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A Data-Driven Failure Prognostics Method Based on
Mixture of Gaussians Hidden Markov Models

Diego Alejandro Tobon-Mejia, Kamal Medjaher, Noureddine Zerhouni, and Gerard Tripot

Abstract—This paper addresses a data-driven prognostics
method for the estimation of the Remaining Useful Life (RUL)
and the associated confidence value of bearings. The proposed
method is based on the utilization of the Wavelet Packet De-
composition (WPD) technique, and the Mixture of Gaussians
Hidden Markov Models (MoG-HMM). The method relies on two
phases: an off-line phase, and an on-line phase. During the first
phase, the raw data provided by the sensors are first processed to
extract features in the form of WPD coefficients. The extracted
features are then fed to dedicated learning algorithms to estimate
the parameters of a corresponding MoG-HMM, which best fits
the degradation phenomenon. The generated model is exploited
during the second phase to continuously assess the current health
state of the physical component, and to estimate its RUL value
with the associated confidence. The developed method is tested
on benchmark data taken from the “NASA prognostics data
repository” related to several experiments of failures on bearings
done under different operating conditions. Furthermore, the
method is compared to traditional time-feature prognostics and
simulation results are given at the end of the paper. The results
of the developed prognostics method, particularly the estimation
of the RUL, can help improving the availability, reliability, and
security while reducing the maintenance costs. Indeed, the RUL
and associated confidence value are relevant information which
can be used to take appropriate maintenance and exploitation
decisions. In practice, this information may help the maintainers
to prepare the necessary material and human resources before the
occurrence of a failure. Thus, the traditional maintenance policies
involving corrective and preventive maintenance can be replaced
by condition based maintenance.

Index Terms—Condition monitoring, hidden Markov model,
prognostics and health management, remaining useful life.
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HMM Hidden Markov Model
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BPFO Band Pass Frequency of the Outer race
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I. INTRODUCTION

I NDUSTRIAL systems are becoming more complex due, in
part, to their growing size, and to the integration of new

technologies. With aging, these systems become more vulner-
able to failures, and their maintenance activities are difficult
and expensive. This situation, combined with requirements of
productivity, profit growth, operational availability, and safety,
pushes practitioners and researchers to look for innovative tools
and methods. One of the possible levers consists of mainte-
nance activities. By maintaining the system, one can reduce
its global life cycle costs, increase its availability, improve the
safety of operators, and reduce the environmental incidents [1],
[2]. Maintenance tasks can be curative, or preventive. In a cura-
tive maintenance framework, the components are replaced only
when they are not able to fulfill the task for which they are de-
signed. The main drawback of this solution is that the machine
undergoes the fault, which is sometimes simply a non desired
situation (explosion, chemical, and poisoning substances, etc.).
To overcome these situations, it is possible to monitor some
significant parameters of the system, and then, by setting some
threshold values, one can proceed to component changes when
the monitored parameters exceed their corresponding defined
thresholds. This action can be done in the framework of con-
dition based maintenance (CBM) [2]. But, this is still not suf-
ficient, because it happens that, at the time of fault occurrence,
the spare parts are not available or not sufficient, or simply that
the needed resources (maintainers) are busy. A “best” mainte-
nance could be then a predictive one, which can be realized in
the prognostics framework [3]. In a predictive maintenance, one
first tries to predict the health state of the system, and then plans
appropriate actions according to what predictions return.
Failure prognostics activity aims at anticipating the failure

time by predicting the future health state of a given component,
sub-system, or system and its Remaining Useful Life (RUL).
According to the International Standard Organization [4],
failure prognostics corresponds to the “estimation of the time to
failure and the risk for one or more existing and future failure
modes.” Several other definitions have been proposed in the
literature [1], [2], [5]–[7]. All the reported definitions agree
about a prediction step, and the estimation of the time before
the failure. This time is called RUL in some works, Estimated
Time To Failure (ETTF) in [8], and in a small number of pub-
lications [9], [10] it is defined as a probability that a machine
operates without a fault up to some future time.
Contrary to fault diagnostics, which is a mature activity, well

developed and spread within the research and the industrial
communities, failure prognostics is a new research domain [2],
[11], [12]. However, the increasing interest accorded to failure
prognostics has led to numerous methods, tools and applica-
tions during the last decade. According to what is reported
in the literature [1], [2], [13], failure prognostics methods
can be classified into three main approaches: model-based,
experience-based, and data-driven prognostics.
The model-based prognostics approach relies on the use of

an analytical model (set of algebraic or differential equations)
to represent the behavior of the system, including the degrada-
tion phenomenon. Experience-based prognostics methods use

Fig. 1. Diagnostic versus prognostics.

