Vehicle Propulsion Systems Lecture 6 Supervisory Control Algorithms

Lars Eriksson Professor

Vehicular Systems Linköping University

May 5, 2020

Outline

2/48

Hybrid Electrical Vehicles – Parallel

- Two parallel energy paths
- One state in QSS framework, state of charge

Hybrid Electrical Vehicles - Serial

- One path; Operation decoupled through the battery
- Two states in QSS framework, state of charge & Engine speed

Optimization

What gear ratios give the lowest fuel consumption for a given drivingcycle? —Problem presented in appendix 8.1

Problem characteristics

- Countable number of free variables, $i_{g,j}, j \in [1, 5]$
- A "computable" cost, $m_f(\cdots)$
- A "computable" set of constraints, model and cycle
- The formulated problem

 $\begin{array}{l} \min_{i_{g,j}, j \in [1,5]} & m_f(i_{g,1}, i_{g,2}, i_{g,3}, i_{g,4}, i_{g,5}) \\ \text{s.t.} & \text{model and cycle is fulfilled} \end{array}$

General problem formulation

• Cost function (a functional)

$$J(u) = \phi(x(t_b), t_b) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$

Dynamic system model (constraints)

$$\frac{d}{dt}x = f(x(t), u(t), t), x(t_a) = x_a$$

Control and state (path) constraints

$$u(t) \in U(t)$$

 $x(t) \in X(t)$

Optimal Control – Problem Motivation

Car with gas pedal u(t) as control input:

How to drive from A to B on a given time with minimum fuel consumption?

- Cost function $\int_0^{t_f} \dot{m}_f(t) dt$ Fuel mass-flow model $\dot{m}_f = L(v(t), u(t))$ (engine efficiency)
- Infinite dimensional decision variable u(t)
- Constraints:
 - Differential equations: Model of the car (the vehicle motion equation)

$$m_{v} \frac{d}{dt} v(t) = F_{t}(v(t), u(t)) - (F_{a}(v(t)) + F_{r}(v(t)) + F_{g}(x(t)))$$

$$\frac{d}{dt} x(t) = v(t)$$

- Starting point x(0) = A
- End point $x(t_f) = B$
- Limited control action $0 \le u(t) \le 1$
- Speed limits $v(t) \leq g(x(t))$

8/48

Dynamic programming – Problem Formulation

Optimal control problem

min
$$J(u) = \phi(x(t_b), t_b) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$

s.t. $\frac{d}{dt}x = f(x(t), u(t), t)$
 $x(t_a) = x_a$
 $u(t) \in U(t)$
 $x(t) \in X(t)$

- x(t), u(t) functions on $t \in [t_a, t_b]$
- Search an approximation to the solution by discretizing
 - the state space x(t)
 - and maybe the control signal u(t)
 - in both amplitude and time.
- The result is a combinatorial (network) problem

Deterministic Dynamic Programming – Basic algorithm

Discretize the time and state space, and search for an approximation to the solution.

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Guarantees a global solution, within the grid.

Algorithm idea

Start at the end and proceed backwards in time to build up an optimal cost-to-go function, store the corresponding control signal.

11/48

Parallel Hybrid Example

- Fuel-optimal torque split factor $u(SOC, t) = \frac{T_{e-motor}}{T_{gearbox}}$
- ECE cycle
- Constraints $SOC(t = t_f) \ge 0.6, SOC \in [0.5, 0.7]$

1 Repetition

Energy Management Systems – Supervisory Control Algorithms

- Heuristic Control Approaches
- Optimal Control Strategies
- 5 Anlytical Solutions to Optimal Energy Management Problems
 - Pontryagin's Maximum Principle
 - ECMS Equivalent Consumption Minimization Strategy
- 6 Plug-in HEV PHEV Discharging Strategies

Parallel Hybrid – Modes and Power Flows

The different modes for a parallel hybrid

 $u pprox P_{batt}/P_{vehicle}$

Battery drive mode (ZEV)

