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Abstract: This paper describes a vacuum-decay based evaporative leak detection procedure
for vehicle fuel systems. A physical model for an evaporative system is proposed containing
parts for fuel evaporation, leakage flow and canister flow. Two methods for detecting
evaporative leakages based on the model is presented. Both methods can detect a 0.5 mm
diameter leakage in a laboratory environment.
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1. INTRODUCTION

According to regulations for emissions from vehicles,
fuel vapor leakage from the fuel tank must be detected.
Fuel vapor is always generated in the fuel tank, the
amount depends on ambient conditions like temperature
and movement of the tank. Filling fuel also causes extra
vapor to be generated. The fuel vapor may cause an over
pressure that may push vapor out of the tank. Also, as
fuel is consumed an under-pressure develops in the tank
and it is required to level the fuel-tank gas pressure with
ambient pressure at all times.

The most common way of handling fuel vapor from the
fuel tank is to ventilate the fuel tank through a carbon
canister. The canister is connected in one end to the fuel
tank and the other end is open to the ambient. A purge
valve connects the tank side of the canister to the intake
manifold of the engine. The canister is purged from
hydrocarbons when the purge valve is opened, causing a
back-flow of air through the canister and into the engine.

There are two main principles for detecting leakages,
vacuum decay and pressure decay principles. With the
vacuum decay principle, an under-pressure is created
in the fuel tank compared to the ambient pressure and
the decay of the pressure difference is monitored and
analyzed. The pressure decay principle creates an over-
pressure to the fuel tank and the pressure difference
is monitored and analyzed. A typical component setup
for a vacuum decay principle is a pressure sensor and
a closing valve (diagnostics valve), and for a pressure
decay principle a separate pump. Currently the detection
requirements move to smaller and smaller leakages, for

vehicles with model year 1996 and later, leakages as
small as 0.040” (1mm)(California’s OBD-II Regulation,
1997) in diameter must be detected. As of year 2000, the
requirements is tightened and detection of leakages as
small as 0.02” (0.5mm) is required (California’s OBD-
II Regulation, 1997; Majkowskiet al., 1999).

This paper presents a model based approach for detect-
ing leakage of fuel vapor and two methods of using the
model. The system configuration is the commonly used
vacuum decay type, based on a fuel tank pressure sensor,
a diagnostics closing valve and the purge valve. The
model developed and used in the detection algorithm
is kept as simple as possible, while still maintaining
its physical interpretation and good enough accuracy to
meet required diagnosis performance.

2. MODEL

A principle sketch of the fuel evaporation system and its
components is shown in Figure 1. The diagnosis system
described in this work is model based and the only signal
available is delivered by the pressure sensor located in
the fuel tank. Since there is no hardware redundancy, a
model describing the pressure signal is needed to detect
and isolate the two faults considered, leakage in the fuel
evaporative system and sensor bias.

Denote the absolute pressure in the tank withpft. The
major processes that influences the fuel tank pressure
is gas flow through the carbon canister into the engine
and the environment, gas flows through leaks in the fuel
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Fig. 1. The fuel evaporation system

tank, and fuel evaporation. Now, mathematical models
of these processes will be derived:

The pressure change in the fuel tank is assumed to be
proportional to the net gas flow into the tank, i.e. the
main model equation is given by:

ṗft = k(ṁb − ṁtk − ṁl) (1)

whereṁb is the gas flow due to fuel evaporation,ṁtk

gas flow through the carbon canister, andṁl the gas flow
due to leakages in the fuel tank.

Fuel evaporation

Gasoline evaporates from the liquid surface into the
gas in the tank, resulting in a pressure rise. As long as
there is a difference between the saturation pressure and
the partial pressure of fuel vapor, the evaporation will
continue. A simple model can be written as:

ṁb = k′1(p
0
f − pf ) (2)

wherep0
f is the fuel saturated pressure andpf the fuel

partial pressure. The constantk′1 is the evaporation time
constant which is dependent on e.g. the fuel tank temper-
ature. Here,k′1 is assumed to be constant but unknown.

Gas flow to the carbon canister

The gas flow through the carbon canister and the purge
valve can be described by:

ṁtk = k′2D(pft − pa) + k′3Pf(pman, pft) (3)

where D and P are boolean variables indicating if
the diagnosis or the purge valve is open (1) or closed
(0), andpa is the ambient pressure andpman is the
intake manifold pressure. An analytical expression for
the flow into the enginef(pman, pft) is not needed
since the purge valve will be closed during the diagnosis
procedure.

