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Objective

Scenario

Long-haulage heavy truck on open road

An on-board road topography map

Controls

Engine and brake torque (continuous)

Gear ratio selection (discrete)

Minimum-fuel strategy for a drive mission with a given maximum trip time

minimize M

subject to T ≤ T0

Erik Hellström (Linköping University) Fuel-Optimal Control October 12, 2009 2 / 31

Motivation : Cost

Interest
& Depreciation 14.8%

Maintenance
& Service 7.3%

Taxes
& Insurances 9.0%

Tires 7.2%

Oil 1.5%

Fuel 29.3%

Salaries 30.9%

Life cycle cost

An average class 8

travels 150,000 km per year

consumes 32.5 liter per 100 km in Europe according to (Schittler, 2003)
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Motivation : Environment

Class 8 trucks

typically travels at operating points with high efficiency

on the other hand, they

consume 68 % of all commercial truck fuel used
70 % of this amount is spent traveling on open road with a trip length
of more than 100 miles (161 km)

In the U.S. according to (Bradley, 2000)

Summary

Fuel is a large share of the life cycle cost

Any technology that improves truck efficiency will have the best
benefit for long-haul class 8 trucks
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Objective

Minimum-fuel strategy for a drive mission with a given maximum trip time

minimize M

subject to T ≤ T0

Conditions change during a drive mission

Disturbances such as delays
Changed parameters such as the mass

Efficient approach is to consider a truncated horizon, a receding
horizon approach
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Receding Horizon

s

Look-ahead horizon s ∈ [0,H]

Drive mission s ∈ [0, S], S > H

The criterion is defined for s ∈ [0, S ]: J = min M(S)

but we consider it for s ∈ [0,H]: ≈ min M(H) + R̃(x(H))

where R̃ is an estimate of the residual cost and a function of the terminal
state x(H).

Objective defined

The problem is to find the fuel-optimal control law for a finite horizon
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A Generic Analysis

s

FpmFd(s, v)

mv
dv

ds
= Fp − Fd(s, v)

Minimize the Propulsive Energy

min
v(s)

W =

∫ S

0
Fp ds =

∫ S

0

(
mv

dv

ds
+ Fd(s, v)

)
ds

subject to

∫ S

0

ds

v
≤ T0

Using calculus of variations, the solution is shown to be a constant speed
level v > 0, if we assume that

∂Fd

∂v
≥ 0 and Fd(s, v) = f1(s) + f2(v).
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Key Features

The power to mass ratio makes

moderate slopes significant

velocity variations inevitable

gear shifts necessary

⇒ Potential to reduce the fuel
consumption.

Some challenges

Already highly fuel-efficient

Both real and integer variables

A position-variant control law u(x , s) is expected

Real-time requirements
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An Efficient Algorithm

Current main challenge is to find the solution efficiently

We propose an algorithm based on dynamic programming (DP)

Exponential increase of complexity in DP due to continuous variables

No issue here since the dimension is low

Favorable linear growth with increasing horizon

A rather long horizon is needed
Alternative methods typically give a complex combinatorial problem
due to integer variables

Allows general modeling

Approaches

Shorter horizon

Better estimate of the residual cost at the end of the horizon

Fewer grid points

Lowering the dimension and reducing the search space

Coarse grid and interpolation together with simple integration

An analysis of errors due to discretization and interpolation shows that
an energy formulation of the dynamics is beneficial
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Residual Cost

engine torque T (Nm)

work W = 2πnrηT (J/cycle)

u = f(T, . . .)≈ kT + c

fueling u (g/cycle cylinder)

mass M = ncylu (g/cycle) Fueling u versus torque T is
approximately an affine
function with gradient k

Scaling gives the relation
between fuel mass M and
work W . The gradient is

γ = k
ncyl

2πnrη
(g/J)

∆M ≈ γ∆W
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Residual Cost

A change in kinetic energy ∆e at the end of the horizon is
approximately proportional to a fuel mass

∆M ≈ γ∆e

This reflects that kinetic energy at the end of the horizon can be used
to save fuel in the future

With this assumption, the residual cost is

R̃ = C − γe

where C can be chosen to zero.

