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Fordonssystem F6 5: Repetition - Reglering

Trevdgskatalysatorn och lambdafonsteret = Reglermal A =1

streckad - fore katalysatorn heldragen - efter katalysatorn

-
Luft och bransle — Arbete och emissioner
Medelvardesmodellering
Samband mellan aktuator och sensorer samt sensorer inbdrdes.
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.
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Fordonssystem F& 5: Repetition - Reglering
e
Huvudlooparna
Huvudlooparna vid reglering av bensinmotorer.
—Ovre loopen &r luft/brinsleregulatorn.
—Nedre loopen ar tandningsregulatorn.
From engine sensors Lambda
and driver requests control
] e and tmector || s
uel meterin, hardware sensor
Engine
—= Ilonition Ignition Knock-
timing hardware [ ] [ sensing
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Fordonssystem F6 5: Repetition - Cykelmodellering
‘/
Indikatordiagram

Cylindertryck som funktion av vevaxelvinkel 6.

Termodynamiska cykler som modell av uppmatt indikatordiagram.
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Fordonssystem F6 5: Repetition - Cykelmodellering

En kort sammanfattning av termodynamiken

Mass specifika storheter — sma bokstaver
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Fordonssystem F6 5: Repetition - Reglering
N
[— Analys av
aterkopplingsloop
)‘sond(t)
Bransle: u(t) = Ky [ Agonag(t)dt
K, t
)\motor(t) = %d)&
Aavgas = Amotor(t = T4)
remmmmmmm Sjalvsvangningstid T' = 41,
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Fordonssystem F& 5: Repetition - Cykelmodellering
\
Motorgeometri = Volym
Cylinder bore B Toc /{VK
Connecting rod length | ¢ | 7 [ B |
Crank radius a
Piston stroke L = 2a ) L
Crank angle 0
Clearance volume Ve
2
Displaced volume v, = 8L
maximum cylinder volume Vag+ Ve
re = =
¢ minimum cylinder volume Ve s(0
m B2
V() =Ve+ ——(I+a—s(0)
5(0) =a cos0 + /12 — aZsin2 6
v
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Fordonssystem F& 5: Repetition - Cykelmodellering

71=%, q=%, u=%, h=%, wz%
Ideal gas pV =mRT pv=RT
1:a Huvudsatsen dQ = dU 4+ dW dq = du + dw
Rev. arbete AW = pdV dw = pdv
Entalpi H=U+pV h=u-+pv
dH =dU +dpV 4+ pdV dh =du—+dpv+ pdv
1:a H. (igen) dQ =dH — Vdp dg = dh —vdp
- ! — (di _(d
Varmekapacitet Cy = (%)v Cv = ({17%)@
=39, o= (),
Samband: du = ¢, dT dh = cpdT
Ratio of specific heats =2 v e [1.2,1.4]
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En kort sammanfattning av termodynamiken

Alla gaser vi raknar pa i kursen ar ideala.

L]

=

Il
3\:’31

Ideala gaslagen pV =mRT och pV =nRT

e R =8.3143 [J/mol K] universella gaskonstanten,
R = R/M [J/kg K] gaskonstanten.

e FOr en ideal gas galler
(utga fran h = u + pv och pv = RT)

cp—cew =R

o Kan med v = & fa foljande uttryck o= =157,

e Alla gaser vi raknar p& har ¢, och ¢, konstanta.
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Fordonssystem F6 5: Motor: Termodynamiska cykler

Termodynamiska processer

System: Isolerat, Slutet, Oppet

e Isobar: samma tryck dp =0

e [sokor: samma volym dV = 0

e Isoterm: samma temp. dT =0

e Adiabatisk: inget varmeutbyte dQ = 0

e Reversibel: dW = pdV

e Isentropisk: adiabatisk 4 reversibel (den bdsta processen)

Isentropisk kompression och expansion — Ideal gas

Isentropisk betyder
e Ingen varmeoverforing dg = 0
e Reversibel process dw = pdv

Utga fran 1:a Huvudsatsen
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Fordonssystem

F& 5: Motor: Termodynamiska cykler

dgq = du + dw = 0=cydl'+pdv
Ideal gas p = %:
RT 1 R1
cpdl = ——dv < —dT' = ———dv &
v T Cy U
1 n— Cul ‘T2 1 w21
2qr=_P" %2 g = / 7dT=—(fy—1)./ bl
T cy v T, T vy v
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Fordonssystem F6 5: Motor: Termodynamiska cykler

Isentropisk kompression och expansion — Ideal gas
1> 1 21
/ ST =-(v-1) [ Tdv = InTo—InTy = —(v—1)(Inva—Invy)
vy U
T (v vt
T1 B v

5
pv p2 v1
[T:—] = —:( ) < pgu%:plv’{
r1 v2

-1

RT T =
{U - :| é 72 - <Q> 7
P Ty p1
Viktigaste ekvationen

pvY = konstant

Isokor process (konstant volym) — t.ex. forbranning
e Konstant volym dV =0

e 1:a huvudsatsen (energiekvationen)

dQ = dU + pdV = dQ = dU

e Inre energi U=mu = dU = myot du = myot cp dT

e Frigjord energi fran branslet
Qin = min(\, 1) -my - qrv
e Integrera 1:a huvudsatsen