mainly the data of the experience feedback gathered during
a significant period of time (maintenance and operating data,
failure times, etc.) to adjust the parameters of some reliability
models (Weibull, exponential, etc.). These latter are then
used to estimate the time to failure, or the RUL. Data-driven
prognostics methods deal with the transformation of the data
provided by the sensors into reliable models that capture the
behavior of the degradation.
In this paper, we propose a data-driven prognostics method

based on the use ofMixture of Gaussians HiddenMarkovModel
(MoG-HMM). The use of this tool is motivated by the fact that it
permits us to handle complex emission probability density func-
tions (pdfs) generated by a set of continuous features extracted
from raw monitoring signals by using Wavelet Packet Decom-
position (WPD). Section II gives some definitions about failure
prognostics, and a taxonomy of the main approaches in the field
of prognostics. For each approach, we provide a review of the
tools and the recent reported works to give the reader some ori-
entation about how to achieve a failure prognostics. Section III
presents the proposed method. This latter is performed in two
steps: an off-line step where the raw data are used to learn a be-
havioral model of the physical component’s condition, and an
on-line step in which the learned model is used to identify the
current condition of the component and to estimate its RUL. The
method is tested on real operating data related to bearings, and
simulation results are given and discussed.

II. FAILURE PROGNOSTICS: DEFINITIONS AND TAXONOMY

A. Definitions
Contrary to fault diagnostics, which consist of detecting and

isolating the probable cause of the fault [2], [12], and which is
done after the occurrence of the fault, failure prognostics aim at
anticipating the time of the failure, and thus is done a priori, as
shown in Fig. 1.
Several definitions about failure prognostics have been re-

ported [6], [7], [13], [14]. Apart from some terminology dif-
ferences due to the interest application domain of the authors,
these definitions all agree on the prediction aspect, and the es-
timation of the remaining time before a complete failure of the
physical system or machine. For the sake of harmonization, the
definition proposed by the International Standard Organization
[4] is considered in this paper. The standard defines prognostics
as the estimation of the Time To Failure (ETTF), and the risk of
existence or later appearance of one or more failure modes. Note
that most of the definitions reported in the literature use the ter-
minology “Remaining Useful Life (RUL)” instead of “ETTF”.
An illustration of this indicator is given in Fig. 2.
In addition to the absolute value of the RUL, a confidence in-

terval is calculated to take into account the uncertainty aspect
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Fig. 2. Illustration of a RUL.

Fig. 3. The uncertainty related to RUL.

which is inherent to failure prognostics. Indeed, several fac-
tors may impact the predicted value of the RUL. In this way, a
method for calculating the confidence value associated to a RUL
prediction is proposed in the standard [4]. Furthermore, in [4], a
list of the factors and the corresponding weights, which may in-
fluence the computation of the confidence value, are suggested.
Fig. 3 illustrates the RUL, and the associated confidence. In this
figure, the uncertainty can be of two types: the first one is due
to the prediction, and the second one is related to the threshold
value corresponding to the complete failure of the machine.

B. Taxonomy of Prognostics Approaches

Failure prognostics, particularly the estimation of the re-
maining useful life, can be done by using numerous tools
and methods. These latter may be regrouped in three main
approaches (see Fig. 4), namely: experience-based prognostics,
data-driven prognostics, and model-based prognostics. This
classification is based on the type of data, and on the tools in-
volved. Moreover, intersections between these three approaches
may exist, as one can use more than one tool depending on the
application domain.
The following subsections present a short description of each

approach, followed at the end by a synthesis where the advan-
tages and drawbacks of each are underlined.
1) Model-Based Prognostics: The methods of the

model-based prognostics approach rely on the use of an
analytical model to represent the behavior of the system in-
cluding the degradation phenomenon. The analytical model
can be a set of algebraic and differential equations obtained by

Fig. 4. Main prognostics approaches.

using traditional laws of physics (crack by fatigue, wearing, and
corrosion phenomena, etc.). The degradation phenomenon is
represented by one or more variables for which the dynamic is
imposed by a set of parameters depending on the environment
within which the physical system evolves. In some applications
(state space models for example), the variable representing the
degradation can be considered as a part of the global behavior
model.
Most of model-based prognostics methods reported in the lit-

erature deals with cracks, wearing, and corrosion phenomena.
In [15], the authors of the paper proposed to use the Paris-Er-
dogan model to predict a bearing’s crack propagation, and esti-
mate the crack size. Similarly, Li and Choi [16], and Li and Lee
[17] proposed to use the Paris-Erdogan law coupled with a finite
element model to represent the time evolution of a tooth’s crack
in a gear. The Paris-Erdogan law has also been used in [18] to
model a crack propagation in a helicopter’s gearbox pinion, and
to estimate the corresponding RUL of the component. Note that,
in practice, the crack propagation models assume that it is pos-
sible to determine the size of the initiated crack by using appro-
priate sensors (vibration analysis for instance)because a visual
verification of this crack size is often difficult, or even impos-
sible, to perform.
Luo et al. [19] proposed amethod to estimate the RUL of a car

