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Abstract: Gearshift optimal control of a hybrid powertrain with a lumped/decoupled trans-
mission model and backlash dynamics in the driveline is studied. A model is used for a heavy
duty powertrain including a validated mean value diesel engine model with electric generator,
transmission dynamics representing the dynamics of the automated manual transmission system
and driveshaft flexibilities. Backlash dynamics are also included in the driveline model by
introducing a switching function. By applying numerical optimal control methods and dividing
the gearshift process into separate phases, optimization problems are solved to investigate the
minimum time and low Jerk gearshift transients. The controls are also calculated with fuel
penalties added to the minimum Jerk optimization and the transients are analyzed.
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NOMENCLATURE

Symbol Description Unit

x State variable -

u Control input -

θ Angle deg

β Maximum Backlash Angle deg

ψ1,2 Backlash function parameter -

t Time s

F Force N

R Gas constant N·m/kg·K
p Pressure Pa

T Temperature K

M Torque N·m
k Stiffness coefficient N·m/rad

b Damping coefficient N·m·s/rad

ω Rotational speed rad· s−2

α Rotational acceleration rad/s

m, ṁ Mass, Mass flow kg, kg/s

P Power W

E Energy J

umf , uwg, Pgen Control signals mg/cycle, -, W

J Inertia kg · m2

ρ Density kg · m−3

r Radius m

A Vehicle frontal area m2

BSR Blade speed ratio -

λ Air/fuel equivalence ratio -

φ Fuel/air equivalence ratio -

i Gear ratio -

η Efficiency -

Π Compression ratio -

c Constant coefficient -

(A/F )s Stoichiometric Air to fuel ratio -

Table 1. Variables used in the paper.

1. INTRODUCTION

Applying engine control techniques in automated manual
transmission (AMT) systems, a gearshift is performed
without using a clutch. This is enabled by reducing the
engine torque to zero level before disengaging the off-going
gear, shifting into neutral while synchronizing the speeds

Index Description Index Description

im Intake manifold em Exhaust manifold

gen Generator wg Wastegate

e Engine a Air

ds Drive shaft veh Vehicle

i phase i mf fuel mass

mech Mechanical tc Turbocharger

w Wheel g, i Gear i

fd Final drive tr Transmission

c Compressor ac Air into cylinder

d Drag r Rolling

0 Initial f Final

co Coupling bl Backlash

l Load gs Genset

Table 2. Subscripts used for variables.

on the two sides of the transmission, engaging the new gear
at zero engine torque, and finally accelerating the driveline
inertia to high level torques. This process is illustrated in
Figure 1 for a case with backlash in the driveline.

Especially in heavier vehicles, it is important to reduce
the duration of the gearshift because in long periods of
the gearshift, the vehicle is free rolling. A longer gearshift
results in larger vehicle speed deceleration and the engine
may not be able to recover from this situation for deliv-
ering the torque required at the end of the gearshift. An
electrical power source in the powertrain can assist the
engine during the gearshift. However, this increases the
control complexity as the torque from both engine and
generator should be controlled for the clutch free gearshift.

Another complexity in the control of powertrain systems
is the backlash due to the lash in the gears of the gearbox.
Backlash occurs when the driveline state changes from
acceleration to deceleration or vice versa. According to
Lagerberg (2004a) backlash size can be in the range of 20-
40 crankshaft degrees or even more and therefore improper



Fig. 1. Engine torque during a gearshift using engine
torque control for gearshifting.

control of a powertrain with backlash results in undesirable
driveline oscillations.

Optimal control can be used to identify the theoretical
performance limits of a system and can be used to analyze
such powertrains. The solutions can be used when design-
ing feedback controllers. In this work, backlash nonlin-
earity is integrated into an already developed powertrain
model in Nezhadali and Eriksson (2016) with purpose
of gearshift optimal control analysis. The novelty is in
the modeling of the backlash as a differentiable switch-
ing function enabling both backlash contact and traverse
modes with a single equation. Moreover, the methodology
for modeling and optimal control problem (OCP) formu-
lations is insightful for researchers when solving similar
industrial problems.

In the following sections, first the powertrain model is
presented. Then details of OCP formulation are described
followed by presenting the numerical optimal control re-
sults for min time and low Jerk gearshift transients.