T3
/dQ = /T Mot v dT' = Qin = myot cv (T3 — T2)
2
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Fordonssystem F& 5: Motor: Termodynamiska cykler
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Fordonssystem F& 5: Motor, arbetsprinciper

Ideala Ottocykelns effektivitet

Arbete ut
Tillford energi

Verkningsgrad Notto =

Kanner "tillford energi” Q;n

Tva satt att berdkna "arbete ut” Wy,
— Integrera arean Wy = ¢§pdV
Losa tva integraler [c-V~=7dV
— Forsta lagen: efter en cykel har U inte andrats

dQ = dU + dW = AQ = AW

AW = Wyt AQ = Qip — Ql()ss

o Notto =Wt = QincCQuoss = 1 Qone =1 DTy

in in

1
T3—T> -1

Ottocykelns effektivitet

Efficiency for the Oto cycle.

— 1
npi=1——=5= otk
Te

Normalfall v = 1.3

Jamfor re =10 med r. =5 i
ett pV-diagram. ol
Var forlorar man?
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Fordonssystem F6 5: Motor, arbetsprinciper
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Fordonssystem F& 5: Motor, arbetsprinciper

Cykeleffektiviteten och pV-diagramet

npi= o
1=

Forutsattning:
Samma Q.

Pressure [bar]

Vad syns i diagrammet?

NOtto > NSeiliger > NMDiesel

Cykeleffektivitet forts.

Dieselcykel eller cykel med konstant-tryck
1 pr-1
r;hl (B—-1)y

npi =

Seiligercykel eller cykel med begransat-tryck

1 B’ —1
7l Ta(B- 1y +a-1

npi=1

Notera att Dieselcykeln (o = 1)
och Ottocykeln (o« =1 och g =1)
ar specialfall av Seiligercykeln.
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Fordonssystem F6 5: Motor: Momentmodellen

Medelvardesmodell for indikerat bruttoarbete W,

e Utgar fran tillganglig energi

Wig = myauy flig(Ae, Oigns e we, Vi)

Dra bort ideal Ottocykel samt verkliga forluster

= , 1 : ;
Tlig(Nes Oign; ey we, Vi) = (1 = —=) - min(L, Ae) * 1lign (Bign) * Mig.cn(we, Vir)

Skillnad verklig/ideal 14 ., (we, Vg) (chamber losses)
—Andlig forbranningshastighet ~ 2%
—Virmeodverforing ~ 15%

—resultat 7y ., ~ [0.8,0.85].

Optimal tandtidpunkt beror pa ..., momentkurvan pa ...

nign(eign) =1- Cign : (eign - eign,opt(wfiv mfg, A ))2

Fordonssystem F& 5: Motor: Momentmodellen
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Fordonssystem F6 5: Motor: Momentmodellen

MEP — Ett viktigt begrepp

e Mean effective pressure — Medeleffektivt tryck
Arbete under en cykel W

MEP = =
Motor Volym Vy

W=MA4r

enheten Nm/m3=N/m?2 vilket dr detsamma som tryck.

e XMEP — x anger var man mater arbetet
IMEP — Indikerat arbete (cylindertryck)
FMEP — Friktionsarbete
BMEP — Bromsat arbete
PMEP — Pumparbete (cylindertryck)

e Max BMEP fér sugmotor = ca 1 MPa (bra att komma ihag)

Pumparbete — sista enkla atgarden

Pressure [bar]

o 01 02 03 04 05 06 07
Volume [dm’|

Brutto IMEP (IMEP, gross) och netto IMEP.
IMEP = IMEP, - PMEP.

Lars Eriksson 18 September 2007

Fordonssystem F& 5: Motor: Momentmodellen

Lars Eriksson 19 September 2007

Fordonssystem F6 5: Motor: Momentmodellen

Medelvardesmodell for pumparbete

Dellast p; = 0.3 bar and pe = 1 bar.

pressure o]

T s

e Pumparbete (omsluten area)

Wp = (pe —p;) Va= PMEP - V4

Motorfriktion — TFMEP
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Fordonssystem F& 5: Motor: Momentmodellen

B,mm L mm V, cm® B
35 o 80 73 1468 0.912
0873 82.6 1977 0.945
3.0 & 58 80 845 1.38 ®
= 90 78 1998
251476 71 1288
£
]
?;‘ 2.0 .
g /g/.’é Eq. (13.6)
15—
8
A
1.0
0.5
0 | | | 1 |
500 1000 2000 3000 4000 5000 6000
Engine speed, rev/min
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Fordonssystem F& 5: Motor: Momentmodellen

Motorfriktion

e Friktionen kan uttryckas i FMEP (friction mean effective pressure)

