
corresponding to observed failures may never become known. The
above condition is also satisfied if the potential censoring times are
random variables c¢;, which are independent of the T,. Type II
censoring is an example of a more general scheme in which, loosely
speaking, censoring can depend on the past history, but not the future,
of the whole process. We may call this evolutionary censoring.

1.4 Other methods of analysis

Besides the techniques to be discussed in this book, a number of other
approaches have been used to analyse survival data. Perhaps the
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simplest method, much used by clinicians, is to dichotomize accord-
ing to survival or nonsurvival at a critical period such as five years.
Comparisons of the five-year survival rates of subjects in various
groups can be made using techniques for binary data. Although this
approach is often quite satisfactory, it has two major disadvantages.
Concentration on a single point of the survival curve necessarily
wastes some information. More seriously, calculation of survival
rates as simple proportions is directly possible only when no
individuals are censored during the critical period. This restriction
can lead to some absurdities; see Exercise 1.1.

With survival dichotomized as above, and with quantitative
explanatory variables, discriminant analysis has sometimes been used
to identify variables that are related to survival, although such use of
discriminant analysis is better regarded as an approach to binary
logistic regression. Discriminant analysis, can, however, be a useful
way of sifting through a large set of variables to determine a few
variables or combinations of variables which can then be considered
in more detailed analyses. By itself, discriminant analysis provides
little insight into the way the explanatory variables affect survival.

Reduction to a binary response is most useful when the survival of
each individual is easily classified as either very short or very long.
When the potential censoring times are related to the explanatory
variables, discriminant analysis will give biased results. Note also
that the inclusion of the actual failure time as an explanatory variable
in a discriminant analysis would be a serious error, as the failure time
is part of the response, not part of the factors influencing response.

In the absence of censoring, the dependence of failure time on the
explanatory variables can be explored through multiple regression.
Because failure times are never negative and often have highly skewed
distributions, preliminary transformations of the data such as the
logarithm or reciprocal are often used. The log transformation is
closely related to the accelerated life model, discussed in Chapter 5.
Either transformation may give undue weight to very short failure
times, which will have high negative logarithms and high positive
reciprocals.

1.5 Some examples

We now describe in outline three examples that will be referred to a
number of times throughout the book. Other examples will be
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introduced at the appropriate point in the development. Some of the
examples, especially the first, have been widely used in the literature to
illustrate alternative techniques.

Example 1.1 Leukaemia: comparison of two groups

Table 1.1 (Gehan, 1965, after Freireich et al.) shows times of remission
(i.e. freedom from symptoms in a precisely defined sense) of leukaemia
patients, some patients being treated with the drug 6-mercaptopurine
(6-MP), the others serving as a control. Treatment allocation was
randomized. Note the great dispersion and also that censoring is
common in the treated group and absent in the control group. It is
important to have methods of analysis that are effective in the
presence of such unbalanced censoring. In fact, the trial was designed
in matched pairs with one member of the pair being withdrawn from
study when, or soon after, the other member comes out of remission.
This is an aspect we shall ignore.

Example 1.2 Failure times and white blood count, WBC

Table 1.2 shows, for two groups of leukaemia patients, failure time
(time to death) in weeks and white blood count, wBc (Feigl and Zelen,
1965). The formal difference from Example 1.1 lies partly in the
presence of a continuous explanatory variable, wBC, and partly in
that the division into groups is based on an (uncontrolled) measure-
ment for each individual rather than on a randomized treatment
allocation.

Example 1.3 Failure times of springs

Table 1.3 illustrates an application from industrial life-testing kindly
supplied by Mr W. Armstrong. Springs are tested under cycles of
repeated loading and failure time is the number of cycles to failure, it
being convenient to take 103 cycles as the unit of ‘time’. Here 60
springs were allocated, 10 to each of six different stress levels. At the
lower stress levels, where failure time is long, some springs are
censored, i.e. testing is abandoned before failure has occurred.




Times of remission (weeks) of leukaemia patients (Gehan, 1965, from Freireich et al)

Table 1.1

19%, 20%, 22, 23, 25% 32% 32% 34* 35%

10, 11%, 13, 16, 17%,

10%,

6*, 6, 6, 6, 7, 9%,

Sample 0 (drug 6-mMP)

1, 2, 2, 3, 4, 4,5 5 8, 8 8 8 I, 11, 12, 12, 15 17, 22, 23

L

Sample 1 (control)

* Censored

Table 1.3 Cycles to failure (in units of 10° cycles) of springs

Stress (N/mm?)

162

117
243
351
365
1550
11604*

135
225
379
431
3012

162

135
216
414
402
7152
8011

189
225
279
525
11520%
6253

189
216
252
2020

171 198

225
216
324
627
3402
12510%

950
900
850
800
750
700

189
333

306
396
463
2969
7795

153
432
1434
1802
3027

162
321
1051

715

11211

4326
12 505%*

9417

12470%

11604*

12 505*

* Censored
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&
Table 1.2 Failure time and white blood count (Feigl and Zelen, 1965)

(AG positive), N = 17 (AG negative), N =16

White blood count, Failure time  White blood count, Failure time

WBC (weeks) WBC (weeks)
2300 65 4400 56
750 156 3000 65
4300 100 4000 17
2600 134 1500 7
6000 16 9000 16
10500 108 5300 22
10000 121 10000 3
17000 4 ; 19000 4
5400 39 27000 2
7000 143 28 000 3
9400 56 31000 8
32000 26 26 000 4
35000 22 21000 3
100000 1 79 000 30
100000 1 100000 4
52000 5 100 000 43

100000 65

1.6 Computing

Some of the simpler techniques to be described in this book can be
applied to modest sets of data using a programmable (or even
nonprogrammable) pocket calculator. If large amounts of data are
involved or if some of the more elaborate methods of analysis are
contemplated, use of the computer is essential and, under the working
conditions of most statisticians, the writing of special programs is
impossible on other than a very small scale. Therefore, the availability
of packaged programs is crucial.

All aspects of computing change so rapidly that a very detailed
discussion is not appropriate in a book like this. There follow a few
notes on the position at the time of writing, 1983.

The packages GLIM (Release 4), BMDP and SAS contain programs for
many of the analyses described in this book. Points to watch in the
choice of program include the facilities available for checking the
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model, e.g. through empirical survival curves, residual plots and user-
defined time-dependent covariates, and the ease with which dummy
variables, interactions, etc., may be incorporated in the model.

A logistic regression program written by P.G. Smith (see Breslow
and Day, 1980) can be used to fit the multiplicative hazards model
with time-dependent covariates for small data sets.

GLIM can also be used to fit some parametric models; see e.g. Aitkin
and Clayton (1980) for a discussion of the Weibull distribution, in the
presence of censoring. In general, methods based on the likelihood
require a function maximization routine. A variety of such routines,
some using derivatives of the function to be maximized, may be found
in the NAG package. Il conditioning can easily occur, particularly in
attempts to discriminate between different parametric forms for the
survival distribution. Routines for calculation of the complete and
incomplete gamma function and its derivatives are sometimes
needed; see, for example, Moore (1982), Bernardo (1976) and
Schneider (1978).

Bibliographic notes, 1

A number of books on survival analysis have appeared recently.
Mann et al. (1974), Gross and Clark (1975) and Lawless (1982)
concentrate largely on fully parametric methods for particular
distributions. Kalbfleisch and Prentice (1980) give a very detailed
account of the multiplicative hazards model. Miller (1981) describes
nonparametric and semiparametric methods. For applications in
industrial reliability see Barlow and Proschan (1965, 1975), Nelson
(1982) and DePriest and Launer (1983). Elandt-Johnson and Johnson
(1980) describe applications in actuarial science and demography.
Mike and Stanley (1982) have edited a collection of papers on medical
statistics including discussion of survival data.

Armitage (1959) compared the efficiency of a number of simple
methods of analysis, including the use of the proportion surviving for
some specified time. Expository papers by Peto et al. (1976, 1977)
describe the applications of some of the simpler methods for the
analysis of clinical trials. Recent review papers include Prentice and
Kalbfleisch (1979), Lagakos (1979) and Oakes (1981). For the
mathematical theory of screening, see Prorok (1976), Shahani and
Crease (1977) and Zelen and Feinleib (1969) and for an account of a
large randomized trial of screening for breast cancer, see Shapiro

FURTHER RESULTS AND EXERCISES, 1 11

(1977). Three recent papers illustrating the use of survival analysis in
occupational epidemiology are Liddell et al. (1977), Darby and
Reissland (1981) and Breslow et al. (1983).

Further results and exercises, 1

1.1. (a) From Fig. 1.1(a) calculate the censoring times of all
individuals via Fig. 1.1(b). Note that this can be done only if it is
assumed that failure times can be censored solely by the conclusion of
the study.

(b) The reduced sample estimator of the probability of surviving
five years is the proportion, among subjects with potential censoring
times exceeding five years, whose failure time is observed to exceed
five years. Show that this estimator is unbiased.

() Show that in Fig. 1.1 the reduced sample estimators of the
probabilities of surviving three years and five years are respectively
6/10 and 4/6. Comment.

(d) Show that if the third individual in Fig. 1.1(a) had actually
entered two years earlier, but died at the same time, so that his
survival would have been improved, the reduced sample estimate of
the five-year survival rate for the entire group would be worsened, at
4/7 instead of 4/6.

1.2. Suppose that T;,T, and T, are independent and identically
distributed with a continuous distribution, and are subject to
censoring times c,,c, and ¢;. Let Y, = T, if T, < ¢,, Y; = co otherwise,
so that Y; may be thought of as the largest possible value of T,
consistent with the observed data. Let X; = min(c;, T;). Then, on the
basis of what is observed, T, is known to be less than or equal to T, if
and only if Y; < X,. Show that, whatever the values of ¢, ¢, and c;,

(@ pr(Y; < Xy =pr(Y, < X)),

() pr(Y; < X,, X3) =pr(Y, < Xy, X3) =pr(¥; < X, X)),

© pr(Y,, Y, S Xy =pr(Y; < Y3 S X,)+pr(Y, < Y3 S X))
[Breslow, 1970]

1.3. Suppose that data are available on a reasonably homogeneous
group of patients with renal failure. All patients are initially on
dialysis and the time at which they start this treatment is the time
origin for each patient. All patients are observed until death.
Depending on the availability of suitable donor kidneys, some
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patients in due course receive a kidney transplant. It is required to
compare the survival under dialysis and after transplant. Criticize
qualitatively the following two procedures:

(a) form two groups of patients, those never transplanted and
those receiving a transplant. Compare the two distributions of time
from entry to death, regardless of the time of transplant, i.e. time on
dialysis of the transplanted patients is ‘credited’ to transplant;

(b) for the transplanted patients take a new time origin at the
instant of transplant and compare the distributions of time to death
for the “dialysis only’ group with that of time from transplant to death
for the transplanted group.

Consider further possible procedures without the disadvantages of
(a) and (b). What further difficulties are likely to arise in interpreting
such data?

CHAPTER 2

Distributions of failure time

2.1 Introduction

In this chapter we consider a homogeneous population of individuals,
each having a ffailure time’. That is, we deal with a single nonnegative
random variable, T. In particular, an origin and scale for measuring
time are assumed to be clearly defined. We examine the general
specification of the distribution of T and then consider various special
distributions that are useful.

We write

Frt)=pr(T=1) 2.1

for the survivor function of T, omitting the suffix T when the random
variable involved is clear from the context. Mostly we deal with
continuous distributions having a probability density function

. tST<t+A
== lim S04 U
A—0+ A

S 22

so that

Folt) = f " £ du.

Discrete and mixed discrete—continuous distributions can usually be
handled formally by assigning to the probability density a component
f;0(t — a)) for an atom f; at a;, where (. ) denotes the Dirac delta
function. In the general case, the probability of survival beyond time ¢
is the right-hand limit #(t + 0). Note that an unusual convention has
been adopted in the definition (2.1) leading to the left continuity of the
cumulative distribution function, rather than to the right continuity
flowing from the standard definition. Our object is to simplify slightly
some subsequent formulae involving the hazard function.
Particular forms of distribution may be useful either because they

13
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are suggested by some theoretical argument or because they provide
flexible empirical representations, preferably with relatively simple
statistical analysis.

2.2 Hazard function

The functions #( . ) and f7(.) provide two mathematically equiva-
lent ways of specifying the distribution of a continuous nonnegative
random variable, and there are of course many other equivalent
functions. One with special value in the present context is the hazard
function, or age-specific failure rate, defined by

t< <
he(® = lim presT<t+Alt T).

A0+ A

23

By the definition of conditional probability, we have, omitting the
suffix T, that

h(t) = f (@)/F (®). 24

If there is an atom f; of probability at time a;,h(t) contains a
component h;6(t — a;), where

hy= 1i/% (ay), (2.5)
and for a purely discrete distribution with atoms {f}} at points {a;},
a,<a,<...,
h(®) =3 h6(t — a),
where
hj = fj/ﬁ(a])
=Jillfi+ fioat -9 (2.6)
For continuous distributions, by (2.4) and (2.2),
h(t)= —F ()7 (¢)
= —d log #(¢)/dt,
so that, because #(0) = 1,

F ()= exp< — ft h(u) du)
0

=exp[ — H()], 2.7

22 HAZARD FUNCTION 15
say, where H( . ) is called the integrated hazard. Further,
f@® =h@®exp[ — H®)]. 29

If and only if k(. ) is constant, with value p say, the distribution is
exponential,

FO=e",  ft)=pe . 2.9)

For discrete distributions, it follows on applying (2.6) recursively,
or by a direct application of the product law of probabilities, that

F=[10-h); (2.10)
aj<t
to have T =1 it is necessary and'suﬁ“lcient to survive all points of
support before .
To define an integrated hazard in the discrete case the most fruitful
convention is to take
H@®) = ) log(l — b)), 211

aj<t

so that (2.7) still holds:
F () =exp[ — H®®)].
If the h; are small
Ho=~ ) h (2.12)

and the right-hand side could be taken as an alternative definition.
For mixed discrete—continuous distributions, we write

F () =Z5[1 — h(w) du],

where the so-called product integral on the right-hand side is defined
analogously to a Riemann integral. Divide (0, £) into a large number of
small intervals [0=x,,x,), [x;,X5),....[%,_1,t=2x,), let ¢&e
[x;,x;+,) and consider the limit n— oo, with max(x;,,; —x,)—0,
of

H[l —h()(x;4q — x)1,
where h(&;)(x;, ; — x;) is taken to be h, if [ x;,x; , ,) contains a point of
support a,, say.

