'PROBABILISTIC
REASONING

REPRESENTING KNOWLEDGE IN AN UNCERTAIN DOMAIN

In which we explain how to build network models to reason under uncertainty
according to the laws of probability theory.

Chapter 13 gave the syntax and semantics of probability theory. We remarked on the
portance of independence and conditional independence relationships in simplifying pro
bilistic representatiohs of the world. This chapter introduces a systematic way to repics
such relationships explicitly in the form of Bayesian networks. We define the syntax
semantics of these networks and show how they can be used to capture uncertain know}
in a natural and efficient way. We then show how probabilistic inference, although com
tionally intraciable in the worst case, can be done efficiently in many practical situations
also describe a variety of approximate inference algorithms that are often applicable ¥
exact inference is infeasible. We explore ways in which probability theory can be appli
worlds with objects and relations—that is, to first-order, as opposed to propositional, rep
sentations. Finally, we survey alternative approaches to uncertain reasoning. '

IRK

In Chapter 13, we saw that the full joint probability distribution can answer any question :
the domain, but can become intractably large as the number of variables grows. Further
specifying probabilities for atomic events is rather unnatural and can be very difficult un
a large amount of data is available from which to gather statistical estimates.

We also saw that independence and conditional independence relationships among ¥
ables can greatly reduce the number of plobabﬂmes that need to be specified in order to del
the full joint distribution. This section introduces a data structure called a Bayesian netw
to represent the dependencies among variables and to give a concise specification of any.
joint probability distribution. :

I This is the most common name, but there are many others, including belief network probabilistic ne
causal network, and knowledge map. In statistics, the term graphical model refers to a somewhat bread
that includes Bayesian networks. An extension of Bayesian networks called a decision network ar infiu

diagram will be covered in Chapter 16.

492

n 4.1

Representing Knowledge in an Uncertain Domain : 493

A Bayesian network is a directed graph in which each node is annotated W1th quantita-
tive probability information. The full specification is as follows:

1. A setof random variables makes up the nodes of the network. Variables may be discrete
or continuous.

2. A setof directed links or arrows connects pairs of nodes. If there is an arrow from node
X tonode ¥, X is said to be a parens of Y.

3. Each node X has a conditional probability distribution P(X; |Parents(X)) that quan—
tifies the effect of the parents on the node.

4. The graph has no directed cycles (and hence is a directed, acyclic graph, or DAG).

The topology of the network—the set of nodes and links—specifies the conditional indepen-
dence relationships that hold in the domain, in a way that will be made precise shortly. The
intuitive meaning of an arrow in a properly constructed network is usually that X has a direct
influence on Y. It is usually easy for a domain expert to decide what direct influences exist
in the domain—much easier, in fact, than actually specifying the probabilities themselves.
Once the topology of the Bayesian network is laid out, we need only specify a conditional
probability distribution for each variable, given its parents. We will see that the combination
of the topology and the conditional distributions suffices to specify (implicitly) the full joint
distribution for all the variables.

Recall the simple world described in Chapter 13, consisting of the variables Toothache,
Cavity, Catch, and Weather. We argued that Weather is independent of the other variables;
furthermore, we argued that Toothache and Catch are conditionally independent, given
Cawity. These relationships are represented by the Bayesian network structure shown in
Figure 14.1. Formally, the conditional independence of Toothache and Catch given Cavity
is indicated by the absence of a link between Toothache and Cutch. Intuitively, the network
represents the fact that Cavity is a direct cause of Toothache and Catch, whereas no direct
causal relationship exists between Toothache and Catch.

Now consider the following example, which is just a little more complex. You have
a new burglar alarm installed at home. It is fairly reliable at detecting a burglary, but-also
responds on occasion to minor earthquakes. (This example is due to Judea Pearl, a resident
of Los Angeles—hence the acute interest in earthquakes.) You also have two neighbors, John
and Maty, who have promised to call you at work when they hear the alarm. John always calls

Toothache

Figure 14.1 A simple Bayesian network in which Weather is independent of the other
three variables and Toothache and Catch are conditionally independent, given Cauity.

Chapter 14, Probabilistic Reason;;

IDITIONAL
BABILITY TABLE.

omonnecase probability of each node vatue for a conditioning case. A conditioning case is just & po

PE)
.002

P{B)
Burglary)

A P(A)

! 70
01

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, I, 4, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryClalls, respectively.

when he hears the atarm, but sometimes confuses the telephone ringing with the alarm and
calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses thé
alarm altogether. Given the evidence of who has or has not called, we would like to estimate
the probability of a burglary. The Bayesian network for this domain appears in Figure 14.
For the moment, let us ignore the conditional distributions in the figure and concentr ale
on the topology of the network. In the case of the burglary network, the topology shows thaf
burglary and earthquakes directly affect the probability of the alarm’s going off, but whether
John and Mary call depends only on the alarm. The network thus represents our assumption'?
that they do not perceive any burglaries directly, they do nol notice the minor earthquakes,
and they do not confer before calling,
Notice that the network does not have nodes corresponding to Mary’s currently Jistening
to loud music or to the telephone ringing and confusing John. These factors are summarized
ini the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. "This
shows both laziness and ignorance in operation: it would be a lot of work to find out why those
factors would be more or less likely in any particular case, and we have no reasonable way 19
obtain the relevant information anyway. The probabilities actually summarize a potem‘mﬂ
infinite set of circumstances in which the alarm might fail to go off (high humidity, powel
failure, dead battery, cut wires, a dead mouse stuck inside the bell, etc.) or John or M'tf}
might fail to call and report it (out to lunch, on vacation, temporarily deaf, passing helicopter,
etc.). In this way, a small agent can cope with a very large world, at least approximately. The
degree of approximation can be improved if we introduce additional relevant information.
Now let us tutn to the conditional distributions shown in Figure 14.2. In the figure
each distribution is shown as a conditional probability table, or CPT. (This form of table
can be used for discrete variables; other representations, including those suitable for cont

wous variables, are described in Section 14.2.) Each row in‘a CPT contains the conditio
ssible

m 14.2.

The Semantics of Bayesian Networks 495

combination of values for the parent nodes—a miniature atomic event, if you like. Each row
must sum to 1, because the entries represent an exhaustive set of cases for the variable. For
Boolean variables, once you know that the probability of a true value is p, the probability
of false must be 1 — p, so we often omit the second number, as in Figure 14.2. In general,
a table for a Boolean variable with & Boolean pazents contains 2% independently specifiable
probabilities. A node with no parents has only one row, representing the prior probabilities
of each possible value of the variable.

. _THE SEMANTICS OF BAYESIAN NETWORKS

The previous section described what a network is, but not what it means. There are two
ways in which one can understand the semantics of Bayesian networks. The first is to see
the network as a representation of the joint probability distribution, The second is to view
it as an encoding of a collection of conditional independence statements. The two views are
equivalent, but the first turns out to be helpful in understanding how to construct networks,
whereas the second is helpful in designing inference procedures,

Representing the full joint distribution

A Bayesian network provides a complete description of the domain. Every entry in the full
joint probability distribution (hereafter abbreviated as “joint”) can be calculated from the
information in the network. A generic entry in the joint distribution is the probability of a
conjunction of particular assignments to each variable, such as P(X; =21 A ... A Xp= Zn)-
We use the notation P(z1, ..., z,) as an abbreviation for this. The value of this entry is
given by the formula

k(2
Pla1, .y @) = [] Plzilparents(X;)), (14.1)
i=1
where parents{X;) denotes the specific values of the variables in Parents (X;). Thus, each
entry in the joint distribution is represented by the product of the appropriate elements of the
conditional probability tables (CPTs) in the Bayesian network. The CPTs therefore provide
a decomposed representation of the joint distribution,
To illustrate this, we can calculate the probability that the alarm has sounded, but neither
a burglary nor an earthquake has occurred, and both John and Mary call. We use single-letter
names for the variables: '
P(iAmAaA-bA-e)
= P(jla)P(m|a)P(a|~b A =e) P(~b) P(e)
= 0.90 x 0.70 x 0.001 x 0.999 x 0.998 = 0.00062 .

Section 13.4 explained that the full joint distribution can be used to answer any query
about the domain. If a Bayesian network is a representation of the joint distribution, then it
too can be used to answer any query, by summing all the relevant joint entries. Section 14.4
explains how to do this, but also describes methods that are much more efficient.

Chapter 14. -Probabilistic Reasonj ectic

ED

A method for constructing Bayesian networks

Equation (14.1) defines what a given Bayesian network means. It does not, however, expl;
how to constrict & Bayesian network in such a way that the resulting joint distribution i
good representation of a given domain. We will now show that Equation (14.1) implies cert,
conditional independence relationships that can be used to guide the knowledge engineef
constructing the topology of the network. First, we fewrite the joint distribution in terms o
conditional probability, using the product rule (see Chapter 13):

P(z1, ..., @n) = Plzp|tn-1, ..., 21)P(Ta-1, ..., 1) .

Then we repeat the process, reducing each conjuncfive probability to a conditional probabil
and a smaller conjunction. We end up with one big product:

CP(z1, ...y @) = PlEalze-a, o 21)P@nalTe-g, ..., 21) - Ploale) P
T

= [I Plailwi, ..., z1).
i=1

This identity holds true for any set of random variables and is called the chain rule. Comp
ing it with Equation (14.1), we see that the specification of the joint distribution is equwal
to the general assertion that, for every variable X; in the network, '

P(X|X5-1, ..., X1) = P(X| Parents(Xy)) , (14

provided that Parents(X;) C {X;_1, ..., X1}. This last condition is satisfied by labelin
the nodes in any order that is consistent with the partial order implicit in the graph structur

What Equation (14.2) says is that the Bayesian network is a correct representation
the domain only if each node is conditionally independent of its predecessors in the no
ordering, given its parents. Hence, in order to construct a Bayesian network with the correg
structure for the domain, we need to choose parents for each node such that this property
holds. Intuitively, the parents of node X; should contain all those nodes in X, ..., X;
that directly influence X;. For example, suppose we have completed the network in F
ure 14.2 except for the choice of parents for MaryCalls. MaryCalls is certainly influenc
by whether there is a Burglary or an Earthquake, but not directly influenced. Intuitively
our knowledge of the domain tells us that these events influence Mary’s calling behavior onl}
through their effect on the alarm. Also, given the state of the alarm, whether John calls h
no influence on Mary’s calling. Formally speaking, we believe that the following conditior
independence statement holds:

P(MaryCalls| JohnCalls, Alarm, Earthquake, Burglary) = P(MaryCells{ Alarm) .

Compactness and node ordering

As well as being a complete and nonredundant representation of the domain, a Bayesian I
work can often be far more compact than the full joint distribution. This property is Ww.
makes it feasible to handle domains with many variables. The compactness of Bayesian I
works is an example of a very general property of locally structured (also called spar
systems. In a locally structured system, each subcomponent interacts directly with onl
bounded number of other components, regardless of the total number of components. Lo

14.2,

The Semantics of Bayesian Networks 497

structure is usually associated with linear rather than exponential growth in complexity. In the
case of Bayesian networks; it is reasonable to suppose that in most domains each random vari-
able is directly influenced by at most k others, for some constant k. If we assume n Boolean
variables for simplicity, then the amount of information needed to specify each conditional
probability table will be at most 2F numbers, and the complete network can be specified by
n2® numbers. In contrast, the joint distribution contains 2° numbers. To make this concrete,
suppose we have n= 30 nodes, each with five parents (k = 5). Then the Bayesian network
requires 960 numbers, but the full joint distribution requires over a billion.

There are domains in which each variable can be influenced directly by all the others,
so that the network is fully connected. Then specifying the conditional probability tables re-
quires the same amount of information as specifying the joint distribution. In some domains,
there will be slight dependencies that should strictly be included by adding a new link. But
if these dependencies are very tenuous, then it may not be worth the additional complexity
in the network for the small gain in accuracy. For example, one might object to our burglary
network on the grounds that if there is an earthquake, then John and Mary would not call
even if they heard the alarm, because they assume that the earthquake is the cause. Whether
to add the link from Earthquake to JohnCalls and M aryCalls (and thus enlarge the tables)
depends on comparing the importance of getting more accurate probabilities with the cost of
specifying the exfra information.

~ Even in a locally structured domain, constructing a locally structured Bayesian network
is not a trivial problem. We require not only that each variable be directly influenced by only
a few others, but also that the network topology actually reflect those direct influences with
the appropriate set of parents. Because of the way that the construction procedure works, the

-+ “direct influencers” will have to be added to the network first if they are to become parents

of the node they influence. Thevefore, the correct order in which to add nodes is to add the
“root causes” first, then the variables they influence, and so on, until we reach the “leaves,”
which have no direct cavsal infiuence on the other variables,

What happens if we happen to choose the wrong order? Let us consider the burglary
example again. Suppose we decide to add the nodes in the order MaryClalls, JohnCalls,
Alarm, Burglary, Earthquoke. Then we get the somewhat more complicated network
shown in Figure 14.3(a). The process goes as follows:

¢ Adding MaryClalls: No parents.

o Adding JohnCalls: If Mary calls, that probably means the alarm has gone off, which
of course would make it more likely that John calls. Therefore, JohnCalls needs
MaryCalls as a parent

o Adding Alarm: Clearly, if both call, it is more likely that the alarm has gone off than if
just one or neither call, so we need both MaryCalls and JohnClalls as parents.

o Adding Burglary: If we know the alarm state, then the call from John or Mary might
give us information about our phone ringing or Mary’s music, but not about burglary:

P(Burglary| Alarm, JohnCalls, MaryCalls) = P{Burglary| Alarm) .

Hence we need just Alarm as parent.

498"

Chapter 14, Probabilistic Reasoning

-

MaryCalls

Earthquake

: Burglary

() : : ®)

Figure 14.3 Network structure depends on order of introduction. In each network, we

_ probability judgments for causal rules rather than for diagnostic ones.

have introduced nodes in top-to-bottom order.