W; =V, FMEP

e Heywood polynomial

FMEP = Cjyg+ Cy1 N + Cpp N2

e ETH model
18 5 0.075) %
FMEP = o - [(0.464 4 0.0072 5,18) - My - 10° + 0.0215 - BMEP] - (T

e Finns omfattande MIT modell fran (1989) utvidgad (2002).

e Bra att komma ihag

BMEP ~ 10° Pa FMEP ~ 10° Pa

Lastberoende effektivitet

04 05 06 07 08 09 1
imep /imep,

4 05 06 07 08 09 1
imep /imep,

Okande last forbattrar effektiviteten.
Indikerad sfc visas ocksa.
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Fordonssystem F6 5: Motor: Momentmodellen
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Musseldiagram — “Performance map”

sfe [ghkwh]
T

Engine torque [Nm]

1 1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000 4500
Engine speed [RPM]
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Fordonssystem F6 5: Emissioner

Emissioner

CoHy + (a+ %)(oz +3.773N3) — aCO5 + gHQO +3.773(a + %)NQ

Vatten, koldioxid och kvave rdaknas inte som emissioner.

(Minskning av koldioxidutsldapp kraver minskad brénsleférbrukning,
eller att man samlar alla avgaser?)

Bildas aven NO, NO5, CO, och oférbranda kolvaten HC
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Fordonssystem F6 5: Emissioner

US federal test procedure FTP 75 (Tre faser)

Komb. m. SHED (Sealed Housing for Evaporative Determiantion).

USA Test Cycle (Federa Test Procedure, FTP 75)

Cycle distarce: 11.115 miles Average speed: 4.1 kmin
Cycle duraiion: 16775 +600s pause Maximum spoed: 91.2kmh
5 [ - 13725 10 min break | 197224775
= cold phase (ct)| _=stabiized phase (s) _[(engineoff) | =hot phase (1)
mph | km/h ! Y
60
80

5

200 " 400 ' 600 800 1000 ' 1200 ' 1400 2000 2200 24005

Test fayout for USA Federal Test (venturi system shown here)
Chassis dynamometer, 2 Inertial mass, 3 Exhaus! gas, 4 Air fiter, 5 Fresh (dilution) air, 6 Sampling

ventur, 7 Gas temperature, 8 Pressure, 9 Venturi, 10 Blower, 11 Sample bags, 12 System outlet,
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Fordonssystem F6 5: Emissioner
year CO HC NO, | Metods

g/mile | g/mile | g/mile
1966 87.0 | 8.800 3.60 | Pre control

1970 34.0 4.100 4.00 | Retarded ignition, thermal reactors, and ex-
haust gas recirculation (EGR)

1974 28.0 | 3.000 3.10 | Same as above

1975 15.0 1.500 3.10 | Oxidizing catalysts

1977 15.0 1.500 2.00 | Ox.cat. and improved EGR

1980 7.0 0.410 2.00 | Improved ox.cat. and three way catalysts

1981 7.0 0.410 1.00 | Improved threeway catalyst and support ma-
terial

1983 3.4 0.410 1.00 | Continuous improvements

1994 3.4 | 0.250 0.40

1996 3.4 | 0.125 0.40

2001 3.4 | 0.075 0.20

Evolution of federal emission regulation for passenger cars in the US.
Note that the emission levels are given in g/mile.

NMHC — Non-methane Hydrocarbons (total hydrocarbons less methane).

Lars Eriksson 29 September 2007

Fordonssystem F& 5: Emissioner

Emissioner under en europeisk korcykel

22 4 cumulative emissions (g)

20 P 10 XHC
18 4 ,/
16 4 / co
14 4
12 4 i
i 10 XNO,,
104 pmomt
L | I
64 speed
3 ﬂ /-\ ﬂ ﬂ
24
it .
U | 100 2()() 3 800 900
time (s)

Enkel medelvardesmodell: Light-off tid.
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Fordonssystem F& 5: Emissioner

Emissioner — Lagstiftning

Internationellt enhetliga procedurer for uppsamling av avgaser och
matningar.

Hel bil i chassi-dynamometer (Jfr Bilprovning)

Olika korcykler i olika ldander. Forare haller hastigheten.
CVS-metoden — (Constant Volume Sampling)

Utspadning 1:10

Fordelar: Slipper kondensation av vattenanga, vilket skulle reducera

NO;. Minskar reaktionstendensen i avgaserna.
Nackdel: Svarare matning ty lagre koncentration
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Fordonssystem Fo 5: Emissioner

New European Driving Cycle — NEDC (Lab. 1c¢)

New European Dmve Cycle (NEDC) for passenger cars
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Fordonssystem Fo 5: Emissioner

Ve

Katalysator effektivitet och temperatur

100 o= - Key
- HC.
_ % — CO g —
gw s
= 4 Pt
Ew /7 s
> / l’
g o /
3 Y4
£ ’
£ 1/
Promoted Pt catalyst 1 / Base metal catalyst
Pt catalyst I,
/, /)
- I '
z A
100 150 200 250 300 380
Temperature (°C)
Vid start T~ 20° C. = Gaserna efterbehanlas inte.
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