There are a number of reasons why consideration of the hazard
function may be a good idea:




16 DISTRIBUTIONS OF FAILURE TIME

(1) it may be physically enlightening to consider the immediate ‘risk’ . £ S B g, .
attaching to an individual known to be alive at age t; z 'g I Nna v afe g, B 8=
(i) comparisons of groups of individuals are sometimes most Z § 82% s ® § =
incisively made via the hazard; & SEEes eeS
(ii) hazard-based models are often convenient when there is 2
censoring or there are several types of failure; . % g —_
(iv) comparison with an exponential distribution is particularly = 5 - & £Ea = 2 -
simple in terms of the hazard; 5 CR =0 b 5 £
(v) the hazard is the special form for the ‘single failure’ system of the T o s & T e~ = =
complete intensity function for more elaborate point processes, i.e.
systems in which several point events can occur for each individual. =
Q
2.3 Some special distributions 5 o i i}
We now consider in outline some of the special distributions that are g 3 2 -
useful for survival data. The simpler analytical expressions of this < 5 = =
section are summarized in Table 2.1. Of course, any distribution over § x o - ;1« i I—N
nonnegative values is a possible candidate; further, any distribution, § _"w . To Bk + O b
even with support including negative real values, is a possible . Sf = % § E L = §;
distribution for log T. DY El+ o, o= | = =
The distributions to be discussed are all continuous. They can be Rl b | = RIE | = =
classified in various ways, one being by their relation to the =
exponential distribution, in particular by whether they are over- or ,§ |
underdispersed relative to the exponential distribution. P N 2 3
Greek letters are used to denote adjustable parameters; p always 8§ % “2 S;{
has the dimensions of the reciprocal of time and can be interpreted as § é é :
a rate, whereas x and 7 are dimensionless parameters. The precise § 5 s — .
interpretation of p, x and t is, however, different for the different E‘ g 8 ?St e & .L—\
families. 2 & - T A + 0= -
2 N R i e g &
3 s 8 A l+ & S X
2 v & 5 | Tle sl IS =
(i) Exponential distribution § -
The exponential distribution of parameter p and mean 1/p has i) B % ==
~ _ S = L .9E SSE 2 BEgs X £E
Fy=e ",  [fO=pe ™,  h®)=p, H®=pt 5 S, _§EEE Bffy &8¢ E £
The constant hazard reflects the property of the distribution & é E '% E% g é —E 8ol %0 g § g = % g
reasonably called lack of memory. For any t,>0, the conditional 58 20588 62838 SEE & £E
distribution of T — ¢t,, given T > t,, is the same as the unconditional = e = o = = =22 =2re = =
distribution of T. = TE EgE = 2 EBE T2 E R
The coefficient of variation, i.e. the ratio of standard deviation to &
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mean, is unity and this forms a reference standard for judging relative
dispersion.

The exponential distribution was widely used in early work on
reliability of, for example, electronic components and to a more
limited extent in medical studies. That the distribution has only one
adjustable parameter often means, however, that methods based on it
are rather sensitive to even modest departures, for example in the tail,
and the empbhasis in recent work has been on methods that make less
stringent assumptions about distributional form. Various idealized
models lead to the exponential distribution. For example, suppose
that extreme ‘loads’ occur in the environment in a Poisson process
and that failure occurs the first time such an extreme ‘load’ is
encountered. Again, suppose that there are many independent modes
of failure, so that the observed failure time is the smallest of a large
number of independent nonnegative random variables. Then, under
suitable restrictions on the component random variables, the distri-
bution of observed failure time is approximately exponential.

Note that by (2.7) if the random variable T has an arbitrary
continuous distribution, then H(T) has an exponential distribution
with unit parameter.

We consider next a number of two-parameter families of distri-
butions reducing to the exponential distribution by choice of one of
the parameters.

(i) Gamma distribution

The gamma family has density

p(pt)~ e/ (i), (213)

where x >0 is an additional parameter often called the index. The
mean is x/p and the coefficient of variation 1/ \/ k. While for many
statistical purposes the gamma family is the most important family of
continuous distributions taking positive values, for the present
purpose the usefulness is limited by the relative clumsiness of the
survivor function, an incomplete gamma integral.

The special case k =2 may be called the two-hit model, as it
corresponds to the distribution of the time to the second point in a

Poisson process of rate p. Other integer values of x have an analogous
interpretation.

23 SOME SPECIAL DISTRIBUTIONS 19
(iiiy Weibull distribution
The Weibull distribution with scale parameter p and index « has

F (1) = exp[ — (p0f],
S@)=rp(pty ™ exp[ = (pt)],  ht)=xp(pt)"".
Because H(f) =(pt)*, it follows that T* has an exponential distri-
bution of parameter p*. _

The Weibull distribution arises theoretically as a limit law for the
smallest of a large number of independent nonnegative random
variables, thus generalizing the result already noted for the exponen-
tial distribution; see Exercise 2.7. The convenience of the Weibull
distribution for empirical work stems from the simplicity of the three
functions in (2.14).

(2.14)

i

(ivy Gompertz—Makeham distribution
A simple form of hazard function is
po+p. e (2.15)

with p, =0 as a special case, the Gompertz form. The associated
survivor function and density follow from (2.7) and (2.8).

(v) Compound exponential distribution

Suppose that for each individual survival time is' equnentially
distributed but that the rate varies randomly between individuals. To
represent this let P be a random variable With density fp(.) and
suppose that the conditional density of T given P =p is

frip(tlp) = pe™*".

Then the unconditional density of T is

[ = jw pe”? fu(p)dp.
0

A convenient choice for f,( .)is the gamma density of mean p, and
index x

(c/po)(kp/py) ™t e~ PP
felp) = T
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leading to the Pareto distribution

K(x/po)* )
(t+x/pe)™?

Clearly the survivor function and hazard are respectively

J+() = (2.16)

(r/po)* K
(t+x/pe)”  (t+x/py)”

As follows directly from its mode of construction, this distribution
is overdispersed relative to the exponential distribution, to which it
tends as k » co. When « is small (2.16) has a very long tail; the rth
moment exists only if k > r.

(vi) Expansion in orthogonal polynomials

One way of representing distributions close to a particular simple
form is via an expansion in terms of orthogonal polynomials
associated with the simple form. The orthogonal polynomials
associated with the exponential distribution are the Laguerre poly-
nomials and the simplest such polynomial form uses just the first- and
second-degree polynomials

L(x)=x—1, L,(x)=x*—4x +2,

taking as the density

pe”"[1+ 1k, Ly(pt) + 1, Ly(p9)]. 217

This has mean and variance (1 + «,)/p and (1 + 2k, — k? + 4x.,)/p?,
respectively.

From one point of view (2.17) is just a mixture of an exponential
distribution and gamma distributions with k = 2, 3, all however with
the same rate parameter p. The main role of the present expansion is
in a theoretical context; when the limiting distribution for a problem

is exponential, an asymptotic expansion in the form (2.17) will often
result.

(vii) Log normal distribution

As noted previously, possible distributions for T can be obtained by
specifying for log T any convenient family of distributions on the real
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line. The simplest possibility is to take log T normally distributed
with mean log p~* and variance 12, leading to the log normal family
for T with density

2
! exp< _ Llog(ip)] )
V @mt 25

The exponential distribution is not a special case, although a
substantial amount of data is needed to discriminate empirically
between an exponential distribution and a log normal distribution
with 7~ 0.8.

The hazard associated with (2.18) is nonmonotonic, although
whether the maximum occurs in a range of appreciable probability
depends on the value of 7. A disadvantage of the distribution for some
purposes is the sensitivity of the resulting methods of statistical
analysis to the small failure times.

(2.18)

(viii)  Log logistic distribution
The continuous logistic density with location v and scale parameter t,
having density
v texpl(x — )/l
{1 +exp[(x —v)/1}*’

is very similar to a normal distribution. If this form is taken for log T,
we obtain analogously to the log normal family, the log logistic

family. It is convenient to write v= —log p, x = 1/, so that the
survivor function, density and hazard become respectively
1
#(0)= S
1+exp[(logt —v)/t] 1+ (¢p)*
Ktc~ Ip)c
SO =53, 2.19
[+ Gor T’ =
Ktx— 1px
h(t) = ——— 2.20
0= iy (220

An advantage of this family over the log normal is the relatively

simple explicit form achieved for Z (1), f(t) and h(y). If x> 1 the

hazard has a single maximum; if k < 1 the hazard is decreasing.
For the rth moment to exist, we need x > r.
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(ix) Comprehensive family

There are obvious technical advantages to combining distinct
families of distributions into a single comprehensive family. In
principle such families can always be constructed, indeed in many
ways, but the result is usually too complicated to be very useful.
An occasionally useful general family in the present instance is
obtained by taking T to be a multiple of the k,th power of a random
variable F . having the standard (central) variance ratio distri-
bution with (k,, ;) degrees of freedom. Thus
T = p -1 F)q

(k2,K3)"

(2.21)

The three-parameter generalized gamma family is obtained with
x,—oco0. In general, by choice of the dimensionless parameters
(%,,K,,K3), many of the distributions listed above can be obtained.
Equation (2.21) can conveniently be written in terms of log T.

(x) Inverse Gaussian distribution

One approximate stochastic model describes failure as the first
passage time of a stochastic process representing ‘wear’ to a fixed
barrier. If the underlying process is Brownian motion with positive
drift v and variance per unit time o2, the first passage time to a barrier
at a has the inverse Gaussian distribution with density

a (a—vb)?
o2 P\ T e )

This can be reparameterized in various forms, for example as

k/p \'? kp(t—1/p)
R .

with mean 1/p and coefficient of variation 1/ \/ K, Or as

1/2
(&) e —or=Yr2yiom )

stressing the exponential family structure of the distribution.
The survivor function has the relatively complicated form

K 1/2 - K 1/2
1_@[(;;) (_1+pt)]_e @[—(p—) (1+pt)], (2.23)

where @( .) is the standardized normal integral.

(2.22)
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Although the inverse Gaussian distribution has some attractive
theoretical properties and provides a reasonably flexible two-para-
meter family of distributions, the complexity of the survivor function
makes it relatively inconvenient for handling censored data.

(xi) Translation

All the above distributions have the positive real numbers for their
support. By introducing an additional parameter ¢ and translating
the distribution, all can be converted into distributions on(J, o). For
instance, the translated exponential distribution has density

pe PE=  (t>§).

Usually we would require 6 =0, although in some contexts the
possibility could be contemplated of a distribution starting before the
formal time origin used to define the random variable T.

(xii) Scale family

Several of the families outlined above are such that the random
variable pT has a fixed distribution, or at least a distribution
involving only dimensionless shape parameters. Thus for the expo-
nential family, p T has the unit exponential density e ~*. If 4(¢), g(t) and
h'9)(t) denote respectively a survivor function, density and hazard over
non-negative values, the corresponding functions

4(t; p) = %(p1),
gt;p)=pg(ptr),  h9(t;p)= ph'(p1)

define the scale family generated by (. ).
For the gamma family, for instance, 4( . ) depends also on «.
Note that if U = e?is a random variable with the density g( . ), then

(2.25)

(2.24)

logT = —logp+Z,

having thus the form of a regression model.

(xiij) Lehmann family

Another useful general family is generated from the survivor function,
density and hazard Z(¢), l(f) and h®(¢) by considering

L) =[Z0]",

) =y[£©17H0, WOy = yhO@). (2.26)
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This is called the Lehmann or proportional hazards family based on
Z ().

The families (2.24) and (2.26) are equivalent if and only if h(z) oc £7,
for some y, so that both represent Weibull distributions; see Section
5.3 (ii).

(xiv) Qualitative analytical restrictions

A final possibility is to restrict the distribution by a qualitative
analytical requirement. For example, we may require only that the
hazard is nondecreasing, giving the so-called IFR (increasing failure
rate) family. The analogous family, DFR, in which the hazard is
nonincreasing, is rather less important.

2.4 Comparison of distributions
The families of distributions outlined above can be judged by

(1) their technical convenience for statistical inference;

(i1) the availability of explicit reasonably simple forms for survivor
function, density and hazard;

(iii) the capability of representing both over- and underdispersion
relative to the exponential distribution;

(iv) the qualitative shape (monotonicity, log concavity, etc.) of the
hazard;

(v) the behaviour of the survivor function for small times;

(vi) the behaviour of the survivor function for large times, as judged
either directly or by suitable dimensionless ratios of cumulants or
moments;

(vi) any connection with a special stochastic model of failure.

Table 2.2 summarizes some of these properties in concise form. In
many applications there will be insufficient data to choose between
different forms by empirical analysis and then it is legitimate to make
the choice on grounds of convenience; points (i) and (ii) are fairly
closely related, especially when censored data are to be analysed.
Behaviour for small ¢ will be critical for some industrial applications,
for instance where guarantee periods are involved, but for most
medical applications the upper tail referring to relatively long
survival times will be of more interest.