L

o Adding Earthguake: if the alarin is on, it is more likely that there has been an earth-

quake. (The alarm is an carthquake detector of sorts.) But if we know that there has

“been a burglary, then that explains the alarm, and the probability of an earthquake would
be only slightly above normal. Hence, we need both Alarm and Burglary as parents.

The resulting network has two more links than the original network in Figure 14.2 and rc-
quires three more probabilities to be specified. What’s worse, some of the links represent
tenuous relationships that require difficult and unnatural probability judgments, such as as-
sessing the probability of Earthquake, given Burglary and Alarm. This phenomenon is
quite general and is related to the distinction between causal and diagnostic models infro-
duced in Chapter 8. If we try to build a diagnostic model with links from symptoms {0 Causcs
(as from MaryCalls to Alarm or Alarm to Burglary), we end up having to specify additional
dependencies between otherwise independent causes (and often between separately occurTing
symptoms as well). If we stick toa causal model, we end up having to specify fewer numbers,
and the numbers will often be easier to come up with. In the domain of medicine, for exan-
ple, it has been shown by Tversky and Kahneman (1982) that expert physicians prefer to give-

Figure 14.3(b) shows a very bad node ordering: MaryCalls, JohnCalls, Earthguoke,
Burglary, Alarm. This network requires 31 distinct probabilities to be speciﬁed#exacll)'
the same as the full joint distribution. Tt is important to realize, however, that any of the the¢
networks can represent exactly the same joint distribution. The last iwo versions simply fui
to represent all the conditional independence relationships and hence end up specifying ot

of unnecessary numbers instead.

on 14.2. The Semantics of Bayesian Networks 499

Conditional independence relations in Bayesian networks

We have provided a “numerical” semantics for Bayesian networks in terms of the represen-
tation ‘of the full joint distribution, as in Equation (14.1). Using this semantics to derive
a method for constructing Bayesian networks, we were led to the consequence that a node
is conditionally independent of its predecessors, given its parents. It turns out that we can
also go in the other direction. We can start from a “topological” semantics that specifies the
conditional independence relationships encoded by the graph structure, and from these we
can derive the “numerical” semantics. The topological semantics is given by either of the
following specifications, which are equivalent:?

1. A node is conditionally independént of its non-descendants, given its parents. For
example, in Figure 14.2, JohnCalls is independent of Burglary and Earthguake, given
the value of Alarm.

2. A node is conditionally independent of all other nodes in the network, given its par-

KET ents, children, and children’s parents—that is, given its Markov blanket. For example,

Burglary is independent of JohnCalls and MaryCalls, given Alarm and Earthquake..

- These specifications are illustrated in Figure 4.4, From these conditional independence
assertions and the CPTs, the full joint distribution can be reconstructed; thus, the “numerical”
semantics and the “topological” semantics are equivalent. :

] - @ (b)

'Fi'gure 14.4 (a) A node X is conditionally independent of its non-descendants (e.g., the
" Zi;8) given its parents (the U;s shown in the gray area). (b) A node X is conditionally
‘independent of all other nodes in the network given its Markov blanket (the gray area).

2. There is-also a general topological criterion called d-separation for deciding whether a set of nodes X is
independeént of another set Y, given a third set Z. The criterion is rather complicated and' is not needed for
deriving the algorithms in this chapter, so we omit it. Details may be found in Russell and Norvig (1995} or
Pearl (1988) Shachter (1998) gives a more intuitive method of ascertaining d- -separation.

500

Chapter 14, Probabilistic Reasonjy,
(=3

14,3 EFFICIENT REPRESENTATION OF CONDITIONAL DISTRIBUTIONS

CANONICAL
DISTRIBUTION

DETERMINISTIC
NODES

NOISY-OR

LEAK NODE

Even if the maximum number of patents & is smallish, filling in the CPT for a node requireg
upto O (2*) numbers and perhaps a great deal of experience with all the possible conditioning
cases. In fact, this is a worst-case scenario in which the relationship between the parents apg
the child is completely arbitrary. Usually, such relationships are describable by a canonicy
distribution that fits some standard pattern. In such cases, the complete table can be specifieq
by naming the pattern and perhaps supplying a few parameters—much easier than supplying
an exponential number of parameters.

The simplest example is provided by deterministic nodes. A deterministic node has
its value specified exactly by the values of its parents, with no uncertainty. The f‘E\Ia[iOI]Ship
can be a logical one: for example, the relationship between the parent nodes Canadian, IS,
Mezican and the child node NorthAmerican is simply that the child is the disjunction of
the parents. The relationship can also be numerical: for example, if the parent nodes are the
prices of a paiticular model of car at several dealers, and the child node is the price that a
bargain hunter ends up paying, then the child node is the minimum of the parent values; or
if the parent nodes are the inflows (rivers, runoff, precipitation) into a lake and the outflows
(rivers, evaporation, seepage) from the Jake and the child is the change in the water level
of the lake, then the value of the child is the difference between the inflow parents and the
outflow parents.

Uncertain relationships can often be characterized by so-called “noisy” logical rela-
tionships. The standard example is the noisy-OR relation, which is a generalization of the
logical OR. In propositional logic, we might say that Fever is-true if and only if Cold, Flu,
or Malaria is true. The noisy-OR model allows for uncertainty about the ability of each
parent to cause the child to be true—the causal relationship between parent and child may
be inhibited, and so a patient could have a cold, but not exhibit a fever. The model makes
two assumptions. First, it assumes that all the possible causes are listed. (This is not as stricl
as it seems, because we can always add a so-called leak node that covers “miscellaneous
causes.”) Second, it assumes that inhibition of each parent is independent of inhibition of avy
other parents: for example, whatever inhibits Malaria from causing a fever is independent
of whatever inhibits Flu from causing a fever. Given these assumptions, Fever is false if and
only if all its trite parents are inhibited, and the probability of this is the product of the inhibi-
tion probabilities for each parent. Let us suppose these individual inhibition probabilities are
as follows:

P(=fever|cold, ~flu, ~malaria) = 0.6,

P(=fever|-ecold, flu, ~malaria) = 0.2,
P(=fever|-eold, ~flu, malaria) = 0.1,

Then, from this information and the noisy-OR assumptions, the entire CPT can be built. The
following table shows how: '

n 14.3.

Efficient Representation of Conditional Distributions 501

TION

SIAN

Cold = Flu Malaria| P(Fever)| P(-Fever)

F F F |00 1.0

F F T 0.9 G.1

F T F 0.8 0.2

F T T 0.98 0.02=02x0.1

T F F 0.4 0.6

T F T 0.94 0.06 =0.6 x0.1

T T F 0.88 012=06x0.2

T T T 0.988 0.012=0.6 x0.2x 0.1

In general, noisy logical relationships in which a variable depends on & parents can be de-
scribed using O(k) parameters instead of O{2%) for the full conditional probability table.
This makes assessment and learning much easier. For example, the CPCS network (Prad-
han et al., 1994) uses noisy-OR and noisy-MAX distributions to model relationships among
diseases and symptoms in internal medicine. With 448 nodes and 906 links, it requires only
8,254 values instead of 133,931,430 for a network with full CPTs.)

Bayesian nets with continuous variables

Many real-world problems involve contirinous quantities, such as height, mass, temperature,
and money; in fact, much of statistics deals with random variables whose domains are contin-
uous. By definition, continuous variables have an infinite number of possible values, so it is
impossible to specify conditional probabilities explicitly for each value. One possible way to
handle continuous variables is to avoid them by using discretization—that is, dividing up the
possible values into a fixed set of intervals. For example, temperatures could be divided into
(<0°C), (0°C—100°C), and (>>100°C). Discretization is sometimes an adequate solution,
but often results in a considerable loss of accuracy and very large CPTs. The other solution
is to define standard families of probability density functions (see Appendix A} that are spec-
ified by a finite number of parameters. For example, a Gaussian (or normal) distribution
N(pt,0?)(2) has the mean g and the variance o2 as parameters.

A network with both discrete and continuous variables is called a hybrid Bayesian
network. To specify a hybrid network, we have to.specify two new kinds of distributions:
the conditional distribution for a continuous variable given discrete or continuous parents;
and the conditional distribution for a discrete variable given continuous parents. Consider the
simple example in Figure 14.5, in which a customer buys some fruit depending on its cost,
which depends in turn on the size of the harvest and whether the government’s subsidy scheme
is operating. The variable Cost is continuous and has continuous and discrete parents; the
variable Buys is discrete and has a continuous parent. _

For the C'ost variable, we need to specify P(Cost| Harvest, Subsidy). The discrete par-
ent is handled by explicit enumeration—that is, specifying both P(Cost| Harvest, subsidy)
and P(Cost|Harvest, -subsidy). To handle Harvest, we specify how the disteibution over
the cost ¢ depends on the continuous value h of Harvest. In other words, we specify the
parameters of the cost distribution as a function of h. The most common choice is the linear

502 Chapter 14, Probabilistic Reasgning
Figure 14.5 A simple network with discrete variables (Subsidy and Buys) and continuoys
variables (Harvest and Cost).

Pl h, ~subsidy) L an o
04 e 0.4
0.3 0.3
0.2 0.2
0.1 0.1
2
0 Al 0 ke
0927y 6 g)
Coste 10 Harvest i Costc
(a) - (0). (e}
Figure 14.6 The graphs in (a) and (b) show the probability distribution over Cost as a
function of Harvest size, with Subsidy true and false respectively. ‘Graph (c) shows the
distribution P(Cost| Harvest), obtained by summing over the two subsidy cases.
ueseassuy Gaussian distribution, in which the child has a Gaussian disttibution whose mean p varies

linearly with the value of the parent and whose standard deviation o is fixed, We need two
distributions, one for subsidy and one for —subsidy, with different parameters:

1 _1 (C_(a§h+bt))2
e 2 EN

P(cjh, subsidy) = N{ash+ b, o)(e) =

O‘t\%
9 1 _;(c~(afh+bg>)2
Plclh, —subsidy) = N(aph+bp,0%){c) = e ? °f
¢ 1) = Nogh+b7,09(@) = o

For this example, then, the conditional distribution for Cost is specified by naming the linear -
Gaussian distribution and providing the parameters ag, by, oz, ag, by, and o . Figures 14.6(2)
and (b) show these two relationships. Notice that in each case the slope is negé{ti\!e, because |
price decreases as supply increases. (Of course, the assumption of linearity implies that the -
price becomes negative at some point; the linear model is reasonable only if the harvest sizé
is limited to a narrow range.) Figure 14.6(c) shows the distribution P(clh), averaging 0¥ -
the two possible values of Subsidy and assuming that each has prior probability 0.3- This:
shows that even with very simple models, quite interesting distributions can be represeﬂtﬂd

The linear Gaussian conditional distribution has some special propertics. A metwor
containing only continuous variables with linear Gaussian distributions has a joint distr ib

14.3.

Efficient Representation of Conditional Distributions 503

1-
0.8
T 06 0
] [
& g
204)
A, v a,
0.2 4
0 —_—

Figure 14.7 (a) A probit distribution for the probability of Buys given Cost, with = 6.0

and o =1.0. (b} A logit distribution with the same parameters,

tion that is a multivariate Gaussian distribution over all the variables (E:n(e,rcisq1L}'.5).3 (A
multivariate Gaussian distribution is a surface in more than one dimension that has a peak at
the mean (in n dimensions) and drops off on ali sides.) When discrete variables are added
(provided that no discrete variable is a child of a continuous variable), the network defines
a conditional Gaussian, or CG, distribution: given any assignment to the discrete variables,
the distribution over the continuous variables is a multivariate Gaussian,

Now we turn to the distributions for discrete variables with continuous parents. Con-
sider, for example, the Buys node in Figure 14.5. Tt seems reasonable to assume that the
customer will buy if the cost is low and will not buy if it is high and that the probability of
buying varies smoothly in some intermediate region. In other words, the conditional distribu-
tion is like a “soft” threshold function. One way to make soft thresholds is to use the integral
of the standard normal distribution:

X
o) = [~ N(0,1)(x)da.
— 0
Then the probability of Buys given Cost might be .
P(buys | Cost=c) = ®((—c+ p)/o)
which means that the cost threshold occurs around 4, the width of the threshold region is
proportional to o, and the probability of buying decreases as cost increases.

- This probit distribution is illustrated in Figure 14.7(a). The form can be justified
by proposing that the undertying decision process has a hard threshold, but that the precise
location of the threshold is subject to random Gaussian noise. An alternative to the probit
model is the logit distribution, which uses the sigmoid function to produce a soft threshold: .

1
1+ exp(—2=Stt)

8 1t follows that inference in linear Gaussian networks takes only O(n?) time in the worst case, regardless of the
network topology. In Section 14.4, we will see that inference for nstworks of discrete variables is NP-hard.

P(buys | Cost=c) =

504

Chapter 4. Probabilistic Reasoy;, g

14.4 EXACT INFERENCE IN BAYESIAN NETWORKS

This is illustrated in Figure 14,7(b). The two distributions look similar, but the logit ac(,,.
ally has much longer “tails.” The probit is often a better fit to real situations, but the logit i
sometimes easier to deal with mathematically. It is used widely in neural networks (Chap.
ter 20). Both probit and logit can be generalized to handle multiple continuous parents by
taking a linear combjnation of the parent values. Extensions for a multivalued discrete chilg
are explored in Exercise 14.6.

EVENT

HIDDEN VARIABLES

distribution for a set of query variables, given some observed event—that is, sbme assign.

The basic task for any probabilistic inference system is to compute the posterior probability

ment of values to a set of evidence variables. We will use the notation introduced in Chap-
ter 13: X denotes the query variable; K denotes the set of evidence variables Eq, ..., By, and
e is a particular observed event; Y will denote the nonevidence variables Y7, ..., ¥] (some-
times called the hidden variables). Thus, the complete set of variables X = {X}UEUY. A
typical query asks for the posterior probability distribution P(Xle)

In the burglary network, we might observe the event in which JohnCalls = true and
MaryCalls = true. We could then ask for, say, the probability that a burglary has occurred:

P{Burglary| JohnCalls = true, MaryCalls = true) = (0.284, 0.716) .

