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Abstract: Cylinder pressure simulation has grown to become an important tool when de-
veloping and evaluating new engine concepts and control strategies. A new formulation of
zero-dimensional multi-zone models is developed and described. A general model structure
is formulated that rely on a set of differential algebraic equations that are easy to solve. The
selected formulation also results in models that are easy to scale, i.e. add new zones, and to
increase complexity, which is a result of the selected structure. A number of important issues
that can cause problems when simulating the model are treated. It is shown: a) How a new
zone is initialized. b) How variables of varying magnitude can be scaled to avoid numerical
difficulties. ¢) How numerical errors accumulated during the simulation can be reduced by
using a set of consistency equations.
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1. INTRODUCTION is: a) zero dimensional since it does not take spatial
variations in the zones into account, b) multi zone since

. ] o ) the cylinder is divided into a number of zones. These
Cylinder pressure simulation is an important tool whegye homogeneous, isolated, and have their individual

developing and evaluating new engine concepts afidrmodynamic properties. It should be mentioned that
control strategies. Cylinder pressure models are derivgd underlying structure of the model is the same as
from the first law of thermodynamics which connectgost other models presented in the literature, so the
the thermodynamic properties such as pressure and teigiel is not new in itself; instead, it is the formulation
perature to the engine revolutions. These models hauMgt is new. A general model structure is formulated that
been developed with different complexity and are usegly on a set of differential algebraic equations that are
in a wide range of applications from analysis of engingssy to solve. The selected formulation also results in
data from test-benches to predicting the performangRydels that are easy to scale, i.e. add new zones, and

of new engine concepts. The models are currently t@9increase complexity, which is a result of the selected
complex to be implemented directly in engine managgrycture.

ment systems and are mainly used in laboratories and ) ) )

for off-line simulations. However, the computationaf* Wide variety of models have been described in the
power of the computerized control systems is steadli{grature (Ramos, 1989; Keating, 1993; Turns, 2000),
increasing and will in the foreseeable future enable refd the user of the model can choose among a number
time implementations of these models. This opens @pmodels of varying complexity and select the model

combustion process. enhanced with the new formulation. In addition, this

) ) . paper also shows how to handle a number of practical
Here, a new formulation of zero-dimensional multi-

zone models is developed and described. The model



p_roblems that arise when the general model is used iarff'd according to the definitioégi’ﬁ) = ¢, (Kittel
simulation. ) iJp T
and Kroemer, 1980). Equation (2) together with (3), (4),

(5), and (6) gives:
pdVi+c;dp+d;dT; = _in+Z(hij_h/i+RiTi)dmij

2. THE MULTI-ZONE COMBUSTION MODEL por
(7)
Consider a system witly zones. The whole system hagyhere
a certain volume, pressure and mdssy, andm). The
pressure is assumed to be homogeneous throughout the., — .7, i (‘9&) + (aRi>
combustion chamber. Each zone has its own volume, p \OT; p op T

temperature, mas$/{, 7;, andm; for zonei) and gas OR;
Cp — Rl — Ti ( )
p

composition. The change in system volume and the di =m; T,
mass transfer from zongto zonej (dV and dm;;

respectively) are assumed to be known, and the ma$g ideal gas law in differentiated form gives the last

of a zone can easily be determined by integrating taguation needed to get an unambiguous equation sys-
mass flows in and out of the zone. The change of tfgy,:

remaining quantitiesy( 7; andV;, 7 =1,2,..., N) are

unknown and are to be determined. pdVi + aidp + b;dT; = RT Z dmg; 8)

J#i
The system consists of N zones. Therefore we know that .o
the sum of allV;, i = 1,2,..., N, must be the same as

the volume of the whole system, i.e. w—=vl1-2 OR;
7 7 Rz ap r
> dvi =dv (1) OR.
i bimi<Ri+E(aT%) )
The energy balance equation for zonés given by top
(Sonntaget al, 1998): Equation (1), (7), and (8) make a system2¥ + 1
dU; = —dQ; — dW; + Z dimg;hi; ?) ordinary differential equations. In these equations, the

right hand side of the equality signs are known from the
previous step, while the differentials on the left hand
wheredQ); is the heat transfer from the zoné}’; the side are to be determined. The differentials on the left
work done by the gas which #lV; = pdv;, andh;; hand side are linear in the unknowns, and the system
the enthalpy of the gas that enters the zone — or leaggs thus be expressed

if dm;; is negative. The internal energy is:

JF

Adz =B C))
dU; = my; duy +Zuidmij (3) where dx is a vector containing all the unknowns.
j#i Selectingdz to

