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Motivation : Cost

Fuel 29.3%

Salaries 30.9%

Taxes
& Insurances 9.0%

Oil 1.5%/

Maintenance

Interest
& Depreciation 14.8%

& Service 7.3%

Tires 7.2%

An average class 8
= travels 150,000 km per year

= consumes 32.5 liter per 100 km in Europe according to (Schittler, 2003)

Erik Hellstrom (Linkdping University) Fuel-Optimal Control October 12, 2009 3/31

Objective

Scenario
= Long-haulage heavy truck on open road
= An on-board road topography map
Controls
= Engine and brake torque (continuous)

= Gear ratio selection (discrete)

Minimum-fuel strategy for a drive mission with a given maximum trip time

minimize M
subject to T < Ty

v

Erik Hellstrom (Linkoping University) Fuel-Optimal Control October 12, 2009 2/31

Motivation : Environment

Class 8 trucks
= typically travels at operating points with high efficiency

= on the other hand, they
= consume 68 % of all commercial truck fuel used
« 70 % of this amount is spent traveling on open road with a trip length
of more than 100 miles (161 km)

In the U.S. according to (Bradley, 2000)

v

= Fuel is a large share of the life cycle cost

= Any technology that improves truck efficiency will have the best
benefit for long-haul class 8 trucks
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Outline

@ Introduction
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Receding Horizon

Drive mission s € [0,5],5 > H

Look-ahead horizon s € [0, H] |

S

The criterion is defined for s € [0, S]: J = min M(S)
but we consider it for s € [0, H]: ~ min M(H) + R(x(H))

where R is an estimate of the residual cost and a function of the terminal
state x(H).

Objective defined
The problem is to find the fuel-optimal control law for a finite horizon
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Objective

Minimum-fuel strategy for a drive mission with a given maximum trip time

minimize M

subject to T < Ty

= Conditions change during a drive mission

= Disturbances such as delays
» Changed parameters such as the mass

= Efficient approach is to consider a truncated horizon, a receding
horizon approach
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A Generic Analysi

. dv
ST , > mVE:FP_Fd(Sv V)

Minimize the Propulsive Energy

S S dv
min W = Fpds = / (mv— + F4(s, v)) ds
0 0 d

v(s) S

S ds
subject to/ — < Ty
0 14

Using calculus of variations, the solution is shown to be a constant speed
level v > 0, if we assume that

OF4
— >0 and Fy4(s,v) = fi(s) + f(v).
ov )
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Key Features

The power to mass ratio makes
= moderate slopes significant Potential to reduce the fuel
= velocity variations inevitable consumption.

= gear shifts necessary

Some challenges

= Already highly fuel-efficient
= Both real and integer variables
= A position-variant control law u(x,s) is expected

= Real-time requirements
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An Efficient Algorithm

= Current main challenge is to find the solution efficiently

= We propose an algorithm based on dynamic programming (DP)

= Exponential increase of complexity in DP due to continuous variables
= No issue here since the dimension is low
= Favorable linear growth with increasing horizon

= A rather long horizon is needed
« Alternative methods typically give a complex combinatorial problem
due to integer variables

= Allows general modeling

v

Approaches

= Shorter horizon
- Better estimate of the residual cost at the end of the horizon

= Fewer grid points
= Lowering the dimension and reducing the search space

i TalQareagrid,and.interpolation together, with simple integratione, 11,3

Outline

= An analysis of errors due to discretization and interpolation shows that

@ An Efficient Algorithm
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Residual Cost

fueling u (Yeycle cylinder)
mass M = ngu (Yeycle)

= Fueling u versus torque T is
approximately an affine
function with gradient k

= Scaling gives the relation
between fuel mass M and
work W. The gradient is

engine torque 7" (Nm) v = ki (g/_j)

work W = 2mn,nT (Yeycle) 27an77
AM ~yAW ]
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Residual Cost

A change in kinetic energy Ae at the end of the horizon is
approximately proportional to a fuel mass

AM =~ yAe

to save fuel in the future

With this assumption, the residual cost is

f?zC—ye

This reflects that kinetic energy at the end of the horizon can be used

where C can be chosen to zero.