Leakage flow

For the gas flow rates that result from reasonable sized
leakages, the leakage flow is assumed to be proportional

to the pressure difference over the leakage hole. The pro-
portionality constant is then proportional to the leakage
area. The model equation describing the leakage flow is
then:

ṁl = k′4(pft − pa) (4)

Complete Model

The process is equipped with one sensor measuring the
difference pressure between tank and ambient pressure.
Therefore, the measurement equation, including a model
for the bias fault, is given by:

y = pft − pa + b (5)

where the variableb parameterizes the constant bias
fault.

From now on, it will be assumed that the ambient
pressure, leakage area, and bias fault are constant in time
during the data collection, i.e.̇k′4 = 0, ḃ = 0, and
ṗa = 0. Define ki as ki = kk′i, and insert the flow
models (2), (3), and (4) into the pressure equation (1):

ẏ = −(k1 + k2D + k4)(y − b)+
+ k1(p0

f + pair,t − pa)− k3Pf(pman, pft) (6)

The termk1(p0
f + pair,t − pa) is still unknown since

the partial air pressure in the tankpair,t is unknown. To
use this model in the diagnosis algorithm described later,
additional assumptions on this term is made.

If no leakage is present,pair,t will be constant when
both valves are closed. If a leakage is present or the
diagnostics valve is open,pair,t will adjust so that the
total pressure inside the tank is leveled with the atmo-
spheric pressure. During a pressure changepair,t will
not be constant. However, the model will not consider
the dynamics sopair,t denotes only the final value of the
partial air pressure from this point.

The model is a first order differential equation with a
simple solution. In this work it is only interesting to
study the cases when the purge valve is closed (P = 0).
The solution for the model with a closed purge valve is

y(t) = C1e
−at + C2

where

C2 = b(k1 + k2D + k4) + k1(p0
f + pair,t − pa)

a = k1 + k2D + k4

The parameterC2 is the final value of the exponential
function y(t). The final value is affected by both the
pressure sensor offset and the partial air pressure in the
fuel tank. For diagnostic purposes it is necessary to have
the final value only dependent of the partial pressure of
air. This can be accomplished by compensating the pres-
sure reading for the sensor bias level. The parametera
represents the time constant of the exponential function
and a larger leakage will causea to be higher.

Finally, since the diagnosis algorithm is working with
sampled data, a physical, time-discrete version of (1) is
needed. Here, a forward Euler approximation of the time
derivative is used for the transformation, i.e.:

ẏ ≈ y(t + 1)− y(t)
T



2.1 Model Validation and Noise modeling

As in any mathematical description of a physical pro-
cess, there exists modeling errors. Here, a simple noise
description of modeling errors is used. Also, with a noise
description of model uncertainties, systematic threshold
selection is possible based on false alarm rates or proba-
bility of missed detection. The model used here models
unknown dynamics by white Gaussian noisen(t) enter-
ing the model equation like this:

y(t + 1) = (1− T (k1 + k2D + k4))(y(t)− b)+
+ Tk1(p0

f + pair,t − pa)−
− Tk3Pf(pman(t), pft(t)) + n(t) (7)

This leads to a system model that can be written as a
linear regression:

y(t + 1) = ϕ(t)θ + n(t)

Parameter estimation will show to be a core part of the
diagnosis algorithm and ML-estimation of theθ param-
eter is particularly simple with this model structure. The
estimate can be written analytically as:

θ̂ = (ΦT Φ)−1ΦT Y (8)

whereY is a vector of all collected measurements andΦ
is a vector of all regression vectors. Also for this model
structure, a recursive estimation procedure is easily de-
rived, e.g. to get a more balanced processor load during
calculations.

When comparing model performance against data col-
lected from the real process, it becomes evident that for
large leakage areas the whiteness assumption does not
hold. However, large leakage holes is easy to detect and
therefore is model performance only really important
for really small holes. To evaluate model applicability,
a noise realization has been estimated when running the
model against data collected with a0.5mm sized leakage
hole. Figure 2 shows an estimate of amplitude distri-
bution and also an estimate of the covariance function.
In the figure it is seen that the amplitude distribution
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Fig. 2. Model validation by statistical analysis of model
residuals.

resembles a Gaussian distribution reasonably well and
also that there exists no major correlation betweenn(t)
andn(t+τ), τ 6= 0, i.e. the whiteness assumption seems
valid. This model performance is shown in Section 4 to
be good enough for the desired diagnosis performance.

