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the max-norm in a Banach space B of continuous vectorvalued functions over an
interval I = [a — d,a + d], i.e.,

Il = max ().

These notations are also used for the corresponding operator norms. Let D C R?
be a closed region. We recall, see Sec. 12.2, that f satisfles a Lipschitz condition
in D, with the Lipschitz constant L, if

lf(y) - f(z)l < Lly - 311 ‘v’y,z eD. (1316)

By Lemma 11.2.2, max |f'(y)], v € D, is a Lipschitz constant, if f is differentiable
and D is convex. A point, where a local Lipschitz condition is not satisfied is
called a singular point of the system (13.1.3).

THECOREM 13.1.1.
If [ satisfies a Lipschitz condition in the whole of R®, then the initial value

problem (13.1.5) has precisely one solution for each initial vector c. The solution

has a confinuous first derivative for all t.
If the Lipschitz condition holds in a subset D of R*® only, then existence and

untqueness holds as long as the orbit stays in D.

Proof We shall sketch a proof of this fundamental theorem, when D = RS,
based on an iterative construction named after Picard. We define an operator F
(usually nonlinear) that maps the Banach space B into itself:

Fly)(t) =c+ [ * Fly(z))dz.

Note that the equation y = F'(y) is equivalent to the initial value problem (13.1.5)
on some interval [a — d,a + d], and consider the iteration, yy = ¢ (for example),

Y+l = Fyn).

For any pair y, z of elements in B, we have,

IP@) - F@IS [ 1#6(0) - #0)) -1

a+d
e+4d
< [T L - 20 - let] < Ly - =1,
a

It follows that Ld is a Lipschitz constant of the operator F. If d < 1/L, F is
a contraction, and it follows from the Contraction Mapping (Theorem 11.2.1)
that the equation y = F(y) has a unique solution. For the initial value problem
(13.1.5) it follows that there exists precisely one solution, as long as |t — a| £ 4.
This solution can then be continued to any time by a step by step procedurs, for
a + d can be chosen as a new starting time and substituted for 2 in the proof.
In this way we extend the solution to a + 2d, then to a + 3d, ¢ + 4d etc. {or
backwards to a — 2d, a — 3d, etc.). |
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Note that this proof is based on two ideas of great importance to numerical
analysis: iteration and the step-by-step construction. (There is an alternative
proof that avoids the step-by-step construction, see, e.g., Coddington and
Levinson, {2, 1955, p. 12]). A few points to note are:

A. For the ezistence of a solution, it is sufficient that f is continuous, (the
existence theorem of Cauchy and Peano, see, e.g., Coddington and Levinson
12, 1955, p.6])). That continuity is not sufficient for unigueness can be seen
by the following simple initial value problem,

¥ =2yt y(0) =0,

which has an infinity of soclutions for ¢ > 0, namely y(¢} = 0, or, for any
non-negative number k&,

= {0 ift <k
YW =1 (¢~ k)2, otherwise.

B. The theorem is eztended to non-autonomous systems by the usual device
for making a non-autonomous system autonomous {see Sec. 13.1.1).

C. If the Lipschitz condition holds only in a subset D, then the ideas of the
proof can be extended to guarantee existence and uniqueness, as long as
the orbit stays in D. Let M be an upper bound of |f(y)}| in D, and let r be
the shortest distance from ¢ to the boundary of D). Since

0 —cl =1 [ Fule)d < Mt al,

we see that there will be no trouble as long as |t —af < r/M, at least. (This
is usually a pessimistic underestimate.) On the other hand, the example

¥=v, y(0=c>0,

which has the solution y(t) = ¢/(1 — ct}, shows that the solution can cease
to exist for a finite ¢ (namely for ¢t = 1/¢), even if f(y) is differentiable for
all y. Since f'(y) = 2y, the Lipschitz condition is guaranteed only as long
as 2y < L. In this example, such a condition cannot hold forever, no matter
how large L has been chosen.

D. On the other side: the solution of a linear non-autonomous system, where
the data (i.e. the coefficient matrix and the right hand side) are analytic
functions in some domain of the complex plane, cannot have other singular
points than the data, in the sense of complex analysis.

E. Isolated jump discontinuifies in the function f offer no difficulties, if the
problem after a discontinuity can be considered as a new initial value
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problem that satisfles a Lipschitz condition. For example, in ¢ non-
autonomous problem of the form

v = fly) +rt),

eristence an unigueness holds, even if the driving function r(t) is only
piecewise continuous. In this case y'(t) is discontinuous, only when r(t) is s0,
hence y(t) is continuous. There exist, however, more nasty discontinuities,
where existence and uniqueness are not obvious, see Problem 3.

¥. A point y* where f(y*) =01is called a critical point of the autonomous
system. (It is usually not a singular point.) If (1)} = y* at some time
¢, the theorem tells that y(t) = y* is the only solution for all t, forwards
as well as backwards. It follows that a solution that does not start at y”

cannot reach y* exactly in finite time, but it can converge very fast towards
®

¥

Note that this does not hold for a non-autonomous system, at a point where
Fltn,y(t)) =0, as is shown by the simple example y =t, y(0) =0, for which
y(t) = 3% # O when ¢ £ 0. For a non-autonomous system y = f(t,y), a critical
point is instead defined as a point y*, such that f (t,y*) =0, ¥t > a. Then it is
true that y(t) =y, vt > a, if y(a) = ¥

13.1.3. Variational Equations and Error Propagation We first discuss
the propagation of disturbances (for example numerical errors) in an ODE system.
It is a useful model for the error propagation in the application of one step
methods, i.e. if yn is the only input data to the step, where yn+1 is_computed.
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The solution of the initial-value problem, (13.1.3}, can be considered as a
function y{t;c), where ¢ is the vector of initial conditions. Here again, one can
visualize a farnily of solution curves, this time in the {t,y)-space, one curve for
each initial value, y(a;c) = ¢. For the case s = 1, the family of solutions cazn,
for example, look one of the two set of curves in Fig. 13.1.2a,b. The dependence