2. POWERTRAIN MODEL

The powertrain model includes a mean value engine model
(MVEM) with a generator (genset), transmission dy-
namics, driveshaft twist and vehicle speed dynamics. The
powertrain dynamics are described by eight state variables,
namely, ωe(t), pim(t), pem(t), ωtc(t), ωtr(t), θtw(t), θbl(t)
and ωw(t). Three control inputs of the powertrain model
are umf (t), uwg(t) and Pgen(t). For simplicity, the time
dependence (t) is omitted in the rest of the paper.
2.1 genset model

Details of the genset model are described in Sivertsson
and Eriksson (2014) while Figure 2 shows the internal
relation between components of the genset model. The
MVEM is comprised of submodels for ωe, pim, pem, and
ωtc dynamics with uwg and umf being the control inputs.
The dynamics are described by the following system of
differential equations:

Fig. 2. genset model including models for generator losses
and diesel engine.

dωe
dt

=
1

Jgs
(Mgs −Mgs,l) (1)

dpim
dt

=
RimTim
Vim

(ṁc − ṁac) (2)

dpem
dt

=
RemTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=
Ptηmech − Pc

ωtcJtc
(4)

Mgs,l for different gearshift phases is calculated and pre-
sented in section 2.4. The torque from the genset is
calculated by:

Mgs = Me(umg, uwg)−
Pmech(Pgen)

ωe
(5)

The electrical energy from/to the generator is calculated
by the following integral:

Egen =

∫ tf

0

Pgen dt (6)

2.2 Powertrain configuration during gearshift

Three distinct phases can be identified during an upshift
according to Figure 1. In driveline modeling, to calculate
the optimal gearshift controls, it is important to account
for the significant torsional flexibilities in the driveline.
Pettersson and Nielsen (2000) show that, the main flexibil-
ity in the driveline is in the driveshaft, hence modeling the
driveshaft as a damped torsional flexibility describes the
main oscillations of the driveline. The transmission speed
oscillations following the shift into the neutral gear, during
the synchronization phase, are properly described using a
decoupled transmission model according to Pettersson and
Nielsen (2000), and same approach is followed here.

The general configuration of the powertrain during each
of the gearshift phases is depicted in Figure 3. The main
source of backlash in the driveline is the gear play in
the transmission and final drive between the two major
inertias of the powertrain. Considering that the inertia of
gears and the driveshaft are negligible compared to genset
and the inertia at wheels, and according to Lagerberg and
Egardt (2007), all powertrain backlash contributions can
be lumped into a single backlash.

2.3 Backlash modeling

According to Lagerberg (2001), commonly used backlash
models are dead-zone and physical models. Nordin et al.
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Fig. 3. The configuration of powertrain inertia in different
phases of an engine controlled gearshift. The three
phases are 1)Torque phase, 2)Synchronization phase,
3)Inertia phase.

(1997) shows that the dead-zone models are incorrect for
the case of elastic shafts with internal damping, thus the
physical modeling approach is followed in this article. In
a physical model, both backlash angle and the remaining
twist in the driveshaft are considered. Backlash dynamics
depend on the backlash position with respect to the
contact point between the driving and driven parts of the
powertrain. In Figure 3, when backlash position is at −β/2
or β/2 the powertrain is considered to be in left or right
contact mode, respectively. Depending on the backlash
position, the backlash dynamics are described by:

dθbl
dt

=


max

(
0, dθtwdt + kds

bds
(θtw − θbl)

)
θbl = −β2

dθtw
dt + kds

bds
(θtw − θbl) |θbl| ≤ β

2

min
(
0, dθtwdt + kds

bds
(θtw − θbl)

)
θbl = +β

2

(7)

with θbl and θtw being:

θbl = θ3 − θw (8)

θtw = θ2 − θw (9)

According to (8), (9) and the powertrain geometry in
Figure 3, the net driveshaft twist is θtw,net = θtw − θbl.
Correct dynamics from (7) should be chosen for powertrain
simulation. Lagerberg (2004b) defines separate operation

phases when backlash is in contact θbl = |β2 | or traverse

mode |θbl| ≤ β
2 . Position of the backlash during a gearshift

phase is not known beforehand and is highly dependent
on other driveline dynamics. Moreover, for OC problem
formulation, it is desired to always describe the backlash
dynamics, at different positions, with a single differential
equation covering all backlash modes. This is enabled
by using a differentiable function κ which changes in
[0,1] range enabling smooth transition between different
backlash modes in (7) depending on θbl.
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Fig. 4. A single differential equation for backlash dynamics
is obtained using a switching function κ with ψ1=1000
and two different values for ψ2.

