
Chapter VII. Differential-Algebraic Equations 
of ffigher Index 

(Drawing by K. Wanner) 

In the preceding chapter we considered the simplest special case of differential­
algebraic equations - the so-called index 1 problem. Many problems of practical 
interest are, however, of higher index, which makes them more and more difficult 
for their numerical treatment. 

We start by classifying differential-algebraic equations (DAB) by the index 
(index of nilpotency for linear problems with constant coefficients; differentiation 
and perturbation index for general nonlinear problems) and present some exam­
ples arising in applications (Sect. VII.1). Several different approaches for solving 
numerically higher index problems are discussed in Sect. VI1.2: index reduction 
by differentiation combined with suitable projections, state space form methods, 
and treatment as overdetermined or unstructured systems. Sections VII.3 and VII.4 
study the convergence properties of multistep methods and Runge-Kutta methods 
when they are applied directly to index 2 systems. It may happen that the order of 
convergence is lower than for ordinary differential equations ("order reduction"). 
The study of conditions which guarantee a certain order is the subject of Sect. VII. 5 . 
Half-explicit methods for index 2 problems are especially suited for constrained 
mechanical systems (Sect. VII.6). A multibody mechanism and its numerical treat­
ment are detailed in Sect. VII.7. Finally, we discuss symplectic methods for con­
strained Hamiltonian systems (Sect. VII.8), and explain their long-term behaviour 
by a backward error analysis for differential equations on manifolds. 



VII.t The Index and Various Examples 

The most general form of a differential-algebraic system is that of an implicit dif­
ferential equation 

F(u',u) =0 (1.1) 

where F and u have the same dimension. We always assume F to be sufficit::ntly 
differentiable. A non-autonomous system is brought to the form (1.1) by appending 
x to the vector u, and by adding the equation x' = 1. 

If aF / au' is invertible we can formally solve (1.1) for u' to obtain an ordinary 
differential equation. In this chapter we are interested in problems (1.1) where 
aF / au' is singular. 

Linear Equations with Constant Coefficients 

Uebrigens kann ich die Meinung des Hm. Jordan nicht theilen, 
dass es ziemlich schwer sei, der Weierstrass-schen Analyse zu 
folgen; sie scheint mir im Gegentheil vollkornmen durchsichtig 
zu sein, .. . (L. Kronecker 1874) 

The simplest and best understood problems of the form (1.1) are linear differential 
equations with constant coefficients 

Bu' +Au = d(x). (1.2) 

In looking for solutions of the form eAX U o (if d( x) == 0) we are led to consider 
the "matrix pencil" A + >"B. When A + >"B is singular for all values of >.., then 
(1.2) has either no solution or infinitely many solutions for a given initial value 
(Exercise 1). We shall therefore deal only with regular matrix pencils, i.e., with 
problems where the polynomial det( A + >..B) does not vanish identically. The key 
to the solution of (1.2) is the following simultaneous transformation of A and B 
to canonical form. 

Theorem 1.1 (Weierstrass 1868, Kronecker 1890). Let A+ >"B be a regular matrix 
pencil. Then there exist nonsingular matrices P and Q such that 

PAQ= (~ ~), PBQ= (~ ~) (1.3) 
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where N = blockdiag (N1, ... , Nk ), each N; is of the form 

_ (0 .~. .. 0) 
N·- , 

t 0 1 
o 0 

of dimension m; , (1.4) 

and C can be assumed to be in Jordan canonical form. 

Proof (Gantmacher 1954 (Chapter XII), see also Exercises 2 and 3). We fix some 
e such that A + eB is invertible. If we multiply 

A + AB = A + eB + (A - e)B 

by the inverse of A + cB and then transform (A + eB)-l B to Jordan canonical 
form (Theorem I.12.2) we obtain 

(~ ~) + (A - e) (~1 J2 ). (1.5) 

Here, J1 contains the Jordan blocks with non-zero eigenvalues, J2 those with zero 
eigenvalues (the dimension of J 1 is just the degree of the polynomial det ( A + 
AB). Consequently, J 1 and I - cJ2 are both invertible and multiplying (1.5) 
from the left by blockdiag (J1 1 , (1 - eJ2 ) -1) gives 

( J11 (1 - eJ1) 0) + A (I 0 ) 
o I 0 (I - eJ2 )-lJ2 • 

The matrices J 1 1(1 - eJ1) and (I - cJ2 )-lJ2 can then be brought to Jordan 
canonical form. Since all eigenvalues of (1 - eJ2 )-1 J2 are zero, we obtain the 
desired decomposition (1.3). 0 

Theorem 1.1 allows us to solve (1.2) as follows: we premultiply (1.2) by P 
and use the transformation 

( 7J(x) ) Pd(x) = o(x) . 

This decouples the differential-algebraic system (1.2) into 

y'+CY=7J(x), Nz'+z=o(x). (1.6) 

The equation for y is just an ordinary differential equation. The relation for z 
decouples again into k subsystems, each of the form (with m = m; ) 

z~ + Zl = 01 (x) 

z;,. + zm_1 = 0m-1 (x) 

zm = 0m(x). 

(1.7) 
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Here zm is determined by the last equation, and the other components are obtained 
recursively by repeated differentiation. Thus ZI depends on the (m - 1) -th deriva­
tive of J m (x). Since numerical differentiation is an unstable procedure, the largest 
mi appearing in (1.4) is a measure of numerical difficulty for solving problem 
(1.2). This integer (max m i ) is called the index of nil potency of the matrix pencil 
A +)"B. It does not depend on the particular transformation used to get (1.3) (see 
Exercise 4). 

Linear Equations with Variable Coefficients. In the case, where the matrices A 
and B in (1.2) depend on x, the study of the solutions is much more complicated. 
Multiplying the equation by P( x) and substituting u = Q( x)v , yields the system 

PBQv' + (PAQ+PBQ')v = 0, (1.8) 

which shows that the transformation (1.3) is no longer relevant. With the use of 
transformations of the form (1.8), Kunkel & Mehrmann (1995) derive a canonical 
form for linear systems with variable coefficients. 

Differentiation Index 

A lot of English cars have steering wheels. 
(Fawlty Towers, Cleese and Booth 1979) 

Let us start with the following example: 

y~ = 0.7· Y2 + sin(2.5· z) = fl (y, z) 
y~ = 1.4·Yl +cos(2.5·z) =f2 (y,z) 

0= yi + y~ -1 = 9(Y)· 

(1.9a) 

(1.9b) 

The "control variable" z in (1.9a) can be interpreted as the position of a "steering 
wheel" keeping the vector field (y~, y~) tangent to the circle yr + y~ = 1, so that 
condition (1.9b) remains continually satisfied (see Fig. 1.1a). By differentiating 
(1.9b) and substituting (1.9a) we therefore must have 

(1.9c) 

This defines a "hidden" submanifold of the cylinder, on which all solutions of 
(1.9a,b) must lie (see Fig. l.lb). We still do not know how, with increasing x, 
the variable z changes. This is obtained by differentiating (1.9c) with respect to x: 
9yy (f, f) + 9 yfyf + 9 yfzz' = o. From this relation we can extract 

(1.9d) 

if 

is invertible. (1.10) 
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Fig. l.la. The vector field (1.9a,d) Fig. l.lb. The hidden submanifold 

We have been able to transform the above differential-algebraic equation 
(1.9a,b) into an ordinary differential system (1.9a,d) by two analytic differentia­
tions of the constraint (1.9c). This fact is used for the following definition, which 
has been developed in several papers (Gear & Petzold 1983, 1984; Gear, Gupta & 
Leimkuhler 1985, Gear 1990, Campbell & Gear 1995). 

Definition 1.2. Equation (Ll) has differentiation index di = m if m is the minimal 
number of analytical differentiations 

F(' )-0 dF(u',u) -0 dmF(u',u)_O 
u , u -, dx -, .. . , dxm - (Ll1) 

such that equations (1.11) allow us to extract by algebraic manipulations an explicit 
ordinary differential system u' = cp( u) (which is called the "underlying ODE'). 

