

Introduction to Lithium-Ion Battery Systems Lecture 8 - Part 2, TSFS11 2018-04-25

Mattias Krysander

Department of Electrical Engineering

Battery Packs and Battery Management

- Comparison with other chemistries
- Lithium-ion batteries
 - Safety
 - Modeling
 - Efficiency
 - Aging
- Battery management
 - Discharging/charging
 - Balancing
 - State of charge estimation

Battery Chemistries

Comparison of different cell chemistries.

Chemistry	V	Wh/kg (pack)	W/kg	Cycles	Efficiency
Lead-acid	2	40(30)	180	600	70-92%
Nickel-cadmium	1.2	50(47)	120	1500	70-90%
Nickel-metal hydride (Ni-MH)	1.2	70(55)	200	1000	66%
Lithium-ion (Li-ion)	3.6	130(90)	430	1200	> 90%

Li-ion performs well, but only if treated well.

Toyota Prius Hybrid Battery Pack Configuration

Batteries

- 201.6 V, 1.31 kWh (38%-82%)
- Ni-MH cells of 1.2 V, 6.5 Ah
- 168 cells = 28 modules · 6 cells
- Module: 46 Wh/kg, 1.3 kW/kg
- no charge balancing

Sensors

- 1 current sensor
- voltage sensor every second string
- 3 thermistors

85 kWh Tesla Model S Battery Pack

Pack specs:

- 85 kWh (540 kg)
- 400 V
- 7104 cells: 16 modules in series

Module specs:

Module: 6 groups in series of 74 cells in parallell

Cell specs:

- 18650 Li-ion cells
- 3.6 V, 3.2 Ah, 48.5 g, 243 Wh/kg

Lithium Ion NCR18650B

Features & Benefits Specifications Dimensions High energy density Max. 18.5 mm Rated capacity⁽¹⁾ Min. 3200mAh · Long stable power and Capacity⁽²⁾ Min. 3250mAh 6.6 mm long run time Typ. 3350mAh · Ideal for notebook PCs, boosters, portable devices, Nominal voltage 3.6V *With tube (+) etc. CC-CV, Std. 1625mA, 4.20V, 4.0 hrs Charging Weight (max.) 48.5 g Max. 65.3 mm Charge*: 0 to +45°C Temperature -20 to +60°C Discharge: Storage: -20 to +50°C Energy density⁽³⁾ 676 Wh/I Volumetric: *At temperatures below 10°C, Gravimetric: 243 Wh/kg (-) charge at a 0.25C rate. (1) At 20°C (2) At 25°C (3) Energy density based on bare cell dimensions For Reference Only

Charge Characteristics

Panasonic

Discharge Characteristics (by temperature)

Cycle Life Characteristics

Discharge Characteristics (by rate of discharge)

)ING REALITY

20

Safety

Reduction or damage to cell

- Over-discharge
- Charging, discharging outside certain temperature bounds
- Charging, discharging with high currents

Dangerous abuse

- Overheating cause by over-current, over-voltage, over-charging, or external heat.
- Piercing, crushing

Battery and cell properties

- 1C current = current able to discharge the nominal battery in 1h
- Depth of discharge (DOD)
 - Ah discharge from full battery
- State of charge (SOC)
 - Procentage of charge in the battery/cell
 - 100% full
 - 0% empty

Modeling

Time

10

Aging

Capacity decreases and internal resistance increases for increasing number of charging/discharging cycles.

Discharging

Constant current discharge until a specified cut-off voltage is reached.

The available capacity depends on the required current (discharge rate)

Peukert's law:

- C_p capacity [Ah] at 1 A
- actual discharge current [A]
- discharge time [h]
- Peukert constant > 1

Ex: Capacity at 2 A when k = 1,2:

$$1 = 1^{1,2} \cdot 1 = 2^{1,2} \cdot 0,43 > 2 \cdot 0,43 = 0,86^{\circ}$$

Charging algorithm CCCV

Constant current constant voltage (CCCV) charging

Unequal Voltages in Series Strings

Consider charging of balanced and unbalanced cells.

Small LiPo battery Starter lead acid battery Four cell Li-ion battery 13.5 V 13.5 V 16.8 V 16.8 V 4.2 V 2.25 V 2.21 V 3.5 V 2.19 V 2.25 V 4.2 V 6.3 V 2.20 V 2.25 V 8.4 V 8.4 V 2.25 V 2.5 V 4.2 V 3.3 V 4.2 V 3.6 V 2.21 V 2.25 V 4.9 V 2.25 V 2.19 V 4.2 V 4.2 V 3.4 V 0V 0 V 0'V 0V 0V 0V Cell damage Thermal runaway OK

Balancing

Balancing increases battery capacity. Battery capacity = min(cell capacity) = 90 Ah

Redistribution also handles capacity unbalance. Battery capacity = mean(cell capacity) = 105 Ah

SOC estimation

Why?

- Damage control Keep SOC within given range
- Range prediction
- Degradation estimate

SOC estimation

How?

- Coulumb counting integrate measured current $Q = \int I dt$
- OCV-SOC curve inaccurate OCV = f(SOC)
- Combine these in a filter (Kalman, particle)

SOC-estimation using different filters

HEV operation with a SOC close to 0.5

Linköpings universitet expanding reality

www.in.sc/onlin