In this section we will discuss exact algorithms for computing posterior probabilities and
will consider the complexity of this task. It turns out that the general case is intractable, so
Section 14.5 covers methods for approximate inference. -

Inference by enumeration

Chapter 13 explained that any conditional probability can be computed by sﬁ'rﬁﬁling'terms
from the full joint distribution. More specifically, a query P{X|e) can be answered using
Equation (13.6), which we repeat here for convenience;

P(X|e) = aP(X;e) =a » P(X,ey).
"

Now, a Bayesian network gives a complete representation of the full joint distribution. More

specifically, Equation (14.1) shows that the terms P(z,e,y) in the joint distribution can be

written as products of conditional probabilities from the network. Therefore, a query canbe
answered using a Bayesian network by computing sums of products of conditional probabili-
ties from the network.

In Figure 134, an algorithm, ENUMERATE-JOINT-ASK, was given for inference by - f

enumeration from the full joint distribution. The aigorithm takes as input a full joint distribu-

tion P and looks up values therein. It is a simple matter to modify the algorithm so thatt takes

4 Ve will assume that the query variable is not among the evidence variables; if it is, then the posterior distrihl"l
tion for X simply gives probability 1 to the observed value. For simplicity, we have also assumed that the query
is just a single variable, Our aigorithms can be extended easily to handle a joint query over several variables.

i

n14.4.

Exact Inference in Bayesian Networks ' 505

as input a Bayesian network bn and “looks up” joint entries by multiplying the corresponding
CPT entries from bn.

Consider the query P(Burglary|JohnCalls = true, MaryCalls = true). The hidden
variables for this query are Farthquake and Alarm. From Equation (13.6), using initial
letters for the variables in order to shorten the expressions, we have’

P(Blj,m)=aP(B,j,m)=a > > P(B,ea,jm).

The semantics of Bayesian networks (Equation (14.1)) then gives us an expression in terms
of CPT entries. For simplicity, we will do this just for Burglary = trye:

P(blj,m) = >3 P(b)P(e) P(alb, ¢) P(f|a) P(m]a) .

To compute this expression, we have to add four terms, each computed by multiplying five
numbers. In the worst case, where we have to sum out almost all the variables, the complexity
of the algorithm for a network with n. Boolean variables is O(n2"7),

An improvement can be obtained from the following simple observations: the P(b)
term is a constant and can be moved outside the summations over a and e, and the P(e) term
can be moved outside the summation over a. Hence, we have

L(blj,m) = aP(d)) P(e) D Plalb, €)P(jla)P(mla) . (14.3)

This expression can be evatuated by looping through the variables in order, multiplying CPT
entries as we go. For each summation, we also need to loop over the variable’s possible
values. The structure of this computation is shown in Figure 14.8. Using the numbers from
Figure 14.2, we obtain P(3|j, m) = a x 0.00059224. The corresponding computation for —b
yields o % 0.0014919; hence

P(B|j,m) = a (0.00059224, 0.0014919) ~ (0.284, 0.716) .

That is, the chance of a burglary, given calls from both neighbors, is about 28%.

The evaluation process for the expression in Equation (14.3) is shown as an expression
tree in Figure 14.8. The ENUMERATION-ASK algotithm in Figure 14.9 evaluates such trees
using depth-first recursion. Thus, the space complexity of ENUMERATION-ASK is only lin-
car in the number of variables—effectively, the algorithm sums over the full joint distribution
without ever constructing it explicitly. Unfortunately, its time complexity for a network with
n Boolean variables is always O(2")—better than the O(n2") for the simple approach de-
scribed earlier, but still rather grim. One thing to note about the tree in Figure 14.8 is that it
makes explicit the repeaied subexpressions that are evaluated by the algorithm. The products
P(jla)P(ml|a) and P(j|-a)P(m|-a) are computed twice, once for each value of e, The
next section describes a general method that avoids such wasted computations.

% An expression such as » " P{a, €) means to sum P(4 = o, F = €) for all possible values of e. There is an
ambiguity in that P(e) is used to mean both P(& = ¢rue) and P(F = €}, but it should be clear from context
which is intended; in particular, in the context of a sum the latter is intended.

506 i Chapter 14. Probabilistic Reasomng

P(jla)
90

P(mla)
70

Figure 14.8 The structure of the expression shown in Equation (14.3). The evaluation pro-
ceeds top-down, multiplying values along each path and summing at the “+” nodes. Nouce
the repetition of the paths for j and m.

function ENUMERATION-ASK(X, e, bn) returns a distribution over X'
inputs: X, the query variable
g, observed values for variables E
bn, a Bayes net with variables {X} U EU Y /* Y = hidden variables */

Q{X) «a distribution over X, initially empty
for each value z; of X do
extend e with value z; for X
(zi) « ENUMERATE- ALL(VARs[bn] €)
retmn NorRMALIZE(Q(X))

functioh ENUMERATE-ALL(vars,) returns a real number
if EMPTY 7(vars) then return 1.0
Y « FIRST(vars)

it ¥ hasvalue yine
then return P(y | parents(¥)) x ENUMERATE ALL(REST(vars),e)

elsereturn) P(y | parents (Y)) x ENUMERATE-ALL(REST(vars), ey)
where e,, is e extended w1th Y=y

Figure 14.9 The enumeration algorithm for answering queries on.Bayesian networks.

tion 14.4. . Exact Inference in Bayesian Networks 507

The variable elimination algorithm

The enumeration algorithm can be improved substantially by eliminating repeated calcula-
tions of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and
save the results for later use. This is a form of dynamic programming. There are several ver-
sions of this approach; we present the variable elimination algotithm, which is the simplest.
Variable elimination works by evaluating expressions such as Equation (14.3) in right-to-left
order (thatis, bottorn-up in Figure 14.8). Intermediate results are stored, and summations over
each variable are done only for those portions of the expression that depend on the variable.
Let us illustrate this process for the burglary network, We cvaluate the expression

P(Bljym) = a P(B) } P(e) > P(a|B,e) P(jla) P(mla) . .
e T e T N e N e N e
- B E A J M
Notice that we have annotated each part of the expression with the name of the associated
variable; these parts are called factors. The steps are as follows: _
e The factor for M, P(m/|a), does not require summing over M (because M’s value is
already fixed). We store the probability, given each value of a, in a two-clement vector,

far(4A) = (]ignmllai)) .

(The £3r means that A/ was used to produce f.)

o Similarly, we store the factor for J as the two-element vector f7(A).

e The factor for A is P(a|B, e), which will be a 2 x 2 x 2 matiix f4 (4, B, E).

e Now we must sum out A from the product of these three factors. This will give us a
2 % 2 matrix whose indices range over just B and F. We put a bar over A in the name
of the matrix to indicate that A has been summed out:

- Aa(B,E) =) fale, B,) xf5(a) x fy(a)

= fA(gL, B,E) bt fj(a.) X fM(a)
+ f4(—a, B, E) X fJ(—Ta) Py fj\{("la) .
The multiplication process used here is called a pointwise product and will be de-
scribed shortly.)
e We process F in the same way: sum out £ from the product of f5(E) and f5,,,(B, E):

fanr(B) = f5(e) x T35 (B, e)
+ fr(ne) x£350,(B,—e) .
* Now we can compute the answer simply by multiplying the factor for B (i.e., fg (B) =
P(13}), by the accumulated matrix £z 5 7,,(B):

P(B|j,m) = atp(B) xf515,(B) .

Exercise 14.7(a) asks you to check that this process yields the correct answer.
Examining this sequence of steps, we see that there are two basic computational oper-
ations required: pointwise product of a pair of factors, and summing out a-variable from a

product of factors.

508

‘Chapter 14, Probabilistic Reasonjy,,
&

The pointwise product is not matrix multiplication, nor is it element-by-element muls;.
plication. The pointwise product of two factors £ and f; vields a new factor f whose variableg
are the union of the variables in f; and fp. Suppose the two factors have variables ¥7,.. .y,

_in common. Then we have

f(X1...Xj,Y1...Y}C,Z1...Z[)=f1(X1...Xj,Y]...Yk) fg(iﬁ...Yk,Z,.,.Z,},

If all the variables are binary, then f1 and f have 0i+k and 2¢H entries respectively, and
the pointwise product has 295+ entries. For example, given two factors f1(4, B) and
£2(B, C) with probability distributions shown below, the pointwise product f; X 3 is given
as f3(A, B, C):

f1(4, B) f2(B,C)

3

f3(A; Ba C)

3.
BX.
s
JTX.
RSN
RUD N
A%,
dx 4

i s e B B i

i s B v

(oo = | g

e 3| O

e N
el

g
9
1

Mm-S mm - =W
M-I AQ
= G 00

oo oo - e e
G o B

F

Summing out a variable from a product of factors is also a straightforward computation.
The only trick is to notice that any factor that does not depend on the variable to be summed
out can be moved outside the summation process. For example,

Ee fE(B) X fA(A: B: é) X fJ(A) x fﬂ.f(A) ==
fj(A) X fﬂ._{(A) X Ze fE(e) X fA(A, B, e) .
Now the pointwise product inside the summation is computed, and the variable is sumnmed
out of the resulting matrix:

fJ(A) X f]\[(A) X ng(e) erA(-A,B,e) = fJ(A.) X fM(A) XfE,A(A,B) .

Notice that matrices are not multiplied until we need to sum out a variable from the accun-
lated product. "At that point, we multiply just those matrices that include the variable to b¢
summed out. Given routines for pointwise product and summing out, the variable elimination
algorithm itself can be writien quite simply, as shown in Figure 14.10.

Let us consider one more query: P(JohnCulls| Burglary = true). As usual, the first -
step is to write out the nested summation: '

- P(Jb) = a_P(b) S P(e))y Plab,e)P(J]a) > P(m|a).

If we evaluate this expression from right to left, we notice something interesting: Y., £ (m if{)
is equal to 1 by definition! Hence, there was no need to include it in the first place; the varl-
able M is irrelevant to this query. Another way of saying this is that the result of the query
P(JohnCalls| Burglary = true) is unchanged if we remove MaoryCalls from the network al
together. In general, we can remove any leaf node that is not a query variable or an evidenct

Exact Inference in Bayesian Networks 509

CONNECTED

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
- e, evidence specified as an event : .
bn, a Bayesian network specifying joint distiibution P(Xy,.. ., X))

factors «— []; vars < REVERSE(VARS[bn])
for each var in vars do .

Jactors « [MAKE-FACTOR (var,)| factors]

it var is a hidden variable then factors <— SUM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 14.10 The variable climination algorithm for answering queries on Bayesian net-
works.

variable. After-its removal, there may be some more leaf nodes, and these t00 may be irrele-

_vant. Continuing this process, we eventually find that every variable that is not an ancestor

of a query variable or evidence variable is irrelevant to the guery. A variable elimination
algorithm can therefore remove all these variables before evaluatin g the query.

. The complexity of exact inference

We have argued that variable elimination is more efficient than enumeration because it avoids
repeated computations (as well as dropping irrelevant vanables) The time and space re-
quirements of variable elimination are dominated by the size of the lar gest factor constructed
duung the operation of the algorithm. This in turn is determined by the order of elimination
of var;ables and by the structure of the network.

“The burglary network of Figure 14.2 belongs to the family of networks in which there
is at most one undirected path between any two nodes in the network. These are called singly
connected networks or polytrees, and they have a particularly nice property: The time and
space complexity of exact inference in polytrees is linear in the size of the network. Here, the
size is defined as the number of CPT entries; if thenumber of parents of each node is bounded
by a constant, then the cotmplexity will also be linear in the number of nodes. These results
hold for any ordering consistent with the topological ordering of the network (Exercise 14.7).

* For multiply connected networks, such as that of Figure 14.11(a), variable elimination
can have exponential time and space complexity in the worst case, even when the number

~of parents per node is bounded. This is not surprising when one considers that, because it

includes inference in propositional logic as a special case, inference in Bayesian networks is
NP-hard. In fact, it can be shown (Exercise 14.8) that the problem is as hard as that of com-
puting the number of satistying assignments for a propositional logic formula. This means-
that it is #P-hard (“number-P hard”)—that is, strictly harder than NP-complete problems,
There is a close connection between the complexity of Bayesian network inference and
the complexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 5,
the difficulty of solving a discrete CSP is related to how “tree-like” its constraint graph is.

510

Chapter 14, Probabilistic Reasoning

CLUSTERING
JOIN TREE

Measures such as hypertree width, which bound the complexity of solving a CSP, can alg,
be applied directly to Bayesian networks. Moreover, the variable elimination algorithm cgy,
be generalized to solve CSPs as well as Bayesian networks.

Clustering algorithms

The variable elimination algorithm is simple and efficient for answering individual queries, |f
we want to compute posterior probabilities for all the variables in a network, however, it cap
be less efficient. For example, in a polytree network, one would need to issue O(n) queries
costing O(n) each, for a total of O(n?) time. Using clustering algorithms (also known g
join tree algorithms), the time can be reduced to O(n). For this reason, these algorithms are
widely used in commercial Bayesian network tools. 5

The basic idea of clustering is to join individual nodes of the netwotk toform clus.
ter nodes in such a way that the resulting network is a polytree. For example, the multiply
qonnected network shown in Figure 14.11(a) can be converted into a polytree by combining
the Sprinkler and Rain node into a cluster node called Sprinkler—+ Rain, as shown in Fig-
ure 14.11(b). The two Boolean nodes are replaced by a meganode that takes on four possible
values: TT, T'F, FT, and FF. The meganode has only one parent, the Boolean variable
Cloudy, so there are two conditioning cases.

