
Heavy-duty truck battery failure prognostics using
random survival forests

Sergii Voronov, Daniel Jung, and Erik Frisk

Department of Electrical Engineering, Linköping University, Sweden
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Abstract: Predicting lead-acid battery failure is important for heavy-duty trucks to avoid unplanned stops
by the road. There are large amount of data from trucks in operation, however, data is not closely related
to battery health which makes battery prognostic challenging. A new method for identifying important
variables for battery failure prognosis using random survival forests is proposed. Important variables are
identified and the results of the proposed method are compared to existing variable selection methods.
This approach is applied to generate a prognosis model for lead-acid battery failure in trucks and the
results are analyzed.
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1. INTRODUCTION

Heavy-duty trucks are important for transporting goods, working
at mines, or construction sites and it is vital that vehicles have a
high degree of availability. In particular, this means to avoiding
unplanned stops by the road which does not only cost due to the
delay in delivery, but can also lead to damaged cargo.

One cause of unplanned stops is a failure in the electrical power
system, and in particular the lead-acid starter battery. The main
purpose of the battery is to power the starter motor to get the
diesel engine running, but it is also used to, for example, power
auxiliary units such as heating and kitchen equipment.

Prognostics and health management is an important part to pre-
vent unexpected failures by more flexible maintenance planning.
The purpose is to replace the battery before it fails but avoid
changing it too often. Coarsely, there are two main approaches
in prognostics, data-driven and model-based techniques but
also hybrid approaches that combines the two are possible.
Model-based prognostics utilizes a model of the monitored
system and the fault to monitor to predict the degradation rate
and Remaining Useful Life (RUL), see for example (Daigle
and Goebel, 2011). Statistical data-driven methods generate a
prediction model based on training data to predict RUL, see for
example (Si et al., 2011), and is the approach followed here.

The main contribution in this work is a data-driven method
to identify important variables from a set of variables, where
many are not relevant for lead-acid battery failure prognosis,
and use them to build prognostic models. The goal is to find
important variables to design a battery failure prognostics model
for automotive applications based on random survival forests
(Ishwaran et al., 2008). This type of analysis is also important to
better understand which factors that are correlated with battery
failure rate and also what is causing it.

The outline is as follows. The problem is motivated in Section 2
and some background on random survival forests and variable
importance are given in Section 3. Evaluation of existing
methods for variable importance in random survival forests is
presented in Section 4 showing the need for methodological
developments in variables selection. The proposed variable

selection method is described in Section 5. Then, the method is
analyzed in detail in Section 6 and used to generate a random
survival forest prognostic model in Section 7. Finally, some
conclusions are presented in Section 8.

2. PROBLEM MOTIVATION

The prognostic problem studied here is to estimate a battery
lifetime prediction function based on recorded vehicle data. The
lifetime prediction function is defined as

Bν(t; t0) = P (T > t+ t0 | T ≥ t0, ν)
where T is the random variable failure time of the battery and ν
the vehicle data at t = t0. The function Bν(t; t0) is a function of
t and gives the probability that the battery will function at least
t time units after t0. The data ν is recorded operational data for
a specific vehicle which is further described in Section 2.1.

The reliability function (Cox and Oakes, 1984) is defined as
R(t) = P (T ≥ t) (1)

which is the probability that the battery of the specific vehicle
will survive at least t time units. Then, the battery lifetime
prediction function can be rewritten using the reliability function
as

Bν(t; t0) = P (T > t+ t0 | T ≥ t0, ν) =
Rν(t+ t0)

Rν(t0)
. (2)

Random Survival Forests (RSF) is a data-driven method that
can be used for computing maximum-likelihood estimates of the
reliability function, as illustrated by Fig. 1. The main objective
in this work is to use Random Survival Forests to identify, from
data, which vehicle data that is relevant for building RSF models
to predict battery failures.

2.1 Operational data

In this work a vehicle fleet database is provided, where one
snapshot of data is available from each vehicle including
information regarding how the truck has been used and the
configuration of the specific truck. There is also information
if the battery has failed or not. The database contains a lot
of information from the truck, not always related to battery
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Fig. 1. A random survival forest computes the maximum
likelihood estimate R̂ν(t) of the reliability function given a
vehicle represented by the data ν. With the estimate R̂ν(t),
the battery lifetime prediction function Bν(t; t0) in (2) can
be computed.

degradation, meaning that it is not known what available
information is relevant for this specific task. Therefore, it is
relevant to identify which variables are relevant for predicting
battery lifetime. Previous works considering this vehicle data set
are presented in (Frisk et al., 2014) and (Frisk and Krysander,
2015).