There are several ways of comparing different families either to

Table 2.2 Some properties useful in assessing distributional form

Coefficient of variation

log H(t)

H()

log h(t)

1?
exponential

linear in t?

constant?

Is it

exponential

exponential

<1?
Gamma (k > 1), Weibull (x > 1)

Log normal (z < 0.83),

linear in t?

linear in t?

Is it

Gompertz (p, =0)

Gompertz (p, = 0)

Log logistic (t < 0.118)

linear in log t?

Weibull

linear in log t?

Weibull

Is it

>1?

asymptotically

linear in ¢?
Distribution with

nonmonotonic?
Log normal

Is it

Gamma (k < 1), Weibull (x < 1)

Log normal (z > 0.83),

Log logistic

Log logistic (z > 0.118)

exponential tail

Compound exponential
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highlight their differences or as a basis for an empirical analysis. On
the whole, direct consideration of the density is not very effective and
we concentrate here on plotting or tabulating

(2) the hazard or log hazard versus ¢ or log t;

(b) the integrated hazard, or log survivor function, or some
transform, versus ¢ or log ¢;

(0) the value of the coefficient of variation, y = a/u;

(d) the standardized third moment y, = u,/a> versus the coef-
ficient of variation y = ¢/, where y, ¢ and p, are the mean, standard
deviation and third central moment of T.

Properties based on the hazard or integrated hazard lead directly
to methods for analysing data that will be applicable in the presence
of censoring. The integrated hazard, or log survivor function, has the
advantage of indicating directly the behaviour of the upper tail of the
distribution and of leading to a reasonably smooth plot when applied
to empirical data. Hazard has the advantage of leading to empirical
plots with points with independent errors which are, however,
therefore inevitably less smooth than those of integrated hazard! It is
advisable that in plots of the hazard the abscissa should be calibrated
not only by ¢, or some function of ¢, but by #(¥), so that the ranges of
most concern are clear.

A value of the coefficient of variation less than one immediately
excludes those distributions capable of representing only over-
dispersion relative to the exponential distribution.

The graph (d) of moment ratios is particularly useful within the
scale family, Section 2.3(xii), in which there is a single shape
parameter. The dimensionless ratios are independent of p and hence
the family is characterized by a curve. Fig. 2.1 shows these curves for
gamma, Weibull, log normal and log logistic distributions. A high
value of u,/0°, the third moment ratio, implies a relatively long tail.

The third moment has a large sampling error for long-tailed
distributions and it would be possible to consider instead plots based
on the standardized moments about the origin of order 3/2 or 1/2, for
instance. That is with E(T") = u/, we could plot u3,,/a%? versus o/u
or u},/a'/? versus a/u; to emphasize the lower tail, we could consider
p_ 0%, The relative sensitivity of these and many other broadly
similar plots is unclear.

Similar quantities for guiding the choice of models can also be
calculated from log T. From censored data, comparison via the
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Y. log log
3 logistic normal

g gamma

Weibull

0-6 08 -0 1-2 -4
’Y—b

Fig. 2.1. Standardized third moment, y,, versus coefficient of
variation, y, for gamma, Weibull, log normal and log logistic
families. Exponential distribution is at point (1, 2). x, Boag’s
(1949) cancer data.

hazard or log hazard is probably the most widely useful approach,
because moments cannot be calculated from censored data without
strong assumptions.

Boag(1949) gave three sets of hospital cancer data and showed that
the log normal distribution gives a rather better fit than the
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exponential. The data are quite heavily grouped and there is a little
censoring. Nevertheless the coefficient of variation and standardized
third moment can be estimated, attaching reasonable extrapolated
values for the censored observations. The results are plotted in Fig.
2.1 and lie fairly close to the Weibull curve, showing more skewness
than the gamma and less skewness than the log normal.

Finally, recall, as noted in Section 2.3(i), that one interpretation of
the integrated hazard H(.) is that H(T) has the unit expanential
distribution, i.e. H(.) specifies the transformation of the timescale
necessary to induce a unit exponential distribution.

Bibliographic notes, 2

The use of hazard to describe distributions of survival time has a long
history in the actuarial literature. For a modern account of survival
data with some emphasis on actuarial techniques, see Elandt-
Johnson and Johnson (1980) and for accounts emphasizing the fitting
of special distributions, see Gross and Clark (1975) and Lawless
(1982). -

The exponential distribution was probably studied first in con-
nection with the kinetic theory of gases (Clausius, 1858). It plays a
central role in the theory of point processes (Cox and Isham, 1980;
Cox and Lewis, 1966). The Weibull distribution was introduced by
Fisher and Tippett (1928) in connection with extreme value distri-
butions; Weibull (1939a,b) studied it in an investigation of the
strength of materials. Several of the other distributions are quite
widely used in other statistical contexts. For the generalized F
distribution, see Kalbfleisch and Prentice (1980, p. 28). Properties of
the inverse Gaussian distribution are reviewed by Folks and
Chhikara (1978) and Jgrgensen (1982). For a summary of the
properties of the main univariate continuous distributions, see
Johnson and Kotz (1970). Vaupel et al. (1979) and Hougaard (1984)
have examined the effect of heterogeneity between individuals via a
notion of frailty.

For an account of distributions characterized by a descriptive
property of the hazard, see Barlow and Proschan (1975).

Further results and exercises, 2

2.1. Suppose that a continuous random variable T is converted into
a discrete random variable by grouping. Suppose that [t —a,?),
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[t,t+a) are two adjacent groups. Examine how the values of
F(t—a), # (t) and Z (¢t + a) can best be used to determine h(t), the
underlying continuous hazard at t.

2.2. LetTy,..., T, beindependent continuous nonnegative random
variables with hazard functions h,(.),...,h,(.). Prove that T =
min(7},...,T,) has hazard function ) h(t).

23. LetT,,..., T, be independent random variables with Weibull
distributions with rate parameters p,,...,p, and common index k.
Prove that T=min(T,,...,T,) also has a Weibull distribution of
index x.

24. In a compound exponential distribution, let the rate be
represented by the random variable P. Prove that

ET)=EQ/P),
var(T) = 2E(1/P?) — [E(1/P)]?.

Check the results from the case where P has a gamma distribution.

2.5. Verify that special cases of the generalized F distribution of
Section 2.3(ix) are achieved as follows:

K, =1, K, =2, K4 — 00, exponential;
K, =1, K, arbitrary, K3 — 00, gamma;
K, arbitrary, K, =2, K3 — 00, Weibull;
Ky, K3 — 00, log normal;

Kk, arbitrary, Ky =Ky3=2, log logistic.

For the last two cases examine the moment generating function.

2.6. Prove that for the compound exponential distribution of
Section 2.3(v) both density and survivor function are completely
monotonic, whatever the mixing density fp(.). List some
consequences.

[Widder, 1946, Chapter 4]

2.7. Supposethat V,,..., V, are independent and identically distri-
buted continuous nonnegative random variables such that as v—0
the density and survivor function are asymptotically av*~! and
| — av*/k respectively, where a>0 and k> 0.If W =min(V,,...,V,)
and T = (a/k)"*m'’*W, prove that, as m— oo, T has as its limiting
distribution the Weibull distribution of index k, the exponential
distribution being the limiting distribution in the special case k = 1.
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2.8. Ifin the representation of Exercise 2.7 the density of the V’s is,
as v— 0, asymptotically av*~*(1 + b, v+ b,v* + ---), obtain expan-
sions for the asymptotic survivor function and density of T as m — oo,
showing in particular that the survivor function of T has the form

exp(— )1 —3t*/m+...) (k<1
exp(— )1 —ct*  m* +..) (x=1),
c=b k" "+ 1)"ta" e+ 16, ,

with 6, =1(k=1),5,,=0 @+ .
Examine more general expansions for the originating density such
as at* (1 + b, " +..)).

2.9. If T has the Weibull distribution with parameters p and «,
prove that U =log T has the Gumbel distribution with survivor
function exp( — p*e**) and density xp*exp(ku — p*e*). Write this in
scale and location form by reparameterization. Obtain the Gumbel
distribution also as the limiting distribution of pxT— k as k — co.

2.10. Suppose that an individual selected at random has hazard p2t
+ V, where V is an unobserved random variable having a gamma
distribution. Prove that the unconditional hazard has the form
p*t+ &A1 + nt), where & and 5 are parameters determined by the
gamma density. Show that this can take the ‘bath-tub’ form with a
local minimum.

[Borgefors and Hjorth, 1981]
2.11. Show that if the hazard function has the form
kp(pt)*~ ‘exp[(pt)*]
the survivor function is
exp{ — [exp((pt)) — 1]}.
[Dhillon, 1979, 1981]

2.12. Prove that the square of the coefficient of variation of the log
logistic distribution is (x/x) tan(n/x) — 1, for x > 2.

2.13. Show that the Gompertz—Makeham distribution with hazard
h(H) = po + py e

can be obtained as a compound exponential distribution provided
p, < 0, and determine the distribution of the mixing random variable
P.
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2.14. Show that for the log normal distribution, the curve in Fig. 2.1
has equation

y=3x+x>,

where y is the standardized third moment and x is the coefficient of
variation.




CHAPTER 3

Parametric statistical analysis:
single sample

3.1 Introduction

In Chapter 2 we described some parametric families of survival
distributions and gave some criteria for the appropriate choice of
family in applications. We now suppose that a specific family has been
selected, so that the distribution is known up to a vector parameter ¢
and that there is available for inference about ¢ a single sample of
failure times, possibly subject to censoring. Often we may write
¢" =(0", "), where w is a parameter of particular interest and 1 a
nuisance parameter.

Here and throughout the book, we concentrate on methods based
on the likelihood function. Iterative numerical solution of the
likelihood equations is nearly always involved, and, as mentioned in
Chapter 1, the availability of suitably flexible computer programs is
crucial. After deriving the general form of the likelihood function for a
censored sample, we briefly review methods of inference based on
large-sample maximum likelihood theory. The exponential and
Weibull distributions are considered in more detail as illustrations of
the general approach. Unusually, for the exponential distribution,
some ‘exact’ sampling theory is available.

3.2 The likelihood function

We consider first the case where the survival distribution is con-
tinuous. A subject observed to fail at ¢ contributes a term £(z; ¢) to the
likelihood, the density of failure at ¢. The contribution from a subject
whose survival time is censored at ¢ is #(c;¢), the probability of
survival beyond c. The full likelihood from » independent subjects,
indexed by i, is then

lik =[] ;D[] F(ci; ), 3.0
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where the two products are taken over uncensored and censored
subjects respectively. The log likelihood is

1=} log f(t;;¢) + ) log Z(c;; ), (3.2)

with a similar convention for the summations. .
In terms of the observed failure or censoring time x; = min(;,c,),
this becomes

1=, log f(x;;) + Y log F(x;; ).
Since f(¢) = h(0)Z(¢), this may be written
1=y logh(x;;¢) + Y logZ (x;; ).

The log survivor function is minus the integrated hazard, so that

I=Y, logh(x;;$) — Y H(x;39).

Finally, on setting r(u) = card {i:x; 2 u}, the number of subjects still in
view at time u, we note that [ may be written

o0

1=} logh(x;;¢)— f r(wh(u;p)du. (3.3)
0

Of course, the integral is only formally over an infinite range, because

r(u) will be zero beyond the last observed survival or censoring time.

The integrand may be interpreted as the total hazard operating at

time u. These expressions for / emphasize the fundamental role played

by the hazard function in the development.

Suppose now that the survival distribution is discrete, with atoms
fi(¢) at preassigned points a;,(a, <a, <---). We shall assume that an
individual censored at ¢ could have been observed to fail at ¢. With
this convention, the contribution to the likelihood from a subject
observed to fail at a; is f(¢), and from a subject censored at c is

pr(T>)=F(c+:)=1- Z( 11(9).

In terms of the discrete hazard function h (¢) given by (2.6) we have as
in (2.10)

f{(d)=hid) kl—[' [l = (9],

Fle+:9)= [ [1-h(P]

jaj<c
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Each term is a product over the atoms {a,} of the survival
distribution.

To derive the full likelihood from a sample of n observations, we
first collect all the terms corresponding to the atom a ;- If there are d;
failures among the r; =r(a ) individuals in view at a ;» the contribution
to the total likelihood is

ATV LT = hy(p) T4
The total log likelihood is then

2.;{d;logh(¢) +(r; —d))log [1 — hy(¢)]}. (34

Note that this is the same as would be obtained from a series of
independent binomial terms, with r; trials and probability of ‘success’
h(@).

In practice, truly discrete survival distributions are rarely en-
countered. Ties in reported values are usually due to the grouping of
data from an underlying continuous distribution. For most purposes,
and especially for the single-sample problem, the consequent small
inaccuracies in the data can generally be ignored. An exception to this
rule is the fitting of a log normal distribution to data with many values
close to zero. As noted in Chapter 2, the fitted parameters are sensitive
to the very short survival times.

The exact likelihood for grouped data can be derived: it involves
integrals of the density function over the grouping intervals.