Once the network is in polytree form, a special-purpose inference algorithm is applied.
‘Essentially, the algorithm is a form of constraint propagation (see Chapter 5) where the con-

 straints ensure that neighboring clusters agree on the posterior probability of any variables

that they have in common. With careful bookkeeping, this algorithm is able to compute pos-
terior probabilities for all the nonevidence nodes in the network in time O(n), where n is
now the size of the modified network. However, the NP-hardness of the problem has not
disappeared: if a network requires exponential time and space with variable elimination, then
the CPTs in the clustered network will require exponential time and space to consfract.

G
C | _P(S) C | P(R) @ .
£ .10 @ ! gg P(S+R=x)

£ .50 f AN
' @ ;| 08 o272 8
§ _R}PW) S+R | POW) £l .10 .40.10 A9
£ 1| .99 it 09
t f12 tf | S0 %
f t 90 ff 90
ff i w _

(a) - ®)

Figure 1411 (2) A multiply connected network with conditional probability tables. (b} A
L clustered equivalent of the multiply connected network. .

etion 14.5.

Approximate Inference in Bayesian Networks 511

APPROXIMATE INFERENCE IN BAYESIAN NETWORKS

Given the intractability of exact inference in large, multiply connected networks, it is essen-
tial to consider approximate inference methods. This section describes randomized sampling
algorithms, also cafled Monte Carlo algorithms, that provide approximate answers whose
accuracy depends on the number of samples generated. In recent years, Monte Carlo algo-
rithms have become widely used in computer science to estimate quantities that are difficult
to calculate exactly, For example, the simulated annealing algorithm described in Chapter 4
is a Monte Carlo method for optimization problems. In this section, we are interested in
sampling applied to the computation of posterior probabilities. We describe two families of
algorithms: direct sampling and Markov chain sampling. Two other approaches-variational

~methods and loopy propagation—are mentioned in the notes at the end of the chapter.

Direct sampling methods

The primitive element in any sampling algorithm is the gencration of samples from a known
probability distribution. For example, an unbiased coin can be thought of as a random variable
Coin with values (heads, tails) and a prior distribution P(Coin) = (0.5,0.5). Sampling
from this distribution is exactly Iike flipping the coin: with probability 0.5 it will return
heads, and with probability 0.5 it will return tails. Given a source of random numbers in
the range [0,1], it is a simple matter to sample any distribution on a single variable. (See
Exercise 14.9.)

~ The simplest kind of random sampling process for Bayesian networks generates events
from a network that has no evidence associated with it. The idea is to sample each variable
in turn, in topological order. The probability distribution from which the value is sampled is

- conditioned on the values already assigned to the variable’s parents. This algorithm is shown

in Figure 14.12. We can illustrate its operation on the network in Figure 14.11(a), assuming
an ordering [Cloudy, Sprinkler, Rain, WetGrass):
1. Sample from P(Cloudy) == (0.5, 0.5); suppose this returns #rue.
2. Sample from P(Sprinkler| Cloudy = true) = (0.1, 0.9); suppose this returns false.
3. Sample from P(Rain| Cloudy = true) = {0.8,0.2); suppose this returns true.
4. Sample from P(WetGrass|Sprinkler = false, Roin = true) = (0.9,0.1); suppose this
returns true.

In this case, PRIOR-SAMPLE returns the event [true, false, true, true].

Itis easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution
specified by the network. First, let Spg(w1, ... ,2n) be the probability that a specific event is
generated by the PRTOR-SAMPLE algorithm. Just looking at the sampling process, we have

T
Sps(zy...zy) = H P(z;|parents(X;))
i=1

because each sampling step depends only on the parent values. This expression should look

512 Chapter 14. Probabilistic Reasoning

T
function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn

inputs: bn, a Bayesian network specifying joint distribution P(X1,..., Xn)

% « an event with n elements
fori = ltondo ‘

«; « a random sample from P(X; | parents(Xy))
return x

| Figure 1412 A sampling algorithm that generates events from a Bayesian network.

familiar, because it is also the probability of the event according to the Bayesian net’s repre.
sentation of the joint distribution, as stated in Equation (14.1). That is, we have }

Sps(ﬂ:l...fnn) :P(ﬂﬁl...wn) .

This simple fact makes it very easy to answer questions by using samples.

In any sampling algorithm, the answers are computed by counting the actual sﬁmples

generated. Suppose there are IV total samples, and let N{z1, .. ., 2n) be the frequency of the
specific event 21, .. ., Zn. We expect this frequency to converge, in the limit, to its expected
value according to the sampling probability:
. N pPslT1,.. -4 &
lim (w1, 2n) = Spg(T1y. .y Tn) = P(@1,.. ., Tn) - (14.4)
N—eoo N

For example, consider the event produced earlier: [true, false, true, true]. The sampling
probability for this event is

Spg(true, false, true, true) = 0.5 % 0.0x0.8x0.9=10.324.

Hence, in the limit of large N, we efcpect 32.4% of the samples to be of this event.
Whenever we use an approximate equality (") in what follows, we mean it in exactly
this sense-—that the estimated probability becomes exact in the large-sample limit. Suchan

CONSISTENT estimate is called consistent. For example, one can produce 2 consistent estimate of the
probability of any partially specified event @1, . . ., Ty, Where m < 7, as follows:
P(f{.’l,...,a:m) %.Nps(.l'l,...,:l:m)/l\f. (14.5)

That is, the probability of the event can be estimated as the fraction of all complete events
generated by the sampling process that match the partially specified event. For example, if
we generate 1000 samples from the sprinkler network, and 511 of them have Rain = it
then the estimated probability of rain, written as P(Rain = true),is 0.511.

Rejection sampling in Bayesian networks

v Rejection sampling is a general method for producing samples from a hard-to-sample distri-
bution given an easy-to-sample distribution. In its simplest form, it can be used to comput?
conditional probabilities—that is, to determine P(X|e). The REFECTION-SAMPLING alg®
rithm is shown in Figure 14.13. First, it generates samples from the prior distribution Spi'Ciﬁed

on 14.5.

. Approximate Inference in Bayesian Networks ' 513

function REJECTION-SAMPLING(X, e, bn, N¥) returns an estimate of P(Xle)
inputs: X, the query variable
¢, evidence specified as an event
bn, a Bayesian network
., the total number of samples to be generated
local variables: N, a vector of counts over X, initially zero

forj=1to N do
X + PRIOR-SAMPLE(bn)
if x is consistent with e then
N[z] « N[z]+1 where z is the value of X inx
return NORMALIZE(N[X])

Figure 1413 The rejection sampling algorithm for answering queries given evidence in a
Bayesian network,

by the network. Then, it rejects all those that do not match the evidence. Finally, the estimate
P(X = «|e) is obtained by counting how often X = z occurs in the remaining samples.

Let P(X (X|e) be the estnnated distribution that the algorithm returns. From the definition
of the algorithm, we have

Xle) = aNpg(X,e) = %ﬁ? .

From Equation (14.5), this becomes
P(X,e)
P(e)

That is, rejection sampling produces a consistent estimate of the true probability.
Continuing with our example from Figure 14.11(a), let us assume that we wish to es-
timate P Rain|Sprinkler = true), using 100 samples. Of the 100 that we generate, suppose

that 73 have Sprinkler = false and are rejected, while 27 have Sprinkler = true; of the 27,
8 have Rain = true and 19 have Rain = false. Hence,

P(X|e) ~ =P(X]e) .

P(Rain|Sprinkler = true) = NORMALIZE({8, 19)) = (0.296, 0.704) .

The true answer is {0.3,0.7). As more samples are collected, the estimate will converge to
the true answer. The standard deviation of the error in each probability will be proportional
to 1/4/n, where n is the number of samples used in the estimate.

The biggest problem with rejection sampling is that it rejects so many samples! The

fraction of samples consistent with the evidence e drops exponentially as the number of evi-

dence variables grows, so the procedure is simply unusable for complex problems.
Notice that rejection sampling is very similar to the estimation of conditional probabili-

-ties directly from the real world. For example, to estimate P(Rain| RedSkyAtNight — true),
- one can simply count how often it rains after a red sky is observed the previous evening---
- ignoring those evenings when the sky is not red. (Here, the world itself plays the role of the

514 Chapter 14, Probabilistic Reasoning

sample generation algorithm.) Obviously, this could take a long time if the sky is very seldop,
red, and that is the weakness of rejection sampling.

Likelihood weighting

LoD Likelihood weighting avoids the inefficiency of rejection sampling by generating only even
that are consistent with the evidence e. We begin by describing how the algorithm works; they
we show that it works correctly—that is, generates consistent probability estimates.

LIKELIHOOD-WERIGHTING (see Figure 14.14) fixes the values for the evidence var.
ables F and samples only the remaining variables X and Y. This gnarantees that each evep
generated is consistent with the evidence. Not all events are equal, however. Before tallying
the counts in the distribution for the query variable, each event is weighted by the likelifood
that the event accords to the evidence, as measured by the product of the conditional prob.
ahilities for each evidence variable, given its parents. Intuitively, events in which the actual
evidence appears unlikely should be given less weight.

Let us apply the algorithm to the network shown in Figure 14.11(a), with the query
P(Rain|Sprinkler = true, WetGrass = true). The process goes as follows: First, the weigh|
w is set to 1.0. Then an event is generated:

1. Sample from P(Cloudy) = (0.5, 0.5); suppose this returns {rue.
2. Sprinkler is an evidence variable with value frue. Therefore, we set

w « w % P(Sprinkler = true|Cloudy = true) = 0.1
3. Sample from P(Rain! Cloudy = true) = (0.8,0.2); suppose this returns ¢rue.
4. WetGrass is an evidence variable with value true. Therefore, we set

w — w X P(WetGrass = true|Sprinkler = true, Rain = true) = 0.099 .

Here WEIGHTED-SAMPLE returns the event [true, true, true, true] with weight 0.099, and
this is tallied under Rain = true. The weight is low because the event describes a cloudy day,
which makes the sprinkler unlikely to be on.

To understand why likelihood weighting works, we start by examining the sampling
distribution Syyg for WEIGHTED-SAMPLE. Remember that the evidence variables E are
fixed with values e. We will call the other variables Z, that is, Z= {X}UY. The algorithm
samples each variable in 7 given its parent values:

!

Swe(z,e) = H P(z\parents(Z;)) . ; (14.0)

i=1

Notice that Parents(Z;) can include both hidden variables and evidence variables. Unlike
the prior distribution P(z), the distribution Sws pays some attention to the evidence: the
sampled values for each Z; will be influenced by evidence among Z;’s ancestors. On the
other hand, Syg pays less attention to the evidence than does the true posterior distribution
P(z|e), because the sampled values for each Z; ignore evidence among Z;’s non-ancestors-

6 Tdeally, we would like to use a sampling distribution equal to the true posterior P(zle), to take all the eviden<? -
into account. This cannot be done effi ciently, however. If if could, then we could approximate the des!
probability to arbitrary accuracy with & polynomial number of samples. It can be shown that no such pﬂl)’“m‘“ai'
time approximation scheme can exist.

(U

Approximate Inference in Bayesian Networks 515

function LIKELIHOOD-WEIGHTING(X, ¢, bn, V) returns an estimate of P(X|e)
inputs: X, the query variable
¢, evidence specified as an event
bn, a Bayesian network
N, the total number of samples to be generated
local variables: W, a vector of weighted counts over X, initially zero

forj=1to N do

X, W «— WEIGHTED-SAMPLE(bn, &)

W(z] + Wiz] + w where z is the value of X inx
return NORMALIZE(W[X])

function WEIGHTED-SAMPLE(bn, ¢) returns an event and a weight

X «— an event with 7 elements; w « 1
fori=1tondo
if X; has avalue z; ine
then w e w x P(X;= z; | parents(X;))
.- else z; «arandom sample from P(X; | parenis(X;))
refurn x, w

Figure 14.14 The likelihood weighting algorithm for inference in Bayesian networks.

The likelihood weight w makes up for the difference between the actual and desired
sampling distributions. The weight for a given sample x, composed from z and e, is the
product of the likelithoods for each evidence variable given its parents (some or all of which
may be among the Z;5): '

m
w(z,e) = H P(ei|parents(E£;)) . : (14.7)
i=1
Multiplying Equations (14.6) and (14.7), we see that the weighted probability of a sample has
the particularly convenient form '

I

{ ™m
1] P(zilparents(Z)) H Pfeilparents(E;))
i=1 i=1
= Plze), (14.8)
because the two products cover all the variables in the network, allowing us to use Equa-
tion (14.1) for the joint probability. _ .
Now it is easy to show that likelihood weighting estimates are consistent. For any
particular value x of X, the estimated posterior probability can be calculated as follows:

SWS (Z, e)w(z, e)

P(zle) = a Y Nys(z,y,e)w(z,y,e) from LIKELIIOOD-WEIGHTING
y

oo Y Sws(z,y,e)w(z,y, e) for large IV
y

516

Chapter 14. Probabilistic Reasuniﬂg

IARKOV CHAIN
MONTE CARLO

= o' Y P(z,y,¢) by Equation (14.8)
v

= o' P(z,e) = P(zle) .

Hence, likelihood weighting returns consistent estimates.

Because likélihood weighting uses all the samples generated, it can be much more ef.
ficient than rejection sampling. Lt will, however, suffer a degradation in performance as the
number of evidence variables increases. This is because most samples will have very low
weights and hence the weighted estimate will be dominated by the tiny fraction of samples
that accord more than an infinitesimal likelihood to the evidence. The problem is exacerbateq
if the evidence variables occur late in the variable ordering, because then the samples will be

simulations that bear little resemblance to the reality suggested by the evidence,,
. ‘ ,?

Inference by Markov chain simulation

In this section, we describe the Markov chain Monte Carlo (MCMC) algorithm for infer-
ence in Bayesian networks. We will first describe what the algorithm does, then we will
explain why it works and why it has such a complicated name.

The MCMC algorithm

Unlike the other two sampling algorithms, which generate each event from scratch, MCMC
generates each event by making a random change to the preceding event. It is therefore
helpful to think of the network as being in a particular current state specifying a valtue for
every variable. The next state is generated by randomly sampling a value for one of the
nonevidence variables X;, conditioned on the current values of the variables in the Markoy
blanket of X;. (Recall from page 499 that the Markov blanket of a variable consists of its
parents, children, and children’s parents.) MCMC therefore wanders randomly around the
state space—the space of possible complete assignments—flipping one variable at a time, but
keeping the evidence variables fixed.