We have also shown that this is accurate in the unconstrained case

For the general case, numerical results show that this is reasonable
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Lowering The Dimension : Reformulation

J = min
T=T0

M (P1)t
v
g

′

= f (s, v , g , u)

J = min M + βT (P2)[
v
g

]′
= f̃ (s, v , g , u)

For a given β, the solution for (P2) gives a trip time T = T (β). If we find
β such that T (β) = T0, then we have the solution for (P1) as well.

Time is no longer necessary as a state, instead we have to find β.
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Lowering The Dimension : Finding β

The function T (β) is monotonically decreasing

T (β2) ≤ T (β1) iff β2 ≥ β1 > 0

β could be found by, e.g., simple shooting methods

We derive an approximate value of β

A vehicle travels at speed v̂ on level road for ∆s. Then, typically
Fd(s, v) = Fd(v) and we have J(v̂) = M + βT where

M = γ∆W = γFd(v̂)∆s and T =
∆s

v̂

In a stationary point, J ′(v̂) = 0, it holds that β = γv̂2F ′
d(v̂), where

typically F ′
d(v̂) = F ′

air(v̂)

β = 2γPair(v̂) (g/s)
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Algorithm : Summary

s

Look-ahead horizon s ∈ [0,H]

Drive mission s ∈ [0, S], S > H

We consider (P2) for s ∈ [0,H], i.e.,

min
{

M + βT + R̃
}

where R̃ = −γe(H) and β = 2γPair(v̂).

Solved through DP

Energy formulation of the dynamics makes it possible to use coarse
grids together with linear interpolation and Euler forward integration

E. Hellström, J. Åslund, and L. Nielsen.

Design of an efficient algorithm for fuel-optimal look-ahead control.

Solicited for Control Engineering Practice.

Erik Hellström (Linköping University) Fuel-Optimal Control October 12, 2009 16 / 31



A Solution
The control law u = µ(s, x)
for g = 12
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Evaluation Setup

Collaboration with scania

GPS and road database on board

Louice

About 40,000 kg

5 cylinder, 9 liter engine

Max. 1550 Nm, 310 Hp

12-speed transmission

84 km/h ± 5 km/h

1500 m horizon

Search for Look-ahead Control

E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen.

Look-ahead control for heavy trucks to minimize trip time and fuel consumption.

Control Engineering Practice, 17(2):245–254, 2009.

Erik Hellström (Linköping University) Fuel-Optimal Control October 12, 2009 19 / 31

Evaluation Setup : Interface

Feed the cruise
controller with
set speeds

Model the
automatic gear
shift system

Set speed

Current velocity and gear

slope
Road

Position

database

GPS

Road
DP algorithm

C
A

N
 b

us
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Trial Route

120 km highway segment
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Trial Route : Topography

Moderate slopes

Light to moderate traffic
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Experimental Results

Five comparative runs

Algorithm parameters constant
Cruise controller set point varied
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Average Results

Average over four runs back and forth

LC CC

fuel consumption [L/100km]

35.03 36.33

−3.54 %

LC CC

trip time [seconds]

4905.12 4905.38
−0.03 %

LC CC

number of gear shifts [−]

−42.0 %

12

20
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The Hållet Segment
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The Hållet Segment : Characteristics
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Look−ahead controller (LC):
27.29 dm3/100km, 159.8 s

Cruise controller (CC):
29.72 dm3/100km, 162.7 s
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The Järna Segment
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The Järna Segment : Characteristics
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Concluding Remarks

An efficient optimization algorithm is tailored based on DP

Energy formulation of the dynamics is a key point
Sufficiently low complexity make experimental evaluation feasible

The look-ahead control strategy is evaluated in trial runs

Significant reduction of the fuel consumption is demonstrated
The behavior is perceived as natural and comfortable
Quantification of the optimal characteristics
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An Energy Perspective
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