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Preface

This version of this document is prepared for a course TSFS06, Diag-
nosis and Supervision, at the Department of Electrical Engineering,
Linköpings universitet, spring semester 2019.

This text assumes basic knowledge in automatic control, linear
algebra, mathematical statistics, probability theory, and logic. In some
parts, methods from more advanced courses are used. Such parts of
the text are not of central importance in this course and in those cases,
references to relevant literature are given.
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Chapter 1
Introduction to Fault Diagnosis

From a general perspective, including both the medical and technical
case, diagnosis can be explained as follows. For a process there are
observed variables or behavior for which there is knowledge of what is
expected or normal. The task of diagnosis is to, from the observations
and the knowledge, generate a diagnosis, i.e. to decide whether there
is a fault or not and also to identify the fault. Thus the basic problems
in the area of diagnosis are how the procedure for generating diagnoses
should look like, what variables or behaviors that is relevant to study,
and how to derive the knowledge of what is expected or normal.

This text focuses on diagnosis of technical systems and the goal
is to find malfunctions in for example sensors and actuators. The
observations are mainly signals obtained from the sensors, but can
also be observations made by a human. Examples of such human
observations is for example level of noise or vibrations. The diagnosis is
computed by observing inconsistencies between observed variables and
what is considered normal behavior. When the diagnosis is based on an
explicit formal model of the system, the term model based diagnosis is
used. Diagnosis of technical systems can be performed off-line or on-line.
When on-line is considered, the diagnosis is usually automated so it is
performed without involvement of humans. Most concepts described
in this text are applicable to both off-line and on-line diagnosis.

7
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1.1 The Use of Diagnosis

Diagnosis systems have found their way into many applications. In
the context of model based diagnosis, some important areas that have
been discussed in the literature are:

• Nearly all subsystems of aircrafts, e.g. aircraft control. systems,
navigation systems, and engines.

• Emission control systems in automotive vehicles.

• Nuclear plants.

• Chemical plants.

• Gas turbines.

• Industrial robots.

• Electrical motors.

For these systems and also for technical processes in general, important
reasons to incorporate diagnosis systems are:

• Safety
In many technical systems a fault may cause serious personal
damage. This is especially obvious in safety critical processes
such as aircrafts and nuclear plants. For these systems, high
reliability and security of the system is fundamental.

• Environment Protection
In for example emission control systems in automotive vehicles,
a fault may cause increased emissions. It has been concluded
that a major part of the total emissions from cars originates from
vehicles with malfunctioning emission control systems. Other
important examples are nuclear plants and chemical plants in
which a fault may cause serious damage to the environment.

• Machine Protection
A fault can often cause damage to the machine. Therefore it is
important that faults are detected as quickly as possible after
they have occurred.
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• Availability
For many technical systems it is critical that the systems are
running continuously. This is for example the case for gas turbines
in power plants and industrial robots. The reasons may be
economical as well as safety. With the help of a diagnosis system,
early warnings can be obtained before a serious breakdown. When
the fault has been detected, the system can be stopped until repair
or rather be switched into a new mode. In the new mode, the
performance of the system may be degraded but at least more
serious breakdowns can be avoided.

• Repairability
Closely connected to availability is repairability. A good diagnosis
system will quickly identify the faulty component that should
be replaced. In this way, time-consuming fault localization, is
reduced, which will decrease total repair time.

• Flexible Maintenance
Maintenance can be expensive since the machine/process often
need to be taken out of operation. Therefore it is desirable to
make sure that the machine is not taken out of operation for
maintenance when there is no need for maintenance. Also, it
is desirable to be able to plan maintenance stops in advance
to be able to disturb the production as little as possible. A
diagnosis system that detects faults early, desirably before more
serious faults occur, can hopefully help both to avoid unnecessary
maintenance and to indicate far in advance when a maintenance
is needed.

1.1.1 A Short History

Manual diagnosis has been performed as long as there have existed
technical systems, but automatic diagnosis started to appear first when
computers, and on-line computing power, became available. In the
beginning of the 70’s, the first research reports on model based diagnosis
were published. Some of the earliest areas that were investigated were
chemical plants and aerospace applications. The research on model
based diagnosis has since then been intensified during both the 80’s
and the 90’s. Today, this is still an expansive research area.
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Up to now, numerous methods for doing diagnosis have been pub-
lished. Unfortunately many approaches are more ad hoc than system-
atic and it is fair to say that few general theories exist and there is
not yet a complete understanding of the relations between different
methods. This is reflected in the shortage of books in the area (see
Section 1.12) and the fact that no general terminology has yet been
agreed upon. However the importance of diagnosis is unquestioned.
This can be exemplified by the computerized management systems for
automotive engines used to control the engine. For these systems more
than 50% of the software can nowadays be dedicated to diagnosis. The
rest is for example for control.

1.2 Basic Definitions and Concepts

This section presents definitions and concepts that are central for the
area of diagnosis. As a step towards a unified terminology, the IFAC
(International Federation of Automatic Control) Technical Committee
SAFEPROCESS has 1994 suggested preliminary definitions of some
terms in the field. Following is a list of some common basic terms with
explanations. The explanations are partly based on the definitions
made by the IFAC Technical Committee SAFEPROCESS.

• Fault
Unpermitted deviation of at least one characteristic property or
variable of the system from acceptable/usual/standard/nominal
behavior.

• Failure
A fault that implies permanent interruption of a systems ability to
perform a required function under specified operating conditions.

• Disturbance
An unknown and uncontrolled input acting on the system.

• Fault Detection
To determine if faults are present in the system and usually also
the time when the fault occurred.

• Fault Isolation
Determination of the location of the fault, i.e. which component
or components that have failed.
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• Fault Identification
Determination of size and time-variant behavior of a fault.

• Fault Accommodation
To reconfigure the system and/or the controller so that the oper-
ation can be maintained in spite of a present fault.

• Fault Diagnosis
For the definition of this term, two common views exist in the
literature. The first view includes fault detection, isolation, and
identification, see for example (Gertler, 1991). The second view
includes only fault isolation and identification, see for example
(Isermann, 1984). Often the word fault is omitted so only the
word diagnosis is used.

• Diagnosis
The diagnosis system produces diagnoses. A diagnosis is a con-
clusion of what fault or combinations of faults that can explain
the process behavior.

• False Alarm
The event that an alarm is generated even though no faults are
present.

• Missed Alarm
The event that an alarm is not generated in spite of that a fault
has occurred. This event may also be denoted missed detection.

• Active (or Intrusive) Diagnosis
When the diagnosis is performed by actively exciting the system
so that possible faults are revealed.

• Passive Diagnosis
When the diagnosis is performed by passively studying the system
without affecting its operation.

• Fault Tolerant Control
Fault tolerant control is the whole chain of detecting and isolating
the fault, and thereafter perform fault accommodation so that
the fault is prevented from developing into a failure. The goal is
to keep the plant availability but accept reduced performance in
spite of the presence of faults.
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Sometimes fault tolerant control is referred to as active fault
tolerance when the controller is reconfigured when a fault is
detected. For example if a fault in a sensor is detected, feedback
from this sensor is replaced by feedback from an estimated value
of the sensor output. In contrast to active fault tolerance there
is also passive fault tolerance which means that one controller
should provide satisfactory performance even in the presence of
(limited sized) faults.

The term fault diagnosis is in this text used to denote the whole
chain of fault detection, isolation, and identification. Diagnosis used
in this way also serves as a name for the whole area of everything
that has to do with diagnosis. If fault detection is excluded from the
term diagnosis, as in the second view above, one gets a problem of
finding a word describing the whole area. This can partly be solved
by introducing the abbreviation FDI (Fault Detection and Isolation),
which is common in literature taking the second view of the definition
of the term diagnosis. As noted in some literature, FDI does not strictly
contain fault identification. To solve this, also the abbreviation FDII
(Fault Detection, Isolation, and Identification) has been used.

1.3 The Diagnosis System

The general structure of an application including a diagnosis system
is shown in Figure 1.1. The plant, i.e. the system to be diagnosed,

Diagnosis

System

Plant

control inputs

disturbances

faults

observations

diagnosis

statement

Figure 1.1: General structure of a diagnosis application.

is affected by control inputs, disturbances, and faults. Inputs to the
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diagnosis system are the observations (which will also often be called the
measured data). The observations consist of the known control inputs,
measured sensor values, and possibly also some human observations.
The task of the diagnosis system is to generate a diagnosis statement
containing information about at least if a fault has occurred, and the
location of the fault, i.e. in what component the fault occurred.

The diagnosis system can be considered to be a function from
the observations to the diagnosis statement. In its simplest form, we
could think of the diagnosis system as a table, mapping all possible
observations to one diagnosis statement.

Example 1.1 Consider the electric circuit in Figure 1.2. The plant

B

L

S

Figure 1.2: A simple electrical circuit.

consists of a battery (B), a switch (S), and a lamp (L). Assume now
that only three types of faults can occur: the switch stuck in open
position, the switch stuck in closed position, and the lamp is broken.
The control input here is the desired switch position, either open or
closed. The observations are the desired switch position and if the
lamp is lit or not.

A diagnosis system for this simple system can be represented as
in Table 1.1. Diagnosis is then performed by simple lookup in this
table. For example, assume that the observation is 〈”S open”, ”L not
lit”〉. Then according to Table 1.1, there are five explanations for the
observation and the diagnosis statement becomes that either we have
no faults, S is stuck open, L is broken, S is stuck closed and L broken,
or S is stuck open and L broken.

Each of the explanations in a diagnosis statement is called a diag-
nosis. It is common to distinguish between single faults and multiple
faults. A diagnosis can then indicate no fault, a single fault or a multi-
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desired lamp diagnosis statement
switch observation

position

open not lit ”no faults”, ”S stuck open”, ”L broken”,
”S stuck open and L broken”,
”S stuck closed and L broken”

open lit ”S stuck closed”
closed not lit ”S stuck open”, ”L broken”,

”S stuck open and L broken”,
”S stuck closed and L broken”

closed lit ”no faults”, ”S stuck closed”

Table 1.1: A simple diagnosis system represented as a lookup table.

ple fault. In the first diagnosis statement in Table 1.1, there are two
diagnoses indicating single faults, ”S stuck open” and ”L broken”, and
two diagnoses indicating a multiple fault, ”S stuck open and L broken”
and ”S is stuck closed and L broken”.

All diagnosis systems can in principle be represented as a table.
However, when the number of possible faults increases, the table quickly
becomes very large. Also, in a diagnosis problem described by continu-
ous equations, it is not so easy to classify the observations as was done
in Table 1.1. One further problem is to handle disturbances and noise,
which makes it more complicated to derive ”correct” diagnosis state-
ments. In fact, how to find alternative representations of a diagnosis
system, able to handle these problems, is the topic of this text.

1.4 Traditional and Model Based Diagnosis Sys-
tems

Traditionally, automated diagnosis has been performed by mainly limit
checking. When for example a sensor signal level leaves its normal
operating range, an alarm is generated. The normal operating range is
predefined by using thresholds that may be dependent on the operating
conditions. In for example an aircraft, the thresholds for different
operating points defined by altitude and speed can be stored in a table.
This use of thresholds as functions of some other variables can be
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viewed as a kind of model based diagnosis. In addition to checking
signal levels, also trends (e.g. the first derivative) of signals are often
checked against thresholds.

Another traditional approach is duplication (or triplication or more)
of hardware. This is called hardware redundancy. A typical example is
to use two sensors measuring the same physical quantity, i.e. one of
them is redundant. By comparing the two sensor outputs, a fault can
be detected. However, it may be difficult to determine which of the two
sensors that is faulty in case they differ. By introducing yet another
sensor, i.e. to have three sensors measuring the same variable, also fault
isolation is possible. Triple redundancy is common practice in safety
critical components. The main advantage with hardware redundancy is
that it is a highly reliable method of detecting faults. This is essential
for example in inner control-loops of an aircraft. There are at least
three issues associated with the use of hardware redundancy: hardware
may be expensive, it requires space, and adds weight to the system. In
addition, extra components increase the complexity of the system that
in turn may introduce extra diagnostic requirements.

1.4.1 Model Based Diagnosis

As an alternative or complement to traditional approaches, model based
diagnosis have shown to be useful either as a complement or on its own.
The models used in model based diagnosis can be of any type, from
logic based models to differential equations. Depending on the type of
model, different approaches to model based diagnosis can be used, for
example statistical approach (Basseville and Nikiforov, 1993), discrete
event systems approach (Sampath et al., 1995), AI-based approaches
(Reiter, 1987), and approaches within the framework of control theory.
Compared to traditional limit checking, model based diagnosis has
potentially the following advantages: because of the following reasons:

• It can provide higher diagnosis performance, for example smaller
faults can be detected with a shorter detection time.

• It can be performed over a large operating range.

• It can to a higher degree be performed passively.

• The possibilities for isolation of faults increases.
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• Disturbances can be compensated for, which implies that high
diagnosis performance can be obtained in spite of the presence of
disturbances.

Compared to using hardware redundancy, model based diagnosis may
offer cost effective solutions due to:

• Model based diagnosis is generally applicable to more kinds of
components. Some hardware components, such as the plant itself,
can not be duplicated.

• No extra hardware is needed, which means for example that it is
cheap in production (but not in development).

In model based diagnosis, a sensor output can, instead of being com-
pared with another redundant sensor, be compared with the output
from a model. The expression analytical redundancy is often used
to highlight this idea that ”analytical” models replace hardware re-
dundancy. Analytical redundancy will be more exactly defined in
Section 1.10.

It is important to note that model based diagnosis need not require
a lot of computing power, it is highly dependent on the complexity of
the model used. If simple models are used, generally simple algorithms
are the result. Actually for the same level of performance of a model
based system compared to a hardware based, it can be the case that
model based diagnosis is less computationally intensive than traditional
approaches. It can also be argued that traditional diagnosis is just a
special case of model based diagnosis.

The main disadvantage of model based diagnosis is quite naturally
the need for a reliable model and possibly a more complex design
procedure. In the actual design of a model based diagnosis system, it
is likely that the major part of the work is spent on building the model.
This model can however be reused, e.g. in control design.

The accuracy of the model is usually the major limiting factor of
the performance of a model based diagnosis system. Compared to
the area of model based control, it is more critical that the model is
good since model based diagnosis systems operates in open loop. More
often than in control, a linear model is not sufficient for satisfactory
performance.

There are situations where model based diagnosis never can replace
hardware redundancy. This is the case for critical components, such as
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sensors used in the inner control loop of an aircraft, where it is important
to quickly and accurately detect a faulty sensor and immediately switch
to another sensor.

Following is a simple example of an industrial application of model
based diagnosis.

Example 1.2
Consider Figure 1.3, containing a principle illustration of a spark-

ignited combustion engine. The air enters at the left side, passes the
throttle and the inlet manifold, mixes with fuel at the cylinder inlets,
and finally the air/fuel mixture enters the cylinders. The engine in the
figure has three sensors measuring the physical variables air mass-flow,
manifold pressure, and engine speed. The air flow W into the cylinders
can be modeled as a function of manifold pressure p and engine speed
n, i.e. W = g(p, n). The physics behind the function g is involved and
can be modeled by a black-box model. In engine management systems,
one common solution is to represent the function g as a lookup-table.
By using this lookup-table an estimation of the air mass-flow can be
obtained.

air mass-flow

manifold pressure

engine speed

throttle

Figure 1.3: A principle illustration of an SI-engine.

When the measured air mass-flow significantly differs from the
estimation, it can be concluded that a fault must be present somewhere
in the engine. The fault can for example be that one of the three
sensors are faulty or that a leakage have occurred somewhere between
the air mass-flow sensor and the cylinder. This is an example of model
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based diagnosis that is commonly used in production cars. Strictly
speaking, in this simple version, only fault detection has been achieved.
However, by using fault models (discussed further later in this chapter),
this simple strategy can be expanded to also handle fault isolation.

1.5 Faults

As shown in Figure 1.4, a plant can often be separated into three
subsystems: actuators, the process, and sensors. Depending on in what
subsystem a fault occurs, a fault is classified to be an actuator fault,
process fault, or sensor fault. Process faults are sometimes also called
system faults or component faults.

u(t)
-Actuators - Process - Sensors

y(t)
-

Figure 1.4: General structure of a plant.

Typical sensor faults are short cut or cut-off in connectors and
wirings, and drifts, i.e. changes in gain or bias. Also the time response
can degrade due to a fault, i.e. the bandwidth of the sensor is decreased.
Examples of process faults are increased friction, changed mass, leaks,
components that get stuck or loose. Examples of faults in an actuator
are short cut or cut-off in connectors and wirings. If the actuator
includes an electrical amplifier, there can also be gain and bias faults.
Actuators can by them self be relatively complex systems, containing for
example DC-motors, controllers, and sensors. Therefore all examples
of sensor and process faults are applicable also to actuators.

Another way of classifying faults is to study their time-variant
behaviors. Figure 1.5 shows three typical time-variant behavior of
faults. The solid line represents a so called abrupt change, i.e. the
fault occurs abruptly and then stays present. The dash-dotted line
represents an incipient fault, i.e., a fault that gradually increases in
size. The dashed line represents an intermittent fault, i.e., a fault that
occurs and disappears repeatedly.
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Figure 1.5: Different types of fault time-variant behavior.

In a diagnosis application it may not be sufficient to isolate a faulty
(larger) component, e.g. a DC-motor. Often more detailed knowledge is
required about the fault, e.g. what part of the DC-motor is faulty. Thus
when designing a diagnosis system it is important to have knowledge
about which faults that can occur or are most common, and also how
different faults affect the system. Such knowledge can only be obtained
from a domain expert and/or through extensive experiments.

1.6 Some Simple Examples of Model Based Di-
agnosis

In this section, we will exemplify how some different types of models
and also standard mathematical techniques can be utilized for fault
diagnosis.

1.6.1 Diagnosis Using Simulation Models

A simple example of model based diagnosis is the case when it is
possible to both measure an output and, by means of a model, also
estimate it. This is illustrated in Figure 1.6 where a residual r(t) is
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computed using the measured output y(t) and estimated scalar output
ŷ(t). For example, the residual can be computed as

r(t) = W (p)(y(t)− ŷ(t))

where W (p) is any linear filter and p the time-differentiation operator.
This filter can for example be a low-pass filter used to attenuate
measurement noise or influence from model uncertainty. The model

-u(t)
System

y(t)

?f
-

- Model -ŷ(t) -W (s) - r(t)

Figure 1.6: Simple fault detection system

used to estimate ŷ(t) can be either linear or non-linear. If a fault occurs
it will affect the measured output but not the estimated output. In this
way the residual will deviate from zero and the fault can be detected.

To exemplify, consider the following linear single input, single output
system

y =
1

s+ 2
(u+ f)

where f is a fault acting on the input of the process, i.e. a fault in the
actuator. An output estimator can in a simple case like this be written
as

ŷ =
1

s+ 2
u

With a low-pass filter W (s) = 1
s+1 we get the corresponding residual

generator

r =
1

(s+ 1)
(y − 1

s+ 2
u) (1.1)

Figure 1.7 shows the input and output of the process in fault free
and faulty operation. Figure 1.8-a shows the time variant behavior
of the fault, i.e. the fault occurs at t = 7, increases in amplitude
until t = 12 when the fault disappears again. It is clear that by only
observing the input and output in Figure 1.7 it is difficult to clearly
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Figure 1.7: Fault free (solid lines) and faulty (dashed lines) simulation
of the example.

detect that a fault has occurred since only minor differences in the
signals occur. Computing the residual as in (1.1) we get a significantly
simpler detection problem which is illustrated in Figure 1.8-b where
the residual is 0 in the fault free case and differs from 0 when a fault
occurs.

1.6.2 Diagnosis Using Parameter Estimation

Consider now a case where the process can be modeled as

y(t) = G(q)u =
b

1 + aq
u(t)

where q is the time-shift operator. Assume that the parameters a and
b have nominal values a0 and b0, and there are two possible faults, one
affecting parameter a and the other parameter b.

Next assume that a diagnosis system is constructed by using two
parameter estimators estimating a and b respectively. The estimated
values can be compared with the nominal values and we can set up
two variables T1 and T2 according to

T1 = |â− a0|
T2 = |b̂− b0|
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(a) Time variant behavior of the fault.
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Figure 1.8: Fault free and faulty simulation.

where â and b̂ are estimated parameter values. The tasks of fault
detection, isolation and identification can be performed by studying
the values of T1 and T2. If for example T1 is close to zero but T2 is
large, we conclude that the fault in parameter b has occurred.

Methods for the parameter estimation can be recursive, e.g. RLS
(Recursive Least Square), or non-recursive. Information about parame-
ter estimation methods can be found in the general system identification
literature, see for example (Ljung, 1999), and will also be discussed
later in Section 4.5.

1.6.3 Diagnosis with Fault Isolation

Consider the following system with 2 sensor signals y1 and y2, and one
actuator signal u:

y1 =2u (1.2a)

y2 =4u+ 1 (1.2b)

From these equations we can trivially derive two residuals:

r1 =y1 − 2u

r2 =y2 − 4u− 1

By using both equations (1.2), the input signal u can be eliminated
and we get the relation

2y1 − y2 = −1
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This relation can be used to form a third residual

r3 = 2y1 − y2 + 1

In the fault-free case all the three residuals will be equal to zero. Now
assume that the first sensor becomes faulty and therefore show the
wrong value. Since residual r1 is based on sensor y1, it will then deviate
from zero. Residual r2 however, is calculated without using sensor y1

and will therefore not be affected by the fault in sensor y1. Lastly,
residual r3 will also be affected by the fault in sensor y1 since its
calculation includes y1.

It can further be realized that a fault in sensor y2 will not affect
residual r1, but will make r2 and r3 nonzero. Finally, a fault in the
actuator u will affect r1 and r2, but not r3. Thus, different faults in
the process will make different residuals nonzero. This is the basis for
isolation, which will be further discussed in Section 1.8.

1.7 Fault Detection in the View of Hypothesis
Testing

Here we see how at least the fault detection problem can be formulated
as a hypothesis testing problem. Later in Chapter 3, it will be seen
that also the diagnosis problem, i.e. detection and isolation of faults,
can be formulated by using the view of hypothesis testing. First note
that a hypothesis test is defined as the decision problem of deciding
between two possible decisions. One example is to decide if there is a
fault present or not.

Assume that the process to be diagnosed contains a constant pa-
rameter θ which is zero when there is no fault and non-zero when there
is a fault present. In this case, the two hypotheses can be written

H0 : θ = 0 no fault

H1 : θ 6= 0 fault

Now the fault detection task becomes a hypothesis test between H0

and H1.
When constructing such a hypothesis test, we first find a so called

test quantity. With test quantity we mean any quantity that is sensitive
to the fault. Here the test quantity can for example be an estimation
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of θ. Such a test quantity is close to zero if H0 is true and non-zero if
H1 is true. Thus, by studying the test quantity we can determine if we
should reject H0, i.e. accept H1, or not. If H1 is accepted, an alarm
should be generated.

Note that the previously mentioned residuals can easily be used to
construct test quantities. A test quantity can for example be the mean
value of a residual over a time window.

Because of disturbances and measurement noise, the test quantity
is usually not exactly zero in the fault free case. Therefore we need to
use a threshold that means that H0 is rejected and H1 is accepted if
the test quantity is above the threshold.

The test quantities, which for example can be based on residuals,
are central for diagnosis. As we have seen in the examples in Section 1.6,
test quantities are used both to detect the faults, and by using several
test quantities with different fault sensitivity properties, also fault
isolation can be achieved.

1.8 Fault Isolation

Up to now, only fault detection has been considered. To achieve
also fault isolation, several principles exist. In the area of automatic
control, at least three different approaches can be distinguished: fixed
direction residuals, structured residuals, and structured hypothesis tests.
In AI, isolation has mainly been done using a logical reasoning about
components.

The idea of fixed direction residuals (Beard, 1971) is to design a
residual vector such that the residual responds in different directions
depending on what fault that acts on the system. Fault isolation is
then achieved by studying and classifying the direction of the residual.
This approach has not been so much used in the literature, probably
because the problems associated with designing a residual vector with
desired properties.

The idea of structured residuals (Gertler, 1991) is to have a set of
residuals, in which each individual residual is sensitive to a subset of
faults. Recall that this was the case in the example in Section 1.6.3. By
studying which residuals that responds, fault isolation can be achieved.
Structured residuals have been widely used in the literature, in both
theoretical and practical studies. The basic idea is quite simple and
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many methods for constructing suitable residuals have been presented
both for linear and non-linear systems.

Structured residuals is formalized and generalized with structured
hypothesis tests (Nyberg, 1999), which will be the main approach in
this text. In Section 1.7, a hypothesis test was used to detect faults. To
achieve isolation, in addition to fault detection, a set of hypothesis tests
can be used. With this approach, any fault model can naturally be
used. Isolation by hypothesis testing is explored in detail in Chapter 3.
Here, only a brief introduction is given.

For the set of hypothesis tests, let the different test quantities
respond differently to different faults. We wish to make different test
quantities sensitive to different subsets of faults. What test quantities
are sensitive to what faults, can be described by the influence structure
and the decision structure1. The basic difference between these two
concepts is that the influence structure describes the influence of the
faults in the ideal case, and the decision structure describes the influence
in a more realistic case when also measurement noise and model errors
are considered.

Four examples of influence structures are shown in Figure 1.9. A
number 1 in the i:th row and the j:th column represents the fact that
test quantity Ti is sensitive to fault j. A number 0 in the i:th row and
the j:th column represents the fact that test quantity Ti is not sensitive
to fault j. An X in the i:th row and the j:th column represents the fact
that test quantity Ti is sometimes sensitive to fault j. For example in
structure I, it can be seen that test quantity T2 is sometimes sensitive
to fault f1, not sensitive to fault f2, and always sensitive to fault f3.

The isolation can ideally be performed by matching fault columns to
the actual values of the test quantities. Consider for example influence
structure II in Figure 1.9, and assume that test quantities T1 and T3

responds, but not T2. We can then conclude that fault f2 has occurred.

1.9 Decoupling

As was seen in the previous section, one goal of test quantity design
must be to make each test quantity insensitive to a certain subset of

1The structured residuals method also uses influence/decision structures but
under different names. Names that have been used are for example incidence matrix
(Gertler and Singer, 1990), residual structure(Gertler, 1998), and coding set (Gertler,
1991).
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I f1 f2 f3

T1 1 1 0
T2 X 0 1
T3 1 1 1

II f1 f2 f3

T1 1 1 0
T2 1 0 1
T3 1 1 1

III f1 f2 f3

T1 0 X X
T2 X 0 X
T3 X X 0

IV f1 f2 f3

T1 1 0 0
T2 0 1 0
T3 0 0 1

Figure 1.9: Examples of influence structures.

faults. To distinguish between these faults and the faults that the test
quantity should be sensitive to, we use the terms non-monitored and
monitored faults. That is, a test quantity should be highly sensitive to
monitored faults but insensitive to non-monitored faults. An additional
common requirement is also that test quantities should be insensitive
to certain disturbances.

We say that non-monitored faults and these disturbances should
be decoupled. When a test quantity is made completely insensitive to a
fault or disturbance, the term perfect decoupling is used.

To achieve perfect decoupling, exact or very good models are needed.
Also the number of faults or disturbances that can be decoupled is
usually very limited. In practice, perfect decoupling is therefore often
difficult to achieve. When perfect decoupling is not possible, the best
one can do is to minimize the effect of these unwanted disturbances on
the residual. The term approximate decoupling is used for this case,
but is outside the scope of this text.

1.10 Analytical Redundancy

A sufficient and necessary condition to find test quantities is that the
system contains analytical redundancy, which can be formally defined
as follows:

Definition 1.1 (Analytical redundancy). There exists analytical re-
dundancy if there exists two or more different ways to determine a
variable x by only using the observations z, i.e. x = f1(z) and x = f2(z),
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where f1(z) 6≡ f2(z).

The meaning of the expression f1(z) 6≡ f2(z) is that it is impossible
to show that equality holds if no more model relations are utilized. In
for example

2y + u = y + 2u− u+ y

we can, without using more information, show that equality holds. On
the other hand, consider

2y + u1 = y + u2

which can be shown to hold only if we also know some more model
relations, e.g. u2 = y + u1.

A simple example of analytical redundancy is the case illustrated in
Figure 1.6, i.e. it is possible to both measure and estimate an output.
Another example is the following:

Example 1.3 Consider a system that can be described as

y =θu

θ̇ =0

where θ is an unknown constant (disturbance). The model equation
θ̇ = 0 is an easy way to analytically state that a parameter is constant.
If the observations consist of one sample of y and u, we can only
determine the variables y, u, and θ in one single way. Therefore
analytical redundancy does not exist.

If instead, we have two samples of y and u, we get the relation

y(t1) = θu(t1) (1.3a)

y(t2) = θu(t2) (1.3b)

Since we now have an over-determined system of equations, analytical
redundancy exists. For example, y(t2) can be determined both from
the measurement and by calculating

y(t2) =
y(t1)

u(t1)
u(t2)
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Since analytical redundancy exists we can try to decouple the unknown
disturbance θ. An expression based on the equations (1.3), but that
does not contain θ, is

0 = y(t2)u(t1)− y(t1)u(t2)

This expression can be used as a residual or test quantity, in which θ
obviously has been decoupled.

Analytical redundancy exists in two forms:

• Static Redundancy
The instantaneous/static relationship among sensor outputs, and
actuator inputs of the system. The special case of static redun-
dancy between outputs only, is called direct redundancy.

• Temporal Redundancy
The relationship among histories or derivatives of sensor outputs
and actuator inputs. Equations describing temporal redundancy
are generally differential or difference equations.

Example 1.4 Consider a system with 3 outputs and one input:

y1 = g(u)

y2 = G(s)u

y3 = 2g(u)−G(s)u

For this system, there is for example a static redundancy between the
input u and the output y1. In addition, temporal redundancy exists
between the input u and the output y2. Finally, by substituting the
first two equations into the third, arriving at

y3 = 2y1 − y2 (1.4)

it can be seen that also direct redundancy is present. Each of the
exemplified analytical redundancies can be used to derive residuals
or test quantities. For example, residuals based on the redundancies
discussed can be formed as

r1 = y1 − g(u)

r2 = y2 −G(s)u

r3 = y3 − 2y1 + y2
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It should be noted that if the system contains dynamics and detection
time is not critical, analytical redundancy can often be approximated
by static redundancy.

1.11 Engineering of Diagnosis Systems

This section aims at discussing the construction of model based diag-
nosis systems from an engineering, and more practical, point of view.
When designing a diagnosis system for a real industrial application, ad-
ditional considerations, than the ones treated in this text, must usually
be taken into account. These considerations include developing-time
constraints, market requirements as well as economical constraints. It
is therefore not sure that these methods are always suitable for a direct
implementation. However, the general concepts and ideas can certainly
be useful in all diagnosis-system design.

1.11.1 Disturbances

If there would be perfect models available, we could in principle design
perfectly functioning diagnosis systems, which always produce correct
diagnoses. However, models used for model based diagnosis are in
practice never perfect. Also there may be unknown inputs acting on
the system, e.g. unmeasured and unmodeled load or friction. Finally
measurement noise is normally present. All these factors can be seen
as disturbances acting on the systems. These disturbances complicate
the diagnosis task.

A desirable property of the diagnosis system is that it should be
robust against disturbances, i.e. it should be able to perform the
diagnosis task well in spite of the presence of disturbances. However
few robust methods, useful in real applications, are available.

As mentioned in Section 1.9, it is sometimes possible to decouple
disturbances in the same way as faults. However, this requires exact
models of how the disturbances enters the systems, and also complicates
the design of the test quantities. As with faults, disturbances can be
modeled in a number of different ways. Section 2.7 includes a discussion
on different principles to model influence of faults on a process. Almost
all those principles can be used also for disturbance modeling. However,
if little knowledge about the disturbances are available, they may
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have to be modeled as arbitrary signals. As we will see later, this
has implications on the lowest number of sensors the system must be
equipped with.

Another way of ”dealing” with disturbances is to neglect them in
the basic design of the diagnosis system, and then later try to tune the
diagnosis system so that the effects of the disturbances are minimized.
This however requires the disturbances to be so small so that they can
really be neglected.

1.11.2 A Procedure for Diagnosis System Design

An engineer working in the industry probably uses other terms and look
upon the task of diagnosis somewhat differently compared to what is
described in this text. However the procedure for constructing a model
based diagnosis-system should approximately involve the following
steps:

1. Obtain requirements on what faults that need to be diagnosed,
time constraints such as detection time and isolation time, any
requirements regarding fault identification.

2. Study and acquire knowledge about the system and particularly
the faults that need to be diagnosed.

3. Build a model of the process in the fault free case. This step often
consists of three parts: selection of model structure, parameter
identification, and model validation.

4. Build fault models, i.e. models of how the faults influence the
system.

5. By using the model, including the fault models, design test
quantities to be used in the hypothesis tests. These test quantities
must be chosen so that the isolation requirements are satisfied.

6. For each test quantity design a hypothesis test which at least
includes a thresholding of the test quantity. The threshold needs
to be tuned to get a good compromise between false alarms and
missed detections.

7. Test the diagnosis system in simulation and if possible in reality.
If the performance is not satisfactory, the hypothesis tests and
possibly also the models need to be refined.
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8. Do a final implementation of the diagnosis system.

Step 1 and step 2 can only be performed by acquiring information
from experiments, long-time experience, and domain experts. There are
systematic methods available: FMEA (Failure Mode Effect Analysis)
and FTA (Fault Tree Analysis). Books discussing FMEA or FTA are
(Bergman and Klefsjö, 1996; McDermott et al., 1996; Palady, 1995;
Roberts, 1992).

Step 3, the model building, is probably the best documented of all
steps. As noted before in this text, it is probably the major part of the
work. There is generally available literature on modeling of specific
classes of systems and also on general model building, e.g. in system
identification literature (Ljung, 1999).

Step 4, constructing the fault models, requires as detailed knowledge
as possible about the faults. In some applications, it is possible to
implement the faults and then identify the fault model. However, for
many applications, it is highly undesirable or impossible to implement
faults, e.g. because of the risk for severe damage. Sometimes, useful
data exists from previous real faults. If a detailed fault model can not
be obtained, the engineer may have to use a very general fault model,
e.g. the arbitrary fault signal discussed in Section 2.7.1. Even though
this will result in a correct fault model, it may imply that isolation
becomes difficult.

Step 5 and 6 are the main topic of this course. Many methods for
especially step 5 have been developed. However there are still very few
books on the subject (see Section 1.12) but many research papers have
been written.

Step 7 is application dependent. In some applications, only simula-
tions can be allowed, while in other, it is possible to do some practical
experiments.

Little literature about step 8 is available. There is however much
written about implementation of control systems, which can be partly
applied also for implementation of diagnosis systems.

1.12 Bibliography

As said above, few books have so far been published about model based
diagnosis. From the perspective of automatic control, some books
available are (Natke and Cempel, 1997; Mangoubi, 1998; Sohlberg,
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1998; Gertler, 1998; Chen and Patton, 1999; Russell and Braatz, 2000).
Related books but with a slightly different focus, more on signal pro-
cessing, are (Basseville and Nikiforov, 1993; Gustafsson, 2000). Also
some edited books that have been published are (Patton et al., 1989;
Nijmeijer and Fossen, 1999; Patton et al., 2000). In the area of AI,
there is an edited book (Hamscher et al., 1992).



Chapter 2
Principles of Model Based

Diagnosis

When constructing a model-based diagnosis system, a model of the
process is needed. This model must contain the process behavior in the
fault free case but also include a description of how and where different
faults affect the process. In this chapter we describe the concept of
formal models from the view of model based diagnosis. Further, we
formally define the central concept diagnosis.

2.1 Models

A model is some description of a system. To be useful for mathematical
tools or computers, the model must be described in a formal manner
by using a modeling language. Here the basis is first order logic and we
will briefly introduce the modeling language elements that are needed
to, in the next section, introduce models for diagnosis. Step by step we
will introduce propositions, logical connectives, predicates, functions,
variables, and sentence.

For an example, consider the system bicycle. To describe that the
bicycle is red we can introduce a proposition

BikeColorIsRed

33
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Propositions can take values TRUE or FALSE, so if the bicycle is red,
the proposition BikeColorIsRed is TRUE. If it is instead blue, the
proposition BikeColorIsRed is FALSE.

Propositions can be combined by using logical connectives. There
are five that will be considered in this text:

¬ not
∧ and
∨ or
→ implies
↔ if-and-only-if

For example, to describe that a bicycle is red and a car is blue we can
write BikeColorIsRed ∧ CarColorIsBlue. To describe the fact that a
blue car is a colored car we write CarColorIsBlue→ CarColored. Note
that CarColorIsBlue→ CarColored is equivalent to that
¬CarColorIsBlue ∨ CarColored.

Instead of a proposition we can use a predicate, in this case Red(·),
to write

Red(Bicycle) (2.1)

The predicate Red(·) has arity one, or equivalently is unary, meaning
that it takes one argument. Predicates of arity one are used to describe
a property of an object.

In addition to describing an object using predicates of arity one,
we can describe relationships between objects. This is done using
predicates of arity two, also called binary predicates. For example we
can write

SameColor(Bicycle,Car) (2.2)

to describe that the objects Bicycle and Car have the same color.
In a model we could represent every fact by predicates of the types

(2.1) and (2.2). However more flexibility is obtained if we use also
functions. To represent properties of objects we use functions taking as
argument an object and returning some object. For example the color
of an object can be represented by the function Color(·). By combining
this with the binary predicate Equal(·, ·), or = for short, we can write

Color(Bicycle) = Red

instead of Red(Bicycle). This adds flexibility because the same predi-
cate Color(·), can together with equality, be used to describe that the
color of some car is blue, i.e. Color(Car) = Blue.
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For a more compact and flexible modeling language, we use also
variables to refer to objects. For example, the variable cBike can be
used instead of Color(Bicycle). Then we can write cBike = Red instead
of 2.1. The combination of the equality predicate, a variable, and an
object, such as cBike = Red, is called assignment. The different objects
that we can assign to a variable are called values. The set of possible
values of a variable is called the domain. For example the domain of
cBike could be {Red,Black,Blue}. Elements of a domain are implicitly
assumed to be distinct, meaning that no two values are equal. In a
model we can express the fact that a variable has a specific domain
with the binary predicate ∈. For example, to express the domain of
the variable cBike we write

cBike ∈ {Red,Black,Blue}

We see that the first argument to the predicate is a variable, and the
second is the domain set.

We can now combine variables with predicates and connectives to
express more complicated things. For example, assume that we want
to express the fact that if the pedals are rotating forward, then the
back wheel is also rotating forward. We can for this introduce the
variable rPed to represent the rotational state of the pedals and rBW

to represent rotational state of the back wheel. Then we write

rPed = Forward→ rBW = Forward

One example of how this expression can be used is if we find that the
back wheel is not rotating forward, we know that the pedals cannot be
rotating forward.

By combining propositions, logical connectives, predicates, and
variables into a valid expression we obtain what is called a sentence. A
set of sentences can then be used to represent all knowledge we want to
consider. In particular, a formal model of a system is a set of sentences.

2.2 Models for Diagnosis

A model, i.e. a set of sentences, can in general be used for any purpose,
such as simulation or analysis of systems. Our particular purpose
is diagnosis, and in this context it is useful to introduce some more
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specialized objects and variables. A model to be used for diagnosis will
be called a diagnostic model.

In diagnosis, the purpose is to use the model to reason about the
presence of different faults, given some observations. Therefore, we will
now, in the upcoming two sections, discuss how faults and observations
are related to the model and the modeling language.

2.2.1 Faults and Components

To describe faults, a convention in the area of model based diagnosis is
to introduce the concept of component. The idea is that a component is
something that can brake; something that can be faulty or non-faulty.
To represent the fact that components are faulty or non-faulty we can
use propositions, unary predicates, or variable assignments. It may
seem superfluous to have three ways to state that a component is faulty.
The reason that we here introduce all three of them is that it turns out
that depending on the context; all three of them are useful.

For the bicycle example, we could consider the chain to be a com-
ponent. To describe that the chain is broken we can use a proposition,

ChainBroken

or a unary predicate,

Broken(Chain) (2.3)

To describe that the chain is connected (not broken), we can without
introducing any new predicates, write ¬ChainBroken or equivalently
¬Broken(Chain). Another alternative is to introduce new predicates
and write

ChainConnected

or equivalently

Connected(chain) (2.4)

This alternative has the disadvantage that we need to add further
knowledge to represent the fact that the chain cannot be broken and
connected at the same time. For example, if the representation based
on (2.3) and (2.4) is used, we need to add into the model, the sentence

Connected(chain)↔ ¬Broken(Chain) (2.5)



2.2. Models for Diagnosis 37

Behavioral Modes

It is quite common to assume that each component is either non-faulty
or faulty. However in general, a component can brake or become faulty
in more than one way. In this case it is convenient to talk about the
behavioral mode of a component instead of just saying that it is faulty
or non-faulty. To emphasize that some behavioral modes represent the
fact that a component is faulty, they are often called fault modes.

For an example consider digital inverters. We will assume that an
inverter has the following behavioral modes:

behavioral mode predicate symbol physical meaning

no fault OK (output = 0) ≡ (input = 1)
stuck at 0 SA0 output = 0
shorted SHORT output = input

unknown U unknown input-output relation

Let I denote a specific component of the type inverter. Now we can
generalize the idea of representing faults as unary predicates, as in (2.3),
to also handle more than two behavioral modes. To describe that the
inverter I is not faulty, we can use the unary predicate OK(I). Similarly
when I is stuck at 0, we write SA0(I), and when shorted, we write
SHORT (I). When we want to describe that the inverter I has some
fault, but it is unknown which, we can write U(I). If we only want to
say that I is faulty but do not want to specify the exact fault mode,
we can write ¬OK(I).

To represent behavioral modes, we can instead of using unary
predicates, for each component introduce a variable to represent the
behavioral mode of that component. For example, let bChain be a
variable representing the behavioral mode of the chain. Then we can
write

bChain = Broken and bChain = Connected

The domain of the variable bChain could in this example be
{Broken,Connected}.

An advantage of representing faults of components with variables
assigned to behavioral modes is that we automatically obtain the
property that a component can not be in two modes at the same time,
for example that the chain cannot be broken and connected at the
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same time. That is, we do not need to add any extra sentences such
as (2.5) into the model.

Note that in the example of (2.3) and (2.4), where we assumed
only two behavioral modes of the component, it was sufficient with one
sentence of the type (2.5). However, when there are more behavioral
modes per component, more sentences of the type (2.5) are needed.
For example, for the inverter described above, with four behavioral
modes, six sentences of the type (2.5) would be needed.