Consider the query P(Rain|Sprinkler = true, WetGrass = true) applied to the nel-
work in Figure 14.11(a). The evidence variables Sprinkler and WetGrass are fixed to their
observed values and the hidden variables Cloudy and Rain are initialized randornly—1let us
say to true and folse respectively. Thus, the initial state is {true, true, false, true). Now the
following steps are executed repeatedly:

1. Cloudy is sampled, given the current values of its Markov blanket variables: in (his
case, we sample from P(Cloudy|Sprinkler == true, Rain = false). (Shortly, we will
show how to calculate this distribution.) Suppose the result is Cloudy = false. Then
the new current state is [false, true, false, true).

2. Rain is sampled, given the current values of its Markoy blanket variables: in this casc,
we sample from P{Rain| Cloudy = false, Spripkler = true, WetGrass = true). SUP
pose this yields Rain = true. The new current state is [false, true, true, true)-

Each state visited during this process is a sample that contributes to the estimate for the quety”
variable Rain. If the process visits 20 states where Rain is true and 60 states where Raii

Approximate Inference in Bayesian Networks 517

function MCMC-ASK(X, e, bn, N) returns an estimate of P(Xle)
local variables: N[X7], a vector of counts over X, initially zero
Z, the nonevidence variables in #n ‘
X, the current state of the network, initially copied from e

initialize x with random values for the variables in 7,
forj=1tw N do
for each Z, in Z do
sample the value of Z; in x from P(Z;|mb{Z;)) given the values of M B(Z;)inx
Nlz] <= N[2] 4+ 1 where 2 is the value of X in x
return NORMALIZE(N[X])

Figure 14.15 The MCMC algorithm for approximate inference in Bayesian networks.

false, then the answer to the query is NORMALIZE({20,60)) = (0.25,0.75). The complete
algorithm is shown in Figure 14.15.

Why MCMC works

We will now show that MCMC returns consistent estimates for posterior probabilities. The
material in this section is quite technical, but the basic claim is straightforward: the sampling
process settles into a “dynamic equilibrium” in which the long-run fraction of time spent
in each state is exactly proportional to its posterior probability. This remarkable property
follows from the specific transition probability with which the process moves from one
state to another, as defined by the conditional distribution given the Markov blanket of the
variable being sampled. .

Let g(x — x') be the probability that the process makes a transition from state X to
state x'. This transition probability defines what is called a Markov chain on the state space.
(Markov chains will also figure prominently in Chapters 15 and 17.) Now suppose that we
run the Markov chain for ¢ steps, and let m¢(x) be the probability that the system is in state x
attime £. Similarly, let 7, (x') be the probability of being in state x” at time £ + 1. Given
7¢(x), we can calculate 7y 1 (x') by summing, for alt states the system could be in at time ¢,
the probability of being in that state times the probability of making the transition to x':

Tep1(x') = Zﬁt(X)Q(x —x).

We will say that the chain has reached its stationary distribution if m; =7y ;. Lot us call
this stationary distribution 7} its defining equation is therefore

7(X) =Y 7m(x)g(x —» %) forallx . ' (1-4.9)

Under certain standard assumptions about the transition probability distribution ¢,7 there is
cxactly one distribution 7 satisfying this equation for any given gq.

T The Markov chain defined by g must be ergodic—that is, essentially, every state must be reachable from every
other, and there can be no strictly periodic cycles. ’

518

Chapter 14, Probabilistic ReaSUHing".'

DETALED BALANCE

GIBES SAMPLER

Equation (14.9) can be read as saying that the expected “outflow” from each state (e
its current “population”) is equal to the expected “inflow” from all the states. One Ob\’ieu; ;
way to satisfy this relationship is if the expected flow between any pair of states is the sap,
in both directions. This is the property of detailed balance:

W(i)q(x o x) =x(x)g(X —-x) forallx, x'. (14.19)

We can show that detailed balance implies stationarity simply by summing over X in Eqy,.
tion (14.10). We have

3 r(@)alx - %) = ()l %) = () Y al %) =(¥)

where the last step follows because a transition from x’ is guaranteed to occur.

Now we will show that the transition probability g(x — x) defined by the sampling siep
in MCMC-ASK satisfies the detailed balance equation with a stationary distribution equal
to P(xle), (the true posterior distribution on the hidden variables). We will do this in twg
steps. First, we will define a Markov chain in which each variable is sampled conditionally
on the current values of all the other variables, and we will show that this satisfies detailed
balance. Then, we will simply observe that, for Bayesian networks, doing that is equivalent - §-
to sampling conditionally on the variable’s Markov blanket (see page 499). -

Let X; be the variable to be sampled, and let X; be all the hidden variables other than
X;. Their values in the current state are @; and X;. If we sample a new value x for X; ;
conditionally on all the other variables, including the evidence, we have [|

alx — %) = q((zi, %) — (,%) = P(@lI%,€) |
This transition probability is called the Gibbs sampler and is a particularly convenient form
of MCMC. Now we show that the Gibbs sampler is in detailed balance with the true posterior:
r(x)g(x — X) = P(x|e) P(c}{:,¢) = P(zi, Xle) P(ail%i¢) i
= P{z;|%;, e) P(Xile)P(z;[%i,) (using the chain rule on the first term) §
= P(zi|%;,e)P(2},%]e) (using the chain rule backwards) 4
= 7(x)g(x —x).
As stated on page 499, a variable is independent of all other variables given its Markov
blanket; hence,

P{z;|%, €) = P(ajlmb(Xy))
where mb(X;) denotes the values of the variables in X;’s Markov blanket, M B(X;). As
shown in Exercise 14.10, the probability of a variable given its Markov blanket is proportional
to the probability of the variable given its parents times the probability of each child givenils
respective parents:
P(a|mb(X3)) = a P(z)jparents(Xi)) x [[Plyjlparents(¥s)). (141D
YjeChildren(X;)

Hence, to flip each variable X;, the number of multiplications required is equal to the number
of X;’s children.

14.6,

Extending Probability to First-Order Representations 519

We have discussed here only one simple variant of MCMC, namely the Gibbs sam-
pler. In its most general form, MCMC is a powerful method for computing with probability
models and many variants have been developed, including the simulated annealing algo-
rithm presented in Chapter 4, the stochastic satisfiability algorithms in Chapter 7, and the
Metropolis-Hastings sampler in Chapter 15.

EXTENDING PROBABILITY TO FIRST-ORDER REPRESENTATIONS

HAL
HLITY MODEL

In Chapter 8, we explained the representational advantages possessed by first-order logic in
comparison to propositional logic. First-order logic commits to the existence of objects and
relations among them and can express facts about some or alf of the objects in a domain, This
often results in representations that are vastly more concise than the equivalent propositional
descriptions, Now, Bayesian networks are essentially propositional: the set of variables is
fixed and finite, and cach has a fixed domain of possible values. This fact limits the appli-
cability of Bayesian networks. If we can find a way to combine probability theory with the
expressive power of first-order representations, we expect to be able to increase dramatically
the range of problems that can be handled.

The basic insight required to achieve this goal is the following: In the propositional con-
text, a Bayesian network specifies probabilities over atomic events, each of which specifies a
value for each variable in the network. Thus, an atomic event is a model or possible world,
in the terminology of propositional logic. Tn the first-order context, a model (with its inter-
pretation) specifies a domain of objects, the relations that hold among those objects, and a
mapping from the constants and predicates of the knowledge base to the objects and relations
in the model. Therefore, a first-order probabilistic knowledge base should specify probabili-
ties for all possible first-order models. Let u(M) be the probability assigned to model A by
the knowledge base. For any first-order sentence ¢, the probability P(¢) is given in the usual
way by summing over the possible worlds where ¢ is true:

P(¢) = > uM). _ (14.12)
A is true in M
So far, so good. There is, however, a problem: the set of first-order models is infinite. This
means that (1) the summation counid be infeasible, and (2) specifying a complete, consistent
distribution over an infinite set of worlds could be very difficult.

Let us scale back our ambition, at least temporarily. In particular, let us devise a re-
stricted language for which there are only finitely many models of interest. There are several
ways to do this. Here, we present relational probability models, or RPMs, which borrow
ideas from semantic networks (Chapter 10) and from object-relational databases. Other ap-

~ proaches are discussed in the bibliographical and historical notes.

RPMs allow constant symbols that name objects. For example, let ProfSmith be the
name of a professor, and let Jones be the name of a student. Each object is an instance of a
class; for example, ProfSmith is a Professor and Jones is a Student. We assume that the
class of every constant symbol is known.

520

SIMPLE FUNCTION

COMPLEX FUNGTION

Chapter 14, Probabilistic Reasoning __

Our function symbols will be divided into two kinds. The first kind, simple functigy
maps an object not to another structured object, but to a value from a fixed domain of valuas'
just like a random variable. For example, Intelligence(Jones) and Fundz’ng(Promeifh)'
might be hi or lo; Success(Jones) and Fame(ProfSmith) may be true or false. Functig,
symbols must not be applied to values such as true and false, so it is not possible to haye
nesting of simple functions. In this way, we avoid one source of infinities. The value of 4
simple function applied to a given object may be observed or unknown; these will be the bagje
random variables of our 1'epresentat'10r1.8

We also allow complex functions, which map objects to other objects. For example,
Advisor(Jones) may be ProfSmith. Each complex function has a specified domain ang
range, which ate classes. For example, the domain of Advisor is Student and the range i
Professor. Functions apply only to objects of the right class; for instance, the“;{ldvisor of
ProfSmith is undefined. Complex functions may be nested: DeptHead(Advisor(Jones))
could be ProfMoore. We will assume (for now) that the values of all complex functions are
known for all constant symbols. Because the KB is finite, this implies that every chain of
complex function applications leads to onc of a finite number of objects.’

The Jast element we need is the probabilistic information. For each simple function,
we specify a set of parents, just as in Bayesian networks. The parents can be other simpie
functions of the same object; for example, the Funding of a Professor might depend onhis
or her Fame. The parents can also be simple functions of related objects—for example, the - [
Success of a student could depend on the Intelligence of the student and the Fame of the
student’s advisor. These are really universally quaniified assertions about the parents of all
the objects in a class. Thus, we could write

Vz z € Student =
Parents(Success(z)) = {Inielligence(z), Fome(Advisor(z))} .

(Less formally, we can draw diagrams like Figure 14.16(a).) Now we specify the conditional
probability distribution for the child, given its parents. For example, we might say that

Vz ze Student =
P(Success(x) = true|Intelligence(z) = hi, Fame(Advisor(z)) = true) = 0.95.

Just as in semantic networks, we can attach the conditional distribution to the class itself, so
that the instances inherit the dependencies and conditional probabilities from the class,
The semantics for the RPM language assumes that every constant symbol refers (0
distinct object—the unique names assumption described in Chapter 10, Given this assump-
tion and the restrictions listed previously, it can be shown that every RPM generates & fixed,
finite set of random variables, each of which is a simple function applied to a constant symbol.
Then, provided that the parent—child dependencies are acyclic, we can construct an equivalent
Bayesian network. That is, the RPM and the Bayesian network specify identical probabili

8 They play a role very similar to that of the ground atomic séntences generated in the prOpositiona!izulioﬂ
process deseribed in Section 9.1. :

9 This restriction means that we cannot use complex functions such as Father and Mother, which Jead to
potentially infinite chains that would have to end with an unknown object. We revisit this restriction later.

14.6.

Extending Probability to First-Order Representations 521

=1 Professor
) le— Profdoore N
Fame Fanie(PrafSmith) Fame(PrefMoore)
l— ProfSmith e | Ty,
Funding R N
Funding(ProfSmith) e Funding(ProfMoore)
Advisor A
Student
Intelligence(Bloges) Intelligence(fones)
Intelligence e Jones \
e Bloggs %, | g
Sue
cess Success(Bloggs) Stuccess(Jones}
Advisor

(a) (b

Figure 14.16 (a) An RPM describing two classes: Professor and Student. There are two
professors and two students, and ProfSmith is the advisor of both students. (b) The Bayesian
network equivalent to the RPM in (a).

ties for each possible world. Figure 14.16(b) shows the Bayesian network corresponding to
the RPM in Figure 14.16(a). Notice that the Advisor links in the RPM are absent in the
Bayesian network. This is because they are fixed and known. They appear implicitly in the
network topology, however; for example, Success(Jones) has Fame (ProfSmith) as a parent
because Advisor(Jones) is ProfSmith. In general, the relations that hold among the objects
determine the pattern of dependencies among the properties of those objects.

There are several ways to increase the expressive power of RPMs., We can allow re-
cursive dependencies among variables to capture certain kinds of recurring relationships.
For example, suppose that addiction to fast food is caused by the McGene. Then, for any
%, McGene(z) depends on McGene(Father(x)) and McGene(Mother(z)), which depend
in turn on McGene(Father (Father(x))), McGene(Mother(Father(z))), and so on. Even
though such knowledge bases correspond to Bayesian networks with infinitely many random
variables, solutions can sometimes be obtained from fixed-point equations. For example, the
equilibrium distribution of the McGene can be calculated, given the conditional probability
of inheritance. Another very important family of recursive knowledge bases consists of the
temporal probability models described in Chapter 15. In these models, properties of the
state at time £ depend on properties of the state at time ¢ — 1, and so on.

RPMs can also be extended to allow for relational uncertainty—that is, uncertainty
about the values of complex functions. For example, we may not know who Advisor(Jones)
is. Advisor(Jones) then becomes a random variable, with possible values ProfSmith and
ProfMoore. The corresponding network is shown in Figure 14.17.

