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Hybrid Electrical Vehicles – Parallel

Two parallel energy paths
One state in QSS framework, state of charge
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Hybrid Electrical Vehicles – Serial

One path; Operation decoupled through the battery
Two states in QSS framework, state of charge & Engine speed
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Optimization

What gear ratios give the lowest fuel consumption for a given drivingcycle?
–Problem presented in appendix 8.1

Problem characteristics
Countable number of free variables, ig,j , j ∈ [1,5]
A “computable” cost, mf (· · · )
A “computable” set of constraints, model and cycle
The formulated problem

min
ig,j , j∈[1,5]

mf (ig,1, ig,2, ig,3, ig,4, ig,5)

s.t. model and cycle is fulfilled
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Optimal Control – Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel consumption?

Cost function
∫ tf

0 ṁf (t)dt
Fuel mass-flow model ṁf = L(v(t),u(t)) (engine efficiency)
Infinite dimensional decision variable u(t)
Constraints:

Differential equations: Model of the car (the vehicle motion equation)

mv
d
dt v(t) = Ft(v(t),u(t)) −(Fa(v(t)) + Fr (v(t)) + Fg(x(t)))

d
dt x(t) = v(t)

Starting point x(0) = A
End point x(tf ) = B
Limited control action 0 ≤ u(t) ≤ 1
Speed limits v(t) ≤ g(x(t))

8 / 48

General problem formulation

Cost function (a functional)

J(u) = φ(x(tb), tb) +
∫ tb

ta
L(x(t),u(t), t)dt

Dynamic system model (constraints)

d
dt

x = f (x(t),u(t), t), x(ta) = xa

Control and state (path) constraints

u(t) ∈ U(t)

x(t) ∈ X (t)
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Dynamic programming – Problem Formulation

Optimal control problem

min J(u) = φ(x(tb), tb) +
∫ tb

ta
L(x(t),u(t), t)dt

s.t .
d
dt

x = f (x(t),u(t), t)

x(ta) = xa

u(t) ∈ U(t)
x(t) ∈ X (t)

x(t), u(t) functions on t ∈ [ta, tb]
Search an approximation to the solution by discretizing

the state space x(t)
and maybe the control signal u(t)

in both amplitude and time.
The result is a combinatorial (network) problem
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Deterministic Dynamic Programming – Basic algorithm

Discretize the time and state space, and search for an approximation to the solution.

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk )

xk+1 = fk (xk ,uk )

Guarantees a global solution, within the grid.

Algorithm idea
Start at the end and proceed
backwards in time to build up an
optimal cost-to-go function, store
the corresponding control signal.

0 1 2 NN − 1 t

x

k =

ta tb
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Parallel Hybrid Example

Fuel-optimal torque split factor u(SOC, t) = Te−motor
Tgearbox

ECE cycle
Constraints SOC(t = tf ) ≥ 0.6, SOC ∈ [0.5,0.7]
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Parallel Hybrid – Modes and Power Flows

The different modes for a parallel hybrid

u ≈ Pbatt/Pvehicle

Battery drive mode (ZEV)

P M TB V

E

Parallel Hybrid

ZEV mode, u=1
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Control algorithms

Determining the power split ratio u

uj(t) =
Pj(t)

Pm+1(t) + Pl(t)
(4.110)

Clutch engagement disengagement Bc ∈ {0,1}
Engine engagement disengagement Be ∈ {0,1}
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Strategies for the Parallel Hybrid

Power split u, Clutch Bc , Engine Be

Mode u Be Bc
1 ICE 0 1 1
2a ZEV 1 0 0
2b ZEV 1 0 1
3 Power assist [0,1] 1 1
4 Recharge < 0 1 1
5a Regenerative braking 1 0 0
5a Regenerative braking 1 0 1

All practical control strategies have engine shut off when the torque at the wheels are
negative or zero; standstill, coasting and braking.

16 / 48

Classification I – Supervisory Control Algorithms

Non-causal controllers
Detailed knowledge about future driving conditions.
Position, speed, altitude, traffic situation.
Uses:
Analyses of optimal behavior on regulatory drive cycles
Public transportation, long haul operation, GPS based route planning.

Causal controllers
No knowledge about the future.
Use information about the current state.
Uses:
“The normal controller”, on-line, in vehicles without planning
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Classification II – Vehicle Controllers

Heuristic controllers
–Causal
–State of the art in most prototypes and mass-production
Optimal controllers
–Often non-causal
–Some causal solutions exist, ECMS.
Sub-optimal controllers
–Uses optimization to solve a smaller sub-problems
–Often causal.