suspension system. The model proposed by the authors consists
of a state space model representing the suspension’s dynamics,
and a differential equation (the Paris-Erdogan law) to model the
degradation represented as a variation of the suspension’s stiff-
ness. The time variation of the stiffness is then integrated to the
state space model to generate the whole behavior model. Sev-
eral simulations for different road conditions were performed,
leading to different estimated values of the RUL, and the asso-
ciated confidence values. Qiu et al. [20] proposed a prognos-
tics model to estimate the RUL on bearings. In their work, the
authors suggested to model the bearing as a single degree of
freedom vibratory system, where the stiffness parameter is ex-
pressed as a function of its natural frequency, and its accelera-
tion amplitude. The generated model was simulated for several
degradation models (linear, polynomial, and double linear taken
from the fatigue mechanics), leading to different estimations of
the RUL. Finally, other interesting works related tomodel-based
prognostics methods can be found in [21]–[23].
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2) Data-Driven Prognostics: The methods of this approach
aim at transforming the raw monitoring data into relevant in-
formation and behavior models. Indeed, the degradation model
is derived by using only the data provided by the monitoring
system (the sensors mainly), without caring about the analyt-
ical model of the system neither on its physical parameters
(like material properties). Data-driven prognostics methods
use mainly artificial intelligence tools (neuronal networks,
Bayesian networks, Markovian processes, etc.) or statistical
methods to learn the degradation model, and to predict the fu-
ture health state of the system. The principle of these methods
consists of two phases: a first phase during which a behavior
model (including the degradation) is learned; and a second
phase where the learned model is used to first estimate the
current operating condition of the system, and then to predict
its future state.
Data-driven methods use several tools, most of which are

originated from artificial intelligence or statistical domains. In
the category of artificial intelligence tools, neural networks and
neuro-fuzzy networks are the most used ones. The statistical
tools range from the regression models to dynamic Bayesian
networks through Kalman and particle filters.
A prognostics method based on the use of neural networks has

been published in [24], and in [25], where recurrent neural net-
works have been used to extrapolate the values of some features
extracted from rawmonitoring data. Similarly,Wang and Vacht-
sevanos [26] have implemented a recurrent neural network to
model the crack propagation in a bearing. The network struc-
ture used by the authors was able to track the time evolution of
the crack size, and to estimate the value of the RUL. In addi-
tion to traditional neural networks, neuro-fuzzy systems were
used in failure prognostics. Thus, Wang et al. [6] have proposed
a neuro-fuzzy based prognostics method to predict the future
health state of a pinion. The fuzzy rules were given by experts,
whereas the forms of the membership functions were learned by
using a neural network. The authors showed that the results ob-
tained by using neuro-fuzzy networks were more relevant than
those provided by a simple neural network. The same approach
has been applied by Chinnam and Baruah [27] on a vertical ma-
chining center. Moreover, posterior simulations conducted by
Wang [28] have shown that, compared to neural networks, the
use of a feed-forward neuro-fuzzy network can significantly in-
crease the accuracy of the predictions, and with that the accu-
racy of the estimated value of the RUL. In [29], a self organizing
map (SOM) has been implemented to perform both failure di-
agnostics and prognostics on bearings by exploiting vibration
signals along with a set of historical data. The historical data
have been modeled by using different neural networks, which
estimated separate local RULs. The global RUL is then calcu-
lated by weighting the local RULs, where the weightings were
controlled by the degree of representativity of each historical
data set.
A second tool, which has been used in data-driven failure

prognostics, is the Kalman filter. In [30], a Kalman filter based
prognostics has been proposed to track the time evolution of
a crack in a tensioned steel band. The Kalman filter is used to
model and estimate the drift of the modal frequency of the steel
band as a function of the applied vibrations. More general than