There can also be identity uncertainty; for example, we might not know whether M ary
and ProfSmith are the same person. With identity uncertainty, the number of objects and
propositions can vary across possible worlds. A world where Mary and ProfSmith are the
same person has one fewer object than a world in which they are different people. This
makes the inference process more complicated, but the basic principle established in Equa-
tion (14.12) still holds: the probability of any sentence is well defined and can be calculated.

522

Chapter 14, Probabilistic Reasonj,

. Fame(ProfSniith)
Funding(PrafSmith) =g

Fame(ProfMoore)
Funding(ProfMoore .

Advisor(Jones))=t
Intelligence(Jones)

Success(Jones)

Figure 1417 Part of the Bayesian network- corresponding to an RPM in which
Advisor{Jones) is unknown, but is either ProfSmith or ProfMoore. The choice of advisor
depends on how much funding each professor has. Notice that Success(Jones) will now
depend on the Fame of both professors, although the value of Advisor{Jones) determines
which one actually has an influence.

Identity uncertainty is particularly important for robots and for embedded sensor systems that
must keep track of multiple objects. We return to this problem in Chapter 15.

Let us now examine the question of inference. Clearly, inference can be done in the
equivalent Bayesian network, provided that we restrict the RPM language so that the equiv-
alent network is finite and has a fixed structure. This is analogous to the way in which
first-order logical inference can be done via propositional inference on the equivalent propo-
sitional knowledge base. (See Section 9.1.) As in the logical case, the equivalent network
could be too large to construct, let alone evaluate. Dense interconnections are also a prob-
lem. (See Exercise 14.12.) Approximation algorithms. such as MCMC (Section 14.5), are
therefore very useful for RPM inference.

When MCMC is applied to the equivalent Bayesian network for a simple RPM knowl-
edge base with no relational or identity uncertainty, the algorithm samples from the space of
possible worlds defined by the values of simple functions of the objects. It is easy to see that
this approach can be extended to handle relational and identity uncertainty as well. In that
case, a transition between possible worlds might change the value of a simple function or it
might change a complex function, and so lead to a change in the dependency structure. Tran-
sitions might also change the identity relations among the constant symbols. Thus, MCMC
seems o be an elegant way to handle inference for quite expressive first-order probabilistic
knowledge bases.

Research in this area is still at an early stage, but already it is becoming clear that first-
order probabilistic reasoning yiclds a tremendous increase in the effectiveness of Al systems
at handling uncertain information. Potential applications include computer vision, natural
language understanding, information retrieval, and situation assessment. In all of these areas,
the set of objects—and hence the set of random variables—is not known in advance, 0
purcly “propositional” methods, such as Bayesian networks, are incapable of representing
the situation completely, They have been augmented by search over the space of model, but
RPMs allow reasoning about this uncertainty in a single model. ’

Other Approaches to Uncertain Reasoning 523

OTHER APPROACHES TO UNCERTAIN REASONING

Other sciences (e.g., physics, genetics, and economics) have long favored probability as a
madel for uncertainty. In 1819, Pierre Laplace said “Probability theory is nothing but com-
mon sense reduced to calculation.” In 1850, James Maxwell said “the true logic for this world
is the calculus of Probabilities, which takes account of the magnitude of the probability which
is, or ought to be, in a reasonable man’s mind.”

Given this long tradition, it is perhaps surprising that AT has considered many alterna-
tives to probability. The earliest expert systems of the 1970s ignored uitcertainty and used
strict logical reasoning, but it soon became clear that this was impractical for most real-world
domains. The next generation of expert systems (especially in medical domains) used prob-
abilistic technigues. Initial results were promising, but they did not scale up because of the
exponential number of probabilities required in the full joint distribution. (Efficient Bayesian
network algorithms were unknown then.) As a result, probabilistic approaches fell out of
favor from roughly 1975 to 1988, and a variety of alternatives to probability were tried for a
variety of reasons:

¢ One common view is that probability theory is essentially numerical, whereas human
judgmental reasoning is more “qualitative.” Celtamly, we are not consciously aware
of doing numerical calculations of degrees of belief. (Neither are we aware of doing
unification, yet we scem to be capable of some kind of logical reasoning.) It might be
that we have some kind of numerical degrees of belief encoded directly in strengths of
connections and activations in our neurons. In that case, the difficulty of conscious ac-
cess to those strengths is not surprising. One should also note that qualitative reasoning
mechamsms can be built directly on top of probability theory, so that the “no numbers”
argument against probability has little force. Nonetheless, some qualitative schemes
have a good deal of appeal in their own right. One of the best studied is default rea~
soning, which treats conclusions not as “believed to a certain degree,” but as “believed
until a better reason is found to believe something else ” Default reasoning is covered
" in Chapter 10,

¢ Rule-based approaches to uncertainty also have been tried. Such approaches hope to
build on the success of logical rule-based systems, but add a sort of “fudge factor” to
each rule to accommodate uncertainty. These methods were developed in the mid-1970s
and formed the basis for a large number of expert systems in medicine and other areas.

¢ One area that we have not addressed so far is the question of ignorance, as opposed
to uhcertainty. Consider the flipping of a coin. If we know that the coin is fair, then a
probability of 0.5 for heads is reasonable. If we know that the coin is biased, but we
do not know which way, then 0.5 is the only reasonable probability. Obviously, the
two cases are different, yet probability seems not to distinguish them. The Dempster—
Shafer theory uses interval-valued degrees of belief to represent an agent’s knowledge
of the probability of a proposition. Other methods using second-order probabilities are
also discussed.

524

Chapter 14, Probabilistic Reasony,

LOCALITY

CETACHMENT

TRUTH-
FURCTIONALITY

“up heads on a second flip. Clearly, all three events have the same probability, 0.5, and so 3

« Probability makes the same ontological commitment as logic: that events are . or
false in the world, even if the agent is uncertain as to which is the case. Reseamhcr"{
in fuzzy logic have proposed an ontology that allows vagueness: that an event ¢y, bx :
“sort of” true. Vagueness and uncertainty are in fact orthogonal issues, as we wil] seq

The next three subsections treat some of these approaches in slightly more depth. We wijj,, ol
provide detailed technical material, but we cite references for further study.

Rule-based metheds for uncertain reasoning

Rule-based systems emerged from early work on practical and intuitive systems for logjey
inference. Logical systems in general, and logical rule-based systems in particular, have three
desirable properties:

& Locality: In logical systems, whenever we have a rule of the form A = B, we ¢gy
conclude B, given evidence A, without worrying about any other rules. In probabilistic
systems, we need to consider all the evidence in the Markov blanket. _

¢ Detachment: Once a logical proof is found for a proposition [3, the proposition can be
used regardless of how it was derived. That is, it can be detached from its justification.
In dealing with probabilities, on the other hand, the source of the evidence for a beljef
is important for subsequent reasoning.

¢ Truth-functionality: In logic, the truth of complex sentences can be computed from -}
the truth of the components. Probability combination does not work this way, except :ffii;
under strong global independence assumptions.

There have been several attempts to devise uncertain reasoning schemes that retain these
advantages. The idea is to attach degrees of belief to propositions and rules and to devise
purely local schiemes for combining and propagating those degrees of belief. The schemes
are also truth-functional; for example, the degree of belief in AV B is a function of the belief
in A and the belief in B. .

The bad news for rule-based systems is that the properties of locality, detachment, and
rruth-ﬁmctfanalffy are simply not appropriate for uncertain reasoning. Let us look at truti-
functionality first. Let H; be the event that a fair coin flip comes up heads, let T be the event
that the coin comes up tails on that same fiip, and let Hy be the event that the coin comes

truth-functional system must assign the same belief to the disjunction of any two of them.
But we can sce that the probability of the disjunction depends on the events themselves and
not just on their probabilities: '

P(A) P(B) P(AV B)

| P(HY) = 05| P(H, v H) =050
P(H;) = 0.5| P(11) =05 || P(ILL v Ty) = 1.00
P(Hg) = (0.5 P(Hl v Hg) = .75

It gets worse when we chain evidence together. Truth-functional systems have rules of the
form A +> B that allow us to compute the belief in B as a function of the belief in the rule

{PSTER-SHAFER

JEFFUNGTION

Other Approaches to Uncertain Reasoning 7 525

and the belief in A, Both forward- and backward-chaining systems can be devised. The belief
in the rule is assumed to be constant and is usually specified by the knowledge engineer—for
example, as A g B.

Consider the wet-grass situation from Figure 14.11(a). If we wanted to be able to do
both causal and diagnostic reasoning, we would need the two rules

Raoin v— WetGross and WetGrass — Rain .

These two rules form a feedback loop: evidence for Rain increases the belief in WetGrass,
which in turn increases the belief in Rain even more. Clearly, uncertain reasoning systems
need to keep track of the paths along which evidence is propagated.

Intercausal reasoning (or explaining away) is also tricky. Consider what happens when
we have the two rules

Sprinkler —» Wet(Grass and WetGrass +» Rain .

‘Suppose we see that the sprinkler is on. Chaining forward through our rules, this increases the

belief that the grass will be wet, which in turn increases the belief that it is raining. But this
is ridiculous: the fact that the sprinkler is on explains away the wet grass and should reduce
the belief in rain. A truth-functional system acts as if it also believes Sprinkler — Rain.

Given these difficulties, how is it possible that truth-functional systems were ever con-
sidered useful? The answer lies in restricting the task and in carefully engineering the rule
base so that undesirable interactions do not occur. The most famous example of a truth-
functional system for uncertain reasoning is the certainty factors model, which was devel-
oped for the MYCIN medical diagnosis program and was widely used in expert systems of the
late 1970s and 1980s. Almost all uses of certainty factors involved rule sets that were ¢ither
purely diagnostic (as in MYCIN) or purely causal. Furthermore, evidence was entered only at
the “roots™ of the rule set, and most rule sets were singly connected. Heckerman (1986) has
shown that, under these circumstances, a minor variation on certainty-factor inference was
exactly equivalent to Bayesian inference on polytrees. In other circumstances, certainty fac-
tors could yield disastrously incorrect degrees of belief through overcounting of evidence. As
rule sets became larger, undesirable interactions between rules became more common, and
practitioners found that the certainty factors of many other rules had to be “tweaked” when
new rules were added. Needless to say, the approach is no longer recommended.

Representing ignorance: Dempster—Shafer theory

The Dempster—Shafer theory is designed (o deal with the distinction between uncertainty
and ignorance. Rather than computing the probability of a proposition, it computes the
probability that the evidence supports the p10p031t10n This measure of belief is called a
belief function, written Bel(X).

We return to coin flipping for an example of belief functions. Suppose a shady character
comes up to you and offers to bet you $10 that his coin will come up heads on the next flip.
Given that the coin might or might not be fair, what belief should you ascribe to the event
that it comes up heads? Dempster-Shafer theory says that because you have no evidence
either way, you have to say that the belief Bel(Heads) = 0 and also that Bel(-Heads) = 0.

526

FUZZY SET THEORY

=y

Chapter 14. Probabilistic Reasoning

This makes Dempster—Shafer reasoning systems skeptical in a way that has some Mtuitiye
appeal. Now suppose you have an expert at your disposal who testifics with 90% Certaingy -
that the coin is fair (i.c., he is 90% sure that P(Heads) = 0.5). Then Dempster—S]mch i
theory gives Bel{Heads) = 0.9 x 0.5 = 0.45 and likewise Bel(—Heads) = 0.45. They,
is still a 10 percentage point “gap” that is not accounted for by the evidence. “Dempsterg -
rule” (Dempster, 1968) shows how to combine evidence to give new values for Bel, gy
Shafer’s work extends this into a complete computational model.

As with default reasoning, there is a problem in connecting beliefs to actions. With
probabilities, decision theory says that if P(Heads) = P(~Heads) = 0.5, then (assumiy,
that winning $10 and losing $10 are considered equal magnitude opposites) the reasone;
will be indifferent between the action of accepting and declining the bet. A Dempster-
Shafer reasoner has Bel(—Heads) = 0 and thus no reason to accept the bet," but then j;
also has Bel{ Heads) = 0 and thus no reason to decline it. Thus, it seems that the Dempster-.
Shafer reasoner comes to the same conclusion about how to act in this case. Unfortunately,
Dempster—Shafer theory atlows no definite decision in many other cases where probabilistic
inference does yield a specific choice. In fact, the notion of utility in the Dempster-Shafer
model is not yet well understood.

One interpretation of Dempster—Shafer theory is that it defines a probability interval:

* the interval for Heads is [0, 1] before our expert testimony and [0.45, 0.55] after. The width

of the interval might be an aid in deciding when we need to acquire more evidence: it can
tell you that the expert’s testimony will help you if you do not know whether the coin is fair,

- but will not help you if you have already learned that the coin is fair. However, there are

no clear guidelines for how to do this, because there is no clear meaning for what the width
of an interval means. In the Bayesian approach, this kind of reasoning can be done easily
by examining how much one’s belief would change if one were to acquire more evidence.
For example, knowing whether the coin is fair would have a significant impact on the belief
that it will come up heads, and detecting an asymmetric weight would have an impact on the
belief that the coin is fair. A complete Bayesian model would include probability estimates
for factors such as these, allowing us to express our “ignorance” in terms of how our beliefs
would change in the face of future information gathering.

Representing vagueness: Fuzzy sets and fuzzy logic

Fuzzy set theory is a means of specifying how well an object satisfies a vague description.
For example, consider the proposition “Nate is tall” Is this true, if Nate is 5 1077 Mosl
people would hesitate to answer “true” or “false,” preferring to say, “sort of.” Note that this
is not a question of uncertainty about the external world—we are sure of Nate’s height. The
issue is that the linguistic term “tall” does not refer to a sharp demarcation of objects into (W0
classes—there are degrees of tallness. For this reason, fuzzy set theory is not a method for
uncertain reasoning af all. Rather, fuzzy set theory treats Tall as a fuzzy predicate and says
that the truth value of Tall(Nate) is a number between 0 and 1, rather than being just tri
or false. The name “fuzzy set” derives from the interpretation of the predicate as implicitly
defining a set of its members—a set that does not have sharp boundaries.