Control algorithms

• Determining the power split ratio *u*

$$u_j(t) = \frac{P_j(t)}{P_{m+1}(t) + P_j(t)}$$
(4.110)

- Clutch engagement disengagement $B_c \in \{0, 1\}$
- Engine engagement disengagement $B_e \in \{0, 1\}$

15/48

Strategies for the Parallel Hybrid

Power split u, Clutch B_c , Engine B_e

	Mode	и	Be	B _c
1	ICE	0	1	1
2a	ZEV	1	0	0
2b	ZEV	1	0	1
3	Power assist	[0,1]	1	1
4	Recharge	< 0	1	1
5a	Regenerative braking	1	0	0
5a	Regenerative braking	1	0	1

All practical control strategies have engine shut off when the torque at the wheels are negative or zero; standstill, coasting and braking.

Classification I – Supervisory Control Algorithms

- Non-causal controllers
 - Detailed knowledge about future driving conditions.
 - Position, speed, altitude, traffic situation.
 - Uses:

Analyses of optimal behavior on regulatory drive cycles Public transportation, long haul operation, GPS based route planning.

- Causal controllers
 - No knowledge about the future.
 - Use information about the current state.
 - Uses:
 - "The normal controller", on-line, in vehicles without planning

Classification II – Vehicle Controllers

- Heuristic controllers
 - -Causal
 - -State of the art in most prototypes and mass-production
- Optimal controllers
 - -Often non-causal
 - -Some causal solutions exist, ECMS.
- Sub-optimal controllers
 - -Uses optimization to solve a smaller sub-problems
 - -Often causal.

On-going work to include optimal controllers in production vehicles.

Some Comments About the Problem

- Important problem for the industry Area of competition
- Difficult problem
- Unsolved problem for causal controllers
- Rich body of engineering reports and research papers on the subject

-This can clearly be seen when reading chapter 7! It has been the main research area for Lino Guzzella and Antonio Sciarretta.

Outline

Repetition

2 Energy Management Systems – Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

5 Anlytical Solutions to Optimal Energy Management Problems

- Pontryagin's Maximum Principle
- ECMS Equivalent Consumption Minimization Strategy
- 6 Plug-in HEV PHEV Discharging Strategies

19/48

Heuristic Control Approaches

Operation usually depends on a few vehicle operation

Rule based:

Nested if-then-else clauses

- if $\textit{v} < \textit{v}_{\textit{low}}$ then use electric motor (u=1). else...
- Fuzzy logic based

Classification of the operating condition into fuzzy sets. Rules for control output in each mode. Defuzzyfication gives the control output.

Heuristic Control Approaches

• Parallel hybrid vehicle (electric assist)

• Determine control output as function of some selected state variables: vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration, torque demand.

Heuristic Control Approaches – Concluding Remarks

- Easy to conceive
- Relatively easy to implement
- Result depends on the thresholds
- Proper tuning can give good fuel consumption reduction and charge sustainability
- Performance varies with cycle and driving condition -Not robust
- Time consuming to develop and tune for advanced hybrid configurations

Outline

Repetition

- 2 Energy Management Systems Supervisory Control Algorithms
- Heuristic Control Approaches
- Optimal Control Strategies
- 5 Anlytical Solutions to Optimal Energy Management Problems
 - Pontryagin's Maximum Principle
 - ECMS Equivalent Consumption Minimization Strategy
- Plug-in HEV PHEV Discharging Strategies

23/48

25/48

• Variables.

Control signal -u(t), System state -x(t), State of charge -q(t) (is a state).

Formulating the Optimal Control Problem

-What is the optimal behaviour?

• Minimize the fuel consumption

Defines Performance index J.

$$J=\int_0^{t_f} \dot{m}_f(t,u(t))dt$$

• Balance between fuel consumption and emissions

$$J = \int_0^{t_f} \left[\dot{m}_f(t, u(t)) + \alpha_{CO} \dot{m}_{CO}(x(t), u(t)) + \right]$$

 $\alpha_{NO}\dot{m}_{NO}(x(t),u(t)) + \alpha_{HC}\dot{m}_{HC}(x(t),u(t)) dt$

• Include driveability criterion

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) + \beta \left(\frac{d}{dt}a(t)\right)^2 dt$$

26/48

Towards a Solution to the Problem

In the course we are focusing on the fuel consumption.