Kalman filters, particle filters have also been used to perform
nonlinear projections of features. Orchard et al. [31] have pro-
posed a particle filter method used to estimate a crack growth
in a turbine’s paddle. In their prognostics model, the size of the
crack is recursively estimated over time by using the data pro-
vided by sensors.
In the category of statistical tools used in failure prognos-

tics, we include Hidden Markov models (HMMs) [32]. Chinam
and Baruah [33] have used HMMs to model degradations on
bearings, and to estimate the underlying RUL. In their method,
the authors considered the degradation as a stochastic process,
with several states representing different health states of the
physical component. The degradation levels of each bearing
are first learned by using vibration data (several HMMs corre-
sponding to each state are obtained during the off-line phase).
Then, during the on-line operation of the bearing, the processed
data are continuously supplied to each HMM to calculate a like-
lihood value, which permits us to select the model that best rep-
resents the current state of the bearing. Finally, knowing the cur-
rent state and its corresponding stay duration, it is possible to es-
timate the value of the RUL. In a similar way, Dong and He [34]
proposed a prognostics method based on the use of a Hidden
Semi-Markov Model (HSMM) where the stay duration in each
state is variable, and is estimated during the learning phase.
More recently, Dynamic Bayesian Networks (DBNs) [35], a

tool generalizing the HMMs and the Kalman filter, have been
exploited to perform failure prognostics. Prytzula and Choi [36]
proposed an integrated DBN based diagnostic and prognostics
method where the uncertainty related to the operating condi-
tions is taken into account. Similarly, Muller et al. [7] proposed
a DBN based procedure, integrating both the degradation mech-
anism and the maintenance actions in the samemodel.Medjaher
et al. [37] published a procedure to estimate the RUL of a work
station in a manufacturing system, where maintenance actions
on several components were introduced in the DBN model to
observe the modifications in the estimated RUL. Finally, Dong
andYang [38] implemented a particle filtering algorithm applied
to a DBN to estimate the RUL of a vertical machining center.
3) Experience-Based Prognostics: The experience-based

prognostics methods use mainly the data of the experience
feedback gathered during a significant period of time (main-
tenance data, operating data, failure times, etc.) to adjust the
parameters of some predefined reliability models. The obtained
models are then used to predict the time to failure, or the RUL.
Several parametric models of failures have been proposed

in the literature: Poisson, exponential, Weibull, and log-normal
laws. Among these models, the Weibull distribution [39] is the
most reported one, as it can represent several time phases of
the component’s or system’s life. Heng et al. [40] presented
an “intelligent” model to estimate the reliability of a compo-
nent, sub-system, or system. The method is called intelligent
product limit estimator, and takes into account the truncated
monitoring data for prognostics. In their work, the authors no-
ticed that the estimation of the missed data can be of a great
importance. Indeed, in practice, the machines are seldom used
to their failure limit, which leads to incomplete data. The trun-
cated data (inspection period, failure of components, preven-
tive systematic maintenance, etc.) have been estimated by using
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the Kaplan-Meier estimator. The developed model permitted us
to enlarge the prognostic’s temporal horizon while increasing
the precision of the predictions. Goode et al. [41] proposed a
method to predict the value of the RUL on hydraulic pumps used
in a hot lamination process of steel wires. The alarm thresh-
olds have been statistically defined from the experience feed-
back data by assuming that the health state of the pumps follows
a normal law. Two intervals have been created to represent the
life of the pumps. The first interval has been used to model the
starting period to the alarm, whereas the second interval repre-
sented the period of time going from the alarm to the failure;
both intervals were modeled by using a Weibull law.
In addition to traditional reliability laws, the Proportional

Hazard Model (PHM) has been implemented to perform failure
prognostics. In [42], [43] a PHM has been used to predict the re-
liability of bearings in electrical motors. In [44], a Weibull dis-
tribution has been used to model the hazard function of a PHM,
where the covariance is controlled by a Markovian stochastic
model. In [45] and [46], a PHM and a Proportional Covariates
Model (PCM) have been used to predict the future state of the
component. The authors implemented a conditional distribution
of the RUL of bearings based on the use of stochastic filtering
theory [47]. In their model, the reliability of the bearing was first
initialized to a Weibull distribution, and then progressively up-
dated as the monitoring data arrive.
4) Synthesis: The three main prognostics approaches are

compared hereafter using four criteria: precision, complexity,
cost, and applicability (see Fig. 4, and [13]).
Compared to data-driven and experience-based approaches,

the model-based methods are those which give the most precise
prognostics results. In addition, the estimation of the confidence
value associated with the RUL is easy to obtain by changing the
physical parameters of the degradation models, and using statis-
tical simulation methods like Monte-Carlo. Moreover, model-
based methods are easy to interpret because the parameters in
the behavioral models correspond to the physical phenomena
which take place in the systems. However, despite the preci-
sion of the obtained prognostics these methods provide, it is in
practice difficult to generate the degradation’s behavior, espe-
cially for complex systems where several types of phenomena
take place. Indeed, even if the model exists, it is generally a spe-
cific representation of a physical phenomenon generated in spe-
cific conditions and experimentations. Thus, redoing the exper-
iments, for different operating conditions may be costly, which
limits the applicability of this approach.
The experience-based approach is easy to apply to systems

where representative exploitation data gathered during a long
period of time are available. Indeed, the main task in this ap-
proach consists of estimating the parameters of well known re-
liability laws from the historical data. The methods belonging
to this approach are also less expensive to implement. How-
ever, the prognostics results provided by these methods are less
precise than those obtained by model-based and data-driven
methods. Thus, the utilization of experience-based methods is
not desirable for systems where the prognostics results are crit-
ical. In addition, this approach is difficult to apply in the case of
new systems because of the lack of experience data.