The backlash dynamics are then described by a single
differential equation as follows:

dθbl
dt

=κ(θbl)×
(dθtw
dt

+
kds
bds

(θtw − θbl)
)

(10)

κ(θbl) =
(
0.5 tanh(ψ1(θbl + β))− 0.5 tanh(ψ1(θbl − β))

)ψ2

(11)

where κ(θbl) is illustrated in Figure 4 for ψ1 = 1000, β =
20 [deg] and two different ψ2 values, to show the switching
characteristics at left and right contact positions. A larger
ψ2 removes non-zero values of κ when |θbl| > |β|/2.

The transferred torque by the driveshaft is calculated by:

Mds = kds(θtw − θbl) + bds
(dθtw
dt
− dθbl

dt

)
(12)

where dθtw/dt is the driveshaft twist dynamics calculated
according to the gearshift phase as described in section 2.4.

At the beginning of the inertia phase, the new gear play
should be traversed before any torque can be transferred to
the wheels. This is because as long as θbl < +β/2, solving
(12) with κ = 1 in (10) results in Mds = 0, thus the vehicle
will be free rolling. Considering this, it is possible to divide
the powertrain configuration during the inertia phase as
3a) and 3b) in Figure 5. In 3a), the backlash is traversed
from the left contact side to the right contact side, while
in 3b), κ = 0 implies that the backlash dynamics are zero.
This improves the computational efficiency of the model in
optimal control analysis as backlash nonlinearity will not
exist during the larger part of the inertia phase.

2.4 Powertrain dynamics

The dynamics during each gearshift phase for transmission
speed, driveshaft twist angle and wheel speed are described
in the following sections. To describe transmission dynam-
ics before/after and during the synchronization phase, the
lumped and decoupled driveline models from Pettersson
and Nielsen (2000) are used.

Torque phase dynamics The first phase of the
gearshift starts after the driver commands a gearshift.
Thereafter, engine control is transferred from the driver
to the transmission control unit. During the torque phase,
transmission components are connected to the genset,
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Fig. 5. Inertia phase is divided into 3a Inertia phase,
backlash traverse and 3b Inertia phase, acceleration.

therefore they have same speed dynamics as ωe only scaled
with the initial gear ratio ig,1. The rotational states of the
driveline during this phase are described as follows:

dωtr
dt

=
dωe
dt

1

ig,1
(13)

dθtw
dt

=
ωe

ig,1 ifd
− ωw (14)

dωw
dt

=
Mds −Ml

Jw +mvehr2
w

(15)

with Mds calculated by (12) and the load from the road
calculated as:

Ml = (0.5 ρair caAω
2
wr

2
w −mveh g cr) rw (16)

Assuming small driveshaft inertia, the lumped inertia of
the masses rotating with the genset and Mgs,l which are
required in (1) are calculated as:

Jgs = Je + Jgen + Jco + Jtr,12 (17)

Mgs,l =
Mds

ig,1 ifd
(18)

Synchronization phase dynamics During this phase,
the engine and wheel sides of the transmission are decou-
pled. Components of the transmission that are attached to
the engine side, represented with Jco inertia, rotate with
the engine. Rotational dynamics of the remaining parts
of the transmission, Jtr,12, depend on the driveshaft twist
and damping. The driveline dynamics can be described as:

dωtr
dt

=
1

Jtr12
(−btrωtr −

Mds

ifd
) (19)

dθtw
dt

=
ωtr
ifd
− ωw (20)

dωw
dt

=
Mds −Ml

Jw +mvehr2
w

(21)

where Ml and Mds are calculated with (16) and (12).
Mgs,l = 0 and the engine side inertia is calculated by:

Jgs = Je + Jgen + Jco (22)

Inertia phase, backlash traverse dynamics In this
phase, the transmission and genset are reconnected. The
backlash has to be traversed from regions close to the
left contact mode to the right contact mode until that
κ(θbl)=1. The driveline dynamics are described the same
as the torque phase dynamics with replaced ig,2 instead of

ig,1 in (13) and (14). Jtr,12 in (17) should also be replaced
with the Jtr,3 matching the new gear dimensions. Mds is
calculated by (12) using the backlash dynamics defined
in (10), and the load on the genset is calculated by (18)
using ig,2.