3.3 Likelihood theory: general considerations

Various approaches are possible to the extraction of information
about ¢ from the log likelihood function (3.2) or (3.4). If a prior
distribution is available for the unknown parameter the usual
calculations of Bayesian theory lead to the posterior distribution of
the parameter of interest. Note that in the case ¢T = (w7, A7), a joint
prior distribution is needed over the parameter of interest o and the
nuisance parameter A. If a sampling theory approach is used, it may be
possible to develop ‘exact’ confidence intervals and tests, perhaps
eliminating the nuisance parameter by a conditioning argument.
More commonly, the asymptotic considerations of maximum
likelihood theory are used. Three broad types of asymptotic pro-
cedure, based on likelihood, are available for testing the null
hypothesis w = w,, and hence for deriving a confidence set for w as the
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collection of parameter values not ‘rejected’ at the level in question.
These types are as follows:

(a) First, there is the direct use of the likelihood ratio statistic
W(wo) = W = 2[U(d,1) — l(wgs Aey) ], 3.5

where (@, 4) is the joint maximum likelihood estimate of (w, 4) and Aorg
is the maximum likelihood estimate of A when w = w,,. The function
l(w, 4,) is sometimes called the profile log likelihood for co. Under the
null hypothesis w = w,, W(w,) has, approximately, a chi-squared
distribution with p,, = dim(w) degrees of freedom. The corresponding
1 — « confidence region is

{w:W(w)<c* 1, (3.6)

Pw-2
where ¢ , is the upper o point of 'the chi-squared distribution with P
degrees of freedom. If the asymptotic distribution were exact, we
would have E[W(w,); w,]=p,. Often it is possible to find an
expansion

sovossa -] 145o(2)]

Then (1 + ¢/n), with if necessary ¢ estimated consistently, is called a
Bartlett correction factor and improved properties are obtained by
replacing W by

W' =W/l +c/n)

in (3.5) and (3.6). It is rarely feasible, however, to carry out such
calculations in the presence of censoring.

(b) Secondly, we may make direct use of the maximum likelihood
estimate @. The observed information matrix is the matrix of minus
the second derivatives of I with respect to (w, 4), evaluated at (&, 2).
Write v,,(c,4) for the leading submatrix of the inverse of the
observed information matrix; it can be regarded as the estimated
covariance matrix of &. Then we may use instead of (3.5) the Wald
statistic

We(@o) = (@ — @) 04, (@, (D — ), (3.7

again with an approximate chi-squared distribution with p, degrees
of freedom under the null hypothesis. Equation (3.7) leads directly to
an elliptical confidence region for w, centred on ¢&. There are
alternative ways of estimating the covariance matrix, for example via




36 PARAMETRIC STATISTICAL ANALYSIS

expected rather than observed second derivatives of the log like-
lihood. If w is a scalar parameter, there results the symmetric 1 — 2o
confidence interval

& — k*ol2(d,2),
where @( —k¥)=a.

(9 A third possibility is to use the gradient of the log likelihood at
w,, replacing 4 by 4, , ie. to calculate

0
Vs, = [El(w,l)]mwo’ " (€Y

This p,, x 1 vector is, when w = w,, approximately normally distri-
buted with zero mean and covariance matrix Va(@g,4y,). The test
statistic based on U, is

Wy(w,) = UL, vww(wo,iwo) Uy, 39

Again there are alternative ways of evaluating the covariance matrix,

and the distribution under the null hypothesis is approximately chi-
squared with p_ degrees of freedom.
We note in passing that the estimated covariance matrix, evaluated

at w = w,y, A = 4,, of
0
—1
[ = (w,z)]

is I,,(wg,4,,), the leading submatrix of the observed information
matrix. In general, I,,,(@g,Aq,) F Vga(®g,4,,); the difference repre-
sents the gain in information about w provided by knowledge of .

& + k*oX2(6, 1),

a oo

The three procedures (a)-(c) will very often give virtually identical
answers. Procedure (b), the direct use of the maximum likelihood
estimate, has advantages in simple presentation of conclusions, but
the disadvantage is that it is not invariant under reparameterization
and that it may yield absurd answers if the likelihood is of unusual
shape, e.g. is multimodal or zero for certain values of ¢. Procedure ©
has some computational advantage in that only maximization at ¢
= ¢, 1s required, so that the adequacy of a basic model specified by A
can be tested by augmentation in various directions without re-
maximization. In cases of doubt, procedure (a), the direct use of
maximized log likelihoods is recommended. It is invariant under
reparameterization and the shape of the resulting confidence region is
settled by the data. These qualitative arguments are reinforced
by recent work on higher-order asymptotic theory, in particular
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involving conditioning on approximately ancillary statistics (Efron
and Hinkley, 1978; Cox, 1980; Barndorff-Nielsen, 1980, 1983;
Barndorff-Nielsen and Cox, 1984).

The asymptotic theory of maximum likelihood estimation on
which the normal and chi-squared approximations are based does
require the satisfaction of some ‘regularity conditions’ concerning the
smoothness of the likelihood function. In particular, the theory does
not hold for threshold parameters. With observations that are not
independent or identically distributed, it is necessary, roughly
speaking, that the proportion of the total information in the sample
contributed by any single observation should converge to zero as the
sample size increases. Of course, even if the problem is such that the
conditions for asymptotic normality hold, the theory may give a poor
approximation to the small-sample:results.

If there is serious doubt about the applicability of asymptotic
distribution theory, a Bartlett correction factor can be calculated or
computer simulation used to examine the distribution on the null
hypothesis of any appropriate statistic.

3.4 Exponentially distributed failure times

The exponential distribution, with rate parameter p, #(f) = e, has
constant hazard function h(t,¢) = h(t, p) = p. The log likelihood for
the single unknown parameter p is thus

I=) logp—pYx;=dlogp—p)x,

say, and the total number d of failures and the total ) x; of the
censored and uncensored failure times form a minimal sufficient
statistic for p. Note that unless d or ) x; or some function of them is
fixed by design, we have a two-dimensional statistic for a one-
dimensional parameter, showing an example of a so-called curved
exponential family. Often )'x; is called the total time at risk.

The derivatives of [ are

U,=0l/op=4d/p—Yx,
I=—0%/0p*=d/p>.

(3.10)

3.11)
(3.12)

The maximum likelihood estimator p of p is the solution of U, =0,
namely

p=d/¥x, (3.13)
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the total number of failures divided by the total time at risk. Censored
failure times contribute to the denominator but not to the numerator
of this ratio.

When there is no censoring, the log likelihood becomes

=nlogp — pY x,

and the curved exponential family collapses to a full one-dimensional
family with the single minimal sufficient statistic Y x, for p. Here, exact
inference for p is possible, because Y x;, the sum of n independent
exponentially distributed random variables with the same parameter
p, has a gamma distribution with index n and scale parameter p- Thus
2np/p has a chi-squared distribution with 2n degrees of freedom.
Interval estimates and hypothesis tests for p follow immediately. In
particular, a 1 — o confidence interval for p is

pAcgn 1-3a ﬁc’;n Ja
s p3 <p< Ly

2n 2n

where c¥ , is the upper « point of the chi-squared distribution with p
degrees of freedom. -

Example 3.1

Consider the leukaemia data of Freireich ez al. given in Table 1.1, For
the control group, with no censoring, n =21 and Y x; =182 If an
exponential distribution is assumed

p=21/182=0.115,

and an exact 959 confidence interval for p is (0.071, 0.170), since the
0.025 and 0.975 points of the chi-squared distribution with 42 degrees
of freedom are respectively 26.0 and 61.8.

The exact theory holds also with Type II censoring, that is when
observation ceases after a predetermined number of failures, d. This is
easily seen by noting that if t; denotes the ith ordered failure time
(=0, 1,...,d: t,, =0), then @ — ti-) has an exponential distri-
bution with parameter (n — i+ 1)p and that

n d
Y ox = Ym—i+ D(te = ti-1),
i=1 i=1

with this censoring mechanism.
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With other censoring patterns, the exact sampling distribution of §
is difficult to derive. It has been tabulated for the special case of Type 1
censoring, when observation on all individuals ceases at a prede-
termined time c. However, good approximate procedures for general
censoring patterns can be obtained by treating 2dp/p as a chi-squared
variable on 2d degrees of freedom, ignoring the fact that d is now a
random variable. The resulting confidence intervals are very similar
to those obtained from the likelihood ratio.

Example 3.1 (continued)

For the treated group (6-MP), Y x; =359, d=9. The maximum
likelihood estimator is

p=d/y x,=9/359 = 0.025.

The log likelihood function is plotted in Fig. 3.1 and shows a
noticeable lack of symmetry. The 959 confidence interval for p from
the likelihood ratio is (0.0120, 0.0452). The interval obtained from the
upper and lower 0.025 points of the chi-squared distribution with 18
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Fig. 3.1. Leukaemia data, 6-MP group. Log likelihood functiqn, L
for exponential parameter, p. 95% confidence interval derived
from chi-squared distribution. Maximum likelihood estimate, p.
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degrges of freedom is (0.0115, 0.0439). The standard error of the
maximum likelihood estimate is

([ 621 = 1/2 p*2 1/2

This gives a symmetric 959 confidence interval, based on a normal
approximation to the distribution of 5, of (0.0087, 0.0414). In view of
the .shape of the likelihood function, this symmetric interval would be
an mappropriate choice here.

3.5 Proportional hazards family

The likelihood equations take a simple form for the Lehmann family

?(t; p) = phy(1), where the hazard function h(t) is assumed known. In
act, if

Hy1) = f ho() du
0

denptes the integrated hazard corresponding to hy(t), the random
variables T = H(T;) will have exponential distributions with para-
meter p, so that the methods of the previous section apply.

Alternatively, we may proceed directly from the log likelihood. For
a general censored sample, equation (3.3) gives

I=dlogp + Zu loghy(x,) + pe, (3.19)
where

e= jwr(u)ho(u)duz ; Hy(x;).

i=

It ig easily seen that, whatever the censoring mechanism, the random
Vquable pe has the same expectation as the number d of observed
failures; see Exercise 3.2. The derivative of [ is

dl/dp =d/p —e, (3.15)
leading to the simple form

p=dle : (3.16)
for. the maximum likelihood estimator. In epidemiological appli-
cat}ons,‘ the hy(t) may represent known age-specific mortality rates for
a ‘glven standarq population’, and d the number of deaths observed in
a ‘study population’-of interest. The ratio d/e, possibly expressed as a
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percentage, is called the standardized mortality ratio (SMR). It is
usually necessary to allow for dependence of the hazard function on
calendar time as well as age, in the calculations of e.

The 1 — a ‘limits on the expectation’ of a Poisson variable with
observed value k, are

0,.(k) = 0(k,39),

where 8(k, «) is the root of

Oy(k) = B(k + 1,1 — %a),

w i

.Zk%exp(—9)=oc. 3.17)
A 1 — o confidence interval for p can be calculated from these limits as
(0,.(d)/e,0,(d)/e), i.. treating d as if it had a Poisson distribution with
mean pe, with e nonrandom. It can be shown that the lower limit of
this interval is the same as that obtained by taking 2pe to have a
chi-squared distribution with 2d degrees of freedom. For the upper
limit, the degrees of freedom, however, must be taken as 2d + 2.

3.6 Likelihood estimation for the Weibull distribution

We now consider maximum likelihood estimation for the parameters
(,p), both assumed unknown, of the Weibull distribution, with
hazard h(t)=xp(pt)*~*. From (3.2) the log likelihood from a
censored sample is

I=dlogk +kdlogp +(xc — 1)), logx;, — p*) xf.

Even in the absence of censoring, there is no fixed dimensional
sufficient statistic for (p, x); the Weibull is not an exponential family.
The first derivatives are :

ol xd
U,=—=——kp* ' ) xf, :
= T (318)
ol d
Ux:ax=E+legP+Zu10gxi—P”folog(l’xi)' (3-19)

If x is specified, the maximum likelihood estimator j, of p can be
found explicitly by solving U, =0 as
p=(d/yx0)", (3.20)

aresult which could be derived immediately from the fact that T* has
an exponential distribution with parameter p*. Substitution into the
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equation U, =0 yields the simpler form

d YxFlogx,
0=—4+> logx,—d=L =7
" Zu g X; Tr 3.2
for the maximum likelihood estimator %. Equation (3.21) does not

contain p and can be solved by a one-dimensional iterative scheme in
K.

The second derivatives of | are

Pl
=gy~ K= D 62
E 0%l -1
gk =5 P (1 +xlogp)y xf—xp* 'Y x¥logx,
3.23
P 2 o
T 0-05f
P
0-04f
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Fig: 3.2. Leukaemia data, ¢-mp group. Fitting of Weibull distri-
b.utlf)n: , boundary of 95% confidence region based on
likelihood ratio statistic; ———— , maximum likelihood estimate j_ of
p for given x; x, maximum likelihood estimate K, p). "
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Fig. 3.3. Leukaemia data, 6P group. Log likelihood profile for Weibull
parameter, k, i.e. l(x, p,) Versus K.

Example 3.2

For the leukaemia data (treated group) the joint maximum likelihood
estimator of (k, p) is € = 1.35, p = 0.030. Fig. 3.2 shows the joint 95%,
confidence region for (k, p) obtained from the likelihood ratio statistic
W. For given x the maximum likelihood estimator p, of p is also
shown as a function of «. Fig. 3.3 shows the likelihood profile I(x, p,).
The 95%, confidence interval for x based on W is (0.72, 2.20).