Examples. Linear Equations with Constant Coefficients. The following problem 

z~ + z2 = 62 :::} z~' + z~ = 6~ :::} z~ = 6~ - 6~ + 6~' (1.12) 

Z3 = 63 zt = 6~' 
can be seen to have differentiation index 3. For linear equations with constant 
coefficients the differentiation index and the index of nilpotency are therefore the 
same. 

Systems of Index I. The differential-algebraic systems already seen in Chapter VI 

y'=J(y,z) 

O=g(y ,z) 

(Ll3a) 

(Ll3b) 
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have no z' . We therefore differentiate (1.13b) to obtain 

z' = _g-;l (y, z )gy (y, z )J(y, z) (1.13c) 

which is possible if 9 z is invertible in a neighbourhood of the solution. The prob­
lem (1.13a,b), for invertible 9 z ' is thus of differentiation index I. 

Systems of Index 2. In the system (see example (1.9)) 

y' = f(y, z) 

0= g(y), 

(1.14a) 

(1.14b) 

where the variable z is absent in the algebraic constraint, we obtain by differentia­
tion of (1.14b) the "hidden constraint" 

0= gy(y)f(y, z). (1.14c) 

If (1.10) is satisfied in a neighbourhood of the solution, then (U4a) and (1.14c) 
constitute an index 1 problem. Differentiation of (1.14c) yields the missing differ­
ential equation for z, so that the problem (1.14a,b) is of differentiation index 2. If 
the initial values satisfy 0 = g(yo) and 0 = gy(yo)J(yo, zo), we call them consis­
tent. In this case, and only in this case, the system (U4a,b) possesses a (locally) 
unique solution. 

System (1.14a,b) is a representative of the larger class of problems of type 
(1.13a,b) with singular 9 z . If we assume that 9 z has constant rank in a neighbour­
hood of the solution, we can eliminate certain algebraic variables from 0 = g(y, z) 
until the system is ofthe form (1.14). This can be done as follows: from the con­
stant rank assumption it follows that either there exists a component of 9 such that 
ogd OZl i- 0 locally, or og / oZl vanishes identically so that 9 is already indepen­
dent of Zl . In the first case we can express zl as a function of y and the remaining 
components of z, and then we can eliminate zl from the system. Repeating this 
procedure with Z2' z3' etc., will lead to a system of the form (1.14). This transfor­
mation does not change the index. Moreover, most numerical methods are invariant 
under this transformation. Therefore, theoretical work done for systems of the form 
(1.14) will also be valid for more general problems. 

Systems of Index 3. Problems of the form 

are of differentiation index 3, if 

y' = f(y, z) 

z' = k(y,z,u) 

0= g(y) 

gyfzku is invertible 

in a neighbourhood of the solution. Differentiating (1.ISc) twice gives 

O=gyf 

0= gyy(f, J) + gyfyf + gyfzk. 

(USa) 

(USb) 

(USc) 

(1.16) 

(USd) 

(USe) 
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Equations (1 .15a,b), (1.15e) together with Condition (1.16) are of the index 1 form 
(1.13a,b). Consistent inital values must satisfy the three conditions (1.15c,d,e). 

An extensive study of the solution space of general differential-algebraic sys­
tems is done by Griepentrog & Marz (1986), Marz (1989, 1990). These authors try 
to avoid assumptions on the smoothness on the problem as far as possible and re­
place the above differentiations by a careful study of suitable projections depending 
only on the first derivatives of F. 

Differential Equations on Manifolds 

In the language of differentiable manifolds, whose use in DAE theory was urged 
by Rheinboldt (1984), aconstraint (such as g(y) = 0) represents a manifold, which 
we denote by 

M = {y E IR n I g(y) = o}. (1.17) 

We assume that 9 : IR n -+ IR m (with m < n) is a sufficiently differentiable function 
whose Jacobian gy(y) has full rank for y EM. For a fixed y E M we denote by 

TyM = {v E IR n I gy(y)v = O}, (1.18) 

the tangent space of M at y . This is a linear space and has the same dimension 
n - m as the manifold M . 

E 

Fig. 1.2. A manifold with a tangent vector field, a chart, and a solution curve 

A vector field on M is a mapping v : M -+ IR n , which satisfies v(y) E TyM 
for all y EM . For such a vector field we call 

y' = v(y), yEM (1.19) 

a differential equation on the manifold M. Differentiation on an (n-m) -dimen­
sional manifold is described by so-called charts <Pi : Ui -+ E i , where the Ui cover 



458 VIT. Differential-Algebraic Equations of Higher Index 

the manifold M and the Ei are open subsets of ~ n-m (Fig. 1.2; see also Lang 
(1962), Chap. II and Abraham, Marsden & Ratiu (1983), Chap. III). The local the­
ory of ordinary differential equations can be extended to vector fields on manifolds 
in a straightforward manner: 

Project the vectors v(y) onto Ei via a chart 'Pi by multiplying v(y) 
with the Jacobian of 'Pi at y. Then apply standard results to the pro­
jected vector field in ~ n-m , and pull the solution back to M. 

(see Fig. 1.2). The local existence of solutions of (1.19) can be shown in this way. 
The obtained solution is independent of the chosen chart. Where the solution leaves 
the domain of a chart, the integration must be continued via another one. 

Index 2 Problems. Consider the system (1.14a,b) and suppose that (1.10) is sat­
isfied. This condition implies that gy(y) is of full rank, so that (1.17) is a smooth 
manifold. Moreover, the Implicit Function Theorem implies that the differentiated 
constraint (1.14c) can be solved for z (in a neighbourhood of the solution), i.e., 
there exists a smooth function h(y) such that 

gy(y)f(y,z) = 0 

Inserting this relation into (1.10a) yields 

y'=f(y,h(y)), 

z = h(y). 

yEM 

(1.20) 

(1.21) 

which is a differential equation on the manifold (1.17), because f (y, h(y)) E Ty M 
by (1.20). The differential equation (1.21) is equivalent to (U4a,b). 

Example. The manifold M for problem (1.9) is one­
dimensional (circle). In points, where Yl i= ±1, we can 

solve (1.9b) to obtain locally Y2 = ±Jl- y? The map 
(Yl' Y2) 1-7 Yl consitutes a chart 'P, which is bijective in a 
neighbourhood of the considered point. Inserting z from 
(1.9c) and the above Y2 into (1.9a), yields an equation 
y~ = G(Yl) , which is the projected vector field in JR.l. 

Y2 

Index 3 Problems. For the system (1.15a,b,c) the solutions lie on the manifold 

M = ((y,z) I g(y) = 0, gy(y)f(y,z) = O}. (1.22) 

The assumption (1.16) implies that gy(y) and gy(y)fz (y, z) have full rank, so that 
M is a manifold. Its tangent space at (y, z) is 

T(y,z)M = ((v,w) I gy(y)v = 0, gyy(y)(J(y,z),v) 

+ gy(y) (Jy(y, z)v + fAy, z)w) = O}. 
(1.23) 

Solving Eq. (U5e) for u and inserting the result into (U5b) yields a differential 
equation on the manifold M. Because of (1.15d,e), the obtained vector field lies 
in the tangent space T(y,z)M for all (y, z) EM. 
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The Perturbation Index 

Now fills thy sleep with perturbations. 
(The Ghost oj Anne in Shakespeare's Richard l/l, act V, sc. III) 

A second concept of index, due to HLR89 1, interprets the index as a measure of 
sensitivity of the solutions with respect to perturbations of the given problem. 