As was stated above, in the case we define only one proposition or
one unary predicate to describe the behavioral mode of a component, e.g.
ChainBroken or Broken(Chain), we do not need a sentence like (2.5).
The reason is that logic has built in, the property that predicates
(and propositions) cannot be TRUE and FALSE simultaneously. Note
however that this only works as long as there are only two behavioral
modes per component.

System Behavioral Modes

Above we have introduced behavioral mode of a single component.
Often it is convenient to refer to all behavioral modes of all components
in a system. For this we introduce system behavioral modes. Sometimes,
when we want to emphasize the fact that we refer to the behavioral mode
of a component and not the whole system, we will write component
behavioral mode.

For an example, suppose that we have a system consisting of two
inverters I1 and I2. To express the system behavioral mode where
both are non-faulty, we write OK(I1)∧OK(I2). To express the system
behavioral mode where I1 is shorted and I2 is non-faulty, we write
SHORT (I1) ∧OK(I2).

For another example of system behavioral modes, consider a system
consisting of a gas tank with potential leakages. The tank is also
equipped with a pressure sensor. The tank and the sensor are considered
to be the diagnosed components. We decide that all tank leakages,
regardless of their area, belong to the same behavioral mode “leakage”.
We also decide that all faults in the pressure sensor belong to the
behavioral mode “pressure sensor fault”. Each diagnosed component
also has the “no-fault” mode. In the example we have two possible
behavioral modes per component. This means that we have in total 4
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different system behavioral modes:

no fault NF
pressure sensor fault PSF
leakage L
pressure sensor fault and leakage PSF&L

(2.6)

As seen in the table, each system behavioral mode has been associ-
ated with one abbreviation, obtained by combining abbreviations of
component behavioral modes. Throughout the text we will use the
convention to write abbreviations of system behavioral modes with
boldface letters and NF is used to refer to the system behavioral mode
where all diagnosed components are in the mode no-fault.

The set of all behavioral modes will be denoted Ω, and in the
example, Ω = {NF,PSF,L,PSF&L}. Note that a consequence of the
definitions is that only one of the system behavioral modes in Ω can
be present at the same time.

Let p be the number of components and ni the number of different
behavioral modes for the i:th component. The total number of possible
system behavioral-modes, and the cardinality of the set Ω, is then∏p
i=1 ni.

Sometimes it will be convenient to represent system behavioral
modes using tuples instead of abbreviations as in (2.6). For instance
in cases where the component behavioral modes do not have unique
abbreviations, it is not possible to represent system behavioral modes
using the principle illustrated in (2.6). When using tuples we assume
that the components are ordered. For example if we order the compo-
nents in the water tank example according to (Tank,PressureSensor),
the system behavioral modes become as follows.

(NF,NF)
(NF,PSF)
(L,NF)
(L,PSF)

2.2.2 Observations

In addition to faults and components, also the observations are cen-
tral for the diagnosis task. As described in Chapter 1, the idea of
observations is that a human operator, or an automatic diagnosis sys-
tem, observes or measures something on the system. Then, from the
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knowledge of observations together with the model, diagnosis can be
performed.

We have above introduced the concept of models formally, and
discussed how faults can be represented in the modeling language. We
can describe also observations in the same language. Even though there
are several possibilities, as for the representation of faults, the most
common is to represent an observation as a assignment of a value to a
variable contained in the model. Usually only parts of the system are
possible to observe. In the context of our model this means that only
some variables can be assigned values through observations. These
variables are often called observables.

As an example, consider a person that observes that the back wheel
of the bicycle is not rotating, i.e. is at standstill. If the person wants to
use the model to perform diagnosis, he must consider this knowledge
together with the model. If we assume that the model contains a
variable rBW representing the rotational speed of the back wheel, he
can do that by introducing a sentence with the assignment

rBW = 0

In the case of binary observations we could use also a proposition to
represent each observation. For example the observation that a lamp
is lighted or not can be represented with the proposition Light.

2.3 Diagnosis

In this section we will define what we mean by a diagnosis. In this,
we follow the ideas of so called consistency based diagnosis which is a
diagnosis approach from the field of AI.

First we need the notion of a consistent model. A model contains a
number of variables and possibly also a number of propositions. Each
variable can take a value in its domain. Each proposition is either
TRUE or FALSE. If we assign values to the variables and propositions,
without regarding the model, it is likely that we obtain a contradiction
in some of the model sentences. If we instead assign values by carefully
studying the model, it is likely that we can find values such that a
contradiction can be avoided.

For example, consider the model

rPed = Forward→ rBW = Forward
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If we assign the value Forward to both variables rPed and rBW we get
no contradiction. If, on the other hand we assign Forward to rPed and
Backward to rBW we would get a contradiction.

We say that a model is consistent if we can assign a truth-value
to each proposition and a value to each variable within the domain of
that variable, such that the model is satisfied.

For example, the model

rPed = Forward→ rBW = Forward

rPed = Forward

is consistent since we can assign the value Forward to rBW and obtain
no contradiction.

If we expand the model as

rPed = Forward→ rBW = Forward (2.7a)

rPed = Forward (2.7b)

rBW = Backward (2.7c)

we can never find values to the two variables rped and rBW such that all
three model sentences are TRUE. Thus, the model (2.7) is inconsistent.

We are now ready to formally define the term diagnosis. In accor-
dance with the discussion in this chapter, we consider the model, the
observations, and behavioral mode assignments, to be sets of sentences.

Definition 2.1 (Diagnosis). Given a diagnostic model M and obser-
vations O, a diagnosis is an assignment D of a behavioral mode to each
diagnosed component such that

M
⋃
O
⋃
D

is consistent1.

Note that this definition of diagnosis is in agreement with the task
of a diagnosis system as formulated in Section 1.3. Note also that for
the same observations, there can be several diagnoses, i.e. there can be
several possible explanations for what we are observing.

In the definition of diagnosis we used the expression “assignments
of behavioral modes to each component”. Equivalent is to use the

1Here consistent means the same thing a satisfiable.
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expression system behavioral mode. Furthermore, in the area of AI and
consistency based diagnosis, and especially in the context of algorithms
for computing diagnoses, a set of assignments of a behavioral mode to
each component, is called a candidate. Thus a diagnosis could also be
defined as a system behavioral mode, or candidate, consistent with the
model and the observations.

2.3.1 Examples

To get a feeling for the terminology and the concepts introduced in
the previous section we will now study two examples. We will create
models that contain a mixture of behavioral modes, variables, and
observables.

Consider first the subsystem of a bicycle consisting of pedals, a
chain, and a back wheel. In a simplified case we can assume that in
this subsystem the only part that can break is the chain. Therefore
the chain is our only diagnosed component. Its behavioral modes are
Broken and Connected. By knowledge of how a bicycle is constructed
we know that if we move the pedals forward and the chain is connected,
then the back wheel will also move forward. All this knowledge can
formally be represented in a model as follows.

bChain ∈ {Broken,Connected}
rPed ∈ {Backward, Standstill,Forward}
rBW ∈ {Backward,Standstill,Forward}
bChain = Connected ∧ rPed = Forward→ rBW = Forward

Note that this model has three variables: the behavioral mode bChain,
and the observables rPed and rBW.

If we observe that the pedals are rotating forward and the back
wheel is not, we can introduce this observational knowledge as the
additional sentences

rPed = Forward

rBW = Standstill

Then there is only one possible assignment to the three variables:

bChain = Broken

rPed = Forward

rBW = Standstill
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All other assignments result in a contradiction. Thus, the only diagnosis
is bChain = Broken.

Next we consider a larger system consisting of a battery, a switch, a
lamp, and connecting cables. In this system we define three diagnosed
components: the battery, the switch, and the lamp. Then we have the
following component variables and their corresponding domains:

bBattery ∈ {Charged,Drained}
bSwitch ∈ {OK, StuckClosed, StuckOpen}
bLamp ∈ {OK,Broken}

In addition to these variables we also have the observable variable
switchBut, the position of the switch button, with its domain:

switchBut ∈ {OFF,ON}

Another observable is the light of the lamp that we choose to represent
with the proposition Light.

To represent the fact that we have voltage or not at the switch
and at the lamp, we use the propositions SwitchVolt and LampVolt
respectively. Finally, to describe the functionality of the circuit we add
these model sentences:

switchBut ∈ {OFF,ON}
bBattery = Charged→ SwitchVolt

bSwitch = OK→ (switchBut = ON ∧ SwitchVolt↔ LampVolt)

bSwitch = StuckClosed→ LampVolt

bSwitch = StuckOpen→ ¬LampVolt

bLamp = OK→ (LampVolt↔ Light)

bLamp = Broken→ ¬Light

Note here that there is no model sentence for the case of drained
battery. The idea is that if the battery is charged, we know that it
has the capability to deliver voltage to the switch. However, if the
battery is drained, we do not know the degree of drainage so it is unsure
if the battery can deliver voltage or not. Therefore the behavior of
the battery in the behavioral mode Drained is not possible to predict.
This is the reason why we by purpose have omitted to add a sentence
describing the battery behavior when it is drained.
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Then assume that we observe that the switch button is on and
there is no light. This is represented by introducing the observational
sentences:

switchBut = ON

¬Light

The different values of propositions and variables, consistent with the
model and the observations, are:

bBattery bSwitch bLamp SwitchVolt switchBut LampVolt Light
Charged OK Broken TRUE ON TRUE FALSE
Charged StuckOpen OK FALSE ON FALSE FALSE
Drained OK OK FALSE ON FALSE FALSE
Charged StuckOpen Broken TRUE ON FALSE FALSE
Charged StuckClosed Broken TRUE ON TRUE FALSE
Drained StuckOpen OK TRUE ON FALSE FALSE
Drained StuckOpen OK FALSE ON FALSE FALSE
Drained StuckClosed OK FALSE ON FALSE FALSE
Drained OK Broken FALSE ON FALSE FALSE
Drained OK Broken TRUE ON TRUE FALSE
Drained StuckOpen Broken FALSE ON FALSE FALSE
Drained StuckOpen Broken TRUE ON FALSE FALSE
Drained StuckClosed Broken FALSE ON FALSE FALSE
Drained StuckClosed Broken TRUE ON TRUE FALSE

In this table we see that for the assignment

bBattery = charged (2.8a)

bSwitch = OK (2.8b)

bLamp = broken (2.8c)

it is possible to find values of the other variables and propositions such
that the model is consistent with the observations. Therefore (2.8) is a
diagnosis.



2.4. Characterization of Diagnoses 45

The total set of diagnoses can be represented in a table as:

bBattery bSwitch bLamp

Charged OK Broken
Charged StuckOpen OK
Drained OK OK
Charged StuckOpen Broken
Charged StuckClosed Broken
Drained StuckOpen OK
Drained StuckClosed OK
Drained OK Broken
Drained StuckOpen Broken
Drained StuckClosed Broken

Note that for some diagnoses there are more than one possible set of
values of the other variables and propositions. Thus the number of
diagnoses is less than the number of assignments.

2.4 Characterization of Diagnoses

As stated in the previous section, the task of diagnosis in the consistency
based framework is to, given model and observations, find the set of
diagnoses, i.e. behavioral mode assignments that are consistent with
the observations. In this section we will investigate how to represent or
characterize this set of diagnoses. The set is, except for trivial systems,
very large. Humans or computers performing diagnosis could therefore
run into problems with processing power and memory if the set is
represented by listing each of its elements. Therefore, it is especially
interesting to investigate characterizations that are efficient in terms of
memory and processing power requirements.

One alternative is to characterize a set of diagnoses as a disjunction2

of the diagnoses itself.

Example 2.1 Let us return to Example 1.1 from Chapter 1. If we
observe that the desired switch position is “closed” and the lamp is
“lit”. Then we saw that there are two diagnoses: “no faults” and “S
stuck closed”. Assume that we use the symbol OK to denote no fault,
SC to denote stuck closed, and SO to denote stuck open. Then the

2meaning or
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two diagnoses can be written OK(S) ∧OK(L) and SC(S) ∧OK(L).
These diagnoses can be characterized by the logical expression(

OK(S) ∧OK(L)
)
∨
(
SC(S) ∧OK(L)

)
(2.9)

Note that SO(S) ∧ OK(L) is a candidate but not a diagnosis since
it is not consistent with the imagined model. The model is here not
formally defined, but for any sensible model it would not be consistent
that the switch is stuck open and the lamp is lit.

Except for representing candidates and diagnoses asOK(S)∧OK(L)
and SC(S) ∧OK(L) etc., it is quite common to use a set representa-
tion. For example, the candidate SC(S) ∧ OK(L) would be written
{SC(S), OK(L)}. A diagnosis statement can then be represented
as a set of sets, e.g. the diagnosis statement (2.9) would be written
{{OK(S), OK(L)}, {SC(S), OK(L)}}. Note that to represent a can-
didate with a set, such as {SC(S), OK(L)}, can be seen as a set of
sentences, where each sentence is an unary predicate. Thus, this repre-
sentation is perfectly legal to use directly in the definition of diagnosis,
i.e. Definition 2.1.

Often not all components are mentioned in the set. Components
not mentioned are assumed to be non-faulty. For example {SC(S)}
means the same as {SC(S), OK(L)}. With this principle, consider the
first diagnosis statement in Table 1.1 and let BR denote broken. Then
this diagnosis statement can be written as

{{}, {SO(S)}, {BR(L)}, {SO(S), BR(L)}, {SC(S), BR(L)}}
(2.10)

2.4.1 Minimal Diagnoses

The set notation will prove to be practical in the context of so called
minimal diagnoses. In principal, a diagnosis is said to be minimal if
there are no ”simpler” diagnoses. If the set representation is used, with
non-faulty components not included, a minimal diagnosis can formally
be defined as follows:

Definition 2.2 (Minimal Diagnosis). A diagnosis D is minimal if no
D′ ⊂ D (proper subset) is a diagnosis.

For example, in the diagnosis statement (2.10), the only minimal
diagnosis is {}. Another example is the third diagnosis statement in
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Table 1.1, i.e. for the observation switch “closed”, lamp “not lit”. In
this case, there are two minimal diagnoses: {SO(S)} and {BR(L)}.

The reason for the interest in minimal diagnoses comes from the
fact that minimal diagnoses are under some conditions a powerful
characterization of all diagnoses:

Definition 2.3 (Minimal Diagnosis Hypothesis). The Minimal Diag-
nosis Hypothesis holds if every superset of a minimal diagnosis is also
a diagnosis.

The Minimal Diagnosis Hypothesis does not always hold, and it
is difficult to formulate an exact criterion when it holds (de Kleer
et al., 1992). However, a sufficient condition for the Minimal Diagnosis
Hypothesis to hold is that each component has only two behavioral
modes: a no-fault mode and a faulty mode, and that the faulty mode has
no behavior specified in the model. The minimal diagnosis hypothesis is
further discussed in Section 3.5.2 in the context of computing diagnosis.

For illustration, consider again the circuit model example from
Section 2.3.1:

switchBut ∈ {OFF,ON}
bBattery = Charged→ SwitchVolt

bSwitch = OK→ (switchBut = ON ∧ SwitchVolt↔ LampVolt)

bSwitch = StuckClosed→ LampVolt

bSwitch = StuckOpen→ ¬LampVolt

bLamp = OK→ (LampVolt↔ Light)

bLamp = Broken→ ¬Light

Here we see that there are model sentences describing the behavior
of the switch in the modes StuckClosed and StuckOpen. Also there
is a model sentence describing the behavior of the lamp in the mode
Broken. Assume that we have observed that the switch button is OFF
but the lamp is lit. This means that one possible diagnosis is

bBattery = Charged ∧ bSwitch = StuckClosed ∧ bLamp = OK

In the set notation this diagnosis could be written as

{StuckClosed(Switch)}
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If the minimal diagnosis hypothesis would hold, also

{StuckClosed(Switch),Broken(Lamp)}

would be a diagnosis, which is clearly false since the model contains a
sentence describing the fact that if the lamp is broken it is not lit.

2.5 Continuous and Dynamic Models

So far we have described all concepts in the scope of discrete and static
models. This means that all variables have been assumed to have
discrete and finite domains and no notion of time has been included
in the models. Many physical systems are by nature dynamic and are
naturally modeled by variables with continuous domains. Thus, the
behavior of the system is not a direct consequence of external stimuli
but also depends on internal states and changes over time. Models of
such systems, which include the notion of time and derivatives, are
extensively studied in e.g. the area of automatic control and signal
processing.

First, the extension to consider variables with continuous domains
is trivial. For example, assume we have a variable x with the domain
all real numbers. In the model we write

x ∈ R

Assignments of continuous variables are handled as for discrete variables.
Next, the notion of time means that variables might change values over
time. If we have two real variables x and z, together with a relation
z = x, and want to express that the relation holds in a time interval ∆
we can write

∀t ∈ ∆ : x(t) ∈ R (2.11a)

∀t ∈ ∆ : z(t) ∈ R (2.11b)

∀t ∈ ∆ : z(t) = x(t) (2.11c)

Note that the time interval can be ∆ =]−∞,∞[.

To be able to handle dynamics, we also need to include differentiated
variables in the model. If we have a relation y = ẋ, valid in a time
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interval ∆, this can be expressed as

∀t ∈ ∆ : x(t) ∈ R (2.12a)

∀t ∈ ∆ : y(t) ∈ R (2.12b)

∀t ∈ ∆ : y(t) =
dx(t)

dt
(2.12c)

As seen the notation becomes a bit clumsy, because of the need to
include ∀t ∈ ∆ everywhere. A similar notion can be described for
systems that work in discrete time also.

If we want to investigate consistency of a model of the type (2.11)
we need to assign a value to z and x at each time instance. So what
we are really interested in is z and x seen as functions of time, or
trajectories. By viewing z and x as variables taking values in a domain
of all real functions over the time interval ∆, we get a much cleaner
notation. Let D(∆,R) denote the set of all real functions defined on
∆. Instead of (2.11) we write simply

x ∈ D(∆,R)

z ∈ D(∆,R)

z = x

Instead of (2.12) we can write

x ∈ D(∆,R)

y ∈ D(∆,R)

y = ẋ

The expressiveness of dynamic models cannot only be used to
describe that values varies over time, but also to describe that values
do not vary over time. For example, consider

c ∈ D(∆,R)

0 = ċ,

which means that the trajectory of the variable c is constant.

2.5.1 Diagnosis in Dynamic Models

Above we described how variables could represent trajectories. For sake
of simplicity, behavioral mode variables in dynamic models are assumed
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to be constant during the time interval considered. For example this
means that, in the simplified presentation, that either a fault is present
during the whole time interval or it is not present at any time during
the interval.

An observational variable would typically change over time. If we
consider an observational variable to be a snapshot of some part of the
system for one certain time instance, we could compute a diagnosis
for each such snapshot. However, we would not take advantage of the
knowledge that the model is persistent over time, i.e. it does not change.
For example, consider a sensor system for measuring the ambient air
pressure, denoted with the variable pa. If the sensor is OK, a variable
x becomes equal to the air pressure. The time scale in this example is
considered to be seconds, which means that a sensor value is obtained
once every second . Using this time scale, the ambient air pressure can
be assumed to be constant. Thus we have the system model

sensor ∈ {OK,Bad}
pa ∈ D(∆,R)

x ∈ D(∆,R)

ṗa = 0

sensor = OK→ x = pa

If we use a snapshot observation we may observe that x = 101kPa.
One second later we observe that x = 96kPa. The model with sensor
assigned to OK is consistent with both these individual observations.
Thus, sensor = OK is a diagnosis for each of these observations. How-
ever, we know that the observation x = 101kPa followed by x = 96kPa
one second later implies that there must be some fault in the sensor.

To utilize the fact that our model is persistent over time we need to
handle observations that are collected, not only in a snapshot, but over
a time window. In the example, we need to handle the two observations
simultaneously. This can be done by including the explicit time of the
observations. Then the model extended with the observations results
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in the set of sentences

sensor ∈ {OK,Bad}
pa ∈ D(∆,R)

x ∈ D(∆,R)

ṗa = 0

sensor = OK→ x = pa

x(t0) = 101kPa

x(t1) = 96kPa

The only diagnosis for this model and observations is sensor = Bad.

In the area of automatic control, state-space equations are typically
used to model dynamic systems. These can directly be used in our
modelling language. That is, a state space equation can be written as

x ∈ D(∆,Rn)

u ∈ D(∆,Rk)
y ∈ D(∆,Rm)

ẋ = f(x, u)

y = g(x, u)

The variable u is typically called input and y output of the system.
However, this distinction is of no importance from a diagnosis per-
spective; what is important is instead that both u and y are typically
known and therefore become observational variables.

Consider a cart of mass 2 kg moving on a rail. An unknown but
constant force represented by a variable F is affecting the cart and
the velocity is represented by a variable v. The speed of the cart is
measured with a speed sensor producing a value y that equals v if
the sensor is fault free. In a state-space model this knowledge can be
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represented as

sensor ∈ {OK,Bad}
v ∈ D(∆,R)

F ∈ D(∆,R)

y ∈ D(∆,R)

Ḟ = 0

v̇ = 0.5F

sensor = OK→ y = v

Now assume that we measure the speed to be 5 km/h at time 0. This
observation is added so the total knowledge becomes

sensor ∈ {OK,Bad}
v ∈ D(∆,R)

F ∈ D(∆,R)

y ∈ D(∆,R)

Ḟ = 0

v̇ = 0.5F

sensor = OK→ y = v

y(0) = 5

For this set of sentences we can assign y to any trajectory that passes 5 at
time instance t = 0, for example the constant trajectory y ≡ 5. Further
assign v to the same constant trajectory, assign F to the constant
trajectory y ≡ 0, and let sensor = OK. These assignments make all
model sentences true and thus, sensor = OK is a diagnosis. Note that
the same assignments to y, v, and F , combined with sensor = Bad
is also consistent. Thus sensor = Bad is also a diagnosis. In fact, as
long as we observe the speed at only one or two time instances both
sensor = OK and sensor = Bad will always be diagnoses.

If we measure the speed at three time instances, say t = 0, t = 1,
and t = 2 then we will be able to actually perform diagnosis. Assume
that we measure the speed to be 5 km/h at time t = 0, 6 km/h at time
t = 1, and 7 km/h at time t = 2. An assignment of the variables y, v, F ,
and sensor, consistent with the model and observations, is y(t) = t+ 5,
v(t) = t + 5, F (t) = 2, sensor = Bad. The same assignments of y, v,
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and F is also consistent with sensor = OK. Thus, we have the two
diagnoses sensor = Bad and sensor = OK.

If we measure the speed at the same three time instances, to be
5 km/h at time t = 0, 7 km/h at time t = 1, and 7 km/h at time
t = 2, it is not possible to find assignments of y, v, and F that are
consistent with sensor = OK. However we can find an assignment of
all variables consistent with sensor = Bad. Thus, sensor = Bad is the
only diagnosis.

In the models described in this chapter so far, we have explicitly
included the domain as a part of the model. From now on, the domain is
often obvious from the context and therefore not written out explicitly.

2.6 Detectability and Isolability

Given a model, an important property is if it is at all possible to use the
model to detect and isolate different faults. This is called detectability
and isolability respectively and is a property of the model.

Let z be the tuple of observables. Then we introduce the concept
of observation set as follows.

Definition 2.4 (Observation Set). Given a diagnostic model M to-
gether with the assignment of the system behavioral mode to b, the
observation set Ob is the set of all possible values of the observations
vector z such that the model M is consistent.

Then we can define isolability and detectability as follows.

Definition 2.5 (Isolability). A system behavioral mode b1 is isolable
from the system behavioral mode b2, in model M, if Ob1 6⊆ Ob2 .

Definition 2.6 (Detectability). A system behavioral mode b is de-
tectable in model M if b is isolable from the system behavioral mode
NF in the model M.

As an example, consider again the gas tank example (2.6). If all
sizes of leakage and all sizes of sensor faults (also size 0) are considered,
it is likely that we have the following relations.

ONF ⊆ ONF, ONF ⊆ OPSF, ONF ⊆ OL, ONF ⊆ OPSF&L,
OPSF 6⊆ ONF, OPSF ⊆ OPSF, OPSF 6⊆ OL, OPSF ⊆ OPSF&L,
OL 6⊆ ONF, OL ⊆ OPSF, OL ⊆ OL, OL ⊆ OPSF&L,
OPSF&L 6⊆ ONF, OPSF&L ⊆ OPSF, OPSF&L 6⊆ OL, OPSF&L ⊆ OPSF&L

(2.13)



54 Chapter 2. Principles of Model Based Diagnosis

For a compact representation of which behavioral modes that are
isolable from other we can set up an isolability matrix where X repre-
sents the fact that the mode of the row is not isolable from the mode
of the column. For the example we have

NF PSF L PSF&L

NF X X X X
PSF 0 X 0 X

L 0 X X X
PSF&L 0 X 0 X

(2.14)

In an ideal case, where all modes corresponding to faults in the system
are isolable from all other modes, the part of the isolability correspond-
ing to fault modes is an identity matrix.

2.7 Fault Modeling

An important concept in model based diagnosis is fault modeling. The
fault model is the formal representation of the knowledge of possible
faults and how they influence the process. In general, better fault
models imply better diagnosis performance, e.g. smaller faults can be
detected and more different types of faults can be isolated.

We will in this section give some examples of common fault modeling
principles. However, when constructing a diagnosis system one should
not be limited to the examples given here, but instead always choose
the fault model that is best suited for the particular application, e.g. in
terms of isolation requirements, accuracy requirements, time-response
requirements, and computing power available.

In a formal model in form of a set of sentences we have shown
in Section 2.3 how information about faults can be entered into the
model. For example, when we specified the behavior of the lamp in its
behavioral modes, we wrote

bLamp = OK→ (LampVolt↔ Light)

bLamp = Broken→ ¬Light

A fault model is a part of the model describing a component for a case
when the component is in a behavioral mode classified as a fault mode.
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Looking into the model, the fault model is what is written to the right of
the implication arrow for the fault modes. In the example, there is only
one fault model and that is ¬Light. We can consider a fault model for a
system behavioral mode or for a component behavioral mode. In both
cases the fault model can consist of one or more sentences (equations).
In this section we will discuss only fault models and therefore not write
out the implication arrow or any behavioral mode condition to the left
of it.

2.7.1 Fault Signals

Commonly faults are modeled as unrestricted unknown input signals.
When fault signals are used, a specific fault is usually modeled as
a scalar signal. Fault modeling by signals is very general and can
describe a wide variety of faults. However, to use fault models that are
too general may imply that it becomes impossible to isolate between
different faults (see Section 2.8 for a more thorough discussion on this
topic).

In a general nonlinear state-space model, we can write

ẋ(t) = g
(
x(t), u(t), f(t)

)
y(t) = h

(
x(t), u(t), f(t)

)
The signal f(t) here represents an arbitrary fault that can for example
be an actuator fault or a sensor fault.

The following example shows how, in a linear state-space description,
the three different types actuator-, sensor-, and process-faults can be
modeled by using fault signals.

Example 2.2 Consider a linear state-space model of a process:

ẋ = Ax+Bu

y = Cx+Du

Consider also an additive actuator fault fa, a general process fault fp,
and an additive sensor fault fs, all modeled as fault signals. Then the
influence of the faults to the process can be generally described by the
state-space description

ẋ = Ax+Bu+Bfa + Efp

y = Cx+Du+Dfa + Ffp + fs
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where the matrices E and F describe how the process fault enters the
system.

The next example shows, for a linear system in the frequency
domain, how a process fault can be modeled as a fault signal.

Example 2.3 Consider for example a process fault represented by a
change ∆Gf (s) in the transfer function G(s):

y = (G(s) + ∆Gf (s))u

If the fault signal f is defined as f = ∆Gf (s)u then the fault can also
be modeled as

y = G(s)u+ f

Note here that if also a fault in the sensor is modeled as a fault signal, it
becomes impossible to isolate between the sensor fault and the process
fault.

It is also possible to include some restrictions on the fault signal f(t).
An example of a natural restriction is that the value of a fault signal
f(t) is limited in range. Another example is that the bandwidth of
f(t) is limited to some value. In general it is advantageous to include
restrictions into the fault models. The reason is that the isolation task
becomes easier the more restrictive fault models we have.

2.7.2 Deviations in Constant Parameters

Another common fault model is to model faults as deviations of constant
parameters from their nominal value, e.g. (Isermann, 1993). Sensor
faults that are typically modeled in this way are “gain-errors” and
“off-sets” (“biases”). Another typical example is a signal whose variance
is constant and low in the fault-free case, and when a fault is present
the variance increases. Further on, some typical process faults consist
of a deviation of a physical parameter, such as a frictional coefficient,
a mass, or a leakage area (a leakage area is in the fault-free case 0).

Fault modeling by constant plant parameters is exemplified in the
following example:

Example 2.4 Consider a model of an amplifier:

y(t) = gu(t) + v(t) v(t) ∼ N(0, σ)
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where u(t) is the input, y(t) the output, g the amplifying gain, and
v(t) is a noise signal with variance σ2.

Lets say that the parameter g, i.e. the gain of the amplifier, is
10 in the nominal (fault-free) case and a gain fault is represented as
a deviation from this nominal value. Further, the parameter σ2 is
assumed to be 0.01 in the nominal case and any increase of this value
is considered to be a fault.

A parameter modeling a fault does not have to be scalar. A model
consisting of a two-dimensional parameter is illustrated in the following
example.

Example 2.5 Consider again the engine in Example 1.2 on page
17. One component that is often affected by a fault is the air-mass
flow sensor. The reason for such a fault is that dirt and salt enters
with the air into the engine. A faulty air-mass flow sensor makes the
control system inject the wrong amount of fuel, which in turn results
in increased emissions. In Figure 2.1, the characteristic curve of such
a faulty air-mass flow sensor is shown. This sensor was found by the
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Figure 2.1: The characteristic curve of a faulty air-mass flow sensor.

service technicians after that the driver had complained about heavy
smoke from the exhaust pipe.

On the vertical axis we read the deviation from the correct value
for different air-mass flow. Thus a no-faulty sensor would have a
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characteristic curve equal to 0. It can be noted that for large air-mass
flows, the deviation is neglectable but for small, the deviation is higher
than 30%.

Assume that the characteristic curve in Figure 2.1 can always be
approximated by a straight line, described by a slope k and an offset
m, i.e. y = kx+m. Then a vector-valued parameter θ = [k, m], can
be used to model a deviation in the characteristic curve.

Also when modeling faults as deviations in constant parameters, it
is possible, and often advantageous, to include some restrictions on the
fault. For example the size of a bias or a gain-error is usually limited
by the system.

2.7.3 Abrupt Changes

A quite common fault model is to consider abrupt changes of variables,
e.g. see (Basseville and Nikiforov, 1993), representing for example a
component that suddenly breaks. This is illustrated in Figure 1.5 as
the solid line. It is assumed that a variable or signal has a constant
value θ0 before an unknown change-time tch and then jumps to a new
constant value θ1. The parameters θ0 and θ1 can be unknown or known.
The main difference between this type of fault model compared to the
constant parameter changes above is that the change time and the
transient behavior due to the change is considered in the model.

Example 2.6 Consider an electrical connector. One possible fault
is a sudden “connection cut-off” at time tch. A model for this fault is

ys(t) = (1− c(t))x(t)

where

c(t) =

{
θ0 = 0 t < tch

θ1 = 1 t ≥ tch

That is, the fault model is based on an abrupt change in the signal c(t).
Since the levels θ0 and θ1 are known at beforehand, this fault can be
described by the single parameter tch.

Note that the abrupt change model can also be used to model any
abrupt change, and not only changes of the level of a signal. For
example, we can assume that the derivative or the variance of a signal
changes abruptly.
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2.7.4 Incipient Faults

Incipient faults are faults that gradually develop from no fault to a
larger and larger fault. This is illustrated in Figure 1.5 as the dash-
dotted line. An incipient fault could for example be a slow degradation
of a component or developing calibration errors of a sensor. Modeling
of incipient faults are exemplified in the following example:

Example 2.7 Let c(t) represent the “size” of the fault. If the fault
is incipient, then c(t) becomes

c(t) =

{
0 t < tch

τ(t− tch) t ≥ tch

The fault can therefore be modeled as the parameter θ = [tch τ ]. This
fault model can in fact be seen as special case of the abrupt change
model.

2.7.5 Intermittent Fault

An intermittent fault is a fault that occurs and disappears repeatedly.
This was shown in Figure 1.5 as the dashed line. A typical example of
an intermittent fault is a loose connector.

Example 2.8 Consider a sensor measuring a state x. The model of
this (sub-) system can be written

ys(t) = c1(t)x(t)

where ys is the sensor output and x is the state. The function c1(t) is
our model of the loose contact. For some t, there is no contact and
therefore c1(t) = 0. For other t, the contact is perfect and c1(t) = 1.
That is, c1(t) is a function that switches between 0 and 1 at unknown
time instances.

2.8 General or Restrictive Fault Models?

We have now presented a number of different principles for fault mod-
eling. Some of them say that the fault behaves in a restrictive way,
e.g. a constant bias, while others are general, e.g. the fault signal.
When modeling and designing a diagnosis system, there is usually a
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choice between using restrictive or general fault models. One of the
considerations is that a restrictive fault model makes it easier to isolate
between different faults. This is illustrated by the following example.

Example 2.9 Consider a system modeled as

y(t) = u1(t) + u2(t)

where y(t), u1(t) and u2(t) are measured in a time window. Suppose
that the signals ui(t) are actuator signals and that we want to model
faults in the actuators. One possible fault model is then to assume
that a fault causes a constant deviation in the gain. That is, we have
the following fault model:

ui(t) = θiūi(t) (2.15)

where ū is the controlled and desired actuator value, and each θi is
θi = 1 in the fault free case and θi 6= 1 if a fault is present.

If now u1(t) and u2(t) are assumed to be varying signals, then we
can uniquely isolate between the faults in actuator 1 and 2. The reason
is that when a fault occurs in actuator 1, the model of the system will
be

y(t) = θ1ū1(t) + ū2(t), θ1 6= 1 (2.16)

and the output signals generated by this system can in general not be
explained by

y(t) = ū1(t) + θ2ū2(t), θ2 6= 1 (2.17)

which is the model valid when actuator 2 is faulty. Another way of
seeing this is to set the signal y(t) in (2.16) and (2.17), equal to each
other and then solve for the constant θ2. That is, we start with

θ1ū1(t) + ū2(t) = ū1(t) + θ2ū2(t) (2.18)

and solve for the constant θ2, i.e.

θ2 =
θ1ū1(t) + ū2(t)− ū1(t)

ū2(t)
= (θ1 − 1)

ū1(t)

ū2(t)
+ 1, θ1 6= 1 (2.19)

Now we see that in general, the expression on the right is not constant
so the equality in (2.19) can not be fulfilled for any constant θ1. That
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is, when assuming ū1(t)/ū2(t) not constant, it is possible to isolate
between actuator fault 1 and 2.

Next assume that instead of the fault model (2.15), we have a much
more general fault model:

ui(t) = θi(t)ūi(t)

That is, the constraint that θi is constant has been relaxed. Instead
θ1(t) and θ2(t) are two arbitrary signals. On one hand, we have now
a fault model that is able to model a much larger class of faults. On
the other hand, we get problems with the isolation between actuator
fault 1 and 2. In fact, as long as u2(t) 6= 0, all faults in actuator 1
produce outputs y(t) that can equally well be explained by a fault in
actuator 2. This can be seen by again setting up equation (2.18) and
solving for θ2(t):

θ2(t) =
θ1(t)ū1(t) + ū2(t)− ū1(t)

ū2(t)
= (θ1(t)− 1)

ū1(t)

ū2(t)
+ 1 (2.20)

For each possible fault modeled by θ1(t) 6≡ 1, we can always find θ2(t)
so that the equality in (2.20) is fulfilled.

The advantage of using a general fault model is clearly that no or
not much knowledge about the fault behavior is needed. As was shown
in the previous example, the disadvantage is that in a system with
several of the faults modeled by general fault models, it can be difficult
or even impossible to isolate between the different faults. Restrictive
fault models make it easier to isolate between faults but requires
more information about the faults and may result in a more complex
diagnosis system. Thus, fault modeling is always a trade off between,
on one hand good isolability and on the other hand, low requirements
on fault knowledge and low complexity of the diagnosis system. It is
worth stressing that obtaining models on how different faults occur and
influence a process may be extremely difficult to come by. It is often a
difficult task to model a fault free process, obtaining faulty data for
model building is often rare, especially early in a development process.
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Chapter 3
Diagnosis Systems for Fault

Isolation

In the previous chapter we formalized the meaning of models, especially
with the perspective of diagnosis. We also defined the term diagnosis.
However, we only stated what diagnoses are but not how to compute
them. How to construct a diagnosis system that computes diagnoses,
given a model and observations, is the topic of the present chapter.
With the term fault isolation we mean the process of computing the
diagnoses given some observations or some processed version of the
observations.

We spend the major part of the chapter aiming at computing all
diagnoses. It might seem strange that the task of a diagnosis system
is not to pick out one system behavioral mode, for example the most
probable one, but instead to give all system behavioral modes that
can explain the observations. Further, the set of all diagnoses may
not be useful in a practical application, especially if multiple faults
are considered, since the number of diagnoses then may become very
large. However it is important to note that sometimes this corresponds
to a desired functionality since in cases where it is difficult or even
impossible to decide which system behavioral mode that is present, it
is very useful for e.g. a service technician to get to know that there are
more than one system behavioral mode that can explain the behavior
of the process. If the diagnosis system was forced to pick out one

63
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system behavioral mode in cases like this, the probability of making an
erroneous guess may become too high. However, in most cases there
are good reasons to not consider the set of all diagnoses. Therefore
we will later in Section 3.7 also discuss how to compute not all but a
limited and prioritized set of diagnoses.

3.1 Diagnosis Systems

As said in the Chapter 1, the output from a diagnosis system is the
diagnosis statement S. If we represent S as a set, the task of a pure
consistency based diagnosis system can be described as follows.

Given a set of observations, the task of a consistency
based diagnosis system is to generate a set S, the diag-
nosis statement, which contains the system behavioral
modes that can explain the observations; the diagnoses.

Note that we assume that the diagnosis system is passive, which means
that it by no means can affect the process. We also assume that the
diagnosis system is deterministic and has no memory, i.e. the same
observations will always give the same diagnosis statement.

In terms of decision theory (e.g. see (Berger, 1985)), the diagnosis
system is a decision rule δ(z), i.e. a function from the observations z
to the diagnosis statement:

δ : Z −→ P(Ω)

where Z is the set of all possible observations and P(Ω) is the power
set of Ω, i.e. the set of all subsets of Ω. Since we mainly consider
systems controlled by computerized control systems, the observations
usually consist of inputs u(t) and outputs y(t) from the system. Thus,
we can write S = δ(z) = δ([u y]). Here, z is used to denote the whole
observed data-set, which usually consists of all known and measured
variables of the system up to present time or a subset of this data. One
choice is to use a fixed size time window.

3.1.1 The Architecture of a Diagnosis System

Model based diagnosis is a complex task and it is therefore advantageous
to divide the task into smaller subtasks. In this text, we therefore
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Figure 3.1: The basic architecture of a diagnosis system.

assume that a diagnosis system δ(z) consists of a number of diagnostic
tests δk(z) and an isolation logic, see Figure 3.1.

The purpose of each diagnostic test is to investigate if some specific
system behavioral modes are present or not. We assume that each
diagnostic test δk(z) is binary in the sense that there are two possible
outcomes. The construction of diagnostic tests is a central topic in
fault diagnosis and will therefore be discussed in all of the remaining
chapters.

The purpose of the isolation logic is to combine the information
from the diagnostic tests to form the diagnosis statement S. The
basic idea of fault isolation is that different diagnostic tests respond
differently to different system behavioral modes, and by utilizing this
fact, fault isolation can be performed. The exact procedure for fault
isolation will be described later in this chapter.
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3.1.2 Sound and Complete Diagnosis Statements

A diagnosis statement S is said to be complete if all diagnoses are
included in S. Further, the diagnosis statement S is said to be sound
if all system behavioral modes included in S are diagnoses. A goal
when designing a diagnosis system can be that the diagnosis statement
should be always sound and complete. Note that even though the
diagnosis statement S is both complete and sound, it may in a practical
application be very large.

3.2 Diagnostic Tests

The general architecture of a diagnosis system was shown in Figure 3.1
and this section will be devoted to further discussions about the di-
agnostic tests. Using the general view of hypothesis testing, we first
describe how the diagnostic tests can be seen as binary hypothesis tests .

The classical, statistical or decision theoretic, definition of hypothesis
test is adopted, e.g. see (Berger, 1985; Lehmann, 1986; Casella and
Berger, 1990), which means that we consider hypothesis tests that are
binary in the sense that the outcome of a hypothesis test is one out
of two possible decisions. This should be distinguished from “multiple
hypothesis testing” that can also be found in literature, e.g. (Basseville
and Nikiforov, 1993).

Each diagnostic test δk(z) generates a sub-diagnosis statement
Sk, i.e. Sk = δk(z). Since the test is binary there are two possible
statements: S0

k and S1
k . For each hypothesis test δk, we need to find a

rejection region Rk, i.e. a subset of the set of observations Z where
the so called null-hypothesis is rejected. The function of a hypothesis
test can be written as

Sk = δk(z) =

{
S1
k if z ∈ Rk
S0
k if z 6∈ Rk

(3.1)

Usually the rejection region is not explicitly utilized in the decision
between S1

k and S0
k . Instead the decision is done via a test quantity

(often also called test statistic). The test quantity is a function Tk(z)
from the observations z to a scalar value which is to be compared
with a threshold Jk. Typically if Tk(z) ≥ Jk, then H0

k is rejected and
otherwise not rejected. The rejection region of each test is thereby
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implicitly defined. Formally the hypothesis test δk can now be written
as

Sk = δk(z) =

{
S1
k if Tk(z) ≥ Jk
S0
k if Tk(z) < Jk

(3.2)

When we divide the observations into inputs u(t) and outputs y(t),
the sample data z for each hypothesis is

z(t) =

[
u(t−N) u(t−N + 1) . . . u(t)
y(t−N) y(t−N + 1) . . . y(t)

]
(3.3)

To simplify the notation, we have assumed that unit sample-time is
used. The sample data (3.3) corresponds to the use of a finite time
window. This time window can be a sliding window, which means that
the data z becomes a function of time t and that consecutive data sets
are overlapping. Another choice is to let consecutive data sets be non-
overlapping. The time window can also be infinite. This corresponds
to that N =∞ in (3.3). An example of when an infinite time window
is desirable is when recursive techniques are used to calculate the test
quantities. This is also the case when using test quantities based on
residuals that are realized as IIR-filters, e.g. see Chapter 6.