• Minimize the fuel consumption

$$J=\int_0^{t_f} \dot{m}_f(t,u(t))dt$$

- The driving cycle is specified, no freedom
- Our freedom is in the choice of how to use the electric energy in the battery
- The focus is also on hybrid vehicles that need to be charge sustaining Constraint $q(0) = q(t_f)$
- Plugin Hybrid Electric Vehicles (PHEV) can be treated similarly, where the discharge profile is specified.

27/48

Including the constraint

Hard or soft constraints

min
$$J(u) = \int_0^{t_f} L(t, u(t)) dt$$

s.t. $q(0) = q(t_f)$

min
$$J(u) = \phi(q(t_f)) + \int_0^{t_f} L(t, u(t)) dt$$

• How to select $\phi(q(t_f))$?

 $\phi(q(t_f)) = \alpha \left(q(t_f) - q(0)\right)^2$

penalizes high deviations more than small, independent of sign

$$\phi(q(t_f)) = w(q(0) - q(t_f))$$

penalizes battery usage, favoring energy storage for future use

• One more feature from the last one

Including the constraint

Including battery penalty according to

$$\phi(q(t_f)) = w(q(0) - q(t_f)) = -w \int_0^{t_f} \dot{q}(t) dt$$

enables us to rewrite

min
$$J(u) = \int_0^{t_f} L(t, u(t)) - w \dot{q}(t) dt$$

• Note the similarity to the method of using Lagrange multiplier.

Constraints That are Also Included

- State equation $\dot{x} = f(x)$ is also included
- We are considering a parallel hybrid with only one state, the SoC (or equivalently q(t))

$$\begin{split} \min J(u) &= \phi(q(t_f), t_f) + \int_0^{t_f} L(t, u(t)) dt \\ s.t. \; \frac{d}{dt} q &= f(t, q(t), u(t)) \\ u(t) &\in U(t) \\ q(t) &\in Q(t) \end{split}$$

Outline

Repetition

- Energy Management Systems Supervisory Control Algorithms
- 3 Heuristic Control Approaches
- Optimal Control Strategies
- 5 Anlytical Solutions to Optimal Energy Management Problems
 - Pontryagin's Maximum Principle
 - ECMS Equivalent Consumption Minimization Strategy
- Plug-in HEV PHEV Discharging Strategies

Numerical Methods for Solving Optimal Control Problems

		Numer	ical	optimal control			
						Ţ	
Hamilton-Jacobi-Bellma	an equation	Indirect methods		Direct methods			
"Tabulation in state space"	-	"Optimis	"Optimise, then discretise"			"Discretis	se, then optimise"
→ Dynamic programming (d	iscrete systems)	\rightarrow Pontr	→ Pontryagin, solve two-point BVP		→ Transf	form into NLP	
- Curse of dimensionality		- Hamilt	- Hamiltonian dynamics ill-conditioned		ditioned	+ Flexible	
,		- Initiali	sati	ion of the BVP diffic	ult	+ Efficient	(sparsity)
		- First-o	rde	r optim. cond. "by h	and"	+ Robust (ition)
			1-				
Control par	ameterisation		1 I	Con	trol and state	parameteris	ation
"Sequential approach" → ODE always feasible			1 ["Simultaneous approach" → ODE satisfied only after optim.			
+ Simple to implement	+ Simple to implement			+ Many degrees of freedom during optimisation			
- Sensitivity ("tail wags the dog")				+ Sparsity + Can handle unstable systems			
- ODE solver has to provide c	consistent sensitivities		Jl	- Same discretisatio	on of control	inputs and s	tate variables
				¥	4		
Single shooting	Multiple sho	oting			Direct	transcription	n
Only discretised Small intervals				Apply discret	tisation scher	ne to ODE	
control inputs in NLP \rightarrow	Initial state of each in	iterval in NI	LP	→ All discret	tised control	inputs and s	tate vars. in NLP
					\		
		Direct	coll	location			
Families of implicit I	Runge-Kutta schemes	that repres	ent	state trajectory by p	olynomial →	continuous	solution
					↓		
Global: pseudo:	spectral methods				Loc	:al	
One single interval, e	xtremely high order				Low orde	er, fine grid	
+ Accuracy of integration				+ Arbitrary mesh a	nd order (loc	al refinemen	it)
 Grid prescribed, poor approx 	ximation of nonsmoo	othness		+ Sparsity			
↓				↓			
Pseudospectral patching	š ())	He	rmite-Simpson	Crank-Ni	cholson	Euler backward
Few intervals, medium to high order				oatto, 3rd order	Lobatto, 2	nd order	Radau, 1st order