Definition 1.3. Equation (1.1) has perturbation index pi = m along a solution 
u( x) on [0, xl, if m is the smallest integer such that, for all functions u( x) having 
a defect 

F(U',U)=6(X), (1.24) 

there exists on [0, xl an estimate 

lIu(x) - u(x)11 ::; C(llu(O) - u(O)11 + max 116(~)11 + ... + max 116(m-1l(OII) 
O~€~X O~€~X 

(1.25) 
whenever the expression on the right-hand side is sufficiently small. 

Remark. We deliberately do not write "Let u( x) be the solution of F(u', u) = 
6 (x) ... " in this definition, because the existence of such a solution u( x) for an 
arbitrarily given 6 (x) is not assured. We start with u and then compute 6 as defect 
of (1.1). 

Systems of Index 1. For the computation of the perturbation index of (1.13a,b) we 
consider the perturbed system 

fj' = f(fj, z) + 61 (x) 
0= g(fj, z) + 62 (x). 

(1.26a) 

(1.26b) 

The essential observation is that the difference z - z can be estimated with the 
help of the Implicit Function Theorem, without any differentiation of the equation. 
Since gz is invertible by hypothesis, this theorem gives from (1.26b) compared to 
(1.13b) 

Ilz(x) - z(x)11 ::; C1 (lIfj(x) - y(x)11 + 1162 (x)ll) (1.27) 

as long as the right-hand side of (1.27) is sufficiently small. We now subtract 
(1.26a) from (1.13a), integrate from 0 to x, use a Lipschitz condition for f and the 
above estimate for z( x) - z( x). This gives for e( x) = Ilfj( x) - y( x) II : 

e(x) ::; e(O) + C2lx e(t)dt + C3lx 1162(t)lldt + Illx 61 (t)dtll· 

In this estimate the norm is inside the integral for 62 , but outside the integral for 61 . 

This is due to the fact that perturbations of the algebraic equation (1.13b) are more 

1 The "Lecture Notes" of Hairer, Lubich & Roche (1989) will be cited frequently in the 
subsequent sections. Reference to this publication will henceforth be denoted by HLR89. 
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serious than perturbations of the differential equation (1.13a). We finally apply 
Gronwall's Lemma (Exercise 1.10.2) to obtain on a bounded interval [0, xl 

Ily(x) -y(x)11 ~ C4 (lly(0) -y(O)11 + fox 1182(t)lldt+ o~ttx II foe 81 (t)dt ll) 
~ C5 (IIY(O) - y(O)11 + o~eatx 1182 (c)11 + oTltx 1181 (011). 

This inequality, together with (1.27), shows that the perturbation index of the prob­
lem is 1. 

Systems of Index 2. We consider the following perturbation of system (1.14a,b) 

Differentiation of (1.28b) gives 

11 = f(y, z) + 8(x) 

O=g(y)+O(x). 

0= gy(y)f(y, z) + gy(y)8(x) + 0' (x). 

(1.28a) 

(1.28b) 

(1.29) 

Under the assumption (1.10) we can use the estimates of the index I case (with 
82 (x) replaced by gy(y(x))8(x) + O'(x)) to obtain 

Ily(x) - y(x)11 s C (IIY(O) - y(O)11 + fox (118(011 + 1I0'(011)dc) 
(1.30) 

Ilz(x) - z(x)11 s C(lIy(O) - y(O)11 + o~ttx 118(011 + o~ttx 110'(c)II). 

Since these estimates depend on the first derivative of 0, the perturbation index of 
this problem is 2. A sharper estimate for the y -component is given in Exercise 6. 

Example. Fig. 1.3 presents an illustration for the index 2 problem (1.9a,b). Small 
perturbations of g(y), once discontinuous in the first derivative (left), the other 
of oscillatory type (right), results in discontinuities or violent oscillations of z, 
respectively. 

The above examples might give the impression that the differentiation index 
and the perturbation index are always equal. The following counter-examples show 
that this is not true. 

Counterexamples. The first counterexample of type M(y)y' = f(y) is given by 
Lubich (1989): 

y; - Y3Y; + Y2Y; = 0 

Y2 =0 

Y3 =0 

y; - Y3Y; + Y2Y; = 0 

Y2 = esinwx 

Y3 = eCOSWX 

(1.31) 

with Yi(O) = 0 (i = 1,2,3). Inserting Y2 = e sinwx and Y3 = e coswx into the 
first equation gives y{ = e2W which makes, for e fixed and w -+ 00, an estimate 
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1 

Fig. 1.3. Perturbations of an index 2 problem 

(1.25) with m = 1 impossible. However, for m = 2 the estimate (1.25) is clearly 
satisfied. This problem, which is obviously of differentiation index l, is thus of 
perturbation index 2. 

It was believed for some time (see the first edition, p. 479), that the differenti­
ation and perturbation indices can differ at most by 1. The following example, due 
to Campbell & Gear (1995), was therefore a big surprise: 

YmNy'+y=O, (1.32) 

where N is a m x m upper triangular nilpotent Jordan block. Since the last row of 
N is zero, we have Ym = 0, and the differentiation index is 1. On the other hand, 
adding a perturbation makes Ym different from zero. This is the reason why the 
perturbation index of (1.32) is m. 

Control Problems 

Many problems of control theory lead to ordinary differential equations of the form 
y' = f(y, u), where u represents a set of controls. Similar as in example (1.9) 
above, these controls must be applied so that the solution satisfies some constraints 
o = g(y , u). For numerical examples of such control problems we refer to Brenan 
(1983) (space shuttle simulation) and Brenan, Campbell & Petzold (1989). 

Optimal Control Problems are differential equations y' = f (y, u) formulated in 
such a way that the control u( x) has to minimize some cost functional. The Euler­
Lagrange equation then often becomes a differential-algebraic system (Pontryagin, 
Boltyanskij, Garnkrelidze & Mishchenko 1961, Athans & Falb 1966, Campbell 
1982). We demonstrate this on the problem 

y' = f(y, u), y(O) = Yo (1.33a) 
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with cost functional 

J(u) = 11 'P(Y(X), u(x))dx. (1.33b) 

For a given function u(x) the solution y(x) is determined by (1.33a). In order to 
find conditions for u(x) which minimize J(u) of (1.33b), we consider the per­
turbed control u(x) + c:ou(x) where ou(x) is an arbitrary function and c: a small 
number. To this control there corresponds a solution y( x) + c:Oy( x) + O( c:2 ) of 
(1.33a); hence (by comparing powers of c:) 

oyl(X) = fy(x)oy(x) + fu(x)ou(x), oy(O) = 0, (1.34) 

where, as usual, fy(x) = fy(y(x), u(x)), etc. Linearization of (1.33b) shows that 

J(u +c:ou) - J(u) = c: 11 ('Py(x)OY(x) + 'Pu(x)ou(x))dx + 0(c:2 ) 

so that 

(1.35) 

is a necessary condition for u(x) to be an optimal solution of our problem. In 
order to express oy in terms of ou in (1.35), we introduce the adjoint differential 
equation 

v(l) = 0 (1.36) 

with inhomogeneity 'P y (x)T . Hence we have (see Exercise 7) 

11 'Py(x)oy(x)dx = 11 vT(x)fu(x)ou(x)dx. (1.37) 

Inserted into (1.35) this gives the necessary condition 

11 (vT(x)fu(x) +'Pu(x))ou(x)dx = O. (1.38) 

Since this relation has to be satisfied for all ou we obtain the necessary relation 
v T ( x ) f u (x) + 'P u ( x) = 0 by the so-called "fundamental lemma of variational cal-
culus". 