3. DIAGNOSIS ALGORITHM

The model handles two types of faults, sensor bias fault
and leakage. The sensor bias is modeled as an additive
offset to the actual pressure value as in (5). It is suitable
to first estimate the sensor bias level since it can be
used for offset correction of the pressure data when the
leakage estimation is performed. The offset correction
leads to a more simple model structure for leakage
detection and good leakage detection performance. The
sensor bias level and leakage are estimated on a separate
data sets. The first data set is used for sensor bias level
estimation and it is sampled with an open diagnostics
valve to ensure that the fuel tank pressure is leveled with
the ambient pressure. To detect a leakage the diagnostics
valve has to be closed, and also a pressure difference
between the fuel tank and the ambient is introduced by
opening the purge valve.

A procedure that uses the model for detecting leakage is
proposed:

1. In the initial state the system is configured as
follows: purge valve closed, diagnostic valve open,
engine running.

2. A bias level of the pressure reading is estimated
based on an initial fuel tank pressure sampling
session.

3. A pressure difference is created by closing the di-
agnostics valve and opening the purge valve. The
purge valve is closed when a sufficient pressure dif-
ference has been created. It is clear, and also shown
in Section 3.3, that the larger pressure difference
that is created the better diagnosis performance
(assuming equal amount of data can be collected).

4. The fuel tank pressure sensor value is sampled at
a sufficient rate (10 Hz) for a suitable amount of
time (20 s). The sampled data is corrected by the
measured sensor bias.

5. Parameters in the leakage model are estimated
either online or after the sampling session. Two
methods are proposed.

6. A decision procedure with noise based thresholds
evaluates the parameter estimates.

Sample rates and sampling duration were experimen-
tally chosen. The leakage estimation can be performed
in two ways depending on how the model is used. Both
parameterstime constantandfinal valuecontain infor-
mation about a leakage presence. The model can be
used in two ways, making each of the parameters alone
sensible to a leakage. The two methods are described in
detail in Section 3.3 and 3.4.

3.1 Formal Problem Formulation

Now follows a formal problem formulation based on
classical hypothesis testing. As indicated in the algo-
rithm outline above, the bias detection and leakage de-
tection problem has been separated into two completely
separated problems, thus this formal description of the
diagnosis problem then consist of two hypothesis tests,
one for each fault.

The bias fault is parameterized in the model (7), by
the parameterb. The bias detection problem therefore
consists of deciding between the hypotheses

H0
b : b = 0 H1

b : b 6= 0



The parameterk4 is modeled to be proportional to leak-
age area, thus rendering a hypothesis test:

H0
l : k4 = 0 H1

b : k4 6= 0

Now, for each test, define a test quantity and a rejection
region to make the diagnosis decision. This means that
for testi, define a functionTi(y) and a rejection region
Si such that the null hypothesisH0

i is rejected when
y ∈ Si. Normally the rejection region is defined via a
thresholding test, e.g. rejectH0

i if

y ∈ Si ⇔ Ti(y) > Ji

Function Tb(y) and thresholdJb is defined in Sec-
tion 3.2, and two ways to defineTl andJl is described
in Sections 3.3 and 3.4.

3.2 Bias level estimation

The complete model was described in (7). The sensor
bias levelb is the target for the estimation. That is easiest
accomplished by removing the uncertainty of the term
containingpair,t, by opening the diagnostics valve. The
open valve will finally eliminate the pressure difference
between the fuel tank and the ambient, and thus make
the termk1(p0

f + pair,t − pa) zero.

The sensor bias level is estimated for two purposes:

1. to correct the data sequence in the leakage diagno-
sis

2. to detect pressure sensor failures. A large sensor
bias may indicate a sensor problem.

For pressure sensor diagnosis the test quantityTb(y) is
set to the bias estimatêb.

A sample sequence of tank pressure is taken when
the diagnostics valve is open and the data is used for
estimating the bias levelb. The model can be written in
a more general way as

y(t + 1) = y(t)(1− kT ) + bTk

wherek is the total time constant for the exponential
function.

The parameterΘ is estimated from the data sequence
y(t) as described in Section 2.1 with

Φ = [Y 1]

Θ =
[
1− kT
bkT

]
and the bias level is calculated as

Tb(y) = b̂ =
Θ̂2

1− Θ̂1

The sensor bias level is used for correcting the data
sequence for the leakage detection as

y? = y(t)− b̂

wherey?(t) denotes the second sampling session.

3.3 Time constant method

The first method for dectecting leakage estimates the
time constant of the exponential function in the model,
e.g the test quantityTl(y) is the estimate of the time

constant parameter. The model is first reduced using the
assumption that a leakage is always present. Also the
purge and diagnostics valves are closed and the data is
corrected for sensor bias. Starting from equation 7 and
removing zero-terms gives the following model:

y(t + 1) = y(t)(1− (k1 + k4)T ) + n(t)
The equation can be written in a more general form as

y(t + 1) = y(t)(1− kT ) + n(t) (9)

Since the model does not distinguish between the two
time constantsk1 andk4, they are replaced with a single
time constantk.