Inertia phase, acceleration dynamics During this
phase, backlash angle is constant at right contact position
implying:

dθbl
dt

= 0 (23)

The rest of the driveline dynamics, inertia and torques are
calculated exactly same as the previous phase.

3. OPTIMAL CONTROL PROBLEM FORMULATION

The developed powertrain model is used to formulate
OCPs for the different phases of the gearshift. In the
following, first the choice of objective function and then
the problem constraints are described for an up-shift. The
same model can be used for a down-shift scenario after
modification of the constraints.

3.1 Objective function formulations

Various properties can be considered for gearshift opti-
mization such as gearshift duration, transmission output
shaft oscillations and components’ life length, see Haj-Fraj
and Pfeiffer (2002) and Haj-Fraj and Pfeiffer (2001) for
more details. Here the focus is mostly on the minimiza-
tion of gearshift duration and oscillations in transmission
output shaft. These oscillations are referred to as vehicle
Jerk which is defined as follows:

Jerk =

∫ t12

t0

α̇2
tr dt+

∫ t23

t12

α̇2
tr dt+

∫ t34

t23

α̇2
tr dt+

∫ tf

t34

α̇2
tr dt

(24)

αtr =
dωtr
dt

(25)

where the times t are illustrated in Figure 1. Fuel consump-
tion requirements affect hybrid powertrain transients. To
investigate this, effects of including a fuel penalty term
in the Jerk minimization problem are calculated where
fuel consumption mmf during the gearshift is calculated
as follows:

mmf =

∫ t12

t0

ṁmf dt+

∫ t23

t12

ṁmf dt

+

∫ t34

t23

ṁmf dt+

∫ tf

t34

ṁmf dt (26)

ṁmf = umf ωe ncyl
10−6

4π
(27)

with ncyl being the number of diesel engine cylinders.

3.2 Constraints

The constraints are originated from the component limita-
tions or gearshift phase specifications. The constraints can
be categorized into two categories where the first includes
boundary properties at the beginning/end of each phase,
whilst the second group are time varying.



3.3 Boundary conditions

At the beginning of the torque phase, t0, initial engine
speed, wheel speed and transmission speed are defined.
To ensure that the gearshift starts and ends at stationary
operating conditions, all state dynamics are set to zero at
t0 and tf . To enable clutch-free gearshift, the torque in the
transmission from the power source should be zero at the
beginning and the end of the synchronization phase t12 and
t23. Moreover, the engine speed should be synchronized
with the transmission speed at t12. At the beginning of the
backlash traverse phase, backlash is assumed to be close to
the left contact mode and it has to reach close to the right
contact mode at the end of the backlash traverse phase.
The gearshift should end at predefined engine speed and
wheel speed complying with the new gear ratio. Moreover,
to ensure charge sustainability of the generator operation,
it is required that the electrical energy and power be zero
at the beginning and end of the gearshift. Finally, all states
and controls of the system except the backlash between
second and third phases of the gearshift are connected to
each other to obtain continuous transients.

The complete set of boundary conditions during the
gearshift are summarized as:



ẋ(tf ) = ẋ(t0) = 0, ωtr(t0) = ωe,0/ig,i
ωe(t0) = ωe,0, ωw(t0) = ωe,0/ifdig,i
ωtr(t23) = ωe(t23)/ig,i, Mgs(t12) = Mgs(t23) = 0
Mgs(t12) = Mgs(t23) = 0
Egen(t0) = Egen(tf ) = Pgen(tf ) = Pgen(t0) = 0
ωe(tf ) = ωe,tf , ωw(tf ) = ωw(t0)
θbl(t23) = −0.6β/2, θbl(t34) > 0.99β/2
(x, u)phase 1,end = (x, u)phase 2,start