= We have also shown that this is accurate in the unconstrained case

= For the general case, numerical results show that this is reasonable
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Lowering The Dimension : Finding (3
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= The function T(f3) is monotonically decreasing

T(B2) < T(Br) iff B2 > 1 >0

= (3 could be found by, e.g., simple shooting methods

= We derive an approximate value of 3

A vehicle travels at speed ¥ on level road for As. Then, typically
Fq(s,v) = F4(v) and we have J(V) = M + 3T where
A
M= yAW = 7Fy(9)As and T =22

v

In a stationary point, J'(¥) = 0, it holds that 3 = v02F}(¥), where
typically F/ (V) = F.. (V)

B =2vPa(V) (8/s)
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Lowering The Dimension : Reformulation

J= min M (P1)
T=To J=minM+ 3T (P2)
/!

t !/

V ~
"4 :f(S,V,g,U) |:g:| :f(S,V,g,U)
g

v

For a given 3, the solution for (P2) gives a trip time T = T((). If we find
B such that T(3) = To, then we have the solution for (P1) as well. J

Time is no longer necessary as a state, instead we have to find . J
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Algorithm : Summary

Drive mission s € [0, 5], 5 > H

Look-ahead horizon s € [0, H] |

= We consider (P2) for s € [0, H], i.e.,
min {M + BT + fx’}
where R = —~ve(H) and 3 = 2yP.i (V).
= Solved through DP

= Energy formulation of the dynamics makes it possible to use coarse
grids together with linear interpolation and Euler forward integration

@ E. Hellstrom, J. Aslund, and L. Nielsen.
Design of an efficient algorithm for fuel-optimal look-ahead control.
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A Solution

The control law u = p(s, x)
for g =12
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Evaluation Setup
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= Collaboration with SCANIA
= GPS and road database on board

J

Y Search for Look-ahead Control

= About 40,000 kg
= 5 cylinder, 9 liter engine
Max. 1550 Nm, 310 Hp

= 12-speed transmission

Louice

84 km/h £+ H5km/h
1500 m horizon

Outline

@ Experimental Evaluation
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Evaluation Setup : Interface
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@ E. Hellstrém, M. Ivarsson, J. Aslund, and L. Nielsen.
Look-ahead control for heavy trucks to minimize trip time and fuel consumption.
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= Feed the cruise
controller with
set speeds

= Model the

automatic gear
shift system

Erik Hellstrom (Linkdping University)

GPS

Position

Road

DP algorithm

Fuel-Optimal Control
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Trial Route

Trial Route : Topography

= 120 km highway segment

= Moderate slopes
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Average Results

= Five comparative runs

= Algorithm parameters constant
«» Cruise controller set point varied

Fuel-Optimal Control
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= Average over four runs back and forth

fuel consumption [L/100km]
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trip time [seconds]
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The Héllet Segment The Héllet Segment : Characteristics

Cruise controller (CC): N Look-ahead controller (LC): Cruise controller (CC): N Look-ahead controller (LC):
29.72 dm¥100km, 162.7s Atime =-1.78% 7.9 dm?/100km, 159.8 s 47.79 dm?/100km, 164.3 s Atime =-1.82% 44,90 dm?/100km, 161.3 5
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The Jarna Segment The Jarna Segment : Characteristics

Cruise controller (CC): ; Look-ahead controller (LC): Cruise controller (CC): A{uel =-721% Look-ahead controller (LC):
50.67 dm/100km, 11625 Atime=-1.03% 50,36 dm*/100km, 115.0s 28.04 dm/100km, 11065 Atime =-0.54% 26,02 dm100km, 11005
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Concluding Remarks

Fuel-optimal Control of Heavy Trucks

Ph.D. Student Erik Hellstrom

w .. . . . . hell isy.liu.
= An efficient optimization algorithm is tailored based on DP ellstronQisy liu.se

« Energy formulation of the dynamics is a key point Vehicular Systems
= Sufficiently low complexity make experimental evaluation feasible Dept. of Electrical Engineering
= The look-ahead control strategy is evaluated in trial runs October 12. 2009

= Significant reduction of the fuel consumption is demonstrated
= The behavior is perceived as natural and comfortable
= Quantification of the optimal characteristics

»}’g Linkdping University
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An Energy Perspective
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