In summary, we have proved that a solution of the above optimal control prob­
lem has to satisfy the system 

yl = f(y,u), 

VI = - fy(y, uf v - 'Py(Y, uf, 

0= vT fu(y,u) +'Pu(Y,u). 

y(O) = Yo 

v(l) = 0 (1.39) 

This is a boundary value differential-algebraic problem. It can also be obtained di­
rectly from the Pontryagin minimum principle (see Pontryagin et al. 1961, Athans 
& Falb 1966). 
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Differentiation of the algebraic relation in (1.39) shows that the system (1.39) 
has index 1 if the matrix 

n [)2 Ii [)2<p L Vi EfT (y,u) + {j2 (y,u) 
i=l U U 

(1.40) 

is invertible along the solution. A situation where the system (1.39) has index 3 
is presented in Exercise 8. An index 5 problem of this type is given in "Exam­
ple 3.1" of Clark (1988). Other control problems with a large index are discussed 
in Campbell (1995). 

Mechanical Systems 

. .. berechnen wir T, V, L. Mehr brauchen wir von der Geome­
trie und Mechanik unseres Systems nicht zu wissen. Alles iibrige 
besorgt ohne unser Zutun der Formalismus von LAGRANGE. 

(Sommerfeld 1942, §35) 

An interesting class of differential-algebraic systems appears in mechanical mod­
eling of constrained systems. A choice method for deriving the equations of mo­
tion of mechanical systems is the Lagrange-Hamilton principle, whose long history 
goes back to merely theological ideas of Leibniz and Maupertuis. Let q1,· .. , qn 
be position coordinates of a system and ui = qi the velocities. Suppose a function 
L( q, q) is given; then the Euler equations of the variational problem 

l t2 

L(q, q)dt = min! 
tl 

(1.41) 

are given by 

d ([)L) [)L _ 0 
dt [)qk - [)qk - , 

k = 1, ... ,n (1.42) 

or 
n n 

L Ltikri/ie = Lqk - L LtikqAe· (1.43) 
e=l e=l 

The great discovery of Lagrange (1788) is that for L = T - U, where T is the 
kinetic energy and U the potential energy, the differential equations (1.43) describe 
the movement of the corresponding "conservative system". For a proof and various 
generalizations, consult any book on mechanics e.g., Sommerfeld (1942), vol. I, 
§§ 33-37, or Arnol'd (1979), part II. 

Example 1. For the mathematical pendulum of length R we choose as position 
coordinate the angle e = q1 such that T = mR2(J2 /2 and U = -Rmg cos e. Then 
(1.43) becomes RO = -g sine, the well-known pendulum equation. 



464 VII. Differential-Algebraic Equations of Higher Index 

Movement with Constraints. Suppose now that we have some constraints gl (q) = 
0, ... , gm (q) = 0 on our movement. Another great idea of Lagrange is to vary the 
"Lagrange function" as follows in this case 

(1.44) 

where the "Lagrange multipliers" -\ are appended to the coordinates. The impor­
tant fact is that, since L is independent of ~i' the equation (1.43), for the deriva­
tives with respect to Ak' just becomes 0 = gk(q), the desired side conditions. 

Example 2. We now describe the pendulum in Cartesian coordinates x, y with 
constraint x 2 + y2 - £2 = o. This gives for (1.44) 

L = ; (x2 +1/) - mgy - A(X2 +y2 _£2) 

and (1.43) becomes 

mx = -2XA 

my = -mg - 2YA 

o = X2 + y2 _ £2. 

(l.4S) 

In this example the physical meaning of A is the tension in the rod which maintains 
the mass point on the desired orbit. 

The general form of a constrained mechanical system (1.43) is in vector nota­
tion (after replacing dots by primes) 

q' =U 

M(q)u' = f(q,u) - GT(q)A 

0= g(q) 

(1.46a) 

(1.46b) 

(1.46c) 

where M(q) = Tqq = Tuu is a positive definite matrix, G(q) = 8g/8q and q = 
(ql'···' qn)T, u = (lh,···, qn)T, A = (AI' ... ' Am)T. Various formulations are 
possible for such a problem, each of which leads to a different numerical approach. 

Index 3 Formulation (position level, descriptor form). If we formally multiply 
(1.46b) by M-l, the system (1.46) becomes of the form (1.15) with (q, u, A) in 
the roles of (y, z, u). The condition (1.16), written out for (1.46), is 

GM-1 GT is invertible. (1.47) 

This is satisfied, if the constraints (1.46c) are independent, i.e., if the rows of the 
matrix G are linearly independent. Under this assumption, the system (1.46a,b,c) 
is thus an index 3 problem. 

Index 2 Formulation (velocity level). Differentiation of (1.46c) gives 

0= G(q)u. (1.46d) 
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If we replace (1.46c) by (l.46d) we obtain a system of the form (1.14a,b) with 
(q, u) in the role of y and A that of z. One verifies that Condition (1.10) is 
equivalent to (1.47), so that (1.46a,b,d) represents a problem of index 2. 

Index 1 Formulation (acceleration level). If we differentiate twice the constraint 
(1.46c), the resulting equation together with (1.46b) yield 

( M(q) GT(q)) (u') _ ( f(q,u) ) 
G(q) 0 A - -gqq(q)( u, u) . (1.46e) 

This allows us to express u' and A as functions of q, u, provided that the matrix in 
(1.46e) is invertible. Hence, (1.46a,e) consitute an index 1 problem. The assump­
tion on the matrix in Eq. (1.46e) is weaker than (1.47), because M(q) need not be 
regular. 

All these formulations are mathematically equivalent, if the initial values are 
consistent, i.e., if (1.46c,d,e) are satisfied. However, if for example the index 2 
system (l.46a,b,d) is integrated numerically, the constraints of the original problem 
will no longer be exactly satisfied. For this reason Gear, Gupta & Leimkuhler 
(1985) introduced another index 2 formulation (" ... an interesting way of reducing 
the problem to index two and adding variables so that the constraint continues to 
be satisfied".). 

GGL Formulation. The idea is to add the constraint (1.46d) to the original system 
and to introduce an additional Lagrange multiplier /1- in (1.46a). For the sake of 
symmetry we also multiply (1.46a) by M(q), so that the whole system becomes 

M(q)q' = M(q)u - GT(q)/1-

M(q)u' = f(q, u) - GT (q)A 

0= g(q) 

0= G(q)u. 

(1.48) 

Here the differential variables are (q, u) and the algebraic variables are (/1-, A). 
System (1.48) is of the form (1.14a,b) and the index 2 assumption is satisfied if 
(1.47) holds. 

A concrete mechanical system is described in detail, together with numerical 
results for all the above formulations, in Sect. VII. 7. 

Exercises 

1. Prove that the initial value problem 

Bu'+Au=O, u(O) = U o 

has a unique solution if and only if the matrix pencil A + AB is regular. 

(1.49) 
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Hint for the "only if" part. If n is the dimension of u, choose arbitrarily n + 1 
distinct '\ and vectors Vi # 0 satisfying (A + >..; B) vi = o. Then take a linear 
combination, such that L: QiVi = 0, but L: QieAiXvi =t o. 

2. (Stewart 1972). Let A + >"B be a regular matrix pencil. Show that there exist 
unitary matrices Q and Z such that 

QAZ=(Aoll A12) QBZ=(BOll B12) (1.50) 
A22 ' B22 

are both triangular. Further, the diagonal elements of A22 and Bll are alii, 
those of B22 are all O. 

Hint (Compare with the Schur decomposition of Theorem 1.12.1). Let >"1 be a 
zero of det( A + >..B) and vI # 0 be such that (A + >"1 B)VI = o. Verify that 
BVI # 0 and that 

AZ1 = Q1 (-~I 
where QI' ZI are unitary matrices whose first columns are BVI and VI' re­
spectively. The matrix pencil A + >"B is again regular and this procedure can 
be continued until det(A + >"B) = Const which implies that det B = O. In 
this case we take a vector v2 # 0 such that BV2 = 0 and transform A + >"B 
with unitary matrices Q2' Z2' whose first columns are AV2 and v2, respec­
tively. For a practical computation of the decomposition (1.50) see Golub & 
Van Loan (1989), Sect. 7.7. 