Since the gas composition is not necessarily fix; do = [dpdVydTy ... dVy dTy]"
depends on both temperature and pressure: yields the followingA- andB-matrix:
Ouy; Ju; 010...10

du;(p,T;) = d dr; (4

. cC1 p d1 ...0 0
From the second law of thermodynamics: A= .,

and the Maxwell relations (Finn, 1998), the first term in ey 0.0 ...pdy

(4) can be derived: av
du; 0s; ov; Ry Z dmy;
6 == E 6_ — p 8 = 1#1
P T; P T; p T; 7dQ1 —+ Z(hh —hy + RlTl)dWLM
__T <8w) . (3%) - —
"\ OT; » ) g, B =
2 , .
p \ OT; » Op T =
The second term in (4) is ~dQn + Y (hni — hy + RyT)dmuy;
i#£N

Qui\ _ (Ohi\ _ R_T OR; (©) The state variable differentialdy:, are determined by
T ), on), 1 T\aT ), solving the system of linear equations (9). The state



variables can thereafter be calculated by numerical ife make this true for all mass flow#,; has to be

tegration. equal toh; as long asdm;; # 0. Therefore, the
initial temperature can be found by solving the equation
hi(Tiinit) = hij (T}).

The equatiorh;; = h; may not be solved analytically.

There are some problems that have to be solved beflrihis is the case, the Newton-Raphson method can be
equation system (9) can be used in a simulation. THeeful:

3. SIMULATION ASPECTS

problems are: (T)ns1 = (Ti)n — f((T3)n)
. o ' (T5)n)
1. Non-existent zones — In the beginning of the com-
bustion simulation, one or more zones may bvghere
non-existent. For example, there exist no burned F(T)n) =hi(Ti)n) — hij(Ty) (14)
gas zone before any gas has been combusted. F'(T)n) = cpi((Ti)n)

N

. lll-conditionedA-matrix

3. :\Z(t:itéracy limitations due to finite precision anth;&l.z. Solving the initial equation systemIf there is

: . a zone without any mass, equation system (9) will not
4. Big relative error ofV; andm;, due to accumula- . . -
. . have any unique solution, and are thus to be modified.
tion of calculation errors ! )
Combine the two rows of the equation system that
Solutions to these problems for fixed gas compositigescribe the behavior of zongand eliminatelT;. This
are discussed below. The procedures can in most cagiees
easily be extended to cover variable gas composition as

well. Vidp + vipdV = R;T; Z dm;; +m;T;dR;+
J#i

3.1 Empty zones — Initializing a new zone +(yi—1) | —dQ; + Z (hij — hi + RiT;) dmi;
Seeing that the determinant &fis 7 (15)

N N

det A= —p"N " [mi- D (Vjcm 11 Cp,k:) (10) wherey; = CC—JrR (the ratio of specific heats). Set

=1 =1 k£ m; = 0, then the volume of zongis V; = 0, h;; = h;
there will always exist a unique solution to the system ahdd(@; = 0. Equation (15) can thus be simplified into:
linear equations aslongasall;, #0,:=1,2,..., N,
since at least on&; # 0. This means that once the pdV; = RiT; Z dmg; (16)
combustion simulation has started, it runs smoothly J#i

using equation system (9). One question is what thfgie two rows for zoné in the equation system are re-
temperature of the burned fuel is whem, — 0%, placed with equation (16). Now, the resulting equation

which is the case at the start of combustion. Anothgystem consisting af N equations can be solved.
problem when dealing with empty zones is to determine

its state variable differentials, since the equation systérfi€ temperature of the zone in the next simulation step
can not be completely solved wheris singular. is given from the other state variables by use of the ideal

gas law.

3.1.1. Initial temperature of the burned gas The

guestion about the initial temperature can be answered

simply by studying the energy balance equation (2) ale? lll-conditioned matrix — Adaptive scaling

the ideal gas law (8) for zoné At the initial state

m; = V; = 0 anddQ; = 0. It follows that: There are large differences in magnitudes between the

elements in the\-matrix, since the pressure and tem-
pdV;+0-dp+0-dT; = *O+Z(hij —hi+RiTi)dmij  perature values are much greater than the volume and
7 (11) mass values. This makes scaling of the state variables

necessary. By a fix scaling, the equation system will be
solvable in most cases, but there is still a risk of getting

pdVi+0-dp+0-dT, = RiT; Y dmi;  (12) amatrix that is so badly conditioned that the numerical

and

J#i solution toAz = B will be highly unreliable. A better
Combining equation (11) and (12) gives: way to handle this is to use a scaling that adapts to the
RT, Z dmy; = Z (hij — hi + RiTy)dms, size of the state variables.
£ i The temperatures and pressure change with about the
(13) same speed, while the volume and mass in each zone
Z(hiﬂ' — hi)dm;; =0 are highly correlated. An example of a feasible scaling

i is therefore:



P = spp dp’ = s,dp _ miRiTh+ ...+ myRyTN

T = SpT dT' = Sp dT vV

Vi =5V, AV} =s;dV; 17 - mi Ry Ty

m, = s;m; dmj = s;dm; p 18)
wheres, ands; are scaling factors determined in such ' myRByTx
away thaty’ = 1 andm) = k;, i = 1,2,...,N in VN:T

each step. It can be shown that using this scaling has

the same effect as multiplying the left hand side of each

row, except the very first, in equation system (9), with 4. THE TWO-ZONE COMBUSTION MODEL

a scaling factorq,s;). Thus, the rows on the right hand

side have to be multiplied with the same scaling factorgg exemplify how the model can be used, it is applied
The first row has to be treated somewhat differently. ¢y a two-zone system with fix gas compositions. In a

is rewritten in the following way: two-zone system, the cylinder gas is divided into two
N zones; unburned: and burnedy) gas. The two zones
Z 1 V' = dv are considered fully separate, and may therefore have
— s ! different compositions as well as temperature. There is

only one mass flow; a mass transport from the unburned
The scaled state variablés’ are determined by solvingto the burned zone. The gas is combusted at the moment
the resulting equation systeiidz’ = B’. Thereafter, when it leaves the unburned zone and enters the burned
dz’ are transformed back tor. zone. This implies that,, = hy, = h,. Since changes

in gas composition due to pressure and temperature are

neglected, and the gas that enters the burned zone has

the same composition as the gas already in the zone,

dR = 0.

3.3 Finite precision — Exclusion of zones According to the discussion above the multi-zone

model can be simplified into the two-zone model (19).
If a zone is very small, it is difficult for the software in

use to handle the calculations correctly. For example,
the outcome of the calculation of— ¢ is set to 1 even 4 1 simulation
thoughle| > 0, if € is a sufficiently small number. One

of the consequences is that the mass of a zone mightip two-zone model has been implemented and simu-
set to zero even though itis still greater than zero.  |ated in the crank angle domain. The mathematical tool

A zone with no mass is the same as a non-existent zo#ged in the simulation was MLAB 5.3. For the numer-
and according to (10) thé-matrix is singular. Thus, ical solution to the differential equation, theAviLAB
the equations for the zone have to be excluded from fidlt-in function‘ode’ was used. The following assump-
equation system. This is done by removing the two roW/gns were made in addition to the previous ones:
and two columns referring to the zone in thematrix, 1 The mass fraction burned is described by a Wiebe
t_he two rows in theéB-vector, a_mderi _anddTZ- from the function (Heywood, 1988).
list of differentiated state variables ifx. 2. The Wiebe parametersn( a and Af) are de-

termined according to the method presented in

(Eriksson, 1999), and the ignition angle is set to

20°.

3. The fuel becomes completely combusted during
3.4 Accumulated faults — Consistency equations the combustion phase.
4. There is no heat transfer to the surroundings, nor

The model consists of a set of differential equations, between the zones.
which has to be solved numerically. There are severab. The unburned zone contains a mixture of isooc-
methods to do this, but regardless how well the chosen tane and air, which stochiometric air/fuel ratio is
method performs, it will never be completely accurate. X\ =1.
Tiny local errors in each step may result in a great6. The burned gas consists of 14.0%0 12.5%
relative global fault in the end, if the variable concerned  CO0,, and 73.5% N. Its gas constant is 292.
decreases to a small value. A way of avoiding drifting 7. The heat capacity and enthalpy are depending
of variables without reducing the time step, is to check solely on temperature, not pressure (follows from
the variables consistency and correct them if needed. the fixed gas composition assumption).

By using the ideal gas law, and knowing that the suirhe equation system was scaled adaptively according
of all zone volumes is the same as the cylinder volume, the method described in section 3.2, and then solved
the following equations are derived that can be usedlp Gaussian elimination. The volume of the unburned
check the consistency: fuel (V) risked getting a big relative error in the end



dV, + dV, =dV
Vudp + pdVy, — my R, dT,, = R,T, dmyy,

p qu + MyCou dTu = _dQu + (hub - uu) dmub (19)
Vbdp + p dVb - mbRdeb = RbTb dmbu
pdVy + MpCy b dTy = —de + (hbu — ub) dmp,

of the combustion phase. This was avoided thanks =
the use of the consistency equation ¥Qr, as described

in section 3.4. In the initial phase of the combustio |
the burned zone was non-existent as it had no ma
Therefore, the calculations had to be carried out
described in Section 3.1. The initial temperature of t
burned gas7;, was determined by solving, (T3,) =
hy(Tp).