Overview from Jonas Asprion, 'Optimal Control of Diesel Engines, Modeling, Numerical Methods, and Applications", PhD Thesis, ETH, (2015).

Commercial Break

Course TSRT08 Optimal Control

31/48

Analytical Solutions to Optimal Control Problems

• A general optimal control problem formulation

min
$$J(u) = \phi(x(t_f), t_f) + \int_0^{t_f} L(t, u(t)) dt$$

s.t. $\dot{x}(t) = f(t, x(t), u(t))$

Hamiltonian defined in optimal control theory

$$H(t, \mathbf{x}(t), \mathbf{u}(t), \lambda(t)) = L(t, \mathbf{u}(t)) + \lambda(t) f(t, \mathbf{x}(t), \mathbf{u}(t))$$

- $\lambda(t)$ is a Lagrange multiplier, it's a dear child with many names
 - Lagrange variable
 - Adjoint state
 - Co-state
 - Most often denoted $\lambda(t)$, but $\mu(t)$ is also used.

Analytical Solutions to Optimal Control Problems

Hamiltonian

$$H(t, \mathbf{x}(t), \mathbf{u}(t), \lambda(t)) = L(t, \mathbf{x}(t)) + \lambda(t) f(t, \mathbf{x}(t), \mathbf{u}(t))$$

Necessary conditions for optimality

$$\dot{x}(t) = f(t, x(t), u(t))$$
$$\dot{\lambda}(t) = -\frac{\partial}{\partial x} H(t, x(t), u(t), \lambda(t))$$

- At the optimum $x^*(t)$, $u^*(t)$, $\lambda^*(t)$
 - $H(x^{*}(t), u^{*}(t), \lambda^{*}(t)) \leq H(x^{*}(t), u(t), \lambda^{*}(t))$
- Pontryagin's Minimum/Maximum Principle

 $u^*(t) = \underset{u(t)}{\operatorname{arg\,min}} H(x^*(t), u(t), \lambda^*(t))$

Remaining question: What can we do to find $\lambda^*(t)$?

Modeling a Parallel HEV in a Driving Cycle

The cycle is given so the propulsive power demand $P_{\rho}(t)$ from the Powertrain is given.

- We want to minimize the fuel energy, i.e. integral of the power $P_f(t)$.
- We have the freedom to use electrochemical energy from the battery $P_{ech}(t) = U(t) I(t)$, this is our control signal u(t).
- The problem formulation, with charge sustain strategy becomes

$$\begin{array}{l} \min J(u) = \int_{0}^{t_{f}} P_{f}(t,u(t)) dt \\ s.t. \; \frac{dSoC(t)}{dt} = -\frac{P_{ech}(t)}{U(SoC(t)) \; Q_{tot}} \\ SoC(0) = SoC(t_{f}) \\ P_{p}(T) = \eta_{eng} P_{f}(t) + \eta_{el} P_{ech}(t) \end{array}$$

where the last algebraic constraint, is the propulsive power demand.