The choice of using RSF is motivated by the properties of the
available database. Its main characteristics can be summarized
as follows:

• 33603 vehicles from 5 EU markets
• 284 variables stored for each vehicle snapshot
• A single snapshot per vehicle
• Heterogeneous data, i.e., it is a mixture of categorical and

numerical data
• Availability of histogram variables
• Censoring rate more than 90 percent
• Significant missing rate

The database contains different types of variables, including
both categorical and numerical data. The censoring rate refers
to that less than 10 percent of the vehicles in the database have
had battery failures. This means that for most vehicles it is not
known how long the battery will last. Also, there is a significant
amount of missing data for the different vehicles, a property of
database handled by RSF. One reason for the missing rate is due
to the fact that data was recorded for different type of vehicles
for which some variables are not applicable.

Another main characteristic of the database is that there are no
time series available for a vehicle. It means that there is only
one snapshot ν of the variables in the database for each vehicle.
Information describing how the vehicle has been used is stored
as histogram data where different variables represent how often
specific sensor data is measured within different intervals. For
example, there is a histogram describing how much time the
vehicle has been subjected to different ambient temperatures.

When applying RSF to the data in the database, the objective
is to find classes of vehicles with similar battery degradation
properties. The reliability computed for a given class is an
approximation of the true vehicle reliability which can be used
to prognose battery failure. Due to the non-specific purpose of
the database, it is probable that only small number of variables
from set ν influence prediction of the battery failure rate. Thus,
identifying the important variables in order to remove irrelevant
ones, may improve the performance of a battery prognosis model.
This problem is considered and explained in the successive
subsection.

2.2 Variable selection using Random Survival Forests

The problem of identifying a set of important variables from
a large set of variables is a relevant topic in machine learning,
usually referred to as variable, or feature, selection, see (Guyon

and Elisseeff, 2003). There are several reasons why variable
selection is important when working with data-driven models.
First, it is possible to improve the prediction performance by
reducing the number of variables, for example, the quality of
the predictor may become bad if the number of noisy variables
(those that have no effect on battery failures) is large.

In the following illustrative example, two RSF are trained using
synthetic data to show how the number of noisy variables can
have a negative impact on prognostics performance.

Synthetic data is created with the following properties. Let h0 be
a constant nominal hazard rate h0 for battery failure. The hazard
rate

h(t) = lim
dt→0

P (t ≤ T < t+ dt | t ≤ T )
dt

(3)

represents the probability of a battery failure at a particular time
t, see (Cox and Oakes, 1984) for more details. In this example,
the hazard rate does not change with time and the nominal
hazard rate corresponds to an expected 10 years of battery life.
It is assumed that there is one variable v1 that explains how
vehicle usage profile influences failure rate and changes h0 to
three hazard rates

h =


1 · h0, if v1 = 1

2 · h0, if v1 = 2

3 · h0, if v1 = 3.

(4)

The scaling factors show how particular usage of the vehicle,
described by v1, changes the failure rate. Thus, there are three
classes of batteries with different degradation profiles. Data
for 3000 vehicles is generated with a censoring rate about 80
percent. The censoring rate is selected high to resemble the real
vehicle database since censoring rate significantly affects the
prediction performance of the RSF model. Two models with
different numbers of noisy variables are considered to observe
how it changes the RSF prediction.

In the first dataset, two noisy variables are added in addition to
v1, and in the second dataset, 100 noisy variable are added to
v1. After generating two RSF models, one for each dataset, one
vehicle from each degradation profile is sampled from validation
data and fed to the forest to generate predictions. It is shown
in Fig. 2 (a) that predictions from the RSF for the case of 2
noisy variables (dashed blue curves) are following the theoretical
reliability functions (red solid curves) significantly better than
the predictions from the RSF for the case with 100 noisy
variables, see Fig. 2 (b). Note that comparing the results shows
a larger number of noisy variables results in worse prediction.
The estimated reliability functions follow the theoretical values
better with fewer noisy variables. This is something that can be
expected.