The development of sensors and computer science has facil-
itated the use of artificial intelligence (AI), and consequently
the data-driven methods for prognostics. Data-driven methods
are based on the transformation of the monitoring data into be-
havioral models by using AI tools. The data-driven approach
offers a trade-off in terms of complexity, cost, precision, and ap-
plicability. Indeed, compared to model-based approaches, data-
driven prognostics methods are suitable for systems where it is
easy to obtain monitoring data that represent the behavior of
the degradation phenomenon. In practice, this condition is true
in several applications, such as bearings, which are the subject
of this paper. Prediction models, such as the law, exist to
calculate the remaining useful life for bearings, but this law is
valid only for a specific bearing in specific conditions that are
difficult to verify in real world applications. Moreover, getting
the behavioral model of a bearing’s degradation is very diffi-
cult, even impossible in practice. So, to overcome this situa-
tion, the data-driven methods can be considered as an alterna-
tive solution.
The drawback of data-driven methods, at least for some

applications, is the potentially long learning time. In terms of
precision, data-driven methods give less precise results than
model-based ones, but better than those of experience-based
approach. However, data-driven methods are less complex and
more applicable than model-based ones. Consequently, in the
following, we propose a data-driven method to predict the RUL
of bearings.

III. DATA-DRIVEN FAILURE PROGNOSTICS

We developed a data-driven failure prognostics method for a
RUL estimation. This method is based on the transformation
of the data provided by the sensors installed on the physical
component into relevant behavioral models that represent the
time evolution of the degradation phenomenon (Fig. 5).
In practice, most of the degradation phenomena are complex

(due to nonlinearities, stochasticity, non-stationarities, etc.) and
difficult to model by using analytical models. To overcome this
situation, one can use learning methods to build a behavioral
model that represents the degradation in the form of hidden
health conditions, such as done by using HMMs and Mixture
of Gaussians HMMs (MoG-HMM).
The proposed failure prognostics method relies on

wavelet packet decomposition for feature extraction, and
on MoG-HMMs for modeling. Before introducing the steps of
the method, we give a brief introduction to some prerequisites
on WPD techniques and MoG-HMMs.

A. Wavelet Packet Decomposition

Wavelet packet decomposition is a competent tool for signal
analysis. Compared with the normal wavelet analysis, it has spe-
cial abilities to attain higher discrimination by analyzing the
higher frequency domains of a signal. The frequency domains
separated by the wavelet packet can be easily selected and clas-
sified according to the characteristics of the analysed signal. So
the wavelet packet is more appropriate than wavelet in signal
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Fig. 5. Transformation of the data to models.

Fig. 6. Wavelet packet decomposition tree.

analysis, and has much wider applications such as signal and
image compression, de-noising, and speech coding [48].
As shown in Fig. 6, the wavelet packet decomposition can

be viewed as a tree. The root of the tree is the original data
set. The next level of the tree is the result of one step of the
wavelet transform. Subsequent levels in the tree are constructed
by recursively applying the wavelet transform step to the low
and high pass filter results from the previous wavelet transform
step. Then, when the decomposition process is achieved, the
energy in the different spectrum bands can be calculated (more
details can be found in [49]).

B. Mixture of Gaussians Hidden Markov Models

A MoG-HMM is primarily an HMM used to represent sto-
chastic processes for which the states are not directly observed
[32] (Fig. 7).
An HMM is completely defined by five parameters: , ,
, , and [32]. For simplicity and clarity, a compact notation

is used for each HMM. In practice, HMMs are
used to solve the following three problems [32].
• Problem 1 (detection): given a model , and an observation
sequence , compute the probability

of the sequence given the model. The solution of
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Fig. 7. A three state left-to-right HMM.

this problem is obtained by using the forward-backward
algorithm [50].

• Problem 2 (decoding): given an observation sequence
, find the hidden state sequence
that have most likely produced the ob-

servation sequence. This problem is solved by using the
Viterbi algorithm [51].

• Problem 3 (learning): find the model parameters
that better fit the observation sequence , i.e., that maxi-
mize the probability . To solve this problem, a solu-
tion is proposed by using the Baum-Welch algorithm [52].