The test quantity is a function Tk(z) from the sample data z, to a
scalar value which is to be thresholded by a threshold Jk. Thus δk will
have a structure according to Figure 3.2. The test quantity Tk(z) is

Thresholding
Jk

Test quantity
calculation

Tk
u

y

Sk

δk(z)

Figure 3.2: Hypothesis test δk(z).

in many statistical texts instead called a test statistic. However, the
name test statistic indicates that Tk(z) is a random variable which in
general may not always be a desired view. Thus, the more neutral
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term test quantity is used which may or may not be considered to be
a stochastic variable, all depending on circumstances and tools used
when designing the test. The test quantity Tk(z) may for example be
based on a residual generator or a sum of squared prediction errors
of a parameter estimator. Sometimes, a purely deterministic view is
taken and Tk(z) is seen just as a function of the data and not as a
random variable.

3.3 Column Matching Approach

In this section we introduce the column matching approach to fault
isolation. Given a set of diagnostic tests, we can, as a part of the
diagnosis system design, store a table of how the different tests respond
when the system is in different system behavioral modes. An example
is the following table.

NF F1 F2 F3

T1(z) 0 0 1 0
T2(z) 0 0 1 1
T3(z) 0 1 0 1

(3.4)

Then, when the diagnosis system is up and running, the actual response
from the diagnostic tests is compared with the stored responses. For
each match between a column and the actual response, the system
behavioral mode of the column is considered to be a diagnosis.

Digging deeper into this approach we realize that the stored table
comes in two versions that we call the influence structure and the
decision structure1. The influence structure describes how the faults
ideally affect the diagnostic tests, and the decision structure, describes
how the diagnosis statement depends on the diagnostic tests.

3.3.1 Influence Structure

To get an overview of how faults in different system behavioral modes
ideally affect the test quantities of the diagnostic tests, it is useful to
set up an influence structure. With ideally, we mean that the system
behaves exactly in accordance with the model, e.g. no unmodeled

1Similar structures in the fault diagnosis literature are also called for example
residual structure or incidence matrix .
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disturbances exist and there is no measurement noise. An influence
structure is a table or matrix containing 0:s, 1:s, and X:s. An example
of an influence structure is

NF F1 F2 F3

T1(z) 0 0 1 0
T2(z) 0 0 1 1
T3(z) 0 X 0 1

(3.5)

A 0 in the k:th row and the j:th column means that if the system
behavioral mode present in the system, is equal to the system behavioral
mode of the j:th column, then the test quantity Tk(z) will not be
affected, i.e. it will be exactly zero. A 1 in the k:th row and the j:th
column means that for all faults belonging to the system behavioral
mode of the j:th column, Tk(z) will always be affected, i.e. it will be
non-zero. An X in the k:th row and the j:th column means that for
some faults belonging to the system behavioral mode of the j:th column,
Tk(z) will under some operating conditions be affected, i.e. it will be
non-zero. The influence structure (3.5) includes only single faults, but
it is also possible to include multiple faults as will be described later in
this section.

The influence structure is derived by studying the equations describ-
ing the process model and how the test quantities Tk(z) are calculated.
This is illustrated in the following example:

Example 3.1 Consider again Example 1.2 on page 17. The airflow
W past the throttle can be modeled as a non-linear function of the
throttle angle α and the manifold pressure p:

W = (1− cosα)Φ(p) (3.6)

where the dΦ(p)/dp = 0 for supersonic air-speeds which occurs for all
p < 53 kPa (Heywood, 1992). The throttle angle α is always between
0 and π/2.

Three system behavioral modes are considered: no fault NF , air
mass-flow sensor fault M , and manifold pressure sensor fault P . For
both M and P , the faults are modeled as an arbitrary signal added to
the sensor signals:

Ws =W + fM (3.7a)

ps =p+ fP (3.7b)
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Figure 3.3: A principle illustration of an SI-engine.

where the index s indicates sensor signals. As test quantity, we can use

T (z) = T ([Ws, αs, ps]) = Ws − (1− cosαs)Φ(ps) (3.8)

To see how the faults affects the test quantity, we can substitute (3.6)
and (3.7) into (3.8):

T (z) = W + fM − (1− cosα)Φ(p+ fP ) =

= fM + (1− cosα)Φ(p)− (1− cosα)Φ(p+ fP )

We see that a fault belonging to M will always affect T (z). Also, a fault
belonging to P will surely affect T (z) if p > 53kPa, but not always
when p < 53kPa.

This means that the influence structure for the test quantity T (z)
becomes

NF M P

T (z) 0 1 X
(3.9)

Let skj denote the entry in the k:th row and the j:th column of an
influence structure. Then the interpretation, or semantics, of 0:s, 1:s,
and X:s can be formalized as

Fp = Fj → Tk(z) = 0 if skj = 0 (3.10a)

Fp = Fj → Tk(z) 6= 0 if skj = 1 (3.10b)
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where Fp denotes the present system behavioral mode.

Note that the implication, denoted by the arrow, is not symmetric.
Note also that the interpretation of X is implicitly contained in these
two formulas.

By using the formulas (3.10), it is possible to formally describe the
interpretation of a whole influence structure. We will exemplify this
below, by giving the interpretation of the influence structure (3.5), but
note first that Fp /∈ {F2} is equivalent to that Fp ∈ Ω − {F2}. The
symbol⇐⇒ will be used to denote equivalence. Now, the interpretation
of the influence structure (3.5) becomes

T1 = 0 ← Fp ∈ {NF,F1, F3} ⇐⇒ T1 6= 0→ Fp = F2

T1 6= 0 ← Fp = F2 ⇐⇒ T1 = 0→ Fp ∈ {NF,F1, F3}
T2 = 0 ← Fp ∈ {NF,F1} ⇐⇒ T2 6= 0 → Fp ∈ {F2, F3}
T2 6= 0 ← Fp ∈ {F2, F3} ⇐⇒ T2 = 0 → Fp ∈ {NF,F1}
T3 = 0 ← Fp ∈ {NF,F2} ⇐⇒ T3 6= 0 → Fp ∈ {F1, F3}
T3 6= 0 ← Fp = F3 ⇐⇒ T3 = 0 → Fp ∈ {NF,F1, F2}

By using if-and-only-if relations, these formulas can be written on a
slightly shorter form:

T1 = 0 ↔ Fp ∈ {NF,F1, F3} ⇐⇒ T1 6= 0↔ Fp = F2

T2 = 0 ↔ Fp ∈ {NF,F1} ⇐⇒ T2 6= 0 ↔ Fp ∈ {F2, F3}
T3 = 0 ← Fp ∈ {NF,F2} ⇐⇒ T3 6= 0 → Fp ∈ {F1, F3}
T3 6= 0 ← Fp = F3 ⇐⇒ T3 = 0 → Fp ∈ {NF,F1, F2}

As seen, the if-and-only-if relation can only be used with rows, in the
influence structure, which have no X:s.

The influence structure corresponds to the case where ideal condi-
tions holds. If this was the case, we could derive the diagnosis statement
S by using the influence structure, the formulas (3.10), and the values of
the test quantities Tk(z). In practice, the model is not perfect; unmod-
eled disturbances affect the process, and there is measurement noise.
All this means that the formulas (3.10) are not valid and can therefore
not be used in practice to form the diagnosis statement S. Instead we
will use the decision structure as will be described in Section 3.3.2.
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Multiple Faults

Also multiple faults can be included into the influence structure (and
also in the decision structure described in the next section). For
example, if the influence structure (3.5) is expanded we obtain the
following influence structure.

NF F1 F2 F3 F1&F2 F2&F3 F1&F3 F1&F2&F3

T1(z) 0 0 1 0 1 1 0 1
T2(z) 0 0 1 1 1 1 1 1
T3(z) 0 X 0 1 X 1 1 1

(3.11)
The part of the table corresponding to multiple faults, is constructed
using the assumption that two faults cannot compensate out each other.
If this is not true, i.e. some faults can compensate out each other, we
can not use so many 1:s in the columns for the multiple faults. To be
on the safe side, one can use the convention to only use X:s for multiple
faults. Another possibility is to study each test Tk(z) separately and
conclude if the entry should be 1 or X, or even 0. Note that if the
multiple fault part of the table can be derived from the single fault
part, e.g. as in (3.11), there is actually no need to explicitly store the
multiple fault part. Instead, they can be retrieved on the fly in the
process of matching columns.

3.3.2 Decision Structure

In practice, we have to relax the assumptions of ideal conditions and
the formulas (3.10) can be replaced by a formulation based on the
use of thresholded test quantities. Doing this, we obtain a decision
structure. Still letting skj denote the entry in the k:th row and the j:th
column, the new interpretation of 0:s, 1:s, and X:s becomes

Fp = Fj → Tk(z) < Jk if skj = 0 (3.12a)

Fp = Fj → Tk(z) ≥ Jk if skj = 1 (3.12b)

The implications are usually not completely true, but we assume that
they hold up to a probability sufficiently close to 1. This corresponds
to the basic assumptions, discussed in Section 3.4.1, that when H0

k

is rejected, we assume that H1
k holds. However, there is a conflict

between the two rules (3.12a) and (3.12b). To make the assumption
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that (3.12a) holds reasonable in the case of noise, thresholds must be
chosen relatively high2. This means that the thresholds must be chosen
relatively high. Further, this violates the assumption that (3.12b) holds.
To achieve reasonable assumptions, some or probably most 1:s from the
influence structure must therefore be replaced by X:s. It might seem
that another choice is to replace 0:s by X:s, but the problem with this
is that for all small faults, the assumption of (3.12b) still not becomes
reasonable.

An example of a decision structure is obtained by considering the
influence structure (3.5) which can be transformed to (by replacing 1:s
with X:s), for instance the following decision structure:

NF F1 F2 F3

δ1(z) 0 0 X 0
δ2(z) 0 0 X 1
δ3(z) 0 X 0 X

(3.13)

Because the decision structure is related to the whole hypothesis tests
and not only the test quantities, we use δk to label the rows instead
of Tk. In cases when the NF -column only contains 0:s, and this is
trivially understood, the NF -column will sometimes not be included.

The process of replacing 1:s with X:s is further illustrated by the
following example:

Example 3.2 Consider again Example 3.1. When the system be-
havioral mode M is present, we have that

T (z) = fM + v

where v is a signal that represents model errors, disturbances, and
measurement noise. Even for the system behavioral mode NF , which
implies fM = 0, the test quantity T (z) will not be zero. This means
that the threshold J must be raised above zero. Then for small fM ,
T (z) will not reach the threshold.

If the influence structure (3.9) would be used as decision structure,
we would have the rule

Fp = M → T (z) ≥ J

2This corresponds to that the significance level αk must be low, see Section 3.4.2.
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However, according to what was said above, the implication will not
hold for a small fM . This means that to obtain the decision structure,
the 1 in (3.9) must be replaced by an X, i.e.

NF M P

δ 0 X X

A decision structure can be used to derive the diagnosis statement by
a simple column matching as described in the beginning of Section 3.3.
Another way is to use the table together with the formulas (3.12).
Consider for example the decision structure (3.13), which has the
interpretation

T1 < J1 ← Fp ∈ { NF,F1, F3} ⇐⇒ T1 ≥ J1 → Fp = F2

T2 < J2 ← Fp ∈ { NF,F1} ⇐⇒ T2 ≥ J2 → Fp ∈ { F2, F3}
T2 ≥ J2 ← Fp = F3 ⇐⇒ T2 < J2 → Fp ∈ {NF,F1, F2}
T3 < J3 ← Fp ∈ { NF,F2} ⇐⇒ T3 ≥ J3 → Fp ∈ {F1 , F3}

Now if T1 < J1, T2 ≥ J2, and T3 ≥ J3, we know by using the rules,
that Fp ∈ { F2, F3} and Fp ∈ {F1 , F3}. This means that F3 must be
the present system behavioral mode.

3.3.3 The Importance of Using X:s in the Decision Struc-
ture

When 1:s are replaced with X:s and vice verse, the produced diagnosis
statement will in general change. If X:s are not inserted in the right
places, the diagnosis statement may become incorrect. The next ex-
ample will demonstrate the isolation procedure and also highlight this
difference between X:s and 1:s.

Example 3.3 Consider the following two decision structures

NF F1 F2 F3

δ1(z) 0 0 1 0
δ2(z) 0 0 1 1
δ3(z) 0 1 0 1

NF F1 F2 F3

δ1(z) 0 0 X 0
δ2(z) 0 0 X 1
δ3(z) 0 X 0 X

(3.14)
Assume that these decision structures represent two different diagnosis
systems but with the same set of test quantities and thresholds. Then
Table 3.1 contains a comparison between the diagnosis statement gen-
erated from the left structure and the diagnosis statement generated
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from the right structure. The leftmost column lists all possible results
of thresholding the test quantities and, for example the second row in
Table 3.1, (0, 0, 1), corresponds to T1 < J1, T2 < J2, and T3 > J3.

Left Struct. Right Struct.
T1 T2 T3 S S

0 0 0 {NF} {NF,F1, F2}
0 0 1 {F1} {F1}
0 1 0 {} {F2, F3}
0 1 1 {F3} {F3}
1 0 0 {} {F2}
1 0 1 {} {}
1 1 0 {F2} {F2}
1 1 1 {} {}

Table 3.1: The diagnosis statements using the left and the right decision
structure in (3.14).

Remember from Section 3.3.1 that a 1 in the column for Fj means that
we assume that all faults, belonging Fj , affects the test quantity. This
can in most cases not be assumed and therefore, the right decision
structure in (3.14) is normally the formally correct one to use.

3.4 Structured Hypothesis Tests Approach

Structured hypothesis tests represent another view on the fault isolation
problem. The basic principle is that during the design of the diagnosis
system, we carefully formulate the null and alternative hypotheses of
each hypothesis test in the diagnosis system. Typically we represent
these hypotheses using sets of system behavioral modes. Then the
diagnosis statement can be formed by a simple intersection of alternative
hypotheses from the tests that have responded, i.e. the tests that have
rejected their null hypothesis.

3.4.1 Hypothesis Tests

As was stated in Section 3.2, each diagnostic test δk(z) generates a
sub-diagnosis statement Sk, i.e. Sk = δk(z). In analogy with the
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diagnosis statement S, also the sub-diagnosis statements Sk will here
be represented by sets.

The null hypothesis for the k:th hypothesis test, i.e. H0
k , is that the

system behavioral mode, present in the process, belongs to a specific
set Mk of system behavioral modes. The system behavioral modes in
Mk correspond to the non-monitored faults. The alternative hypothesis
H1
k is that the present system behavioral mode does not belong to Mk.

This means that if hypothesis H0
k is rejected, and thus H1

k is accepted,
the present system behavioral mode can not belong to Mk, i.e. it must
belong to the complement set of Mk denoted MC

k . In this way, each
hypothesis test can contribute with a piece of information about which
system behavioral modes that can be present.

Let Fp denote the system behavioral mode present in the system
(the process). Then for the k:th hypothesis test, the null hypothesis
and the alternative hypothesis can be written

H0
k : Fp ∈Mk some behavioral mode in Mk can explain observations

(3.15a)

H1
k : Fp ∈MC

k no behavioral mode in Mk can explain observations

(3.15b)

The convention used here and also common in hypothesis testing
literature, is that when H0

k is rejected; we assume that H1
k is true.

Further, when H0
k is not rejected, we will for the present not assume

anything. This latter fact will be slightly modified in Section 3.4.2,
where we discuss how we can assume something also when H0

k is not
rejected. However, it always holds that Mk ⊆ S0

k ⊆ Ω where S0
k is the

decision taken when H0 is not rejected. Using these principles means
that

Sk =

{
S1
k = MC

k if H0
k is rejected (H1

k accepted)

S0
k ⊆ Ω if H0

k is not rejected

Much of the engineering work involved in constructing a diagnosis
system is to use the model of the system to construct the individual
hypothesis tests, i.e. decide which hypotheses to test and device a
procedure to determine if the null hypothesis should be rejected or not.
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An Alternative Representation of the Hypothesis Tests

Above, we used the set Mk to formulate the null and the alternative
hypotheses. An alternative, and more standard in the world of hypoth-
esis testing, is to use a parameter θ together with parameter sets Θ0

k

corresponding to the different null hypotheses.
To illustrate this, assume that the process to be diagnosed is mod-

eled with a model M(θ). The model M(θ) includes the fault models
and consists of differential equations, algebraic equations, and possibly
also stochastic parts. The parameter vector θ is called the fault state
and represents the true but unknown fault situation of the process.

That is, all information about possible faults of the process is
collected in the parameter θ. At least one value of the fault state θ
always correspond to the no-fault system behavioral mode. The fault
state-space, i.e., the space over which θ can vary will be denoted Θ.

Note that we have chosen the convention that θ is not dependent on
time which corresponds to the assumption that the system behavioral
mode is constant over the time window considered. Even though this
may seem to be a limitation, this is not the case since we will be quite
liberal regarding the definition of the parameter vector θ, e.g. elements
are allowed to be not only constant values but also signals.

The classification of different faults into system behavioral modes
corresponds to a partition of the fault-state space Θ. Each system
behavioral mode γ is associated with a subset Θγ of Θ. Thus all sets
Θγ are pairwise disjoint and Θ = ∪γ∈ΩΘγ . If system behavioral mode
γ is present in the system, then we know that θ ∈ Θγ . The fact that
all sets Θγ are pairwise disjoint reflects the fact that only one system
behavioral mode can be present at the same time. With the general
model M(θ), each system behavioral mode γ can now be seen as a
model of the process, namely the model M(θ), where θ ∈ θγ .

Example 3.4 Consider a system described by the following equations:

ẋ(t) =f(x(t), u(t))

y1(t) =h1(x(t)) + b1

y2(t) =h2(x(t)) + b2

The constants b1 and b2 represents sensor bias faults and it is assumed
that only positive biases can occur. It is natural to let θ1 = b1 and
θ2 = b2, and thus θ = [θ1 θ2] = [b1 b2]. Four system behavioral modes
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are considered: “no fault” NF, “bias in sensor 1” B1, “bias in sensor 2”
B2, “bias in both sensor 1 and sensor 2” B1&B2. The sets Θ, ΘNF,
ΘB1, ΘB2, and ΘB1&B2 become

Θ ={[b1 b2]; b1 ≥ 0, b2 ≥ 0}
ΘNF ={[0 0]}
ΘB1 ={[b1 0]; b1 > 0}
ΘB2 ={[0 b2]; b2 > 0}

ΘB1&B2 ={[b1 b2]; b1 > 0, b2 > 0}

We can now use the definition of the sets Θγ to describe the
hypotheses. This is done via sets Θ0

k which are defined as

Θ0
k =

⋃
γ∈Mk

Θγ

The hypotheses can now be expressed as

H0
k : θ ∈ Θ0

k some value of θ ∈ Θ0
k can explain observations

H1
k : θ /∈ Θ0

k no value of θ ∈ Θ0
k can explain observations

Depending on the context, hypotheses will in the text be represented
either by the Mk-sets or the Θ0

k-sets. However, it should be remembered
that both representations are equivalent.

3.4.2 Constructing Hypothesis Tests for Diagnosis

The definition (3.2) means that we need to design a test quantity Tk(z)
such that it is low if the data z match the hypothesis H0

k , i.e. a system
behavioral mode in Mk can explain the data. Also if the data come
from a system behavioral mode not in Mk, Tk(z) should be large. This
is formalized by the power function βk(θ):

βk(θ) = P (reject H0
k | θ) = P (Tk(z) ≥ Jk | θ)

We want the power function to be low for θ ∈ Θ0
k and large for θ /∈ Θ0

k.
To be able to make the assumption that H1

k is true when H0
k is rejected,
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we need to design the hypothesis tests such that the significance level
α, defined as

α = sup
θ∈Θ0

k

βk(θ)

has a small value. This implies that the threshold Jk must be set
relatively high. This in turn means that the value of βk(θ) does not
necessarily become large for all values θ /∈ Θ0

k. For instance, if the
present system behavioral mode is Fi, then for some θ ∈ ΘFi , the
probability to reject H0

k may be very small. This is the reason why we
up to now, have assumed that S0

k = Ω, i.e. we can not assume anything
when H0

k is not rejected.
Now if it actually holds that the power function is large for all

θ ∈ ΘFi , then we do not take any large risk if we assume that Fi has
not occurred when H0

k is not rejected. If this is the case, Fi should be
excluded from S0

k .
How the test quantities Tk(z) are constructed depends on the actual

case and only for some specific classes of systems and fault models,
general design procedures have been proposed, e.g. linear systems with
fault modeled as inputs which will be described in Chapter 6.

To develop the actual hypothesis tests, we first need to decide the
set of hypotheses to test. One solution is to use one hypothesis test for
each system behavioral mode. In this case, the set of hypothesis tests
can be indexed by γ ∈ Ω, i.e. δγ , and becomes

H0
γ : Fp ∈Mγ (3.16a)

H1
γ : Fp ∈MC

γ (3.16b)

γ ∈ Ω (3.16c)

It turns out that some system behavioral modes are related to other
system behavioral modes such that for some values of θ they are
impossible to separate. This has implications on how the sets Mk can
be chosen. For example for most system behavioral modes, the limit
when the fault size goes to zero is equal to the system behavioral mode
“no fault”. This means that when system behavioral mode NF , i.e.
no fault, is present, most null hypothesis can not be rejected. The
implication is that for almost all sets Mk it is possible to include NF .
For example assume that M1 = {F1} but small faults belonging to F1

are impossible to distinguish from NF . Then M1 can be extended to
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M ′1 = {F1, NF}. When the null hypothesis is rejected, we can now
conclude Fp 6∈ {F1, NF} which is a stronger conclusion, and therefore
more desirable, compared to Fp 6∈ {F1}.

3.4.3 The Fault Isolation

In the view of hypothesis testing, fault isolation logic becomes a simple
intersection operation. This procedure will be described in this section,
and we will also study the relationship to the column matching approach
described in Section 3.3. The principle of the fault isolation is illustrated
by the following example.

Example 3.5 Assume that the set of all possible system behavioral
modes is Ω = {NF,F1, F2, F3} and that the diagnosis system contains
the following set of three hypothesis tests:

H0
1 : Fp ∈M1 = {NF,F1} S0

1 = Ω

H1
1 : Fp ∈MC

1 = {F2, F3} S1
1 = {F2, F3}

H0
2 : Fp ∈M2 = {NF,F2} S0

2 = Ω

H1
2 : Fp ∈MC

2 = {F1, F3} S1
2 = {F1, F3}

H0
3 : Fp ∈M3 = {NF,F3} S0

3 = Ω

H1
3 : Fp ∈MC

3 = {F1, F2} S1
3 = {F1, F2}

Then if only H0
1 is rejected, we draw the conclusions that Fp ∈ S1

1 ,
Fp ∈ S0

2 , Fp ∈ S0
3 . That is, Fp ∈ S1

1 ∩ S0
2 ∩ S0

3 = {F2, F3} ∩ Ω ∩ Ω =
{F2, F3}, i.e. the present system behavioral mode is either F2 or
F3. If both H0

1 and H0
2 are rejected, we draw the conclusion that

Fp ∈ {F2, F3}∩{F1, F3}∩Ω = {F3}, i.e. the present system behavioral
mode is F3.

From the example above, it is clear that the isolation logic is a
simple intersection operation, i.e. the diagnosis statement S can be
expressed as

S =
⋂
k

Sk (3.17)

As stated in Section 3.1.2, a desirable goal when designing a diag-
nosis system is that the diagnosis statement should always be sound
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and complete. When 1:s and X:s are used in accordance with the
formulas (3.12), the diagnosis statement will in fact always be complete.
If a structure with only 1:s are used, in a case where X:s should have
been used, the diagnosis statement will not be complete. This can be
seen in Example 3.3, in the first, third, and the fifth row in Table 3.1.

To get a sound diagnosis statement, i.e. all conclusions in the
statement are really diagnoses, is more difficult to guarantee. However
with ideal test quantities a sufficient condition is to have enough
hypothesis tests according to the result below. With ideal test quantities
we mean that Tk = 0 if and only if the observations can be explained
by any of the system behavioral modes in Mk. This means implicitly
that we assume that there is no noise in the process.

Theorem 3.1. Let a diagnosis system be constructed with one hy-
pothesis test for each system behavioral mode Fi, i.e. H0

i : Fp = Fi.
Assume that ideal test quantities are used and let the decision structure
be chosen such that the formulas (3.10) are valid. Then the diagnosis
statement S will always be logically sound.

3.4.4 Relation to Column Matching Approach

There is a strong relationship between structured hypothesis tests and
the column matching approach, i.e. the relationship between forming
the diagnosis statement S by using the decision structure, and by
taking the intersection of the individual diagnosis statements Sk. For
example, the sets S0

k and S1
k for the decision structure (3.13), are

S0
1 ={NF,F1,F2,F3} S1

1 ={F2}
S0

2 ={NF,F1,F2} S1
2 ={F2,F3}

S0
3 ={NF,F1,F2,F3} S1

3 ={F1,F3}

That is, the set S0
k contains all system behavioral modes that have 0

or X in row δk of the decision structure. Also S1
k contains all system

behavioral modes that have 1 or X in the same row. In this way, the
decision structure can be seen as an overview of a diagnosis system
based on structured hypothesis tests. When the result of a test is S0

k ,
then the system behavioral modes with 0:s and X:s in the decision
structure, are the possible present system behavioral modes. When the
result is S1

k , then the system behavioral modes with 1:s and X:s are
the possible present system behavioral modes.
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From a decision structure we can also read out which tests that
will respond, i.e. which null hypothesis that will be rejected, when
a particular system behavioral mode is present. For the decision
structure (3.13), we know that if NF is the present fault mode, then
no tests will respond, because the corresponding column has only zeros.
Also, if F3 is the present system behavioral mode, then test δ1 will not
respond, test δ2 will respond, and test δ3 may respond.

3.4.5 Performance Issues

The principle of structured hypothesis tests, and also the column
matching approach, has the advantage that several fault modes per
component can be handled easily. One further advantage is that the
isolation logic becomes very simple.

One disadvantage of structured hypothesis tests, and the column
matching approach, is that multiple faults are not handled in a very
efficient way. Assume for example that we have a system with 20
components that are to be diagnosed. Assume also that each of these
components have two possible fault modes. This means that the total
number of possible system behavioral modes becomes 320 ≈ 3.5 · 109.
The size of the sets S1

k and S will typically be of almost the same order
of magnitude. Clearly this makes both the storage of S1

k and S, and
the intersection operation (3.17) intractable. Thus, the principles of
structured hypothesis tests and column matching are only solutions for
relatively small systems or when only a limited multiplicity of fault is
considered.

To see how a limitation of the multiplicity of faults affects the
number of system behavioral modes, consider again our example system
with 20 components but assume this time that only single or double
faults are considered. The total number of system behavioral modes
becomes 1 + 20 · 2 + ( 20

2 ) · 4 = 801. Also the sets S1
k becomes much

smaller. For example, a diagnostic test δi testing the null hypothesis
that two components are in the NF-mode, will have a sub-diagnosis
statement S1

i with 80 elements. In many applications, this number
should be small enough so that the storage of Sk and S, and the
intersection operation (3.17), can be handled.

The minimal hitting-set approach, to be presented in Section 3.5,
will not be able to handle more than two behavioral modes per compo-
nent. On the other hand, in many applications, it will have a better
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performance with regards to memory and processing power usage.

3.4.6 Examples

This section contains three examples that illustrate how to construct a
set of hypothesis tests for the purpose of using the fault isolation ap-
proach structured hypothesis tests. Systematic methods of constructing
test quantities are described in Chapter 4.

Faults Modeled as Parameter Changes

Consider a process that can be modeled as

y(t) = θ1u1(t) + θ2u2(t) + θ3u3(t)

Faults are modeled as deviations in the constant parameters θi. The
fault state vector is θ = [θ1 θ2 θ3]. Four behavioral modes are consid-
ered:

NF θ = [1 1 1]

F1 θ1 6= 1, θ2 = θ3 = 1

F2 θ2 6= 1, θ1 = θ3 = 1

F3 θ3 6= 1, θ1 = θ2 = 1

To diagnose this system, we use four hypothesis tests whose null
hypotheses are defined by the sets Mk:

M0 = {NF}
M1 = {NF,F1}
M2 = {NF,F2}
M3 = {NF,F3}

The null and alternative hypotheses become

H0
k : Fp ∈Mk

H1
k : Fp ∈MC

k

for k = 0, 1, 2, 3. Then we have that S1
k = MC

k , and S0
k is chosen as

S0
k = Ω.
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As test quantities, we use the functions

T0(z) =

N∑
t=0

(
y − ŷ

)2
=

N∑
t=0

(
y − u1 − u2 − u3

)2
(3.18a)

T1(z) = min
θ1

N∑
t=0

(
y − ŷ

)2
= min

θ1

N∑
t=0

(
y − θ1u1 − u2 − u3

)2
(3.18b)

T2(z) = min
θ2

N∑
t=0

(
y − ŷ

)2
= min

θ2

N∑
t=0

(
y − u1 − θ2u2 − u3

)2
(3.18c)

T3(z) = min
θ3

N∑
t=0

(
y − ŷ

)2
= min

θ3

N∑
t=0

(
y − u1 − u2 − θ3u3

)2
(3.18d)

Note that these functions are in principle parameter estimators and
that Tk(z) is the sum of squared simulation errors. It is obvious that
the functions (3.18) are small when the present system behavioral mode
belongs to the corresponding set Mk. For example if F1 is the present
system behavioral mode, then T1(z) will produce a good estimate of θ1

which implies that the simulation error and T1(z) will become small.
Also, for at least “large” faults, the functions (3.18) are large when the
present system behavioral mode does not belong to the corresponding
set Mk. For example if F1 is the present system behavioral mode, and
the fault is “large”, then T0(z), T2(z), and T3(z) will all become large.
All this means that the functions (3.18) satisfy our requirements on
test quantities.

Faults Modeled as Arbitrary Input Signals

Consider a process that can be modeled as

x(t+ 1) = Ax(t) +B
(
u(t) + fu(t)

)
y1(t) = C1x(t) + f1(t)

y2(t) = C2x(t) + f2(t)

The faults are modeled as the signals fu, f1, and f2, representing an
actuator fault and faults in sensor 1 and 2 respectively. The fault state
vector is θ = [fu(t) f1(t) f2(t)]. Four system behavioral modes are
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considered:

NF θ = [0 0 0]

Fu θ = [fu(t) 0 0], fu(t) 6≡ 0

F1 θ = [0 f1(t) 0], f1(t) 6≡ 0

F2 θ = [0 0 f2(t)], f2(t) 6≡ 0

To diagnose this system, we use two hypothesis tests with hypotheses

H0
1 : Fp ∈M1 = {NF,F1}

H1
1 : Fp ∈MC

1 = {Fu, F2}

H0
2 : Fp ∈M2 = {NF,F2}

H1
2 : Fp ∈MC

2 = {Fu, F1}

To calculate the test quantities, we first use the following two observers

x̂(t+ 1) = Ax̂(t) +Bu(t)−K(y1(t)− ŷ1(t)) (3.19a)

ŷ1(t) = C1x̂(t) (3.19b)

x̂(t+ 1) = Ax̂(t) +Bu(t)−K(y2(t)− ŷ2(t)) (3.20a)

ŷ2(t) = C2x̂(t) (3.20b)

Then the test quantities can be defined as

T1(z) =
N∑
t=0

|y2(t)− ŷ2(t)|

T2(z) =

N∑
t=0

|y1(t)− ŷ1(t)|

These test quantities Tk(z) are zero or small if the present system
behavioral mode belongs to the corresponding sets Mk. For example,
if F1 is the present system behavioral mode, then the observer (3.20)
will produce a good estimate ŷ2(t) since the calculation of ŷ2(x) is not
affected by a fault in sensor 1. This means that T1(z) will become
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small. Also when F1 is present, it can be shown that T2(z) will become
large or at least non-zero. This means that T1(z) and T2(z) serves
well as test quantities. This configuration of observers, in which each
observer is fed by only one of the output signals, is called a dedicated
observer scheme(Clark, 1979).

The Polybox Example

The Polybox example is a standard example within the AI-field of
model-based diagnosis research (Kleer and Williams, 1987). Here, this
example is discussed in the perspective of SHT, and will exemplify the
handling of multiple faults.

The system consists of five components: three multipliers M1, M2,
and M3, and two adders A1 and A2. The components are connected
according to Figure 3.4. The observations consists of one sample of
all inputs a, b, c, d, and e, and the outputs f and g, i.e. a vector of 7
elements. The complete list of single-fault system behavioral modes is:

M2

M3

A1

M1

A2

c

f

g

x

y

z

b

d

e

a

Figure 3.4: The Polybox example.
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NF no-fault
A1 arbitrary fault in component A1
A2 arbitrary fault in component A2
M1 arbitrary fault in component M1
M2 arbitrary fault in component M2
M3 arbitrary fault in component M3

Since no knowledge about the faults is known, a very general fault
model is adopted. For example, the model of the adder A1 is

f = x+ y + ff (3.21)

where ff is an arbitrary unknown constant. It is assumed that when a
fault is present in component A1, ff 6= 0, and otherwise ff = 0. Further
on, for example multiplier M1 is modeled as

x = ac+ fx (3.22)

By putting together all the component models, we obtain one model
M(θ) with θ = [ff fg fx fy fz], i.e. θ is a constant vector with 5 scalar
elements. Depending on the specific fault, θ then takes different values.
For example in the fault free case (i.e. the system behavioral mode NF
is present), θ = [0 0 0 0 0] and the model describing the system is then

f =ac+ bd (3.23)

g =bd+ ce (3.24)

Another example is the combined model for the system behavioral
mode A1:

f =ac+ bd+ ff (3.25)

g =bd+ ce (3.26)

where θ = [ff 0 0 0 0] 6= 0. The set of all possible θ-values is Θ = R5.
To limit the discussion, only multiple-fault system behavioral modes

with two faulty components are considered. The models for the multiple-
fault system behavioral modes are obtained by combining the models
for the single-fault behavioral modes. For example the model for the
system behavioral mode A1&M1 is

f =ac+ fx + bd+ ff (3.27)

g =bd+ ce (3.28)
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The set of all system behavioral modes considered is then:

Ω = {NF,A1, A2,M1,M2,M3, A1&A2, A1&M1, A1&M2, A1&M3,

A2&M1, A2&M2, A2&M3,M1&M2,M1&M3,M2&M3}

By studying the models for the different system behavioral modes, it
can be realized that all system behavioral modes in the set {A1,M1, A1&M1}
are represented by in principle equivalent models. Compare for exam-
ple (3.25) and (3.27). This is true also for the sets {A2,M3, A2&M3}
and
{A1&A2, A2&M1, A2&M2,M1&M2,M1&M3,M2&M3}. The impli-
cation is that the only possible hypotheses to test are the following
four:

H0
0 : Fp ∈ {NF}

H1
0 : Fp 6∈ {NF}

H0
1 : Fp ∈ {NF,A1,M1, A1&M1}

H1
1 : Fp 6∈ {NF,A1,M1, A1&M1}

H0
2 : Fp ∈ {NF,M2}

H1
2 : Fp 6∈ {NF,M2}

H0
3 : Fp ∈ {NF,A2,M3, A2&M3}

H1
3 : Fp 6∈ {NF,A2,M3, A2&M3}

The first of these hypothesis tests does not help us in the isolation task,
but can be useful for detecting the faults.

An example of test quantities for the four hypothesis tests is

T0 =|f − ac− bd|+ |g − bd− ce|
T1 =|g − bd− ce|
T2 =|f − g − ac+ ce|
T3 =|f − ac− bd|
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3.5 Minimal Hitting Set Approach

As was seen in Sections 3.3 and 3.4, isolation could be performed
by using a column matching approach or an intersection operation.
As concluded above, when no limitation is made on the multiplicity
of faults, both these approaches have complexity problems when the
number of components grows. In this section, an alternative approach
to the calculation of the diagnosis statement S is presented.

For the approach to work we will assume only one fault mode per
component and no fault models. It may seem strange to assume no fault
models, considering that fault modelling was described in Section 2.7 as
important to be able to perform fault isolation. But, for example the
general fault models in Section 2.7.1 can be said to imply that we have
no model for the faulty behavior since there is no restriction on the,
for example, sensor behavior in case of a fault. With such assumptions
we can construct an efficient algorithm for calculating the diagnosis
statement S.

In the approach, the null hypotheses are represented as sets of
components. Then a so called minimal hitting set algorithm can be
used to compute the set of minimal diagnoses. In the case of only two
behavioral modes per component and no fault models, we have learned
from Section 2.4.1 that these minimal diagnoses characterize the set of
all diagnoses, i.e. the diagnosis statement.

3.5.1 Conflicts

Using the minimal hitting set approach, the concept of conflicts is
important since it is the basis for computing the diagnoses. A conflict
is some assumption of behavioral modes that is not consistent with
the observations. Even though the minimal hitting set approach is
limited to the case of only two behavioral modes per component and no
fault models, the concept of conflicts is more general and has a wider
usage. Therefore we will in this section first present conflicts without
the limitation to only two behavioral modes per component and no
fault models.

Formally conflicts can be defined as follows.

Definition 3.1 (Conflict). A set of behavioral mode assignments C
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(possibly partial) is a conflict if

M∪O ∪ C

is not consistent where M is a diagnostic model and O the set of
observations.

Similar to the definition of kernel diagnoses, minimal conflicts can
be defined as follows:

Definition 3.2 (Minimal Conflict). A conflict C is minimal if the only
conflict implied by C is C itself.

Example 3.6 Suppose that we have two inverters in the configuration
illustrated in Figure 3.5. When the observations are as indicated in

X=1

Y=1

Z=0

I1 I2

Figure 3.5: A simple inverter circuit.

the figure, i.e. X = 1, Y = 1, and Z = 0, we have for example the
following conflicts:

OK(I1) ∧OK(I2)

OK(I1)

The first conflict implies the second, and can therefore not be minimal.
The second conflict is minimal since it does not imply any other conflicts.
Note here that OK(I2) is not a conflict because OK(I2) is consistent
with the observations. By assuming that the inverters can have the
behavioral modes described for the inverter in Section 2.2.1, the set of
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conflicts increase.

OK(I1) ∧ SA0(I2), OK(I1) ∧ SHORT (I2)

OK(I1) ∧ U(I2), SA0(I1)

SA0(I1) ∧OK(I2) SA0(I1) ∧ SHORT (I2)

SA0(I1) ∧ SA0(I2) SA0(I1) ∧ U(I2)

SHORT (I2) SHORT (I1) ∧ SHORT (I2)

U(I1) ∧ SHORT (I2)

In total, the set of minimal conflicts are:

OK(I1), SA0(I1), SHORT (I2)

3.5.2 Relations Between Diagnoses and Conflicts

The relationship between conflicts and diagnoses is described in the
following theorem:

Theorem 3.2. Suppose that {π1, π2, . . . } is the set of all conflicts.
Then the candidate D is a diagnosis if and only if

{¬π1,¬π2, . . . }
⋃
D

consistent.

Proof. See (de Kleer et al., 1992) for a proof of a similar result. �

In fact, the set of minimal conflicts contain all information needed
so it is possible to state a stronger theorem compared to Theorem 3.2:

Theorem 3.3. Suppose that {π1, π2, . . . } is the set of all minimal
conflicts. Then the candidate D is a diagnosis if and only if

{¬π1,¬π2, . . . }
⋃
D (3.29)

is consistent.

Proof. See (de Kleer et al., 1992) for a proof of a similar result. �
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Example 3.7 Consider again Example 3.6. To illustrate Theorem 3.3,
suppose that we want to test if D1 = SHORT (I1) ∧ OK(I2) is a
diagnosis. We take the set of negations of the minimal conflicts, which
is

{¬OK(I1),¬SA0(I1),¬SHORT (I2)}

Then to test consistency of (3.29) we form the union with D1:

{¬OK(I1),¬SA0(I1),¬SHORT (I2), SHORT (I1) ∧OK(I2)}

All sentences are trivially satisfied by the following assignment:

OK(I1) = F

SA0(I1) = F

SHORT (I2) = F

SHORT (I1) = T

OK(I2) = T

This assignment is also consistent with the assumption that each
component can only be in one behavioral mode at a time. Since all
sentences are consistent, Theorem 3.3 implies that D1 is a diagnosis.

Suppose then that we want to test ifD2 = SHORT (I1)∧SHORT (I2)
is a diagnosis. We form the union between the negated minimal conflicts
and D2:

{¬OK(I1),¬SA0(I1),¬SHORT (I2), SHORT (I1) ∧ SHORT (I2)}

It is clearly not possible to assign a value to ¬SHORT (I2) such that
the last two sentences evaluate to TRUE. Therefore, D2 can according
to Theorem 3.3, not be a diagnosis.

3.5.3 Conflicts and Diagnoses Under MDH

We will now present a special case, in which the relation between
conflicts and diagnoses becomes especially powerful. Assume first that
only the behavioral modes corresponding to OK and ¬OK are used.
Secondly, assume that the behavioral mode ¬OK has no model, which
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means that conflicts can only contain the OK-mode.3 With these two
assumptions; the following result can be shown:

Lemma 3.4 (Sufficient conditions for MDH). Assume that only be-
havioral modes OK and ¬OK are used and that ¬OK has no model,
then the minimal diagnosis hypothesis(see Definition 2.3) holds.

See (de Kleer et al., 1992) for a proof.
A useful tool in this special case is to represent negated conflicts

as sets. For example a conflict OK(a) ∧ OK(b) becomes negated
¬OK(a) ∨ ¬OK(b). This negated conflict can be represented as

{¬OK(a),¬OK(b)}

Assume that a negated conflict is a proper superset of another negated
conflict, e.g. {¬OK(a),¬OK(b),¬OK(c)} ⊃ {¬OK(a),¬OK(b)}. This
relation means that the conflict represented by the larger set implies the
conflict represented by the smaller set, i.e. OK(a)∧OK(b)∧OK(c)→
OK(a)∧OK(b). According to Definition 3.2, OK(a)∧OK(b)∧OK(c)
can then not be a minimal conflict. That is, with the set representation,
a minimal conflict is a conflict that is not a proper superset of some
other conflict.