One measure to evaluate prediction performance of RSF is
error rate which should be low and is discussed further in
Section 3. The error rate for the case with two noisy variables
is 0.4088, for the case with 100 noisy variables is 0.4188. An
important observation is that both cases give comparable error
rates. However, Fig. 2 shows that there is a significant difference
between the two predictors indicating the limitations of using
error rate as a performance measure. The given situation happens
due to the fact that for the case with a large number of noisy
variables, it is hard for the model-building algorithm to find the
relevant variables.

This example is illustrative, showing the effects of keeping a
lot of noisy variables when generating the RSF model. The true
reliability curves are in general unknown but the evaluation
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(a) Model 1. Important variable v1 and
2 noisy.
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(b) Model 2. Important variable v1
and 100 noisy.

Fig. 2. Predictive performance of RSF for different amount of
noisy variables evaluated on synthetic data. Blue dashed
curves correspond to RSF predictions, red solid curves - to
theoretical reliabilities.

Table 1. Example of forest generation time given
different number of variables.

Number of variables Time (s)
3 41.6

51 104.3
101 165.9
201 275.19

using the simulated data shows the advantage of reducing the
number of noisy variables to improve prediction performance. It
motivates the relevance of finding the important variables in a
set of data and at the same time remove noisy variables.

A second motivation for variable selection is better interpretabil-
ity of the results. It is often useful to understand which factors
are important for battery failure to utilize this knowledge, for
instance, for engineers to improve the design of the vehicle to
mitigate degradation of the battery, or to design better models
for understanding battery degradation. The interpretability of
the model is easier when the model is based on fewer variables.

A third motivation is to reduce model generation time. By
reducing the number of variables used for generating the RSF,
computational time can be saved. Table 1 shows time spent to
grow random survival forest models for different number of
variables on a standalone PC. There is a linear dependence of
time on number of variables.

The motivations discussed in this subsection show that variable
selection is a relevant problem when generating prognosis
models.

3. RANDOM SURVIVAL FORESTS

Random survival forest is here used to make predictions of
battery degradation in terms of the lifetime function Bν(t, t0) in
(2). This section will give a brief overview of the basic principles
and describe what are the basic tools for variables selection
related to the given method. RSF was first introduced by
(Ishwaran et al., 2008). It is a survival analysis (Cox and Oakes,
1984) extension of a machine learning method called Random
Forest (RF) (Breiman, 2001) which is a decision tree based
classifier mostly used for regression and classification problems.
In this work, the RSF models are generated in R using the
RandomForestSRC package (Ishwaran and Kogalur, 2007).

The difference between an ordinary decision tree classifier and a
random forest is that there is randomness of two kinds injected
into the process of growing the forest. The first source is the

usage of a bootstrap procedure. Each tree is grown using its own
bag of cases which are sampled from the training set. Second,
for each node in a tree, splitting variables are selected from
a randomly sampled subset. RSF extends the RF approach to
right-censored survival data, i.e., objects in the study without
experiencing a failure. The output from each tree T is the Nelson-
Aalen estimate of cumulative hazard function (Cox and Oakes,
1984).

Let tT1 < tT2 < . . . < tTN be N distinct event times when
failures of objects under study occur. Then, the Nelson-Aalen
estimate for tree T and vehicle (data) ν is

ĤT (t|ν) =
∑
tT
j
≤t

fj,ni
sj,ni

(5)

where fj,ni and sj,ni are number of failures and survived objects
in terminal node ni of a tree T at event time tTj respectively.
Terminal node ni is determined by dropping vehicle ν down
through the forest. The cumulative hazard estimate Ĥ(t|ν) for
the whole forest is received by averaging over all ĤT (t|ν).
Finally, reliability function Rν(t) from (2) obtained from the
fact

Rν(t) = e−Ĥ(t|ν) (6)
and then Bν(t; t0) can be computed from (2).

3.1 Prediction error

A performance measure of the RSF is the prediction error
(Ishwaran and Kogalur, 2007). It estimates the probability that
for two randomly selected out of bag objects, i.e., not used in
growing the forest, RSF incorrectly ranks the battery lifetime.
It should be noted that prediction error does not fully capture
performance of the model. The example in Section 2 shows that
the two RSF models generate predictions with similar prediction
error. However, it is shown in Fig. 2 that the quality of the
predictions is significantly different.

3.2 Measures of variable importance and RSF

There is a tool incorporated in RSF called variable importance
VIMP. It measures for a given variable the increase in prediction
error when the variable is randomized when used as a splitting
variable in the forest. A larger increase indicates that the variable
is important for correct classification while a low increase (or
even a decrease) in prediction error indicates that the variable is
not important.