3.7 A test for exponentiality

We now derive the score test of the hypothesis k = 1 corresponding to
exponentiality. This will be a useful test against alternative hy-
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potheses which specify monotone hazard functions.
The maximum likelihood estimator j, of p when x = Ko =l is just

Preo = 4/ x;.
The score function is, from (3.19),

0
Ulco = [_I(K9 ,0):,

aK K0, P = Py

;log x;
=d+) logx — dz—x’—"
Zu - in
The observed information matrix at (%9, Py,) has elements

IKK =d+ Z(ﬁxoxi)[log(ﬁxoxi):’zy
I, =Y xlog(p,x.),
IPP = d/ﬁio

The inverse matrix v has leading element

Ugexe :(Ixx _Il%p/lpp)_lﬂ

and the approximate chi-squared statistic can be constructed as at
(3.9). When, as here, p, = 1, the signed statistic
UKO(UKK)I/Z’

approximately a standard normal deviate on the null hypothesis, is to
be preferred, as it indicates the direction of the departure from the null

hypothesis.
Example 3.3
For the leukaemia data,

d=9,  Yx,=359,
> x;logx; = 1077.3,

Yulogx, =21.19,
2 x;(logx,)? = 3334.3.
Thus, Pro =0.02507 and U, =3.18. The elements of the observed
information matrix at x =, are

Lo=1579, I,=-2460, I, =14320,
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and v, = 0.0865. The standard normal deviate for the test of x = x, is
3.18 x (0.0865)'/2 = 0.935, indicating consistency with the null hy-
pothesis of exponentiality. This agrees qualitatively with the con-
clusions from the likelihood ratio statistic.

In view of the small number of failures, it is not surprising that the
null hypothesis cannot be rejected. The evidence, weak as it is, in
favour of a monotone increasing rather than a monotone decreasing
hazard, is probably due to the apparent threshold at six weeks.

Bibliographic notes, 3

Estimation from censored samples when the number of failures is
predetermined and the distribution exponential was considered by
Sukhatme (1937) and Epstein and Sobel (1953). Bartholomew (1957)
derived asymptotic methods for the exponential distribution with
fixed censoring times and also (Bartholomew, 1963) gave the exact
distribution of the maximum likelihood estimator for Type I
censoring. Cox (1953) suggested a chi-squared approximation in the
context of a single Poisson process observed for a fixed time.

The computation and interpretation of standardized mortality
ratios is discussed in most texts on medical statistics; see, for example,
Bradford Hill (1977). Breslow (1977) gave the likelihood derivation.
Limits on the expectation of a Poisson variable are tabulated by
Fisher and Yates (1963) and Pearson and Hartley (1966). The explicit
connection with chi-squared was noted by Fisher (1935) but was
known much earlier, in a different context, to A. K. Erlang.

Likelihood estimation in the Weibull distribution was discussed in
detail by Pike (1966) and Peto and Lee (1973). The reliability
literature (Mann et al., 1974) contains many alternative procedures.
These are often based on order statistics and are thus applicable in the
presence of a threshold parameter, as well as of censoring.

For a general introduction to large-sample likelihood theory, see
Rao (1973, Chapter 6) and Cox and Hinkley (1974, Chapter 9).

Further results and exercises, 3

3.1. Suppose that failure times are exponentially distributed with
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parameter p, and that p has a prior distribution of the gamma form
Je(p) of Section 2.3. Show that the posterior distribution of p given
the number of observed failures d and total time at risk Y x; is also
gamma, with parameters k, =k +d, p 1=+ d)poli+ po) x,).
Consider the extension to the proportional hazards family, with ho(®)
assumed known.

3.2. Show that, if T has a continuous cumulative distribution
function F with integrated hazard H (.), and if X = min(T, ¢), then
E[H(X)]=F(o).

3.3. Show that, if there are at least two distinct uncensored failure

times, and each x; > 0, equation (3.21) always has a unique root in
K >0.

3.4. Show that in the absence of censoring the expected information
matrix for the Weibull distribution has elements

1\ nk? 0%l ny(2)
“Ha) 5 o)
p pOK p

021
‘E(W)

I

{0+,

where

0
=—IlogDl
V(@) = 5-10gT@
is the digamma function.

3.5. Show that in the absence of censoring, the gamma distribution
(2.13) has minimal sufficient statistic (Ot Y logt,) for p and x, and
that the maximum likelihood estimator of x with unknown p is the
solution of

W(x) —logx —log R =0,

where R is the ratio of the geometric to the arithmetic mean of the
sample.

3.6. By considering (i) the number of events and (ii) the time to the
kth eventin a Poisson process of rate § observed over the unit interval,
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show that

N 1

Ok, o) =5¢%, .-

3.7. For n uncensored individuals with exponentially distributed
failure times and log likelihood function nlogp — p) x;, prove thgt
the likelihood ratio statistic W of (3.5) for testing the null hypothesis

p=pois
W =2(nlogn—nlog) x;—n—nlogp, + po Y x,).
Prove that the expected value under the null hypothesis is
EW)=1+(6n"14+0(n"?),
so that the statistic with a Bartlett correction factor is
W' =W/[1+(6n ']

Examine numerically the relation between confidence limits from W,
from W', and from the ‘exact’ solution.




CHAPTER 4

Single-sample nonparametric
methods

4.1 Introduction

The methods of the previous chapter all require specification of the
functional form of the distribution that failure time would have in the
absence of censoring. We now discuss nonparametric techniques
which require no such assumptions. As well as providing flexible
alternatives to the parametric techniques, they are useful in con-
nection with graphical assessments of goodness of fit for complex

models. The term ‘life table’ is often used for a nonparametric estimate
of a survivor function from censored data.

4.2 Product-limit estimator

We begin by assuming that the possibly improper distribution is
discrete, with atoms /; at finitely many specified points a,<a,<---
< a,. In practice, these points are often taken to be equally spaced,
a; = j in suitable time units, but this is not necessary. As described in
Section 2.2, the survivor function % (t) may be expressed in terms of
the discrete hazard function h ; as

FO =110 ~h)=T]1—h),

aj<t

where H(') , and subsequently Z(t’, denote product and sum over j,
a; <t Thus, in terms of the h;, the J; may be written in the form

fi=hy,  f,=(0=h)h,, ...
fi=(=h)(A = hy...(1 —h;_)h, -
fy=(=h) (1 =hy)...(1 —h,_)h, @.1)

The constraints J; =0, Z J; <1 become, simply, 0< h ;S L
48
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A nonparametric estimator of the survivor function is
F@o=[1"0-h, 4.2)

where the ; are the maximum likelihood estimators.of the h;. From
equation (3.4), the log likelihood in terms of the h; is

Y;[d;logh;+ (r,— d)log(1 — h)], 4.3)

where r; is the number of individuals in view at a;, and d; is the number
who fail at a;. It is conventional to include in r; any individuals who
are censored at a;. Other conventions are possible and would lead t.o
slightly different results in the sequel. Any difficulty that this causes in
practice can usually be resolved by obtaining the data recorded on a
finer scale.

The log likelihood (4.3) is exactly that for g independent binomial§,
with respectively r; trials, d; failures, and probability of failure h ;- Itis
particularly easy to maximize here, as the parameter vector is {h j}

itself. Thus, A; is the solution of
o d r,—d,

1o

0,
j

ie.h ; = d;/r;. The corresponding estimator Z of the survivor function

18 A
F@)= H“’( - ;{->, (4.9)

J

obtained by substituting in (4.2).

Table 4.1 Calculation of the product-limit estimator for the leukaemia data of
Table 1.1, 6-MP group

o
a; r d; 1 : ll;]j 1 . (a;+)
6 21 3 0.8571 0.8571
7 17 1 0.9412 0.8067
10 15 1 0.9333 0.7529
13 12 1 0.9167 0.6902
16 11 1 0.9091 0.6275
22 7 1 0.8571 0.5378
23 6 1 0.8333 0.4482
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Any term in the product which has d =0 can be omitted without
affecting (4.4). The estimate # () is, therefore, formally independent of
the selection of points a; for which the observed number of failures is
zero. Thus, (1) is a function of the data only. It can, in fact, be shown
to maximize the (generalized) likelihood over the space of all
distributions, although this property has only limited direct statistical
implications. Usually, # () is called the Kaplan—Meier, or product-
limit estimator. Table 4.1 shows an example of its calculation, for the
leukaemia data of Table 1.1.

4.3 Greenwood’s formula

If the possible failure times ay, ay,...,q, are fixed, and the censoring
mechanism allows the numbers of failures d; at each a; to increase at
the same rate as the total sample size n, then the standard large-
sample theory for maximum likelihood estimators applies, and the
methods outlined in Chapter 3 may be used to make inferences about
the h; or functions of them such as ().

Thus, asymptotically, \/n(h; — h ;) will have a multivariate normal
distribution with mean zero and a covariance matrix which can be
estimated by the inverse of the observed information matrix. Here

7.
2 —d . Gk
[ 0%l ] Y YT (j=k)
ool | g (j# k),
the same as would be obtained for k independent binomials. Since
log #(t)=Y"log(l — h)),

and we have just seen that the / ; are asymptotically independent, the

asymptotic variance of log % (t) and hence of % (¢) can easily be found,
for any fixed . Thus

var[log # ()] ~ Y ®var[log(l — h)]
1

2
~ Z“)<1 — ﬂ) var(h;)

J
A Y0 L 2hy(1—h))
1—h; r;

J

d
R o10)
z rir;—d)y
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and

. d
var[#(9]=[F (r)]zz‘”—’—d- (4.5
rir;—d;)
This is known as Greenwood’s formula. . .
Confidence limits can now be obtaingd via thc? normal approxi-
mation based either on Z(f) or on log # (¢). Limits such as

F(ty) + kx{var[ZF (t)]}'*,

where ®( — k¥) = o, refer to a prespecified t,. A larger multiplic?r would
be needed for a simultaneous confidence band for the function Z ()

over some interval. . |
Some authors have suggested that (4.5) may be unstable in the tai

of the distribution and have proposed an alternative, simpler
estimate, namely,

- FOri-7o] (4.6)
r(1)

A rationale for (4.6) is as follows. Given the values o_f n, r(t) and #(b), it
is plausible that the least informative conﬁgurathn. of the data is
when all the censoring in (0, £) occurs at the origin, s0 thgt the
censored observations contribute no information to thg estimation of
Z(f). In that case, the number of uncensored obse¥vatlons woul'd be
r(t)/ﬁ (t)=n,, and (4.6) is obtained as 'the variance of a single
binomial proportion Z(z) based on n, trials. ‘

As explained in Section 3.3, the dependence on.the functlon of
F(t,) chosen as the basis of the normal appfommatlon can be
avoided by the use of likelihood based confidence mteryals.. These can
be derived as follows, working from the binomial log hkeh.hood. 4.3).
The maximized log likelihood when the ; are unconstrained in the
unit cube is

Z{dj log(dj/rj) + (rj - dj)log[(rj - dj)/rj]}‘
Now suppose that § = Z (1) is regarded as the parameter of interest:
Y @log(1 — h)) = log.

To test the null hypothesis § = 6,,, we introduce a Lagrange multiplier
{, and maximize instead of (4.3)

Y.d;logh; + (r; — d)log(l — h)+ ) “(olog(1 — hy).

var [ (1)
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The maximizing values are /;, with
=h (a;2 1),
h;=d/(r;+ (o) (a; <),
where {, is determined by

® r
2. log(l — k) =logb,. 4.7
The statistic for testing the null hypothesis is

W(0o) =23 9 {r;log[(r; + Lp)/r]
+(rj—dj)log[(rj—dj)/(rj+C0 -d)]}. (4.8
A 1 -« confidence region for § = # (9) is now formed by taking
{0;W(0) <ct,},

where cf, is the upper « point of the chi-squared distribution with one
degree of freedom. This is best achieved by taking { as a new (data-
dependent) parameter, obtaining from W confidence regions for ¢ and
then recalibrating the ¢ scale in terms of by (4.7).

The .relation with Greenwood’s formula is made explicit by the
expansions

?

04,
W09 =X s+ 0,1/

=[log #(t,) — log# ]2< - Z(”—d*"—— -
b ) T 0,(1//n).

The difference between confidence limits derived this way and those
obtamgd from Greenwood’s formula is most pronounced in the tails
of the distribution, where asymmetric limits are most natural. Thus in
thé data analysed in Table 4.1, the first value of the survivor function
estimated as 0.8571, has a standard error from Greenwood’s formulzi
of 0.0764, and calculation of limits via a normal approximation is
hazardous, fmd impossible at the more extreme levels. The values of '8
corresponding to a = 0.95 are 59 and — 11.9 and the resulting limits
for. F (1) are 0.9625 and 0.6703. At the final value recorded. with
estimated survivor function 0.4482, with standard error 0 134’6 the
values of { are 123 and — 3.75, with limits for #(f) of 0.6965 and

0.2028, almost symmetrical and close
R to th
Greenwood’s formula. © values based on
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4.4 Actuarial estimator

In practice, the distribution may be continuous rather than discrete,
as has been assumed so far in this chapter. In this section, we consider
the estimation of a continuous distribution with piecewise-constant
hazard rate, that is for j=1,...,g,

f® _

70"

where the a; are prespecified, with the convention that a, =0. This
representation is not especially plausible, but it does allow the
estimated hazard rate to reflect the behaviour of the data in a way
that is not possible under strong parametric assumptions, while
avoiding the analytic complexities of fully nonparametric estimation
of continuous distributions. The use of splines would allow additional
smoothness conditions to be introduced into h(Z), at some cost in
computational complexity, and with the disadvantage of possibly
allowing h(f) to be negative over part of its range.

We shall assume that censoring is also governed by a random
mechanism, with its own piecewise-constant hazard

h (1) =1,

and we set b, =a; — a;_,, the interval width. We consider maximum
likelihood estimation of the parameters p;, the A; being regarded as
nuisance parameters, first when all the survival times and censoring
times are reported exactly, and secondly when they are given in
grouped form. The latter case, where only the numbers d; of failures
and m; of censorings ineachinterval [a;_,, a;are recorded, out of the
rj—; subjects entering that interval, is the more commonly
encountered.