To illustrate how the set representation can be useful for deriving
diagnoses, consider first an example of how diagnoses are derived with
logic sentences. Suppose that OK(a)∧OK(b) and OK(b)∧OK(c) are
the only minimal conflicts. The negations of these are

¬OK(a) ∨ ¬OK(b)

¬OK(b) ∨ ¬OK(c)

The diagnoses are according to Theorem 3.3 the mode assignments that
are consistent with both negated minimal conflicts. It can be realized
that only the following mode assignments fulfill this requirement and
are therefore also the diagnoses:

OK(a) ∧ ¬OK(b) ∧OK(c)

OK(a) ∧ ¬OK(b) ∧ ¬OK(c)

¬OK(a) ∧ ¬OK(b) ∧OK(c)

¬OK(a) ∧ ¬OK(b) ∧ ¬OK(c)

¬OK(a) ∧OK(b) ∧ ¬OK(c)

3This implies that fault exoneration, see 3.8, is implicitly not assumed, i.e. faults
may be visible but not for sure.
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Let us now do the same thing using the set representation of conflicts.
We will also use the set representation of diagnoses demonstrated in
Section 2.4.1. The two negated conflicts become

{¬OK(a),¬OK(b)} (3.30a)

{¬OK(b),¬OK(c)} (3.30b)

and the diagnoses

{¬OK(b)} (3.31a)

{¬OK(b),¬OK(c)} (3.31b)

{¬OK(a),¬OK(b)} (3.31c)

{¬OK(a),¬OK(b),¬OK(c)} (3.31d)

{¬OK(a),¬OK(c)} (3.31e)

Now study the criterion of Theorem 3.3, which means that each diag-
nosis must be consistent with all of the negated conflicts. With the set
representation, this corresponds to that each diagnosis in (3.31) must
have a non-empty intersection with each of the negated conflicts (3.30).
Let us now summarize this conclusion in a theorem:

Theorem 3.5. Assume that each component has only the behavioral
modes OK and ¬OK, and that the behavioral mode ¬OK has no
model. Let {¬π1,¬π2, . . . } be the set of negated minimal conflicts
(each negated conflict ¬πi is a set ¬πi = {¬πi1,¬πi2, . . . }). If it for the
candidate D (also a set) and all ¬πi holds that

¬πi ∩ D 6= ∅

then D is a diagnosis.

See (de Kleer et al., 1992) for a proof.
As said in Section 2.4.1, the set of minimal diagnoses is a powerful

characterization of all diagnoses if the Minimal Diagnosis Hypothesis
holds, a slightly modified version of the theorem above can in fact be
used to derive minimal diagnoses:

Theorem 3.6. Assume that each component has only the behavioral
modes OK and ¬OK, and that the behavioral mode ¬OK has no
model. Let {¬π1,¬π2, . . . } be the set of negated minimal conflicts
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(each negated conflict πi is a set ¬πi = {¬πi1,¬πi2, . . . }). If the
candidate D (also a set) is a minimal set such that for all ¬πi it holds
that

¬πi ∩ D 6= ∅

then D is a minimal diagnosis.

See (de Kleer et al., 1992) for a proof.

3.5.4 The Working Principle of the Algorithm

Based on the concept of conflicts, we will in this section present an
algorithm that given a set of conflicts computes all minimal diagnoses.
First we illustrate the ideas by considering an example with four
diagnostic tests and four components. A decision structure could be
set up as follows:

NF F1 F2 F3 F4 F1&F2 F1&F3 F1&F4 . . . F1&F2&F3&F4
δ1 0 X 0 0 X X X X . . . X
δ2 0 X X 0 0 X X X . . . X
δ3 0 0 X X 0 X X 0 . . . X
δ4 0 0 X 0 0 X 0 0 . . . X

(3.32)

Note that the assumption of no fault model means that the decision
structure can not contain any 1:s. Note also that the X:s in a multiple-
fault column is the “union” of the X:s in the corresponding single fault
columns.

In this section we will use the word candidate for a system behavioral
mode that is an element of the diagnosis statement S. The fault
isolation can now be performed as in the following example. First
assume that the diagnostic test δ2 has responded, i.e. its null hypothesis
has been rejected. Assume also that δ2 is the only test that has
responded. We see in the decision structure (3.32) that the single faults
F1 and F2 are candidates. By construction of the table, we also know
directly that all multiple faults including F1 or F2, e.g. F1&F2 and
F2&F3, are the remaining candidates. Then if also δ3 responds, the set
of candidates, i.e. S, is updated. The single fault F1 can no longer be
a candidate, but instead all multiple faults including F1&F3 become
candidates. The old candidate F2, and all multiple faults including F2,
are still candidates. In this way the set of candidates can be updated
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for every new diagnostic test that responds. This is in principle the
approach used by diagnosis algorithms such as (Reiter, 1987; Kleer and
Williams, 1987), developed within the field of AI.

To more precisely describe the algorithm, we need a different repre-
sentation of the null hypotheses H0

k , the sub-diagnostic statement S1
k ,

and the diagnosis statement S. First, the null hypothesis is represented
as a set Ck of those components that in the null hypothesis are as-
sumed to be non-faulty. Second, the sub-diagnosis statement S1

k , which
corresponds to the alternative hypothesis H1

k , is represented by the
same set Ck but with the opposite interpretation, namely that some
component in the set must be faulty. Third, the diagnosis statement S
is represented using a set of sets, where each set represents a minimal
diagnosis.

When H0
k is rejected the set Ck becomes a conflict. Then if we

collect such conflict sets from all the tests with a rejected null hypothesis,
we obtain a set

∏
of conflict sets. A diagnosis is then, according to

Theorem 3.5, a set that has a non-empty intersection with every conflict
set in

∏
. Further, a minimal diagnosis is, according to Theorem 3.6, a

minimal set that has a non-empty intersection with every conflict set
in
∏

.

The task of computing all minimal diagnoses, which also characterize
all diagnoses, can then be transformed to the problem of finding all
minimal hitting sets to a given set of sets. An algorithm for this will in
the next section be written down explicitly. Here we will first illustrate
the working principle on an example.

The minimal diagnosis computation is most easily illustrated us-
ing a subset-superset lattice. Figure 3.6 shows such a lattice for the
Polybox example. Each node represents a candidate and for example
[M1,M2] means ¬OK(M1) ∧ ¬OK(M2). The edges in the figure
represent subset/superset relationship between candidates. The set
of minimal diagnoses is incrementally computed as follows. When-
ever a new conflict is detected, any previous minimal diagnosis that
does not explain the new conflict is replaced by one or more superset
diagnoses that are minimal based on this new information. This is
accomplished by replacing any invalidated minimal diagnosis by a set
of new candidates, each of which contains the old minimal diagnosis
and one assumption from the new conflict. Note that these new can-
didates are diagnoses by construction. However, the new diagnoses
need not be minimal. Therefore, any of the new diagnoses that is a
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[M1,M2,A1,A2][M1,M2,M3,A1] [M2,M3,A1,A2][M1,M2,M3,A2] [M1,M3,A1,A2]

[M1,M2,M3] [M1,M2,A1] [M1,M2,A2] [M1,M3,A1] [M1,M3,A2] [M2,M3,A1] [M1,A1,A2] [M2,M3,A2] [M2,A1,A2] [M3,A1,A2]

[M1,M2] [M1,M3] [M1,A1] [M2,M3] [M1,A2] [M2,A1] [M2,A2] [M3,A1] [M3,A2] [A1,A2]

[M3] [A1] [A2][M2][M1]

[M1,M2,M3,A1,A2]

[]

Figure 3.6: Subset-superset lattice for the Polybox example.

superset of any other minimal diagnosis, or is duplicated by another,
is eliminated. The remaining diagnoses are minimal and are added to
the set of minimal diagnoses. This procedure is then iterated for any
conflict not processed. Note that the lattice in Figure 3.6 is only used
to illustrate the procedure, the algorithm do not need to represent the
whole lattice. This is fortunate since the lattice grows exponentially in
size with number of components.

The procedure is now thoroughly exemplified using the Polybox
example where we assumed no fault models and that the only considered
behavioral modes for each component are OK and ¬OK.

Initially, before any measurements are made, there are no conflicts
and thereby any candidate is also a diagnosis. Thus, the set of minimal
diagnoses is initially the set holding only an empty set, i.e. {{}}. In
other words, all nodes in the lattice represents a diagnosis.

We assume that a first conflict recognized is {A1,M1,M2}. This
conflict invalidates the single minimal diagnosis {} since the conflict
states that at least one of the components A1, M1, or M2 is faulty.
This invalidated minimal diagnosis is then removed from the set of
minimal diagnoses and the next step is to consider the immediate
supersets containing the invalidated minimal diagnosis and one element
from the conflict. These new sets are, by construction, diagnoses but
not necessary minimal. In this case, the diagnoses are {A1}, {M1}, and
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{M2}. None of these diagnoses are supersets of any of the old minimal
diagnoses (since there were no old minimal diagnoses left after the
empty diagnosis {} were invalidated). The new set of minimal diagnoses
is therefore {{A1}, {M1}, {M2}}. This is illustrated in Figure 3.7. The

C1=<M1,M2,A1>

[M1,M2,M3,A1] [M2,M3,A1,A2][M1,M2,M3,A2] [M1,M3,A1,A2]

[M1,M2,M3] [M1,M2,A1] [M1,M2,A2] [M1,M3,A1] [M1,M3,A2] [M2,M3,A1] [M1,A1,A2] [M2,M3,A2] [M2,A1,A2] [M3,A1,A2]

[M1,M2] [M1,M3] [M1,A1] [M2,M3] [M1,A2] [M2,A1] [M2,A2] [M3,A1] [M3,A2] [A1,A2]

[M3] [A1] [A2][M2][M1]

[M1,M2,M3,A1,A2]

[]

[M1,M2,A1,A2]

Figure 3.7: Subset-superset lattice after the conflict {A1,M1,M2} has
been processed. All candidates above the solid line are diagnoses and
are represented by the new minimal candidates. The new minimal
diagnoses are circled.

set of minimal diagnoses, indicated by circles, is a small representation
of all diagnoses, i.e. all nodes in the lattice above the solid line.

The next conflict that is encountered in the Polybox example is
{A1, A2,M1,M3}, inferred from the observation g = 12. The first
step is again to see if any of the minimal diagnoses are invalidated by
the new conflict. Using a similar result as Theorem 3.5, a diagnosis is
invalidated if it has an empty intersection with a conflict. In this case,
the minimal diagnoses {A1} and {M1} have non-empty intersections
with the new conflict, but not {M2}. Thus, {M2} is no longer a valid
diagnosis. Similar to what was done when the empty diagnosis {} was
invalidated by the first conflict, {M2} is replaced by new diagnoses
which are the immediate supersets of {M2} with an additional element
from the conflict, i.e. the new diagnoses are: {M2, A1}, {M2, A2},
{M2,M1}, and {M2,M3}. This is noted in Figure 3.8 where the new
minimal diagnoses are circled. However, two of them are encircled with
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a dashed line. This is because these two are supersets of the minimal
diagnoses {M1} and {A1} respectively which makes these two diagnoses
non-minimal. They can then be pruned from the new set of minimal
diagnoses which then becomes {{M1}, {A1}, {M2,M3}, {M2, A2}}.

[M1,M2,A1,A2][M1,M2,M3,A1] [M2,M3,A1,A2][M1,M2,M3,A2] [M1,M3,A1,A2]

[M1,M2,M3] [M1,M2,A1] [M1,M2,A2] [M1,M3,A1] [M1,M3,A2] [M2,M3,A1] [M1,A1,A2] [M2,M3,A2] [M2,A1,A2] [M3,A1,A2]

[M1,M2] [M1,M3] [M1,A1] [M2,M3] [M1,A2] [M2,A1] [M2,A2] [M3,A1] [M3,A2] [A1,A2]

[M3] [A1] [A2][M2][M1]

[M1,M2,M3,A1,A2]

[]

C1=<M1,M2,A1>

C2=<M1,M3,A1,A2>

C1&C2

Figure 3.8: Subset-superset lattice after the second conflict
{M1,M3, A1, A2} has been processed. All candidates above the solid
line are valid diagnoses and are represented by the new minimal di-
agnoses. The new minimal diagnoses are encircled and the two new
diagnoses that were eliminated because of their non-minimality are
dash-circled.

The working principle exemplified above can be summarized by the
following steps:

1. Initialize the set of minimal diagnoses to hold only the empty set,
i.e. {{}}.

2. Given a (new) conflict, find out if any minimal diagnosis is
invalidated, i.e. has an empty intersection with the conflict.

3. Extend any invalidated diagnosis to a set of new diagnoses con-
sisting of the invalidated diagnosis and an element from the new
conflict.

4. Remove any new diagnoses that are not minimal, i.e. are supersets
of any other minimal diagnosis.
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5. Iterate from 2 for all new conflicts.

3.5.5 Algorithm Description

We will now present the minimal hitting set algorithm in a more
algorithm-like form. The algorithm was originally described in the
context of AI-diagnosis, see (Kleer and Williams, 1987).

Given a diagnosis statement S, in the form of a set of sets, and a
sub-diagnosis statement S1

k , in the form of a set, the following algorithm
finds an updated set Snew.

Algorithm 1.
Input: a diagnosis statement S, and a sub-diagnosis statement S1

k

Output: the updated diagnosis statement Snew
Sold = S
forall Di ∈ S do

if Di ∩ S1
k = ∅ then

Remove Di from Sold
forall b ∈ S1

k do
Dnew := Di ∪ {b}
forall Dj ∈ Sold do

if Dj ⊆ Dnew then
goto LABEL1

endif
next
Sadd := Sadd ∪ {Dnew}
LABEL1

next
endif

next
Snew := Sold ∪ Sadd

The algorithm is used in an iterative manner as follows. First
when only one diagnostic test has responded, say δ1, the diagnosis
statement is simply S = {{b} | b ∈ S1

1}, without using the algorithm.
When a second diagnostic test responds, say δ2, the updated diagnosis
statement is obtained from the algorithm with the inputs S and S1

2 .
For each further test δk that responds, the previous output Snew is
used as input S and S1

2 together with S1
k .
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Example

To illustrate the algorithm, consider again the example represented
by (3.32). Assume first that only test δ1 responds. The sub-diagnosis
statement is S1

1 = {F1, F4}, and as said above, S is calculated without
using the algorithm resulting in S = {{F1}, {F4}}.

Assume then that also the test δ2 responds. This means that
the algorithm is called with the inputs S = {{F1}, {F4}} and S1

2 =
{F1, F2}. In the first for-loop, assume first that Di = {F1}. This
means that the condition Di ∩ S1

k = ∅ is not fulfilled. Therefore, {F1}
is not removed from Sold. The interpretation of this is that {F1} is still
a candidate even after that the sub-diagnosis statement S1

2 = {F1, F2}
has been considered.

Next, Di = {F4}, and this time the condition Di∩S1
k = ∅ is fulfilled.

This means that {F4} is no longer a valid candidate. The second loop
is entered and in the first step, Dnew := Di ∪{b} = {F1, F4} is formed
as a potential new candidate. In the third for-loop, it is checked if Dnew

is a superset of any of the old candidates in Sold. If this is the case
it can be shown that Dnew is redundant. In the example, {F1} was
not removed from Sold and it holds that {F1} ⊆ {F1, F4}. Therefore
Dnew = {F1, F4} is redundant and does not need to be added to Sadd.
Finally, Dnew := {F2, F4} is formed and this time it does not hold that
{F1} ⊆ {F2, F4} and thus, {F2, F4} is added to Sadd. The output
from the algorithm becomes

Snew := Sold ∪ Sadd = {{F1}, {F2, F4}}

Assume then that the test δ3 responds. This means that the
algorithm is called with the inputs S = {{F1}, {F2, F4}} and S1

3 =
{F2, F3}. In the first for-loop, {F1} is found to be not a candidate
when the new sub-diagnosis statement S1

3 is considered. This results in
that {F1} is removed from Sold but {F1, F2} and {F1, F3} are added
to Sadd. Then {F2, F4} is found to be still a candidate and is kept in
Sold. The output from the algorithm becomes

Snew := Sold ∪ Sadd = {{F2, F4}, {F1, F2}, {F1, F3}}

If no more diagnostic tests responds, this is our final diagnosis statement.
Note that the set of all system behavioral modes represented by this
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expression is

Snew := {F2&F4, F1&F2, F1&F3, F1&F2&F3,

F2&F3&F4, F1&F2&F4, F1&F3&F4, F1&F2&F3&F4}

3.5.6 Connection to Structured Hypothesis Tests

In this section we take a closer look at the connection between the
minimal hitting set approach and structured hypothesis tests. We let
both S1

k and S be represented as sets of behavioral modes in accordance
with Section 3.4.1.

Firstly, remove from each S1
k all the multiple faults. We denote

these new sets obtained with S̄1
k . The idea is that from the assumption

of no fault models, the single faults in S̄1
k are enough to represent

the whole set S1
k . For example, the set S1

1 for the first diagnostic test
in (3.32) is

S1
1 = {F1, F4, F1&F2, F1&F3, F1&F4, F2&F4, F3&F4, F1&F2&F3,

F2&F3&F4, F1&F2&F4, F1&F3&F4, F1&F2&F3&F4}

The set S̄1
1 which contains only single faults becomes

S̄1
1 = {F1, F4}

It is seen that all system behavioral modes in S1
1 can simply be derived

from S̄1
1 . For example, since F1 is an element of S̄1

1 it follows that all
multiple faults containing F1 must be elements of S1

1 , e.g. F1&F2,
F1&F3, F1&F3&F4, and F1&F2&F3&F4.

The assumption of no fault model will make it possible to also
simplify the representation of the diagnosis statement S in a similar
manner. Note first that since there is no fault model, we can not
exclude the possibility that a faulty component behaves exactly as it
was fault-free. This means that if F1&F2 is found to be a diagnosis, i.e.
faults in components 1 and 2 can explain the observations, it is always
the case that also F1&F2&F3 is a diagnosis, i.e. fault in components
1, 2, and 3 can explain the observations. Thus, if a system behavioral
mode F1&F2 is contained in S, then all system behavioral modes
containing F1&F2 must also be included in S, e.g. F1&F2&F3,
and F1&F2&F3&F4. In this sense, the system behavioral modes
F1&F2&F3 and F1&F2&F3&F4 are redundant and could therefore
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be removed from S. If all such redundant system behavioral modes are
removed, we obtain a set that we shall denote S̄.

Consider now an example where only test δ1 and δ2 in (3.32) have
responded. Using the formula (3.17), the diagnosis statement can be
calculated as follows:

S = S1
1 ∩ S1

2 = {F1, F4, F1&F2, F1&F3, F1&F4, F2&F4, F3&F4,

F1&F2&F3, F2&F3&F4, F1&F2&F4, F1&F3&F4, F1&F2&F3&F4}∩
{F1, F2, F1&F2, F1&F3, F1&F4, F2&F3, F2&F4, F1&F2&F3,

F2&F3&F4, F1&F2&F4, F1&F3&F4, F1&F2&F3&F4} =

= {F1, F2&F4, F1&F2, F1&F3, F1&F4, F1&F2&F3, F2&F3&F4,

F1&F2&F4, F1&F3&F4, F1&F2&F3&F4}

As seen all the three sets S1
1 , S1

1 , and S becomes relatively large. Note
then that these sets can equally well be represented by the much smaller
sets S̄1

1 , S̄1
1 , and S̄:

S̄1
1 = {F1, F4}
S̄1

2 = {F1, F2}
S̄ = {F1, F2&F4}

In this discussion, it is clearly illustrated that to choose a representation
based on S̄1

k and S̄, which corresponds to the representation in the
minimal hitting set approach, is much more memory efficient than to
use sets of system behavioral modes.

3.6 Isolability Properties of a Diagnosis Sys-
tem

In Section 2.6, an isolability matrix was introduced to illustrate the
fault isolability properties of a given system or, perhaps more correctly,
a given model. A similar table can be used to illustrate the isolability
properties of a given diagnosis system, i.e. which faults can a given
diagnosis system isolate from each other. The isolability properties of
the model is an upper limit of what is possible while the isolability
properties of a given diagnosis system may have substantially lower
isolability possibilities. This may be by design if we for example is not
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interested in isolating all faults or we do not have the computational
power to run all needed tests in real-time. Another, very common,
situation where the isolability performance of the diagnosis system
does not correspond to the ideal performance is when the detectability
properties of some of the tests are not as good as expected from the
model. Thus, after a design it is of interest to evaluate the isolability
performance of the diagnosis system.

For this, consider for example a diagnosis system where, after
evaluating the performance of the residual generators, the following
decision structure is used to draw conclusions.

NF F1 F2 F3

δ1(z) 0 X 0 X
δ2(z) 0 0 X X

In this section, only decision structures with X are considered but the
reasoning is possible to extend also to cover general decision structures.
Also, only single fault modes are considered.

In Section 2.6, when evaluating the isolability properties of the
model, the isolability matrix was derived using observation sets. A
similar approach is possible also for deriving the isolability matrix for
a diagnosis system, but a more simple approach is here adopted. As in
Section 3.4, the decision from a test Tk is S1

k in case of an alarm and
S0
k in case of no alarm. With the restriction to only X-structures and

single faults it holds that S0
k = Ω, i.e. in case of no alarm no restriction

of possible faults are concluded, and the diagnosis statement is formed
as (3.17).

Then, for a given diagnosis system, a fault Fi can be said to be
isolable from fault Fj if and only if there exists a subset of the tests in the
diagnosis system such that when they alarm, the diagnosis statement
S includes Fi but not Fj . Since all S0

k = Ω, i.e. no restriction in case
of no alarm, it holds that

Fault Fi is isolable from fault Fj ⇔ ∃k. Fi ∈ S1
k ∧ Fj 6∈ S1

k

Applying this rule to the decision structure above gives that the isola-
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bility matrix becomes

NF F1 F2 F3

NF X X X X
F1 0 X 0 X
F2 0 0 X X
F3 0 0 0 X

Thus, mode F3 is uniquely isolable from all other modes, while neither
mode F1 nor F2 is isolable from mode F3. This means that isolability
is not necessarily a symmetric relation.

3.7 Focusing

As noted in the beginning of this chapter, it is often interesting to com-
pute not all diagnoses, but a more focused subset. Different principles
for this exist in the literature, but minimal diagnoses and most probable
diagnoses are the two most common. A special case of most probable
diagnoses is so called minimal cardinality diagnoses, i.e. diagnoses,
represented as sets, of minimal cardinality. How to compute minimal
diagnoses has already been described in the context of the minimal
hitting set algorithm. How to compute most probable diagnoses, or
minimal cardinality diagnoses will not be described in this text but
the interested reader is referred to (Kleer and Williams, 1989) and
(de Kleer et al., 1992).

3.8 Exoneration

We end the chapter by discussing the concept of exoneration. Consider
a component, that from its observation, seems to be non faulty. Another
way of saying this is that the component does not violate its no-fault
behavioral model. The question is:

Can we draw the conclusion that this component really is
in behavioral mode OK?

Suppose for example that an inverter is faulty and randomly outputs
0:s and 1:s. However, the random sequence happens to coincide with
the correct outputs. In this case, it is impossible from the observations
to conclude that the inverter is faulty. In other words, if we observe an
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inverter that seems to be functioning correctly, we can never assume
that it is not faulty. However, if we see that the input does not
corresponds to the predicted output, the inverter can be concluded to
be faulty.

The answer to the question posed above, is that it depends on
the knowledge of how the fault-modes affect the components, i.e. the
behavioral models for the fault modes. Assume that the behavioral
model for one fault mode of the inverter, says that outputs are randomly
generated. Then we can of course not say that an inverter, from its
input-output seems to be non faulty, is in the behavioral mode OK.
On the other hand, if the only fault mode is SA0 (stuck at 0), and we
observe in = 0 and out = 1, then we can draw the conclusion that the
inverter is in the behavioral mode OK.

To assume that a fault always visibly affects the input-output
relation of a component is called exoneration. Depending on the
application, one should choose to make the exoneration assumption or
not. Remember that this choice is made by choosing the appropriate
behavioral models. Consider for example the inverter from Section 2.2.1.
Since we have the fault modes SA0 and U , defined by their behavioral
models, we do not make the exoneration assumption.
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Appendix

3.A Notation used

Ω Set of all system behavioral modes.
Z Set of all possible observations.
δ(·), S δ is the decision function from observations to a

diagnosis statement S ⊆ Ω.
H0
k , H1

k , Mk H0
k and H1

k are the null hypothesis and the alterna-
tive hypothesis respectively in the k:th hypothesis
test.

Tk(z) Test quantity for hypothesis test k. Normally,
H0
k is rejected when Tk(z) > Jk where Jk is a

threshold.
Θ, θ, ΘFi Set of possible fault states θ is denoted Θ. The set

of θ that are possible in system behavioral mode
Fi is denoted ΘFi .

M(θ) Model of the process as a function of fault state.
MFi(θ) Model of the process as a function of fault state

when θ ∈ ΘFi .
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Chapter 4
Design of Test Quantities

This chapter describes some general principles on how test quantities
can be designed. Most of the principles presented are valid for all kinds
of fault models.

4.1 Test Quantities are Model Validity Mea-
sures

For each behavioral mode γ, the system corresponds to a specific model.
This model may also be dependent on the fault state θ if the set Θγ

consists of more than one fault state. The model for behavioral mode
γ is denoted

Mγ(θ) (4.1)

and we have implicitly assumed that θ ∈ Θγ . For example, the loose
contact behavioral mode, described in Example 2.8, might be abbrevi-
ated LC, and the corresponding model is then denoted MLC(c1(t)).

From the previous chapter, we realize that the assumption (or

109



110 Chapter 4. Design of Test Quantities

conclusion) we make in each hypothesis test can be written

Fp ∈

{
MC if T (z) ≥ J
Ω if T (z) < J

(4.2)

where Fp denotes the present behavioral mode and z the observations.
In (4.2), we have again assumed that S0 = Ω. As said before, the test
quantity T (z) should be designed such that if the data come from a
behavioral mode in MC , then T (z) should be large. On the other hand,
if the data x match the hypothesis H0, i.e. a behavioral mode in M
can explain the data, then T (z) should be small. This can be restated
by using the notation of the model (4.1):

The test quantity T (z) should be low if the data z match
any of the models Mγ(θ), γ ∈M , and large otherwise.

Thus the test quantity T (z) can be seen as a measure of the validity of
the models Mγ(θ) with respect to the observations z.

When constructing a diagnosis system, the main task is usually to
construct model validity measures for models Mγ(θ). Several princi-
ples for constructing such measures exists and we will in the following
sections discuss four of them: using the prediction error, using residuals,
using parameter estimates, and using the likelihood function. Unfor-
tunately, there is no approach that is always the best choice and this
has to be determined case by case based on experience or trial and
error. Also note that although the basic idea of these principles are
different, it can very well happen that, in some specific cases, the
derived expressions for T (z) equal each other.

How to compute the test quantity T (z) is sometimes referred to as
the computational form because it states exactly how to compute the
test quantity. As will be showed in detail later on in this chapter, and
also in the chapters that follows, it is also possible to derive expressions
describing how faults influence the test quantity. Such expressions can
be used to determine which faults that are easy to detect in the test
quantity etc. and is called the internal form of the test quantity.
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4.2 Test Quantities Based on Prediction Er-
rors

With the view that the test quantity should be a model validity measure,
it is intuitive to determine the ability of a model to describe measured
data by evaluating how well the model can predict future data.

Given a model Mγ(θ), with a fixed θ and measurements z, we can
make a prediction ŷ(t) of the output y(t). Then we can calculate a
prediction error y(t) − ŷ(t|θ). Now assume that we have collected a
set of measurements over a time window t = 1 . . . N , and we want to
calculate a measure that reflects model validity over this period. It
is then natural to use some norm of the prediction errors to measure
the model validity. Thus, to measure the validity of the model Mγ(θ),
with respect to the observations z, we can use a function V (θ, z):

V (θ, z) =
1

N

N∑
t=1

‖y(t)− ŷ(t|θ)‖ (4.3)

The norm ‖ · ‖ can for example be the quadratic norm. For notational
convenience, we have here assumed unit time. If the model Mγ(θ),
with fixed θ, is the correct one, then V (θ, z) will be small and otherwise,
hopefully, large.

Now remember the definition of Θ0:

Θ0 =
⋃
γ∈M

Θγ

If Θ0 consists of only one value θ0, a test quantity can be calculated as

T (z) = V (θ0, z) (4.4)

This is now a model validity measure for the single model Mγ(θ0).

Consider now the case where Θ0 consists of several values θ, i.e we
can not compute the test quantity since we do not know which θ to
insert into (4.4). A sensible approach is then to use the θ that makes
the model describe data as well as possible. With the function V (θ, z)
as a validity measure, the test quantity can then be calculated as

T (z) = min
θ∈Θ0

V (θ, z) (4.5)



112 Chapter 4. Design of Test Quantities

The test quantity is now a measure of the validity of any of the models
Mγ(θ), γ ∈M , with respect to the observations z. Note also that all
faults belonging to behavioral modes in M have been decoupled in the
test quantity T .

The following four examples illustrate how test quantities calculated
in the general way described by formula (4.5), can be used for different
types of fault modeling.

Example 4.1 Consider a system that can be modeled as

y(t) = gu(t) + b+ v(t) v(t) ∈ N(0, σ) θ = [b, g]

where v(t) and v(t+ k) are independent for k 6= 0.

Assume that we want to consider three behavioral modes:

NF g = 1, b = 0 no fault

Fb g = 1, b 6= 0 bias fault

Fg g 6= 1, b = 0 gain fault

Further we want to design a test quantity for the hypotheses

H0 : Fp ∈ {NF,Fb}
H1 : Fp = Fg

For these hypotheses, Θ0 becomes Θ0 = {[b, g] | g = 1}. By using the
formulas (4.5) and (4.3), we get

T (z) = min
θ∈Θ0

1

N

N∑
t=1

‖y(t)− ŷ(t|θ, z)‖ = min
b

1

N

N∑
t=1

(
y(t)− ŷ(t|b, z)

)2
(4.6)

The estimate ŷ(t|b) (we have skipped the argument z) can be obtained
as

ŷ(t|b) = u(t) + b

Inserting this expression into (4.6) means that the test quantity becomes

T (z) = min
b

1

N

N∑
t=1

(y(t)− u(t)− b)2 (4.7)
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The minimization is simple since it can be shown that the minimizing
value of b is

b̂ =
1

N

N∑
t=1

(y(t)− u(t))

The test quantity (4.7) will be small under H0 and thus the bias fault
is decoupled in T (z).

Now follows an example showing how the principle from this section
can be applied to a change detection problem, i.e. the case where also
the change time or the fault occurrence time is considered in the fault
model.

Example 4.2 Consider a signal y(t) which can be modeled as

y(t) = v(t) + a(t)

where v(t) is independent and identically distributed (iid) sequence and
v(t) ∼ N(0, σ). The functions a(t) and σ(t) are equal to the known
constants a0 and σ0 in the fault free case, but can contain an abrupt
change to unknown values a1 or σ1 if a fault occurs.

Assume that we want to consider three behavioral modes:

NF no fault
Fa an abrupt change in a(t) at the time tch
Fσ an abrupt change in σ(t) at the time tch

This means that the fault state-vector can be described as θ = [tch, a1, σ1].
Further we want to design a test quantity for the hypotheses

H0 : Fp ∈ {NF,Fa}
H1 : Fp ∈ {Fσ}

By using the general expression (4.5), the test quantity becomes

T (z) = min
θ∈Θ0

1

N
V (θ, z) = min

[tch,a1]

N∑
t=1

(y(t)− ŷ(t|tch, a1))2

where
ŷ(t|tch, a1) =

{
a0 if t < tch

a1 if t ≥ tch
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This test quantity will be small under H0 and thus all faults belonging
to Fa are decoupled in T (z).

The next example illustrates how test quantities can be designed
in a case where we have mixed types of fault models. In this example,
one fault is modeled as an arbitrary input and another fault is modeled
as a constant parameter.

Example 4.3 Consider a system that can be modeled as

x(t+ 1) = ax(t) + u(t)

y(t) = x(t) + f(t)

Assume that we want to consider three behavioral modes:

NF a = 0.5, f(t) ≡ 0 no fault
Fa a 6= 0.5, f(t) ≡ 0 a fault in the dynamics
Ff a = 0.5, f(t) 6≡ 0 an arbitrary sensor fault

We decide to design test quantities for two hypothesis tests with the
hypotheses

H0
1 : Fp ∈ {NF,Fa} H1

1 : Fp = Ff

H0
2 : Fp = NF H1

2 : Fp ∈ {Ff , Fa}

The test quantity for the first test, using expression (4.5), becomes

T1(z) = min
a

1

N

N∑
t=1

(y(t)− ŷ(t|a))2 =
1

N

N∑
t=1

(y(t)− ây(t− 1)− u(t− 1))2

where â is the least square estimate of a. For the second test, the set
Θ0

2 contains only one element. Thus, the test quantity becomes

T2(z) =
1

N

N∑
t=1

(y(t)− ŷ(t))2 =
1

N

N∑
t=1

(y(t)− 0.5y(t− 1)− u(t− 1))2

Now assume that the present fault mode is Fa and H1
2 is accepted

but H0
1 is not rejected, i.e. T1 < J1 and T2 > J2. This will imply that

the diagnosis, under a single fault assumption, becomes

S = {NF,Ff , Fa} ∩ {Ff , Fa} = {Ff , Fa}
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That is, both Ff and Fa can explain the process behavior. However, it
is unlikely that the arbitrary fault signal f(t) behaves in such a way
that the process output exactly matches the modelMFa(θ). Therefore,
we may draw the conclusion that the behavioral mode Fa is the one
present in the process.

Example 4.4 The following example shows how traditional in-range
monitoring can be solved using the general formula (4.5). Assume that
under a no-fault situation, a state x is limited in range, cl ≤ x ≤ ch.
Assume further that x is measured using a sensor y as y(t) = x(t). If
no more models are available, a prediction of y(t) can in any case be
written

ŷ(t|c) = c cl ≤ c ≤ ch

By using the general expression (4.5), the test quantity becomes

T (z) = min
cl≤c≤ch

V (c, z) = min
cl≤c≤ch

|y(t)− ŷ(t|c)| =

=


0 if cl ≤ y(t) ≤ ch
y(t)− ch if y(t) > ch

cl − y(t) if y(t) < cl

This shows that traditional in-range testing can be seen as a special
case of test quantities based on prediction errors.

The above example is also a clear illustration on how knowledge of
range limitations of θ should be incorporated into the fault model
to improve diagnosis performance. More specifically, without the
knowledge cl < c < ch, the sensor y can not be diagnosed.

4.2.1 Minimization of V (θ, z)

The procedure to compute (4.5), i.e. to minimize V (θ, z), has not been
addressed so far. The technical details are not going to be addressed
in detail here, but the interested reader is referred to general literature
on optimization, e.g. (Luenberger, 1989), and system identification, e.g.
(Ljung, 1999).
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4.3 Test Quantities Based on Residuals

To use residuals is a common way to generate test quantities used
for fault detection and fault isolation. The word residual is used in
many contexts but in the context of fault diagnosis it can be loosely
defined as any signal r that is ideally zero in the fault-free case and
when non-monitored faults are present. This is not a formal definition
and a formal definition for deterministic models will be introduced in
Chapter 6. To be able to detect the monitored faults, a good and useful
residual is also non-zero when a monitored fault is present.

Example 4.5 For example, for a system described by stable transfer
operators

y = Gu(p)u+Gf (p)f

where p is the differentiation operator. A residual can then be generated
by the following linear filter

r = W (p)(y −Gu(p)u)

where W (p) is any stable linear filter. The filter W (p) can for example
be a low-pass filter to filter out measurement noise.

A residual is always a model validity measure for some model. For
example, assume that we have a residual r1(t) which is zero for the
behavioral modes NF , F1, and F2, but non-zero for other behavioral
modes. It is clear that this residual is a model validity measure for the
model

Mγ(θ), γ ∈ {NF,F1, F2}

or equivalently the null hypothesis

H0 : Fp ∈ {NF,F1, F2}

If we have a residual with these properties, it is direct to produce a test
quantity according to Figure 4.1. The residual r(t) is a signal obtained
by in some way filtering the observations z(t). Then the test quantity
T is some measure of the size of the residual r(t). While r(t) is usually
considered to be a signal, i.e. a function of time, the test quantity will
here, as in hypothesis testing, primarily be seen as a constant value.
However, it is also possible to calculate one new test quantity T for
each sample, and thus in these cases, we can view also T as a signal.



4.3. Test Quantities Based on Residuals 117

z(t) r(t)Residual
Generator

Test Quantity
Formation

T

Test Quantity Calculation

Figure 4.1: The calculation of the test quantity from a residual signal.

This implies that we also calculate one new diagnosis statement for
every new sample. An example of forming a test quantity is to use the
mean power of the residual in a predetermined time-window:

T =
1

t1 − t0

∫ t1

t0

r2(t)dt

Residuals are mainly generated in one of two ways, either using so
called consistency relations or using observers and this chapter only
contains a general discussion about residual generation. However,
more specific techniques will be given in Chapter 6, which discusses
linear residual generation, and in Chapter 7, which discusses nonlinear
residual generation.

Now follows an introduction to consistency relations and how they
can be used to generate residuals.

4.3.1 Consistency Relations

A consistency relation1 is any relation between known or measured
variables that, in the fault free case, always holds. Because of this
property, consistency relations are often the basis for residuals.

For example, consider the first order state-space model

ẋ = −x+ u

y = x
(4.8)

1Consistency relations is not the only term used in fault diagnosis literature.
Other words that are common are parity relations, parity equations, parity functions,
and analytical redundancy relations.
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A consistency relation for this model can easily be derived by substi-
tuting y for x in the dynamic equation leading to

ẏ + y − u = 0 (4.9)

The interpretation of this is that for any known signals y and u that are
consistent with the model, meaning that they may have been generated
by the model, will also satisfy the consistency relation. This further
means that if the consistency relation does not hold, we know that
model (4.8) can not explain measured data. Such reasoning can be
used to detect and isolate faults.

More generally, g is a consistency relation if the following holds
for all y and u that satisfies the original system equations (the model)
when f = 0:

g(y, ẏ, ÿ, . . . , u, u̇, ü, . . . ) = 0 (4.10)

For linear systems, a consistency relation can always be written as

Q(p)

(
y
u

)
= Qy(p)y +Qu(p)u = 0 (4.11)

where Qy(p) and Qu(p) are polynomial vectors (or matrices if multidi-
mensional consistency relations are considered) in p. This is the case
in (4.9) where Qy(p) = p+ 1 and Qu(p) = −1. Consistency relations
for linear systems are illustrated by the following example:

Example 4.6 Consider a linear state-space description

ẋ = −α1x+ α2u (4.12a)

y = α3x (4.12b)

which corresponds to the transfer operator y = G(p)u with

G(p) =
α2α3

p+ α1

An equivalent description of the relation between y and u is given by
the differential equation

ẏ + α1y − α2α3u = 0 (4.13)
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Relation (4.13) only includes known signals u and y and not the state
x and is therefore a consistency relation for the system (4.12).

This also generalizes to the non-linear case as the next example
shows.

Example 4.7 Consider a nonlinear system, described by state-space
equations:

ẋ = −x2 + u

y = x3

A consistency relation for the model above can be stated as

ẏ3 + 27ẏy2u+ 27y4 − 27y2u3 = 0 (4.14)

This consistency relation was derived as follows. The measurement
equation directly gives that

y − x3 = 0

By differentiating both sides, another relation is obtained

ẏ − 3x2ẋ = ẏ − 3x2(−x2 + u) = 0

Now we have two different relations which both include the unknown
variable x. With a clever combination of these two relations the
state-variable x can be eliminated. For higher order systems, it may
be necessary to differentiate the measurement equation several times
before obtaining a set of relations where it is possible to eliminate the
state-variables. It is left as an exercise for the reader to validate the
relation, e.g. by showing that a solution y, u to the original model
satisfies (4.14).

Note that the elimination of the state variable x was easy in the
linear case, where the relation could have been derived in the same way
as in the nonlinear case by differentiating equations and eliminating
the state. In the nonlinear case, the variable elimination problem
is not so easy and this example used particularly easy nonlinearities
(polynomials) where this eliminations is generally possible.
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A problem with consistency relations for dynamic systems is that
they often contain derivatives of signals, which makes them difficult to
use directly as residuals. The following example illustrates this:

Example 4.8 Consider the linear model

y = G(p)u+ f

where the transfer function G(s) is

G(s) =
1

s2 + as+ b

The time domain interpretation of the model is then:

ÿ + aẏ + by − u− f̈ − aḟ − bf = 0 (4.15)

Equation (4.15) directly gives us a consistency relation, by examining
the fault free case, i.e. by setting f ≡ 0 (f = ḟ = f̈ = 0):

ÿ + aẏ + by − u = 0

and an equivalent description of the relation using the differentiation
operator p:

(p2 + ap+ b)y − u = 0

It is clear that if ÿ and ẏ were known, we could calculate r = ÿ + aẏ +
by− u which would be 0 in the fault free case and deviate from 0 when
f 6≡ 0. However, the higher order derivatives are usually not known
and one way to circumvent this complication is to add, e.g. low-pass,
dynamics to the consistency relation. That is, instead of computing
the residual like r = ÿ + aẏ + by − u, compute the residual according
to the differential equation

r̈ + c1ṙ + c2r = ÿ + aẏ + by − u

where constants c1 and c2 has been chosen to ensure a stable residual
generator. In the frequency domain the residual generator transforms
to

r =
p2 + ap+ b

p2 + c1p+ c2
y − 1

p2 + c1p+ c2
u

which can be realized on state-space form, i.e. higher order derivatives
of y and u need not be used. The filter still has the property that r = 0
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in the fault free case (after that influence from initial condition has
disappeared).

In Example 4.8, it was stated that if higher order derivatives of y
and u were known, the consistency relation could be used as a residual
generator. However, this is normally not the case, but the consistency
relation could nevertheless be used as a basis for the design of a residual
generator by adding e.g. low-pass dynamics.

In fault diagnosis, we are looking for consistency relations where
all unknown variables are eliminated. In all examples above, the only
unknown variable was the state x. Usually also variables modeling
non-monitored faults need to be eliminated. This will be discussed
more in Chapter 6 and 7, where also systematic methods are given to
derive linear and non-linear consistency relations.

4.3.2 Connection Between Residual Generation and Test
Quantities Based on Prediction Errors

This section is a brief description of some connections between the
general test quantities described in this chapter and some common
techniques for residual generation.

First we show relations to linear techniques that will be described
in detail in Chapter 6.

Example 4.9 Consider a system that can be modeled as

y1 =
1

q−1 + 1
(u+ f1) (4.16)

y2 =
1

q−1 + 2
(u+ f1) + f2 (4.17)

Assume that we want to consider three behavioral modes:

NF f1(t) ≡ 0, f2(t) ≡ 0 no fault
F1 f1(t) 6≡ 0, f2(t) ≡ 0 actuator fault
F2 f1(t) ≡ 0, f2(t) 6≡ 0 fault in sensor 2

Further we want to design a test quantity for a hypothesis tests with
the hypotheses

H0 : Fp ∈ {NF,F1}
H1 : Fp ∈ {F2}
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A linear residual generator for these hypotheses is

r =
(q−1 + 2)y2 − (q−1 + 1)y1

q−1 + 3
(4.18)

It will now be shown how the same residual can be obtained by using
the general expression (4.5).