Usually, HMMs consider the observations as discrete sym-
bols, and use discrete probability densities to model the tran-
sition and the observation probabilities. The problem with this
approach is that, in condition monitoring, the observations are
typically continuous signals. To use a continuous observation
density, some restrictions are placed to insure that the param-
eters of the probability density function are re-estimated. The
most general representation of the pdf, for which a re-estima-
tion procedure has been formulated [32], is a finite mixture of
pdfs in the form

(1)

Hidden Markov Models (HMMs) have been successfully
used in several applications, particularly in speech and writing
recognition [32], [53]. Concerning failure diagnostic and
prognostics domains, the MoG-HMMs have proved to be a
suitable tool as they allow to model the physical component’s
degradation by using continuous observations provided by
the monitoring sensors. They also permit to estimate the stay
durations in each health state leading to the prediction of the
RUL value [34]. MoG-HMMs can be used to represent several
failure modes by using historical data for learning. Moreover,
the number of observations can be modified depending on the
application, and the implementation constraints.
MoG-HMMs permit us to do failure prognostics for a long

time horizon. Indeed, once the current health state is identified,
and assuming that the stay durations in the states are estimated,
the prediction of the RUL is straightforward [33]. Furthermore,
contrary to other tools used in the framework of data-driven
approach, such as the regression models or neural networks
where the structure is not interpretable [54], the states in the

MoG-HMM can be interpreted as the health conditions of the
component.
As for any modeling and implementation method, one needs

to set the assumptions, and define the limits of the method. In
the case of MoG-HMMs, to build the behavioral model, it is
necessary to define some parameters, such as the number of
states, the number of observations, and the number of mixtures
of Gaussians. The number of states can be determined by ex-
perience depending on the application domain (for example, in
the degradation case one can take three states to represent the
healthy, the middle, and the faulty states of a component). Also,
the observations must be continuous, but not limited in number.
However, in practice, the number of observations influences
the learning and the inference complexities. The learning com-
plexity is given by the formulae (Baum-Welch)
[32], [35]. The inference complexity is given by the formulae
(Forward-Backward and Viterbi) [32], [35]. In
these formulas, is the number of iterations which depends on
the learning algorithm, is the number of hidden states,
is the number of observations, and is the time length of the
observations.

C. The WPD and MoG-HMM Based Prognostics Method

A unified diagnostic and prognostics method to evaluate the
current health state of a physical component and its remaining
useful life is proposed in this subsection. The method is based
on a nondestructive control, and uses the data provided by the
sensors installed to monitor the component’s condition. The
acquired signals are first processed to extract features in the
form of WPD coefficients, which are then used to learn the be-
havior model (MoG-HMMs) of the degradation. Note that, in
the learned MoG-HMM, the states’ stay durations are not as-
sumed to be geometrically decaying functions [34] (which is
the case in traditional HMMbased prognostics methods), but are
learned from the monitoring data. In addition, multiple observa-
tions, instead of the traditional mono observation approach, are
considered for both learning and exploitation phases. Finally,
in the proposed method, there is no limitation on the type of the
generatedMoG-HMM (themodel can be an ergodic, a left-right,
or a parallel left-right model).
The principle of the proposed method relies on two main

phases, as shown in Fig. 8: a learning phase, and an exploita-
tion phase. In the first phase, conducted off-line, the raw data
recorded by the sensors are processed to extract the energy of
each node at the last decomposition level [49] by using theWPD
technique. These features are then used to learn several behav-
ioral models (in the form of MoG-HMMs) corresponding to dif-
ferent initial states and operating conditions of the component.
Indeed, each raw data history corresponding to a given compo-
nent’s condition is transformed to a feature matrix , by using
the WPD. In the matrix , each column vector (of features
at time ) corresponds to a snapshot on the raw signal, and each
cell represents the node of the last WPD level at time .

Raw signal

with and (2)
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Fig. 8. General diagnostic and prognostics process steps.

The nodal energies (features) are then used to estimate the pa-
rameters ( , , and ), and the temporal parameters (stay dura-
tion in each state) of the MoG-HMMs. The advantage of using
several features instead of only one is that a single feature may
not capture all the information related to the behavior of the
component.
The parameters , , and of each MoG-HMM are learned

by using the well known Baum-Welch algorithm [50], whereas
the temporal parameters are estimated by using the Viterbi algo-
rithm [51]. In addition, this latter permits us to obtain the state
sequence, and to compute the time duration for which the com-
ponent has been in each state of the corresponding MoG-HMM
(Fig. 9). Thus, by assuming that the state duration in each state
follows a Gaussian law, it is possible to estimate the mean dura-
tion (3), and the corresponding standard deviation (4) by com-
puting the duration, and the number of visits in each state. More-
over, the Viterbi algorithm permits us to identify the final state,
which represents the physical component’s failure state.