In the first case, the log likelihood in the p; may be derived without
reference to the 4; by the methods of Chapter 3. In fact, from (3.10),

hp(f) = (a;-, St<ay,

(a;-, <t< aj),

)

I(p)= Y (d;logp;—u;p)),

j=i

where

n

;= .le(xi;aj_l, a),
i

is the total time at risk in the interval (a;_, , a;). Here the function I is
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defined as

0 (x<a;_y),
I(x;a;_y,a)={x—a;_, (aj-1 Sx<a)),
a; (x=ay).

The maximum likelihood estimator of p ;, obtained by solving
0ljop; =0, is
ﬁjzdj/uj, 4.9

the total number of failures in [a i1, a;) divided by the total time at
risk in that interval, a straightforward extension of the result (3.13) for
a single exponential parameter p. Since d%l/op :0p, =0(j#k), the p ;
are asymptotically independent.

In the second case, we must consider, separately for each interval
(a;-4, a;], the contribution to the joint likelihood lik(p, 4):

() from the r;_, —d; —m; subjects who survive uncensored
throughout the interval;

(i) from the d ; subjects who fail during the interval;
(iii) from the m; subjects censored during the interval;

all conditioned on survival to the start of the interval. For clarity, we

temporarily drop the subscripts j— 1 and j. The conditional pro-
babilities for the three events are

O exp[—b(p+2)],

b
r ~pv,—dvg _ P _ _
(ii) Jope e dv_p+/1{l exp[ —b(p +A)1},

b
(iii) Lle“"e"”"dv = ﬁj{l —exp[—b(p+A)]}.

The contribution to the total log likelihood arising from the interval
(a -1 aj] is

pph) = — (r — d—m)b(p + 2) + d10g<p_iz>

A
+ mlog<m> +(d +m)log{l —exp[ —b(p + H]},

where again the subscripts j — 1 and j have been dropped from the
right-hand side of the equation. As before, no other interval
contributes to the log likelihood in ( Pj»4)-
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The maximum likelihood estimates ﬁj and Zj can be obtained
explicitly as the solutions of

ol d d+m+(d+m)bexp[—b(p+/l)]=0
o= T T T T mepl ket A1
ol m d+m (d+m)bexp[—b(p+/1)]=0
az_(r—d—m)b—*—/l_p—i-l 1—exp[ —b(p+4)]

(4.10)
for subtraction of the two equations gives
dfp =mji=(d+m)(p+4),

and substitution gives

§

d r—d—m ~ m r—d—m)
h=— , A=- log< .
p= b(d+m)10g< r > b(d+m) r

@.11)

I

If the interval width b is small, then (d + m}/( will also be small and
the logarithm may be expanded in series, giving

d 3
d ld(d—l—m)+0< +m>

bp=;+2 r

2
Tt
r—3(d+m r

) d;
PiT b lr—, — 3(d+m)]

The estimator

4.12)

is traditionally used to estimate the hazard rate p; in Fhe 1r}terVal
a;_y,a). Comparison with (4.9) shows that the use of this estlmgtor
is in a sense equivalent to assuming that the deaths and censorings
occur uniformly throughout the interval, when the‘ denominator of
(4.12) would equal u;, the total time at risk in thf: interval. N

Of generally greater interest than p; itself, is the cond1F10nal
probability exp(—b;p;) of survival throughout the 1nt.erva'l in the
absence of censoring. To the same order of approximation, the
estimated probability of failure during the interval is

1 —exp(—b;p) = d;fr;=q;,
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Zay, where r}, called the adjusted number at risk in [a;_,,a),is given
y

rj rj_l —ym..

The actuarial estimator of # is obtained by combining the §,. It has
the form g

ﬁ(aj)= H(l ——d—f‘> (4.13)
T kS Fi

This estimator differs from the product-limit estimator of Section
42 ev.aluated at t=a;+ only in the ‘half-period’ correction of
replacing r; by r;. Usually the two estimates differ little, unless the
data~ are heavily tied. Greenwood’s formula for the estimated variance
of #(a) becomes

var[.%'(a)] [Z(a ]Z

k=1 k(rk k)

4.5 Cumulative hazard estimators: goodness of fit

As mfentioned in Section 2.4, plots of the hazard or cumulative hazard
funct.lon are often useful in assessing the fit of a parametric family of
survival distributions to a given set of data. Although minus the
logarithm of the Kaplan—Meier estimator could be used to estimate
the cumulative hazard, it is more usual to take

AQ=Y"dr, 4.14)

as suggested by equation (2.12). Notice that if there are no ties and no

gclnsormg, so that {a,, az,...,ag} denote the ordered failure times,
en

_ ’ 1

Ha)=e,=>) ——,

i jgl n—+ 1 — _]

the expected value of the kth-order statistic in a unit exponential
sample.

The estimated variance of H(f) = — log.# (t) was obtained en route
to Greenwood’s formula as

d,
var[A@)] =Y —— 4.15
R @19
Cumulative hazard plots have the disadvantage of tending to place
too much visual emphasis on the behaviour in the tail of the
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distribution, where, as is clear from (4.)5), the estimate is most
unstable. Moreover, the sampling errors in H(f) are not independent.

With small amounts of data, a visual appraisal of random error
may be desired, by inspection of the variation among points with
independent errors, preferably of constant known variance. One
approximate way of achieving this is as follows. Choose a small
integer k, for example k = 4. Let SP, S, ..., be the total time at risk
up to the kth failure, between the kth and 2kth failure, etc. If p; denotes
the average total hazard during the period defining S, i.e. ‘summed
over all subjects at risk in that period, then 2p,S%® is distributed as chi-
squared with 2k degrees of freedom. It follows from standard
properties of the log chi-squared distribution that

S(k) 1
Z(k) N —
1°g< k ) 2k —1

has mean approximately log p; and variance approximately
(k—%)~*. Further, the Z{¥ are approx1mately mutually independent.
A natural plot is thus of Z ® versus 1% or log 1%, where ¥ is the time
at the centre of the relevant mterval

4.6 Bayesian nonparametric methods

In the absence of censoring, the natural prior distribution for
describing uncertainty about the atoms f; of the discrete possibly
improper survival distribution (2.6) is the Dmchlet distribution, with
density proportional to

futtfel fem 1= f— == fyer Tt

(4.16)

for ;20 (j=1, 2,....9 + D). This is the conjugate prior for the
multlnomlal llkehhood in the sense that the posterior distribution for
{f;}, given that, of a total of n failures, d; are observed to occur
at a;() d;<n), is of the same form with -parameters o= a;+
d(J—l )X Ugy1 =0y TR~ Zd

When some of the failure times are censored, however, the posterior
distribution of £ is no longer of the Dirichlet form. As usual, it is more
convenient to transform to the (discrete) hazard function, via the
transformation (4.1). The Jacobian of this transformation is

(1=h)" YA —hy)* 2.1 —h,_)",
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and, as is evident from the definitions of f and h,
I—fi=f— = fy=(1=h)(1—hy...( =il );

bqth expressions equalling pr(T > a,). Expressed in terms of {h;} the
prior (4.16) becomes, apart from a proportionality constant,

g
jl:[l hjff‘l(l — hj)““l, 4.17
where
g+1
=Y . (4.13)
k=j+1

The expression (4.17) has the form of a product of independent beta
distributions. The degenerate form of (4.16), with a;=0 for all j,
corresponds to the degenerate form of (4.17), with « ;=7;=0,forall j.
In general, however, exchangeability of the f pleoy == . =o,is
not equivalent to exchangeability of the 4 -

As noted earlier, the likelihood for {h,}, from right-censored data in
which d; failures are observed among the r; subjects at risk at a;, is
proportional to ’

g
T = hyrms, 4.19)

equivalent to that from a product of independent binomials. From
(4.17) and (4.19) the posterior distribution of {h;}, given the data, is
also a product of independent beta distributions, with indices o’ =
a;+d;, yj=7v;+r;—d;. This will not in general correspond té a
Dirichlet distribution over the { f}.

The posterior distribution of the survivor function % (a)=
(1—=h)A—=hy...(1 — h;_ ) can in theory be derived, but it doesjnot
take.a simple form. The posterior moments of & (a;) are easily
obtained (Exercise 4.7). For the degenerate ‘ignorance’ prior with

a;=7y; =0, the product-limit estimator is recovered as the posterior
mean of #.

Bibliographic notes, 4

Life tables have been used by demographers and actuaries for many
years to describe and compare patterns of human mortality, often via
the so-called expectation of life. The product-limit estimator appears
first to have been proposed by Bohmer (1912) but the actuarial
estimator itself is much older. Formula (4.5) is due to Greenwood
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(1926). Kaplan and Meier (1958) derived the product-limit estimator
from maximum likelihood arguments; for further discussion see
Johansen (1978). A key reference is Efron (1967); see Chapter 11 of
this book. Anderson and Senthilselvan (1980) discuss the use of
splines in the estimation of hazard functions.

At the price of some rather artificial restrictions on the form of the
survival distribution, we have been able to appeal to standard large-
sample likelihood theory to justify the methods. These restrictions
can largely be dispensed with at the cost of increasing the complexity
of the theory. The notion of weak convergence (Billingsley, 1968,
1971) provides the appropriate mathematical tool. For applications
to censored data, see Breslow and Crowley (1974) and Meier (1975).
Gillespie and Fisher (1979) and Hall and Wellner (1980) use the
theory to derive simultaneous confidence bands. See Aalen (1976,
1978) and Gill (1980) for an approach using martingale theory. Reid
(1981a) discusses influence functions for censored data, and Efron
(1981) and Reid (1981b) describe some numerical methods for
obtaining interval estimates of the median of a survival distribution
from censored data.

A comment similar to that of the preceding paragraph applies to
the Bayesian theory. Ferguson (1973) introduced Dirichlet processes,
for the purpose of deriving nonparametric Bayesian estimates of a
distribution function from uncensored data. This avoids the need to
specify the atoms of the distribution in advance. Extensions to
censored survival times are discussed by Susarla and Van Ryzin
(1976), Doksum (1974), Cornfield and Detre (1977), Kalbfleisch and
Mackay (1978), Kalbfleisch (1978) and Ferguson and Phadia (1979).
Burridge (1981b) describes an empirical Bayes approach.

The cumulative hazard plot is due to Nelson (1969, 1972). See Cox
(1979) for discussion of graphical methods for assessment of fit.

Further results and exercises, 4

4.1. Verify that in the absence of censoring, the product-limit
estimator reduces to the empirical distribution function

F()=

S |-

i I(xi’ t)9

where I(x,t) = 1 if x <t,I(x,t) = 0 if x = t. Show also that Greenwood’s
formula reduces to the usual binomial variance estimate in this case.
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4.2. Suppose that the censoring times are random with survivor
function K(z). Let Z(f) = /n[F () — Z(1)], where ZF(¢) is the
product-limit estimator of the survivor function based on n obser-
vations. Show informally that as n— oo, the covariance function
cov[Z,(s), Z,(t)] (s < 1) converges to

dF (u)
w0 [ZWTPK(W)

[For a rigorous proof, see Breslow and Crowley, 1974.]

—F (DF (0 J

4.3. The restricted mean of F is estimated from the Kaplan—Meier
estimator as

L
i = f F (t)dt.
0

Show from the preceding exercise that the variance of ji;, may be
estimated by

1 L 1 L 2
var(fl;) = J m([ (”)d“> [dF (5)|.

What happens as L — o0 ? Discuss how the variance of /i, and of its
limit (the so-called expectation of life) may be estimated.
[Irwin, 1949; Kaplan and Meier, 1958; Meier, 1975; Reid, 1981a]

4.4. InSection 4.4, show that the exact conditional distribution of d;
givenr;_, and d; + m;, is binomial, with index d;+m;and parameter
p/p + ).

4.5. Examine the extent to which the arguments of Section 4.4 hold
if it is assumed that the hazard functions h,(f) and h (D) in(a;_,,a)
take the form

hy () = Pjho(t)a

for some unknown function h ().

h (1) = 4;ho (),

4.6. Compare the second derivatives of the log likelihoods for the
two cases of Section 4.4. Find an expression for the expected loss of
information about p; through the grouping, and evaluate this for
representative values of bp;, b;.

[Pierce et al., 1979]
4.7. Show that if h has a beta distribution, with density proportional
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to h*~ (1 —h)? ™%, then its expected value is a/(ox + y) if « >0, y > 0,
zeroif o = 0,y > 0, and unity if « > 0,y = 0. Hence derive the posterior
mean estimate of the survivor function in Section 4.6.

4.8. Prove via the argument used to derive Greenwood’s formula
that the approximate variance of the logit transform, log{./f @)/

~F®1}, is

[1-F0) 20—

2=y
Suggest how this could be used for the analysis by empirically
weighted least squares of a linear logistic model for the survivor
function at a single specified point ¢, the data being grouped into sets
with equal or nearly equal values of the explanatory variables.

4.9. A smoothed estimate of the hazard function can be produced
from uncensored data by finding a ‘kernel estimate’ of the density and

(i) dividing by the sample survivor function;
(i) dividing by the integral of the smoothed density or by some
other smoothed survivor function.

Compare these and comment on the advisability of a kernel that is
different in different parts of the range.

How would these procedures and discussion be adapted to
censored data? Under what circumstances is it desirable to use
graphical and numerical procedures capable of producing smooth
answers out of the most limited data as contrasted with procedures in
which the intrinsic variability is shown explicitly?




CHAPTER 5

Dependence on explanatory
variables: model formulation

5.1 Introduction

In the previous chapters we have discussed models and analysis for
relatively simple problems involving a single distribution. When, as is
often the case, two or more sets of data have to be compared, this is
sometimes best done by estimating survivor functions for each set of
data separately and then making a qualitative comparison, either
directly or via summary statistics. More sensitive or more com-
plicated comparisons are, however, best handled by comprehensive
models in which the effect of the explanatory variables is typically
represented by unknown parameters.