We assume here that the test quantity is recalculated for every
new sample. The two-step approach is used and this means that we
first have to estimate the parameter (now a signal) f1(t). From the
model (4.16), the fault signal f1(t) can be estimated as

f̂1 = arg min
f1

(
y1 −

1

q−1 + 1
(u+ f1)

)2
= (q−1 + 1)y1 − u (4.19)

With this estimate and by using the expressions (4.3) and (4.5), the test
quantity can now be calculated. We use an infinite window length, and
to simplify the notation, we assume that the test quantity is calculated
for t = 0:

T1(z) = V (f̂1, z) =

0∑
t=−∞

‖y2(t)− ŷ2(t|f̂1)‖

By means of the estimate (4.19), the prediction error can be expressed
as

y2 − ŷ2(f̂1) =y2 −
1

q−1 + 2
(u+ f̂1) = y2 −

q−1 + 1

q−1 + 2
y1

Then choose the measure ‖ · ‖ as

cnq
n
(
·
)

where

0∑
n=−∞

cnq
n =

q−1 + 2

q−1 + 3

This means that

T1(z) =
0∑

n=∞
cnq

n
(
y2(t)− ŷ2(t|f̂1)

)
=
q−1 + 2

q−1 + 3

(
y2(t)− q−1 + 1

q−1 + 2
y1(t)

)
= r
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We have thus shown how the residual generator (4.18) can be obtained
by using the general expression (4.5).

The next example shows how a residual, calculated with the help of an
observer, can be expressed using the general expression (4.5).

Example 4.10 Assume that we have a non-linear model

ẋ =f(x, u) (4.20)

y1 =h1(x, u) + f1 (4.21)

y2 =h2(x, u) (4.22)

Here f1 is a signal modeling a fault in sensor 1. Then assume that an
observer for x can be constructed as

˙̂x = f(x̂, u) +K
(
y2 − h2(x̂, u)

)
(4.23)

Then

r = y2 − ŷ2 = y2 − h2(x̂, u) (4.24)

is a residual generator which will be insensitive to faults in sensor 1.
This means that the corresponding null hypothesis is described by
M = {NF,F1} where F1 is the behavioral mode for f1 6≡ 0. If we
assume one new test quantity for each sample, we can see that r is
similar to a test quantity constructed in accordance with formulas (4.3)
and (4.5). However, according to the expression (4.5), the parameter
f1 should be implicitly estimated when calculating the test quantity.
To see this, the formulas (4.3) and (4.5) as follows:

T (z) = min
f1

V (f1, z) = min
f1
|y − ŷ| = min

f1

∣∣∣∣y1 − ŷ1(f1)
y2 − ŷ2

∣∣∣∣ =

= min
f1

∣∣∣∣y1 − h1(x̂, u)− f1

y2 − h2(x̂, u)

∣∣∣∣ =

∣∣∣∣y1 − h1(x̂, u)− f1

y2 − h2(x̂, u)

∣∣∣∣
f1=y1−h1(x̂,u)

=

=

∣∣∣∣ 0
y2 − h2(x̂, u)

∣∣∣∣ = |y2 − h2(x̂, u)| = |r|
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4.4 Test Quantities Based on the Likelihood
Function

When the probability density functions of the noise is known, or can
be assumed to be known, it is possible to use the likelihood function
as model validity measure. The likelihood function is defined as

Definition 4.1 (Likelihood Function). Let f(z|θ) denote the probabil-
ity density function of the sample Z = [Z1, Z2, . . . Zn]. Then, given
that Z = z is observed, the function of θ defined by

L(θ|z) = f(z|θ) (4.25)

is called the likelihood function.

Thus, the likelihood function gives the “probability” (only formally
correct for discrete distribution functions) that we observe the data
z for a given θ. Note the important difference that the likelihood
function is a function of θ while the probability distribution function is
a function of z.

Given a model, it is possible to set up a likelihood function that
becomes a measure for how well the measured data matches the model.
Recall from Section 4.1 that this is exactly what we want when con-
structing test quantities. This is also the reason why likelihood functions
are a common choice for test quantities in general statistical hypothesis
testing. Thus, when using the likelihood function as a model validity
measure, the measure V (θ, z) in (4.5) corresponds to L(θ|z). In contrast
to residuals, the likelihood function becomes large when measurement
data matches the model and small when the data does not match the
model. Thus, the null hypothesis H0 should be rejected if T (z) < J .
Note that > has been changed to <, compared to previous cases.

If the set Θ0 consists of only one element, then the likelihood func-
tion (4.25) can be used directly as a test quantity. When Θ0 consists of
several elements, we have to use optimization in accordance with (4.5).
However, since the likelihood function becomes large when measure-
ment data matches the model, the minimization must be replaced by
maximization. The test quantity then becomes

T (z) = max
θ∈Θ0

L(θ|z) (4.26)

This principle is usually called the maximum likelihood .
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Often it is assumed that the data are independent and identically
distributed such that

f(z|θ) =

N∏
i=1

f(zi|θ)

Here zi means z(ti). This means that the likelihood function becomes

L(θ|z) =
N∏
i=1

f(zi|θ)

and thus, much simpler to calculate. A further simplification is obtained
by using the log-likelihood function defined as

l(θ|z) = ln L(θ|z)

If the assumption about independent data is used, we get

l(θ|z) = ln L(θ|z) = ln
N∏
i=1

f(zi|θ) =
N∑
i=1

ln f(zi|θ)

Note that since the logarithm function ln(z) is monotone, a hypothesis
test based on the log-likelihood function l(θ|z) is equivalent to a test
based on the basic likelihood function L(θ|z).

Example 4.11 Consider again Example 4.1 but instead of (4.6), we
use the likelihood function to obtain the test quantity. Let zi denote
y(i) − u(i) which means that zi ∼ N(b, σ). The test quantity then
becomes

T (z) = max
θ∈Θ0

L(θ|z) = max
b

N∏
i=1

1

σ
√

2π
exp{−(zi − b)2

2σ2
}

Due to the independence assumption on v(t), the log-likelihood version
of this test quantity becomes

T ′(z) = max
θ∈Θ0

l(θ|z) = max
b

N∑
i=1

ln
1

σ
√

2π
exp{−(zi − b)2

2σ2
} =

= max
b

[
−N ln σ

√
2π − 1

2σ2

N∑
i=1

(zi − b)2

]
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Note that the last expression contains a term independent of the
optimization variable b. This term can be neglected and the remaining
expression is then equivalent to.

min
b

N∑
i=1

(zi − b)2 = min
b

N∑
i=1

(y(i)− u(i)− b)2

Now note that it happens, in this particular problem, that this expres-
sion is equal to the expression obtained in Example 4.1.

The drawback with using the likelihood functions, compared to predic-
tion errors, is that to make the calculations tractable, we must usually
assume that the data are independent and normally distributed. On
the other hand the likelihood function is very universal. It can for
example easily handle faults that are modeled as an increase in the
variance of a signal.

4.5 Test Quantities Based on Parameter Esti-
mates

A most natural way of detecting a fault is to estimate a parameter
that is influenced by a fault, and then compare the estimated value
with the nominal value of the parameter. Now we discuss how to use
the estimated parameter itself, more directly, as a test quantity, i.e. a
model validity measure.

One solution is to estimate an element θi of the fault state vector θ
and then compare it with the nominal (i.e. no fault) value θ0

i . We have
here assumed that ΘNF contains only one element, i.e. ΘNF = {θ0}.

Now first consider the case where the set Θ0 consists of only one
element. Then a test quantity can be constructed as

T (z) = ‖θ̂i − θ0
i ‖ θ̂i = arg min

θi
V ′(θi, z)

where V ′(θi, z) is some model validity measure. This is a common
solution used in literature, e.g. (Isermann, 1993).

When the set Θ0 consists of more than one element, additional
parameters have to be estimated. That is, in addition to estimating
the parameter θi we also have to estimate the free parameters in Θ0,
i.e. the ones corresponding to faults that are decoupled. This means
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that compared to the principles from Sections 4.2 and 4.4, i.e. using
the prediction error or the likelihood function, one extra parameter
must be estimated. This of course implies that decoupling might be
more difficult.

Using estimates as model validity measure has both advantages and
disadvantages compared to residuals and the likelihood function. Test
quantities based on estimates can have very good performance for the
behavioral mode corresponding to the estimated parameter. However
for other behavioral modes, the performance might be quite bad and
also highly dependent on the input signal.

An additional complication with parameter estimates is that the
input must excite the system sufficiently to make sure that enough
information about individual parameters is available in the measured
data such that the estimates becomes reliable. To achieve this, it may
be necessary to add perturbations to the input signal. However if other
considerations are taken into account, it is not sure that for a specific
application, it is desirable to choose such an input. This problem of
sufficiently exciting inputs may get even worse for processes working
in closed loop.

4.6 Robustness via Normalization

When constructing test quantities, a goal is that they should be in-
sensitive to uncontrolled effects such as changes in inputs u and state
x, disturbances d, model errors, etc. Normally, the constructed test
quantities do not meet these goals perfectly. The reasons why the test
quantities become sensitive to uncontrolled effects are:

• Approximate decoupling. Because of fundamental limitations it
is sometimes impossible to completely decouple disturbances and
effects of faults (i.e. the faults belonging to behavioral modes in
the null hypothesis).

• Model errors. Most unmodeled disturbances, incorrect model
structure, and unmodeled noise etc. implies that the performance
of the test quantities is degraded. The most serious problem is
usually that the significance level is raised.

• Modeled noise. Even though noise terms are included in the
model, it is mostly impossible to avoid that the noise is going to
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affect the test quantities.

The discussion above is closely related to the issue of robustness.
More exactly, robustness can be defined as the ability of the test quan-
tities to satisfy some specific performance goals while the uncontrolled
effects are present to a certain degree. In connection with linear resid-
ual generation, methods to achieve and analyze robustness have been
extensively studied, e.g. see (Chen and Patton, 1999; Frisk and Nielsen,
1999). In many of these methods, the robustness issue is a fundamental
part of the design process for the test quantities. A somewhat different
approach is to first design the test quantity without robustness con-
siderations and then afterward consider robustness as an additional
design step by adjusting and compensating the originally designed
test quantity. In for example (Höfling and Isermann, 1996), there
are experimental results showing performance of the latter robustness
approach.

As a way to achieve and improve robustness by adjusting and
compensating already designed test quantities, we will here consider
normalization. Normalization is to compensate the test quantity for
unmodeled effects by multiplying it with a cleverly chosen variable that
is a function of the measured data x. Here we investigate normaliza-
tion for the four methods of constructing test quantities described in
the previous sections, namely to use prediction errors, residuals, the
likelihood function, and parameter estimates.

4.6.1 Normalization When Using Parameter Estimates

The procedure and ideas are here best illustrated with an example.

Example 4.12 Consider a system which can be modeled as

y(t) = bu(t) + v(t)

where v(t) ∼ N(0, σv). The nominal (i.e. corresponding to the no fault
case) value of b is b0. We will use the notation U , Y , and V to denote
column vectors of u, y, and v respectively.

Assume a test quantity based on a parameter estimate:

T2(z) = (b̂− b0)2 b̂ =
1

UTU
UTY (4.27)
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where b̂ is the least square estimate of b. Consider the fault free case,
i.e. b = b0, which means that

b̂− b0 =
1

UTU
UT (b0U + V )− b0 = b0 +

1

UTU
UTV − b0 = (4.28)

=
1

Np
UTV ∼ N(0,

σv√
Np

) (4.29)

where Np = UTU , and p is the mean power of u. We see that b̂− b0
has a standard deviation that is dependent on u. If the mean power of
u varies during operation, this leads to an undesirable situation where
the significance level of the test will then depend on u. The solution
is to use normalization and we therefore multiply (4.28) with

√
Np.

Then we have that √
Np(b̂− b0) ∼ N(0, σv). (4.30)

The corresponding normalization for the test quantity (4.27) becomes

T ′2(z) = Np(b̂− b0)2 b̂ =
1

UTU
UTY (4.31)

Thus, using (4.31) means that a fixed threshold will imply a fixed
significance level independent on u.

In terms of robustness, a hypothesis test based on the normalized test
quantity (4.31) and with a fixed threshold, will satisfy the performance
goal that the significance level must not be above a certain level.
This will hold for any u. However, there is no guarantee that other
performance goals, such as the probability of T ′2(z) > J2 when a fault
is present, are satisfied.

It is also worth noting that the distribution of the estimate in most
cases is impossible to compute exactly. One way to still, approximately,
normalize the estimates is to use the asymptotic distribution of the
estimate. By asymptotic it is meant the limiting distribution of the
estimate when the number of data becomes large (infinite). See for
example (Ljung, 1999) for detailed analysis of asymptotic distributions
for many model structures and estimation methods.

4.6.2 Normalization When Using Residuals

Equivalent to multiplying the test quantity with a normalization vari-
able, which is a function of measured data, is to let the threshold be
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a function of the measured data. This is usually called an adaptive
threshold.

The basic idea of adaptive thresholds is that since disturbances and
other uncontrolled effects vary with time, also the thresholds should
vary with time instead of being fixed to a constant value. An example
is shown in Figure 4.2. The solid line represents the residual/test
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Figure 4.2: An example of the use of an adaptive threshold, with
the test quantity (solid), the adaptive threshold (dashed), and as a
comparison, the fixed threshold (dotted).

quantity, the dashed lines are the adaptive thresholds, and the dotted
lines the fixed thresholds. There is a fault occurring at time t = 75 s,
but because of disturbances, the test quantity is non-zero also before
this time-point. To avoid false alarm, the fixed threshold has been set
high. This means that the fault is missed if the fixed threshold is used.
The adaptive threshold “adapts” to the disturbances and therefore
follows the test quantity as long as there are no faults. When the fault
occurs, the residual crosses the threshold and the fault is detected.

One technique for computing adaptive thresholds in connection
with linear residual generation is presented in (Ding and Frank, 1991).
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Consider a system that can be described as

y =
(
G(s) + ∆G(s)

)
u+Gd(s)d+Gf (s)f + v

where ∆G(s) is a model error, u is the input, d is the disturbance,
f is the fault, and v is measurement noise. Consider then a residual
described by

r =Hy(s)y +Hu(s)u =

= Hy(s)
(
G(s)u+ ∆G(s)u+Gd(s)d+Gf (s)f + v

)
+Hu(s)u

If measurement noise v is neglected and it is assumed that the input u
and the disturbance d are perfectly decoupled in the model, then in
the fault free case, the residual becomes

r = Hy(s)∆G(s)u

It is seen that the size of the residual in the fault free case depends
on the absolute size of the model error ∆G(s) and the input u(t). If
δ > ‖∆G(s)‖ denotes a known bound of ∆G(s), the adaptive threshold
can be selected as

Jadp(t) = δ‖Hy(p)u‖ (4.32)

This approach relies on that a bound on the model uncertainty can be
determined with confidence. If this is the case, it is guaranteed that
no false alarm, caused by model uncertainties, will be generated.

Another approach is proposed in (Höfling and Isermann, 1996).
This approach is more ad-hoc because the computation of the adaptive
threshold is determined by tuning some design parameters. A gener-
alized description of how the threshold is computed is the non-linear
expression

Jadp(t) = kHLP (p)
(
|Hd(p)u(t)|+ c

)
(4.33)

where HLP (s) and Hd(s) are linear filters, and k and c constants. The
filter Hd(s) serves as a weighting in the frequency domain of model
uncertainties. For frequency ranges where the model uncertainty is
high, the filter gain should be high and vice versa. For example if the
model is good for low frequencies but uncertain for higher frequencies,
the filter Hd(s) should be a high-pass filter. The value of the constant
c is determined by the amount of other kinds of disturbances, such as
measurement noise, and makes the threshold become greater than zero
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even though the input is zero. Finally HLP (s) is a low-pass filter for
smoothing of the threshold.

By using adaptive thresholds according to the principles described
above, it is possible to get a nearly fixed significant level, independent
of changes in the input signal. In this sense, the adaptive threshold
is similar to the normalization described in the previous section for
the test quantity based on the parameter estimate. Robustness is
achieved in the sense that a certain significant level can be guaranteed
independently of the input. Note however that if overall performance
gains are desirable, these robustness techniques are never a substitute
for using better models.

Both kinds of adaptive thresholds, i.e. (4.32) and (4.33), can be
written on the more general form

Jadp = c1W (u, y) + c2 (4.34)

where W (u, y) is some measure of the model uncertainty present for
the moment.

To use an adaptive threshold is equivalent to normalize the test
quantity. Consider the use of a test quantity T (z) in combination with
the threshold (4.34):

T (z) ≥ Jadp (reject H0)

By using normalization, this relation can instead be written as

T ′(z) =
T (z)

c1W (u, y) + c2
≥ 1 (reject H0)

where T ′(z) is the normalized test quantity. The new threshold becomes
J = 1.

4.6.3 Normalization When Using the Prediction Error

When the test quantity is constructed via the prediction error, it might
be a good solution to estimate the overall model error W (u, y) as

W (u, y) = min
θ∈Θ

V (θ, z) = min
θ∈Θ

N∑
t=1

(y(t)− ŷ(t|θ))2 (4.35)

Note that the minimization is over all possible θ. The expression 4.35
might seem to be difficult to calculate but if the same V (θ, z) is used for
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all hypothesis tests, as was described in Section 4.2, then the calculation
of (4.35) becomes easy.

Now assume that c2 = 0. Then an adaptive threshold becomes

Jadp = min
θ∈Θ

V (θ, z) c1 (4.36)

With this adaptive threshold, the normalized version of a test quantity
based on the expression (4.5) becomes

T ′(z) =
minθ∈Θ0 V (θ, z)

minθ∈Θ V (θ, z)
> c1 (reject H0)

We will see that this expression has strong similarities with the likeli-
hood ratio described in the next section.

One problem of using the expression (4.35) as an estimate of the
model error is that different faults may be modeled with different
degrees of freedom. For example, assume that behavioral mode F1 is
present, and that there is a large model error present. Even though a
modelMF2 is not the model that corresponds to the present behavioral
mode, it can have many free parameters so that a good agreement
with data can be obtained. On the other hand, the model MF1 may
have no free parameter and can therefore not be fitted well to the data,
because of the model error. In this case, W (y, u) would become small
because the model MF2 can be fitted well to the data. The result
is probably that the behavioral mode F1 is rejected in spite of that
it is the correct diagnosis. One solution to this problem might be to
use different data sets for the estimation of the parameter θ and the
evaluation of expression (4.3).

4.6.4 Normalization When Using the Likelihood Func-
tion

Now consider a test quantity based on the likelihood function to-
gether with an adaptive threshold similar to the one defined by (4.35)
and (4.36):

Jadp = max
θ∈Θ

L(θ|z) c1

Thus H0 is rejected if

T (z) = max
θ∈Θ0

L(θ|z) < max
θ∈Θ

L(θ|z) c1
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By using normalization, we get a new test quantity T ′(z) and H0 is
now rejected if

T ′(z) =
maxθ∈Θ0 L(θ|z)
maxθ∈Θ L(θ|z)

< c1 (4.37)

The test quantity T ′(z) is called the likelihood ratio test quantity
(or statistic). To emphasize that maximization is involved, the term
maximum likelihood ratio or generalized likelihood ratio is also used in
the literature.

A number of different variations of the maximum likelihood ratio
exist. One variation is to switch the numerator and the denominator.
Another is to make the maximization in the denominator of (4.37)

over Θ1 = Θ0C instead of Θ. It can be shown that in this case, it is
equivalent to make the maximization over Θ (Lehmann, 1986). Further,
the maximization is often replaced by supremum. Two examples of
variations are

T (z) =
supθ∈Θ L(θ|z)
supθ∈Θ0 L(θ|z)

(4.38)

T (z) =
maxθ∈Θ1 L(θ|z)
maxθ∈Θ0 L(θ|z)

(4.39)

The likelihood ratio test quantity is widely used in statistics. The
reason is partly that it is the optimal test quantity in the case where
both the null hypothesis and the alternative hypothesis are simple,
i.e. Θ0 and Θ1 consists each of only one element (Neyman-Pearson
lemma). Optimality proofs also exists for many other cases where H0

is simple (P.H.Garthwaite, 1995). For many cases where a theoretical
justification is missing, the likelihood ratio has still been shown to be
very good in practice (Lehmann, 1986). However, there are also cases
in which the likelihood ratio is not good (Lehmann, 1986). See also
Section 4.7.1 for further optimality discussion of the likelihood ratio.

Commonly the maximum log-likelihood ratio is used. This together
with a change detection application is illustrated in the following
example:

Example 4.13 Consider a signal z(t) which can be modeled as

z(t) = v(t) + θ(t)
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where the noise v(t) is independent and in each sample N(0, σ2)-
distributed. Before the change-time tch, θ(t) = 0 and after the change
time, θ(t) = µ where µ is unknown.

The following two hypotheses are considered:

H0 : no change in mean of z(t)

H1 : an abrupt change in mean of z(t) occurs

By using the assumption of independent data, the likelihood ratio test
quantity in the form (4.38) becomes

T (z) =
supθ∈Θ L(θ|z)
supθ∈Θ0 L(θ|z)

=
sup[tch,µ] L([tch, µ]|z)

L([N, 0]|z)
=

=
sup[tch,µ]

∏tch−1
i=0 f(z(i)|0)

∏N
i=tch

f(z(i)|µ)∏N
i=0 f(z(i)|0)

= sup
[tch,µ]

∏N
i=tch

f(z(i)|µ)∏N
i=tch

f(z(i)|0)

Now by using the assumption of Gaussian data, and switching to
the log-likelihood ratio, we get the following test quantity:

T ′(z) = sup
[tch,µ]

ln

∏N
i=tch

f(z(i)|µ)∏N
i=tch

f(z(i)|0)
=

= sup
[tch,µ]

N∑
i=tch

ln f(z(i)|µ)−
N∑

i=tch

ln f(z(i)|0) =

= sup
[tch,µ]

− 1

2σ2

N∑
i=tch

(µ− 2z(i))µ =

∗
= sup

tch

sup
µ
− 1

2σ2

N∑
i=tch

(µ− 2z(i))µ =

=
1

2σ2
sup
tch

sup
µ
−(N − tch + 1)µ2 + 2µ

N∑
i=tch

z(i)

The equality marked with
∗
= can be shown to hold in special cases,

including this one, but is not generally valid.

Note the relation between this example and Example 4.2, where a
similar problem was solved by using a residual.
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4.7 Using CUSUM to Compute a Test Quan-
tity

After generating, for example, a residual it may still be necessary to
apply some post filtering of the signal before a reliable decision based
on the signal can be made. For example, to attenuate noise or to obtain
the desired trade-off between detection performance and detection time,
a simple low-pass filter can be applied to the residual. For a generated
residual r(t), a new residual r′(t) can be generated by

r′(t) = HLP (p)r(t)

where HLP (p), for example a linear low-pass filter with a Butterworth
structure, and an alarm is generated if r′(t) exceeds its respective
threshold.

This section will describe an often useful algorithm that can be
used on any signal that is generated for detection. A simple, but
often useful, alternative to e.g. a linear low-pass filter is the CUSUM
(Cumulative SUM) algorithm. CUSUM is a simple non-linear detection
algorithm first proposed by Page (1954). Now follows a brief, non-
formal, description of the basic idea behind the algorithm. A formal
derivation of the algorithm based on statistical fundamentals is given
in Section 4.7.1. This section will show how the algorithm can be
used together with residuals generated as in Section 4.3, but it is
important to note that the approach is equivalently applicable to
signals generated according the principles in Sections 4.2, 4.4, and 4.5.
The only requirement is that the generated quantity is a signal, i.e. a
time series that should be used for detection.

To make things simple, let the null hypothesis H0 be the no-fault
case, hypothesis H1 the faulty case, and let s(t) be a signal that has
the following properties

E{s(t)} < 0, H0 is valid (4.40a)

E{s(t)} > 0, H1 is valid (4.40b)

This means that s(t) changes sign, in the mean, when a fault occurs.
Such a function is in (Page, 1954) referred to as a score function. Note
that a basic residual r(t) is not a score function since a residual ideally
is 0 under H0 and deviates from 0 under H1.
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Since the score function is subject to noise it is reasonable to average
the score to be able to make a more reliable decision. Thus, given
a score function s(t) it is reasonable to cumulatively sum the score
function according to

g(t+ 1) = g(t) + s(t) (4.41)

The behavior of the cumulative sum g(t) is then a negative drift, in
the mean, as long as H0 is valid and a positive drift when H1 is valid.
Detection of a fault is then transformed into a change in drift. To
illustrate the procedure, consider the score function in Figure 4.3. In
the plot it can be seen, for this particular realization, that the mean
value before time t = 500 seem to be slightly less than zero and after
t = 500 it seem to be slightly greater than zero, i.e. the score function
seem to fulfill the requirements (4.40). The change is visible to the
eye but it is not possible to set a fixed threshold to reliably detect
the change. Figure 4.4 shows a plot of the cumulative sum, computed
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Figure 4.3: Score function s(t) that has the property E{s(t)} < 0
before the change and E{s(t)} > 0 after the change.

according to (4.41) and there it is clearly visible that around t = 500,
there is a change in the signal. Note that this cumulative sum is nothing
more than a discrete time first order low-pass filter with a pole in z = 1.
As discussed above, the change in the score function manifests as a
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Figure 4.4: Cumulative sum of the score function in Figure 4.3.

change from a negative slope to a positive slope. An alarm can then
be generated when the cumulative sum is significantly higher than the
minimum value of the cumulative sum, i.e. compute the test quantity
T (t) according to

g(t) =

t∑
i=1

s(i) (4.42a)

T (t) = g(t)− min
0≤i<t

g(i) (4.42b)

An alarm is generated when T (t) is larger than some positive threshold
J . The above algorithm is in (Page, 1954) called the CUSUM algorithm
applied to the score function s(t). Even though (4.42) is already in
a simple form that is easy to implement in a computer, the test is
commonly stated in the slightly different formulation

T ′(t) = max(0, T ′(t− 1) + s(t)), T ′(0) = 0 (4.43)

where an alarm is generated when T ′(t) is larger than some positive
threshold J . It is not the case that T ′(t) = T (t) but a test based on
(4.42) is still equivalent to a test based on (4.43). This follows from the
fact that that the threshold J is positive and the proposition below.

Proposition 4.1.
T ′(t) = max(0, T (t))
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Proof. See Appendix 4.B. �

Returning to the example and applying (4.43) to the score function
in Figure 4.3 results in Figure 4.5 where the change around t = 500 is
clearly visible and that it is easy to set a threshold to reliably detect
the change.
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Figure 4.5: CUSUM algorithm applied to the score function in Fig-
ure 4.3.

Previously in this chapter, residuals, not score functions, have been
generated and ideally a residual is zero in the fault free case and non-zero
in case of a fault. Thus, the residual does not have the properties (4.40)
of a score function. Typically, one then introduces a drift parameter
ν such that s(t) = |r(t)| − ν has the desired properties (4.40). The
CUSUM algorithm applied to a residual is then

T ′(t) = max(0, T ′(t− 1) + |r(t)| − ν), T ′(0) = 0

and the drift parameter ν is a design parameter for the algorithm
designer to choose. A rule of thumb is that ν is of the same order of
magnitude as the size of the residual in the fault free case. From this
it is also clear that ν can be used as an adaptive threshold that varies
with the operating point, i.e. a large ν for operating points where the
model uncertainty is large and a small ν for operating points where
the model uncertainty is small.
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4.7.1 Analytical Derivation of the CUSUM Algorithm

The derivation of the CUSUM algorithm above is based on intuition only
and no formal motivation is given. This section will formally derive the
CUSUM algorithm based on fundamental assumptions. First, consider
a detection test with the simple hypotheses

H0 : θ(t) = θ0

H1 : θ(t) = θ1

and we know that observed data z, given the value of θ is distributed as
f(z|θ). A classical result from statistical theory, the Neyman-Pearson
lemma (Basseville and Nikiforov, 1993), states that an optimal test for
the hypothesis is to alarm if

log
f(z|θ1)

f(z|θ0)
> J

for some threshold J . This means that hypothesis H0 is rejected when
the probability of H1 is significantly larger than the probability of
H0. The logarithm function is introduced for reasons that will become
apparent in a moment, but note that since the logarithm function is
monotone it does not change the performance of the detector, it only
results in another choice of threshold J .

Now, return to our formal derivation of the CUSUM algorithm and
consider the hypotheses

H0 : θ(k) = θ0, 0 ≤ k ≤ t

H1 : θ(k) =

{
θ0, 0 ≤ k < tch

θ1, k ≥ tch

where the change time tch is considered unknown. Let data z(k),
k = 1, . . . , t be distributed as f(z|θ) and assume that data z(i) and
z(j) for i 6= j are independent. Then, similar to the simple hypothesis
test discussed above, a test quantity is formed using the log-likelihood
ratio. Utilizing the independence assumption we obtain

log
f(z(1), . . . , z(t)|H1)

f(z(1), . . . , z(t)|H0)
= log

∏t
k=1 f(z(k)|H1)∏t
k=1 f(z(k)|H0)

=

log

∏tch−1
k=1 f(z(k)|θ0)

∏t
k=tch

f(z(k)|θ1)∏t
k=1 f(z(k)|θ0)

=

t∑
k=tch

log
f(z(k)|θ1)

f(z(k)|θ0)
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If tch were known we could use this as a test quantity but now that tch
is unknown we use the standard statistical approach, replace tch with
the maximum likelihood estimation of tch. This results in

max
1≤tch≤t

t∑
k=tch

s(k)

where s(k) denotes the likelihood ratio at each time instant. This
expression can be rewritten as

max
1≤tch≤t

t∑
k=tch

s(t) =

t∑
k=1

s(t)− min
0≤i<t

i∑
k=1

s(k) = g(t)− min
0≤i<t

g(i)

which is identical to (4.42). This means that if the score function
is defined as the likelihood ratio and we have independent data, a
log-likelihood ratio test together with maximum likelihood estimation
of the unknown change time results in the CUSUM algorithm.

Likelihood ratio is a standard tool in detection theory. An in depth
treatment of likelihood ratios, CUSUM algorithm, and also further
development of more general algorithms can be found in for example
(Basseville and Nikiforov, 1993).

Example 4.14 Assume that a residual r(t) has been generated
and that the residual r(t) is subject to additive white Gaussian noise.
Further, assume that a fault results in a change in mean of the residual
from 0 to θ1. The residual r(t) is then N(θ, σ2) distributed with θ = 0
in the no fault case and θ = θ1 in the faulty case. Under the assumption
that θ1 and the standard deviation σ can be considered known, the
score function is then

s(t) = log
f(r(t)|θ = θ1)

f(r(t)|θ = 0)
= log

1√
2πσ2

e−
(r(t)−θ1)

2

2σ2

1√
2πσ2

e−
r2(t)

2σ2

=
θ1

σ2
(r(t)− θ1

2
)

and the test quantity according to (4.43) is

T ′(t) = max(0, T ′(t− 1) +
θ1

σ2
(r(t)− θ1

2
)), T ′(0) = 0

This is a quite natural expression where T ′(t) increases when r(t) is
closer to θ1 than 0.
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Consider another case where, instead of change in mean, a fault
causes a change in variance from σ = σ0 to σ = σ1. The score function
then becomes

s(t) = log
f(r|σ = σ1)

f(r|σ = σ0)
= log

1√
2πσ2

1

e
− r

2(t)

2σ21

1√
2πσ2

0

e
− r

2(t)

2σ20

=
1

2
log

σ2
0

σ2
1

+
(1− σ2

0

σ2
1
)

2σ2
0

r2(t)

and the test quantity

T ′(t) = max(0, T ′(t− 1) +
1

2
log

σ2
0

σ2
1

+
(1− σ2

0

σ2
1
)

2σ2
0

r2(t)), T ′(0) = 0

The test quantity thus cumulatively sums r2(t) which is quite natural
when one wants to monitor the variance of a signal.
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Appendix

4.A Parameter Estimation

Estimation of constant parameters is involved in many of the techniques
to calculate test quantities described above. This is especially common
when the fault model is deviation in constant parameters. A thorough
treatment of parameter estimation for many model structures, both
linear and non-linear, can be found in e.g. (Ljung, 1999). Here a short
description of how constant parameters can be estimated is given in a
special case where the analysis is particularly simple, linear regression.
The objective is to give some basic insight into the parameter estimation
problem.

Thus, consider the case where the model can be stated in the form

y(t) = ϕ(t)θ + v(t) (4.44)

where v(t) is independent noise with variance σ2. Note that both y(t)
and θ can be vector valued. A model on the form (4.44) is called a
linear regression.

When the model is in the form (4.44), θ can be estimated by using
the least squares technique. The estimate can be written as

θ̂ = (ΦTΦ)−1ΦTY (4.45)

where

Φ =

 ϕ(1)
...

ϕ(N)

 and Y =

 y(1)
...

y(N)


It can be shown that the estimate (4.45) is optimal in several senses.
Let θ0 be the true value of the parameter θ, then the covariance matrix
of the estimate can be computed as

E{(θ̂ − θ0)(θ̂ − θ0)T } = σ2(ΦTΦ)−1

Thus, the larger the regressor Φ, the smaller the variance of the estimate
becomes which is intuitive.

Note that expression (4.45) is generally not a numerically good way
of computing the estimate. However, numerical issues are beyond the
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scope of this text and are left to interested readers to explore on their
own.

Although not discussed here, it is also possible to use a recursive
estimation approach, e.g. the RLS (Recursive Least Square) algorithm
(Ljung, 1999). One common form of (4.44) is the case where we have
a linear system that can be written as:

y(t) = a1y(t− 1) + a2y(t− 2) + · · ·+ any(t− n)+

+ b0u(t) + · · ·+ bmu(t−m) + v(t)

This linear model is usually called an ARX (Auto Regressive eXoge-
neous) model. If the ARX model is written on the form (4.44), ϕ(t)
and θ becomes

ϕ(t) = [y(t− 1) y(t− 2) . . . y(t− n) u(t) . . . u(t−m)]

θ = [a1 . . . an b0 . . . bm]
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4.B Proof of Proposition 4.1

Proposition 4.1.
T ′(t) = max(0, T (t))

Proof. The result will be proven by induction. Since T (0) = T ′(0) = 0,
the result holds for t = 0. Now, the induction assumption is

T ′(j) = max(0, T (j)), j = 0, . . . , t− 1

The proof of the induction step will be separated into two cases.
Case 1 : T (t− 1) ≥ 0
In this case, using the definition of T (t), it is immediate that

T (t−1) = g(t−1)− min
0≤i<t−1

g(i) ≥ 0⇒ min
0≤i<t

g(i) = min
0≤i<t−1

g(i) (4.46)

Now, write

T ′(t) = max(0, T ′(t− 1) + s(t))
(a)
= max(0, T (t− 1) + s(t)) =

= max(0, g(t− 1)− min
0≤i<t−1

g(i) + s(t))
(b)
= max(0, g(t)− min

0≤i<t
g(i)) =

= max(0, T (t))

where the equality marked (a) is due to the induction assumption and
the equality marked (b) is due to (4.42a) and (4.46). This ends the
proof for case 1.

Case 2 : T (t− 1) < 0
The second case is proved in a similar way as case 1. Using the definition
of T (t− 1), we find that

T (t− 1) = g(t− 1)− min
0≤i<t−1

g(i) < 0⇒ min
0≤i<t

g(i) = g(t− 1) (4.47)

Expand T ′(t) as

T ′(t) = max(0, T ′(t− 1) + s(t))
(c)
= max(0,max(0, T (t− 1)) + s(t)) =

(d)
= max(0, s(t)) = max(0, g(t)− g(t− 1)) =

(e)
= max(0, g(t)− min

0≤i<t
g(i)) = max(0, T (t))

where the equality marked (c) is due to the induction assumption,
equality marked (d) due to the case T (t − 1) < 0, and the equality
marked (e) is due to (4.47). This ends the proof for case 2 and also
the proof of the proposition. �
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Chapter 5
Evaluation of Test Quantity

Performance

The previous chapter illustrated a number of principles one can follow
when designing test quantities to be used in a diagnosis system. A
natural question is then, which method is best in a particular situation?
Not surprisingly there is no method that is always the best choice and
the choice of method typically depends on the circumstances. This
chapter deals with how to use statistics to evaluate performance of a
test quantity and develop tools to compare performance of different
test quantities.

5.1 The Power Function

There are many possible measures to evaluate the performance of a
test quantity, here we will focus on the power function, a performance
measure often used in statistics when evaluating performance in hy-
pothesis testing. At the end of this section alternatives to the power
function will be mentioned.

To introduce the power function, consider a hypothesis test with

147
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two simple hypotheses

H0 : θ ∈ Θ0, fault free

H1 : θ ∈ Θ1, fault

Let a test quantity for the hypothesis test be denoted T (z) and a
corresponding threshold J . Naturally, important performance measures
for a test are the probability to detect a fault and the probability for
false alarm. Both these properties can be described by the power
function β(θ) which is defined as the probability of rejecting the null
hypothesis for a given value of θ. Formally, the function can be defined
as

β(θ) = P (reject H0 | θ) = P (T (z) > J | θ)

Figure 5.1 shows a typical power function for a test where θ = 0 corre-
sponds to the null hypothesis. The function describes the probability
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Figure 5.1: Example of a power function.

to detect a change in θ, thus for θ 6∈ Θ0 β(θ) should be large and for
θ ∈ Θ0, β(θ) should be small. The value of β(θ) for θ ∈ Θ0 gives the
probability of false alarm. Thus, the function β(θ) captures both the
probability to detect a change and also the probability of false alarm.
This property makes the power function suitable as a performance
indicator of a test quantity.

Generally, the probability to reject the null hypothesis when the
null hypothesis is true is called the significance level of the test and is
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formally defined as

α = sup
θ∈Θ0

β(θ)

In statistical literature, the mistake to reject H0 when H0 is true is
called a TYPE I error. Similarly, to not reject H0 when the alternative
hypothesis H1 is true is called a TYPE II error. For the hypothesis
test above, the TYPE I error is equal to the probability of false alarm
and the TYPE II error is equal to the probability of missed detection.

In a general fault diagnosis system that consists of several hypothesis
tests and more complex hypotheses, there is a connection between these
errors and the probability of false alarm, missed detection, and missed
isolation but not a direct one to one relation. We will not go into
details here but it is clear that to achieve low probabilities of false
alarm, missed detection, and missed isolation for the complete diagnosis
system, we need to keep the probabilities of the TYPE I and II errors
for each test quantity low.

The remainder of the text in this chapter will be devoted to the
power function but it is worth mentioning that there are alternatives
that are commonly used in the literature. Two examples are the mean
detection delay (Basseville and Nikiforov, 1993) and the ROC-curve.
Let talarm be the time the test quantity exceeds its threshold and tfault

the time the fault is introduced in the system. The mean detection
delay is then formally

E{talarm − tfault}
where tfault is a deterministic fault time. The ROC-curve, or Receiver
Operating Characteristics curve, is primarily from the detection theory
in communication (Kay, 1998) and is a plot of probability of detection
P (D) as a function of the false alarm probability P (FA). The curve
is typically obtained by varying the threshold J . Examples of ROC-
curves are shown in Figure 5.2 for three different fault sizes. Note that,
although only the power function is considered in the text that now
follows, most of the text is applicable and relevant also for these other
performance measures.

5.2 Deriving the Power Function Analytically

We will here describe how the power function can be derived analytically.
This is only possible in some special cases. One of these cases is studied



150 Chapter 5. Evaluation of Test Quantity Performance

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(FA)

P
(D

)

θ=1

θ=2

θ=3

Figure 5.2: Examples of ROC-curves for three different values of θ.

here, namely the case when we have independent data which is also
Gaussian distributed.

Consider a system which can be modeled as

y(t) = bu(t) + a+ v(t) (5.1)

where v(t) ∼ N(0, σv). The nominal (i.e. corresponding to the no fault
case) value of b is b0 = 1 and the nominal value of a is a0 = 0. Now we
will discuss how the power function, for two different test quantities,
can be derived analytically. First for a test quantity based on a residual,
and then for a test quantity based on a parameter estimate.

5.2.1 A Test Quantity Based on the Prediction Error

Assume that we have a test quantity T1(z) based on the prediction
error, i.e.

T1(z) =
N∑
t=1

(y(t)− ŷ(t))2 =
N∑
t=1

(y(t)− u(t))2 (5.2)

Consider first the fault free case. Then

y − u
σv

=
b0u+ v − u

σv
=

v

σv
∼ N(0, 1) (5.3)
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This further implies that

T1(z)

σ2
v

∼ χ2(N)

Now given a threshold J1, we can calculate

β([a0 b0]) = β([0 1]) = P (T1(z) ≥ J1 | a = 0, b = 1)

This is equivalent to calculating

P (
T1(z)

σ2
v

≥ J1

σ2
v

| a = 0, b = 1)

which can be done by using any standard table for the χ2 distribution
(or by using the built-in function in Matlab). That is, we have illustrated
how to analytically derive the probability of a TYPE I error (false
alarm) for a hypothesis test using the test quantity (5.2). When trying
to do the same derivation for the faulty case, i.e. b 6= 1 or a 6= 0, it
is seen that the quantity (5.3) does not have mean 0 anymore. This
further implies that T1(z)/σ2

v will not have a χ2 distribution and the
analytical derivation becomes more complicated. Instead of using
analytical derivations, it is then more suitable to use simulations as
described in Section 5.3 below.

5.2.2 A Test Quantity Based on an Estimate

Still with the model (5.1) in mind, assume that we want to derive the
power function for a test quantity based on an estimate, namely the
test quantity (4.31) from Example 4.12:

T ′2(z) = Np(b̂− 1)2 b̂ =
1

UTU
UTY

Now given a threshold J2, we want to calculate

β(b) = P (T ′2(z) ≥ J2 | b, a = a0)

This is equivalent to computing

P
(√

Np(b̂− 1) ≥
√
J2

)
+ P

(√
Np(b̂− 1) ≤ −

√
J2

)
(5.4)

From (4.30) it are then easy to use tables for the normal distribution
to compute (5.4).
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5.3 Estimating the Power Function Using Sim-
ulations

As was seen in the previous section, it is possible to derive the power
function only in some (very) limited cases. Another method is to
numerically compute, or at least estimate the power function. This
can be done using so called Monte Carlo simulations.

The method can be described as follows:

1. Assume a distribution of noise in the observation data z. This
noise does not have to be independent or Gaussian.

2. Fix the parameter θ for which we will calculate β(θ).

3. In a computer, generate a large amount of data series zi, i =
1, . . . N , where N may be more than 1000, maybe 100000.