The simulation results are shown in Figure 1 and Fi
ure 2. As can be seen, the shape of the simulated pt
sure curve and the measured pressure curve coinc
guite well. The maximum pressures differ from eac °
other, which could be expected since the heat trans
has been neglected in the simulation and fix gas co o——L,——. = . = - =
position is assumed. Another reason is that in a re.. Crank angles in degrees

engine, about 5% of the fuel remains unburned duri
the whole combustion. At50° after TDC, there is a
pressure drop in the measured curve due to the gas
exchange. This phase is not included in the simulation
model, and therefore the pressure remains fairly con-
stant at this angle. At abotit° after TDC, the mass of
the unburned zone is so small that numerical operatioh® The adaptive scaling

can not be carried out correctly (discussed in subsection

3.3). At this point, the two equations for the unburnetihe outcome of the simulation described in the previous
zone are removed from equation system (19), leaviggbsection is used to show the effectiveness of the adap-
the equation system with only three equations — onetie scaling. Without any kind of scaling, the condition
them being the triviadlV,, = dV'. number for theA-matrix is 10'¢ or greater, which is
shown in Figure 3. The condition number is very high in
the beginning of the combustion simulation, caused by
the small value ofn;. The local maximum a20° after
TDC coincide with the pressure maximum. In the end of
the combustion, the condition number increases rapidly
again, since the mass of the unburned fugl— 0.

20

Pressure [bar]
&

=
o

r|1=9g. 2. Cylinder pressure as function of crank angle.
The solid line shows the result from the simulation

(same as in Figure 1), and the dashed line mea-
sured data from a SAAB 2.3 | naturally aspirated

engine with compression ratiQ = 10.1.
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Fig. 1. Simulation results showing burned (upper curv
and unburned gas temperatures as function
crank angle. Inlet manifold pressure was set =
50 kPa, residual gas fraction to 7% and ignitio ‘> © o Cr;onkanglég N deggges w @
angle ta20° before TDC. The cylinder gas consists
of a mixture of air and isooctan, with normalizegig. 3. Condition number for the unscalédmatrix.
air-fuel ratioA = 1. At about50° after TDC, the
unburned zone is treated as non-existent.

107

In Figure 4, theA-matrix has been scaled adaptively
according to (17). Four different combinations igf



values are shown. K; = R;, theb;-values are equal toto easily add and remove zones while maintaining the
one, and ig; = ¢, ; thed, values are equal to one. Thestructure. A number of important issues that can give
lowest condition number is achieved in the latter caggroblems when simulating the model are also treated.

For this choice ok; the condition number never gets a

high as5 - 10%. Even with the worst choice of these fourE)ne issue is the initialization of a new zone. The most

: ” o o significant example of initialization is the initiation of
it stays beneath - 10°, which is a major improvement :
the burned gas zone. It is shown how the state of the

from the unscaled case. S : . i
gas can be initiated in two steps, simply by studying the
equations for the zone. Another issue arise due to the
large differences in magnitude between the variables.

//—\ This can result in numerical problems when simulating
ol | the system on a computer with finite precision. It is
shown that the numerical difficulties can be avoided
by proper scaling of the variables. The final issue is
Al | how faults, accumulated during the simulation, can be
reduced by utilizing a set of consistency equations. For
each zone one consistency equation can be formulated
using the ideal gas law.
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e
5

Simulation results from a two-zone model are compared
R E with measured engine pressure data, which illustrates
eIl how the presented formulation can be applied. The

4 - -

10

0 0 10 w 40 50 o simulation result is used to indicate the strength of the
Crank angles in degrees . .
adaptive scaling.

Fig. 4. Condition number for thé&-matrix after being
scaled adaptively wittk,, = k;, = 1 (solid line),
k, = R, andk, = R, (dotted),k, = c,, and 7. REFERENCES
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5. USE OF MODEL IN OTHER PHASES THAN
THE COMBUSTION PHASE

6. CONCLUSIONS

A new formulation of zero-dimensional multi-zone
models is presented. The formulation has a clear and
simple structure which enables the user of the model