35/48

Energy Management for the Parallel HEV in a Driving Cycle

• Set up the Hamiltonian

$$H(t, SoC(t), u(t), \lambda(t)) = P_f(t, u(t)) - \lambda(t) \frac{P_{ech}(t)}{U(SoC(t)) Q_{tot}}$$

• Now we use the necessary conditions for the adjoint state.

$$\dot{\lambda}(t) = -\frac{\partial}{\partial x}H(t, x(t), u(t), \lambda(t)) = \frac{\partial}{\partial SoC}\frac{P_{ech}(t)}{U(SoC(t))Q_{tot}} = -\frac{P_{ech}(t)}{U(SoC(t))^2Q_{tot}}\frac{\partial U(SoC(t))}{\partial SoC}$$

• Lets have a look at
$$\frac{\partial U(SoC(t))}{\partial SoC}$$
.

36/48

Battery Voltage and SoC

Solution Algorithm

Set up the models for vehicle and engine with fuel flow and the power electronics and electric machine.

- Setup all equations and form the Hamiltonian.
- 2 Make a guess on λ_0 .
- Run a drivcycle simulation with your vehicle where you in each step minimize the Hamiltonian to get the control signal.
- If the charge sustainability is fulfilled then stop.
- Solution Modify λ_0 and go to step 3.

A driving cycle is mapped to a λ_0 .

If we want to use it in normal driving, we don't know λ_0 and cannot iterate to find it.

Analytical Solutions to Optimal Control Problems

If we have an incorrect λ_0 the SoC will drift away from its nominal $\textit{SoC}_{\textit{ref}}$ value.

Solution

Start with an initial guess then look at SoC and update λ_0 as we drive, use for example a PI-controller.

$$\lambda_0 = PI(SoC - SoC_{ref})$$

This is called Adaptive ECMS, as it adapts λ_0 to the driving cycle.

Analytical Solutions to Optimal Control Problems

• μ_0 depends on the (soft) constraint

$$\mu_0 = rac{\partial}{q(t_f)} \phi(q(t_f)) = / ext{special case} / = -w$$

Different efficiencies

$$\mu_0 = \frac{\partial}{\partial q(t_f)} \phi(q(t_f)) = \begin{cases} -w_{dis}, & q(t_f) > q(0) \\ -w_{chg}, & q(t_f) < q(0) \end{cases}$$

• Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b \, Q_{max}}$$

ECMS – Equivalent Consumption Minimization Strategy

39/48

Determining Equivalence Factors I

Constant engine and battery efficiencies

$$egin{aligned} m{s}_{dis} &= rac{1}{\eta_e\,\eta_f} \ m{s}_{chg} &= rac{\eta_e}{\eta_f} \end{aligned}$$

Determining Equivalence Factors II

- Collecting battery and fuel energy data from test runs with constant *u* gives a graph
- Slopes determine s_{dis} and s_{chg} .

ECMS On-line Implementation

There is also a T-ECMS (telemetry-ECMS)

Outline

• Pontryagin's Maximum Principle • ECMS – Equivalent Consumption Minimization Strategy Plug-in HEV – PHEV – Discharging Strategies 6

PHEV – Charge Deplete then Charge Sustain (CDCS)

Statistic analysis shows that most trips are short, good idea to use up all electricity.

PHEV – Blended Mode

• 5 Commuter tracks for a car.

• Compare to CDCS.

λ.

• Compute an *SoC*(*t*) reference.

PHEV – Comparison

Simulation Results - All 5 commuter Trips										
	$\int I(t) dt$ [Ah]	$\int \dot{m}(t) dt \\ [\text{kg}]$	$SoC(t_f)$ (mean)	C-rate (mean)						
SoC-ref Detailed	209	5.45	0.295	1.49						
Soc-ref Simplified	210	5.43	0.291	1.49						
DP cost-to-go	211	5.41	0.287	1.50						
CDCS	241	5.85	0.296	1.71						

6.8%–9.0% Improvements in fuel economy, with blended strategies. Viktor Larsson, Lars J. Mårdh, Bo Egardt "Comparing Two Approaches to Precompute Discharge Strategies for Plug-in Hybrid Electric Vehicles", IFAC AAC, Tokyo, 2013.