3. Under the assumptions of Exercise 2 show that there exist matrices S and T 
such that 

(~ ~) (AOI ~~~) (~ ~) = (AOI A~2)' 

(~ ~) (BOI ~~~) (~ ~) = (BOI B~2). 
Hint. These matrices have to satisfy 

AlIT +A12 + SA22 = 0 

Bll T + BI2 + SB22 = 0 

(1.51a) 

(1.51b) 

and can be computed as follows: the first column of T is obtained from (1.51 b) 
because Bll is invertible and the first column of SB22 vanishes; then the first 
column of S is given by (1.51a) because A22 is invertible; the second column 
of S B22 is then known and we can compute the second column of T from 
(1.51b), etc. 

4. Prove that the index of nilpotency of a regular matrix pencil A + >"B does not 
depend on the choice of P and Q in (1.3). 
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Hint. Consider two different decompositions of the form (1.3) and denote the 
matrices which appear by C l' N 1 and C 2, N 2 ,respectively. Show the exis­
tence of a regular matrix T such that N2 = T-l Nl T. 

5. Prove that the system (VI.3.4a,b) has index 2 (it is of the form (1.14a,b) and 
satisfies (LlO)). The full system (VI.3.4) has perturbation index k. 

6. (Arnold 1993). Consider the index 2 problem (1.14) and its perturbation (1.28). 
Prove that the difference 6.y( x) = fj( x) - y( x) satisfies 

II6.y(x )11 ~ C (116.y(O)11 + o~t:tx (lilt. P(t)5(t) dtll 
+ IIB(OII + (1I5(~)11 + IIB'(x)II)2)) 

with the projector P( t) = 1- (Jz(gyfz )-1 gy) (y( t), z( t)) , provided that the 
right hand side is sufficiently small. 

Hint. Linearize Eq. (1.29) around (y, z), extract z - z, and insert it into the 
difference of (l.28a) and (1.14a). The term (Jz(gyfJ-1) (y(x), z(x)) B'(x) 
can be replaced by lx (JAgyfz )-1 (y(x), z(x)) B(x)) + O(IIB(x )11) before in­
tegration. 

7. For the linear initial value problem 

y'=A(x)y+f(x), y(O) = 0 

consider the adjoint problem 

v' = -A(xf v - g(x), v(l) = O. 

Prove that 11 g(x f y(x )dx = 11 v(x)T f(x )dx. 

8. Consider a linear optimal control problem with quadratic cost functional 

y'=Ay+Bu+f(x), y(O)=Yo 

J(u) = ~ 11 (y(xfcy(x)+u(xfDu(x))dx, 

where C and D are assumed to be positive semi-definite. 
a) Prove that J( u) is minimal if and only if 

y'=Ay+Bu+f(x), 

v'=-ATv-Cy, 

0= BTv+Du. 

y(O) = Yo 

v(l) = 0 

b) If D is positive definite, then (1.52) has index 1. 
c) If D = 0 and BT C B is positive definite, then (1.52) has index 3. 

(1.52) 



VII.2 Index Reduction Methods 

We have seen in Sect. VI. 1 that the numerical treatment of problems of index 1, 
which are either in the half-explicit form (1.13) or in the form M u' = 'P( u), is not 
much more difficult than that of ordinary differential equations. For higher index 
problems the situation changes completely. This section is devoted to the study of 
several approaches that are all based on the idea of modifying the problem in such 
a way that the index is reduced. 

Index Reduction by Differentiation 

The most apparent way of reducing the index is to differentiate repeatedly the al­
gebraic constraints (see Definition 1.2). In general, it is recommended to differen­
tiate until having obtained an index 1 problem. For example, the index 2 problem 
(1.14a,b) is replaced by (1.14a,c), or the constrained mechanical system (1.46a,b,c) 
by (1.46a,b,e). The resulting problem is then solved by the methods of Chapter VI. 

We illustrate this approach at the "pendulum example" 

x'=u, u' = -XA 

y'=v, v'=-1-y>' 

0= x2 + y2_1. 

(2.1a) 

(2.1b) 

(2.1c) 

In this form it has index 3. Differentiating the algebraic constraint twice yields 

O=xu+yv, 

0= _,),(x2 +y2) _y +u2 +v2. 

(2.2) 

(2.3) 

Equations (2.1a,b) together with (2.3) represent an index 1 problem. We can extract 
>. from (2.3) and insert it into (2.1a,b) to get a differential equation for x, y, u, v, 
which can be solved by standard methods. 

Drift-off Phenomenon. As an example we apply the code DOPRI5 to the index 1 
problem (2.1a,b), (2.3) with initial values Xo = 1, Yo = 0, Uo = 0, Vo = O. We are 
interested, how well the constraints (2.1 c) and (2.2) are preserved by the numerical 
solution. The result presented in Fig. 2.1 shows that the error in the constraint 
(2.2) grows linearly, that in (2.1c) grows even quadratically. This phenomenon is 
explained as follows: 
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Fig. 2.1. Error in the constraints for DOPRI5 (Atol = Rtol = 10-6 ) 

Consider a constrained mechanical system (see (1.46)) 

q' =u 
M(q)u' = f(q, u) - GT(q)>. 

0= g(q). 

Differentiating (2.4c) twice we get 

( M(q) GT(q)) (u') _ ( f(q,u) ) 
G(q) 0 >. - -qqq(q)(u,u) 

100 

(2Aa) 

(2Ab) 

(2Ac) 

(2.5) 

which, together with (2.4a), is the corresponding index 1 problem. The important 
observation is now that the index 1 problem possesses a solution for arbitrary initial 
values qo and uo. Due to the fact that the second derivative of g(q(t)) vanishes 
(this is a consequence of the lower relation of (2.5)), the solution of the index 1 
problem satisfies 

g(q(t)) =g(qo)+(t-to)G(qo)uo, 

G(q(t))u(t) = G(qo)uo. 

(2.6a) 

(2.6b) 

Theorem 2.1. Ifwe apply a pth order numerical method to the index 1 problem 
(2.4a), (2.5) with consistent initial values at to = 0, then the numerical solution 
(qn' un) at time tn satisfies (for tn - to:::; Const) 

The value h represents the maximal step size used. 

Proof. Denote by q(t, to, qo' uo) the solution of the index 1 problem with initial 
value (qo, uo) at t = to. Since the local error qj+l - q(t j+l' t j , qj' u j) is of size 

O(h~+l) (and similarly for the u -component), it follows from (2.6a) that 

Ilg(q(tn, tj+l' qj+l' Uj+l)) - g(q(tn' t j , qj' Uj)) II :::; h~+l (A + 2B(tn - tj+l)). 

Adding up these inequalities from j = 0 to j = n - 1 gives the desired bound for 
g(qn), because the initial values are consistent, i.e., g(q(tn,tO' qo, uo)) = O. The 
second estimate of Theorem 2.1 is proved in the same way. 0 
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Baumgarte Stabilization. The historically first remedy for this drift-off is due to 
Baumgarte (1972). Instead of replacing the constraint (2.4c) by its second time 
derivative, he proposes to replace (2.4c) by the linear combination 

0= jj + 2aif + /32g, (2.7) 

where if, jj are time derivatives of (2.4c), i.e., 

9 = g(q), if = G(q)u, jj = gqiq)(u, u) + G(q) (J(q, u) - GT (q)>.). 

Eq. (2.7) together with (2.4b) determines u' and>. as functions of (q, u), and the 
resulting differential equation can be solved numerically. The idea is now to choose 
the free parameters a and /3 in such a way that (2.7) is an asymptotically stable 
differential equation, e.g., /3 = a and a> O. Consequently, the functions g(q(t)) 
and G(q(t))u(t) are exponentially decreasing, in contrast to (2.6). The difficulty 
of this approach lies in a good choice of a. For small values of a the damping will 
not be sufficiently strong, whereas for large a the resulting differential equation 
becomes stiff and explicit methods are no longer efficient. A careful investigation 
on the choice of a can be found in Ascher, Chin & Reich (1994). 