On-going work to include optimal controllers in production vehicles.
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Some Comments About the Problem

Important problem for the industry – Area of competition
Difficult problem
Unsolved problem for causal controllers
Rich body of
engineering reports and
research papers on the subject

–This can clearly be seen when reading chapter 7!
It has been the main research area for Lino Guzzella and Antonio Sciarretta.
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Heuristic Control Approaches

Operation usually depends on a few vehicle operation
Rule based:
Nested if-then-else clauses
if v < vlow then use electric motor (u=1).
else. . .
Fuzzy logic based
Classification of the operating condition into fuzzy sets.
Rules for control output in each mode.
Defuzzyfication gives the control output.
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Heuristic Control Approaches

Parallel hybrid vehicle (electric assist)

Determine control output as function of some selected state variables:
vehicle speed, engine speed, state of charge, power demand, motor speed,
temperature, vehicle acceleration, torque demand.
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Heuristic Control Approaches – Concluding Remarks

Easy to conceive
Relatively easy to implement
Result depends on the thresholds
Proper tuning can give good fuel consumption reduction and charge sustainability
Performance varies with cycle and driving condition
–Not robust
Time consuming to develop and tune for advanced hybrid configurations
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Consider a driving mission

Variables.
Control signal – u(t), System state – x(t), State of charge - q(t) (is a state).
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Formulating the Optimal Control Problem

–What is the optimal behaviour? Defines Performance index J.
Minimize the fuel consumption

J =

∫ tf

0
ṁf (t ,u(t))dt

Balance between fuel consumption and emissions

J =

∫ tf

0

[
ṁf (t ,u(t)) + αCOṁCO(x(t),u(t))+

αNOṁNO(x(t),u(t)) + αHCṁHC(x(t),u(t))
]
dt

Include driveability criterion

J =

∫ tf

0
ṁf (t ,u(t)) + β

(
d
dt

a(t)
)2

dt
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Towards a Solution to the Problem

In the course we are focusing on the fuel consumption.

Minimize the fuel consumption

J =

∫ tf

0
ṁf (t ,u(t))dt

The driving cycle is specified, no freedom
Our freedom is in the choice of how to use the electric energy in the battery
The focus is also on hybrid vehicles that need to be charge sustaining
– Constraint q(0) = q(tf )
Plugin Hybrid Electric Vehicles (PHEV) can be treated similarly, where the discharge
profile is specified.

27 / 48

Including the constraint

Hard or soft constraints

min J(u) =
∫ tf

0
L(t ,u(t))dt

s.t . q(0) = q(tf )

min J(u) = φ(q(tf )) +
∫ tf

0
L(t ,u(t))dt

How to select φ(q(tf ))?
φ(q(tf )) = α (q(tf )− q(0))2

penalizes high deviations more than small, independent of sign

φ(q(tf )) = w (q(0)− q(tf ))

penalizes battery usage, favoring energy storage for future use
One more feature from the last one
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Including the constraint

Including battery penalty according to

φ(q(tf )) = w (q(0)− q(tf )) = −w
∫ tf

0
q̇(t)dt

enables us to rewrite

min J(u) =
∫ tf

0
L(t ,u(t))− w q̇(t)dt

Note the similarity to the method of using Lagrange multiplier.
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Constraints That are Also Included

State equation ẋ = f (x) is also included
We are considering a parallel hybrid with only one state, the SoC (or equivalently
q(t))

min J(u) = φ(q(tf ), tf ) +
∫ tf

0
L(t ,u(t))dt

s.t .
d
dt

q = f (t ,q(t),u(t))

u(t) ∈ U(t)
q(t) ∈ Q(t)
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Numerical Methods for Solving Optimal Control Problems

Overview from Jonas Asprion,
“Optimal Control of Diesel Engines,
Modeling, Numerical Methods, and
Applications”, PhD Thesis, ETH,
(2015).

Commercial Break
Course TSRT08 Optimal Control
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Analytical Solutions to Optimal Control Problems

A general optimal control problem formulation

min J(u) = φ(x(tf ), tf ) +
∫ tf

0
L(t ,u(t))dt

s.t . ẋ(t) = f (t , x(t),u(t))

Hamiltonian defined in optimal control theory

H(t , x(t),u(t), λ(t)) = L(t ,u(t)) + λ(t) f (t , x(t),u(t))

λ(t) is a Lagrange multiplier, it’s a dear child with many names
Lagrange variable
Adjoint state
Co-state
Most often denoted λ(t), but µ(t) is also used.