(x, u)phase 2,end = (x, u)phase 3,start(except for θtw)
(x, u)phase 3,end = (x, u)phase 4,start

(28)

3.4 Time varying and box constraints

The time varying constraints are originated from the en-
gine torque limits, smoke limiter requirements and tur-
bocharger constraints. Box constraints in the form of min
and max values are also implemented representing the
feasible operating range for various system states and
control inputs. The practical constraints on how fast the
wastegate can operate or generator torque can change are
represented by cwg and cgen limits. These constraints can
be summarized as follows:


BSRmin ≤ BSR(x, u) ≤ BSRmax, Πc = Πc,surge

umin ≤ u ≤ umax, xmin ≤ x ≤ xmax
|u̇wg| ≤ cwg, |Ṗgen|/ωe ≤ cgen
Pe(x, u) ≤ Pe,max(x), 0 < ṁac

ṁf
(A/F )s ≤ 1

λmin

(29)

3.5 Optimal control problem formulation

OCPs are formulated for minimization of gearshift time
and Jerk. Another case that is considered is the Jerk mini-
mization problem including a penalty term for the fuel con-
sumption. Knowing the powertrain dynamics ẋ = f(x, u)
from section 2.4, the OCP formulations for minimization
of time, Jerk and Jerk with fuel penalty look as follows:

1)



min
x,u

tf

subjected to

ẋ = f(x, u)
t(1),min ≤ t(1)

t(2) = t(2),fix

t(3a),min ≤ t(3a)

t(3b) free
(28), (29)

2)



min
x,u

Jerk

subjected to

ẋ = f(x, u)
t(1) = t(1),fix

t(2) = t(2),fix

t(3a) = t(3a),fix

t(3b) = t(3b),fix
(28), (29)

3)



min
x,u

Jerk + δ mmf

subjected to

ẋ = f(x, u)
t(1) = t(1),fix

t(2) = t(2),fix

t(3a) = t(3a),fix

t(3b) = t(3b),fix
(28), (29)

(30)

where t(1),(2),(3a),(3b) denote the duration of gearshift
phases, δ is the penalty constant, ti,min are minimum
durations for each phase representing the dynamics in the
transmission hydraulic actuation mechanism, and ti,fix are
to avoid extremely long gearshifts when minimizing the
Jerk. In all three OCPs it is assumed that the synchro-
nization phase duration is a constant.

3.6 Solution the OCP

CasADi software package, Andersson (2013), is used for
solving the formulated OCPs. System states, control in-
puts, time varying constraints and objective function
are discretized according to the direct multiple shooting
scheme where the dynamics in each shooting interval are
integrated by fourth order Runge-Kutta method. Then, a
Nonlinear Programming (NLP) problem is formulated and
solved by IPOPT, Wächter and Biegler (2006).

4. RESULTS

Selected results from the numerical optimal control solu-
tions are presented and analyzed in this section. At first,
it is shown how the objective function formulation affects
time-fuel-Jerk properties. Then, the powertrain transients
are presented and analyzed for a gearshift case where there
is a compromise between time-fuel-Jerk.

4.1 Compromise between time, Jerk and fuel consumption

Figure 6 shows the trade-off between gearshift duration
and Jerk. The left-most point on the trade-off, which is
not shown due to very large Jerk, is obtained by solving
1) in (30), while the rest of points are obtained by solving
2) in (30) by increasing the t(1),fix, t(3a),fix and t(3b),fix.
The Jerk is drastically reduced when longer gearshift
durations are chosen. However, the obtained trajectories,
which are the focus of the next section, for the system
transients are not proper in a sense that the control inputs
are oscillatory specially during the torque phase. The
transients corresponding to the low Jerk gearshift in Figure
6 are presented in Figure 9.