Stabilization by Projection 

We shall now analyze another possibility for avoiding the instability of the pre­
ceding example, namely the repeated projection of the numerical solution onto the 
solution manifold. 

Index 2 Problems. Consider the system (1.14a,b). Suppose that (Yn-I' Zn-I) is 
an approximation to the solution at time tn_ 1 which satisfies g(Yn-l) = 0 and 
gy(Yn-l)f(Yn-l> zn_l) = O. Applying a numerical one-step method (state space 
form method of Sect. VI.1) with these values to the index 1 system (1. 14a,c) yields 
an approximation fin' zn that, in general, does not satisfy the constraint (1.14b). 
A natural way of projecting the approximation fin to the solution manifold M of 
Eq. (1.17) is along the image of fz (see also the projected Runge-Kutta methods of 
Sect. VII.4). We therefore define Yn as the solution of 

Y - fin = fAfin, zn)J.L, g(y) = 0, (2.8) 

and then we adjust zn by solving the equation gy(Yn)f(Yn, zn) = O. Applying 
simplified Newton iterations to the nonlinear system (2.8) requires the decomposi­
tion of the matrix 

( I fAfin, Zn)) 
gy(fin) 0 . 

(2.9) 

Block elimination shows that the invertibility of (2.9) is a consequence of (1.10), 
and that only the matrix gyfz has to be decomposed. Such a decomposition is 
usually already available from the application of the numerical method, so that the 
projection (2.8) is very cheap. 
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It is now natural to ask, whether this projection procedure can distroy the con­
vergence properties of the underlying method. For a pth order one-step method 
the local error is of size O( hP+1 ). Since the solution of (1.14a,c) passing through 
(Yn-uzn-l) satisfies g(y(t)) = 0, it holds g(Yn) = O(hp+1 ). Hence, the solu­
tion of (2.8) satisfies p, = O(hP+l), Yn - Yn = O(hP+l), and Zn - zn = O(hP+1 ). 

By the Implicit Function Theorem this solution depends smoothly on (Yn, zn), so 
that the mapping (Yn-l' zn-l) I-t (Yn' zn) represents a pth order one-step method 
for (1.14a,c). Convergence of order p thus follows from the standard theory (see 
Sects. VI. 1 and 11.3). This proof also applies to multistep methods. 

Constrained Mechanical Systems. For the index 3 system (2.4a,b,c) the situation 
is slightly more complex. We assume consistent values (qn-l, un-I, An-I) at time 
t n - 1 and apply a one-step method to the index 1 system (2.4a), (2.5) to obtain 
('in, un)· Since the position constraint (2.4c) only depends on q, the projections 
for q and U can be done sequentially. 

Projection on Position Constraint. We define qn as solution of the nonlinear system 

M(<in)(qn - <in) + GT(<in)P, = 0 

g(qn) = O. 
(2.10) 

Projection on Velocity Constraint. With the value qn obtained from the above 
projection we let un be the solution of 

M(qn)(u n - un) + GT (qn)P, = 0 

=0. 
(2.11) 

Lubich (1991) introduced this kind of projection, because "it is invariant under 
affine transformations of coordinates". We remark that the system (2.11) is linear, 
whereas (2.10) is nonlinear and has to be solved by (simplified) Newton iterations. 
The index 3 assumption that the matrix in Eq. (2.5) is invertible, implies the exis­
tence of the projected values qn and un (at least for sufficiently small step size). 
It is possible to alter slightly the arguments of M and GT in the upper lines of 
(2.10) and (2.11) or to solve the system (2.11) iteratively, if this is computationally 
advantageous. Convergence of this method is proved in the same way as in the 
index 2 case. 

Velocity Stabilization. It can be seen from (2.6) that errors in the velocity con­
straint G(q)u = 0 are more critical for the numerical solution than errors in the 
position constraint g( q) = O. It is therefore interesting to study the method, where 
the numerical solution is projected only to the velocity constraint. Alishenas & 
Olafsson (1994) come to the conclusion that "velocity projection is the most effi­
cient projection with regard to improvement of the numerical integration". 

We have applied the code DOPRI5 in four different variants to the index 1 for­
mulation of the pendulum equation (2.1): (i) standard application without any pro­
jection, (ii) only projection on the position constraint, (iii) only projection on the 
velocity constraint, (iv) sequential position and velocity projections. The the global 
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Fig. 2.2. Global error of DOPRI5 with various projections (Atol = Rtol = 10-6 ) 

error (in position and velocity) during integration is shown in Fig. 2.2. We conclude 
that a projection on the position constraint without projection on the velocity con­
straint does not improve the global error (it makes it even worse in our example). 
On the other hand, velocity stabilization is as efficient as the complete projection 
(position and velocity). Nearly no difference can be observed in Fig. 2.2. 

Differential Equations with Invariants 

Closely related to the above techniques is the numerical treatment of differential 
equations with invariants. Consider the initial value problem 

y' = f(y), y(O) = Yo, (2.12) 

and suppose that the solution is known to have the invariant 

cp(y) =0. (2.13) 

For example, the differential equation (1.46a,e) for (q, u) has the invariants (1.46c) 
and (l.46d). Conservation laws (total energy, ... ) may also be written in the form 
(2.13). The invariant (2.13) is called afirst integral, if cpy(y)f(y) ::::::: 0 in a neigh­
bourhood of the solution. 

Linear first integrals of the form cp(y) = c + dT y are preserved exactly by 
most integration methods (e.g., Runge-Kutta and multistep methods). Quadratic 
first integrals are preserved exactly by symplectic Runge-Kutta methods (see The­
orem 11.16.7). More complicated invariants are in general not preserved. 

The above projection techniques can be adapted to the treatment of the problem 
(2.12-13) (see Shampine (1986), Eich (1993), Ascher, Chin & Reich (1994». We 
apply a numerical method to (2.12) and project (orthogonally or somehow else) the 
numerical solution onto the manifold defined by (2.13). As discussed above, this 
precedure retains the order of convergence of the basic method. 

Hamiltonian Systems. Differential equations of the form 

, f)H () ,f)H ( ) 
Pi = --f) p,q, qi = -f) p,q, 

qj Pi 
i = 1, ... ,n, (2.14) 

where H: ]R.2n -+ ]R. is a smooth function, always have H(p, q) = Const as first 
integral. It is tempting to exploit this information and project the numerical solution 
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explicit Euler, h = 0.01 

Euler, h = 0.01 symplectic Euler, h = 0.01 

with projection onto H = Canst 

Fig. 2.3. Study of the projection onto the manifold H(p, q) = H(Po, qo) 

onto the manifold H (p, q) = H (Po, qo). Consider for example the perturbed Kepler 
problem with Hamiltonian 

H( ) __ pi + p~ _ 1 0.005 
p q (2.15) 

, 2 .J qr + q5 .J (qr + q~)3 

and initial values ql (0) = 1- e, q2(0) = 0, PI (0) = 0, P2(0) = .J(1 + e)j(l - e) 
(eccentricity e = 0.6). The upper pictures of Fig. 2.3 show the numerical solution 
obtained by the explicit Euler method with step size h = 0.01; to the left without 
any projection, and to the right with projection onto H = Const. An improvement 
can be observed, but the numerical solution still does not reflect the geometric 
structure of the exact solution (invariant torus). We also have applied the symplec­
tic Euler method (see Eq. (16.54) of Sect. II.16). Here we see that the numerical 
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solution (without projection) shows the correct qualitative behaviour (this can be 
explained by a backward error analysis, see Sect. ILl 6), whereas the projection 
onto H = Canst destroys this property. A remedy could be the following: apply a 
symplectic method to the problem, project the numerical solution to H = Canst, 
but continue the integration with the unprojected values. 