4. For each data series zi, calculate the value ti of the test quantity,
i.e. ti = T (zi).

5. Collect all the N values ti in a histogram. This histogram is now
an estimation of f(t|θ).

6. By using a fixed threshold J , β(θ) can now be estimated.

7. Go back to step 2 and fix a new θ.

Example 5.1 Consider the test quantities T1(z) in (5.2) and T ′2(z)
in (4.31). Assume that we want to compute power functions related to
these test quantities. As was said above, the power function β1(b) for
a test based on T1(z) can not be derived analytically. This means that
we have to use simulations. On the other hand, the power function
β2(b) for a test based on T ′2(z) is possible to derive analytically. The
thresholds for both tests are chosen such the significance levels equal
each other, i.e. α1 = α2 = 0.003. Both the power functions β1(b) and
β2(b) are plotted in Figure 5.3. From this plot we can conclude that
the test based on β2(b) is better than the test based on β1(b). This is
because β2(b) ≥ β1(b) for all b except b = b0 = 1.
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Figure 5.3: The power functions β1(b) (dotted) and β2(b) (solid) for
two tests based on T1(z) and T ′2(z).

5.4 Estimating the Power Function Using Mea-
surement Data

We will here show how to estimate the power function β(θ) by using
measurement data. The method is similar to simulation and can be
described as follows:

1. To calculate β(θ) for a specific θ, we manipulate the process such
that the parameter θ is fixed.

2. Collect a number of measurement series zi, i = 1, . . . N .

3. For each data series zi, calculate the value ti of the test quantity,
i.e. ti = T (zi).

4. Collect all the N values ti in a histogram. This histogram is now
an estimation of f(t|θ).

5. By using a fixed threshold J , β(θ) can now be estimated.
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This procedure can be repeated for a number of different θ:s, and
thereby the power function β(θ) can be obtained as a sampled function
of θ.



Chapter 6
Linear Residual Generation

It is evident that the class of models that is considered greatly influences
the difficulty of the residual generator design problem and that the
more complicated the model, the more difficult it is to find general
design and analysis methods. This chapter is about designing residual
generators based on a simple class of models, linear process models
where all faults and disturbances affecting the system are modeled as
additive input signals.

Although linear models often have difficulties to accurately model
physical processes, it is still one of the largest classes that can be
treated in a simple enough and conclusive manner. Also, the analysis
of linear system reveals and highlights important characteristics that
are useful when performing designs based on more complicated models.
These two facts are the motivation for the rather thorough treatment
of linear systems that is included in this chapter. This is also the
motivation for assuming that all inputs are considered deterministic,
i.e no stochastic noise descriptions are included. Analysis of stochastic
properties of the model and the residual generator are important topics,
but not considered here since the main objective is to illustrate general
principles and properties of the residual generation problem.

155
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Linear systems were, probably because of their simplicity, one of
the first areas to be investigated when researchers began to explore
the residual generation problem. A pioneering work was done in
(Chow and Willsky, 1984) where linear state-space descriptions was
considered. Then, a great number of research papers and application
studies followed and even today researchers continue to publish papers
dealing with linear systems. A main focus of recent research is often
design for uncertain models, optimal designs, and how to extend the
class of linear models considered.

The method described in this chapter does not address uncertain
systems or optimality conditions. It does however consider a class of
models that is more general than commonly considered in the literature.
The method relies on polynomial algebra and to not hide the rather
straightforward principles of the design method behind polynomial
algebra, the design method is first outlined for the static case in
Section 6.4. The design procedure can then be well understood using
only basic linear algebra. The dynamic case is then in Section 6.5
shown to be a straightforward generalization of the static case using
polynomial algebra and rational vector spaces instead of vector spaces
over real numbers. To be complete, all proofs are included in the text.
However some of the more technical proofs and lemmas are placed in an
appendix at the end of the chapter to not disturb the flow of the text.
Also note that the appendix includes brief descriptions of null-spaces
and the polynomial algebra that is needed to fully understand the
presentation.

6.1 Basic Principles

Before describing general methodology for linear residual generation
in the sections to follow, this section gives a brief outline of the basic
principles behind the theory.

A linear residual generator can be said to be a linear filter that
takes known signals z as input and generates a residual r that can be
used to detect faults. A residual generator is thus a filter R(p)

r = R(p)z

For example, let the model be given by the transfer operators Gu(p),
Gd(p) and Gf (p), i.e. the model describing the influence of control
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signals u, disturbances d and faults f on the measurement y is given
by

y = Gu(p)u+Gd(p)d+Gf (p)f

Assume also that the model is stable, for such a model a residual
generator can for example be written as

r = W (p)(y −Gu(p)u) = W (p)[I −Gu(p)]

(
y
u

)
= R(p)z (6.1)

where W (p) is a linear filter for the designer to choose. Note that
(6.1) is the residual expressed in known signals only. Because the
computation of the residual is based on such an expression it is called
the computational form.

By substituting the model (6.6) for y in the residual generator we
obtain

r = W (p) (Gd(p)d+Gf (p)f) (6.2)

A requirement on the residual is that it must be (ideally) 0 in the
fault free case. This means that the residual must be zero for any
disturbance d. This requirement imposes that it must hold that

W (p)Gd(p) = 0 (6.3)

Because of (6.3), it is seen in (6.2) that it is possible to express the
residual in only the faults. Thus, the residual can be written as

r = W (p)Gf (p)f (6.4)

which means that the residual is able to detect the fault f ifW (p)Gf (p) 6=
0. An expression like (6.4), i.e. an expression describing how the residual
responds to faults, is called the internal form.

The goal of the sections that now follow is to describe a systematic
way of designing the linear filter R(p) but first a small example.

Example 6.1 Consider the linear model

y =

[
1
p+1

1
p+2

]
u+

[
1
p+3

1
p+4

]
d+

(
f1

f2

)
which has 2 sensors, one control input u, one disturbance d and two
sensor faults f1 and f2. A residual generator can then, following the
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procedure outlined above, be written as

r = W (p)

(
y −

[
1
p+1

1
p+2

]
u

)

The matrix W (p) must fulfill (6.3) and one choice is

W (p) =
1

p+ α

[
(p+ 3) −(p+ 4)

]
with α > 0 to ensure stability of the residual generator. This means
that the complete residual generator can be written as

r =
[
p+3
p+α − p+4

p+α − 2
(p+α)(p+1)(p+2)

]y1

y2

u

 = R(p)z

6.2 Model Description

Now that the general principle has been established, we are ready to
become more formal and before we formally define the linear residual
generation problem, we need to define the class of models that are
considered. This is the topic of this section and the linear model
description that will be used in this chapter is the following

H(p)x+ L(p)z + F (p)f = 0 (6.5)

where x ∈ Rnx is a vector of unknown signals that should not influence
the residual, z ∈ Rnz is a vector of known signals, and f ∈ Rnf is the
vector of faults we wish to detect. Note that any signals we wish to
decouple in the residual are collected in the vector x. Matrices H(p),
L(p), and F (p) are polynomial matrices of suitable dimensions in the
differentiation operator p. The meaning of the operator differentiation
operator p is illustrated by the small example

(p2 + 2p+ 3)x = ẍ+ 2ẋ+ 3x

Models in form (6.5) is attractive from a modeling perspective since
modern modeling techniques, such as object oriented modeling (Mattson
et al., 1998) uses equation based modeling languages, e.g. Modelica.
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The resulting model will then be in the general form (6.5) and not
in state-space form. Typically, different components are modeled
by specifying physical laws that connect internal variables to each
other. The separate models are then connected together via algebraic
constraints that result in a model that is not immediately in state-space
form and may require considerable effort to translate to a state-space
form.

This chapter will only consider time-continuous models. However,
corresponding results for the time-discrete case is easily obtained by
simply replacing the differentiation operator p for the time shift operator
q and the Laplace variable s for the Z-transform variable z. To not
make the presentation unnecessary technical we will impose a technical
assumption in Section 6.2.2 on the model (6.5). This is done to avoid
some uncommon special cases that require a rather technical treatment.

The model structure (6.5) looks a little bit different than what is
found in most texts on automatic control where commonly state-space
or transfer function models are used to model the process. Actually,
there is a complete branch of automatic control that considers models
in form (6.5). See for example the book by (Polderman and Willems,
1997) for an extensive review. The model structure (6.5) is attractive
from a diagnosis perspective since for passive diagnosis systems, i.e.
the diagnosis system does not influence the process, there is no need to
distinguish between process inputs and outputs. It is only interesting
to distinguish between known signals, unknown signals, and faults
and this is only possible with formulations like (6.5). However, as
will be shown below, the standard model descriptions fits directly into
the more general form (6.5). For example, if the model is given by a
transfer operator y = G(p)u where

G(s) =
b(s)

a(s)

the model does not fit exactly the form (6.5) since G(p) is a rational
expression in p, not polynomial. But, what the transfer operator really
means is that y and u satisfies the differential equation

a(p)y − b(p)u = 0

which is a polynomial description which fits directly into the model
description (6.5). In the text that now follows we will use both the
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complex Laplace-variable s and the differentiation operator p. In most
cases one may switch between s and p without further thought, but
one should remember that a(p) is an operator and a(s) a polynomial
in a complex variable. Thus, one can, strictly speaking, for example
not talk about zeros to the polynomial a(p). Also, note that

y =
p

p
u

does not imply that y = u, only that ẏ = u̇.

As noted in the introduction of this chapter, first static models
will be treated. Static models, i.e. models that does not contain any
dynamics, does not contain any time-differentiated variables. Thus, for
static models the matrices H(p), L(p), and F (p) are constant matrices
that does not contain the differentiation operator p.

To make the reader a little more familiar with the model structure,
two examples conclude this section. A first that considers a small
physical example and a second example where other common linear
model descriptions and their relations to (6.5) are investigated.

Example 6.2 Consider two rotating inertias connected via a spring
according to Figure 6.1.

ϕ1 ϕ2

J1 J2

ku y

Figure 6.1: A small physical example. Two inertias connected with a
spring.

Signals ϕ1 and ϕ2 are the crank angles of the two inertias, J1 and
J2 are the moments of inertia, k the spring constant, and u a known
driving torque. The equations describing the dynamics can then be
written as

J1ϕ̈1 = u− τ1

τ1 = k(ϕ1 − ϕ2)

J2ϕ̈2 = τ1
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where τ1 is the torque developed by an ideal spring. Assume that we
measure the angular velocity of the second inertia and that we model
an additive sensor fault f . The measurement equation is then

y = ϕ̇2 + f

Now, the unknown variables, denoted with x in (6.5), are the variables
ϕ1, ϕ2, and τ1

x =

ϕ1

ϕ2

τ1


The known variables, denoted z in (6.5), are the torque u and the
measurement y

z =

(
y
u

)
Collecting the 4 model equations into the form (6.5) then gives the
model matrices

H(p) =


J1p

2 0 1
k −k −1
0 J2p

2 −1
0 −p 0

 , L(p) =


0 −1
0 0
0 0
1 0



F (p) =


0
0
0
−1


The reader is encouraged to verify that the matrices H(p), L(p) and
F (p) accurately reflects the original model.

Common model structures used in control theory is state-space
descriptions and transfer functions. The example below will show that
these common model structures directly fit into the more general model
description (6.5).

Example 6.3 First, consider the common state-space model struc-
ture that is heavily used in control systems literature. Let the system
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be described by the state-space equations1

ẇ = Aw +Buu+Bdd+Bff

y = Cw +Duu+Ddd+Dff

where w is the state vector, u known control inputs, d unknown distur-
bances, f the faults, and y the measurement.

Rewriting the model in matrix form with x = (w, d) and z = (y, u)
gives[

C Dd

−(pI −A) Bd

](
w
d

)
+

[
−I Du

0 Bu

](
y
u

)
+

[
Df

Bf

]
f =

H(p)x+ L(p)z + F (p)f

Another common model description is transfer functions. Also these
model descriptions fit directly into the general model form (6.5). To
see this, let the model be described by the transfer operators

y = Gu(p)u+Gd(p)d+Gf (p)f (6.6)

Also, let the numerators and denominators of the transfer functions be
defined according to

D−1(s)[Nu(s) Nd(s) Nf (s)] = [Gu(s) Gd(s) Gf (s)] (6.7)

This means that the Nu(s), Nd(s), and Nf (s) matrices describe the nu-
merators and D(s) the (common) denominator of the transfer matrices.
Now, with x = d and z = (y, u) we obtain

Nd(p)x+ [−D(p) Nu(p)]z +Nf (p)f = 0

which is in the form (6.5). In general, a decomposition of a multi-input
multi-output transfer matrix into numerators and denominators as in
(6.7) is called an MFD (Matrix Fraction Description).

The conclusion of this example is that commonly used linear model
descriptions directly fit into the general linear model structure (6.5)
and that any results derived for (6.5) also apply for state-space or
transfer function models in a single framework. Thus, we do not need
to develop two separate design algorithms and it will prove that using
(6.5) is no more difficult than to only consider state-space or transfer
function models.

1The variable w is used as a state-variable instead of the customary x to avoid
any unnecessary mix up with x in (6.5).
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6.2.1 Decoupling in Linear Systems

As stated, the model is assumed to be in the form

H(p)x+ L(p)z + F (p)f = 0

Typically, one wants to generate residuals that corresponds to a fixed
decision structure as described in Chapter 3. This section describes how
to reformulate the model such that the designed residual generators fit
into such a framework.

To illustrate, assume that the system is influenced by three faults,
f1, f2, and f3 and that we are to design two residual generators r1 and
r2 corresponding to the decision structure.

f1 f2 f3

r1 0 X X
r2 X 0 X

Design of Residual Generator r1

Since residual r1, according to the table above, should not be influenced
by the fault f1, the signal f1 should be decoupled in the residual. A
way to ensure this is to include the signal f1 in the vector of unknown
signals x in the model equations.

Let F1(p) be the first column in F (p) in (6.5), i.e. the column
corresponding to fault f1. Then, when designing residual r1, rewrite
the model as[

H(p) F1(p)
]( x

f1

)
+ L(p)z +

[
F2(p) F3(p)

](f2

f3

)
= 0

This means that when designing r1, the x vector and the H(p) matrix
is redefined as

x :=

(
x
f1

)
, H(p) :=

[
H(p) F1(p)

]
After the rewrite, the model is in the form

H(p)x+ L(p)z +
[
F2(p) F3(p)

](f2

f3

)
= 0

If a residual generator is designed that is not influenced by the unknown
signals in x, it is guaranteed that the fault signal f1 is decoupled in the
residual r1 and thereby that r1 is consistent with the desired decision
structure.
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Design of Residual Generator r2

When, in a second step, the residual generator r2 is designed, it is
instead of f1 fault signal f2 that should not influence the residual. The
vector x and the matrix H(p) is then, similar as in the case of r1,
redefined as

x :=

(
x
f2

)
, H(p) :=

[
H(p) F2(p)

]
and the model is in the form

H(p)x+ L(p)z +
[
F1(p) F3(p)

](f1

f3

)
= 0

Again, designing a residual that is not influenced by the unknown
signals in x, guarantees that the residual r2 is consistent with the
desired decision structure.

Final Comment on Decoupling

The above discussion illustrates how the model matrices in the model
(6.5) are redefined for each residual design. How the variables and
matrices are redefined depends on the desired decision structure, i.e.
which signals should be decoupled in each residual.

6.2.2 A Technical Assumption

As noted above, a technical assumption will be imposed on the model
equations to avoid some uncommon special cases that would make the
presentation much more technical. Generally, for well posed model
of physical processes, the assumption will hold as is discussed briefly
below.

The assumption is the following rank condition

rank [H(s) L(s)] = m, for all s ∈ C (6.8)

where m is the number of equations in the model, i.e. rows in (6.5). That
[H(s)L(s)] has full normal rank, i.e. full rank for some s, is a reasonable
assumption since it means that there are no linear dependencies in the
fault-free model equations. In non-mathematical terms one can say that
this means that no two equations say the same thing. However, (6.8) not
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only states that [H(s)L(s)] has full normal-rank, it states that the model
equations have full row-rank for all s. This is a technical assumption
and means that the model is controllable. This is a generalization
(Polderman and Willems, 1997) of the notion of controllability and for
a state-space model the condition directly corresponds to the basic
controllability condition that is used in any basic course on automatic
control. A complete investigation of the residual generator problem for
the case where the assumption above is not fulfilled can be found in
(Nyberg and Frisk, 2006).

6.3 Linear Residual Generators

In Section 6.1, a residual generator was loosely described as a filter
that in the fault free case is zero. For the residual to be any good for
fault detection, we also require that the residual is non-zero in case of
a fault. To formalize these notions, we start by describing the fault
free behavior with the set O

O = {z|∃x;H(p)x+ L(p)z = 0} (6.9)

The meaning of this set is that O is the set of all known signals z
that is consistent with the fault-free model, i.e. could have originated
from a fault-free process. The fault detection problem is then to decide
if the measured signals z ∈ O or not. Note that z coming from a
faulty process might very well also be included in O. This topic will
be studied further in Section 6.7 where fault detectability is discussed.
Now, with the definition of O, the fault free behavior of the system,
we can formally define a residual generator as

Definition 6.1 (Linear residual generator). A proper linear filter R(p)
is a residual generator and r = R(p)z is a residual if

z ∈ O ⇒ lim
t→∞

r = 0

The definition is quite natural, the residual should go to zero if the
observed data is consistent with a fault free model. The reason why
the residual r only is required to go to zero and not be identical to zero
will be explained in Section 6.5 where residual generation for dynamic
models are discussed. The properness requirement on the residual
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generator R(p) assures that the residual generator can be written in
state-space form.

Now, the aim of the remainder of this chapter is to first find a
design procedure that gives all residual generators R(p) for a given
model and also to analyze the fault detectability properties of both the
residual generator and the system.

6.4 Residual Generators for Static Models

Now that the class of models and residual generators has been defined,
it is time to develop a design algorithm. However, to not hide the simple
and rather basic principles of the design algorithm behind polynomial
algebra we will first only consider static linear systems. A design
procedure is developed for this simpler class of models, and it will in
Section 6.5 be shown how residual generators can be designed also
for dynamic models using an identical design procedure, only utilizing
polynomial matrix algebra.

A general static linear model is in the form

Hx+ Lz + Ff = 0 (6.10)

Compare this formulation with its dynamic counterpart (6.5), the only
difference is that (6.10) does not include any differentiation operator p
and matrices H, L and F are therefore constant matrices.

Now, to illustrate a design, let the rows of matrix NH span the
left null-space2 of matrix H. This means that NH has the maximum
number of linearly independent rows that solves the equation

NHH = 0

Now, multiply the model equation (6.10) from the left with NH to
obtain

NH(Hx+ Lz + Ff) = NHLz +NHFf = 0 (6.11)

Here one sees that in the fault-free case, i.e. when f = 0, the expression
NHLz = 0. By recalling Definition 6.1, one can then see that r = Rz
is a residual generator if we let

R = γNHL

2For those who need a recapitulation of null-spaces, see any basic book in linear
algebra. A brief description is included in Appendix 6.B.
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where γ is any row-vector of suitable dimensions. The row-vector γ thus
parameterizes a set of residual generators. This simple outline showed
a sufficient procedure to find a residual generator. The theorem below
also states that it is in fact also a necessary procedure, i.e. all residual
generators can be found by selecting different values of the parameter γ.
The parameter γ should be selected to achieve best possible detection
performance. How to select γ is further discussed in Section 6.8.

Theorem 6.1 (Static residual generators). The constant matrix R is
a residual generator for model (6.10) if and only if R can be written

R = γNHL

Proof. The if-part is already proven above and we only need to prove
that if R is a residual generator, there exist a γ such that R = γNHL.
Now, since R, according to assumption, is a residual generator we
know that z ∈ O ⇒ Rz = 0, which together with Lemma 6.7 from
Section 6.D implies that

NHLz = 0⇒ Rz = 0

This implication is equivalent to Im R ⊆ Im NHL, where ImR is the
space spanned by the rows of R. Furthermore, this implies that there
exist a row-vector γ such that

R = γNHL (6.12)

which ends the proof. �

Based on the theorem above we can now state a design procedure
for residual generators for static linear models (6.10). The procedure
can be summarized as

1. Form the model matrices H, L, and F .

2. Compute a basis NH for the left null-space of matrix H.

3. A residual generator r = Rz for the model can then be
formed by R = γNHL where γ is a free design parameter.
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The parameter γ is the only parameter free for the designer to choose
and the aim of this choice is to achieve desirable fault detectability
properties in the residual. The fault influence on the residual is given
by the expression

rint = −γNHFf

which is obtained directly from (6.11). The design procedure is illus-
trated on a small idealized static example.

Example 6.4 Consider a simple static linear model with two known
signals z1 and z2, two unknown signals x1 and x2 and one fault f to
detect:

Hx+ Lz + Ff =


8 −11
6 −22
−8 10
−2 −5

x+


4 −9
3 −3
1 −11
−10 −10

 z +


15
1
−12

0

 f = 0

Computing the left null-space to matrix H in Matlab gives

NH =

[
0.6815 0.0144 0.7220 −0.1186
0.3466 −0.4411 −0.1859 0.8067

]
Here, choose the parameter γ = [−1 − 1] (an ad-hoc choice). Theo-
rem 6.1 then gives that

r = γNHLz = 3.5119z1 + 20.7501z2

is the computational form of a residual generator. The internal form,
i.e. the expression that shows the fault influence on the residual, is
given by

rint = −γNHFf = 8.5628f

which also shows that the fault is detectable in the residual since in
case of a fault (f 6= 0), also the residual will be non-zero.

6.5 Residual Generators for Dynamic Models

The goal of this section is to extend the approach outlined in the
previous section for static models to cover also dynamic models. This
will be done in a, more or less, identical way as for static models but
using vector spaces over rational functions rather than vector spaces
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over real numbers. For the purpose of this text, linear algebra over
polynomials is in many ways no more difficult than regular linear
algebra, only a few new notions need to be introduced. For those not
familiar with such algebra, a brief summary of notions used in the text
are described in Section 6.C.

The presentation will now closely follow the presentation for the
static case. Thus, consider again the dynamic model (6.5), where
the matrices H(p), L(p), and F (p) again includes the differentiation
operator p. Now, similar to the static procedure, let the rows of the
polynomial matrix NH(s) span the left null-space of matrix H(s). Now,
multiply the model equation (6.5) from the left with NH(p) to obtain

NH(p)(H(p)x+ L(p)z + F (p)f) = NH(p)L(p)z +NH(p)F (p)f = 0

Here one sees that in the fault-free case, i.e. when f = 0, the expression
NH(p)L(p)z = 0. If we for the moment assume that not only z is
known but also ż, z̈, and so on. Then we could compute a residual as
r = R(p)z where

R(p) = γ(p)NH(p)L(p) (6.13)

which should be compared to the, almost identical, expression (6.12)
that was derived for the static case.

Example 6.5 Lets continue with the model from Example 6.2. This
model is simple enough to compute a basis for the left null-space of
matrix H(s) by hand. For a general and more complicated model,
efficient numerical computational tools, e.g. Matlab, can compute
this basis fast and in a reliable manner. In this case, the basis NH(s)
is given by the expression

NH(s) =
[
k −J1s

2 k + J1s
2 k(J1 + J2)s+ J1J2s

3
]

The reader is encouraged to verify that this really is a basis for the
left null-space, both that NH(s)H(s) = 0 and that the dimension of
the null-space really is one. Multiplying (6.5) from the left with NH(p)
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gives, for this example, in the fault free case

0 =
[
k −J1p

2 k + J1p
2 k(J1 + J2)p+ J1J2p

3
] 

0 −1
0 0
0 0
1 0

(yu
)

=

[
k(J1 + J2)p+ J1J2p

3 −k
](y

u

)
= J1J2y

(3) + k(J1 + J2)ẏ − ku

Again with the assumptions that time derivatives of z, i.e. u and y,
are known we could set γ(p) = 1 and compute a residual using the
expression

r = J1J2y
(3) + k(J1 + J2)ẏ − ku (6.14)

That this expression is reasonable can, in this simple case with no
disturbances d, be easily verified by computing the transfer function
from u to y

G(s) =
k

J1J2s3 + k(J1 + J2)s

From y = G(p)u the residual (6.14) can be directly identified.
Similar as in the static case, the fault influence on this residual is

given by the expression

rint = −γ(p)NH(p)F (p)f = (k(J1 + J2)p+ J1J2p
2)f =

= k(J1 + J2)ḟ + J1J2f̈ (6.15)

Unfortunately, assuming that the time derivative of z is known is a
rather unrealistic assumption. It is often difficult to estimate derivatives,
especially in a noisy environment. For example, the residual generator
(6.14) in Example 6.5 requires that the third order derivative of the
measurement signal y is known or can be reliably estimated. It is not
hard to realize the difficulty in estimating the third order derivative in
a noisy environment. Thus, equation (6.13) is generally not useful as a
residual generator. Fortunately, we can still utilize this expression to
derive a way to compute a residual following the same line of reasoning
as in Section 4.3.1. Instead of computing the residual according to
(6.13), compute it according to the differential equation

d(p)r = γ(p)NH(p)L(p)z (6.16)
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where d(p) = 1 + d1p+ d2p
2 + · · ·+ dqp

q is a stable polynomial in p of
order q. It is important that d(s) is stable, i.e. all zeros in the open
left half plane. This can be seen by observing (6.16) in the fault free
case. In the fault free case we know that the right hand side equals 0,
i.e., the residual r obeys the differential equation

d(p)r = 0

If then d(s) has only strictly stable roots, r will go to 0 asymptotically.
Now, using the transfer operator notation R(p), the residual generator
(6.16) can be written as r = R(p)z with

R(p) =
1

d(p)
γ(p)NH(p)L(p) (6.17)

The row-vector γ(p)NH(p)L(p) is said to have row-degree k if k is the
highest order polynomial of all elements in the vector. Now, if the
order q of the polynomial d(p) is greater or equal to the row-degree of
γ(p)NH(p)L(p), the filter R(p) can be written in state-space form and
r can be computed without any need to estimate time derivatives of
z. One way to realize the residual generator in state-space form is to
use the observer canonical form which is described in Appendix 6.A.
For general descriptions on realization theory, see any basic book on
automatic control, for example (Glad and Ljung, 1997) (in Swedish) or
(Kailath, 1980).

Example 6.6 Consider again Example 6.5 where

γ(p)NH(p)L(p) =
[
J1J2p

3 + k(J1 + J2)p −k
]

This means that the polynomial d(p) must at least be of order 3 for
the filter R(p) in (6.17) to be realizable on state-space form. Let us
place all poles of the residual generator in s = −α with α > 0, i.e.

d(s) = (s+ α)4

The transfer function R(s) of the residual generator is then

R(s) =
1

(s+ α)4

[
J1J2s

3 + k(J1 + J2)s −k
]
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which can easily be stated on state-space form, e.g. in observer canonical
form. This means that the residual can be computed without estimating
any derivatives.

The approach outlined above and in the examples shows a sufficient
way to design residual generators. But, as in the static case, it is in
fact also a necessary procedure and this is summarized in the theorem
below.

Theorem 6.2 (Dynamic residual generators). A filter with transfer
operator R(p) is a residual generator if and only if there exists a stable
polynomial d(s) and a row-vector γ(s) such that

R(p) =
1

d(p)
γ(p)NH(p)L(p) (6.18)

where deg d(p) ≥ deg γ(p)NH(p)L(p).

Proof. The same proof given for Theorem 6.1 holds also for this theorem
with only minor adjustments. It is left as an exercise for the reader to
complete this proof. �

Based on the theorem above we can now state a design procedure
that can be summarized as

1. Form the model matrices H(p), L(p), and F (p).

2. Compute a basis NH(s) for the left null-space of matrix H(s).

3. A residual generator r = R(p)z for the model can be formed
where

R(p) =
1

d(p)
γ(p)NH(p)L(p)

The row-vector γ(p) and the polynomial d(p) are free design
parameters with the constraints

• the polynomial d(s) must have all its zeros in the open left
half-plane.

• the degree of d(s) must be greater or equal to the row-degree
of γ(s)NH(s)L(s) to be able to realize the residual generator
on state-space form.
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In the design method above, there is no discussion on how to choose
the available design freedom that is concentrated in the polynomial
d(s) and row-vector γ(s). This topic will be readdressed in Section 6.8
after fault detectability is discussed in Section 6.7.

A natural question to ask is, how many linearly independent residual
generators does there exist for a given model. By looking at the theorem
formulation above, one can see the set of linear residual generators
can be seen as a linear vector space over rational vectors. Thus, the
dimension of this space, which equals the number of rows of matrix
NH(s), gives how many linearly independent residual generators that
exists. Let nr denote the dimension of this space. The number of rows
of NH(s) is given by

nr = m− rankH(s) (6.19)

where m is the number of equations in the model (i.e. rows of H(s)).
For models where the unknown variables are independent, i.e., H(s)
has full column rank, this means that

nr = m− nx

where nx is the number of unknown variables. Thus, the quantity m−nx
can be said to be the degree of redundancy available in the model. This
means that the more redundancy available, the more available design
freedom we have when designing our residual generators R(s). This
also means that we need more model equations than unknown variables
to be able to find any residual generator.

Example 6.7 Consider a state-space model as in Example 6.3.
Matrix H(s) is then given by

H(s) =

[
C Dd

−(sI −A) Bd

]
The number of rows in H(s) is then ny + nw where ny is the number
of measurements and nw the number of states. Given that the input
d represents independent inputs, i.e. [DT

d B
T
d ]T has full column rank,

we have rankH(s) = nw + nd where nd is the number of disturbances.
The degree of redundancy is then

nr = ny + nw︸ ︷︷ ︸
m

− (nw + nd)︸ ︷︷ ︸
nx

= ny − nd
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Thus, the degree of redundancy for a state-space model is then quite nat-
urally the number of measurements minus the number of disturbances
we need to decouple. Thus, a necessary condition for the existence
of any residual generator is that the process is equipped with more
sensors than there are unknown disturbances to be decoupled.

6.6 Residual Generators in State-Space Form

To implement a linear residual generator in a electronic control system,
typically the filter is written in state-space form. As described above,
if the numerators has a degree that is less or equal to the degree of the
denominator in

R(p) =
1

d(p)
γ(p)NH(p)L(p) (6.20)

the filter can be written in state-space form.

Example 6.8 Consider the first order model

ẋ = −x+ u1

y = x+ u2

with one output y and two inputs u1 and u2. A corresponding consis-
tency relation is then

ẏ + y − (u̇2 + u2)− u1 = 0 (6.21)

Adding residual generator dynamics as in (6.16), with a pole in −α,
then gives a residual generator in transfer function form as

R(p) =
1

p+ α

(
p+ 1 −1 −(p+ 1)

)
In this first order system, it is straightforward to obtain a state-space
form. By observing that (6.16) becomes

ṙ + αr = ẏ + y − (u̇2 + u2)− u1

and with the state variable w = r − y + u2 we obtain

ẇ = ṙ− ẏ+ u̇2 = −αr+y−u2−u1 = −α(w+y−u2)+y−u2−u1 =

= −αw +
(
(1− α) −1 −(α+ 1)

) y
u1

u2


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Thus, a state-space formulation of the residual generator is then

ẇ = −αw +
(
(1− α) −1 −(α+ 1)

) y
u1

u2


r = w +

(
1 0 −1

) y
u1

u2


In the above example, it was straightforward to find the state-space

variable due to that it was only first order dynamics. It is however
true that for any transfer function where the numerator degree is not
higher than the denominator, one can always find a state-space form,
see (Kailath, 1980) for a detailed description. There are many ways to
find state-variables, and a simple alternative is to directly utilize the
observer canonical form Appendix 6.A. The observer canonical form is
not numerically suitable for large order residual generators, but is here
used to illustrate the principle.

Example 6.9 Consider again the residual generator from Exam-
ple 6.6 with the residual generator in transfer function form

R(s) =
1

(s+ α)4

[
J1J2s

3 + k(J1 + J2)s −k
]

To directly use the observer canonical form, expand the denominator
as

(s+ α)4 = s4 + 4αs3 + 6α2s2 + 4α3s+ α4

and identify the polynomial coefficients. Then, the residual generator
can be stated as

ẇ =


−4α 1 0 0
−6α2 0 1 0
−4α3 0 0 1
−1 0 0 0

w +


J1J2 0

0 0
k(J1 + J2) 0

0 −k

(yu
)

r =
(
1 0 0 0

)
w

Note that this simple procedure is directly possible when the denom-
inator degree is strictly higher than the numerator degrees. For the
case where they are equal, perform a polynomial division first.



176 Chapter 6. Linear Residual Generation

6.7 Fault Detectability

Definition 6.1 does not state anything on what happens with the
residual in case of a fault, i.e. a residual generator is not required to be
sensitive to a fault. This means that, according to the definition, r ≡ 0
is a residual generator although a rather useless one. The question then
arises, is it at all possible to find a residual generator that is sensitive
to the faults in f? This question is the topic of detectability analysis.

Before going further, there is a need to distinguish between fault
detectability and fault sensitivity of a fault in a specific residual. A
fault fi is detectable in a model (6.5) if when fi 6= 0, the measurements
is distinguishable from measurements from a fault free process. Thus,
fault detectability is a system property and is not related to a specific
residual generator. More formally, fault detectability can be defined as

Definition 6.2 (Fault detectability). Fault i is detectable in (6.5) if
there exist signals fi, x, and z, consistent with (6.5) with fj = 0 for
j 6= i, such that z 6∈ O.

When talking about a specific residual generator and which faults
that can be detected, we talk about fault sensitivity of a residual. Let
Grfi(s) be the transfer function from fault fi to the residual r, then
fault sensitivity can be defined as

Definition 6.3 (Fault sensitivity). A residual from a residual generator
R(p) for (6.5) is sensitive to fault i if Grfi(s) 6= 0.

Let the residual generator R(p) be given by (6.18), it is then straight-
forward to determine the transfer function Grfi(s). First, multiplication
of (6.5) from the left by d−1(p)γ(p)NH(p) and trivial reordering of the
terms gives that

d−1(p)γ(p)NH(p)(H(p)x+ L(p)z) = −d−1(p)γ(p)NH(p)F (p)f

Since NH(p)H(p) is the null operator and that R(p) is given by (6.18)
we have obtained the transfer function from fault to residual Grf (s) as

Grf (s) = −d−1(s)γ(s)NH(s)F (s) (6.22)

The following small example illustrates the two above definitions

Example 6.10 Consider the model(
y1

y2

)
=

[
1
p+1

1
p+2

]
u+

(
f1

f2

)
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Both faults f1 and f2 are clearly detectable since they both directly
affect the measurement signal y and there are no unknown signals.
However, for the residual generator

r = y1 −
1

p+ 1
u = [1 0 − 1

p+ 1
]

y1

y2

u

 = R(p)z

the transfer functions from faults to the residual is given by

Grf1 = 1, Grf2 = 0

which means that the residual is only sensitive to fault f1 and not f2.

6.7.1 Fault Detectability Conditions

Now that the basic definitions have been introduced, we can derive
conditions to test if a fault is detectable or not. For a general model,
it is not as easy as in Example 6.10 to determine the detectability
properties of the model and residual generator. Before deriving a
detectability condition, we state a rather expected result that supports
Definition 6.2; a fault is detectable if and only if there exists a residual
generator sensitive to that particular fault.

Lemma 6.3. A fault fi is detectable in (6.5) if and only if there exists
a residual generator that is sensitive to fault fi.

Proof. See Section 6.D.1. �

Before the main detectability condition is stated, a small example
is included that illustrates the basic principles behind the detectability
condition.

Example 6.11 Consider the state-space model

ẇ = Aw +Bu+

[
1
2

]
d+

[
c1

c2

]
f

y = Cw

where d is an unknown disturbance that should be decoupled in the
residual. In this case, the fault f will not be detectable if any influence
on the system from f equally well could be the cause of a disturbance
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d, i.e. d and f have similar influence on the system. Thus, for the fault
to be detectable the influence from f on the system must not lie in the
same space as the influence from d. This means that f is detectable if[

c1

c2

]
6∈ Im

{[
1
2

]}
Thus, if c2 6= 2c1 the fault f will be detectable, otherwise not. The set
membership test above can also be written as the rank test

rank

[
1 c1

2 c2

]
> rank

[
1
2

]

Following the same reasoning as in the example above, we can now
state the main fault detectability condition.

Theorem 6.4. Fault i is detectable in (6.5) if and only if

rank [H(s) Fi(s)] > rankH(s) (6.23)

Proof. Multiply (6.5) by NH(p) and rearrange the terms to obtain

NH(p)L(p)z = −NH(p)Fi(p)fi

Due to condition (6.23) it holds that NH(p)Fi(p) 6= 0. Thus, there
exists a row-vector γ(p) such that γ(p)NH(p)Fi(p) 6= 0 and a d(p) of
high enough order such that R(p) = d−1(p)γ(p)NH(p)L(p) is a residual
generator with transfer function Grfi(s) 6= 0. Then, according to
Lemma 6.3 the fault fi is detectable. The converse is proved in a
similar way and is left for the interested reader to prove. �

A procedure to test detectability can thus be summarized as

1. Form the model matrices H(p), L(p), and F (p).

2. For each fault i, verify that

rank [H(s) Fi(s)] > rankH(s)
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Figure 6.2: The dashed line is the fault signal and the solid (r1) and
dash-dotted (r2) signals are two residuals.

6.7.2 Strong Fault Detectability

Detectability of a fault is however sometimes not enough in a common
practical situation; constant faults. To illustrate this, assume two
residual generators that, when excited by a constant fault, behave as
in Figure 6.2. The residuals r1 and r2 have fundamentally different
behaviors. Residual r1 only reflect changes in the fault signal and r2

has approximately the same shape as the fault signal. It is evident
that it is more difficult to use r1 than r2 in a reliable diagnosis system
to detect the fault even though it is clear that Grif (s) 6= 0 for both
i = 1, 2.

The difference between the two residuals is the stationary property,
i.e. the value of Grf (0). It is clear that residual r1 has Gr1f (0) = 0
while residual r2 have Gr2f (0) 6= 0. This leads to the definition of
strong fault detectability.

Definition 6.4 (Strong fault detectability). Fault i is strongly de-
tectable in (6.5) if there exist a constant signal fi, and signals x, and
z, consistent with (6.5) with fj = 0 for j 6= i, such that z 6∈ O.

Note that the word constant in the definition above means that
f(t) constant for all t ∈ (−∞,∞). Note that the fault in Figure 6.2
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is only constant after t = 3. Quite naturally, there is a corresponding
result to Lemma 6.3 also for the strong detectability case.

Lemma 6.5. A fault fi is strongly detectable in (6.5) if and only
if there exists a residual generator that is sensitive to fault fi and
Grfi(0) 6= 0.

Proof. The proof is given by a slight modification of the proof of
Lemma 6.3. �

The main condition for testing strong fault detectability is then
given by

Theorem 6.6. A fault fi is strongly detectable in (6.5) if and only if
NH(0)Fi(0) 6= 0.

Proof. The only-if part is immediate since according to Lemma 6.5
there exists a residual generator (6.18) such that

Grfi(0) = d−1(0)γ(0)NH(0)Fi(0) 6= 0

which implies that NH(0)Fi(0) 6= 0. The if-part is proven in the same
way as the if-part of the proof of Theorem 6.4. �

Faults that are detectable but not strongly detectable are here called
weakly detectable faults.

Example 6.12 Consider again Example 6.2 with the two rotating
inertias. In Example 6.5 NH(s)F (s) was computed

NH(s)F (s) = −k(J1 + J2)s− J1J2s
2

from which it is clear that NH(0)F (0) = 0 and thus the fault f is
only weakly detectable. This can also be seen in (6.15) where only
derivatives of the fault signal appears in the internal form of the residual
generator.

A procedure to test for strong detectability can thus be summarized
as
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1. Form the model matrices H(p), L(p), and F (p).

2. Compute a basis NH(s) for the left null-space of matrix H(s).

3. For each fault i, verify that

NH(0)Fi(0) 6= 0

6.8 Choice of parameters γ(s) and d(s)

The design procedure in Section 6.5 includes two design choices that
has not yet been thoroughly discussed; how to in step 3 of the residual
generator design method, choose the polynomial d(s) and the parameter
γ(s). No optimal procedure how to make these choices will be presented
here, rather a short and basic guide on how a designer may think while
making these choices. In short one can say that the choice of γ(s)
influences fault sensitivity properties of the residual and d(s) ensures
that the filter R(p) is proper and can be written on state-space form.
The polynomial d(s) also gives the dynamics of the residual generator
and can impose for example low-pass characteristics of the residual
generator to filter out measurement noise and other uncertainties.

For the selection of γ(s), consider the transfer function from f to r
in (6.22)

Grf (s) = −d−1(s)γ(s)NH(s)F (s)

Since d(s) 6= 0 it is clear that it is the term γ(s)NH(s)F (s) that deter-
mines if the transfer function from fault to residual is non-zero, i.e. if the
residual is sensitive to the fault or not. And, as proven in Lemma 6.3,
if a fault is detectable there exists a γ such that γ(s)NH(s)F (s) 6= 0.
It is generally rather straightforward to choose γ(s) and there is often
no reason to choose a dynamic γ(s), i.e. for most cases γ(s) will be a
constant row-vector. The example below illustrates the choice of γ(s).
See also the proof of Lemma 6.3 for some further details on how to
find a feasible γ(s).

Example 6.13 Consider again Example 6.10 and that we want to
detect fault f1. Deriving a state-space realization of the model and
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putting the equation in form (6.5) results in e.g.
p+ 1 0

0 p+ 2
−1 0
0 −1

x+


0 0 −1
0 0 −1
1 0 0
0 1 0


y1

y2

u

+


0
0
−1
0

 f1 = 0

Computation by hand gives that

NH(p)F (p) =

[
1 0 p+ 1 0
0 1 0 p+ 2

]
0
0
−1
0

 =

[
p+ 1

0

]

from which it is obvious that γ(s) = [1 0] is a feasible choice to ensure
that the residual is sensitive to f1.