In the present chapter, we review some of the many possible models
that may be used to represent the effect on failure time of explanatory
variables. For this we suppose that for each individual there is defined
a g x 1 vector z of explanatory variables. The components of z may
represent various features thought to affect failure time, such as

(i) treatments;
(i) intrinsic properties of the individuals;
(ili) exogenous variables.

Further components of z may be synthesized to examine interaction
effects, in a way that is broadly familiar from multiple regression
analysis. .
The explanatory variables may be classified also in other ways, in
particular as for each individual constant or time-dependent. Some of
the ideas that follow do not apply to time-dependent explanatory
variables; further, for many of the statistical techniques, computation
is much harder for time-dependent explanatory variables.
Nevertheless, for a variety of reasons that will appear later, it is
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important to accommodate time-dependent explanatory variables in
the discussion.

A few outline examples of explanatory variables are as follows.

In a simple comparison of two treatments, for instance of a ‘new’
treatment with a ‘control’, we consider a binary explanatory variable
equal to one for individuals receiving the treatment, and equal to zero
for those receiving the control. If the treatment is specified by a dose
(or stress) level, the corresponding explanatory variable is dose or log
dose. If the treatment is factorial, several explanatory variables will be
required with synthesized product variables to represent interactions
where appropriate. In most cases such variables will be constant for
each individual, but time-dependent treatment variables can arise in
two rather different ways.

First, especially in some industrial reliability contexts, a time-
varying stress may be applied, or some cumulative measure of total
load may be judged relevant. In defining the components of the vector
z, it may then be convenient to introduce functions of the whole
previous history of the dose or stress process.

Secondly, it may happen that a treatment under study is not
applied until some time after the time origin. Then a suitable
explanatory variable may be a time-dependent binary variable that
jumps from 0 to 1 at the point of application of the treatment.

Explanatory variables measuring intrinsic properties of individuals
include, in a medical context, such demographic variables as sex, age
on entry, and variables describing medical history before admission
to the study. Other variables may define qualitative groupings of the
individuals.

Considerable care is needed in introducing as explanatory vari-
ables time-dependent variables that may be influenced by the
treatment variables under investigation. For example, consider the
comparison of the effect on survival of two alternative treatments for
the control of hypertension, blood pressure being an explanatory
variable. The use of blood pressure before treatment assignment as a
fixed explanatory variable is a standard device for precision improve-
ment and interaction detection. The inclusion of blood pressure
monitored after treatment assignment as an explanatory variable
would address the question as to whether any difference in survival
between the treatments is explained by the effect on blood pressure
control. Time-dependent explanatory variables are discussed in a
little more detail in Chapter 8.



64 DEPENDENCE ON EXPLANATORY VARIABLES

Finally exogenous variables define, in particular, environmental
features of the problem and may be needed also to represent
groupings of the individuals corresponding to observers, sets of
apparatus, etc.

Itis often convenient to define the vector z of explanatory variables
so that z=0 corresponds to some meaningful ‘standard’ set of
conditions, for example a control treatment. Frequently models can
conveniently be developed in two parts:

(a) a model for the distribution of failure time when z =0;
(b) a representation of the change induced by a nonzero z, often in
terms of some parametric form.

In the description of particular models that follows, it is often
convenient to start with the simplest case of the comparison of two
treatments, corresponding to a single binary explanatory variable, the
generalization usually being obvious. Throughout y/(z) denotes a
function linking z to survival: increasing y(z) always corresponds to
increasing risk, i.. to decreasing failure time. The symbol f is reserved
for a parameter vector characterizing (z). Note that the functions
Y(z) in two different models are not in general quantitatively
comparable.

5.2 Accelerated life model

() Simple form

Suppose that there are two treatments represented by values 0 and 1
of the explanatory variable z. Let the survivor function at z=0 be
Z ,(1); in the accelerated life model there is a constant  such that the
survivor function at z = 1, written variously Z,(t) or #(t;1), is

tg:l(t) =-970('/’f)a (51)
so that

L@ =¥, k() =Yho(Yo). (52

A stronger version is that any individual having survival time ¢

under z=0 would have survival time /iy under z=1, ie. the
corresponding random variables are related by T, = T,/y.

More generally, with an arbitrary constant vector z of explanatory

variables, suppose that there is a function y/(z) such that the survivor
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function, density and hazard are respectively

F(t;2) = F (2],
J(t;2) = fo[tp(2)]y(2), (5.3
h(t;2) = ho [ty (2) ] (2).

If #(. ) refers to the standard conditions z =0, then y(0)=1.
A representation in terms of random variables is

T=T,/¥(2), (54)

v;;here T, has survivor function #( . ). I u, = E(log T,), we can write
this as

log T= p, —logyi(2) +e, (5.9)

where ¢ is a random variable of zero mean and with a distribution not
depending on z.

In problems with a limited number of distinct values of z, it may be
unnecessary to specify (. ) further. In other contexts, a parametric
form for y( . ) may be needed ; we then write y(z; f). Since y/(z;8) =0,
(0, ) = 1, a natural candidate is

Y(z;:p) =ef", (5.6)
where now the parameter vector § is g x 1. Then (5.5) can be written
log T=py — Bz ++, (5.7

a linear rf:grcssion model. Note that for the comparison of two
groups, with a single binary explanatory variable, we get (5.1) with
Y =e’.

(i) Some consequences useful for model checking

_The central property of the accelerated life model can be re-expressed
in various ways that can be used as a basis for testing the adequacy of
the model. Thus from (5.5) the distributions of log T at various values
of z differ only by translation. In particular var(log T) is constant,

Alternatively in the two-sample problem we can compare quan-
tiles. We define ¢, ¢, for 0 <a < 1, by

a=F,ts" 9 =% ;5 Y(a), (5.8)
a=%,1?), tP =),
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Table 5.1 Spring data of Table 1.3; T is
thousands of cycles to failure. Mean and
standard deviation of log T

Log T
Stress
(N/mm?) Mean SD
950 5.1 0.214
900 5.35 0.198
850 5.84 0.172
800 6.52 0.580
750 8.41 0.735

so that under (5.1)
60 =191y,

i.e. the so-called Q-Q plots(quantile—quantile plots) are straight lines
through the origin. We have for simplicity assumed in (5.8_) that
Z,(.) is strictly decreasing, so that the quantiles are uniquely
defined. :

Quite often a simple analysis will show the accelerated life model to
be inadequate. For instance, with the spring data of Table. 1.3;
inspection suggests that the relative dispersion increases substantially
as stress decreases and mean failure time increases. This is confirmed
by calculating the mean and standard deviation oflog T at eaf:h stress
level. For this the lowest stress level at which the censoring is severe
has been omitted and for the next lowest stress the single censored
value has been treated as a failure, in this instance tending to
underestimate the mean and standard deviation of log T. The results
are summarized in Table 5.1.

The accelerated life model may hold at the three highest stress
levels, but there is overwhelming evidence against it as a repre-
sentation for the whole stress range. Further interpretation would be
aided by information on the mode of failure, in particular as to
whether this is different at the lowest stress levels. At 750 N/mm? the
distribution is close to an exponential with a nonzero starting value.

(iii) Time-dependent explanatory variables

Suppose now that the explanatory variable z is time-dependent, {z(¢) },
say. First, it will usually be good to define z(t) so that the hazard at any
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particular time ¢ depends only on the explanatory variable at that
time. This may involve introducing as components of z(1) integrals,
sums, derivatives and differences of the explanatory variables as
originally recorded.

The essence of the accelerated life model is that ‘time’ is contracted
or expanded relative to that at z=0. This suggests that for an
individual characterized by z(z), time 1, say, evolves relative to the
time ¢” for that individual had he been at z = 0 in accordance with

dr/dt® = 1y[z(t)],

(=)

ie. 9= ylz(u)]du= Y1), (59
0

say, so that the failure times are related, instead of by (5.4), by
T=Y¥"YT,).

Note, however, that the result of applying two such transformations

to T, willin general depend on the order in which they are applied, so

that linear combinations of such time-dependent explanatory vari-

ables will not obey the commutativity relations of ordinary
arithmetic.

Hence survivor function, density and hazard are

F[:{z()}1 = F [0,
T5{z(.)}1 =¥ (2091, [¥O)], (3.10)
hlt:{z(.)} 1=y [z T [¥O]. -

(iv) Generality of the time-dependent model

The accelerated life model with time-varying explanatory variables
has rarely been used in applications, so far as we know, although it
would be appropriate for systems subject to nonconstant treatment
variables, e.g. ‘stress’. There is another sense, however, in which the
use of time-varying explanatory variables converts the very special
modelinto a very general one. Consider for simplicity the comparison
of two groups and suppose that instead of a simple binary expla-
natory variable we introduce

. 0 group 0,
&9 group,
where {(r) is a function to be chosen and we take y/(z) = ¢*. Then by
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(5.10) the survivor function in group 1 is
‘g'_l) [A(t)]’

where

A) = j e’ du.

(1]
Thus a given survivor function #,(f) is reproduced by taking

e“"=§;ﬁa‘flm, (5.11)

it being assumed that the support of Fo(.) contains that of #,.
One way of producing a fairly rich family of models for the two-

group problem is thus to write for j=0,...,p

0,
woadl  EFOIR (.12)
77 )¢ groupl,

for some suitable value of p and then to take
W2)=ef, (5.13)

where B is a ¢ x 1 parameter vector, g=p+ L. . .
In most instances this extension of the accelerated life modellls a
formal one without direct physical significance. Note that functions
other than powers of ¢ could be used in (5.12) and that the argument
extends in principle to problems more complex than the comparison

of two groups.

(v) Several types of failure

One possible explanation of inconsistency with the accelcrat_ed life
model is the presence of several types of failure, each following an
accelerated life model but with different modifying functions . As z
varies, the balance between the types of failure changes. of course, if
the types of failure are observed, we can construct a more detailed
model; see Chapter 9. If the distinct types of fallu_re are not
observable, it may sometimes be fruitful to hypothesize a sma}l
number of failure types, to attempt to deduce something about their
properties by examining simple models and then to aim at furt.her
data to see whether the hypothesized failure types have physical
identity.
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Suppose then that there are [ failure types, and that the observed
failure time T can be represented as

T=min(T,,...,T), (5.19

where at z = 0 the T} are independent random variables with survivor
functions % ( . ), possibly improper. Consider for simplicity the case
of a single binary variable z and suppose that at z = | the survivor
function of T; is #,(y;1). Then

Folt) = njﬁoj(‘)’ 32'-1(!) = nj?-oj{'l’j‘)
and it follows easily that

h°(£)=}:_;h01(t)’ hl(t) =Zj'1{’jh0j('!’jt)- (5.[5)

(vi) Parametric version

So far. the survivor function (. ) at z =0 has been unspecified. If
now we take #( . ) to be a member of any of the parametric families
discussed in Chapter 2, we obtain a special family of accelerated life
models. If, further, (. ) is specified parametrically, we have a fully
parametric model. In particular, if the survivor function #,( . ) is log
normal and y«z; f) = e?", the linear model(5.7) for log T is a normal-
theory one and all the usual least-squares methods are available,
provided that there is no censoring.

One important special case arises when %,(.) is a Weibull
distribution, (2.14), with parameters (p,, k), say. Then with constant
explanatory variables, it is clear that T, for specified z, also has a
Weibull distribution, with parameters (p,y(z), k). A special case of
this is the exponential distribution, x = 1.

The most important special case, however, is probably the log
logistic, which is introduced by a rather different route in the next
subsection.

(vi)) Log logistic accelerated life model

Il attention is concentrated on a particular time ty, failure or
nonfailure by time ¢, can be treated as a binary response. It is then
natural to consider a linear logistic model in which

log{F (to;2)/[1 — F(t;2)]} = Bz + alt,),
where a(t,) refers to the baseline z =0.
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Now suppose that such a model is required to hold for all t,. We
could, of course, make B as well as «(t) depend on ¢, but the simplest
representation arises if B is independent of ¢; we then require that
a(t)— oo as t—0 and a(t)—» — co as t— 0. This can most simply
be achieved by taking «(f) to be proportional to —logt. If we write
«(t) = — klog(tp) and = — kB, then

F;2) = ————r—" 5.1
(£;2) T+ (i (5.16)
This is of precisely the accelerated life form with baseline survivor

function
1

1+ ()
the log logistic distribution; see Section 2.3(viii).

This representation can be extended in various ways as a basis for
testing goodness of fit; one such, as noted above, is to allow f to

depend on t.

5.3 Proportional hazards model

() Simple form
A second broad family of models that has been widely used in the

analysis of survival data is best specified via the hazard function. For a
constant vector z of explanatory variables suppose that the hazard is

h(t;z) = Y (2)hg(1). (5.17)
Here ho(.) is the hazard for an individual under the standard

conditions, z = 0, and we require Y(0) = 1. The survivor function and
density are thus

[Z0]1"?,  v@[FO]P folt)

Thus the survivor functions form the Lehmann family generated from
Fo(.). We call (5.17) the (simple) proportional hazards model.
Note that the function y(2), while fulfilling the same role as they(2)
of Section 5.2, does not have precisely the same interpretation. The
function ¥(z) can be parameterized, as in the previous discussion, as
¥(z; ) and in particular the most important special case is again

Y(z;B) = ef™. (5.18)
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The reasons for considering this model are that

(a) there is a simple easily understood interpretation to the idea
that the effect of, say, a treatment is to multiply the hazard by a
constant factor;

(b tht‘ere is in some fields empirical evidence to support the
assumption of proportionality of hazards in distinct treatment
groups;

(c)_ censoring and the occurrence of several types of failure are
relat.wely easily accommodated within this formulation and in
particular the technical problems of statistical inference when hy(?) is
arbitrary have a simple solution. ’

(i) Relation with accelerated life model

For constant expllamatory variables the question naturally arises as to
when the prop_ornonal hazards model (5.17) is also an accelerated life
model. For this we need there to exist a function y(z) such that

[F(01*® = F,[tx (D] (5.19
Write
%o(7) = log[ — log F(e)].
Then
logyi(2) +%(1) = 9,[c +A(2)],

where A(z) = :.c"l log x(2). For this to hold for all r and for some
nonzero A(z), i.e. nonunit y(z), we need

YoM =ki+o, M2 =logy(),

w o
here «, k are constants. Thus, on writing p = */*, we have that

Fo(t) = exp[ - (pt)°].