33 / 48

Analytical Solutions to Optimal Control Problems

Hamiltonian
H(t , x(t),u(t), λ(t)) = L(t , x(t)) + λ(t) f (t , x(t),u(t))

Necessary conditions for optimality

ẋ(t) =f (t , x(t),u(t))

λ̇(t) =− ∂

∂x
H(t , x(t),u(t), λ(t))

At the optimum x∗(t),u∗(t), λ∗(t)

H(x∗(t),u∗(t), λ∗(t)) ≤ H(x∗(t),u(t), λ∗(t))

Pontryagin’s Minimum/Maximum Principle

u∗(t) = arg min
u(t)

H(x∗(t),u(t), λ∗(t))

Remaining question: What can we do to find λ∗(t)?
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Modeling a Parallel HEV in a Driving Cycle

The cycle is given so the propulsive power demand Pp(t) from the Powertrain is given.
We want to minimize the fuel energy, i.e. integral of the power Pf (t).
We have the freedom to use electrochemical energy from the battery
Pech(t) = U(t) I(t), this is our control signal u(t).
The problem formulation, with charge sustain strategy becomes

min J(u) =
∫ tf

0
Pf (t ,u(t))dt

s.t .
dSoC(t)

dt
= − Pech(t)

U(SoC(t))Qtot

SoC(0) = SoC(tf )
Pp(T ) = ηeng Pf (t) + ηel Pech(t)

where the last algebraic constraint, is the propulsive power demand.
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Energy Management for the Parallel HEV in a Driving Cycle

Set up the Hamiltonian

H(t ,SoC(t),u(t), λ(t)) = Pf (t ,u(t))− λ(t)
Pech(t)

U(SoC(t))Qtot

Now we use the necessary conditions for the adjoint state.

λ̇(t) = − ∂

∂x
H(t , x(t),u(t), λ(t)) =

∂

∂SoC
Pech(t)

U(SoC(t))Qtot
= − Pech(t)

U(SoC(t))2 Qtot

∂U(SoC(t))
∂SoC

Lets have a look at ∂U(SoC(t))
∂SoC .
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Battery Voltage and SoC

Typical characteristics. Q=SOC has little or no influence in the normal region.

(Source: batteryuniversity.com)

A good model for normal
operation is

∂U(SoC(t))
∂SoC

= 0

Which gives

λ̇(t) = 0

λ(t) thus becomes a constant
λ0.
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Solution Algorithm

Set up the models for vehicle and engine with fuel flow and the power electronics and
electric machine.

1 Setup all equations and form the Hamiltonian.
2 Make a guess on λ0.
3 Run a drivcycle simulation with your vehicle where you in each step minimize the

Hamiltonian to get the control signal.
4 If the charge sustainability is fulfilled then stop.
5 Modify λ0 and go to step 3.

A driving cycle is mapped to a λ0.

If we want to use it in normal driving, we don’t know λ0 and cannot iterate to find it.
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Analytical Solutions to Optimal Control Problems

If we have an incorrect λ0 the SoC will drift away from its nominal SoCref value.

Solution
Start with an initial guess then look at SoC and update λ0 as we drive, use for example a
PI-controller.

λ0 = PI(SoC − SoCref )

This is called Adaptive ECMS, as it adapts λ0 to the driving cycle.
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Analytical Solutions to Optimal Control Problems

µ0 depends on the (soft) constraint

µ0 =
∂

q(tf )
φ(q(tf )) = /special case/ = −w

Different efficiencies

µ0 =
∂

∂q(tf )
φ(q(tf )) =

{
−wdis, q(tf ) > q(0)
−wchg , q(tf ) < q(0)

Introduce equivalence factor (scaling) by studying battery and fuel power

s(t) = −µ(t) HLHV

Vb Qmax

ECMS – Equivalent Consumption Minimization Strategy
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Determining Equivalence Factors I

Constant engine and battery efficiencies

sdis =
1

ηe ηf

schg =
ηe

ηf
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Determining Equivalence Factors II

Collecting battery and fuel energy data
from test runs with constant u gives a
graph
Slopes determine sdis and schg .
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ECMS On-line Implementation

Flowchart

There is also a T-ECMS (telemetry-ECMS)
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PHEV – Charge Deplete then Charge Sustain (CDCS)

Statistic analysis shows that most trips are short, good idea to use up all electricity.
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PHEV – Blended Mode

5 Commuter tracks for a car.
Compute an SoC(t) reference.
Use PI controller to follow that SoC(t).
Use more theory, DP cost to go can give
λ.
Compare to CDCS.
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PHEV – Comparison

6.8%–9.0% Improvements in fuel economy, with blended strategies.
Viktor Larsson, Lars J. Mårdh, Bo Egardt “Comparing Two Approaches to Precompute Discharge Strategies for Plug-in
Hybrid Electric Vehicles”, IFAC AAC, Tokyo, 2013.
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