Now that γ(s) has been chosen, we need to choose the denominator
d(s). First of all, the degree of the stable polynomial d(s) must be
at least as high as the degree of the numerator γ(p)NH(p)L(p). This
is because of the requirement that the residual generator should be
realizable on state-space form. Generally, d(s) is chosen such that the
residual generator gets satisfactorily filtering properties, e.g. low-pass
characteristics. Consider the residual generator

r = R(p)z =
a(p)y + b(p)u

d(p)

and let the measurement signal y be subjected to measurement noise,
i.e.

y = y0 + ε

where y0 is the real physical entity that is measured and ε is measure-
ment noise. In case we had no measurement noise (ε = 0), the residual
would be identically zero (after the initial decay due to unknown initial
conditions) but with measurement noise the residual will not be iden-
tically zero. In the fault free case, the residual will respond to noise
according to

r =
a(p)

d(p)
ε

and here it is clear how d(p) shapes the transfer function from the
noise ε to the residual r. Thus, a suitable choice of low-pass poles, e.g.
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in a Butterworth structure, will provide suitable choice of filtering of
measurement noise. Note that, d(p) also shapes the response of faults
in the residual. Thus, the more low-pass effect that is imposed in the
residual, the slower the response to a fault.

6.9 Consistency Relations

Consistency relations was introduced in Section 4.3.1 and is a relation
among known signals that is valid in case of f = 0. This chapter has
not yet touched upon this concept, but there exists a close relation
between such consistency relations and the design procedure outlined in
this chapter. This will be explored a bit further in this section. Linear
consistency relations can efficiently be written using a row-vector Q(p)
as Q(p)z = 0. Thus, for Q(p)z = 0 to be a consistency relation it must
hold that

z ∈ O ⇒ Q(p)z = 0

Based on Lemma 6.7 it is clear that the design procedure from Sec-
tion 6.5 also provides a set of consistency relations. In fact, each
row in the expression NH(p)L(p)z = 0 is a consistency relation. It
can also be proven that the expression NH(p)L(p)z not only gives a
set of consistency relations but all possible consistency relations for
a model (6.5) can be written as a linear combination of the rows in
NH(p)L(p)z = 0. Thus, one can say that NH(p)L(p) spans the space
of consistency relations.

Example 6.14 Consider again the model in Example 6.2. Computing
a basis for the left null-space of matrix H(s) gives that

NH(p) =
[
k −J1p

2 k + J1p
2 J1J2p

3 + k(J1 + J2)p
]

Since z ∈ O ⇒ 0 = NH(p)L(p)z we obtain that z ∈ O implies that

0 = J1J2y
(3) + k(J1 + J2)ẏ − ku =

= [J1J2p
3 + k(J1 + J2)p − k]

(
y
u

)
= Q(p)z

where y(i) is the i:th derivative of y.
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6.10 Concluding Design Example

To conclude this section, a design is made based on a slightly larger
model where computation by hand is unattractive. The model is taken
from (Maciejowski, 1989) and represents a linearized model of vertical-
plane dynamics of an aircraft. The inputs and outputs of the model
are

Inputs Outputs

u1: spoiler angle [tenth of a degree] y1: relative altitude [m]

u2: forward acceleration [ms−2] y2: forward speed [ms−1]

u3: elevator angle [degrees] y3: Pitch angle [degrees]

The model is provided by a 5:th order state-space model with state-
space matrices:

A =


0 0 1.132 0 −1
0 −0.0538 −0.1712 0 0.0705
0 0 0 1 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859



B =


0 0 0

−0.12 1 0
0 0 0

4.419 0 −1.665
1.575 0 −0.0732


C = [I3 03×2]

D = 03×3

Suppose the faults of interest are three sensor-faults (denoted f1, f2,
and f3), and three actuator-faults (denoted f4, f5, and f6). Also,
assume that the faults are modeled with additive fault models. The
total model, including faults, then becomes:

[
C

−(pI5 −A)

]
w +

[
−I3 D
05×3 B

](
y
u

)
+

[
I3 03×3

05×3 B

]


f1

f2

f3

f4

f5

f6

 = 0

where w is the state-vector.



6.10. Concluding Design Example 185

Design Problem

The design example is intended to illustrate the design procedure and
also illustrate how available design freedom can be utilized, e.g. when
selecting the residual structure but also when selecting dynamics of
the residual generator.

The objective is to design a residual generator R(p) that decouples
the fault in the elevator angle actuator f6. The result will be a residual
that reacts to any of the faults f1, . . . , f5, but not to f6. In this case,
the residual will correspond to a row in the influence structure of the
form

f1 f2 f3 f4 f5 f6

r x x x x x 0

To place this design problem into the problem formulated in previous
sections, define vectors f , x, and z as

f =


f1

f2

f3

f4

f5

 , x =

(
w
f6

)
, z =

(
y
u

)

Note that the fault f6 that is to be decoupled in the residual is included
in the vector of unknown signals x. The first step in the design
procedure is to form matrices H(p), L(p) and F (p) and they are here
given by

H(p) =

[
C 03×1

−(pI5 −A) B3

]
, L(p) =

[
−I3 D
05×3 B

]
F (p) =

[
I3 03×1 03×1

05×3 B1 B2

]
where Bi is the i:th column of matrix B.

The second step is to compute a basis NH(s) for the left null-space
of H(s). Computations in Matlab gives that NH(s)L(s) is

NH(s)L(s) =

[
0.0705s s+ 0.0538 . . .

22.7459s2 + 14.5884s −6.6653 . . .

. . . 0.091394 0.12 −1 0

. . . s2 − 0.93678s− 16.5141 31.4058 0 0

]
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As was described in Section 6.9, this gives that there exists exactly two
linearly independent consistency relations that decouples d. This is
consequent with expression (6.19) since we have 8 measurements and 6
signals/disturbances to be decoupled. The two consistency relations
are in the time domain given by

0.0705ẏ1 + ẏ2 + 0.0538y2 + 0.091394y3 + 0.12u1 − u2 = 0

22.7459ÿ1 + 14.5884ẏ1 − 6.6653y2+

+ ÿ3 − 0.93678ẏ3 − 16.5141y3 + 31.4058u1 = 0

The interpretation of these expressions is that they are valid for all y
and u that satisfies the model equations in both the fault free case and
when there is a fault on the third actuator. It is evident that f6, i.e. the
fault on actuator u3, is decoupled in these expressions since u3 is not
included in the consistency relations. Thus, the relations hold regardless
of whether the value of u3 is correct or not. The row-degrees of the
expression NH(s)L(s) is 1 and 2. From this it is clear that the filter of
least degree, which decouples d, is a first order filter corresponding to
row 1 in the basis.

Design choices

Following the discussion in Section 6.8, select γ(s) to γ(s) = [1 0].
Thus, the numerator of the residual generator is given by

K(p) = γ(p)NH(p)L(p) = [0.0705p p+0.0538 0.091394 0.12 −1 0]

To form a realizable residual generator, the polynomial d(s) need to
have degree ≥ 1 since the row-degree of the K(p) is 1. A first order
polynomial is chosen to get minimal order. Further, we choose to detect
faults with energy in frequency ranges up to 1 rad/s, so therefore the
polynomial d(p) is chosen to d(p) = 1 + p. The realizable residual
generator is then given by the following 1:st order filter:

R(p) =
1

1 + p

[
0.0705p p+ 0.0538 0.091394 0.12 −1 0

]
(6.24)

This can be realized on state-space form as

ẇ = −w +
[
−0.0705 −0.9462 0.091394 0.12 −1 0

]
z

r = w +
[
0.0705 1 0 0 0 0

]
z
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Result

Figure 6.3 shows the singular value (maximum gain in any direction)
for the transfer function from x to r

Grx(s) = −d−1(p)γ(p)NH(p)H(p)

This plot should theoretically be exactly 0, but because of finite word
length in Matlab it doesn’t become exactly 0. The plot shows that the
control signals and the decoupled fault have no significant influence on
the residual. Figure 6.4 shows how the monitored faults influence the
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Figure 6.3: Singular value of the transfer function from x to r.

residual which clearly shows that fault influence is significantly larger
than influence from the decoupled fault and control signals plotted in
Figure 6.3. The leftmost plot in Figure 6.4 also shows that DC-gain
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Figure 6.4: Magnitude bode plots for the monitored faults to the
residual.
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from fault 1 to the residual is 0, and it is therefore difficult to detect
since the effect in the residual of a constant fault f1 disappears. This
is of course unfortunate but it can be proven, using the results from
Section 6.7, that this is inevitable.

6.11 Alternative methods

This section will briefly describe two common alternative solutions to
the residual generation problem: diagnostic observers and the parity
space approach. These methods are included partly to give general
knowledge on existing methods, and partly because they can be used
to highlight connections to non-linear methods that are described in
Chapter 7.

6.11.1 Diagnostic Observers

A common way of generating residuals is by using observers. This
section gives a brief overview of observer design methods for fault
diagnosis, so called diagnostic observers. In the linear case, which
is studied here, strong equivalence relations exist between observer
based design methods and the methods described previously in this
chapter. See for example (Ding et al., 1999) for further details on these
relations. Because of this strong relation between consistency relation
based approaches and observer based approaches, linear observers are
addressed only briefly here. The non-linear case is addressed in more
detail in Chapter 7.

The basic idea is simple. Consider a linear model with no distur-
bances

ẋ = Ax+Bu+Mf

y = Cx

A residual generator for this system, designed to detect the fault f can
then quite naturally by designed by estimating the state x and then
computing a residual according to r = y − Cx̂. The residual generator
will then be in the form

˙̂x = Ax̂+Bu+K(y − Cx̂)

y = Cx̂
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where K is the observer gain chosen such that A−KC has all stable
eigenvalues. To generalize the above approach to systems also with
disturbances is not immediate. There are many such approaches, of
varying complexity, and below a common approach is outlined.

A general linear diagnostic observer can be written as

ẇ = Fw +Ky + Ju

r = L1w + L2y + L3u

where w is an estimate of the transformed state vector Tx. If T is
of full rang, i.e. invertible, the observer is called a full state observer.
When using observers for control, often the whole state vector needs
to be estimated to be used for state-feedback. But for diagnosis, the
state itself is not of importance unless a state is directly connected to
a fault. So, a diagnostic observer need not be of the same order as the
number of states in the supervised system.

Assume that the system under supervision is described by the
realization

ẋ = Ax+Bu+Mf + Ed

y = Cx+Du+Nf +Hd

where f is the fault signal and d the disturbances. Let the estimation
error be e = Tx−w. The error dynamics of the observer then becomes

ė = T ẋ− ẇ = T (Ax+Bu+Mf + Ed)− (Fw +Ky + Ju) =

= Fe+ (TA− FT −KC)x+ (TB −KD − J)u+ TMf+

+ (TE −KH)d+ (TM −KN)f (6.25)

The output equation becomes

r = L1(Tx− e) + L2(Cx+Du+Nf +Hd) + L3u =

= −L1e+ (L1T + L2C)x+ (L2D + L3)u+ L2Hd+ L2Nf (6.26)

In the fault free case we require r = 0, which can be achieved if e = 0
is a globally stable point of equilibrium, regardless of process state,
inputs or disturbances. Also, process state, inputs and disturbances
should not influence the output equation. Imposing those restrictions
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on (6.25) and (6.26) imposes the following conditions on the observer
matrices:

TA− FT −KC = 0 TB −KD − J = 0

TE −KH = 0 L1T + L2C = 0

L2D + L3 = 0 L2H = 0

In addition, for the observer/residual generator to be stable, matrix F
must have all its eigenvalues in the open left half plane.

In a design step, matrices T , F , K, J , L1, L2, and L3 have to be
found that satisfies the constraints above. The design techniques used
for solving the design problem based on the constraints is often quite
involved. Here only references to the most common approaches are
given. The geometric approach to fault detection (Massoumnia et al.,
1989) is one of the earliest observer based approaches. Another popular
technique, described in (Patton, 1994), is the eigenstructure assignment
approach.

Finally, we conclude with an example illustrating a particular prop-
erty of observers for diagnosis that is used also in Chapter 7 where
non-linear observers are used to generate residuals.

Example 6.15 Consider a linear system with two outputs and
corresponding additive sensor faults f1 and f2:

ẋ = Ax+Bu

y1 = C1x+ f1

y2 = C2x+ f2

A diagnostic observer for this system can be constructed as

˙̂x = Ax̂+Bu+K(y1 − C1x̂)

r = y1 − C1x̂

As seen, the observer does only use one of the process outputs and
therefore the fault f2 is decoupled. By noting that the feedback term,
that equals Kr, contains the residual, one might suspect that the
feedback would force the estimation error, and the residual, to become
zero. This is however not the case as can be seen if the estimation
error e = x− x̂ is studied. The dynamics of the estimation error is

ė = (A−KC)e−Kf1
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If f1 6= 0, e = 0 is not a stationary solution to this equation. Therefore
the feedback can generally not force the residual to become zero.

There is however one case in which the stationary response of
the residual will become zero. Consider the residual expressed in the
estimation error and the fault:

r = Cx+ f1 − Cx̂ = Ce+ f1 =
(
− C(sI −A+KC)−1K + 1

)
f1

In this expression it can be seen that the steady state gain of the
transfer function from f1 to r is C(KC − A)−1K + 1. That is, the
stationary response of the residual differs from zero (the fault is strongly
detectable) if and only if

C(KC −A)−1K + 1 6= 0

6.11.2 The Parity Space Approach

One of the first approaches to linear residual generation was proposed in
(Chow and Willsky, 1984). This approach to design linear consistency
relations for linear systems is sometimes called the parity space approach,
or the Chow-Willsky scheme. The approach is based on a state-space
model:

ẋ = Ax+Buu+Bdd+Bff (6.27a)

y = Cx+Duu+Ddd+Dff (6.27b)

where x ∈ Rn is the state, y ∈ Rm the measurement vector, u ∈ Rnu
the control input, f ∈ Rnf the faults, and d ∈ Rnd the disturbance.
Now by repeated substitution of (6.27a) into (6.27b), we obtain

Y (t) = Rx(t) +QU(t) +HV (t) + PF (t) (6.28)
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where

Y (t) =


y(t)
py(t)

...
pρy(t)

 R =


C
CA

...
CAρ



Q =


Du 0 0 . . .
CBu Du 0 . . .

...
. . .

CAρ−1Bu . . . CBu Du

 U(t) =


u(t)
pu(t)

...
pρu(t)



H =


Dd 0 0 . . .
CBd Dd 0 . . .

...
. . .

CAρ−1Bd . . . CBd Dd

 V (t) =


d(t)
pd(t)

...
pρd(t)



P =


Df 0 0 . . .
CBf Df 0 . . .

...
. . .

CAρ−1Bf . . . CBf Df

 F (t) =


f(t)
pf(t)

...
pρf(t)


The size of Y is (ρ+1)m×1, R is (ρ+1)m×n, Q is (ρ+1)m×(ρ+1)nu,
U is (ρ+ 1)nu × 1, H is (ρ+ 1)m× (ρ+ 1)nd, F is (ρ+ 1)nf × 1, P is
(ρ+1)m× (ρ+1)nf , and V is (ρ+1)nd×1. The constant ρ determines
the maximum order of the consistency relation. This can be seen by
studying the definitions of the vectors Y and U .

A linear residual generator is a linear combination of measurements
and control signals. This can be represented by a row vector w of
length (ρ+ 1)m, a consistency relation K(p)z = 0 can be formed as

K(p)z = w(Y −QU) = 0 (6.29)

The function K(p)z can also be written as

K(p)z = w [Ψy(p) −QΨu(p)]

[
y
u

]
(6.30)

where

Ψy(p) =


Im
pIm

...
pρIm

 Ψu(p) =


Inu
pInu

...
pρInu


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Equation (6.28) implies that the following equality will hold:

K(p)z = w(Rx+HV + PF ) (6.31)

Since the consistency relations must hold in the fault free case and the
disturbances must be decoupled, (6.31) implies that w must satisfy

w [RH] = 0 (6.32)

For use in fault detection, it is also required K(p)z in (6.31) is not zero
in the case of faults. This is assured by verifying that

wP 6= 0 (6.33)

Approach Summary

In conclusion, using the parity space approach, a consistency relation
is constructed by following the procedure

1. Compute all the matrices in (6.28) and find a w such that (6.32)
and (6.33) are fulfilled.

2. Form a consistency relation according to (6.30).

3. Form a residual generator according to

R(p) = d−1(p)K(p)

where d(s) is a stable polynomial with degree at least as high as
the row-degree of K(s).

When setting up all the matrices in (6.28), the constant ρ need to be
determined. It can be proven that no ρ greater than n need to be
considered since any consistency relation can be written as a linear
combination of consistency relations of order ≤ n. Thus, there is no
reason to use a ρ larger than system order. Can there be a reason why
it might be suitable to choose a ρ less than the system order? This
question is left as an exercise for the interested reader.
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Appendix

6.A State-space realization

A single input, single output system with a transfer function

G(s) =
b1s

n−1 + · · ·+ bn−1s+ bn
sn + a1sn−1 + · · ·+ an−1s+ an

can be realized in state-space form in many ways. One form is the
observer canonical form

ẇ =


−a1 1 0 . . . 0
−a2 0 1 . . . 0

...
...

...
−an−1 0 0 . . . 1
−an 0 0 . . . 0

w +


b1
b2
...

bn−1

bn

u
y =

[
1 0 0 . . . 0

]
w

It is suitable to use for realizing residual generators in state-space form
since it is straightforward to generalize the above form to cover also
multiple input, single output systems.

6.B Null-Spaces

Let A ∈ Rn×m be a matrix with rank r. The right null-space NR of
matrix A is then given by the space of all solutions to the equation
Ax = 0, i.e.

NR = {x : Ax = 0}

For example, if

A =

1 2 3
2 3 5
1 0 1


the null-space is given by

NR = span

 1
1
−1


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where spanM here refers to the space spanned by the columns of
matrix M . The dimension of NA is directly obtained from the laws of
dimensionality to be the number of columns minus the matrix rank,
i.e. m − r. Thus, if A has full column rank, the dimension of the
null-space is 0, i.e. x = 0 is the only solution to Ax = 0. In the same
way as we can speak of the right null-space, we can also consider the
left null-space which is naturally defined as

NL = {v : vA = 0}

Similar to the right null-space, the dimension of the left null-space is
given by the number of rows minus the rank, i.e. n− r. For the matrix
A above, the left null-space is given by

NL = span
[
3 −2 1

]
where spanM here refers to the space spanned by the rows of matrix
M .

6.C Polynomial algebra

This section will provide basic knowledge of the concepts needed in
the main text. For a thorough treatment of polynomial algebra in
connection with linear systems, see e.g. (Kailath, 1980).

A polynomial matrix in a variable s is a matrix where each element
is a scalar polynomial in s and a rational matrix is when the elements
are rational functions in s. For example

A(s) =

[
s+ 1 2

0 as2

]
is a polynomial matrix. Normal rank for a polynomial matrix is then
defined as

Definition 6.5 (Normal rank). Let A(s) ∈ R(s)m×n be a polynomial
matrix, then the normal rank of A(s) is

max
s∈C

rankA(s)

The word normal is often not said explicitly and one often says rank
of a polynomial matrix when meaning normal rank.
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This means that, for example, a square matrix is invertible if and
only if it has full normal rank. Matrix A(s) has rank 2 if a 6= 0 and
rank 1 if a = 0.

Left and right null-spaces for a matrix is defined exactly as for
constant vector spaces, the left null-space of a matrix M(s) is then
defined as all rational row vectors v(s) such that

v(s)M(s) = 0

For example, let

M(s) =

s+ 1
s+ 2

1


Since M(s) has three rows and rank 1, the left null-space has dimension
3− 1 = 2. A basis NM (s) for the left null-space is then a matrix with
two linearly independent rows. It is immediate that for example

NM (s) =

[ 1
s+1 0 −1

0 1
s+2 −1

]
is a basis for the left null-space of M(s). However, this basis includes
rational elements. It is easy to prove that there always exists a polyno-
mial basis for the same space. For example, multiply the first row with
s+ 1 and the second with s+ 2 to obtain the polynomial basis

NM (s) =

[
1 0 −(s+ 1)
0 1 −(s+ 2)

]
The polynomial basis above is however not the simplest one available.
An example of an even simpler basis for the same null-space is obtained
by replacing the first row with the first minus the second row

NM (s) =

[
1 −1 1
0 1 −(s+ 2)

]
This is a simpler basis in the sense that the degrees of the polynomials
are lower. This last basis is called a minimal polynomial basis for the
left null-space of M(s). When, in the text in this chapter, referring
to bases for null-spaces, such minimal bases are normally what is
considered. For the understanding of the residual generator design
methods in this chapter, no detailed knowledge on how to compute the
basis is necessary. It is sufficient to know their meaning and that there
exists efficient tools, e.g. in Matlab, to perform the computations.
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6.D Some complementary lemmas and proofs

This section includes some technical lemmas, along with complete
proofs, needed to prove main results in the main text. Also, some of
the proofs omitted from the main text is included.

Lemma 6.7. The behavior O, defined by (6.9), can for a static model
(6.10) be written as

O = {z|NHLz = 0}

Proof. Let O1 = {z|NHLz = 0}. It is then immediate that O ⊆ O1

since for any element z ∈ O it holds that there exists an x such that

Hx+ Lz = 0

Pre-multiplication of the above from the left by NH gives that NHLz =
0 which implies that z ∈ O1. The converse is also true. First note that
the rows of NH span the orthogonal space (ImH)⊥ of ImH. A vector
v ∈ ImH if and only if v is orthogonal to all vectors in its orthogonal
complement. This means that if z ∈ O1 it holds that

Lz ∈ ImH

which means that there exists a vector x such that

Lz = Hx

which implies that z ∈ O. We have then proven that

O ⊆ O1 ⊆ O

which implies that O = O1 which ends the proof. �

6.D.1 Proof of Lemma 6.3

Proof.
If part: Assume there exists a residual generator R(p) sensitive to
fault fi. According to Theorem 6.2 and Definition 6.3, this residual
generator can be written as (6.18) and Grfi(s) in (6.22) is non-zero.
Then it holds that

r = d−1(p)γ(p)NH(p)L(p)z = −d−1(p)γ(p)NH(p)Fi(p)︸ ︷︷ ︸
6=0

fi (6.34)



198 Chapter 6. Linear Residual Generation

Further, due to the rank assumption (6.8), for any f there exists x and
z such that they all are consistent with the model equation (6.5). Thus,
there exists an fi such that the right hand side of (6.34) is non-zero.
This implies that NH(p)L(p)z 6= 0 which, according to Lemma 6.7,
implies that z 6∈ O which ends the proof of the if-part.
Only-if part: Assume that fi is detectable, then there exist signals
x, fi, and z consistent with model (6.5) such that z 6∈ O which, using
Lemma 6.7, then implies that NH(p)L(p)z 6= 0. Since NH(p)L(p)z =
−NH(p)Fi(p)fi it holds that

−NH(p)Fi(p) 6= 0

It then follows immediately that there exists γ(p) and d(p) such that

−d−1(p)γ(p)NH(p)Fi(p) 6= 0

Thus, there exists a residual generator R(p) = d−1(p)γ(p)NH(p)L(p)
such that Grfi(s) 6= 0 which ends the proof. �



Chapter 7
Nonlinear Residual Generation

This chapter gives an introduction to nonlinear residual generation and
deals both with approaches based on nonlinear consistency relations
and methods based on state observation.

In general, the nonlinear problem has no general and complete
solution like what was presented for the linear case in Chapter 6.
Therefore, a goal of this chapter is to introduce basic concepts and
provide some basic tools on possible approaches to the non-linear
problem in addition to the general principles that were discussed in
Chapter 4.

The chapter is divided into two main parts, the first considers using
consistency relations for the non-linear problem and the second part
deals with non-linear state-observation techniques and how they can
be successfully used for fault diagnosis.

7.1 Nonlinear Consistency Relations

A nice property of the linear methods presented in Chapter 6 was that
they could generate complete solutions, i.e. all residual generators with
desired fault sensitivity properties could be obtained. As noted above,
for general non-linear systems, no such complete result is possible

199
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that provide a simple parameterization of all residual generators or
consistency relations. In spite of this, the rest of this section will be
spent on illustrating principles on how to derive residual generators
based on non-linear consistency relations and also devote some time on
an interesting class of non-linear systems for which quite strong results
is possible to derive.

7.1.1 Deriving Non-Linear Consistency Relations

Example 4.7 in Chapter 4 showed how a consistency relation could be
derived by differentiating the measurement equation and then applying
a clever transformation to the obtained set of equations. A similar
method of repeated differentiation of the measurement equation can be
used to derive consistency relations that decouple not only the internal
states but also unknown disturbances. This approach can be seen as
a non-linear counterpart to the linear approach in Section 6.11.2, the
Chow-Willsky scheme, where the measurement equation was differenti-
ated n times and the state-variables and disturbances were eliminated
by applying a suitable linear transformation to the equations.

The procedure is best illustrated by a small example. The example
below illustrates decoupling in nonlinear systems:

Example 7.1 Consider a nonlinear state-space description

ẋ1 = −x1x2 + γu (7.1a)

ẋ2 = x3 (7.1b)

ẋ3 = −γx1 (7.1c)

y1 = x1 (7.1d)

y2 = x2 (7.1e)

where γ models a fault we wish to decouple, i.e. a consistency relation
independent of γ is wanted.

The following relations are immediate by differentiating both mea-
surement equations and making obvious substitutions:

ẏ1 + y1y2 − γu = 0

ÿ2 + γy1 = 0

But none of these is a consistency relation where γ is decoupled since
both relations include the unknown, possibly time-varying, variable
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γ. This is however not a problem, since γ easily can be eliminated by
multiplying the first relation with y1, the second with u, and adding
the two. The resulting consistency relation is then

y1ẏ1 + y2
1y2 + uÿ2 = 0

which is a nonlinear consistency relation that holds for all y1, y2, γ
that satisfies model equations (7.1).

Now, lets summarize the procedure illustrated in the example above
in a more general model setting. Let the model be given by a set of
(differential-)equations:

gi(y, u, x, d, f) = 0, i = 1, . . . ,m (7.2)

Thus, the model consists of a set of functions gi which are functions in
y, u, x, d, f (and their derivatives). Without loss of generality it can
be assumed that f = 0 corresponds to a fault-free system. A procedure
to find consistency relations can then be stated as

1. Differentiate the model equations a suitable number of times.
This is of course only necessary if gi are differential equations.

2. Collect all equations and make clever substitutions such that a
function h(y, u, f) is derived for which it holds that

h(y, u, f) = 0 (7.3)

3. A consistency relation for (7.2) is then

h(y, u, 0) = 0 (7.4)

This, because relation (7.3) holds for all y, u, and f . In the
fault-free case, f = 0, the relation becomes (7.4).

In general, the function h is a function of derivatives of y and u,
which are normally not known. If these are known (or estimated),
the computational form of a residual generator could be stated:

rcomp(y, u) = h(y, u, 0)

This procedure leaves three open questions:
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1. In the first step, what is a suitable number of times that the
model equations should be differentiated? For linear models there
is no need to differentiate the model equations more times than
the order of the model. In the non-linear case this is not generally
true. However, the order of the model is a good indicator of the
maximum number of times to differentiate the model equations.

2. Is there a systematic way to find the clever manipulations nec-
essary to eliminate the unknown variables (and also a suitable
subset of the fault variables)? Unfortunately, but not surprising,
the answer to this question is also no. However, manipulations
by hand and the use of computer-algebraic tools can get you far.
Also, as will be illustrated in Section 7.1.2, for specific classes of
systems more systematic methods are available.

3. In step 3 of the procedure, the consistency relation is used to form
a realizable residual generator. In the linear case, this step was
straightforward and was illustrated in Example 4.8 and in general
in Chapter 6. A corresponding procedure for the nonlinear case
is not direct, i.e. to go from a nonlinear consistency relation to
an implementable filter is in many cases difficult. The following
example illustrates this difficulty.

It should be noted that the procedure outlined above utilizes only non-
differential tools that can not handle derivatives in an efficient manner.
Looking into the theory of differential-algebra (Ritt, 1950) there are
tools available that handles step 1 and 2 automatically. One such tool
is the diffalg-package (Hubert, 2008), based on theory presented in
e.g. (Hubert, 2005), which is included in the computer algebraic tool
Maple.

Example 7.2 Consider the consistency relation from Example 7.1

y1ẏ1 + y2
1y2 + uÿ2 = 0

If all derivatives of y and u were known, a residual could be computed
as

r = y1ẏ1 + y2
1y2 + uÿ2

which would be zero in the fault free case and non-zero when the
original model no longer describes system dynamics.
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As before, derivatives of known signals are not normally known
which means that it is not possible to directly compute the residual like
this. In the linear case, it was shown in Example 4.8 and in Chapter 6
how this could easily be circumvented by introducing stable residual
generator dynamics and a residual could be computed without the
need to know differentiated signals. For this non-linear case, the simple
linear approach is unfortunately not directly applicable.

To circumvent the problem with unknown derivatives, there are a
number of possible approaches. The first is the most straightforward,
to estimate the derivatives and then compute the residual. A simple,
but not always sufficiently good solution is to use an approximately
differentiating filter

ẏ ≈ s

1 + sTd
y

This typically only works when estimating low order derivatives in a
relatively noise-free environment. A more robust way to estimate the
derivatives is to utilize for example spline interpolation techniques. In
such an approach, analytical functions are used to approximate the
measured signal. The derivatives of the signal are then computed using
the analytical expressions rather than the measured signal. To get some
smoothing, i.e. to filter out the measurement noise, the parameters in
the spline functions are often selected to minimize a criterion looking
like:

min
θ

P

N∑
i=1

(yi − f(ti; θ))
2 + (1− P )

∫ t=tmax

t=tmin

f̈(t; θ)2dt

where θ are the parameters in the spline functions f(t), yi the measured
signal, and P > 0 a design variable. Letting P = 1 we get no smoothing
of the splines, while letting P approach 0 we get more and more
smoothing. Smoothing in this case means minimizing the curvature of
the resulting splines.

A third solution is to transform the original, time-continuous model,
into a non-linear time-discrete model. Then, an analogous design can
be made using the time-discrete model, which results in time-discrete
consistency relations. These time-discrete consistency relations can be
directly used as residual generators (or arbitrary low-pass dynamics can
be added) since no time-differentiated signals occur, only time-shifted
known signals. Note that time discretization of non-linear models is in
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general difficult. Approximations are however not difficult to produce,
for example using Euler forward or higher order approximations of the
derivative.

A fourth solution, would be to avoid the above approximations and
try to generalize the linear solution to the non-linear case by adding
low-pass dynamics and writing the residual generator on state-space
form, similar to what was done in Example 4.8. Thus, it would be
desirable to be able to add stable (possibly linear) low-pass dynamics

r + α1ṙ + α2r̈ = rcomp(y, u)

and finding an explicit state-space realization of the residual generator.
Unfortunately, this approach is more difficult than the approaches
outlined above. The mathematical conditions for this to be possible
are rather strict and are only fulfilled in special cases. Below, a small
example is constructed such that the realization step is immediate. The
example is included to demonstrate the idea on how to use realization
theory.

Example 7.3 Consider a system described by the differential equa-
tion

ẋ = − sin3(x)(u+ f)2

y = x+ (u+ f)

where f is an actuator fault that has to be supervised. A consistency
relation for the system above can easily be derived by differentiating
the measurement equation

ẏ = ẋ+ (u̇+ ḟ)

and eliminating the state-variable x by substitution of the model
equation

ẏ = ẋ+ u̇+ ḟ = − sin3(x)(u+ f)2 + u̇+ ḟ =

− sin3(y − u− f)(u+ f)2 + u̇+ ḟ (7.5)

Now, observe that − sin3(y−u)u2 + u̇ is the right hand side with f = 0,
and by subtraction on both sides in (7.5) we obtain

ẏ+ sin3(y−u)u2− u̇ = ḟ − sin3(y−u− f)(u+ f)2 + sin3(y−u)u2

(7.6)
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Denote the right hand side with the expression h(y, u, f) and note
that h(y, u, 0) is zero, i.e. the left hand side is a consistency relation.
Further, this means that if ẏ and u̇ were known, the left hand side of
(7.6) could be used to compute a residual that could be used to detect
the actuator fault according to:

ẏ + sin3(y − u)u2 − u̇ =

{
0 f ≡ 0

c(t) 6≡ 0 f 6≡ 0

Here, the time derivatives are assumed to be unknown. In the light of
the previous discussion, add stable first-order linear dynamics to the
left hand side of (7.6), i.e.

r + αṙ = ẏ + sin3(y − u)u2 − u̇ (7.7)

with α > 0 and try to find an explicit state-space representation of
(7.7) with y and u as inputs and the residual r as output. The choice
of α corresponds to d(s) = 1 + αs in (6.17) and for any α > 0, the
residual generator will be stable. In this particular case, use the state
variable z = αr − (y − u). Straightforward manipulations then give

ż = αṙ − (ẏ − u̇) = −r + sin3(y − u)u2 =

= − 1

α
z − 1

α
(y − u) + sin3(y − u)u2

r =
1

α
z +

1

α
(y − u)

The internal form of this filter is

r + αṙ = h(y, u, f)

which will be 0 in the fault-free case and non-zero when a fault occurs.

In general, linear dynamics is not sufficient to be able to form a
state-space description of the residual generator. The added dynamics
of the residual generator is free for the designer to choose (as long as it
is stable). In the example, linear dynamics r + αṙ was added. For the
general problem, this can be any dynamics g(r, ṙ, . . . ) such that r = 0
is a globally stable operating point of the differential equation

g(r, ṙ, . . . ) = 0
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7.1.2 Consistency Relations for Polynomial Systems

A possible solution to get more general results is to reduce the class
of systems considered, i.e. the non-linearities in the model equations
are assumed to be of a certain class or shape. An example of such
a class where more general and systematic methods are possible are
polynomial systems. A system of polynomial differential equations
means that the functions gi in (7.2) are polynomial in their variables.
A polynomial in variables x1, . . . , xn with coefficients from R is defined
as

p(x1, . . . , xn) =
∑
j

cj
∏
i

x
mij
i cj ∈ R,mij ∈ N = {0, 1, 2, . . . }

and is denoted p ∈ R[x1, . . . , xn]. Examples of polynomials in
R[y1, y2, u, u̇, ÿ2] are

g1(y, u) = y2
1u̇y2 − 3uy2 g1(y, u) = y1ÿ2 + 7uy2

For example, the non-linearities in Example 7.1 is examples of polyno-
mial non-linearities.

When considering systems described by such polynomial differential
equations, powerful tools from commutative and differential algebra,
such as Gröbner bases and characteristic sets can be used. They provide
systematic methods to perform the second step in the procedure in a
similar fashion to what was presented for the linear problem.

This section is not intended to give more than a brief glimpse on
what these mathematical tools can provide. Readers who are interested
in these subjects are referred to the excellent book (Cox et al., 1996) on
basic commutative algebra and the advanced book on basic differential
algebra (Ritt, 1950).

The second step in the procedure from the last section was to
eliminate unknown variables, and possibly a subset of the faults, from
a set of model equations to form a consistency relation. For a system
of linear equations, this could be performed by Gaussian elimination
where the model equations is transferred into an equivalent, triangular,
representation. In the Gaussian elimination, the variables are ordered
such that the variables with the highest ordering are eliminated first.
Consistency relations where unknown variables were eliminated can
then directly be seen in the triangular system of equations. For poly-
nomial non-linearities, a similar procedure is available using so called
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Gröbner bases. Computing a Gröbner basis can, loosely, be said to be
a non-linear version of Gaussian elimination.

Without providing any proof or theoretical background it is here
stated that: Computing a Gröbner basis for a set of polynomial equa-
tions1, given a suitable variable ordering and lexicographic monomial
ordering, gives an equivalent2 triangular system of polynomial equa-
tions where consistency relations can directly be extracted. The notion
monomial ordering is not developed further here, but since it may be
necessary for a user of a computer algebraic tool to state the monomial
order to use, it is stated here which ordering to use. In case of vari-
able elimination, lexicographic ordering (sometimes called elimination
ordering) must be used.

The procedure is illustrated in Example 7.4 which also include a
sample Mathematica session.

Example 7.4
Consider the following set of equations

x2 + y + z − 1 = 0

x+ y2 + z − 1 = 0

x+ y + z2 − 1 = 0

Suppose we wish to eliminate all variables but z. Then, compute a
Gröbner basis with lexicographic monomial ordering and variable order
x � y � z. In a Mathematica session, this is done by:

In[1]:= F={-1+x^2+y+z, -1+x+y^2+z, -1+x+y+z^2};

GroebnerBasis[F,{x,y,z}]

Out[2]= {-1 + x + y + z^2, y^2 + z-z^2-y,

2yz^2 + z^4-z^2, z^2 -4z^3 + 4z^4-z^6}

The Mathematica command GroebnerBasis has lexicographic mono-
mial ordering as default ordering. Note the triangular structure of the
Gröbner basis, the last polynomial is a function of z only, the second
and third depends on y and z while the first depends on all three x, y,
z. All this according to the chosen variable ordering.

1The language used here is intentionally sloppy. A correct formulation would
need theoretical concepts not introduced in this text for the sake of brevity.

2In the sense that it has equal solution set.
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Also, from the Gröbner basis it is immediate to extract relations
where x and y has been eliminated, in this case z2− 4z3 + 4z4− z6 = 0.

A few words of caution is warranted

1. Computing Gröbner bases is a computationally very complex in
both time and space(memory) and is only really feasible on sets
of equations of limited size. Although, computational complexity
is strongly dependent on variable ordering, shape of equation
system etc., experience has shown that ≈ 20 equations in 10 to
15 variables is close to what an ordinary personal computer is
capable of handling. There are ways to try to lower computational
complexity, e.g. by structural analysis of the system of equations,
see e.g. (Frisk, 2001) for more details.

2. Gröbner basis methodology is a non-differential tool, i.e. x and ẋ
are considered to be two completely unrelated variables. Thus, the
model equations need to be differentiated “by-hand” to take into
account dynamic relations between variables. This is described
in the first step of the procedure outlined previously. Assume the
model description consist of N equations. After differentiating
the model equations m times, we are stuck with mN equations.
This means that the number of equations increases rapidly when
differentiating and this is a problem due to the complexity issues
described above.

When considering a class of models it is of course relevant to see how
large this class is and what types of systems that can be modeled. It
is interesting to see that the class of systems described by polynomial
differential algebraic equations is larger than one might first think.
This is because all elementary functions, e.g. sin, arcsin, log, and exp
can all be written as a solution to a polynomial differential equation.
For example the nonlinear system

ẏ + e−ay − u = 0

can be rewritten on polynomial state-space form as:

ż = −azẏ = −az(u− z)
ẏ = −z + u
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This is made by the variable substitution z = e−ay which is the solution
to the polynomial differential equation ż + azẏ = 0. Another example
is the relation x = sin y that can be written, in polynomial form, as
ẋ2 = ẏ2(1− x2).

7.2 Nonlinear Diagnostic Observers

As was described in Chapter 6, observers is a popular way of generating
residuals, perhaps even more popular in the nonlinear case than in
the linear case. Here nonlinear observers are explored to expand our
toolbox for attacking nonlinear diagnosis problems.

There are two main obstacles when using observers for fault diag-
nosis:

1. Decoupling of faults/disturbances to make fault isolation possible.

2. How to choose observer form and ensure observer stability.

The second issue is a well studied problem in non-linear control liter-
ature. Although a difficult problem, many results exist and this will
be addressed briefly in Section 7.2.1 where a few basic results from
nonlinear observer theory is presented.

The first issue is however difficult and no general solution exists.
Compare with the linear case described in Section 6.11.1, where also the
decoupling problem was described to be rather involved. This is even
more true in the non-linear case. However, for some restricted classes
of systems, e.g. control-affine systems (Persis and Isidori, 2000, 2001),
or bi-linear systems (Kinnaert, 1999), some quite general methods have
been presented. The general approach of most methods is to, given the
model equations

ẋ = f(x, u, f, d)

y = h(x, u, f, d)

find transformations such that the model equations are transformed
into two parts where one subsystem is not affected by the disturbance.
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For example, if the system can be transformed into a form

ẋ1 = f1(x1, y1, y2, u, f)

ẋ2 = f2(x1, x2, y1, y2, u, f, d)

y1 = h1(x1, u, f)

y2 = h2(x, u, f, d)

an observer for x1 using measurement y1 can be used to form a residual
r = y1 − ŷ1 to detect the fault f . This partitioning of the system is in
general difficult and beyond the scope of this text.

Because of this, we will only describe decoupling of faults in two
simple but common cases:

1. Faults modeled as constant parameters, Section 7.2.2.

2. Sensor faults, Section 7.2.3.

But first, a few words on non-linear state observation.

7.2.1 Nonlinear Observers

Consider a general state-space formulation of a nonlinear system:

ẋ = f(x, u) (7.8a)

y = h(x, u) (7.8b)

where f and h are nonlinear functions describing system dynamics and
the measurement equation. The observer problem is then to, from
measurements y and control signals u, estimate the state-vector x.

The simplest form of an observer would be to just simulate the
system, i.e. the observer equations can be stated as:

˙̂x = f(x̂, u)

However, such an approach is highly sensitive towards disturbances,
errors in initial conditions, and modeling errors. Since a measure of
state-estimation quality is available in y − ŷ, it is natural to extend
the observer equations with some feedback from this output-estimation
error, e.g.:

˙̂x = f(x̂, u) + l(y − h(x̂, u)) (7.9)
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where l(·) is some nonlinear function. But how should the feedback
term l(·) in (7.9) be chosen to ensure observer stability? In general, this
question is unanswered but a simple approach is to mimic the linear
case and make an additive correction based on the output estimation
error, i.e. choose observer form

˙̂x = f(x̂, u) +K(y − h(x̂, u)) (7.10)

where K is a matrix, the observer gain. Matrix K can be a constant,
but also depend on e.g. estimated state and time, i.e. K = K(x̂, t).

The simplest approach is to use a constant observer gain and the
remaining question is then how to select K to ensure stability. A natural
way to choose the observer gain is to linearize the system equations
around a working point (x0, u0), make a linear observer design e.g. by
pole-placement or using a Kalman filter design, and use the obtained
K in the observer structure (7.10). The procedure is then: compute
the model matrices for the linearized model behavior

A = fx(x0, u0), C = hx(x0, u0)

where fx and hx are the partial derivatives of f and h with respect to x.
Then find K such that A−KC has desired properties. The obtained
observer can be suspected to work satisfactory in a neighborhood
surrounding the linearization point. Note that, to be able to find a K
such that A−KC has desirable properties, i.e. is stable with suitable
eigenvalues, it is necessary that the pair (A,C) is observable, i.e. the
nonlinear system (7.8) is locally observable in operating point (x0, u0).
To elaborate on this issue is beyond the scope of this text, but a brief
discussion is included in Section 7.2.4.