Th.'_n is, t‘he Weibull distribution is the only initial distribution for
which, v.mh constant explanatory variables, the accelerated life and
proportional hazards models coincide.

It follows directly from the definition of the Weibull distribution
that the accelerated life model with ‘scale’ parameters i ,,(z) has
survivor function and hazard .

exp{ — [p¥ar@t])},  x[pyar(@)]oe?,
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i.e. is a proportional hazards model defined by

Yen(2) = [Yar(2)]*
In particular if ¥, (z) =exp(Bi._2), then Yeu(2z) = exp(Bpyz) With

Pon = KBav- .
PThe distinction between the proportional hazards and the accele-

rated life models is perhaps best seen from an artificial special case.
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Fig. 5.1. Hazard, survivor function and density: , baseline;

O OO 0O, accelerated by a factor of 2; ———, with hazard doubled.
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Fig. 5.1 shows a baseline hazard (and survivor function and density) of
step function form and the corresponding functions first accelerated
by a factor of 2 and then with the hazard multiplied by 2.

(ii) Time-dependent explanatory variables
The specification (5.17) of the simple proportional hazards model

h(t;2) =y (2)ho (1)

extends immediately when the explanatory variable is time-
dependent. Many of the remarks of Sections 5.2(iii) and (iv) concern-
ing time-dependent variables and the accelerated life model are
relevant here also. Thus we aim to define z(t) so that h(t;z) depends
only on z(t) and not on z(t'), t'# t. Also time-dependent z(z) may be
either values of relevant subject matter variables that change with
time or may be derived variables included to test the applicability of
or to generalize the special model (i). Thus in the comparison of two
groups, the specification (5.12) and (5.13) gives hazards in the two
groups respectively of

ho(),  exp (12 Bt )ho(z) (5.20)

and so, at least for sufficiently large p, any two distributions with
common support can be represented.

(iv) Parametric version

In the discussion so far, while the dependence on the explanatory
variable has sometimes been parameterized, for instance in the form
(5.18), the hazard at z=0,hy(t), has been left arbitrary. Fully
parametric models can be obtained by inserting for hy(2) the hazard
for one of the families of distributions discussed in Chapter 2.

The most important special cases are probably the Weibull,
including the exponential as a particular form, the Gompertz—
Makeham and the log logistic.

5.4 Nonmultiplicative hazard-based model
In the simple proportional hazards model (5.17),
h(t; 2) = Y(2)ho(2),
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with constant explanatory variables, the hazard functions at different
levels of z are proportional. It is possible, however, that the hazard
functions are parallel rather than proportional or that, more
generally, they can be made parallel by a nonlinear transformation of
h. Thus we may consider the representation

h(t;2) = ¢(2) + ho(t) (5:21)
or
KA (t; 2) = ¢(z) + B, (5.22)

where, for example,
siibei . SEHEE]? (A#0),
R (t;2) = {logh(t;z) (A=0). (5.23)

In (5.21) and (5.22), $(0) =0 and () is constrained so that the
right-hand side is nonnegative. Parametric versions are obtained by,
for instance, writing ¢(z) = 7z and by taking one of the parametric
families of Chapter 2 for hy(). With A = 0 werecover the proportional
hazards model.

The choice between these models will normally be an empirical
matter, involving either the formal estimation of 4 in (5.23) or, more
commonly, the inspection of estimated hazard functions.

Some light is thrown on the alternative formulations by (5.14). That
is, if

T=min(T,,..., T), (5.24)

where Ty,..., T, are independent random variables, then
i
W)= Y. ho, (5.25)
ji=1

where h; is the hazard for T;.

Now suppose that the difference between two treatments lay in the
elimination of some of the Tj, i.e. some of the sources of failure. Then
the difference between the two hazards would be

z'h_r(t)s
where the sum is over the eliminated T;. If the eliminated T; were to
have constant hazards over the range of interest, then an additive
model(5.21) would result. If, on the other hand, the eliminated T; were

in some rough sense a large random sample from the I, then a
proportional hazards model would result.
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5.5 Transferred origin model

A pqssible relation between the hazard functions in two groups is that
one is the translation in time of the other. That is, for some constant A
the hazard functions are

ho(),  holt + ),

yvith an obvious extension to h, [t + A(z)] for the hazard correspond-
ing to explanatory variable z.

Clearly ho(t + A) = yhy(t) for all ¢ if and only if h,(t) is exponential,
the Gompertz form, so that the transferred origin model is equivalent
to the simple proportional hazards model only in this case. The model

is directly meaningful only for values of ¢ for which both ¢ and t + A
are positive.

5.6 Accelerated onset model

In some contexts the effect of a treatment may be to accelerate (or
retard) the onset of failure in some individuals, leaving the remainder
unchanged. Thus for accelerated onset an individual who has
survived an appreciable time will have the same hazard function in
the two groups.

One way of representing this is to postulate a mixture of two (or
more) types of individuals with survivor functions %, (t) and %,,(),
say. The distinction between the types is not directly observable. If the
pmportiqnal hazards model applies to the first type, we have for the
two survivor functions

Fo(t)=0F,,(1) + (1 — 0) Fp,(0),

F1(0)=0[F,,(]* + (1 — 0) Fo,(0), (5.26)

the corresponding hazard functions being

ho(t) = [Bfm(t) Hfl o 9)foz(t)]
x [0F, () +(1 = 0)F,(0] 7",

hy(0) = {00 fo,0)[Fo ()] ™" + (1 = 0) £, (1)}
x{6[F0,(0]° + (1 —0) Z,, (0} 1.

In (5.26) we require %, (1) and [%,,(t)]" to converge to zero faster
than #,(r), as t - 0.

While under suitable circumstances such a model could be fitted
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following parameterization of the component survivor functions, it is
likely that a large amount of high-quality data would be needed
unless, perhaps, the component survivor functions are drastically
restricted, for example by supposing one or both of them to be
exponential. In the latter case the survivor functions are, say,

Be "+ (1 — e ", Ge= V" 4+ (1 —@)e*", (5.27

where 0 <@ < 1 and if p’ and p” are appreciably different, plots of log
survivor function versus ¢ will expose what is happening.

An alternative rather more empirical approach for accelerated
onset is to set out an initial perturbation of the hazard h(t) with total
integral zero, so that once this perturbation has been survived, the
survivor functions are identical. A simple version is to propose hazard
functions for the two groups of

ho(), () + o™t — 1/3). (5.28)

Foryt » 1, hazard and survivor functions are identical. With a system
more complex than the comparison of two groups, one or both of «
and y could be taken as functions of z.

Often it would be sensible to combine such an effect of accelerated
onset with some modification of the whole hazard, e.g. by considering
as the two hazards

ho(D,  Who(t) + xe ™t — 1/y). (5.29)

The specialcasesyy = l,a =0;y = l,a # 0; ¢ # 1,00 = 0 all have direct
interpretations.

5.7 Treatments with a transient effect

A situation rather similar to that of Section 5.6 arises when a
treatment effect, or more generally influence of explanatory variables,
is likely to be transient, i.e. applying only for small values of ¢. In the
absence of a specific model based on a theoretical analysis of the
system, such transient treatment effects can be represented empiri-
cally in various ways. Perhaps the simplest is to take, in the case of two
groups, hazards

hy(D), exp(B, + Bre " "hy(0). (5.30)

If 8, = 0 we recover the simple proportional hazards model, whereas
if 8, =0,y > 0, the hazard for individuals in group 1 eventually reverts
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to that for group 0 and, in an appropriate context, individuals who
survive until their hazard is very close to ho() can be regarded as
‘ultimately cured’,

5.8 Discussion

In the previous sections we have outlined what may seem a
bewildering variety both of broad types of model and of minor
variants. Each is expressed in terms of a survivor function Fo(t)
holding under some standard conditions z=0 and of a modifying
factor specified in various ways. The function F,(t) may itself be
specified parametrically; see Chapter 2.

If interest lies in the qualitative effect on failure time of various
explanatory variables, choice of a model may not be critical. On the
other hand, if interest lies in relatively subtle aspects of the de-
pendence, or in discrimination between alternative specifications, a
large amount of high-quality data is likely to be necessary. In some
cases, especially in the physical sciences, there may be some special
theory to guide the choice of model.

Bibliographic notes, 5

The parametric accelerated life model has several links with models
widely used in other types of application, especially when y(z; f)
= ef"2 Foritisthena log linear model, i.e. a linear regression model
for log T, although in general with nonnormal error. For other forms
of Y, a nonlinear regression model results. The central assumption
(5.4) for random variables is in the spirit of Fraser’s (1968, 1979)
structural inference.

Q-Q plots are described by Wilk and Gnanadesikan (1968) and
used for nonparametric inference in the two-sample problem by
Doksum and Sievers (1976).

In association with the exponential distribution, regression
models of various forms were considered by Feigl and Zelen (1965),
Cox and Snell (1968) and in a rather general log linear form by Glasser
(1967). The proportional hazards model in a general form with time-
dependent explanatory variables was given by Cox (1972) and the
relation with the accelerated life model stated without proof; see
Oakes (1981) for a review of subsequent developments. Non-
multiplicative hazard-based models are studied by Aranda-Ordaz
(1980).



78 DEPENDENCE ON EXPLANATORY VARIABLES

While the qualitative ideas of accelerated onset and transient effects
are well known, explicit models do not appear to have been
formulated before.

Further results and exercises, 5

5.1. Find from (5.11) the time-dependent accelerated life version of
the two-sample problem with %, (1) =%, [(pt)*]. Suggest how to find
the function &(f) ‘nonparametrically’ from the two survivor fun'ctlons.
Formulate three-sample, or more generally multi-sample, versions of

the same problems.

5.2. Prove that a two-term representation (5.15) of two hazard
functions hy(f) and h,(f) in terms of two underlying unob§erv.ead types
of failure following accelerated life models is always possible if hy and
h, are both of the Gompertz—Makeham form.

5.3, Examine the accelerated onset model (5.26) angl (5.27) in which
both component survivor functions are exponential. How could
consistency with (5.26) be checked and parameters estimated
graphically?

5.4. Suppose that, in the two-sample problem, the survivor fun-
ctions satisfy the proportional odds model

F) _ FO)
—#,0 " 1-%,0)

(a) Show that the ratio of hazard functions hi()/ho()— 1 as t— co.

(b) Suppose that there is no censoring, and that survival is
dichotomized at a point t,, so that survivors beyond t, are counted as
‘positives’, failures before t, as ‘negatives’. Show that the cgrrespond-
ing 2 x 2 contingency table has odds ratio . How may this result be
used (i) to estimate  and (ii) to assess graphically the goodness of fit?

(c) Show that if #(¢) has the log logistic form thep 50 does'.?«", (2).

(d) Investigate the general formulation where y is a function of
explanatory variables, ¥ = y(2).

[Plackett, 1965; Clayton, 1974; McCullagh, 1980; Bennett, 1983]

5.5. Consider two groups with hazards hy(f),h,(t) and survivor
functions %,(t), #,(t). Examine the connection between the cross-
ings of the two hazard functions and the crossing of the two survivor
functions, noting in particular the following:
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(a) if the continuous survivor functions cross once, the hazards
must cross at least once;

(b) it is possible that #, (1) >Z,(r) for all >0 and yet for the
hazards to cross very often;

() if both groups consist of a mixture of ‘short’ survivors with
possibly different distributions in the two groups and of ‘long’
survivors with the same distribution in the two groups, then the
hazards, but not in general the survivor functions, are equal for large .

5.6. Suppose that in comparing two groups the failure times in one
group are almost all less than ¢ whereas those in the other group
almost all exceed ¢'. What can be concluded about the two hazard
functions; can the proportional hazards model be refuted? Is there

any special difficulty in checking whether the accelerated life model
holds?

5.7. For the accelerated life log logistic model of Section 5.2(vii) and
Exercise 5.4, compare in the uncensored case the asymptotic efficien-
cies of full maximum likelihood estimation of the parameter g and
that of maximum likelihood estimation of the logistic binary response
model formed by considering only survival or failure at a fixed time t,,.

5.8. Suppose that hy(r) and h,(f) are continuous bounded hazard
functions satisfying, for some ¥, 0 <y < 1, and all ¢,

ho(8) > hy(8) > Yho (o).

Show that a representation of the form (5.15) with | =2 in terms of
nonnegative component hazard functions h,, (¢) and h,,(¢) is possible,
and determine these functions in terms of hy(f) and h, (2).

5.9. By using an argument like that of Section 5.3(ii), show that the
proportional odds model

Z() - Fol)
1=F,(t) " 1-F,0)

is an accelerated life model if and only if %, (¢) has the log logistic form.
Develop a similar characterization of the log normal distribution in
terms of the probit model

e~ HZ ()} =y + 07 HF(1)},

where ®( .) is the standard normal distribution function.