(3)

(4)

In (3) and (4), stands for the visit duration, is the state
index, is the visit index, and corresponds to the total of
visits. A compact representation of each learned MoG-HMM
used to perform failure diagnostics and prognostics is given by
the expression

(5)

where is the final state (corresponding to the end of the
considered condition monitoring history), is the mean
state duration for the state , and is the standard devi-
ation over the state duration for the state .

Fig. 9. Example of Viterbi decoding state.

The second phase, which is performed on-line, consists in ex-
ploiting the learned models to detect the component’s current
condition (by using the Viterbi algorithm), and to compute the
corresponding RUL. The processed data and the extracted nodal
energies (done by using the Wavelet toolbox from Matlab) are
thus continuously fed to the learned models to select the one
that best represents the observed data, and therefore the corre-
sponding component’s condition (Fig. 8). The model selection
process is based on the calculation of a likelihood of the
model over the observations (problem 1). Finally, by knowing
the current condition and by using the stay durations learned
in the off-line phase, the component’s RUL and its associated
confidence value can be estimated. The estimation of the RUL
is done according to the following steps.
• The first step consists in detecting the appropriate
MoG-HMM that best fits and represents the on-line
observed sequence of nodal energies. Indeed, the features
are continuously fed to the set of learned models (com-
pletely defined), and a likelihood is calculated to select the
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Fig. 10. Competitive model selection.

appropriate model (Fig. 10). The selected model is then
used to compute the RUL.

• The second step of this procedure concerns the identifica-
tion of the current state of the component. The Viterbi al-
gorithm is thus applied to the selected model to first find
the state sequence, which corresponds to the observed se-
quence of nodal energies, and second to identify the cur-
rent state of the component by choosing the most persistent
state in the last observations (6).

state sequence

Last states

with past observations factor and

current time (6)

• The third step consists in using the current identified state,
the final state (the failure state), and the probability transi-
tion matrix of the selected MoG-HMM to find the crit-
ical path, which goes from the current state to the end state.
The idea is to identify all the non-zero probabilities in the
transitionmatrix as potential transitions, and then to choose
the minimal path among all the possible ones (Fig. 11) with
only one visit per state. In the same way, it is possible to
find the longest path by considering a maximum number of
states in the path, with only one visit per state. The shortest
path is assimilated to the pessimistic path (rapid evolution
to failure), whereas the longest path is taken as the opti-
mistic scenario.

• Finally, in the fourth step, the paths identified previously
are used to estimate the RUL. The RUL is obtained by
using the temporal parameters of the stay duration in each
state. In addition, a confidence value over the RUL is cal-
culated based on the standard deviation values of the stay

Fig. 11. Path estimation.

durations. Thus, three values (7) are calculated for each
path: the upper RUL , the mean RUL , and
the lower RUL .

current state

current state

current state
state in the active path confidence coef. (7)

D. Application and Simulation Results

The failure diagnostic and prognostics method presented pre-
viously is tested on a condition monitoring database taken from
[55], and containing several bearings tested until the failure. We
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Fig. 12. Failure distribution of motors of power greater than 200 hp.

Fig. 13. The bearing testbed [55].

chose bearings because these components are commonmechan-
ical elements in industry, and are present in almost all indus-
trial processes, especially in those using rotating elements and
machines. Moreover, for machines, bearings most frequently
fail [56] (Fig. 12). Thus, the RUL prediction of these compo-
nents may help improve the reliability, availability, and safety
of the machines, while reducing their maintenance costs, and
improving their operational and environmental impacts.
The test data were extracted from NASA’s prognostics data

repository [55]. During the experiments, four bearings were
tested under constant conditions. The angular velocity was kept
constant at 2000 rpm, and a 6000 lb radial load was applied
onto the shaft and bearings (Fig. 13). On each bearing, two
accelerometers were installed for a total of 8 accelerometers
(one vertical , and one horizontal ) to register the acceler-
ations generated by the vibrations, with a sampling frequency
equal to 20 kHz. For simulation purposes (learning and on-line
failure prognostics), twelve condition monitoring data histories
are used (eleven for learning, and one for test), each bearing
was considered failed at the end of its associated history. For
both learning and prognostics phases, the nodal energies in
the third level of the WPD (using the “Daubechies” wavelet
family) at each instant have been extracted from the raw
signals (vibration signals). The level is chosen by using (8),
which defines the maximum decomposition level, and where
at least 3 harmonics of the characteristic defect frequency are
caught. In this expression, is the decomposition level, is
the sampling frequency, and is the defect frequency. For this
study, by taking the fault frequency as the band pass frequency
of the outer race (BPFO), one gets a decomposition level of
3.8. Being conservative, the decomposition level is fixed to
three. This choice permits us to obtain wide frequency bands of

2.5 kHz. The principle of the procedure for feature extraction
is shown in Fig. 14.