Next section will briefly describe a common choice of non-linear
state-estimator, the extended Kalman filter, which has proven useful
in many applications for a long period of time. But before that, a
brief outlook and list of references to some other well known state-
observation techniques not mentioned further in this text is given. Not
surprisingly, in literature, there is a plethora of advanced, classical,
state-observation techniques. Good sources of descriptions of classical
non-linear observers are the surveys (Walcott et al., 1987; Misawa
and Hedrick, 1989). A well studied type of observer is the sliding
mode observer (Slotine et al., 1987) that has been used frequently in
connection with fault diagnosis. More recent advances is described in
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(Moral and Grizzle, 1995) where state observation is treated more like
an optimization problem and an interesting extension is also described
in (Nikoukhah, 1995, 1998) where the class of observers is extended to
differential-algebraic systems. A Bayesian approach to state observation
are so called particle filters (Gordon et al., 1993) that has been used
for fault diagnosis in (Li and Kadirkamanathan, 2001).

Extended Kalman Filter

In equation (7.10), an observer design was made using a linear approx-
imation of system dynamics when computing the observer gain, for
example using a steady-state Kalman filter design, and then use the
full non-linear model with that observer gain. The most common way
to extend the linear Kalman Filter to non-linear systems is the Schmidt
Extended Kalman Filter, often called only Extended Kalman Filter or
just EKF. Instead of linearizing around a single stationary operating
point, it would be better to linearize around the true trajectory of
the system. But of course, this trajectory is unknown and we do not
know the current state. We do however have an estimate of the current
state, which is our best current guess. Continuously linearizing around
the current state-estimate is the basic idea of the (Schmidt) Extended
Kalman Filter (Kailath et al., 2000).

The equations that define an EKF are different depending on if the
model is given in continuous time or discrete time and if the observer
runs in continuous time or discrete time. Here, only the equations
for a discrete time observer for a discrete time system is presented.
This is because stochastic noise is formally simpler to treat in discrete
time. This basic setup illustrates the main idea and interested readers
are referred to e.g. (Kailath et al., 2000) for more details on Kalman
filtering. Consider the time discrete model

xt+1 = f(xt, ut, wt)

yt = h(xt, ut) + v(t)

where wt and vt are zero-mean, white, processes with covariances Rt
and Qt respectively. Let x̂t1|t2 and Pt1|t2 denote the state estimate and
estimation covariance at time point t = t1 with observations up to
time point t = t2. Then the EKF estimate of the state, started with
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x̂0|−1 = x0 and initial covariance P0|−1 = Π0, is obtained by iterating

x̂t+1|t = f(x̂t|t, ut, 0)

x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1, ut))

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1

Pt|t = (I −KtHt)Pt|t−1

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t

where

Ft = fx(x̂t, ut, 0), Ht = hx(x̂t, ut), Gt = fw(x̂t, ut, 0)

and

fx(x0, u0, w0) =
∂f(x, u, w)

∂x

∣∣∣∣
x=x0,u=u0,w=w0

and corresponding for the other partial derivatives.
This has been a brief look into a specific non-linear state-observation

technique that is in common use. It is, by no means, an exhaustive
description and there are many topics related to this subject that has
not been touched here, e.g. stability of the EKF, implementation issues,
non-linear observability, discretization and so on. Interested readers
are referred to works cited above for more details on such subjects.

7.2.2 Decoupling of Fault Modeled as Constant Param-
eters

The previous section introduced nonlinear state-observers and some
basic analysis/synthesis tools. Now it will be shown how such observers
can be used for fault diagnosis. Since the general, nonlinear fault
decoupling problem is generally still unsolved, smaller problem has to
be addressed. This section focuses on the important special case where
faults are modeled by a constant parameter.

First it is shown how constant parameters in linear and nonlinear
dynamical systems can be estimated by nonlinear state-observers and
then how such observers can be used to generate residuals where faults
modeled by constant parameters are decoupled.

Example 7.5 Consider a linear system, described by equations:

ẋ = −βx+ u

y = x
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where β is an unknown and constant parameter. Introduce a new
state-vector z = ( xβ ) and since β is constant, dynamics for state β is
given by β̇ = 0, i.e. the extended state-space equations can be written
as:

ż =

(
−z2z1 + u

0

)
(7.11a)

y = z1 (7.11b)

where z1 = x and z2 = β. Note that even though the original system
was described by a linear model, the extended state-space description
is nonlinear.

By designing a stable, nonlinear state observer for system (7.11)
not only the state x from the original system is estimated, but also the
unknown parameter β.

The example illustrates an approach to estimate parameters in dynamic
systems. Note that the approach illustrated by the example applies
equally well to nonlinear systems and the main difficulty is of course
finding a stable state-observer for the extended state-space description.

Now, when it is clear how observers can be used to estimate constant
parameters the following example will illustrate how such observers can
be used to generate residuals where constant faults are decoupled.

Example 7.6 Reconsider Example 7.5 in a diagnosis application.
Restate the model equations

ẋ = −βx+ γu

y = x

where β models a fault affecting system dynamics and γ a fault affecting
the actuator. Assume that β and γ are constant parameters, both in
the fault free case and in the faulty case. Assume three fault-modes:

Θ ={[β γ]; β ≥ 0, γ ≥ 0}
ΘNF ={[1 1]}
ΘF1 ={[β 1]; β 6= 1}
ΘF2 ={[1 γ]; γ 6= 1}

Suppose a diagnosis system, capable of separating the three fault-modes
are to be designed and that the diagnosis system includes a hypothesis
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test with the hypotheses

H0 : Fp ∈ {NF,F1} H1 : Fp ∈ {F2}

i.e. deviations in parameter β need to be decoupled in the test quantity
for the hypothesis test. An example of such a test quantity, based on
the methods described in this section, is to extend the state vector as
in Example 7.5 resulting in an extended state-space description:

ż =

(
−z2z1 + γu

0

)
= f(z, u) (7.12a)

y = z1 (7.12b)

Assume that a K is found such that a nonlinear state-observer on the
form

˙̂z =

(
−ẑ2ẑ1 + u

0

)
+K(y − ŷ)

ŷ = ẑ1

r = y − ŷ

is stable. Then the residual r goes to 0 when the process operates in
fault mode NF or F1.

The main point of the example is that the nonlinear decoupling
problem was first transformed into an estimation problem, as was done
in e.g. Section 4.5, and the estimation problem was finally transformed
into an observer design problem.

7.2.3 Decoupling of Sensor Faults

Fault isolation needs fault decoupling and in the previous section, de-
coupling of constant faults in general nonlinear systems was considered.
Another important special case where fault decoupling is often possible
is sensor faults. More precisely, a sensor fault is a fault that is modeled
to only influence the measurement equation of one sensor and no other
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parts of the model.

Example 7.7 Examples of sensor fault models are given by signals
(or constants) f1, f2, and f3 in the measurement equations:

y1 = h1(x, u) + f1 (7.13a)

y2 = (1− f2)h2(x, u) (7.13b)

y3 = h3(x, u, f3) (7.13c)

Note that it is important that f1, f2, and f3 does not occur elsewhere
in the system model.

A sufficient condition for a sensor fault to be decoupled in a residual
is that the sensor signal is not used when calculating the residual. In
the observer framework, to decouple faults in sensor i, produce the
residual by using the observer to estimate ŷj not using sensor i. Then,
calculate the residual as r = yj − ŷj where i 6= j.

Remark: If the fault is modeled as in (7.13a), it is a sufficient and
necessary condition that the fault signal is not used in the calculation
of the residual. Therefore, it is fault models of type (7.13a) that are
decoupled with this methodology. But of course, since fault models
(7.13b) and (7.13c) can be rewritten as (7.13a), i.e. the faults modeled
by (7.13b) and (7.13c) are a subset of the faults modeled by (7.13a),
these types of faults are also decoupled.

In this way, provided that it is possible to find a stable observer,
decoupling of sensor faults in general nonlinear plants is achieved. If
needed, the method is easily adopted to provide multiple fault decou-
pling by excluding more than one sensor from the observer feedback.
The approach is illustrated by a small example.

Example 7.8 Assume a nonlinear, 2-output plant, where the two
sensors will be monitored. The two sensor faults fs1 and fs2 are modeled
as additive faults. A state-space description of the plant can be stated
as

ẋ = f(x, u)[
y1

y2

]
=

[
h1(x, u)
h2(x, u)

]
+

[
fs1
fs2

]
Let an estimate ŷ1 of y1 be produced without using sensor 2 and the
residual is calculated as r1 = y1 − ŷ1. Then the residual will be sensitive
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towards faults in sensor 1, fs1, and insensitive towards faults in sensor
2, fs2. This estimation can be performed via a nonlinear observer as

˙̂x = f(x̂, u) +K1(y1 − h1(x̂, u))

r1 = y1 − ŷ1 = y1 − h1(x̂, u)

The matrix K1 must be such that the observer is stable in the whole
operating range. A similar observer estimating y2 without using sensor
1 can be stated as

˙̂x = f(x̂, u) +K2(y2 − h2(x̂, u))

r2 = y2 − ŷ2 = y2 − h2(x̂, u)

Provided we can find K1 and K2 that stabilizes the observers, we have
shown how two residual generators can be designed for isolation of the
sensor faults fs1 and fs2.

7.2.4 Choice of observer feedback signals

As seen in the discussions above, when designing diagnostic observers
there is quite a bit of freedom available for the designer when choosing
which sensor signals to feed back into the observer. Motives for not
feeding back a sensor signal might be that we wish to make the state
estimation insensitive to faults in that particular sensor. However, note
that this feedback selection must be done with some care, in particular
it is necessary that, with the selected set of feedback signals, the system
becomes observable. General non-linear observability conditions will
not be discussed further here, but an intuitive sufficient condition to
detect non-observable models will be discussed. For this, consider the
model

ẋ1 = f1(x1, u) (7.14a)

ẋ2 = f2(x1, x2, u) (7.14b)

y1 = h1(x1, u) (7.14c)

y2 = h2(x2, u) (7.14d)

From this one can see that it is not possible to use y1 to estimate x2

and use r = y2 − h2(x̂2, u) as a residual. This is because there is no
information about x2 in the measurement signal y1, i.e. the system is
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not observable. This is illustrated in Figure 7.1. The arrows indicate
how different variables influence each other and since there is no path
from x2 to y1 there is no possibility to estimate x2 from only y1. Also

u y1

y2

x1

x2

Figure 7.1: Schematic figure of the model (7.14).

note that the reverse is possible, i.e. to use y2 to estimate x1 and
compute a residual as r = y1 − h1(x̂1, u). Thus, it is generally a good
idea to verify that there is a path from the state variables to the
observer feedback signals. Note that this is only a necessary condition
for observability. Consider the linear system

ẋ =

a11 a12 a13

a21 0 0
a31 0 0

x
y =

[
1 0 0

]
x

It is clear that there exists a path from all state variables to y but a
quick analysis of the system reveals that the system is unobservable
regardless of the values of parameters aij .



Chapter 8
Probabilistic Diagnosis

Chapter 3 described techniques for fault isolation in consistency based
diagnosis systems where the main objective were to compute all di-
agnoses, according to Definition 2.1, given the observations and test
results. Recall that an assignment D of behavioral modes to each
component is a diagnosis if and only if the set of equations

D ∪O ∪M (8.1)

are consistent, where O are the observations and M the model. If the
model is uncertain, for example if there is measurement noise, then
there will never be consistency. Consider for example a situation where
two sensors measure the same variable x and both sensors are subjected
to Gaussian sensor noise εi as

y1 = x+ ε1

y2 = x+ ε2

Consistency is then naturally checked by computing the residual

r = y1 − y2

and check for zero. However, the residual is only exactly 0 if ε1 = ε2
and since this happens with probability 0 this is not a feasible approach.

219
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In previous chapters we dealt with this situation by setting a suitable
threshold such that inconsistency was indicated if the residual exceeded
its threshold. The value of the threshold is based on, for example, a
desired probability of false alarm or other performance specifications.
A consequence of this approach to handling uncertainties is for example
that the fault isolation procedure does not take into consideration
whether a residual is far above its’ corresponding threshold or only
marginally above, the final decision will be the same. It is clear that
the model and measurement uncertainty, inherent in practically any
diagnosis problem, need to be handled with care. The above technique
using thresholds is one way but another is to introduce probabilities in
the diagnosis procedure and this is the topic of this chapter.

Making decision under uncertainty is an important topic in many
disciplines, not only fault diagnosis, and a common way to approach
this problem is to use probabilities. Then, instead of determining
consistency of (8.1), an alternative would be to compute the probability
of a candidate D given the observations O and the model M

P (D|O,M).

Since the number of candidates D is exponential in the number of
components, an alternative could be the probability of the individual
behavioral modes Bi as

P (Bi|O,M). (8.2)

where Bi may be a fault mode or the no-fault case for component i.
To illustrate this, consider a simple case with three residuals, three

faults, and the corresponding decision structure

F1 F2 F3

r1 0 X X
r2 X 0 X
r3 X X 0

(8.3)

where fault Fi corresponds to that component Ci has a malfunction.
Say that residuals r1 and r2 exceed their thresholds and raise their
corresponding alarms. In a consistency based approach this would
mean that there are two conflicts

π1 = OK(C2) ∧OK(C3)

π2 = OK(C1) ∧OK(C3)



221

which corresponds to the minimal diagnoses

D1 = OK(C1) ∧OK(C2) ∧ ¬OK(C3),

D2 = ¬OK(C1) ∧ ¬OK(C2) ∧OK(C3)

Here, without any additional information, the single fault diagnosis D1

could be assumed more probable than the double fault diagnosis D2.
On the other hand, with fictive numbers, the result from a probability
based approach could look something like

P (Bi|O,M) =


0.01 if Bi = NF

0.85 if Bi = F1

0.93 if Bi = F2

0.22 if Bi = F3

where the observations O could be results of diagnostic tests or mea-
surements. Here it is clear that, with a high probability, there is a fault
and that the double fault F1 and F2 is perhaps a prime candidate for
a workshop engineer to investigate.

It is clear that obtaining such detailed, probabilistic, information
about possible diagnoses is very attractive when making decisions in
uncertain environments. But, as attractive the approach may seem, it
is unfortunately often intractable since analytic expressions for these
probability distributions are not available in non-linear and/or dynamic
contexts. For example, it is generally not possible to analytically
compute the probability distribution p(xt) of the state vector xt in a
non-linear difference equation

xt+1 = f(xt) + εt

where εt is a random process. It is possible to use approximative
techniques, e.g., Extended/Unscented Kalman Filters or Monte-Carlo
methods, to obtain approximations of the probability distributions, but
this may be computationally very heavy.

The main objective of this text is to introduce concepts for prob-
ability based diagnosis and also introduce some basic computation
tools. In this text, only models with discrete random variables will
be used which will allow us to use Bayesian networks where efficient
techniques to perform the computations are available. This is not a
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severe limitation since many of the probabilistic models built use only
discrete variables, quite likely due to the lack of modeling tools and
algorithms for the general case (Dı̀ez and Druzdzel, 2006). In this
text, focus is on principles and only a brief introduction to Bayesian
networks will be included.

8.1 Introductory example

The presentation from here on will use the notation reviewed in Ap-
pendix 8.A. First, consider a situation with only two faults, f1 and f2,
i.e., there are four possible system behavioral modes Bi

FM ∈ {NF, f1, f2, f1&f2}.

Assume that faults f1 and f2 are equally probable and occurs indepen-
dently. Now, consider a residual generator that is designed to detect
fault f1 but that the residual r is not only sensitive to fault f1 but also
to the second fault f2. However, the residual is designed to detect f1 in
particular and is therefore significantly more sensitive to fault f1 than
f2. An alarm is generated when the residual r exceeds a given threshold
J . The probabilities that represent fault sensitivities in the residual
and the a priori probabilities of faults are summarized in Table 8.1.

Table 8.1: A priori and sensitivity probabilities.
Probability Formula Value

False alarm P (r > J |FM = NF ) 0.01
A priori probability of fault i P (fi), i = 1, 2 0.02
Sensitivity to single fault f1 P (r > J |FM = f1) 0.99
Sensitivity to single fault f2 P (r > J |FM = f2) 0.30
Sensitivity to double fault f1&f2 P (r > J |FM = f1&f2) 0.99

Now, assume that the residual exceeds its threshold J . The con-
clusion in a deterministic, consistency based, setting as in Chapter 3
would then be that it is either fault f1 or fault f2 (or both) that caused
the residual to exceed the threshold J . However, the information that
both faults are equally probable and that the residual r is much more
sensitive to fault f1 than fault f2 has not been taken into account. It is
clear that, with this information it is reasonable to conclude that it is
more probable that f1 caused the alarm than fault f2. Basic probability
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theory allows us to compute exactly how much more probable it is that
fault f1 is the real fault than fault f2.

Utilizing independence between the fault variables F1 and F2 are
utilized above, the a priori probability for a fault mode can be written,
for example, as

P (FM = f1) = P (f1,¬f2) = P (f1)P (¬f2)

Using this fact and basic formulas for conditional probabilities we
obtain the expressions

P (FM = NF |r > J) =
P (r > J |FM = NF )P (FM = NF )

P (r > J)
=

=
P (r > J |FM = NF )P (¬f1)P (¬f2)

P (r > J)

P (FM = f1|r > J) =
P (r > J |FM = f1)P (FM = f1)

P (r > J)
=

=
P (r > J |FM = f1)P (f1)P (¬f2)

P (r > J)

P (FM = f2|r > J) =
P (r > J |FM = f2)P (FM = f2)

P (r > J)
=

=
P (r > J |FM = f2)P (¬f1)P (f2)

P (r > J)

P (FM = f1&f2|r > J) =
P (r > J |FM = f1&f2)P (f1)P (f2)

P (r > J)
(8.4)

where P (¬fi) = 1− P (fi). With the probability values from Table 8.1,
the a posteriori probabilities for all behavioral modes can then be
computed as

P (FM = f |r > J) =


27.2% if f = NF

55.0% if f = f1

16.7% if f = f2

1.1% if f = f1&f2

(8.5)

Note that it is not necessary to compute the denominator P (r > J)
since all 4 cases have the same denominator and that they all sum
to 1. Thus, the probabilities can be determined by computing the
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numerators, with numerical values from Table 8.1, and then normalize
such that the probabilities sum to 1. Thus, it has been computed that
the probability is 0.55 for single fault f1 and 0.167 for single fault f2.

One conclusion of this introductory example is that using only
basic probability formulas it is direct to extend the consistency based
diagnoses with a probability measure, i.e., associate each diagnosis
with a probability. In the next section, we will introduce more general
probabilistic models and also discuss computational techniques that
make efficient computing with these models possible.

8.2 Probabilistic Models and Inference

This presentation will be limited to models with discrete random
variables and static systems but much of the material presented can
be extended in different ways to cover also continuous valued variables
and dynamic models.

In general, a probabilistic model of a set of discrete random variables
X = {X1, . . . , Xn} is the probability mass function

P (x1, . . . , xn) (8.6)

which explicitly states probabilities for all possible values of the random
variables X1, . . . , Xn. The probability mass function for all variables
is sometimes referred to as the joint probability mass function. The
variables can be intermediate process variables, observation variables,
alarm signals, fault variables, and so on.

Example 8.1 In the introductory example there were three variables,
the boolean fault variables F1, F2, and the alarm variable A that was
true when the residual r exceeded its corresponding threshold. Table 8.1
does not give the full probability mass function in the form (8.6), but
using the chain rule (8.16) we obtain

P (a, f1, f2) = P (a|f1, f2)P (f1|f2)P (f2) =

= P (a|f1, f2)P (f1)P (f2).

The last equality is due to the independence between F1 and F2. Direct
calculations gives the full probabilistic model in Table 8.2.

An important aspect of modeling is how to determine the model
parameters, perhaps from measured data. When developing control
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Table 8.2: Full probability mass function P (a, f1, f2) for the initial
example.

a f1 f2 P (a, f1, f2)

False False False 0.9508
False False True 0.0137
False True False 0.0002
False True True 4 · 10−6

True False False 0.0096
True False True 0.0059
True True False 0.0194
True True True 0.0004

oriented physical models, techniques from system identification (Ljung,
1999) can be used to determine the model parameters. For probabilistic
models this corresponds to determining all parameters in the probability
mass function in (8.6). This important topic is outside the scope of
this text and the interested reader is referred to existing literature, e.g.,
(Jensen and Nielsen, 2007).

8.2.1 Inference

Probabilistic inference is, in this setting, nothing else than the compu-
tation of posterior probabilities of certain events, given observations.
Here, observations are specified values of variables in the probabilistic
model. In a diagnosis application, this can typically be measurement
variables and outcomes of diagnostic tests. For example, computing
the probability of a fault given the observations from the process could
correspond to

P (F1|r3 > J3)

In general, computing the probability forX = x given evidence/observations
e, i.e. assignment of values to random variables, is given by direct use
of formulas for conditional probabilities as

P (x|e) =
P (x, e)

P (e)
= αP (x, e) (8.7)

Here, again note that the denominator P (e) does not depend on the
value of x. This means that the numerator can be computed for all



226 Chapter 8. Probabilistic Diagnosis

values of x, and then the normalization factor α can be determined
from

1 =
∑
x

P (x|e) = α
∑
x

P (x, e)

Often, observations for all variables are not available since we do not
have sensors at all positions in the process. Then P (x, e) in (8.7) is
not the full probability mass function (8.6) since there are additional
variables than x and e in the model. Denote the additional variables
with z, then marginalization gives that

P (x, e) =
∑
z

P (x, e, z)

The inference expression (8.7) can then be written as

P (x|e) = α
∑
z

P (x, e, z) (8.8)

where P (x, e, z) is the full probabilistic model.

Example 8.2 Return to the introductory example. To compute the
probability of a fault f1 given an alarm, we get

P (f1|a) = αP (f1, a) = α
∑
f2

P (f1, f2, a) =

= α(P (f1,¬f2, a) + P (f1, f2, a)) =

= α(0.0194 + 0.0004) = α · 0.0198 (8.9)

A corresponding calculation for P (¬f1|a)

P (¬f1|a) = α · 0.0155 (8.10)

This gives that, where F1 is the binary random variable for fault mode
1,

P (F1|a) = α〈0.0198, 0.0155〉 = 〈0.439, 0.561〉

where the normalization constant α is determined such that the prob-
abilities (8.9) and (8.10) add up to 1. Note that the probability for
fault f1 is 0.561 which is not equal to the probability of fault mode
FM = f1 which was 0.55. This is natural since f1 appears in both the
single fault mode f1 and the multiple fault mode f1&f2.
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8.2.2 Model and inference complexity

From the description above it is clear that, in principle, it is straight-
forward to perform any probabilistic inference if the full probability
mass function is available by a direct utilization of (8.8). Unfortu-
nately, such a naive approach is seldom applicable due to the inherent
combinatorial explosion of the size of the probabilistic model. Consider
the case with n binary variables in the model, then the P (x1, . . . , xn)
has 2n parameters. This exponential growth in parameters makes (8.8)
unfit for inference for anything but very small models. Put in other
words, a model with 40 variables is not a big model, but 240 is a big
number.

The introductory example was originally fully specified in Table 8.1
that consisted of 5 parameters and the full probabilistic model in
Table 8.2 consisted of 8 parameters. This difference, although very
small for this tiny example, indicates that it is possible to specify
the probabilistic model with less than an exponential number of pa-
rameters. The key to this lies in utilization of independence among
the model variables. In the introductory example the fault variables
F1 and F2 were stated to be independent. Consider a model with n
independent boolean variables, then the full probability mass function
can be expressed using the chain rule as

P (x1, . . . , xn) =
n∏
i=1

P (xi)

This means that the 2n number of parameters have been transformed
into 2n parameters, i.e., exponential growth in size has been trans-
formed into linear growth in size when utilizing the independence
assumption. Full utilization of variable independence is a key to not
only efficient model representation but also efficient inference. Introduc-
tion of observations may result in conditional independence, i.e., two
variables that are not independent in the original model may become
independent when observations are introduced. A small example below
will illustrate the basic principle that can be used to make inference
significantly more efficient.

Example 8.3 Consider a probabilistic model in three variables
x1, x2, x3. Assume that the probability mass function of x1 is only
dependent on x1 and x3, not x2. Direct application of the chain-rule
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then gives that

P (x1, x2, x3) = P (x1|x2, x3)P (x2|x3)P (x3) =

= P (x1|x3)P (x2|x3)P (x3)

where the first equality is a direct application of (8.16) and the second
equality due to the independence assumption. The variables x1 and
x2 are not independent since their corresponding probability mass
functions are both dependent on the common variable x3. However,
assume that the value of x3 is measured, then

P (x1, x2|x3) =
P (x1, x2, x3)

P (x3)
=
P (x1|x3)P (x2|x3)P (x3)

P (x3)
=

= P (x1|x3)P (x2|x3).

In the above inference statement the probability mass function P (x1, x2|x3)
could be factored into P (x1|x3) and P (x2|x3), i.e., the variables x1 and
x2 were conditionally independent when observing x3.

In a worst-case scenario, where there is no independence structure
to be utilized, exact inference in probabilistic models is very expensive
but often there exists structure that can be utilized. Next section
will briefly introduce Bayesian networks, which makes it possible to
efficiently represent probabilistic models and make inference.

8.3 Bayesian Networks

The concept of Bayesian networks was first introduced in (Pearl, 1985)
and has received considerable attention since then. Bayesian networks
are also part of the broader field of probabilistic graphical models
(Edwards, 2000). One way to view a Bayesian network is as a repre-
sentation of a probabilistic model (8.6) that utilizes the independence
structure of the model. The description in this text will be rather
brief, readers who are interested in more details are referred to any
of the numerous books that are written on this topic. Examples of
introductory texts are the review paper (Darwiche, 2010) or any of the
books (Russell and Norvig, 2003) and (Jensen and Nielsen, 2007).

Before a formal definition is given, consider again the introductory
example where the fault variables F1 and F2 were independent random
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variables and the alarm variable A were dependent on both faults. This
can be illustrated using a directed graph as in Figure 8.1. The nodes in
the graph are variables and an arc from node Xi to node Xj represents
that Xj is dependent on node Xi. To each variable in the graph,

F1 F2

A

Figure 8.1: A graph representing the dependencies in the introductory
example.

associate a probability table for the variable, given values of the parent
variables. In this case, we have the probability tables for P (f1), P (f2),
and P (a|f1, f2). Now, utilizing the independence relations in Figure 8.1
and applying the chain-rule (8.16), with (x1, x2, x3) = (a, f1, f2), we
get

P (a, f1, f2) = P (a|f1, f2)P (f1|f2)P (f2) = P (a|f1, f2)P (f1)P (f2)

Here it is clear that the conditional probability tables associated with
each node completely characterize the full probabilistic model. One can
also say that the graph defines a factorization of the joint probability
mass function. The above observation can be written in general as

P (x1, . . . , xn) =
n∏
i=1

P (xi|x1, . . . , xi−1) =
n∏
i=1

P (xi|parents(xi)) (8.11)

where the function parents(Xi) returns all variables that are parents
to variable Xi in the graph. For example, parents(A) = {F1, F2} and
parents(F1) = ∅. To be able to make efficient inference of the models,
it will be required that the graph does not contain any cycles. With
this motivating discussion, a Bayesian network is defined as below.

Definition 8.1 (Bayesian network). Let X = {X1, . . . , Xn} be a set
of random variables with a finite set of values for each variable. A
Bayesian network is then a pair B = 〈G,P〉 where G is an acyclic
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directed graph, defined on the nodes X , and P a set of conditional
probability tables, one for each node in the graph, defined as

P (xi|parents(xi)).

A Bayesian network B represents its corresponding joint probability
mass function by expression (8.11).

Example 8.4 In the introductory example we had three variables,
the fault variables F1 and F2, and the alarm variable A. The graph
representing the dependencies is given in Figure 8.1. The independence
between F1 and F2 is represented by the fact that there is no arc
between the fault nodes and the alarm node is dependent on both
variables nodes, which is represented by the two arcs.

The graph is clearly acyclic, and the conditional probability tables
are given in Table 8.3. All variables are boolean, i.e., they can only
have values True or False. Note that the values in the tables are taken
directly from Table 8.1.

Table 8.3: Conditional probability tables for variables in the Bayesian
Network in Figure 8.1.

(a)

Fi P (Fi)

True 0.02
False 0.98

(b)

F1 F2 P (A|F1, F2) P (¬A|F1, F2)

False False 0.01 0.99
False True 0.30 0.70
True False 0.99 0.01
True True 0.99 0.01

One should note that there is not a unique Bayesian network
for a given probabilistic model. Looking at the chain-rule (8.16),
different variable orderings give different factorizations of the joint
probability mass function. For example, the introductory example
could be represented by the dependency graph in Figure 8.2 which
corresponds to the factorization

P (a, f1, f2) = P (f1)P (a|f1)P (f2|a, f1)

This is possible, but the individual factors P (f1), P (a|f1), and P (f2|a, f1)
are perhaps less intuitive than those for the network in Figure 8.1.

Example 8.5 All previously mentioned Bayesian networks have been
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F1

A

F2

Figure 8.2: Alternative Bayesian network graph for the introductory
example.

small enough to do the computations using the full joint probability
mass function. To illustrate what industrial sized models can look like,
consider the Bayesian model of the XPI fuel injection system in Scania
trucks. The model is developed at Scania in (Cyon, 2012).

The dependency graph shown in Figure 8.3 consists of 141 nodes,
where about 40 corresponds to components that should be monitored
and the rest of the nodes correspond to observation nodes and internal
variables. Many of the variables has 2 possible values, for example the
residuals has No Alarm and Alarm as values, but some components
has as many as 8 possible values and as an example, an inlet metering
valve has the possible values Fuel leak, Electrical fault, Stuck or clogged,
Wrong pressure, Emission fault, Corrosion or cavitation, Air leak, and
No Fault. The complete joint probability mass function has in the order
of 1050 values, which makes it clear that inference or representation of
the full probability mass function is intractable.

However, using available techniques for inference it can still be
possible to do the computations. For example, assume 4 random
residuals, r1, . . . , r4 in the system indicates an alarm. Computing the
full conditional probability, using exact techniques,

P (x1, . . . , x141|r1, r2, r3, r4)

took less than a second on a standard laptop (model year 2012) using
the freely available software (GeNIe, 2012).

One should note that worst-case complexity of inference is high and
in a model of this size, there is a good chance that there are cases where
inference computations are not feasible with respect to memory and/or
time. Then, instead of exact solutions, approximative approaches can
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Figure 8.3: A screenshot of a model of a Scania XPI, fuel injection
system, implemented in (GeNIe, 2012) by (Cyon, 2012) (used with
permission from Scania).
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be utilized as is briefly discussed in Section 8.3.2.

8.3.1 Canonical Models

A key problem when specifying the probability tables in a Bayesian
network is that the size of the table is exponential in the number of par-
ents. This means that even for moderate sized models, a great number
of parameters need to be determined. Roughly, the probability values
are either determined using expert knowledge or using experimental
data. In either case, the problem starts being difficult for nodes with
many parents and either the expert is unable to specify all the required
values or there will be a need for huge amount of representative data
to reliably infer the probabilities from data.

One way to handle the problem is to utilize what is referred to as
canonical models, where the number of parameters needed to describe
a high dimensional probability mass function is dramatically reduced.
The model in Figure 8.3 makes extensive use of one particularly common
canonical model, the leaky-or node.

Canonical models will be introduced, influenced by the presentation
in (Dı̀ez and Druzdzel, 2006), by first considering the case where a
variable y is a deterministic function of the nodes in x, i.e., y =
f(x). The probability table representing a deterministic function has 0
parameters, regardless of the size of x and y, and is given by

P (y|x) =

{
1 y = f(x)

0 otherwise
(8.12)

For example, a probability table representing the or-function

y = x1 ∨ x2

is
x1 x2 P (y) P (¬y)

false false 0 1
false true 1 0
true false 1 0
true true 1 0

Although deterministic functions can be very useful in a probabilistic
model, the main motivation for introducing probabilities was to take
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uncertainty into consideration and then deterministic functions only
is not enough. For example, consider residual r3 in (8.3) where the
residual generates an alarm in case of fault F1 or F2. However, perfect
performance is not generally realistic and a certain amount of false
alarms and missed detections can not be avoided, and has to be included
in the model.

To still utilize the idea from the deterministic model above, noisy
models are introduced where intermediate variables Zi are included
according to Figure 8.4. The noisy model thus consists of two parts,
one deterministic part, that has 0 parameters, and one noisy part that
connects the variables Xi with the intermediate variables Zi. Since the

X1 . . . Xn

Z1 Zn

Y

Noisy model

Deterministic model

Figure 8.4: Structure of a noisy model.

Xi variables are assumed independent in Figure 8.4, the number of
parameters in the Zi-nodes are relatively small. For example, assume all
variables are binary, then the probability mass function P (y|x1, . . . , xn)
has 2n parameters. With the noisy model in Figure 8.4, each Zi node
has 2 parameters, and the Y node 0 parameters. This means that the
noisy model makes it possible to obtain linear, instead of exponential,
growth in the number of parameters.

A common noisy model is the noisy-or, where Y is a deterministic
or-function of the Zi variables and the probability table for Zi is given
by

xi P (zi|xi) P (¬zi|xi)
False 0 1
True c1 1− c1

This table means that if Xi is false, so will Zi but if Xi is true there
is a probability 1− c1 that Zi will be false. With ci = 1 we have the
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deterministic or-function and with decreasing ci there is an increasing
uncertainty that Zi equals Xi.

Example 8.6 Consider residual r3 in the decision structure (8.3). If
we assume that the faults F1 and F2 influence the residual independently,
and that the probability for detection of faults F1 and F2 are 0.9 and
0.6 respectively. Then the probability table for the alarm variable,
i.e., P (alarm|f1, f2) can be modeled with a noisy-or with c1 = 0.9 and
c2 = 0.8.

The noisy-or introduced above allowed us to introduce probability
of detection and probability of missed detection in the model, but there
is no possibility to model false alarms. This leads to so called leaky
models shown in Figure 8.5, which is similar to noisy models but with
the addition of a leak-node Zl. Since the leaky-node appears in the
deterministic part of the model, only the a-priori probabilities for the
Zl variable are added to the parameters to be determined.

X1 . . . Xn

Z1 Zn Zl

Y

Noisy model

Deterministic model

Figure 8.5: Structure of a leaky model.

Example 8.7 Return to Example 8.6 but with the addition of a
false alarm probability of 0.01. This situation can be modeled using a
leaky-or canonical model where the leak-node represents causes of false
alarms. Thus, a leaky-or with the same parameters as in Example 8.6
and the probability table

P (Zl) = 〈0.99, 0.01〉

for the leak node introduces also probability for false alarm in the
model. Thus, this canonical model is well suited to model detection
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probabilities and false alarms in a residual with only a few and easily
interpreted parameters. The assumption that makes this possible is
that faults and false alarm events are independent events, which may
or may not be a reasonable assumption. This assumption is something
that needs to be considered when using noisy or leaky nodes.

The canonical models in Figures 8.4 and 8.5 show general ways to
compose noisy- and leaky-models that make reduction of the number
of parameters needed to describe the probability mass function. Above,
perhaps the most common canonical models, the noisy and leaky or-
function was shown for binary variables. There is a straightforward
generalization of the or-function for non-binary variables to the max-
function and this canonical model is typically available in Bayesian
modeling tools, for example in (GeNIe, 2012). Note also that noisy
and leaky models trivially extend to any other deterministic function
like and/or/not or even any general function f(x) as in (8.12). One
should note that it is common, for example in (GeNIe, 2012), to use
the terminology noisy model when referring to leaky-models.

8.3.2 Inference in Bayesian networks

It is outside the scope of this text to give detailed descriptions of
inference methods for Bayesian networks. The objective here is only to
indicate ways to make inference more efficient and give references to
works that describe algorithms in more detail.

To illustrate, consider the Bayesian network graph in Figure 8.6
and assume we want to compute

P (x1|x4, x5)

Direct use of (8.8), using the full joint probability mass function, we
obtain

P (x1|x4, x5) = α
∑
x2

∑
x3

P (x1, x2, x3, x4, x5) (8.13)

As indicated by Example 8.5, this approach is not always feasible due
to the size of the probability mass function. However, the factorization
obtained from the Bayesian network dependency graph can be utilized.
The joint probability mass function can be factored and the factors
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X1 X2

X3

X4 X5

Figure 8.6: Example Bayesian network.

P (x1) and P (x2) can be factored out of summations according to

P (x1|x4, x5) = α
∑
x2

∑
x3

P (x1, x2, x3, x4, x5) =

α
∑
x2

∑
x3

P (x1)P (x2)P (x3|x1, x2)P (x4|x3)P (x5|x3) =

αP (x1)
∑
x2

P (x2)
∑
x3

P (x3|x1, x2)P (x4|x3)P (x5|x3) (8.14)

Evaluating (8.14) instead of (8.13) simplifies the computations, but
note that the underlined factors are independent of variable x2. This
means that this factor will be computed twice, to the same value,
for each value of x2 in the outer summation. This indicates further
possibilities and avoiding such unnecessary computations makes little
difference in this small example, but can make a significant difference
for larger models.

Algorithms for inference in Bayesian networks can be categorized
into either exact algorithms or approximate algorithms (Darwiche,
2010). In the exact algorithms, possibilities like the one illustrated above
are utilized in techniques based on variable elimination (Dechter, 1996;
Lauritzen and Spiegelhalter, 1998; Zhang and Poole, 1994). However,
no matter what kind of technique that is employed, exact inference
is NP-hard (Russell and Norvig, 2003) which means that in a worst
case situation no efficient algorithm exists. But there are classes of
networks which are easier than others. For example, networks where
there is only one directed path between any two nodes, like the one
in Figure 8.6, is called singly connected trees or polytrees. It can be
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shown that if the network graph is a polytree, inference complexity is
linear in the size of the tree.

The variable elimination method can be utilized to compute prob-
abilities for a single variable in a Bayesian network. Often it is of
interest to compute the probabilities for a set of variables, perhaps all
variables, and then so called join-tree algorithms (Russell and Norvig,
2003) can be utilized. The basic idea of join-tree algorithms is to join
nodes in the network graph to transform the Bayesian network into an
equivalent Bayesian network that has a polytree structure. Then, size
of the model representation is traded for inference efficiency. However,
there are cases where the model is too complex for exact inference, and
then one possibility is to resort to approximative inference methods,
for example (Darwiche, 2010; Koller and Friedman, 2009; Pearl, 1988;
Yedidia et al., 2005).
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Appendix

8.A Notation

This section will briefly review the notation that will be used together
with some fundamental results from basic probability theory that will
be used. Note that only discrete random variables are considered. First,
the probability that a random variable X, generally written in upper
case, has the value xi, written in lower case, is written as

P (X = xi) or shorter P (xi).

For most of this presentation, when it is clear from context which
random variable that is considered, the shorter form will be used. If
the random variable X is boolean, i.e., can only have the value True or
False, the short forms

P (x) and P (¬x)

will be used to denote

P (X = True) and P (X = False).

Sometimes we want to talk about the probabilities for all the possible
values of a random variable. Then P (X) denotes a vector of values for
all the probabilities. So, instead of summarizing the probabilities as in
(8.5), we can write

P (FM |r > J) = 〈0.27, 0.55, 0.17, 0.01〉

Here we introduce the 〈〉-notation, where each element correspond to
the probability of a certain value of the random variable. A fundamental
object is the probability mass function (pmf) which is a function that
gives the probability that a discrete random variable is exactly equal
to some value. A probability mass function differs from a probability
density function in that the latter is associated with continuous rather
than discrete random variables.

A fundamental operation when computing probabilities is marginal-
ization. For example, if we have two random variables X and Y and the
corresponding probability mass function P (x, y) and want to compute
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the probability that Y has the value y, and then marginalization gives
that

P (y) =
∑
x

P (x, y) (8.15)

where the summation is over all possible values of X. Another useful
property is that a probability mass function can be factored using
conditional probabilities using the chain rule as

P (x1, . . . , xn) =
∏
i

P (xi|x1, . . . , xi−1) (8.16)

and this is particularly useful when finding efficient representations of
the probability mass function. If two random variables X and Y are
independent, then

P (x|y) = P (x).

A fundamental operation is to to update the belief, i.e., probability
mass function of a random variable when new information arrives.
To incorporate new information, sometimes referred to as evidence
or simply observations, one can utilize expressions for conditional
probabilities, or Bayes’ rule, as

P (x|y) =
P (x, y)

P (y)
=
P (y|x)P (x)

P (y)
.

In this formula, the probability P (x) is referred to as the prior and
P (x|y) as the posterior. The interpretation of the expression is how
the prior knowledge P (x) of the random variable X changes when we
obtain the evidence that variable Y equals value y.
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B. Bergman and B. Klefsjö. Tillförlitlighet. 1996.

G. Casella and R.L. Berger. Statistical Inference. Duxbury Press, 1990.

J. Chen and R. J Patton. Robust Model-Based Fault Diagnosis for
Dynamic Systems. Kluwer Academic Publishers, 1999. ISBN 0-7923-
8411-3.

E.Y. Chow and A.S. Willsky. Analytical redundancy and the design of
robust failure detection systems. IEEE Trans. on Automatic Control,
29(7):603–614, 1984.

R.N. Clark. The dedicated observer approach to instrument fault
detection. In Proc. of the 15th CDC, pages 237–241, 1979.

241

http://www.irisa.fr/sisthem/kniga/
http://www.irisa.fr/sisthem/kniga/


242 Bibliography

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms - An
Introduction to Computational Algebraic Geometry and Commutative
Algebra. Springer Verlag, second edition, 1996.

A. Cyon. Modeling of fuel injection system for troubleshooting. Master’s
thesis, Royal Institute of Technology, KTH, Sweden, 2012.

A. Darwiche. Bayesian networks. Communications of the ACM Maga-
zine, 53(12):80–90, 2010.

J. de Kleer, A.K. Mackworth, and R. Reiter. Characterizing diagnoses
and systems. Artificial Intelligence, 56(2-3):197–222, 1992.

R. Dechter. Bucket elimination: A unifying framework for probabilistic
inference. In Proceedings of the 12th Conference on Uncertainty in
Artificial Intelligence, pages 211–219, 1996.

S.X. Ding, E.L. Ding, and T. Jeinsch. An approach to analysis and
design of observer and parity relation based fdi systems. In Proc.
IFAC World Congress, volume P, Beijing, P.R China, 1999.

X. Ding and P.M. Frank. Frequency domain approach and threshold
selector for robust model-based fault detection and isolation. In IFAC
Fault Detection, Supervision and Safety for Technical Processes, pages
271–276, Baden-Baden, Germany, 1991.

F. J. Dı̀ez and M. J. Druzdzel. Canonical probabilistic models for
knowledge engineering. Technical Report CISIAD-06-01, UNED,
Madrid, Spain, 2006.

D. Edwards. Introduction to Graphical Modelling. Springer, 2nd edition,
2000.

E. Frisk. Residual Generation for Fault Diagnosis. PhD thesis,
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