The solution to (9) is an exponential function with a final
value at zero and time constantk and thetime constant
procedure will fit this model to the sampled pressure
data. In the case where a leakage is present this model
is correct. In the case where no leakage is present the
fitted exponential will have a large time constant since
the sampled data will level out at a value well below
zero.

The parameter estimation procedure described in Sec-
tion 2.1 shall be used with

Φ = Y

Θ = 1− kT

The leakage time constant is derived by

Tl(y) = k̂ =
1− Θ̂

T

The final step is to find a thresholdJl, i.e. decide how big
Tl(y) can be beforeH0

l is rejected and a leakage alarm
is signalled. An alarm is signalled whenTl(y) > Jl.

For this threshold selection, a statistical analysis ofTl(y)
is necessary. Assume that the white Gaussian noisen(t)
in (7) has a varianceσ2

n. Under the assumption that the
model is correct, straightforward calculations give that
Tl(y) has a distribution

Tl(y) ∼ N(k,
σ2

n∑N
t=1 y2(t)

)

This expression gives that the variance of the estimate
varies with the size of the measurement signaly(t)
which is a natural situation, the more excitation, the
more accurate estimate. This variation in variance how-
ever makes it difficult to set a fixed threshold, inde-
pendent of system excitation and maintain a fixed sig-
nificance level of the test. To remedy this, anadaptive
threshold is selected as

Jl(y) =
1√∑N

t=1 y2(t)
J

whereJ is selected such thatP (|X| > J) < α where
X is anN(0, σ2

n) distributed stochastic variable andα is
the probability of false alarm.

It can be shown that, under the assumption that the
model is correct, the test quantityTl(y) is Universally
Most Powerful(UMP) (Casella and Berger, 1990), i.e. no
other test quantity can be better thanTl(y).

3.4 Final value method

The second method for detecting a leakage uses the
model property that a leakage will level the fuel tank



pressure to the ambient pressure and the test quantity
Tl(y) becomes the estimate of the final value of the ex-
ponential function. The model is used in its original form
as in equation 7, but with closed purge and diagnostics
valves (P = D = 0) and sensor bias correction:

y(t + 1) = y(t)(1− (k1 + k4)T )
+ k1T (p0

f + pair,t − pa) + n(t) (10)

or more generally:

y(t + 1) = (1− kT )y(t) + kTC + n(t)

wherek is the time constant andC the final value of
the exponentia functiony(t). An estimate ofC is used
for leakage detection. When a leakage is present,C will
reach zero or close to zero. In the case of no leakageC
will stay at a level well below zero.

Estimating the parameterC is done as described in
section 2.1 using

Φ = [Y 1]

Θ =
[
1− kT
kTC

]
The final valueC is the test quantity and is derived as

Tl(y) = Ĉ =
Θ̂2

1− Θ̂1

The decision procedure shall find a threshold where a
final valueC from evaporation can be separated from the
final value for the smallest detectable leakage wanted.

4. EVALUATION ON EXPERIMENTAL DATA

4.1 Experimental setup

Three sets of measurement data were taken in the engine
laboratory at Vehicular Systems, Linköping University
and in the laboratory of Mecel AB. The first set of data
used a SAAB 2.3 liter engine for creating the vacuum
and its control system Trionic 7 for controlling valves.
The Trionic 7 standard fuel tank pressure sensor was
used, mounted in a SAAB 9-5 fuel tank. The fuel tank
was prepared with a hole where bolts with different
sizes of drilled leakage holes could be mounted. Bolts
with leakage diameters 0, 0.5, 1.0, 2.0, 3.5 and 5.0
mm in diameter were used in the experiments. A data
collecting system sampled the signals fuel tank pressure,
diagnostics valve command and purge valve command
at a sampling rate of 10 Hz. The second and third sets
used the same fuel tank and a vacuum pump for pressure
control. Data were collected for no leak and 0.5 mm
only, to further examine the detectability between the
two.

Figure 3a shows fault free data. The time series is
divided into four sections, A through D. During the A
part, the diagnosis valve is open and the purge valve is
closed. This is the part where the sensor bias estimation
takes place. During the second part, the diagnosis valve
is closed and the purge valve is opened, creating the
desired pressure drop in the tank due to the low pressure
in the intake manifold of the engine. In the C-section,
both valves are closed and the pressure increases due
to evaporation of the fuel in the tank. If given enough
time, the pressure will stabilize when the fuel partial

pressure reaches its saturated level. Finally, in section D
the diagnosis valve is opened. Figure 3b shows a similar
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Fig. 3. Measured pressure traces

pressure plot where a 1mm leakage is present. There
is a clear difference in pressure characteristic in the C
section of the data and it is this portion of the data that
is used for leakage detection.