VIMP is a candidate tool for variable selection by selecting
a subset of variables with sufficiently high VIMP values. The
variable selection can be done by manually selecting a threshold
to separate important from noisy variables. However, previous
analyses, (Ishwaran et al., 2011), have shown that VIMP can
have problems when there are many correlated variables, a
situation that is expected in our case. If several important
variables are correlated they will share importance and the
computed VIMP will be low even if the variables are important.
Thus, there is a risk that important variables will be lost
and result in degraded prediction performance. It should be
noted that it is not necessary that VIMP fails in our case, but
uncertainty motivates an investigation of an alternative approach
in selecting important variables.

As an alternative to VIMP, a candidate measure called minimal
depth for variable selection in RSF has been proposed (Ishwaran



et al., 2010, 2011). Minimal depth for variable v is the distance
from the root to the closest node where it appears. The moti-
vation for this measure is that important variables should have
a higher probability to be selected as splitting variables at low
levels, close to the root, when generating trees. Thus, the average
minimal depth for important variables in the forest should be
lower compared to noisy variables. A distribution for minimal
depth Dv of noisy variables can be derived as (Ishwaran et al.,
2010, 2011)

P (Dv = d | v is noisy variable) =

=

(
1− 1

p

)Ld [
1−

(
1− 1

p

)ld]
, 0 ≤ d ≤ D(T )− 1 (7)

where D(T ) is a depth of a tree, ld is number of nodes at depth
d, Ld = l0 + l1 + . . . + ld−1 and p is number of variables
chosen to split node. Then, a threshold to separate important
variables from noisy variables can be selected as the mean value
for variable distribution (7). If the minimal depth measure of a
variable mean value is less than the threshold, it is treated as
important, otherwise as noise. The minimal depth measure is
evaluated in (Ishwaran et al., 2010) and (Ishwaran et al., 2011)
where it is shown to be successful for finding important variables
in problems with few important variables and large number of
noisy ones, even when the data set is relatively small.

4. VIMP AND MINIMAL DEPTH EVALUATION

VIMP and minimal depth are used to analyze the variables in
the vehicle database. For the analysis, three random variables
were generated and included into the database to evaluate if
the two approaches are able to identify them as non-important.
VIMP is evaluated and the value for different variables is
shown in Fig. 3. Large positive values correspond to important
variables, while values close to zero or negative to non-important
variables. To compare the different variable selection methods,
five specific variables in the database are highlighted. Four of
them are variables that can intuitively contain information about
battery degradation. The first one shows if there are battery
powered kitchen facilities in a truck, idnicating that the barrery
is used not only for starting the combustion engine. Low batttery
voltages and low temperatures are important for battery health,
and the second variable is therefore a histogram bin with low
temperatures of battery voltage histogram. Further, starter motor
time and road slope are two bins from respective histograms
where first one correlates with battery load and the second one
with vehicle usage. The last variable, noise, is one of the added
noisy variables and used for testing purposes. It could be seen in
Fig. 3 that battery voltage and kitchen equipment are identified
as important and noise variable as non-important. It is a positive
sign. However, there is no confidence that road slope and starter
motor time are not important, because of the problem of the
correlated variables VIMP has.

The minimal depth approach is applied to the vehicle database
using the recommended configuration described in (Ishwaran
et al., 2011). The result of the minimal depth approach is shown
in Fig. 4. The x-axis is the mean minimal depth and the y-axis
show the mean value of the second minimal depth. Second
minimal depth is the distance to the root from a node, in another
branch of the tree, where the variable appears the second time.
Important variables are thus expected to appear in the lower
left corner and non-important in the upper right. The computed
threshold, based on (7), is shown as the red vertical line. Most
variables are located below the threshold, including the known
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noisy variable, meaning that the variable selection is not able to
distinguish the important variables from noisy variables.
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Fig. 4. Minimal depth approach applied to vehicle database
where x axis corresponds to mean value of the first
appearance of a variable in a tree, y axis corresponds to
mean value of the second appearance of a variable in a tree.
Dashed red line is a threshold that separates important and
non-important variables. Important ones should lay to the
left from the threshold.