00N SETS

4.7,

Other Approaches to Uncertain Reasoning . 527

Fuzzy logic is a method for reasoning with logical expressions describing membership
in fuzzy sets. For example, the complex sentence Tall(Nate) A Heavy(Nate) has a fuzzy
truth value that is a function of the truth values of its components, The standard rules for
evaluating the fuzzy teuth, T, of a complex sentence are

T(AAB)=min{T(A4),T(B))

T(AV B) =max(T(4),T(B))

T(=4)=1-T{A4).

Fuzzy logic is therefore a truth-functional system—a fact that causes serious difficulties.
For example, suppose that T'(Tall(Nate)) = 0.6 and T(Heavy(Nate)) = 0.4, Then we have
T'(Tall(Nate) A T'(Heavy(Nate)) = 0.4, which seems reasonable, but we also get the result
T(Tall(Nate) A ~Tall(Nate)) = 0.4, which does not. Clearly, the problem arises from the
inability of a truth-functional approach to take into account the correlations or anticorrelations
among the component propositions. ‘

Fuzzy control is a methodology for constructing control systems in which the mapping
between real-valued input and output parameters is represented by fuzzy rules. Fuzzy con-
trol has been very successful in commercial products such as automatic transmissions, video
cameras, and electric shavers. Critics (see, e.g., Elkan, 1993) argue that these applications
are successful because they have small rule bases, no chaining of inferences, and tunable
parameters that can be adjusted to improve the system’s performance. The fact that they are
implemented with fuzzy operators might be incidental to their success; the key is simply to
provide a concise and intuitive way to specify a smoothly interpolated, real-valued function.

There have been attempts to provide an explanation of fuzzy logic in terms of probabil-
ity theory. One idea is to view assertions such as “Nate is Tall” as discrete observations made
concerning a continuous hidden variable, Nate’s actual Height. The probability model speci-
fies P(Observer says Nate is tall | Height), perhaps using a probit distribution as described
on page 503. A posterior distribution over Nate’s height can then be calculated in the usual
way, for example if the model is part of a hybrid Bayesian network. Such an approach is not
truth-functional, of course. For example, the conditional distribution

P(Observer says Nate is tall and heavy | Height, Weight)

allows for interactions between height and weight in the causing of the observation. Thus,
someone who is eight feet tall and weighs 190 pounds is very unlikely to be called “tall and
heavy,” even though “eight feet” counts as “tall” and “190 pounds” counts as “heavy.”
Fuzzy predicates can also be given a probabilistic interpretation in terms of random
sets—that is, random variables whose possible values are sets of objects. For example, Tall

is a random set whose possible values are sets of people. The probability P(7Tall =51),

where 51 is some particular set of people, is the probability that exactly that set would be
identified as “tall” by an observer. Then the probability that “Nate is tall” is the sum of the
probabilities of all the sets of which Nate is a member. 7

Both the hybrid Bayesian network approach and the random sets approach appear to
capture aspects of fuzziness without introducing degrees of truth. Nonetheless, there remain
many open issues concerning the proper representation of linguistic observations and contin-
uous quantitics—issues that have been neglected by most outside the fuzzy community.

508 Chapter 14, Probabilistic Reasonip,

14.8 SUMMARY,

This chapter has described Bayesian networks, a well-developed representation for uncertaip
knowledge. Bayesian networks play a role roughly analogous to that of propositional logic
for definite knowledge.

e A Bayesian network is a directed acyclic graph whose nodes correspond to randon
- variables; each node has a conditional distribution for the node, given its parents.

o Bayesian networks provide a concise way to represent conditional independence rely-
tionships in the domain.

o A Bayesian network specifies a full joint distribution; each joint entry is defined as the
product of the corresponding entries in the local conditional distributions. A Bayesian
network is often exponentially smaller than the full joint distribution. :

¢ Many conditional distributions can be represented compactly by canonical families of
distributions. Hybrid Bayesian networks, which include both discrete and continucus
variables, use a variety of canonical distributions.

- » Inference in Bayesian networks means computing the probability distribution of a set
of query variables, given a set of evidence variables. Exact inference algorithms, such
as variable elimination, evaluate sums of products of conditional probabilities as effi-
ciently as possible.

o In polytrees (singly connected networks), exact inference takes time linear in the size
of the network. In the general case, the problem is intractable.

e Stochastic approximation techniques such as likelihood weighting and Markov chain
Monte Carlo can give reasonable estimates of the true posterior probabilities in a net-
work and can cope with much larger networks than can exact algorithms.

e Probability theory can be combined with representational ideas from first-order logicto
produce very powerful systems for reasoning under uncertainty. Relational probabil-
ity models (RPMs) include representational restrictions that guarantee a well-defined
probability distribution that can be expressed as an equivalent Bayesian network.

o Various alternative systems for reasoning under uncertainty have been suggested. Gen-
erally speaking, truth-functional systems are not well suited for such reasoning.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of networks to represent probabilistic information began early in the 20th centuy:
with the work of Sewall Wright on the probabilistic analysis of genetic inheritance and anindl
growth factors (Wright, 1921, 1934). One of his networks appears on the cover of this book.
L J. Good (1961), in collaboration with Alan Turing, developed probabilistic rep1-ese|1tati0115 :
and Bayesian inference methods that could be regarded as a forerunner of modern Bayesidl

ion 14.8.

Summary 529

AL DYRAMIC
MUING

networks—although the paper is not often cited in this context.!% The same paper is the
original source for the noisy-OR model.

The jnfluence diagram representation for decision problems, which incorporated a
DAG representation for random variables, was used in decision analysis in the late 1970s
(see Chapter 16), but only enumeration was used for evaluation. Judea Pearl developed the
message—pass?ng method for carrying out inference in tree networks (Pearl, 1982a) and poly-
tree networks (Kim and Pearl, 1983) and explained the importance of constructing causal
rather than diagnostic probability models, in contrast to the certainty-factor systems then
in vogue. The first expert system using Bayesian networks was CONVINCE (Kim, 1983;
Kim and Pearl, 1987). More recent systems include the MUNIN system for diagnosing neu-
romuscular disorders (Andersen et al., 1989) and the PATHFINDER system for pathology
(Heckerman, 1991). By far the most widely used Bayesian network systems have been the
diagnosis-and-repair modules (e.g., the Printer Wizard) in Microsoft Windows (Breese and
Heckerman, 1996) and the Office Assistant in Microsoft Office (Horvitz ef al., 1998).

Pear] (1986) developed a clustering algorithm for exact inference in general Bayesian
networks, utilizing a conversion to a directed polytree of clusters in which message passing
was used to achieve consistency over variables shared between clusters, A similar approach,
developed by the statistictans David Spiegelhalter and Steffen Lauritzen (Spiegelhalter, 1986;
Lauritzen and Spiegethalter, 1988), is based on conversion to an undirected (Markov) net-
work. This approach is implemented in the HUGIN system, an cfficient and widely used
tool for uncertain reasoning {(Andersen et al., 1989). Ross Shachter, working in the influ-
ence diagram community, developed an exact method based on goal-directed reduction of the
network, using posterior-preserving transformations (Shachter, 1986).

The variable elimination method described in the chapter is closest in spirit to Shachter’s
method, from which emerged the symbolic probabilistic inference (SPI) algorithm (Shachter
et al., 1990). SPI attempts to optimize the evaluation of expression trees such as that shown
in Figure 14.8. The algorithm we describe is closest to that developed by Zhang and Poole
(1994, 1996). Criteria for pruning irrelevant variables were developed by Geiger ef al. (1990)
and by Lauritzen et al. (1990); the criterion we give is a simple special case of these. Rina
Dechter (1999) shows how the variable elimination idea is essentially identical to nonserial
dynamic programming (Bertele and Brioschi, 1972), an algorithmic approach that can be
applied to solve a range of inference problems in Bayesian networks—for example, finding
the most probable explanation for a set of observations. This connects Bayesian network
algorithms to related methods for solving CSPs and gives a direct measure of the complexity
of exact inference in terms of the hypertree width of the network.

The inclusion of continuous random variables in Bayesian networks was considered
by Pearl (1988) and Shachter and Kenley (1989); these papers discussed networks contain-
ing only continuous variables with linear Gaussian distributions. The inclusion of discrete
variables has been investigated by Lawritzen and Wermuth (1989) and implemented in the

19 1. J. Good was chief statistictan for Turing’s code-breaking team in World War 11, In 2001: A Space Odyssey

- (Clarke, 1968a), Good and Minsky are credited with making the breakthrough that led to the development of the

HAL 9000 computer.

30

. VARIATIONAL -
APPROYIMATION

VARIATIONAL
PARAMETERS

MEAN FIELD

~ developed for CSPs in Chapter 5, avoids the construction of exponentially large tables. Ing |

~ rameters \ that.are adjusted to minimize a distance function DD between the original an

Chapter 14, Probabilistic Reaéongng

T

cHUGIN system (Olesen, 1993). The probit distribution was studied first by Finney (1947,
who called it the sigmoid distribution. Tt has been used widely for modeling discrete choice *
phenomena and can be extended to handle more than two choices (Daganzo, 1979). Bishop ::-_:.
(1995) gives a justification for the use of the logit distribution.

~ Cooper {1990) showed that the general problem of inference in unconstrained Bayesian®
networks is NP-hard, and Paul Dagum and Mike Luby (1993) showed the corresponding -
approximation problem to be NP-hard. Space complexity is also a serious problem in both
clustering and variable elimination methods. The method of cutset conditioning, which was

Bayesian network, a cutset is a set.of nodes that, when instantiated, reduces the remaining
nodes to a polytree that can be solved in linear time and space. The query is answered by :
summing over all the instantiations of the cutset, so the overall space requirement is stiil lin.
ear (Pearl, 1988).. Darwiche (2001) describes a recursive conditioning algorithm that allowsz
a complete range of space/time tradeoffs. _
The development of fast approximation algorithms for Bayesian network inference isa
very active area, with contributions from statistics, computer science, and physics. The rejec-
tion sampling-method is & general technique that is long known to statisticians; it was first ap-
plied to Bayesian networks by Max Henrion (1988), who cailed it logic sampling. Likelihood
weighting, which was developed by Fung and Chang (1989) and Shachter and Peot (1989),
is an example of the well-known statistical method of importance sampling. A large-scale
application of likelihood weighting to medical diagnosis appears in Shwe and Cooper (1991),
Cheng and Druzdzel (2000) describe an adaptive version of likelihood weighting that works
well even when the evidence has very low prior likelihood. '
Matkov chain Monte Carlo (MCMC) algorithms began with the Metropolis algorithfu,
due to Metropotis ef al. (1953), which was also the source of the simulated annealing. algo-
rithm described in Chapter 4. The Gibbs sampler was devised by Geman and Geman (1934)
for inference in undirected Markov networks. The application of MCMC to Bayesian net-
works is due to Pearl (1987). The papers collected by Gilks ez al: (1996) cover a wide variety
of applications of MCMC, several of which were developed in the well-known BUGS pack-
age (Gilks et al., 1994), . _
There are two very important families of approximation methods that we did not cove
in the chapter. The first is the family of variational approximation methods, which can be
used to simplify complex calculations of all kinds. The basic idea is to propose a reduced
version of the original problem that is simple to work with, but that resembles the origind
problem as closely as possible. The reduced problem is described by some variational pa

the reduced problem, often by solving the system of equations oD /6A=0. In many CAases
strict upper and lower bounds can be obtained. “Variational methods have long been used i
statistics (Rustagi, 1976). In statistical physics, the mean field method is a particular vart
ational approximation in which the individual variables making up the model are assume
to be completely independent. T his idea was applied to solve large undirected Markov 1
works (Peterson and Anderson, 1987; Parisi, 1988). Saul er al. (1996) developed the mﬂﬂ}
ematical foundations for applying variational methods to Bayesian networks and obtaite

Summary 531

arion

DECODING

jon 14.8.

accurate lower-bound approximations for sigmoid networks with the use of mean-field meth-
ods. Jaakkola and Jordan (1996) extended the methodology to obtain both lower and upper
bounds. Variational approaches are surveyed by Jordan et al. (1999).

A sccond important family of approximation algorithms is based on Pearl’s polyiree
message-passing algorithm (1982a). This algorithm can be applied to general networks, as
suggested by Pearl (1988). The results might be incorrect, or the algorithm might fail to ter-
minate, but in many cases, the values obtained are close to the true values. Little attention was
paid to this so-called belief propagation (or loopy propagation) approach until McEliece
et al. (1998) observed that message passing in a multiply-connected Bayesian network was.
exactly the computation performed by the turbo decoding algorithm (Berrou et al., 1993),
which provided a major breakthrough in the design of efficient error-correcting codes. The
implication is that loopy propagation is both fast and accurate on the very large and very
highly connected networks used for decoding and might therefore be useful more generally,
Murphy et al. (1999) present an empirical study of where it does work. Yedidia ef al. (2001)
make further connections between loopy propagation and ideas from statistical physics.

~ The connection between probability and first-order languages was first studied by Car-
nap (1950). Gaifman (1964) and Scott and Krauss (1966) defined a language in which proba-
bilities could be associated with first-order sentences and for which models were probability
Mmeasures on possible worlds, Within AT, this idea was developed for propositional logic by
Nilsson (1986) and for first-order logic by Halpern (1990). The first extensive investigation of
knowledge representation issues in such languages was carried out by Bacchus (1990), and
the paper by Wellman ef al, (1992) surveys early implementation approaches based on the
construction of equivalent propositional Bayesian networks, More recently, researchers have

‘come to undefstand the importance of complete knowledge bases—that is, knowledge bases
‘that, like Bayesmn networks, define a unique joint distribution over all possible worlds. Meth-
- ods-for doing this have been based on probabilistic versions of logic programming (Poole,

1993; Sato and Kameya, 1997) or semantic networks (Koller and Pfeffer, 1998). Relational
probability models of the kind described in this chapter are investigated in depth by Pfeffer
(2000). Pasula and Russell (2001) examine both issues of relational and identity uncertainty
within RPMs and the use of MCMC inference. .