Figure 7 shows the effect of adding fuel penalty to the
Jerk minimization problem, solving 3) in (30). Table 3
shows the changes in fuel consumption and Jerk in all
gearshift phases for the two highlighted points in Figure
7. Compared to the case where only Jerk is minimized, by
adding a fuel penalty into the problem formulation, fuel
consumption is reduced up to 3.57 % in expense of only
0.29 % more Jerk. However, the trend in fuel consumption
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Fig. 7. Changes in fuel consumption and Jerk when in-
creasing the fuel penalty in Jerk minimization prob-
lem.

reduction is not the same for all of the gearshift phases.
Therefore, a more detailed comparison of the transients
before and after including the fuel penalty is performed in
the following section.

phase ∆mmf (%) ∆ Jerk (%)

1 -3.2 5.8
2 27.9 16
3 -2.6 0.44
4 -12.6 -0.52

Total -3.57 0.29

Table 3. Fuel consumption and Jerk changes in
each phases of the gearshift when fuel penalty

is added.

4.2 Jerk optimal transients, with and without fuel penalty

Figure 8 shows the electrical energy and fuel consumption
comparison, and Figure 9 shows the states and controls.
There is no big difference in terms of Jerk when fuel
penalty is added into the problem formulation. In addition
to the numbers in Table 3, this is also qualitatively
verifiable by comparing ωtr trajectories in Figure 9. The
oscillations in umf and Pgen during the torque phase take
place because the objective function is not sensitive to
such oscillations. By adding the fuel penalty term into
the problem, the oscillations become costly in terms of
fuel consumption and thus are avoided. The resulting
trajectories also become smoother which are preferred
from the controller design perspective.

The second largest difference when adding the fuel penalty
occurs during the synchronization phase. Fuel consump-
tion increases by 27.9 %, ωe is considerably lower and
Pgen has a larger peak. This results in higher available
electrical energy at the beginning of the backlash traverse
and inertia phases. The extra available electrical energy
reduces the need to the diesel engine power and lowers the
fuel consumption.
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Fig. 9. Optimal state and control input transients with and
without including fuel penalty in the Jerk minimiza-
tion.

Considering ωtr transients, for which Jerk is minimized, it
is important that when the transmission is decoupled at
the end of the torque phase, ωtr reaches this point from a
lower speed while θtw is also reduced to match the drive-
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Fig. 10. Comparison of driveshaft torque Mds and the
genset torque Mgs in min tf and low Jerk transients.
The dashed lines mark the boundary times of the
gearshift phases.

shaft twist at the beginning of the synchronization phase.
Otherwise, the remained torsional energy in the driveshaft
stored as a larger θtw twist, induces large oscillations in ωtr
when transmission sides become decoupled.

The backlash traverse phase is almost unchanged with
or without including the fuel penalty. Since Jerk should
be minimized in both problem formulations, backlash is
smoothly traversed when close to the contact mode while
it is rapidly traversed at the beginning of the phase.
Moreover, the backlash remains at the right contact mode
during the torque and synchronization phases which shows
that the backlash dynamics could as well be removed
during these phases in order to reduce the computation
costs.

The torque transients compared in Figure 10 show that the
delivered torque to the wheels Mds are almost identical in
both cases. The unchanged Mds while there are large dif-
ferences in the engine and generator torque transients yet
again shows that the Jerk minimization problem without
considering fuel consumption effects is insensitive to the
torque oscillations inside the genset.

The point to consider here is that directly after having
a small contribution of Jerk in time minimization or fuel
penalty in Jerk minimization, the results are extensively
affected, e.g consider the difference between first points
and rest of the points in Figures 6 and 7, and also the big
difference between transients. This makes it important to
have a representation of all important properties in the
formulation of the objective function such that the results
are not representative of only extreme conditions.

5. CONCLUSIONS

A diesel-electric powertrain including backlash is modeled
with the aim to perform gearshift optimal control analysis.
Powertrain backlash nonlinearity is modeled using physical
models. In order to avoid multiple backlash definitions at
various backlash positions, a continuously differentiable
switching function is utilized covering different backlash

positions. The optimal transients for a compromise be-
tween transmission jerk, gearshift duration and fuel con-
sumption are calculated using numerical optimal control
methods.

The results show that the the choice of a switching func-
tion efficiently describes the backlash traverse dynam-
ics. Moreover, it is shown that using only one property
such as Jerk or time in the objective function of optimal
control problem formulations, results in complex control
trajectories representing only extreme cases. This can be
avoided by proper formulation of the optimization criteria
e.g by adding fuel penalty term into the Jerk minimization
problem objective.
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