The minimal depth of one of the noisy variables shown as a
blue cross in Fig. 4 and is located lower than the computed
threshold. The other two noisy variables have similar positions.
The minimal depth approach was not able to remove the
noisy variables and did not work satisfactory. The previous
results presented in (Ishwaran et al., 2011) were based on
medical databases. There could be several reasons for different
performances where different types of data in the databases
could be one reason. Another is the censoring rate, which for the
vehicle database is more than 90 percent and much higher than
considered in the previous paper. The analysis shows that there
seem to be limitations with the existing proposed importance
measures and that they are not suitable in this case.
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5. MEASURE FOR VARIABLE SELECTION

Due to the limitations using the VIMP and minimal depth
measures, as discussed in the previous section, a new measure of
variable importance is proposed. The principle of the proposed
measure is similar to minimal depth but considers not the mean
of the first appearance of a variable in a tree, but that the
probability that a splitting variable is used varies with different
levels of the tree. An important variable should be used more
often as a splitting variable at lower tree levels, close to the root,
and less at higher tree levels. If noisy variables are selected as
splitting variables the probability should be low for low tree
levels and not change as much between different tree levels,
maybe increase slightly for higher levels. Fig. 5 illustrates the
qualitative shapes of the probability distributions with respect
to the tree levels for important and noisy variables. Thus, main
idea of the new variable importance measure is to evaluate for a
given splitting variable the probability that it is used at different
levels of the trees in the RSF.

Let d = 1, 2, . . . ,max(D(T )), where D(T ) is a tree depth, be
all possible tree levels in a RSF and v ∈ ν is a splitting variable.
Consider d as a random variable, and define P (v, d) which
describes the joint probability that v is selected as a splitting
variable in a node at a tree level d. Then,

P (d|v) = P (v|d)P (d)
P (v)

(8)

where, P (v|d) denotes the conditional probability that v is
selected as a splitting variable in a node given tree level d. The
probability P (d) is an a priori probability to select a specific
level in the tree, independent of splitting variable, and P (v) is
the marginal probability of selecting v as a splitting variable for
the whole tree. It is assumed that there is no a priori knowledge
of P (d), thus, the probability is set equal for all levels, i.e.,
P (d) = 1

max(D(T )) , ∀d. The conditional probability P (d|v)
can be interpreted as the a posteriori probability of selecting
a tree level given that v is used as a splitting variable. The a
posteriori distribution (8) is here considered a relevant measure
of the importance of the splitting variable v in the RSF. The
measure avoids the problem, for example, VIMP has where the
importance will be shared between the correlated variables. This
is because (8) consider the probability of selecting different tree
levels given that a splitting variable is selected and does not
depend on the probability of selecting v which is reduced if
variables are correlated.

The conditional probability (8) will be used as a variable
importance measure. However, the true probability is not known

because it depends on many different factors, for example,
the parameters when generating the RSF. However, it can be
estimated from the RSF by computing the mean ratio for all
trees that v is used as a splitting variable in a node for each level
d of the tree. This, can be done by first computing

φv(d) =

∑
T
ld,v
ld

# of trees in RSF
where ld,v is number of nodes at level d where v is splitting
variable. Equation (9) is then used to compute the estimate

Pv(d) =
φv(d)∑
k φv(k)

. (9)

which will be used when analyzing the RSF.

Generating an RSF for identifying important variables differs
from generating an RSF for battery life prediction. To identify
important variables it is useful to generate the RSF such that
the chance of having significant variations between variables
is increased. Thus, each tree in the forest is allowed to grow
deep to have as many levels and branches as possible. Therefore,
the minimal terminal node size was chosen to be two. This
parameter choice is not suitable for battery life prediction where
instead a minimal terminal node size of 200 was used. In the
later case, the focus is in quality of prediction and taking into
account the fact that there are no time series for each vehicle, it
should be associated with a class of vehicles with similar usage
profile. Therefore, small values of minimal node size could be
a bad choice. However for variable selection, trees are required
to be as deep as possible, because quality of (9) depends on it.
Based on experience, but also to compare the results with the
minimal depth approach, 1000 trees was selected to be generated
in the RSF.