Methods Based on Local State Space Forms 

This method is also called differential-geometric approach by Potra & Rheinboldt 
(1990). The idea is to regard the differential-algebraic system as a differential 
equation on a manifold (see Sect. VILl) and to solve the equation in this manifold 
by introducing suitable local coordinates. 

Let us illustrate this approach at the pendulum example. The equations, for­
mulated in cartesian coordinates, are given in the beginning of this section. The 
solution manifold is (compare with Eq. (1.22)) 

M={(x,y,u,v) Ix2+y2=1, xu+yv=O}. 

This is a 2 -dimensional manifold in IR 4 and can be parametrized by (<.p, "1) as 
follows: 

x = cos<.p, 

y = sin<.p, 

u = -"1 sin <.p, 

v = "1 cos <.p. 
(2.16) 

A short calculation shows that the system (2.1a,b), (2.3), written in the new coor­
dinates, leads to the well-known equation 

<.p' = "1, "1' = -cos<.p. (2.17) 

This differential equation can be solved numerically without any difficulties. The 
numerical approximation in the original coordinates is then obtained via (2.16). 
Obviously, the position and velocity constraints are satisfied exactly. 

Although this example nicely illustrates the main ideas, it may be mislead­
ing. First of all, in typical applications it is not possible to use one and the same 
parametrization throughout the whole integration. Secondly, the choice of coordi­
nates is usually not obvious and the transformed differential equation can be much 
more complicated than the original one (see for example Alishenas (1992)). 

Local State Space Form. Suppose that the differential-algebraic system, which 
we want to solve, can be written as a differential equation 

y' = v(y), yEM (2.18) 

on a smooth d -dimensional manifold M c IR n. Consider a coordinate function 
w: U -+ V (sufficiently differentiable, bijective, and w'("1) of full rank) between 
the open set U C IR d and V eM, and denote the coordinates in U by "1 E IR d • 

Under the transformation y = w("1) the equation (2.18) becomes 

w'("1)"1' = v(w("1))' (2.19) 
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Since v(y) E TyM for all Y E M (see Eq. (1.19)), there exists 7]' such that (2.19) 
holds. Moreover 7]' is unique, because w'(7]) is of full rank. Using the notation 

w'(7])+ = (w'(7])Tw'(7]))-lw'(7])T for the pseudo-inverse of w'(7]) we therefore 
obtain 

7]' = w'(7])+v(w(7])), (2.20) 

which is an ordinary differential equation in 1R d and is called local state space form 
of (2.18). Observe that different coordinate functions lead to different state space 
forms. 

The numerical procedure for solving (2.18) is the following: suppose that an 
approximation Yk EM of y(tk) is given. We then choose a coordinate function 
and apply a standard method (e.g., Runge-Kutta) with initial value 7]k = w-1(Yk) 
to the state space form (2.20). This yields an approximation 7]k+l at time tk+l' 
Finally, we put Yk+l = w(7]k+l)' By definition of this procedure, the numerical 
approximation YkH again lies in M. 

If one uses one and the same local state space form for the whole integration 
(as it is the case for the pendulum example, Eq. (2.17)), the convergence properties 
for (2.20) carry immediately over to (2.18) via the coordinate function Y = w(7]). 
In more complex situations it may be necessary to change the coordinates several 
times, and from a computational point of view it may even be more advantageous 
to change them in every integration step. 

Theorem 2.2. Consider the above procedure for the numerical solution of(2.18), 
and denote by Y = w k (7]) the coordinate transformation of the k th step. If, in 
a neighbourhood of W-;;l(Yk)' the matrices w~(7]) and wk(7])+ are uniformly 
bounded in k, then the convergence properties for standard ordinary differential 
equations carry over to the problem (2.18) on a manifold M. 

Proof In the case of one-step methods we have 

Yk+l = wk (W-;;l (Yk) + htPk (W-;;l(Yk)' h)), 

where tP k (7], h) is the increment function of the method when applied to (2.20) 
with w replaced by Wk' Due to the regularity assumptions on W k (7]) , this formula 
can be written as 

Yk+l = Yk + h\II k(Yk' h) 

and takes the form of a standard one-step method. The assumptions guarantee that 
the functions \II k have a uniform Lipschitz constant with respect to the first argu­
ment. Therefore the convergence proofs of Sect. 11.3 apply. For multistep methods 
the situation is analogous. 0 

Choice of Local Coordinates. Let us explain two choices for the constrained 
mechanical system (2.4), whose solution manifold is given by 

M = {(q, u) I g(q) = 0, G(q)u = O}. (2.21) 
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Here q, u E IR n are generalized coordinates, g(q) E IR m and G(q) = gq(q). The 
adaptation to other differential-algebraic systems with known solution manifold is 
more or less straightforward. 

Generalized Coordinate Partitioning (Wehage & Haug 1982). Assuming that the 
Jacobian G( q) has full row rank, there exists a partitioning q = (7], Ti) such that 
gf1( 7], Ti) is invertible (7] E IR n-m, Ti E IR m). By the Implicit Function Theorem 
the constraint g(q) = 0 can be solved for Ti in a neighbourhood of a consistent 
value qo = (TJo, Tio)· Hence, there exists a function Ti = h(7]) (defined for 7] close 
to 7]0) such that g ( 7], h ( 7] )) = O. With a corresponding partitioning u = (v, v) the 
velocity constraint becomes g.,(7], Ti)v + gf1(7], Ti)/J = 0 and allows us to express v 
in terms of 7], v as v = k(7], v). A coordinate function is thus given by w(7], v) = 
( ( 7], h ( 7] ) ), (v, k ( 7], v)) ) , and the differential equation in these local coordinates is 

7]'= v, v' = v' (w(7], v)), (2.22) 

where v' ( q, u) collects the v -components of the solution u' (q, u) of the linear 
system (1.38e). We emphasize that for a numerical implementation the differential 
equation (2.22) need not be known analytically. However, a nonlinear system has 
to be solved each time when the right-hand side of (2.22) has to be evaluated. 

Tangent Space Parametrization (Potra & Rheinboldt 1991, Yen 1993). Instead of 
partitioning the components of q and u we split the vectors q - qo and u - U o 
according to 

(2.23) 

where the columns of Qo form a basis of the tangent space {v I G( qo)v = O} to 
the manifold q( q) = 0, which is completed by the columns of Q1 to a basis of the 
whole space. The condition g( q) = 0 together with the first relation of (2.23) define 
(locally) q and Ti as functions of 7]. Similarly, G( q)u = 0 and the second relation 
of (2.23) define u and v as functions of v and q. Denoting these relationships 
by Ti = h( 7]), v = k (7], v), we get formally the same coordinate function as in the 
previous example, and the state space form is given by 

7]'=v, v' = Qtu'(w(7],v)), (2.24) 

where Qt = (QaQo)-lQa is the pseudo-inverse of Qo' and u'(q, u) denotes the 
solution of the linear system (2.5). 

The evaluation of h( 7]) requires the solution of a nonlinear system, whose 
Jacobian is 

(G(~o) -~l). 
This suggests to take -Q1 = GT(qo) or better -Ql = M-l (qo)GT( qo), so that 
simplified Newton iterations lead to linear systems with a matrix that already ap­
pears in (2.5). The linear system for the computation of k ( 7], v) has the same 
structure. 
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Due to the fact that the evaluation of the right-hand side of (2.24) requires 
the solution of a nonlinear system, the authors of this approach prefer the use of 
multistep methods which, in general, use less function evaluations than one-step 
methods. In connection with Runge-Kutta methods, Potra (1995) suggests the use 
of certain predicted values instead of the exact solutions of these nonlinear systems, 
and requires that only the approximation at the end of every step lies on the mani­
fold M. The resulting algorithm is then equivalent to solving the index 1 problem 
combined with projections onto M at the end of each step. 