As explained in Chapter 13, early probabilistic systems fell out of favor in the early
1970s, leaving a partial vacuum to be filled by alternative methods. Certainty factors were
invented for use in the medical expert system MYCIN (Shortliffe, 1976), which was intended
both as an engineering solution and as a model of human judgment under uncertainty. The
collection Rule-Based Expert Systems (Buchanan and Shortliffe, 1984) provides a complete
overview of MYCIN and its descendants (see also Stefik, 1995). David Heckerman (1986)
showed that a slightly modified version of certainty factor calculations gives correct proba-
bilistic results in some cases, but results in serious overcounting of evidence in other cases.
The PROSPECTOR expert system (Duda ef al., 1979) used a rule-based approach in which the
rules were justified by a (seldom tenable) global independence assumption. -

DempstermShafel theory originates with a paper by Arthur Dempster (1968) propos-

- ing a generalization of probability to interval values and a combination rule for using them.
Later work by Glenn Shafér (1976) led to the Dempster-Shafer theory’s being viewed as a

532

Chapter 14, Probabilistic Reasoning

POSSIBILITY THEORY

competing approach to probability. Ruspini e al. (1992) analyze the relationship betwee,
the Dempster-Shafer theory and standard probability theory. Shenoy (1989} has proposed 4
method for decision making with Dempster-—Shafer belief functions.

Fuzzy sets were developed by Lotfi Zadeh (1965) in response to the perceived difficulty
of providing exact inputs to intelligent systems. The text by Zimmermann (2001) provides
a thorough introduction to fuzzy set theory; papers on fuzzy applications are collected in
Zimmermann (1999). As we mentioned in the text, fuzzy logic has often been perceived
incorrectly as a direct competitor to probability theory, whereas in fact it addresses a differen
set of issues. Possibility theory (Zadeh, 1978) was introduced to handle uncertainty in fuzzy
systems and has much in common with probability. Dubois and Prade (1994) provide q
thorough survey of the connections between possibility theory and probability theory.

The resurgence of probability depended mainly on the discovery of Bayesiah networks
as a method for representing and using conditional independence information, T\hiS resur-
gence did not come without a fight; Peter Cheeseman’s (1985) pugnacious “In Defense of
Probability;” and his later article “An Inquiry into Computer Understanding” (Cheeseman,
1988, with commentaries) give something of the flavor of the debate. One of the principal
objections of the logicists was that the numerical calculations that probability theory was
thought to require were not apparent to introspection and presumed an unrealistic level of
precision in our uncertain knowledge. The development of qualitative probabilistic net-
works (Wellman, 1990a) provided a purely qualitative abstraction of Bayesian networks,
using the notion of positive and negative influences between variables. Wellman shows thal
in many cases such information is sufficient for optimal decision making without the need for
the precise specification of probability values. Work by Adnan Darwiche and Matt Gins-
berg (1992) extracts the basic properties of conditioning and evidence combination from
probability theory and shows that they can also be applied in logical and default reasoning.

The heart disease trcatment system described in the chapter is due to Lucas (1996).
Other fielded applications of Bayesian networks include the work at Microsoft on inferring
computer user goals from their actions (Horvitz et al., 1998) and on filtering junk email
(Sahami ef al., 1998}, the Electric Power Research Institute’s work on monitoring power
generators (Morjaria et al., 1995), and NASA’s work on displaying time-critical information
at Mission Control in Houston (Horvitz and Barry, 1995). -

Some important eatly papers on uncertain reasoning methods in Al are collected in the
anthologies Readings in Uncertain Reasoning (Shafer and Pearl, 1990) and Uncertainty i
Artificial Intelligence (Kanal and Lemmer, 1986). The most important single publication in
the growth of Bayesian networks was undoubtedly the text Probabilistic Reasoning in Intelli- ¢
gent Systems (Pearl, 1988). Several excellent texts, including Lauriizen (1996), Jensen (2001) §
and Jordan (2003), contain more recent material. New research on probabilistic reasoning
appears both in mainstream AT journals such as Artificial Intelligence and the Journal of Al 1
Research, and in move specialized journals, such as the International Journal of Approximttt
Reasoning. Many papers on graphical models, which include Bayesian networks, appear it -
statistical journals, The proceedings of the conferences on Uncertainty in Artificial Tntelli
gence (UAI), Neural {nformation Processing Systems (NIPS), and Artificial Intelligence and -
Statistics (AISTATS) are excellent sources for current research. ’

Summary ' 533

Battery

Figure 1418 A Bayesian network describing some features of a car’s electrical system
and engine. Each variable is Boolean, and the true value indicates that the corresponding
aspect of the vehicle is in working order. '

14.1 Consider the network for car diagnosis shown in Figure 14.18.

a. Extend the network with the Boolean variables Iey Weather and StarterMotor.
b. Give reasonable conditional probability tables for all the nodes.

¢. How many independent -values are contained in the joint probability distribution for
eight Boolean nodes, assuming that no conditional independence relations are known
to hold among them?

d. How many independent probability values do your network tables contain?

e. The conditional distribution for Starts could be described as a noisy-AND distribution.
Define this family in general and relate it to the noisy-OR distribution,

142 1In your local nuclear power station, there is an alarm that senses when 2 temperature
gauge exceeds a given threshold. The gauge measures the temperature of the core. Consider
the Boolean variables A (alarm sounds), F,y (alarm is faulty), and F (gauge is faulty) and
the multivalued nodes (& (gange reading) and T (actual core temperature).

a. Draw a Bayesian network for this domain, given that the gauge is more likely to fail
when the core temperature gets too high. '

b. Ts your network a polytree?

¢. Suppose there are just two possible actual and measured temperatures, normal and high;
the probability that the gauge gives the correct temperature is when it is working, but
y when it is faulty. Give the conditional probability table associated with G,

Chapter 14, Probabilistic Reasoning

d. Suppose the alarm works correctly unless it is faulty, in which case it never soungs,
Give the conditional probability table associated with A.

e. Suppose the alarm and gauge are working and the alarm sounds. Calculate an expres.
sion for the probability that the temperature of the core is too high, in terms of the
various conditional probabilities in the network.

14.3 Two astronomers in different parts of the world make measurements My and M, of
N in some small region of the sky, using their telescopes. Normally, there
to one star in each direction. Each telescope can also
(with a much smaller probability f) be badly out of focus (events Fy and Iy), in which case
the scientist will undercount by three or more stars {or, if NV is less than 3, fail to detect any
stars at all). Consider the three networks shown in Figure 14.19.

the number of stars
is a small possibility e of error by up

2. Which of these Bayesian networks are correct (but not necessarily efﬁcienf) represen-
tations of the preceding information? '

b, Which is the best network? Explain.

Write out a conditional distribution for P(M; | V), for the case where N € {1,2,3} and
M, €{0,1,2,3,4}. Bach entry in the conditional distribution should be expressed asa
function of the parameters e and/or f.

=1 and My= 3. What are the possible numbers of stars if we assume no

C.

d. Suppose M3
prior constraint on the values of N7

e. What is the most likely number of stats, given these o
compute this, or, if it is not possible to compute, explain what ad

needed and how it would affect the result.

bservations? Explain how to
ditional information is

144 Consider the network shown in Figure 14.19(ii), and assume that the two telescopes
work identically. N & {1,2,3} and M, Mz € {0,1,2,3,4}, with the symbolic CPTs as de-
scribed in Exercise 14.3. Using the enumeration algorithm, calculate the probability distribu-

tion P(N| My =2, Ma =2).

iy

(i)

(i)

Figure 14.19 Three possible networks for the telescope problem.

Summary 535

14.5 Consider the family of linear Gaussian networks, as illustrated on page 502.

a. In a two-variable network, let X1 be the parent of X, let X; have a Gaussian priaor,
and let P(Xy|X1) be a linear Gaussian distribution. Show that the joint distribution
P{X1,X3) is a multivariate Gaussian, and calculate its covariance matrix.

b. Prove by induction that the joint distribution for a general linear Gaussian network on
X1,...,Xp is also a multivariate Gaussian.

14.6 The probit distribution defined on page 503 describes the probability distribution for a
Boolean child, given a single continuous parent.

a. How might the definition be extended to cover multiple continuous parents?

b. How might it be extended to handle a multivalued child variable? Consider both cases
where the child’s values are ordered (as in selecting -a gear while. driving, depending
on speed, slope, desired acceleration, efc.) and cases where they are unordered (as in
selecting bus, train, or car to get to work). [Hint: Consider ways to divide the possible
values into two sets, to mimic a Boolean variable.]

14.7 This exercise is concerned with the variable elimination algorithm in Figure 14.10.
a. Section 14.4 applies variable elimination to the query
P(Burglary|JohnCalls = true, MaryCalls = true) .

Perform the calculations indicated and check that the answer is correct,

b. Count the number of arithmetic operations performed, and compare it with the number
performed by the enumeration algorithm.

¢. Suppose anetwork has the form of a chain: a sequence of Boolean variables X1, ..., X,
where Parents(X;)={X;_1} fori=2,...,n. What is the complexity of computing
P(X1|X,, = true) using enumeration? Using variable elimination?

d. Prove that the complexity of rurining variable elimination on a polytree network is linear

- in the size of the tree for any variable ordering consistent with the network structure.

14.8 Investigate the complexity of exact inference in general Bayesian networks:

a. Prove that any 3-SAT problem can be reduced to exact inference in a Bayesian network
constructed to represent the particular problem and hence that exact inference is NP-
hard. [Hint: Consider a network with one variable for each proposition symbol, one for
each clause, and one for the conjunction of clauses.]

b. The problem of counting the number of satisfying assignments for a 3-SAT problem is
#P-complete. Show that exact inference is at least as hard as this.

14.9 Consider the problem of generating a random sample from a specified distribution on
a single variable, You can assume that a random number generator is available that returns a
random number uniformly distributed between 0 and 1.

‘a. Let X be a discrete variable with P(X =x;)=p; fori€{1,...,k}. The cumulative
distribution of X gives the probability that X ¢ {z1,... , ¢} for each possible 7. Ex-

536 Chapter 14, Probabilistic Reasoning

plain how to calculate the curnulative distribution in O(k) time and how to generate 4
single sample of X from it. Can the latter be done in less than O(k) time?

b. Now suppose we want to generate N samples of X, where N > k. Explain how to
this with an expected runtime per sample that is constant (i.e., independent of k).

¢. Now consider a continaous-valued variable with a parametrized distribution (e.g., Gaus.
sian). How can samples be generated from such a distribution?

d. Suppose you want to query a continuous-valued variable and you are using a sampling
algorithm such as LIKELTHOODWEIGHTING to do the inference. How would you have
to modify the query-answering process?

14,10 The Markov blanket of a variable is defined on page 499,
a. Prove that a variable is independent of all other variables in the netwofk, given ifs
Markov blanket. '
b. Derive Equation (14.11).

14.11 Consider the query P(Rain|Sprinkler = true, WelGrass = true) in Figure 14.11(a)
“and how MCMC can answer it.
a. How many states does the Markov chain have?
. Calculate the transition matrix Q containing gly — y'}forally, v
. What does QZ, the square of the transition matrix, represent?
What about Q™ as n — 00?

, Hxplain how to do probabilistic inference in Bayesian networks, assuming that Q" is
available. Is this a practical way to do inference?

o e T

P 14.12 Three soccer teams A, B, and C, play each other once. Each match is between lwo
" teams, and can be won, drawn, or lost. Each team has a fixed, unknown degree of quality—
an integer ranging from O to 3—and the outcome of a match depends probabilisticatly on the
difference in quality between the two teams.

a. Construct a relational probability model to describe this domain, and suggest numerical
values for all the necessary probability distributions.

b. Construct the equivalent Bayesian network. -

¢. Suppose that in the first two matches A beats B and draws with C. Using an exacl
inference algorithm of your choice, compute the posterior distribution for the outcot
of the third match, ‘

d. Supposc there are n teams in the league and we have the results for all but the last
match. How does the complexity of predicting the last game vary with n?

e. Investigate the application of MCMC to this problem. How quickly does it converge in
practice and how well does it scale?

- 1 5 PROBABILISTIC
| | REASONING OVER TIME

In which we try to interpret the present, understand the past, and perhaps predict
the future, even when very little is crystal clear:

Agents in uncertain environments must be able to keep track of the current state of the
environment, just as logical agents must. The task is made more difficult by partial and noisy
percepts and uncertainty about how the environment changes over time. At best, the agent
will be able to obtain only a probabilistic assessment of the current situation. This chapter
describes the representations and inference algorithms that make that assessment possible,
building on the ideas introduced in Chapter 14. .

- The basic approach is described in Section 15.1: a changing world is modeled using
a random variable for each aspect of the world state ar each point in time. The relations
among these variables describe how the state evolves. Section 15.2 defines the basic inference
tasks and describes the general structure of inference algorithms for temporal models. Then
we describe three specific kinds of models: hidden Markov models, Kalman filters, and
dynamic Bayesian networks (which include hidden Markov models and Kalman filters as
special cases). Finally, Section 15.6 explains how temporal probability models form the core
of modern speech recognition systems, Learning plays a central role in the construction of all
these models, but a detailed investigation of learning algorithms is left until Part VI.

" TIME AND UNCERTAINTY

We have developed our techniques for probabilistic reasoning in the context of static worlds,
in which each random variable has a single fixed value. For exampie, when repairing a car,
we assume that whatever is broken remains broken during the process of diagnosis; our job
is to infer the state of the car from observed evidence, which also remains fixed.

Now consider a slightly different problem: treating a diabetic patient. As in the case
of car repair, we have evidence such as recent insulin doses, food intake, blood sugar mea-
surements, and other physical signs. The task is to assess the current state of the patient,
including the actual blood sugar level and insulin Ievel. Given this information, the doctor
(or patient) makes a decision about the patient’s food intake and insulin dose. Unlike the case

537