After growing an RSF with minimal terminal node size 2 and
calculating probability mass functions (pmf) according to (9),
five probability mass functions for different splitting variables
are shown in Fig. 6. The variables stating whether a vehicle has
kitchen equipment or not and how long the battery has had a
voltage within a given interval are intuitively important since
they indicate how the battery is used. This is visible in the figure
since Pv(d) is large for small d and decreasing with increasing
d, while the noise variable is more flat starting from level 5. The
estimated Pv(d) with respect to the road slope where the vehicle
has been run has the same shape as the noise indicating that
it is not important regarding battery degradation. The estimate
Pv(d) of the starting motor time does not have the same shape
as kitchen equipment but there is still more likely that it is used
as a splitting variable close to the root in a tree indicating that it
still has some importance. This is reasonable since a degraded
battery can be correlated with that the starting motor is used
more. These observations indicate that the shape of Pv(d) can
be used to measure variable importance.

6. IDENTIFYING IMPORTANT VARIABLES FOR
BATTERY FAILURE PROGNOSTICS

The proposed variable importance measure estimate (9) is
here used to analyze data from the vehicle database. There
is a number of different histogram variables describing how
the vehicle is used where each bin represents how much a
variable has been measured within a specific interval. As
a first step, the analysis will evaluate if it is possible to
identify important operating regions and vehicle configurations
which are correlated with battery degradation. The results are
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vehicle database calculated according to (9).
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Fig. 7. Variable importance analysis of battery voltage histogram
variables.

discussed based on expert knowledge for variables related to
battery voltage, fuel consumption, starter motor usage, ambient
temperature, and configuration variables. Then, in a second step
an automatic procedure is outlined and applied to the full set of
variables.

Based on the observations in Fig. 6, the shape of Pv(d) for high
d is more noisy due to varying sizes of the different trees. Thus,
for better visualization (9) is plotted for each histogram variable
but only for tree levels d ≤ 20. Fig. 7 upper plot shows Pv(d)
for different histogram bins of battery voltage variable when the
battery is used, where bin 1 represents low battery voltage and
bin 9 high battery voltage. The three lowest histogram bins have
higher values at lower tree levels indicating that the time the
battery in the truck is having low voltage is important for battery
health prediction. It is also visible that the bin 9 significantly
higher at lower tree levels, compared to the bins 4-8, meaning
that high voltages are also relevant for battery health prognostics.
When comparing the result to VIMP, Fig. 7 lower plot, it is
visible that both methods identifies low voltages as important,
high positive values of VIMP mean important variables, but the
high voltage is not identified by VIMP.
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Fig. 8. Variable importance analysis of fuel consumption speed
histogram variables.
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Fig. 9. Variable importance analysis of starter motor time
histogram variables.

Another variable is fuel consumption speed which is shown
in Fig. 8. It is visible from upper plot that mainly lower fuel
consumption speeds are correlated to battery failure which could
be related to city driving with lots of starts and stops increasing
the usage of the battery. VIMP, lower plot, varies more and it is
more difficult to identify any bin as more important.

The analysis of the time that the starter motor is used is shown
in Fig. 9. Compared to noisy variables it is indicated that the
starter motor time has some relevance, see Fig. 6 upper plot, for
the whole interval, but not as much as, for example, low battery
voltage. Also, note that there is a small trend of increasing
importance with increasing starter motor time indicating that
battery failure is correlated with when the starter motor is used
more often which is reasonable since the battery is used more.
The computed VIMP measure, lower plot, does not have any
clear indication of any bin being important, except possibly bin
6.

It is known that cold temperatures are not good for battery
health which is also visible in Fig. 10. It is mainly the lowest
temperature bin that is relevant for battery degradation. When
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histogram variables.
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Fig. 11. Variable importance of different truck configuration
variables.

comparing the results with VIMP, the VIMP measure is very
close to 0 and even negative in many cases.

Finally, a set of variables describing the vehicle configuration
is analyzed in Fig. 11. The variables consider both battery type
and position and variables that are related to if the driver sleeps
in the truck, for example, if there are any kitchen equipment
or beds and thereby use the battery for more purposes than
starting the combustion engine. The figure shows that if there is
kitchen equipment or not and, the battery position, and if there
are any beds in the truck are important variables. This result is
understandable since if the driver is using the truck to sleep in it
and cook food, the battery will be used, not only for starting the
engine but also for powering these auxiliary units. The battery
position indicates that some battery positions are correlated to
faster battery degradation, for example, increased vibrations.
VIMP identifies the kitchen equipment variable but there seems
to be no significant importance for the other configuration
parameters.