(8)

During the learning phase, three states were defined for each
MoG-HMM. The parameters of eachMoG-HMMwere first ran-
domly initialized, and then the continuous extracted features
were fed to the learning algorithms to re-estimate the initial-
ized parameters ( , , and ). The number of mixtures in each
MoG-HMM was set to two, which allows a trade-off between
precision and computation time. ElevenMoG-HMMswere thus
obtained by using the Baum-Welch algorithm. The re-estimated
numerical values of the parameters , , and (the mixture
probability matrix) of the MoG-HMM related to bearing one in
the test #1 are:

The mean state duration, the standard deviation, and the final
state for this history are also given below.

To simulate an on-line failure, the data histories related to
bearing 3 of test 1, and bearing 1 of test 2, are used. The selec-
tion process shown in Fig. 10 has been applied to these data.
These tests were selected because, according to the description
provided by NASA, they correspond to different failures.
Furthermore, to characterize the simulation results, several

prognostics metrics such as precision, accuracy, Root Mean
Square Error (RMSE), etc. are implemented in this contribu-
tion. The interested reader by these metrics can get more details
from [3], and [57].
In the results given in Tables I and II, and for the implementa-

tion of the metrics proposed by Saxena et al., the parameter is
set to 30. For the estimation of , the parameter is equal to
30%, and is equal to 0.5. However, is set to 0.25 for the es-
timation of , and to 0.25, 0.5, and 0.75 for the estimation of

. Finally, for the convergence, the reference measure was
the absolute error.
From Fig. 15, one can observe that the proposed method con-

verges at the end of the predictions. Indeed, at 16,120 min, i.e.
11 days before the failure of the bearing, the prediction of the
RUL’s upper limit is inside the confidence interval (with 30\%
error). Then, at 6450 min, the predicted mean RUL value enters
inside the same interval (see Table I). Thus, the mean RUL is
underestimated, which is less penalizing (the predicted time to
failure is lower than the real one). This behavior is similar to that
obtained for the results of bearing 1 of test 2 (Fig. 16) for which
the method converges at 2370 min before the failure (Table II).
Note that the predictions at the beginning are pessimistic, but
this result can be improved by implementing precise detection
of the real current health condition of the bearing. Therefore the
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Fig. 14. Feature extraction principle.

TABLE I
PROGNOSTICS PERFORMANCE METRICS FROM [3], [57] FOR THE BEARING 3 IN THE TEST 1

TABLE II
PROGNOSTICS PERFORMANCE METRICS FROM [3], [57] FOR THE BEARING 1 IN THE TEST 2

Fig. 15. RUL of the failed bearing 3 in the test 1.

predictions will be launched only when the degradation starts to
appear, and not when the component is healthy.

IV. CONCLUSION

We propose an estimation of the current health condition of
physical components, particularly bearings, and a prediction of

Fig. 16. RUL of the failed bearing 1 in the test 2.

their remaining useful life before their complete failure. After
a review of the works conducted in the failure prognostics do-
main, a description of the proposed method followed by its ap-
plication on experimental data related to bearings is given. The
method is based on the transformation of the data provided by
the sensors installed to monitor the component into relevant
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models. These models are represented by MoG-HMMs, which
take as input continuous observations, and permit us to model
the state of the component at each time.
The MoG-HMMs have been used because of their facility

of implementation, and of their interpretability aspect. They
allowed us to model the health states of the bearing during its
degradation, and also to use continuous observations derived
from the sensors. Furthermore, MoG-HMMs permit us to
choose the number of observations, leading to a better repre-
sentation of the bearings’ degradation phenomenon.
The observations used in this paper are continuous features

extracted from the monitoring signals by using the Wavelet
Packet Decomposition technique. This type of decomposition
allowed getting deeper into the signal features by adjusting
both the time and the frequency scales. These features are then
used to model the degradation behavior of the component by
learning the parameters of the corresponding MoG-HMMs
models. The derived models are finally exploited to assess the
component’s current condition, and to estimate its RUL and the
associated confidence value.
The proposed method has been applied on experimental data

provided byNASA. In the close future, the methodwill be tested
on an experimental platform called PRONOSTIA, which is de-
signed and realized in our laboratory. Future works concern
also the estimation of the RUL for degradations taking place
under variable operating conditions, which are possible on the
PRONOSTIA platform. In this case, the RUL estimation needs
a modification of the models to take into account the variable
conditions.
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