Now follows an evaluation of the two leakage detection
methods described in Section 3 on data collected with
leakages ranging from 0.5mm to 5mm in diameter.

4.2 Evaluation of the time constant method

Figure 4a shows the value of the estimated time constant
k for different leakage sizes. Figure 4b shows the value
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(a) Time constantk for
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Fig. 4. Evaluation of all leakages in time constant
method

of the normalized test quantityTl(y) for different leak-
age sizes. The data used in these two figures was sam-
pled by 10 Hz during 20 seconds, two sequences for each
leakage size. According to the modeling assumption,
the parameterk should be proportional to the leakage
area. This assumption seems valid since the test quantity
resembles ax2 curve, i.e. the area proportionality seems
to hold. Larger leakages,≥1 mm, are easy to detect but
the distinction between no leak and 0.5 mm need some
extra examination.

Data was collected at 5 Hz sampling rate during 20
seconds and eight sequences for leakage sizes 0 and 0.5
mm. The value of the test quantity is shown in Figure 5a.
There is a separation between the two data sets, but the



separation is small compared to the variation within each
data set. In an attempt to increase the separation, data
sets with longer duration was sampled to investigate how
much data is needed to securely detect 0.5mm sized
leakages. Figure 5b show the result from 60 seconds
sequence duration. The separation vs. variation is now
large enough (' 10 standard deviations) for highly reli-
able detection of the smallest holes. Using this method
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Fig. 5. The test quantityTl(y) for 0 and 0.5 mm leak.

it is possible to detect the smallest hole and separate all
leakages from the no leakage case indicating that more
than 20 and less than 60 seconds of data is needed to get
reliable detection.

4.3 Evaluation of the final value method

Estimation of the final value was done for all five cases, 0
- 5 mm leakage diameter. Results are shown in Figure 6.
There is an obvious separation between the≥1 mm
diameter leakage and the non-leakage cases. As the leak-
age gets larger, the final value estimate narrows around
zero. A smaller leakage, 0.5 mm, show a sensitivity in
the final value estimation and the worst value in this
case is in the same order as the highest non-leakage
value. Further investigations was done for the separation
between 0 and 0.5 mm leaks. First a larger number
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Fig. 6. The test quantityTl(y) for different leakage sizes.

of sequences was collected. Eight sequences, each 20
seconds duration at 5 Hz sampling rate, was collected
for both 0 and 0.5 mm leaks. The result is shown in
Figure 7a. The final value estimation is not good for 0.5
mm. There is no distinction between the sets. Increasing
the sampling duration to 60 seconds gives a totally dif-
ferent result as seen in Figure 7b which is similar to the
performance of the time-constant method.

The final value method can not be used to estimate the
size of the leakage, only to separate no leakage from
leakage. This because for all leakage sizes, the tank
pressure will finally end up at ambient pressure. The
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Fig. 7. The test quantityTl(y) for 0 and 0.5 mm leak.

estimation of final value is dependent on the pressure
drop in phase B (see Figure 3).

The two methods attack the problem in somewhat dif-
ferent ways, using different properties of the model for
diagnostic statements. In these tests the time constant
method proved to be most efficient but the final value
method may show advantages in other cases not covered
by these tests.

5. CONCLUSIONS

Leakage detection and sensor bias detection in a fuel
evaporative system for automotive vehicles has been
considered. A physical model is derived, modeling fuel
evaporation and flows through the purge valve into the
engine, flow through the diagnosis valve into the en-
vironment, and leakage flows. The model is used in a
systematic design procedure to derive two different diag-
nosis algorithms. The algorithms only utilize the model
structure and no model parameters need to be stored,
thus making the algorithm very stable against production
variations between different individuals.

The diagnosis system is evaluated in a laboratory en-
vironment with a production car engine and evapora-
tive system equipped with production sensors only. In
these tests, the time constant method proved to be the
most efficient and measured data indicates that it needs
less data than the final-value method. Both algorithms
presented in the paper successfully detect leakages as
small as 1 mm in diameter using data collected during
20 seconds. For detecting a 0.5 mm leakage, longer data
sequences is needed to perform reliable detection. In the
experiments 60 seconds of data proved to provide very
reliable detection of 0.5mm sized leakages. For more
realistic performance, significantly less than 60 seconds
of data is needed.
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