Overdetermined Differential-Algebraic Equations 

In contrast to the approach at the beginning of this section, where the constraint is 
replaced by one of its derivatives, we consider the original system and one or more 
derivatives of the constraints as a unity. For example, the equations of motion of a 
constrained mechanical system become 

q'=U 
M(q)u' = f(q, u) - GT (q)>. 

0= g(q) 

0= G(q)u 
0= gqq(q)( u, u) + G( q)M( q)-l (J(q, u) - GT (q)>.). 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

(2.25e) 

This system is overdetermined, because we are concerned with more equations than 
unknowns. Nevertheless, it possesses a unique solution, if (1.47) is satisfied and 
consistent initial values are prescribed. 

We illustrate the numerical solution of (2.25) with the BDF method. A formal 
application (see Sect. VI.2) gives 

qk - q - h,uk = 0 

M(qk)(uk - u) - h,(J(qk' Uk) - GT(qk)>'k) = 0 

g(qk) = 0 

G(qk)uk = 0 

gqq(qk)(Uk'uk) + G(qk)M(qk)-l (J(qk' Uk) - GT(qk)>'k) = 0, 

(2.26a) 

(2.26b) 

(2.26c) 

(2.26d) 

(2.26e) 

where, = i3k/cxk, q= (2:~:~ cxiqi)/cxk, and u= (2:~:~ cxiui)/cxk are known 
quantities. The system (2.26) is overdetermined and does not have a solution, in 
general. A natural idea (Filhrer 1988) is to search for a least square solution of 
(2.26). There are several ways to do this. One can consider different norms, or one 
can require some of the equations to be exactly satisfied and the remaining ones in a 
least square sense. Fuhrer & Leimkuhler (1991) impose all constraints (2.26c,d,e), 
and treat the remaining equations by the use of a special pseudo inverse. This can 
be achieved by introducing Lagrange multipliers f-tk' 'f/k in the first two equations 
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of (2.26) as follows: 

M(qk)(qk - q - h,uk) + h,( GT(qk)Pk + (Gq(qk)Ukf 'f/k) = 0 

M(qk)(u k - it) - h,(J(qk'Uk) - GT(qk»'k) + h,GT(qk)rJk = O. 

(2.27a) 

(2.27b) 

For sufficiently small h, the system (2.27a,b), (2.26c,d,e) has a locally unique so­
lution, if (1.47) is satisfied. 

Connection with GGL-Formulation. If we omit the acceleration constraint (2.26e), 
there is no need for two Lagrange multipliers, and we can put 'flk = O. The resulting 
system (2.27a,b), (2.26c,d) is then nothing else than the standard BDF discretiza­
tion of the system (1.48). 

Unstructured Higher Index Problems 

We consider a general differential-algebraic system 

F(u',u) =0. (2.28) 

For its numerical solution we shall construct an 'underlying ODE' (see Defini­
tion 1.2) and solve it by any integration method. This approach has been developed 
in several papers by Campbell (1989, 1993). We shall explain the main ideas fol­
lowing the presentation of Campbell & Moore (1995). 

Inspired by the definition of the differentiation index we consider the derivative 
array equations 

F( ' )-0 dF(u',u)_O 
u ,u -, dx -, ... , 

which we write in compact form as 

G(u',w,u) = 0, (2.29) 

where w= (u ll , u"', ... , u(m+l)) collects the higher derivatives of u. InEq. (2.29) 
we consider w, u, and also u' as independent variables. Besides the usual differ­
entiability assumptions we assume that 

(AI) the matrix (G u" Gw ) is I-full with respect to u'; this means that the relation 
GU/~U' + Gw~w = 0 implies ~u' = 0; 

(A2) the matrix (GUI,GW ) has constant rank; 

(A3) the matrix (GUI,GW,GU) has full row rank. 

These assumptions are required to hold in a neighbourhood of a particular solution 
of (2.28). The construction of the underlying ODE is based on the following lemma 
and on its proof. 

Lemma 2.3 (Campbell & Moore 1995). Consider a sufficiently smooth problem 
(2.28) and assume that (AI), (A2), and (A3) hold. Then there exist coordinate par­
titions w = (w a , Wb)' u = (u a , ub) (and also u' = (u~, uD with the same partition 
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as for u), such that the derivative array equations (2.29) are equivalent to 

U~ = fa(u b), 

u~ = fb(u b), 

Wa = 'P2(wb,ub) 

ua ='P3(ub) 

in a neighbourhood of the consistent initial value (u~, wo, uo). 

(2.30) 

Proof We consider the matrix (G u' , G w' G u) evaluated at (u~, wo, uo) and per­
form a QR factorization, where column permutations are restricted to components 
within the vectors u', W , and u. This yields 

(2.31) 

where B I , C3 , D5 are nonsingular by Assumption (A3), Q is an orthogonal ma­
trix, and P = diag (PI' P2 , P3 ) with suitable permutation matrices Pll P2 , P3 • 

Fixing the permutation P , we apply the above factorization also to (G u' , G w' G u ) 

evaluated at an arbitrary point (u', W, u) close to (u~, wo, uo). Because of As­
sumption (A2) this gives (2.31) with smooth matrices Q,Bj,Cj , and D j . The 
decomposition (2.31) defines the partitions W = (wa, Wb) and u = (ua, ub). The 
first, second and fourth block-columns in (2.31) form an invertible matrix. The Im­
plicit Function Theorem thus implies that (2.29) can be solved for u', W a , u a ' and 
we obtain the equivalent system 

We still have to show that the functions 'PI and 'P3 are independent of wb. By 
definition of the 'P i we have 

G('PI(Wb,Ub), ('P2(Wb,Ub),Wb)' ('P3(Wb,Ub),Ub)) =0. 

Differentiating with respect to wb yields 

8'PI 8'P2 8'P3 
GU'·-8 +Gw ·-8 +GWb+GU ·-8 =0. Wb a Wb a Wb 

(2.32) 

Multiplying this relation by QT, we see from Eq. (2.31) that D5 (8'P3/ 8Wb) = o. 
Since D5 is nonsingular, this implies (8'P3/8wb) = 0, so that 'P3 is independent 
of wb. Assumption (AI) now implies from (2.32) that also (8'PI /8wb) vanishes. 
This completes the proof of the lemma. 0 

Suppose that we know how to compute fa (ub)' f b( ub) and 'P3( ub) for a given 
value u b • From (2.30) we then have an ordinary differential equation for U b ' which 
can be solved by any integration method (Runge-Kutta or multistep, explicit or 
implicit, ... ), and the remaining components are given by Ua = 'P3(ub). The 
numerical solution of this method thus preserves all constraints (also the hidden 
ones). 
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Computation of the Values fa(ub)' fb(ub) and <P3( ub). It follows from Assump­
tion (A3) that (Gu " Gw ' G,.)TG = 0 is equivalent to G = O. Thus, for given ub' 
any method of finding the minimum (u', w, u a ) of the function GTG maybe used. 
Campbell & Moore (1995) propose the use of Gauss-Newton iterations. 

Remark. A closely related algorithm has been proposed by Kunkel & Mehrmann 
(1996). Instead of extracting from the derivative array equations an ordinary dif­
ferential equation for all variables, they extract an equivalent index 1 problem and 
solve it by standard integration methods. This modification usually requires one 
differentiation less of the original system (2.28). 

Exercises 

1. Repeat the experiment of Fig. 2.1 with other numerical methods (explicit Euler 
method, multistep methods, constant and variable step sizes, ... ). You will 
observe that in some situations the error in g(qn) grows only linearly, and the 
error in G( qn )un remains bounded. Try to explain this observation. 

2. a) Prove that the matrix in (2.5) is I-full with respect to u' if and only if the 
restriction of M to the kernel of G is injective (this is exactly the condition 
that is needed in order to be able to apply the methods of this section). 

b) Show by examples that neither M needs to be nonsingular nor G has to be 
of full rank in order that the condition of part (a) is satisfied. 