These examples show that the results from (9) can be explained
from expert knowledge. Further, the examples indicate that the
measure is useful for identifying variables relevant for battery
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Fig. 12. Skewness and mean of (8) plotted for each variable in
vehicle database. A manually selected threshold is used to
select a subset of important variables which reside down to
the right from the threshold.

failure prognostics and extracts information not obtained from
VIMP or minimal depth metrics.

However, the analysis here is performed manually. To automati-
cally select important variables for generating an RSF model, it
must be possible to measure the variable importance based on
the shape of (9).

6.1 Variable selection using shape of depth distribution

To select a suitable set of variables, the variable importance is
measured by computing the skewness and mean of Pv(d) in (9)
for each variable v,

µd = EPv [d] (mean)

γd = EPv

[(
d− µd
σd

)3
]

(skewness)
(10)

where σd is the standard deviation of d. Fig. 12 shows plotted
mean and skewness of Pv(d) for each variable v from vehicle
database. Important variables should have a large positive values
of skewness and a low mean value, i.e., they should be in the
lower right corner of the figure, while noisy variables should
be in the upper left corner. Most of the variables are located in
the upper left corner, including the injected noisy variables,
indicating that many variables are not relevant for battery
degradation. However, there is a set of points that are located
along the way down to the right indicating their increasing
importance.

The corresponding skewness and mean for each of the variables
in Fig. 6 are marked in Fig. 12 showing that the variables thought
to be important are located down to the right while the noise
variable is located up to the left.

7. EVALUATING RSF MODEL FOR BATTERY HEALTH
PROGNOSIS

Based on Fig. 12, a manually selected threshold is defined to
select a subset of variables that are most important to generate a
new RSF. The performance of the RSF using the reduced set of
variables is compared to using all variables. The selected subset



of variables includes 50 variables out of 283 variables. For both
sets of variables, an RSF is generated with 1000 trees and a
minimal terminal node size of 200. The error rate for the case
with all features is 0.2011, and for the reduced set 0.2186 which
are comparable in size. Note that, as observed in Section 2.2,
this does not necessarily mean similar predictor performance.

For the analysis, 10 vehicles with battery failures and 10 without
are selected randomly. These vehicles are then used as inputs in
the RSF to compute the life functions Bν(t; t0) and the results
are shown on Fig. 13 and Fig. 14 for vehicles with battery
problems and healthy ones, respectively. It should be noted
that time units were used on x axis for both figures, original
time was scaled to hide true life-time of batteries to not reveal
sensitive information for industrial partner.
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Fig. 13. Lifetime functions Bν(t; t0) for 10 vehicles with
battery failures from vehicle database. Two models of RSF
compared, namely, with all features and with reduced set
of features.

The computed lifetime functions have, in general, higher values
for vehicles without battery problems than for vehicles with
battery problems, see Fig. 13 and Fig. 14. This is true for the
cases with and without feature selection which is expected.
Another thing that can be noticed is that the lifetime functions
are more less the same for the case with all variables and the case
with only the identified important ones. It is difficult to evalaute
the quality of the predictions of the two RSF models. However,
the results in the example in Section 2 shows that a reduced
number of noisy variables should have a positive impact on
prediction accuracy even though the error rates are comparable.
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Fig. 14. Lifetime functions Bν(t; t0) for 10 censored vehicles
from vehicle database. Two models of RSF compared,
namely, with all features and with reduced set of features.

8. CONCLUSIONS

A heavy-duty truck battery failure prognosis model is estimated
based on truck operational data using random survival forests.
The available data have several complicating factors, such as,
missing and censored data, varying variable types, etc., which

can be handled using random survival forests. Applying variable
selection before generating the battery failure prognosis model
can help improve the prognosis, but also interpretability, and
computational cost. Standard techniques for variables impor-
tance measures are evaluated. Since satisfactory performance
was not achieved, a new variable importance measure is pro-
posed to identify variables relevant for battery failure prognosis.
The analysis is used both to identify which variables are rele-
vant for battery lifetime prediction and to improve prediction
performance. The results of the new approach are consistent
with expert knowledge, for example, identifying low ambient
temperatures and if the driver uses kitchen equipment in the
truck as important information. The performance of the proposed
variable importance measure promising for this application when
compared to existing measures. Training an RSF for the two
cases, using all variables and only 18% of important ones, result
is comparable in error rates. The introductory example shows
that similar error rates still give varying results compared to
the truth which indicates that the proposed variable selection
method should improve prediction performance. However, more
work should be done in this direction to justify the results.
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